1 //===-- tsan_rtl_report.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "sanitizer_common/sanitizer_libc.h"
14 #include "sanitizer_common/sanitizer_placement_new.h"
15 #include "sanitizer_common/sanitizer_stackdepot.h"
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_stacktrace.h"
18 #include "tsan_platform.h"
19 #include "tsan_rtl.h"
20 #include "tsan_suppressions.h"
21 #include "tsan_symbolize.h"
22 #include "tsan_report.h"
23 #include "tsan_sync.h"
24 #include "tsan_mman.h"
25 #include "tsan_flags.h"
26 #include "tsan_fd.h"
27
28 namespace __tsan {
29
30 using namespace __sanitizer;
31
32 static ReportStack *SymbolizeStack(StackTrace trace);
33
TsanCheckFailed(const char * file,int line,const char * cond,u64 v1,u64 v2)34 void TsanCheckFailed(const char *file, int line, const char *cond,
35 u64 v1, u64 v2) {
36 // There is high probability that interceptors will check-fail as well,
37 // on the other hand there is no sense in processing interceptors
38 // since we are going to die soon.
39 ScopedIgnoreInterceptors ignore;
40 #if !SANITIZER_GO
41 cur_thread()->ignore_sync++;
42 cur_thread()->ignore_reads_and_writes++;
43 #endif
44 Printf("FATAL: ThreadSanitizer CHECK failed: "
45 "%s:%d \"%s\" (0x%zx, 0x%zx)\n",
46 file, line, cond, (uptr)v1, (uptr)v2);
47 PrintCurrentStackSlow(StackTrace::GetCurrentPc());
48 Die();
49 }
50
51 // Can be overriden by an application/test to intercept reports.
52 #ifdef TSAN_EXTERNAL_HOOKS
53 bool OnReport(const ReportDesc *rep, bool suppressed);
54 #else
55 SANITIZER_WEAK_CXX_DEFAULT_IMPL
OnReport(const ReportDesc * rep,bool suppressed)56 bool OnReport(const ReportDesc *rep, bool suppressed) {
57 (void)rep;
58 return suppressed;
59 }
60 #endif
61
62 SANITIZER_WEAK_DEFAULT_IMPL
__tsan_on_report(const ReportDesc * rep)63 void __tsan_on_report(const ReportDesc *rep) {
64 (void)rep;
65 }
66
StackStripMain(SymbolizedStack * frames)67 static void StackStripMain(SymbolizedStack *frames) {
68 SymbolizedStack *last_frame = nullptr;
69 SymbolizedStack *last_frame2 = nullptr;
70 for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
71 last_frame2 = last_frame;
72 last_frame = cur;
73 }
74
75 if (last_frame2 == 0)
76 return;
77 #if !SANITIZER_GO
78 const char *last = last_frame->info.function;
79 const char *last2 = last_frame2->info.function;
80 // Strip frame above 'main'
81 if (last2 && 0 == internal_strcmp(last2, "main")) {
82 last_frame->ClearAll();
83 last_frame2->next = nullptr;
84 // Strip our internal thread start routine.
85 } else if (last && 0 == internal_strcmp(last, "__tsan_thread_start_func")) {
86 last_frame->ClearAll();
87 last_frame2->next = nullptr;
88 // Strip global ctors init.
89 } else if (last && 0 == internal_strcmp(last, "__do_global_ctors_aux")) {
90 last_frame->ClearAll();
91 last_frame2->next = nullptr;
92 // If both are 0, then we probably just failed to symbolize.
93 } else if (last || last2) {
94 // Ensure that we recovered stack completely. Trimmed stack
95 // can actually happen if we do not instrument some code,
96 // so it's only a debug print. However we must try hard to not miss it
97 // due to our fault.
98 DPrintf("Bottom stack frame is missed\n");
99 }
100 #else
101 // The last frame always point into runtime (gosched0, goexit0, runtime.main).
102 last_frame->ClearAll();
103 last_frame2->next = nullptr;
104 #endif
105 }
106
SymbolizeStackId(u32 stack_id)107 ReportStack *SymbolizeStackId(u32 stack_id) {
108 if (stack_id == 0)
109 return 0;
110 StackTrace stack = StackDepotGet(stack_id);
111 if (stack.trace == nullptr)
112 return nullptr;
113 return SymbolizeStack(stack);
114 }
115
SymbolizeStack(StackTrace trace)116 static ReportStack *SymbolizeStack(StackTrace trace) {
117 if (trace.size == 0)
118 return 0;
119 SymbolizedStack *top = nullptr;
120 for (uptr si = 0; si < trace.size; si++) {
121 const uptr pc = trace.trace[si];
122 uptr pc1 = pc;
123 // We obtain the return address, but we're interested in the previous
124 // instruction.
125 if ((pc & kExternalPCBit) == 0)
126 pc1 = StackTrace::GetPreviousInstructionPc(pc);
127 SymbolizedStack *ent = SymbolizeCode(pc1);
128 CHECK_NE(ent, 0);
129 SymbolizedStack *last = ent;
130 while (last->next) {
131 last->info.address = pc; // restore original pc for report
132 last = last->next;
133 }
134 last->info.address = pc; // restore original pc for report
135 last->next = top;
136 top = ent;
137 }
138 StackStripMain(top);
139
140 ReportStack *stack = ReportStack::New();
141 stack->frames = top;
142 return stack;
143 }
144
ScopedReportBase(ReportType typ,uptr tag)145 ScopedReportBase::ScopedReportBase(ReportType typ, uptr tag) {
146 ctx->thread_registry->CheckLocked();
147 void *mem = internal_alloc(MBlockReport, sizeof(ReportDesc));
148 rep_ = new(mem) ReportDesc;
149 rep_->typ = typ;
150 rep_->tag = tag;
151 ctx->report_mtx.Lock();
152 }
153
~ScopedReportBase()154 ScopedReportBase::~ScopedReportBase() {
155 ctx->report_mtx.Unlock();
156 DestroyAndFree(rep_);
157 rep_ = nullptr;
158 }
159
AddStack(StackTrace stack,bool suppressable)160 void ScopedReportBase::AddStack(StackTrace stack, bool suppressable) {
161 ReportStack **rs = rep_->stacks.PushBack();
162 *rs = SymbolizeStack(stack);
163 (*rs)->suppressable = suppressable;
164 }
165
AddMemoryAccess(uptr addr,uptr external_tag,Shadow s,StackTrace stack,const MutexSet * mset)166 void ScopedReportBase::AddMemoryAccess(uptr addr, uptr external_tag, Shadow s,
167 StackTrace stack, const MutexSet *mset) {
168 void *mem = internal_alloc(MBlockReportMop, sizeof(ReportMop));
169 ReportMop *mop = new(mem) ReportMop;
170 rep_->mops.PushBack(mop);
171 mop->tid = s.tid();
172 mop->addr = addr + s.addr0();
173 mop->size = s.size();
174 mop->write = s.IsWrite();
175 mop->atomic = s.IsAtomic();
176 mop->stack = SymbolizeStack(stack);
177 mop->external_tag = external_tag;
178 if (mop->stack)
179 mop->stack->suppressable = true;
180 for (uptr i = 0; i < mset->Size(); i++) {
181 MutexSet::Desc d = mset->Get(i);
182 u64 mid = this->AddMutex(d.id);
183 ReportMopMutex mtx = {mid, d.write};
184 mop->mset.PushBack(mtx);
185 }
186 }
187
AddUniqueTid(int unique_tid)188 void ScopedReportBase::AddUniqueTid(int unique_tid) {
189 rep_->unique_tids.PushBack(unique_tid);
190 }
191
AddThread(const ThreadContext * tctx,bool suppressable)192 void ScopedReportBase::AddThread(const ThreadContext *tctx, bool suppressable) {
193 for (uptr i = 0; i < rep_->threads.Size(); i++) {
194 if ((u32)rep_->threads[i]->id == tctx->tid)
195 return;
196 }
197 void *mem = internal_alloc(MBlockReportThread, sizeof(ReportThread));
198 ReportThread *rt = new(mem) ReportThread;
199 rep_->threads.PushBack(rt);
200 rt->id = tctx->tid;
201 rt->os_id = tctx->os_id;
202 rt->running = (tctx->status == ThreadStatusRunning);
203 rt->name = internal_strdup(tctx->name);
204 rt->parent_tid = tctx->parent_tid;
205 rt->thread_type = tctx->thread_type;
206 rt->stack = 0;
207 rt->stack = SymbolizeStackId(tctx->creation_stack_id);
208 if (rt->stack)
209 rt->stack->suppressable = suppressable;
210 }
211
212 #if !SANITIZER_GO
FindThreadByUidLockedCallback(ThreadContextBase * tctx,void * arg)213 static bool FindThreadByUidLockedCallback(ThreadContextBase *tctx, void *arg) {
214 int unique_id = *(int *)arg;
215 return tctx->unique_id == (u32)unique_id;
216 }
217
FindThreadByUidLocked(int unique_id)218 static ThreadContext *FindThreadByUidLocked(int unique_id) {
219 ctx->thread_registry->CheckLocked();
220 return static_cast<ThreadContext *>(
221 ctx->thread_registry->FindThreadContextLocked(
222 FindThreadByUidLockedCallback, &unique_id));
223 }
224
FindThreadByTidLocked(int tid)225 static ThreadContext *FindThreadByTidLocked(int tid) {
226 ctx->thread_registry->CheckLocked();
227 return static_cast<ThreadContext*>(
228 ctx->thread_registry->GetThreadLocked(tid));
229 }
230
IsInStackOrTls(ThreadContextBase * tctx_base,void * arg)231 static bool IsInStackOrTls(ThreadContextBase *tctx_base, void *arg) {
232 uptr addr = (uptr)arg;
233 ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base);
234 if (tctx->status != ThreadStatusRunning)
235 return false;
236 ThreadState *thr = tctx->thr;
237 CHECK(thr);
238 return ((addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size) ||
239 (addr >= thr->tls_addr && addr < thr->tls_addr + thr->tls_size));
240 }
241
IsThreadStackOrTls(uptr addr,bool * is_stack)242 ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack) {
243 ctx->thread_registry->CheckLocked();
244 ThreadContext *tctx = static_cast<ThreadContext*>(
245 ctx->thread_registry->FindThreadContextLocked(IsInStackOrTls,
246 (void*)addr));
247 if (!tctx)
248 return 0;
249 ThreadState *thr = tctx->thr;
250 CHECK(thr);
251 *is_stack = (addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size);
252 return tctx;
253 }
254 #endif
255
AddThread(int unique_tid,bool suppressable)256 void ScopedReportBase::AddThread(int unique_tid, bool suppressable) {
257 #if !SANITIZER_GO
258 if (const ThreadContext *tctx = FindThreadByUidLocked(unique_tid))
259 AddThread(tctx, suppressable);
260 #endif
261 }
262
AddMutex(const SyncVar * s)263 void ScopedReportBase::AddMutex(const SyncVar *s) {
264 for (uptr i = 0; i < rep_->mutexes.Size(); i++) {
265 if (rep_->mutexes[i]->id == s->uid)
266 return;
267 }
268 void *mem = internal_alloc(MBlockReportMutex, sizeof(ReportMutex));
269 ReportMutex *rm = new(mem) ReportMutex;
270 rep_->mutexes.PushBack(rm);
271 rm->id = s->uid;
272 rm->addr = s->addr;
273 rm->destroyed = false;
274 rm->stack = SymbolizeStackId(s->creation_stack_id);
275 }
276
AddMutex(u64 id)277 u64 ScopedReportBase::AddMutex(u64 id) {
278 u64 uid = 0;
279 u64 mid = id;
280 uptr addr = SyncVar::SplitId(id, &uid);
281 SyncVar *s = ctx->metamap.GetIfExistsAndLock(addr, true);
282 // Check that the mutex is still alive.
283 // Another mutex can be created at the same address,
284 // so check uid as well.
285 if (s && s->CheckId(uid)) {
286 mid = s->uid;
287 AddMutex(s);
288 } else {
289 AddDeadMutex(id);
290 }
291 if (s)
292 s->mtx.Unlock();
293 return mid;
294 }
295
AddDeadMutex(u64 id)296 void ScopedReportBase::AddDeadMutex(u64 id) {
297 for (uptr i = 0; i < rep_->mutexes.Size(); i++) {
298 if (rep_->mutexes[i]->id == id)
299 return;
300 }
301 void *mem = internal_alloc(MBlockReportMutex, sizeof(ReportMutex));
302 ReportMutex *rm = new(mem) ReportMutex;
303 rep_->mutexes.PushBack(rm);
304 rm->id = id;
305 rm->addr = 0;
306 rm->destroyed = true;
307 rm->stack = 0;
308 }
309
AddLocation(uptr addr,uptr size)310 void ScopedReportBase::AddLocation(uptr addr, uptr size) {
311 if (addr == 0)
312 return;
313 #if !SANITIZER_GO
314 int fd = -1;
315 int creat_tid = kInvalidTid;
316 u32 creat_stack = 0;
317 if (FdLocation(addr, &fd, &creat_tid, &creat_stack)) {
318 ReportLocation *loc = ReportLocation::New(ReportLocationFD);
319 loc->fd = fd;
320 loc->tid = creat_tid;
321 loc->stack = SymbolizeStackId(creat_stack);
322 rep_->locs.PushBack(loc);
323 ThreadContext *tctx = FindThreadByUidLocked(creat_tid);
324 if (tctx)
325 AddThread(tctx);
326 return;
327 }
328 MBlock *b = 0;
329 Allocator *a = allocator();
330 if (a->PointerIsMine((void*)addr)) {
331 void *block_begin = a->GetBlockBegin((void*)addr);
332 if (block_begin)
333 b = ctx->metamap.GetBlock((uptr)block_begin);
334 }
335 if (b != 0) {
336 ThreadContext *tctx = FindThreadByTidLocked(b->tid);
337 ReportLocation *loc = ReportLocation::New(ReportLocationHeap);
338 loc->heap_chunk_start = (uptr)allocator()->GetBlockBegin((void *)addr);
339 loc->heap_chunk_size = b->siz;
340 loc->external_tag = b->tag;
341 loc->tid = tctx ? tctx->tid : b->tid;
342 loc->stack = SymbolizeStackId(b->stk);
343 rep_->locs.PushBack(loc);
344 if (tctx)
345 AddThread(tctx);
346 return;
347 }
348 bool is_stack = false;
349 if (ThreadContext *tctx = IsThreadStackOrTls(addr, &is_stack)) {
350 ReportLocation *loc =
351 ReportLocation::New(is_stack ? ReportLocationStack : ReportLocationTLS);
352 loc->tid = tctx->tid;
353 rep_->locs.PushBack(loc);
354 AddThread(tctx);
355 }
356 #endif
357 if (ReportLocation *loc = SymbolizeData(addr)) {
358 loc->suppressable = true;
359 rep_->locs.PushBack(loc);
360 return;
361 }
362 }
363
364 #if !SANITIZER_GO
AddSleep(u32 stack_id)365 void ScopedReportBase::AddSleep(u32 stack_id) {
366 rep_->sleep = SymbolizeStackId(stack_id);
367 }
368 #endif
369
SetCount(int count)370 void ScopedReportBase::SetCount(int count) { rep_->count = count; }
371
GetReport() const372 const ReportDesc *ScopedReportBase::GetReport() const { return rep_; }
373
ScopedReport(ReportType typ,uptr tag)374 ScopedReport::ScopedReport(ReportType typ, uptr tag)
375 : ScopedReportBase(typ, tag) {}
376
~ScopedReport()377 ScopedReport::~ScopedReport() {}
378
RestoreStack(int tid,const u64 epoch,VarSizeStackTrace * stk,MutexSet * mset,uptr * tag)379 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
380 MutexSet *mset, uptr *tag) {
381 // This function restores stack trace and mutex set for the thread/epoch.
382 // It does so by getting stack trace and mutex set at the beginning of
383 // trace part, and then replaying the trace till the given epoch.
384 Trace* trace = ThreadTrace(tid);
385 ReadLock l(&trace->mtx);
386 const int partidx = (epoch / kTracePartSize) % TraceParts();
387 TraceHeader* hdr = &trace->headers[partidx];
388 if (epoch < hdr->epoch0 || epoch >= hdr->epoch0 + kTracePartSize)
389 return;
390 CHECK_EQ(RoundDown(epoch, kTracePartSize), hdr->epoch0);
391 const u64 epoch0 = RoundDown(epoch, TraceSize());
392 const u64 eend = epoch % TraceSize();
393 const u64 ebegin = RoundDown(eend, kTracePartSize);
394 DPrintf("#%d: RestoreStack epoch=%zu ebegin=%zu eend=%zu partidx=%d\n",
395 tid, (uptr)epoch, (uptr)ebegin, (uptr)eend, partidx);
396 Vector<uptr> stack;
397 stack.Resize(hdr->stack0.size + 64);
398 for (uptr i = 0; i < hdr->stack0.size; i++) {
399 stack[i] = hdr->stack0.trace[i];
400 DPrintf2(" #%02zu: pc=%zx\n", i, stack[i]);
401 }
402 if (mset)
403 *mset = hdr->mset0;
404 uptr pos = hdr->stack0.size;
405 Event *events = (Event*)GetThreadTrace(tid);
406 for (uptr i = ebegin; i <= eend; i++) {
407 Event ev = events[i];
408 EventType typ = (EventType)(ev >> kEventPCBits);
409 uptr pc = (uptr)(ev & ((1ull << kEventPCBits) - 1));
410 DPrintf2(" %zu typ=%d pc=%zx\n", i, typ, pc);
411 if (typ == EventTypeMop) {
412 stack[pos] = pc;
413 } else if (typ == EventTypeFuncEnter) {
414 if (stack.Size() < pos + 2)
415 stack.Resize(pos + 2);
416 stack[pos++] = pc;
417 } else if (typ == EventTypeFuncExit) {
418 if (pos > 0)
419 pos--;
420 }
421 if (mset) {
422 if (typ == EventTypeLock) {
423 mset->Add(pc, true, epoch0 + i);
424 } else if (typ == EventTypeUnlock) {
425 mset->Del(pc, true);
426 } else if (typ == EventTypeRLock) {
427 mset->Add(pc, false, epoch0 + i);
428 } else if (typ == EventTypeRUnlock) {
429 mset->Del(pc, false);
430 }
431 }
432 for (uptr j = 0; j <= pos; j++)
433 DPrintf2(" #%zu: %zx\n", j, stack[j]);
434 }
435 if (pos == 0 && stack[0] == 0)
436 return;
437 pos++;
438 stk->Init(&stack[0], pos);
439 ExtractTagFromStack(stk, tag);
440 }
441
FindRacyStacks(const RacyStacks & hash)442 static bool FindRacyStacks(const RacyStacks &hash) {
443 for (uptr i = 0; i < ctx->racy_stacks.Size(); i++) {
444 if (hash == ctx->racy_stacks[i]) {
445 VPrintf(2, "ThreadSanitizer: suppressing report as doubled (stack)\n");
446 return true;
447 }
448 }
449 return false;
450 }
451
HandleRacyStacks(ThreadState * thr,VarSizeStackTrace traces[2])452 static bool HandleRacyStacks(ThreadState *thr, VarSizeStackTrace traces[2]) {
453 if (!flags()->suppress_equal_stacks)
454 return false;
455 RacyStacks hash;
456 hash.hash[0] = md5_hash(traces[0].trace, traces[0].size * sizeof(uptr));
457 hash.hash[1] = md5_hash(traces[1].trace, traces[1].size * sizeof(uptr));
458 {
459 ReadLock lock(&ctx->racy_mtx);
460 if (FindRacyStacks(hash))
461 return true;
462 }
463 Lock lock(&ctx->racy_mtx);
464 if (FindRacyStacks(hash))
465 return true;
466 ctx->racy_stacks.PushBack(hash);
467 return false;
468 }
469
FindRacyAddress(const RacyAddress & ra0)470 static bool FindRacyAddress(const RacyAddress &ra0) {
471 for (uptr i = 0; i < ctx->racy_addresses.Size(); i++) {
472 RacyAddress ra2 = ctx->racy_addresses[i];
473 uptr maxbeg = max(ra0.addr_min, ra2.addr_min);
474 uptr minend = min(ra0.addr_max, ra2.addr_max);
475 if (maxbeg < minend) {
476 VPrintf(2, "ThreadSanitizer: suppressing report as doubled (addr)\n");
477 return true;
478 }
479 }
480 return false;
481 }
482
HandleRacyAddress(ThreadState * thr,uptr addr_min,uptr addr_max)483 static bool HandleRacyAddress(ThreadState *thr, uptr addr_min, uptr addr_max) {
484 if (!flags()->suppress_equal_addresses)
485 return false;
486 RacyAddress ra0 = {addr_min, addr_max};
487 {
488 ReadLock lock(&ctx->racy_mtx);
489 if (FindRacyAddress(ra0))
490 return true;
491 }
492 Lock lock(&ctx->racy_mtx);
493 if (FindRacyAddress(ra0))
494 return true;
495 ctx->racy_addresses.PushBack(ra0);
496 return false;
497 }
498
OutputReport(ThreadState * thr,const ScopedReport & srep)499 bool OutputReport(ThreadState *thr, const ScopedReport &srep) {
500 if (!flags()->report_bugs || thr->suppress_reports)
501 return false;
502 atomic_store_relaxed(&ctx->last_symbolize_time_ns, NanoTime());
503 const ReportDesc *rep = srep.GetReport();
504 CHECK_EQ(thr->current_report, nullptr);
505 thr->current_report = rep;
506 Suppression *supp = 0;
507 uptr pc_or_addr = 0;
508 for (uptr i = 0; pc_or_addr == 0 && i < rep->mops.Size(); i++)
509 pc_or_addr = IsSuppressed(rep->typ, rep->mops[i]->stack, &supp);
510 for (uptr i = 0; pc_or_addr == 0 && i < rep->stacks.Size(); i++)
511 pc_or_addr = IsSuppressed(rep->typ, rep->stacks[i], &supp);
512 for (uptr i = 0; pc_or_addr == 0 && i < rep->threads.Size(); i++)
513 pc_or_addr = IsSuppressed(rep->typ, rep->threads[i]->stack, &supp);
514 for (uptr i = 0; pc_or_addr == 0 && i < rep->locs.Size(); i++)
515 pc_or_addr = IsSuppressed(rep->typ, rep->locs[i], &supp);
516 if (pc_or_addr != 0) {
517 Lock lock(&ctx->fired_suppressions_mtx);
518 FiredSuppression s = {srep.GetReport()->typ, pc_or_addr, supp};
519 ctx->fired_suppressions.push_back(s);
520 }
521 {
522 bool old_is_freeing = thr->is_freeing;
523 thr->is_freeing = false;
524 bool suppressed = OnReport(rep, pc_or_addr != 0);
525 thr->is_freeing = old_is_freeing;
526 if (suppressed) {
527 thr->current_report = nullptr;
528 return false;
529 }
530 }
531 PrintReport(rep);
532 __tsan_on_report(rep);
533 ctx->nreported++;
534 if (flags()->halt_on_error)
535 Die();
536 thr->current_report = nullptr;
537 return true;
538 }
539
IsFiredSuppression(Context * ctx,ReportType type,StackTrace trace)540 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace) {
541 ReadLock lock(&ctx->fired_suppressions_mtx);
542 for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) {
543 if (ctx->fired_suppressions[k].type != type)
544 continue;
545 for (uptr j = 0; j < trace.size; j++) {
546 FiredSuppression *s = &ctx->fired_suppressions[k];
547 if (trace.trace[j] == s->pc_or_addr) {
548 if (s->supp)
549 atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed);
550 return true;
551 }
552 }
553 }
554 return false;
555 }
556
IsFiredSuppression(Context * ctx,ReportType type,uptr addr)557 static bool IsFiredSuppression(Context *ctx, ReportType type, uptr addr) {
558 ReadLock lock(&ctx->fired_suppressions_mtx);
559 for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) {
560 if (ctx->fired_suppressions[k].type != type)
561 continue;
562 FiredSuppression *s = &ctx->fired_suppressions[k];
563 if (addr == s->pc_or_addr) {
564 if (s->supp)
565 atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed);
566 return true;
567 }
568 }
569 return false;
570 }
571
RaceBetweenAtomicAndFree(ThreadState * thr)572 static bool RaceBetweenAtomicAndFree(ThreadState *thr) {
573 Shadow s0(thr->racy_state[0]);
574 Shadow s1(thr->racy_state[1]);
575 CHECK(!(s0.IsAtomic() && s1.IsAtomic()));
576 if (!s0.IsAtomic() && !s1.IsAtomic())
577 return true;
578 if (s0.IsAtomic() && s1.IsFreed())
579 return true;
580 if (s1.IsAtomic() && thr->is_freeing)
581 return true;
582 return false;
583 }
584
ReportRace(ThreadState * thr)585 void ReportRace(ThreadState *thr) {
586 CheckNoLocks(thr);
587
588 // Symbolizer makes lots of intercepted calls. If we try to process them,
589 // at best it will cause deadlocks on internal mutexes.
590 ScopedIgnoreInterceptors ignore;
591
592 if (!flags()->report_bugs)
593 return;
594 if (!flags()->report_atomic_races && !RaceBetweenAtomicAndFree(thr))
595 return;
596
597 bool freed = false;
598 {
599 Shadow s(thr->racy_state[1]);
600 freed = s.GetFreedAndReset();
601 thr->racy_state[1] = s.raw();
602 }
603
604 uptr addr = ShadowToMem((uptr)thr->racy_shadow_addr);
605 uptr addr_min = 0;
606 uptr addr_max = 0;
607 {
608 uptr a0 = addr + Shadow(thr->racy_state[0]).addr0();
609 uptr a1 = addr + Shadow(thr->racy_state[1]).addr0();
610 uptr e0 = a0 + Shadow(thr->racy_state[0]).size();
611 uptr e1 = a1 + Shadow(thr->racy_state[1]).size();
612 addr_min = min(a0, a1);
613 addr_max = max(e0, e1);
614 if (IsExpectedReport(addr_min, addr_max - addr_min))
615 return;
616 }
617 if (HandleRacyAddress(thr, addr_min, addr_max))
618 return;
619
620 ReportType typ = ReportTypeRace;
621 if (thr->is_vptr_access && freed)
622 typ = ReportTypeVptrUseAfterFree;
623 else if (thr->is_vptr_access)
624 typ = ReportTypeVptrRace;
625 else if (freed)
626 typ = ReportTypeUseAfterFree;
627
628 if (IsFiredSuppression(ctx, typ, addr))
629 return;
630
631 const uptr kMop = 2;
632 VarSizeStackTrace traces[kMop];
633 uptr tags[kMop] = {kExternalTagNone};
634 uptr toppc = TraceTopPC(thr);
635 if (toppc >> kEventPCBits) {
636 // This is a work-around for a known issue.
637 // The scenario where this happens is rather elaborate and requires
638 // an instrumented __sanitizer_report_error_summary callback and
639 // a __tsan_symbolize_external callback and a race during a range memory
640 // access larger than 8 bytes. MemoryAccessRange adds the current PC to
641 // the trace and starts processing memory accesses. A first memory access
642 // triggers a race, we report it and call the instrumented
643 // __sanitizer_report_error_summary, which adds more stuff to the trace
644 // since it is intrumented. Then a second memory access in MemoryAccessRange
645 // also triggers a race and we get here and call TraceTopPC to get the
646 // current PC, however now it contains some unrelated events from the
647 // callback. Most likely, TraceTopPC will now return a EventTypeFuncExit
648 // event. Later we subtract -1 from it (in GetPreviousInstructionPc)
649 // and the resulting PC has kExternalPCBit set, so we pass it to
650 // __tsan_symbolize_external_ex. __tsan_symbolize_external_ex is within its
651 // rights to crash since the PC is completely bogus.
652 // test/tsan/double_race.cpp contains a test case for this.
653 toppc = 0;
654 }
655 ObtainCurrentStack(thr, toppc, &traces[0], &tags[0]);
656 if (IsFiredSuppression(ctx, typ, traces[0]))
657 return;
658
659 // MutexSet is too large to live on stack.
660 Vector<u64> mset_buffer;
661 mset_buffer.Resize(sizeof(MutexSet) / sizeof(u64) + 1);
662 MutexSet *mset2 = new(&mset_buffer[0]) MutexSet();
663
664 Shadow s2(thr->racy_state[1]);
665 RestoreStack(s2.tid(), s2.epoch(), &traces[1], mset2, &tags[1]);
666 if (IsFiredSuppression(ctx, typ, traces[1]))
667 return;
668
669 if (HandleRacyStacks(thr, traces))
670 return;
671
672 // If any of the accesses has a tag, treat this as an "external" race.
673 uptr tag = kExternalTagNone;
674 for (uptr i = 0; i < kMop; i++) {
675 if (tags[i] != kExternalTagNone) {
676 typ = ReportTypeExternalRace;
677 tag = tags[i];
678 break;
679 }
680 }
681
682 ThreadRegistryLock l0(ctx->thread_registry);
683 ScopedReport rep(typ, tag);
684 for (uptr i = 0; i < kMop; i++) {
685 Shadow s(thr->racy_state[i]);
686 rep.AddMemoryAccess(addr, tags[i], s, traces[i],
687 i == 0 ? &thr->mset : mset2);
688 }
689
690 for (uptr i = 0; i < kMop; i++) {
691 FastState s(thr->racy_state[i]);
692 ThreadContext *tctx = static_cast<ThreadContext*>(
693 ctx->thread_registry->GetThreadLocked(s.tid()));
694 if (s.epoch() < tctx->epoch0 || s.epoch() > tctx->epoch1)
695 continue;
696 rep.AddThread(tctx);
697 }
698
699 rep.AddLocation(addr_min, addr_max - addr_min);
700
701 #if !SANITIZER_GO
702 {
703 Shadow s(thr->racy_state[1]);
704 if (s.epoch() <= thr->last_sleep_clock.get(s.tid()))
705 rep.AddSleep(thr->last_sleep_stack_id);
706 }
707 #endif
708
709 OutputReport(thr, rep);
710 }
711
PrintCurrentStack(ThreadState * thr,uptr pc)712 void PrintCurrentStack(ThreadState *thr, uptr pc) {
713 VarSizeStackTrace trace;
714 ObtainCurrentStack(thr, pc, &trace);
715 PrintStack(SymbolizeStack(trace));
716 }
717
718 // Always inlining PrintCurrentStackSlow, because LocatePcInTrace assumes
719 // __sanitizer_print_stack_trace exists in the actual unwinded stack, but
720 // tail-call to PrintCurrentStackSlow breaks this assumption because
721 // __sanitizer_print_stack_trace disappears after tail-call.
722 // However, this solution is not reliable enough, please see dvyukov's comment
723 // http://reviews.llvm.org/D19148#406208
724 // Also see PR27280 comment 2 and 3 for breaking examples and analysis.
725 ALWAYS_INLINE
PrintCurrentStackSlow(uptr pc)726 void PrintCurrentStackSlow(uptr pc) {
727 #if !SANITIZER_GO
728 uptr bp = GET_CURRENT_FRAME();
729 BufferedStackTrace *ptrace =
730 new(internal_alloc(MBlockStackTrace, sizeof(BufferedStackTrace)))
731 BufferedStackTrace();
732 ptrace->Unwind(pc, bp, nullptr, false);
733
734 for (uptr i = 0; i < ptrace->size / 2; i++) {
735 uptr tmp = ptrace->trace_buffer[i];
736 ptrace->trace_buffer[i] = ptrace->trace_buffer[ptrace->size - i - 1];
737 ptrace->trace_buffer[ptrace->size - i - 1] = tmp;
738 }
739 PrintStack(SymbolizeStack(*ptrace));
740 #endif
741 }
742
743 } // namespace __tsan
744
745 using namespace __tsan;
746
747 extern "C" {
748 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_print_stack_trace()749 void __sanitizer_print_stack_trace() {
750 PrintCurrentStackSlow(StackTrace::GetCurrentPc());
751 }
752 } // extern "C"
753