• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declarations of classes that represent "derived
10 // types".  These are things like "arrays of x" or "structure of x, y, z" or
11 // "function returning x taking (y,z) as parameters", etc...
12 //
13 // The implementations of these classes live in the Type.cpp file.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_IR_DERIVEDTYPES_H
18 #define LLVM_IR_DERIVEDTYPES_H
19 
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/TypeSize.h"
27 #include <cassert>
28 #include <cstdint>
29 
30 namespace llvm {
31 
32 class Value;
33 class APInt;
34 class LLVMContext;
35 
36 /// Class to represent integer types. Note that this class is also used to
37 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
38 /// Int64Ty.
39 /// Integer representation type
40 class IntegerType : public Type {
41   friend class LLVMContextImpl;
42 
43 protected:
IntegerType(LLVMContext & C,unsigned NumBits)44   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
45     setSubclassData(NumBits);
46   }
47 
48 public:
49   /// This enum is just used to hold constants we need for IntegerType.
50   enum {
51     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
52     MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
53       ///< Note that bit width is stored in the Type classes SubclassData field
54       ///< which has 24 bits. This yields a maximum bit width of 16,777,215
55       ///< bits.
56   };
57 
58   /// This static method is the primary way of constructing an IntegerType.
59   /// If an IntegerType with the same NumBits value was previously instantiated,
60   /// that instance will be returned. Otherwise a new one will be created. Only
61   /// one instance with a given NumBits value is ever created.
62   /// Get or create an IntegerType instance.
63   static IntegerType *get(LLVMContext &C, unsigned NumBits);
64 
65   /// Returns type twice as wide the input type.
getExtendedType()66   IntegerType *getExtendedType() const {
67     return Type::getIntNTy(getContext(), 2 * getScalarSizeInBits());
68   }
69 
70   /// Get the number of bits in this IntegerType
getBitWidth()71   unsigned getBitWidth() const { return getSubclassData(); }
72 
73   /// Return a bitmask with ones set for all of the bits that can be set by an
74   /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
getBitMask()75   uint64_t getBitMask() const {
76     return ~uint64_t(0UL) >> (64-getBitWidth());
77   }
78 
79   /// Return a uint64_t with just the most significant bit set (the sign bit, if
80   /// the value is treated as a signed number).
getSignBit()81   uint64_t getSignBit() const {
82     return 1ULL << (getBitWidth()-1);
83   }
84 
85   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
86   /// @returns a bit mask with ones set for all the bits of this type.
87   /// Get a bit mask for this type.
88   APInt getMask() const;
89 
90   /// This method determines if the width of this IntegerType is a power-of-2
91   /// in terms of 8 bit bytes.
92   /// @returns true if this is a power-of-2 byte width.
93   /// Is this a power-of-2 byte-width IntegerType ?
94   bool isPowerOf2ByteWidth() const;
95 
96   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)97   static bool classof(const Type *T) {
98     return T->getTypeID() == IntegerTyID;
99   }
100 };
101 
getIntegerBitWidth()102 unsigned Type::getIntegerBitWidth() const {
103   return cast<IntegerType>(this)->getBitWidth();
104 }
105 
106 /// Class to represent function types
107 ///
108 class FunctionType : public Type {
109   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
110 
111 public:
112   FunctionType(const FunctionType &) = delete;
113   FunctionType &operator=(const FunctionType &) = delete;
114 
115   /// This static method is the primary way of constructing a FunctionType.
116   static FunctionType *get(Type *Result,
117                            ArrayRef<Type*> Params, bool isVarArg);
118 
119   /// Create a FunctionType taking no parameters.
120   static FunctionType *get(Type *Result, bool isVarArg);
121 
122   /// Return true if the specified type is valid as a return type.
123   static bool isValidReturnType(Type *RetTy);
124 
125   /// Return true if the specified type is valid as an argument type.
126   static bool isValidArgumentType(Type *ArgTy);
127 
isVarArg()128   bool isVarArg() const { return getSubclassData()!=0; }
getReturnType()129   Type *getReturnType() const { return ContainedTys[0]; }
130 
131   using param_iterator = Type::subtype_iterator;
132 
param_begin()133   param_iterator param_begin() const { return ContainedTys + 1; }
param_end()134   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
params()135   ArrayRef<Type *> params() const {
136     return makeArrayRef(param_begin(), param_end());
137   }
138 
139   /// Parameter type accessors.
getParamType(unsigned i)140   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
141 
142   /// Return the number of fixed parameters this function type requires.
143   /// This does not consider varargs.
getNumParams()144   unsigned getNumParams() const { return NumContainedTys - 1; }
145 
146   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)147   static bool classof(const Type *T) {
148     return T->getTypeID() == FunctionTyID;
149   }
150 };
151 static_assert(alignof(FunctionType) >= alignof(Type *),
152               "Alignment sufficient for objects appended to FunctionType");
153 
isFunctionVarArg()154 bool Type::isFunctionVarArg() const {
155   return cast<FunctionType>(this)->isVarArg();
156 }
157 
getFunctionParamType(unsigned i)158 Type *Type::getFunctionParamType(unsigned i) const {
159   return cast<FunctionType>(this)->getParamType(i);
160 }
161 
getFunctionNumParams()162 unsigned Type::getFunctionNumParams() const {
163   return cast<FunctionType>(this)->getNumParams();
164 }
165 
166 /// A handy container for a FunctionType+Callee-pointer pair, which can be
167 /// passed around as a single entity. This assists in replacing the use of
168 /// PointerType::getElementType() to access the function's type, since that's
169 /// slated for removal as part of the [opaque pointer types] project.
170 class FunctionCallee {
171 public:
172   // Allow implicit conversion from types which have a getFunctionType member
173   // (e.g. Function and InlineAsm).
174   template <typename T, typename U = decltype(&T::getFunctionType)>
FunctionCallee(T * Fn)175   FunctionCallee(T *Fn)
176       : FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {}
177 
FunctionCallee(FunctionType * FnTy,Value * Callee)178   FunctionCallee(FunctionType *FnTy, Value *Callee)
179       : FnTy(FnTy), Callee(Callee) {
180     assert((FnTy == nullptr) == (Callee == nullptr));
181   }
182 
FunctionCallee(std::nullptr_t)183   FunctionCallee(std::nullptr_t) {}
184 
185   FunctionCallee() = default;
186 
getFunctionType()187   FunctionType *getFunctionType() { return FnTy; }
188 
getCallee()189   Value *getCallee() { return Callee; }
190 
191   explicit operator bool() { return Callee; }
192 
193 private:
194   FunctionType *FnTy = nullptr;
195   Value *Callee = nullptr;
196 };
197 
198 /// Class to represent struct types. There are two different kinds of struct
199 /// types: Literal structs and Identified structs.
200 ///
201 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
202 /// always have a body when created.  You can get one of these by using one of
203 /// the StructType::get() forms.
204 ///
205 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
206 /// uniqued.  The names for identified structs are managed at the LLVMContext
207 /// level, so there can only be a single identified struct with a given name in
208 /// a particular LLVMContext.  Identified structs may also optionally be opaque
209 /// (have no body specified).  You get one of these by using one of the
210 /// StructType::create() forms.
211 ///
212 /// Independent of what kind of struct you have, the body of a struct type are
213 /// laid out in memory consecutively with the elements directly one after the
214 /// other (if the struct is packed) or (if not packed) with padding between the
215 /// elements as defined by DataLayout (which is required to match what the code
216 /// generator for a target expects).
217 ///
218 class StructType : public Type {
StructType(LLVMContext & C)219   StructType(LLVMContext &C) : Type(C, StructTyID) {}
220 
221   enum {
222     /// This is the contents of the SubClassData field.
223     SCDB_HasBody = 1,
224     SCDB_Packed = 2,
225     SCDB_IsLiteral = 4,
226     SCDB_IsSized = 8
227   };
228 
229   /// For a named struct that actually has a name, this is a pointer to the
230   /// symbol table entry (maintained by LLVMContext) for the struct.
231   /// This is null if the type is an literal struct or if it is a identified
232   /// type that has an empty name.
233   void *SymbolTableEntry = nullptr;
234 
235 public:
236   StructType(const StructType &) = delete;
237   StructType &operator=(const StructType &) = delete;
238 
239   /// This creates an identified struct.
240   static StructType *create(LLVMContext &Context, StringRef Name);
241   static StructType *create(LLVMContext &Context);
242 
243   static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
244                             bool isPacked = false);
245   static StructType *create(ArrayRef<Type *> Elements);
246   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
247                             StringRef Name, bool isPacked = false);
248   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
249   template <class... Tys>
250   static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
create(StringRef Name,Type * elt1,Tys * ...elts)251   create(StringRef Name, Type *elt1, Tys *... elts) {
252     assert(elt1 && "Cannot create a struct type with no elements with this");
253     SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
254     return create(StructFields, Name);
255   }
256 
257   /// This static method is the primary way to create a literal StructType.
258   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
259                          bool isPacked = false);
260 
261   /// Create an empty structure type.
262   static StructType *get(LLVMContext &Context, bool isPacked = false);
263 
264   /// This static method is a convenience method for creating structure types by
265   /// specifying the elements as arguments. Note that this method always returns
266   /// a non-packed struct, and requires at least one element type.
267   template <class... Tys>
268   static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
get(Type * elt1,Tys * ...elts)269   get(Type *elt1, Tys *... elts) {
270     assert(elt1 && "Cannot create a struct type with no elements with this");
271     LLVMContext &Ctx = elt1->getContext();
272     SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
273     return llvm::StructType::get(Ctx, StructFields);
274   }
275 
276   /// Return the type with the specified name, or null if there is none by that
277   /// name.
278   static StructType *getTypeByName(LLVMContext &C, StringRef Name);
279 
isPacked()280   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
281 
282   /// Return true if this type is uniqued by structural equivalence, false if it
283   /// is a struct definition.
isLiteral()284   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
285 
286   /// Return true if this is a type with an identity that has no body specified
287   /// yet. These prints as 'opaque' in .ll files.
isOpaque()288   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
289 
290   /// isSized - Return true if this is a sized type.
291   bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
292 
293   /// Return true if this is a named struct that has a non-empty name.
hasName()294   bool hasName() const { return SymbolTableEntry != nullptr; }
295 
296   /// Return the name for this struct type if it has an identity.
297   /// This may return an empty string for an unnamed struct type.  Do not call
298   /// this on an literal type.
299   StringRef getName() const;
300 
301   /// Change the name of this type to the specified name, or to a name with a
302   /// suffix if there is a collision. Do not call this on an literal type.
303   void setName(StringRef Name);
304 
305   /// Specify a body for an opaque identified type.
306   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
307 
308   template <typename... Tys>
309   std::enable_if_t<are_base_of<Type, Tys...>::value, void>
setBody(Type * elt1,Tys * ...elts)310   setBody(Type *elt1, Tys *... elts) {
311     assert(elt1 && "Cannot create a struct type with no elements with this");
312     SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
313     setBody(StructFields);
314   }
315 
316   /// Return true if the specified type is valid as a element type.
317   static bool isValidElementType(Type *ElemTy);
318 
319   // Iterator access to the elements.
320   using element_iterator = Type::subtype_iterator;
321 
element_begin()322   element_iterator element_begin() const { return ContainedTys; }
element_end()323   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
elements()324   ArrayRef<Type *> const elements() const {
325     return makeArrayRef(element_begin(), element_end());
326   }
327 
328   /// Return true if this is layout identical to the specified struct.
329   bool isLayoutIdentical(StructType *Other) const;
330 
331   /// Random access to the elements
getNumElements()332   unsigned getNumElements() const { return NumContainedTys; }
getElementType(unsigned N)333   Type *getElementType(unsigned N) const {
334     assert(N < NumContainedTys && "Element number out of range!");
335     return ContainedTys[N];
336   }
337   /// Given an index value into the type, return the type of the element.
338   Type *getTypeAtIndex(const Value *V) const;
getTypeAtIndex(unsigned N)339   Type *getTypeAtIndex(unsigned N) const { return getElementType(N); }
340   bool indexValid(const Value *V) const;
indexValid(unsigned Idx)341   bool indexValid(unsigned Idx) const { return Idx < getNumElements(); }
342 
343   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)344   static bool classof(const Type *T) {
345     return T->getTypeID() == StructTyID;
346   }
347 };
348 
getStructName()349 StringRef Type::getStructName() const {
350   return cast<StructType>(this)->getName();
351 }
352 
getStructNumElements()353 unsigned Type::getStructNumElements() const {
354   return cast<StructType>(this)->getNumElements();
355 }
356 
getStructElementType(unsigned N)357 Type *Type::getStructElementType(unsigned N) const {
358   return cast<StructType>(this)->getElementType(N);
359 }
360 
361 /// Class to represent array types.
362 class ArrayType : public Type {
363   /// The element type of the array.
364   Type *ContainedType;
365   /// Number of elements in the array.
366   uint64_t NumElements;
367 
368   ArrayType(Type *ElType, uint64_t NumEl);
369 
370 public:
371   ArrayType(const ArrayType &) = delete;
372   ArrayType &operator=(const ArrayType &) = delete;
373 
getNumElements()374   uint64_t getNumElements() const { return NumElements; }
getElementType()375   Type *getElementType() const { return ContainedType; }
376 
377   /// This static method is the primary way to construct an ArrayType
378   static ArrayType *get(Type *ElementType, uint64_t NumElements);
379 
380   /// Return true if the specified type is valid as a element type.
381   static bool isValidElementType(Type *ElemTy);
382 
383   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)384   static bool classof(const Type *T) {
385     return T->getTypeID() == ArrayTyID;
386   }
387 };
388 
getArrayNumElements()389 uint64_t Type::getArrayNumElements() const {
390   return cast<ArrayType>(this)->getNumElements();
391 }
392 
393 /// Base class of all SIMD vector types
394 class VectorType : public Type {
395   /// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the
396   /// minimum number of elements of type Ty contained within the vector, and
397   /// 'vscale x' indicates that the total element count is an integer multiple
398   /// of 'n', where the multiple is either guaranteed to be one, or is
399   /// statically unknown at compile time.
400   ///
401   /// If the multiple is known to be 1, then the extra term is discarded in
402   /// textual IR:
403   ///
404   /// <4 x i32>          - a vector containing 4 i32s
405   /// <vscale x 4 x i32> - a vector containing an unknown integer multiple
406   ///                      of 4 i32s
407 
408   /// The element type of the vector.
409   Type *ContainedType;
410 
411 protected:
412   /// The element quantity of this vector. The meaning of this value depends
413   /// on the type of vector:
414   /// - For FixedVectorType = <ElementQuantity x ty>, there are
415   ///   exactly ElementQuantity elements in this vector.
416   /// - For ScalableVectorType = <vscale x ElementQuantity x ty>,
417   ///   there are vscale * ElementQuantity elements in this vector, where
418   ///   vscale is a runtime-constant integer greater than 0.
419   const unsigned ElementQuantity;
420 
421   VectorType(Type *ElType, unsigned EQ, Type::TypeID TID);
422 
423 public:
424   VectorType(const VectorType &) = delete;
425   VectorType &operator=(const VectorType &) = delete;
426 
427   /// Get the number of elements in this vector. It does not make sense to call
428   /// this function on a scalable vector, and this will be moved into
429   /// FixedVectorType in a future commit
430   LLVM_ATTRIBUTE_DEPRECATED(
431       inline unsigned getNumElements() const,
432       "Calling this function via a base VectorType is deprecated. Either call "
433       "getElementCount() and handle the case where Scalable is true or cast to "
434       "FixedVectorType.");
435 
getElementType()436   Type *getElementType() const { return ContainedType; }
437 
438   /// This static method is the primary way to construct an VectorType.
439   static VectorType *get(Type *ElementType, ElementCount EC);
440 
get(Type * ElementType,unsigned NumElements,bool Scalable)441   static VectorType *get(Type *ElementType, unsigned NumElements,
442                          bool Scalable) {
443     return VectorType::get(ElementType,
444                            ElementCount::get(NumElements, Scalable));
445   }
446 
get(Type * ElementType,const VectorType * Other)447   static VectorType *get(Type *ElementType, const VectorType *Other) {
448     return VectorType::get(ElementType, Other->getElementCount());
449   }
450 
451   /// This static method gets a VectorType with the same number of elements as
452   /// the input type, and the element type is an integer type of the same width
453   /// as the input element type.
getInteger(VectorType * VTy)454   static VectorType *getInteger(VectorType *VTy) {
455     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
456     assert(EltBits && "Element size must be of a non-zero size");
457     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
458     return VectorType::get(EltTy, VTy->getElementCount());
459   }
460 
461   /// This static method is like getInteger except that the element types are
462   /// twice as wide as the elements in the input type.
getExtendedElementVectorType(VectorType * VTy)463   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
464     assert(VTy->isIntOrIntVectorTy() && "VTy expected to be a vector of ints.");
465     auto *EltTy = cast<IntegerType>(VTy->getElementType());
466     return VectorType::get(EltTy->getExtendedType(), VTy->getElementCount());
467   }
468 
469   // This static method gets a VectorType with the same number of elements as
470   // the input type, and the element type is an integer or float type which
471   // is half as wide as the elements in the input type.
getTruncatedElementVectorType(VectorType * VTy)472   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
473     Type *EltTy;
474     if (VTy->getElementType()->isFloatingPointTy()) {
475       switch(VTy->getElementType()->getTypeID()) {
476       case DoubleTyID:
477         EltTy = Type::getFloatTy(VTy->getContext());
478         break;
479       case FloatTyID:
480         EltTy = Type::getHalfTy(VTy->getContext());
481         break;
482       default:
483         llvm_unreachable("Cannot create narrower fp vector element type");
484       }
485     } else {
486       unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
487       assert((EltBits & 1) == 0 &&
488              "Cannot truncate vector element with odd bit-width");
489       EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
490     }
491     return VectorType::get(EltTy, VTy->getElementCount());
492   }
493 
494   // This static method returns a VectorType with a smaller number of elements
495   // of a larger type than the input element type. For example, a <16 x i8>
496   // subdivided twice would return <4 x i32>
getSubdividedVectorType(VectorType * VTy,int NumSubdivs)497   static VectorType *getSubdividedVectorType(VectorType *VTy, int NumSubdivs) {
498     for (int i = 0; i < NumSubdivs; ++i) {
499       VTy = VectorType::getDoubleElementsVectorType(VTy);
500       VTy = VectorType::getTruncatedElementVectorType(VTy);
501     }
502     return VTy;
503   }
504 
505   /// This static method returns a VectorType with half as many elements as the
506   /// input type and the same element type.
getHalfElementsVectorType(VectorType * VTy)507   static VectorType *getHalfElementsVectorType(VectorType *VTy) {
508     auto EltCnt = VTy->getElementCount();
509     assert(EltCnt.isKnownEven() &&
510            "Cannot halve vector with odd number of elements.");
511     return VectorType::get(VTy->getElementType(),
512                            EltCnt.divideCoefficientBy(2));
513   }
514 
515   /// This static method returns a VectorType with twice as many elements as the
516   /// input type and the same element type.
getDoubleElementsVectorType(VectorType * VTy)517   static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
518     auto EltCnt = VTy->getElementCount();
519     assert((EltCnt.getKnownMinValue() * 2ull) <= UINT_MAX &&
520            "Too many elements in vector");
521     return VectorType::get(VTy->getElementType(), EltCnt * 2);
522   }
523 
524   /// Return true if the specified type is valid as a element type.
525   static bool isValidElementType(Type *ElemTy);
526 
527   /// Return an ElementCount instance to represent the (possibly scalable)
528   /// number of elements in the vector.
529   inline ElementCount getElementCount() const;
530 
531   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)532   static bool classof(const Type *T) {
533     return T->getTypeID() == FixedVectorTyID ||
534            T->getTypeID() == ScalableVectorTyID;
535   }
536 };
537 
getNumElements()538 unsigned VectorType::getNumElements() const {
539   ElementCount EC = getElementCount();
540 #ifdef STRICT_FIXED_SIZE_VECTORS
541   assert(!EC.isScalable() &&
542          "Request for fixed number of elements from scalable vector");
543 #else
544   if (EC.isScalable())
545     WithColor::warning()
546         << "The code that requested the fixed number of elements has made the "
547            "assumption that this vector is not scalable. This assumption was "
548            "not correct, and this may lead to broken code\n";
549 #endif
550   return EC.getKnownMinValue();
551 }
552 
553 /// Class to represent fixed width SIMD vectors
554 class FixedVectorType : public VectorType {
555 protected:
FixedVectorType(Type * ElTy,unsigned NumElts)556   FixedVectorType(Type *ElTy, unsigned NumElts)
557       : VectorType(ElTy, NumElts, FixedVectorTyID) {}
558 
559 public:
560   static FixedVectorType *get(Type *ElementType, unsigned NumElts);
561 
get(Type * ElementType,const FixedVectorType * FVTy)562   static FixedVectorType *get(Type *ElementType, const FixedVectorType *FVTy) {
563     return get(ElementType, FVTy->getNumElements());
564   }
565 
getInteger(FixedVectorType * VTy)566   static FixedVectorType *getInteger(FixedVectorType *VTy) {
567     return cast<FixedVectorType>(VectorType::getInteger(VTy));
568   }
569 
getExtendedElementVectorType(FixedVectorType * VTy)570   static FixedVectorType *getExtendedElementVectorType(FixedVectorType *VTy) {
571     return cast<FixedVectorType>(VectorType::getExtendedElementVectorType(VTy));
572   }
573 
getTruncatedElementVectorType(FixedVectorType * VTy)574   static FixedVectorType *getTruncatedElementVectorType(FixedVectorType *VTy) {
575     return cast<FixedVectorType>(
576         VectorType::getTruncatedElementVectorType(VTy));
577   }
578 
getSubdividedVectorType(FixedVectorType * VTy,int NumSubdivs)579   static FixedVectorType *getSubdividedVectorType(FixedVectorType *VTy,
580                                                   int NumSubdivs) {
581     return cast<FixedVectorType>(
582         VectorType::getSubdividedVectorType(VTy, NumSubdivs));
583   }
584 
getHalfElementsVectorType(FixedVectorType * VTy)585   static FixedVectorType *getHalfElementsVectorType(FixedVectorType *VTy) {
586     return cast<FixedVectorType>(VectorType::getHalfElementsVectorType(VTy));
587   }
588 
getDoubleElementsVectorType(FixedVectorType * VTy)589   static FixedVectorType *getDoubleElementsVectorType(FixedVectorType *VTy) {
590     return cast<FixedVectorType>(VectorType::getDoubleElementsVectorType(VTy));
591   }
592 
classof(const Type * T)593   static bool classof(const Type *T) {
594     return T->getTypeID() == FixedVectorTyID;
595   }
596 
getNumElements()597   unsigned getNumElements() const { return ElementQuantity; }
598 };
599 
600 /// Class to represent scalable SIMD vectors
601 class ScalableVectorType : public VectorType {
602 protected:
ScalableVectorType(Type * ElTy,unsigned MinNumElts)603   ScalableVectorType(Type *ElTy, unsigned MinNumElts)
604       : VectorType(ElTy, MinNumElts, ScalableVectorTyID) {}
605 
606 public:
607   static ScalableVectorType *get(Type *ElementType, unsigned MinNumElts);
608 
get(Type * ElementType,const ScalableVectorType * SVTy)609   static ScalableVectorType *get(Type *ElementType,
610                                  const ScalableVectorType *SVTy) {
611     return get(ElementType, SVTy->getMinNumElements());
612   }
613 
getInteger(ScalableVectorType * VTy)614   static ScalableVectorType *getInteger(ScalableVectorType *VTy) {
615     return cast<ScalableVectorType>(VectorType::getInteger(VTy));
616   }
617 
618   static ScalableVectorType *
getExtendedElementVectorType(ScalableVectorType * VTy)619   getExtendedElementVectorType(ScalableVectorType *VTy) {
620     return cast<ScalableVectorType>(
621         VectorType::getExtendedElementVectorType(VTy));
622   }
623 
624   static ScalableVectorType *
getTruncatedElementVectorType(ScalableVectorType * VTy)625   getTruncatedElementVectorType(ScalableVectorType *VTy) {
626     return cast<ScalableVectorType>(
627         VectorType::getTruncatedElementVectorType(VTy));
628   }
629 
getSubdividedVectorType(ScalableVectorType * VTy,int NumSubdivs)630   static ScalableVectorType *getSubdividedVectorType(ScalableVectorType *VTy,
631                                                      int NumSubdivs) {
632     return cast<ScalableVectorType>(
633         VectorType::getSubdividedVectorType(VTy, NumSubdivs));
634   }
635 
636   static ScalableVectorType *
getHalfElementsVectorType(ScalableVectorType * VTy)637   getHalfElementsVectorType(ScalableVectorType *VTy) {
638     return cast<ScalableVectorType>(VectorType::getHalfElementsVectorType(VTy));
639   }
640 
641   static ScalableVectorType *
getDoubleElementsVectorType(ScalableVectorType * VTy)642   getDoubleElementsVectorType(ScalableVectorType *VTy) {
643     return cast<ScalableVectorType>(
644         VectorType::getDoubleElementsVectorType(VTy));
645   }
646 
647   /// Get the minimum number of elements in this vector. The actual number of
648   /// elements in the vector is an integer multiple of this value.
getMinNumElements()649   uint64_t getMinNumElements() const { return ElementQuantity; }
650 
classof(const Type * T)651   static bool classof(const Type *T) {
652     return T->getTypeID() == ScalableVectorTyID;
653   }
654 };
655 
getElementCount()656 inline ElementCount VectorType::getElementCount() const {
657   return ElementCount::get(ElementQuantity, isa<ScalableVectorType>(this));
658 }
659 
660 /// Class to represent pointers.
661 class PointerType : public Type {
662   explicit PointerType(Type *ElType, unsigned AddrSpace);
663 
664   Type *PointeeTy;
665 
666 public:
667   PointerType(const PointerType &) = delete;
668   PointerType &operator=(const PointerType &) = delete;
669 
670   /// This constructs a pointer to an object of the specified type in a numbered
671   /// address space.
672   static PointerType *get(Type *ElementType, unsigned AddressSpace);
673 
674   /// This constructs a pointer to an object of the specified type in the
675   /// generic address space (address space zero).
getUnqual(Type * ElementType)676   static PointerType *getUnqual(Type *ElementType) {
677     return PointerType::get(ElementType, 0);
678   }
679 
getElementType()680   Type *getElementType() const { return PointeeTy; }
681 
682   /// Return true if the specified type is valid as a element type.
683   static bool isValidElementType(Type *ElemTy);
684 
685   /// Return true if we can load or store from a pointer to this type.
686   static bool isLoadableOrStorableType(Type *ElemTy);
687 
688   /// Return the address space of the Pointer type.
getAddressSpace()689   inline unsigned getAddressSpace() const { return getSubclassData(); }
690 
691   /// Implement support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)692   static bool classof(const Type *T) {
693     return T->getTypeID() == PointerTyID;
694   }
695 };
696 
getExtendedType()697 Type *Type::getExtendedType() const {
698   assert(
699       isIntOrIntVectorTy() &&
700       "Original type expected to be a vector of integers or a scalar integer.");
701   if (auto *VTy = dyn_cast<VectorType>(this))
702     return VectorType::getExtendedElementVectorType(
703         const_cast<VectorType *>(VTy));
704   return cast<IntegerType>(this)->getExtendedType();
705 }
706 
getWithNewBitWidth(unsigned NewBitWidth)707 Type *Type::getWithNewBitWidth(unsigned NewBitWidth) const {
708   assert(
709       isIntOrIntVectorTy() &&
710       "Original type expected to be a vector of integers or a scalar integer.");
711   Type *NewType = getIntNTy(getContext(), NewBitWidth);
712   if (auto *VTy = dyn_cast<VectorType>(this))
713     NewType = VectorType::get(NewType, VTy->getElementCount());
714   return NewType;
715 }
716 
getPointerAddressSpace()717 unsigned Type::getPointerAddressSpace() const {
718   return cast<PointerType>(getScalarType())->getAddressSpace();
719 }
720 
721 } // end namespace llvm
722 
723 #endif // LLVM_IR_DERIVEDTYPES_H
724