• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include "tensorflow/lite/kernels/test_util.h"
16 
17 #include <stddef.h>
18 #include <stdint.h>
19 
20 #include <algorithm>
21 #include <complex>
22 #include <functional>
23 #include <map>
24 #include <memory>
25 #include <optional>
26 #include <string>
27 #include <tuple>
28 #include <utility>
29 #include <vector>
30 
31 #include <gmock/gmock.h>
32 #include <gtest/gtest.h>
33 #include "flatbuffers/flatbuffers.h"  // from @flatbuffers
34 #include "tensorflow/core/platform/logging.h"
35 #include "tensorflow/lite/c/common.h"
36 #include "tensorflow/lite/core/api/op_resolver.h"
37 #include "tensorflow/lite/core/subgraph.h"
38 #include "tensorflow/lite/delegates/nnapi/acceleration_test_util.h"
39 #include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h"
40 #include "tensorflow/lite/interpreter.h"
41 #include "tensorflow/lite/kernels/acceleration_test_util.h"
42 #include "tensorflow/lite/kernels/register.h"
43 #include "tensorflow/lite/kernels/test_delegate_providers.h"
44 #include "tensorflow/lite/model.h"
45 #include "tensorflow/lite/nnapi/nnapi_implementation.h"
46 #include "tensorflow/lite/schema/schema_conversion_utils.h"
47 #include "tensorflow/lite/schema/schema_generated.h"
48 #include "tensorflow/lite/string_type.h"
49 #include "tensorflow/lite/string_util.h"
50 #include "tensorflow/lite/tools/logging.h"
51 #include "tensorflow/lite/tools/versioning/op_version.h"
52 #include "tensorflow/lite/version.h"
53 
54 namespace tflite {
55 
56 using ::testing::FloatNear;
57 using ::testing::Matcher;
58 
ArrayFloatNear(const std::vector<float> & values,float max_abs_error)59 std::vector<Matcher<float>> ArrayFloatNear(const std::vector<float>& values,
60                                            float max_abs_error) {
61   std::vector<Matcher<float>> matchers;
62   matchers.reserve(values.size());
63   for (const float& v : values) {
64     matchers.emplace_back(FloatNear(v, max_abs_error));
65   }
66   return matchers;
67 }
68 
ArrayComplex64Near(const std::vector<std::complex<float>> & values,float max_abs_error)69 std::vector<Matcher<std::complex<float>>> ArrayComplex64Near(
70     const std::vector<std::complex<float>>& values, float max_abs_error) {
71   std::vector<Matcher<std::complex<float>>> matchers;
72   matchers.reserve(values.size());
73   for (const std::complex<float>& v : values) {
74     matchers.emplace_back(
75         AllOf(::testing::Property(&std::complex<float>::real,
76                                   FloatNear(v.real(), max_abs_error)),
77               ::testing::Property(&std::complex<float>::imag,
78                                   FloatNear(v.imag(), max_abs_error))));
79   }
80   return matchers;
81 }
82 
AddInput(const TensorData & t)83 int SingleOpModel::AddInput(const TensorData& t) {
84   int id = 0;
85   if (t.per_channel_quantization) {
86     id = AddTensorPerChannelQuant(t);
87   } else {
88     id = AddTensor<float>(t, {});
89   }
90   inputs_.push_back(id);
91   return id;
92 }
93 
AddVariableInput(const TensorData & t)94 int SingleOpModel::AddVariableInput(const TensorData& t) {
95   int id = 0;
96   if (t.per_channel_quantization) {
97     id = AddTensorPerChannelQuant(t);
98   } else {
99     id = AddTensor<float>(t, {}, true);
100   }
101   inputs_.push_back(id);
102   return id;
103 }
104 
AddIntermediate(TensorType type,const std::vector<float> & scale,const std::vector<int64_t> & zero_point)105 int SingleOpModel::AddIntermediate(TensorType type,
106                                    const std::vector<float>& scale,
107                                    const std::vector<int64_t>& zero_point) {
108   // Currently supports only int16 intermediate types.
109   // TODO(jianlijianli): make use of the type.
110   int id = tensors_.size();
111   flatbuffers::Offset<QuantizationParameters> q_params =
112       CreateQuantizationParameters(builder_, /*min=*/0, /*max=*/0,
113                                    builder_.CreateVector<float>(scale),
114                                    builder_.CreateVector<int64_t>(zero_point));
115   tensors_.push_back(CreateTensor(builder_, builder_.CreateVector<int>({}),
116                                   type,
117                                   /*buffer=*/0,
118                                   /*name=*/0, q_params, false));
119   intermediates_.push_back(id);
120   return id;
121 }
122 
AddNullInput()123 int SingleOpModel::AddNullInput() {
124   int id = kTfLiteOptionalTensor;
125   inputs_.push_back(id);
126   return id;
127 }
128 
AddOutput(const TensorData & t)129 int SingleOpModel::AddOutput(const TensorData& t) {
130   int id = AddTensor<float>(t, {});
131   outputs_.push_back(id);
132   return id;
133 }
134 
SetBuiltinOp(BuiltinOperator type,BuiltinOptions builtin_options_type,flatbuffers::Offset<void> builtin_options)135 void SingleOpModel::SetBuiltinOp(BuiltinOperator type,
136                                  BuiltinOptions builtin_options_type,
137                                  flatbuffers::Offset<void> builtin_options) {
138   opcodes_.push_back(CreateOperatorCode(builder_, type, 0, 0));
139   operators_.push_back(CreateOperator(
140       builder_, /*opcode_index=*/0, builder_.CreateVector<int32_t>(inputs_),
141       builder_.CreateVector<int32_t>(outputs_), builtin_options_type,
142       builtin_options,
143       /*custom_options=*/0, CustomOptionsFormat_FLEXBUFFERS, 0,
144       builder_.CreateVector<int32_t>(intermediates_)));
145 }
146 
SetCustomOp(const string & name,const std::vector<uint8_t> & custom_option,const std::function<TfLiteRegistration * ()> & registration)147 void SingleOpModel::SetCustomOp(
148     const string& name, const std::vector<uint8_t>& custom_option,
149     const std::function<TfLiteRegistration*()>& registration) {
150   custom_registrations_[name] = registration;
151   opcodes_.push_back(
152       CreateOperatorCodeDirect(builder_, BuiltinOperator_CUSTOM, name.data()));
153   operators_.push_back(CreateOperator(
154       builder_, /*opcode_index=*/0, builder_.CreateVector<int32_t>(inputs_),
155       builder_.CreateVector<int32_t>(outputs_), BuiltinOptions_NONE, 0,
156       builder_.CreateVector<uint8_t>(custom_option),
157       CustomOptionsFormat_FLEXBUFFERS));
158 }
159 
AllocateAndDelegate(bool apply_delegate)160 void SingleOpModel::AllocateAndDelegate(bool apply_delegate) {
161   CHECK(interpreter_->AllocateTensors() == kTfLiteOk)
162       << "Cannot allocate tensors";
163   interpreter_->ResetVariableTensors();
164 
165   // In some rare cases a test may need to postpone modifying the graph with
166   // a delegate, e.g. if tensors are not fully specified. In such cases the
167   // test has to explicitly call ApplyDelegate() when necessary.
168   if (apply_delegate) ApplyDelegate();
169 }
170 
BuildInterpreter(std::vector<std::vector<int>> input_shapes,int num_threads,bool allow_fp32_relax_to_fp16,bool apply_delegate,bool allocate_and_delegate)171 void SingleOpModel::BuildInterpreter(std::vector<std::vector<int>> input_shapes,
172                                      int num_threads,
173                                      bool allow_fp32_relax_to_fp16,
174                                      bool apply_delegate,
175                                      bool allocate_and_delegate) {
176   auto opcodes = builder_.CreateVector(opcodes_);
177   auto operators = builder_.CreateVector(operators_);
178   auto tensors = builder_.CreateVector(tensors_);
179   auto inputs = builder_.CreateVector<int32_t>(inputs_);
180   auto outputs = builder_.CreateVector<int32_t>(outputs_);
181   // Create a single subgraph
182   std::vector<flatbuffers::Offset<SubGraph>> subgraphs;
183   auto subgraph = CreateSubGraph(builder_, tensors, inputs, outputs, operators);
184   subgraphs.push_back(subgraph);
185   auto subgraphs_flatbuffer = builder_.CreateVector(subgraphs);
186 
187   auto buffers = builder_.CreateVector(buffers_);
188   auto description = builder_.CreateString("programmatic model");
189   builder_.Finish(CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes,
190                               subgraphs_flatbuffer, description, buffers));
191 
192   uint8_t* buffer_pointer = builder_.GetBufferPointer();
193   UpdateOpVersion(buffer_pointer);
194 
195   if (!resolver_) {
196     MutableOpResolver* resolver =
197         apply_delegate
198             ? new ops::builtin::BuiltinOpResolver()
199             : new ops::builtin::BuiltinOpResolverWithoutDefaultDelegates();
200     for (const auto& reg : custom_registrations_) {
201       resolver->AddCustom(reg.first.data(), reg.second());
202     }
203     resolver_ = std::unique_ptr<OpResolver>(resolver);
204   }
205   CHECK(InterpreterBuilder(GetModel(buffer_pointer), *resolver_)(
206             &interpreter_, num_threads) == kTfLiteOk);
207 
208   CHECK(interpreter_ != nullptr);
209 
210   for (size_t i = 0; i < input_shapes.size(); ++i) {
211     const int input_idx = interpreter_->inputs()[i];
212     if (input_idx == kTfLiteOptionalTensor) continue;
213     const auto& shape = input_shapes[i];
214     if (shape.empty()) continue;
215     CHECK(interpreter_->ResizeInputTensor(input_idx, shape) == kTfLiteOk);
216   }
217 
218   interpreter_->SetAllowFp16PrecisionForFp32(allow_fp32_relax_to_fp16);
219 
220   if (allocate_and_delegate) {
221     AllocateAndDelegate(apply_delegate);
222   }
223 }
224 
ApplyDelegate()225 TfLiteStatus SingleOpModel::ApplyDelegate() {
226   if (delegate_) {
227     TFLITE_LOG(WARN) << "Having a manually-set TfLite delegate, and bypassing "
228                         "KernelTestDelegateProviders";
229     TF_LITE_ENSURE_STATUS(interpreter_->ModifyGraphWithDelegate(delegate_));
230     ++num_applied_delegates_;
231   } else {
232     auto* delegate_providers = tflite::KernelTestDelegateProviders::Get();
233     // Most TFLite NNAPI delegation tests have been written to run against the
234     // NNAPI CPU path. We'll enable that for tests. However, need to first check
235     // if the parameter is present - it will not be if the NNAPI delegate
236     // provider is not linked into the test.
237     if (delegate_providers->ConstParams().HasParam("disable_nnapi_cpu")) {
238       delegate_providers->MutableParams()->Set("disable_nnapi_cpu", false);
239     }
240     for (auto& one : delegate_providers->CreateAllDelegates()) {
241       // The raw ptr always points to the actual TfLiteDegate object.
242       auto* delegate_raw_ptr = one.get();
243       TF_LITE_ENSURE_STATUS(
244           interpreter_->ModifyGraphWithDelegate(std::move(one)));
245       // Note: 'delegate_' is always set to the last successfully applied one.
246       delegate_ = delegate_raw_ptr;
247       ++num_applied_delegates_;
248     }
249   }
250   return kTfLiteOk;
251 }
252 
Invoke()253 void SingleOpModel::Invoke() { ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); }
254 
InvokeUnchecked()255 TfLiteStatus SingleOpModel::InvokeUnchecked() { return interpreter_->Invoke(); }
256 
BuildInterpreter(std::vector<std::vector<int>> input_shapes)257 void SingleOpModel::BuildInterpreter(
258     std::vector<std::vector<int>> input_shapes) {
259   BuildInterpreter(input_shapes, /*num_threads=*/-1,
260                    /*allow_fp32_relax_to_fp16=*/false,
261                    /*apply_delegate=*/true, /*allocate_and_delegate=*/true);
262 }
263 
264 // static
GetForceUseNnapi()265 bool SingleOpModel::GetForceUseNnapi() {
266   const auto& delegate_params =
267       tflite::KernelTestDelegateProviders::Get()->ConstParams();
268   // It's possible this library isn't linked with the nnapi delegate provider
269   // lib.
270   return delegate_params.HasParam("use_nnapi") &&
271          delegate_params.Get<bool>("use_nnapi");
272 }
273 
GetTensorSize(int index) const274 int32_t SingleOpModel::GetTensorSize(int index) const {
275   TfLiteTensor* t = interpreter_->tensor(index);
276   CHECK(t);
277   int total_size = 1;
278   for (int i = 0; i < t->dims->size; ++i) {
279     total_size *= t->dims->data[i];
280   }
281   return total_size;
282 }
283 
284 template <>
ExtractVector(int index) const285 std::vector<string> SingleOpModel::ExtractVector(int index) const {
286   TfLiteTensor* tensor_ptr = interpreter_->tensor(index);
287   CHECK(tensor_ptr != nullptr);
288   const int num_strings = GetStringCount(tensor_ptr);
289   std::vector<string> result;
290   result.reserve(num_strings);
291   for (int i = 0; i < num_strings; ++i) {
292     const auto str = GetString(tensor_ptr, i);
293     result.emplace_back(str.str, str.len);
294   }
295   return result;
296 }
297 
298 namespace {
299 
300 // Returns the number of partitions associated, as result of a call to
301 // ModifyGraphWithDelegate, to the given delegate.
CountPartitionsDelegatedTo(Subgraph * subgraph,const TfLiteDelegate * delegate)302 int CountPartitionsDelegatedTo(Subgraph* subgraph,
303                                const TfLiteDelegate* delegate) {
304   return std::count_if(
305       subgraph->nodes_and_registration().begin(),
306       subgraph->nodes_and_registration().end(),
307       [delegate](
308           std::pair<TfLiteNode, TfLiteRegistration> node_and_registration) {
309         return node_and_registration.first.delegate == delegate;
310       });
311 }
312 
313 // Returns the number of partitions associated, as result of a call to
314 // ModifyGraphWithDelegate, to the given delegate.
CountPartitionsDelegatedTo(Interpreter * interpreter,const TfLiteDelegate * delegate)315 int CountPartitionsDelegatedTo(Interpreter* interpreter,
316                                const TfLiteDelegate* delegate) {
317   int result = 0;
318   for (int i = 0; i < interpreter->subgraphs_size(); i++) {
319     Subgraph* subgraph = interpreter->subgraph(i);
320 
321     result += CountPartitionsDelegatedTo(subgraph, delegate);
322   }
323 
324   return result;
325 }
326 
327 // Returns the number of nodes that will be executed on the CPU
CountPartitionsExecutedByCpuKernel(const Interpreter * interpreter)328 int CountPartitionsExecutedByCpuKernel(const Interpreter* interpreter) {
329   int result = 0;
330   for (int node_idx : interpreter->execution_plan()) {
331     TfLiteNode node;
332     TfLiteRegistration reg;
333     std::tie(node, reg) = *(interpreter->node_and_registration(node_idx));
334 
335     if (node.delegate == nullptr) {
336       ++result;
337     }
338   }
339 
340   return result;
341 }
342 
343 }  // namespace
344 
ExpectOpAcceleratedWithNnapi(const std::string & test_id)345 void SingleOpModel::ExpectOpAcceleratedWithNnapi(const std::string& test_id) {
346   std::optional<NnapiAccelerationTestParams> validation_params =
347       GetNnapiAccelerationTestParam(test_id);
348   if (!validation_params.has_value()) {
349     return;
350   }
351 
352   // If we have multiple delegates applied, we would skip this check at the
353   // moment.
354   if (num_applied_delegates_ > 1) {
355     TFLITE_LOG(WARN) << "Skipping ExpectOpAcceleratedWithNnapi as "
356                      << num_applied_delegates_
357                      << " delegates have been successfully applied.";
358     return;
359   }
360   TFLITE_LOG(INFO) << "Validating acceleration";
361   const NnApi* nnapi = NnApiImplementation();
362   if (nnapi && nnapi->nnapi_exists &&
363       nnapi->android_sdk_version >=
364           validation_params.value().MinAndroidSdkVersion()) {
365     EXPECT_EQ(CountPartitionsDelegatedTo(interpreter_.get(), delegate_), 1)
366         << "Expecting operation to be accelerated but cannot find a partition "
367            "associated to the NNAPI delegate";
368   }
369 }
370 
ValidateAcceleration()371 void SingleOpModel::ValidateAcceleration() {
372   if (GetForceUseNnapi()) {
373     ExpectOpAcceleratedWithNnapi(GetCurrentTestId());
374   }
375 }
376 
CountOpsExecutedByCpuKernel()377 int SingleOpModel::CountOpsExecutedByCpuKernel() {
378   return CountPartitionsExecutedByCpuKernel(interpreter_.get());
379 }
380 
~SingleOpModel()381 SingleOpModel::~SingleOpModel() { ValidateAcceleration(); }
382 
AddBuiltinOp(BuiltinOperator type,BuiltinOptions builtin_options_type,const flatbuffers::Offset<void> & builtin_options,const std::vector<int32_t> & inputs,const std::vector<int32_t> & outputs)383 void MultiOpModel::AddBuiltinOp(
384     BuiltinOperator type, BuiltinOptions builtin_options_type,
385     const flatbuffers::Offset<void>& builtin_options,
386     const std::vector<int32_t>& inputs, const std::vector<int32_t>& outputs) {
387   opcodes_.push_back(CreateOperatorCode(builder_, type, 0, 0));
388   const int opcode_index = opcodes_.size() - 1;
389   operators_.push_back(CreateOperator(
390       builder_, opcode_index, builder_.CreateVector<int32_t>(inputs),
391       builder_.CreateVector<int32_t>(outputs), builtin_options_type,
392       builtin_options,
393       /*custom_options=*/0, CustomOptionsFormat_FLEXBUFFERS));
394 }
395 
AddCustomOp(const string & name,const std::vector<uint8_t> & custom_option,const std::function<TfLiteRegistration * ()> & registration,const std::vector<int32_t> & inputs,const std::vector<int32_t> & outputs)396 void MultiOpModel::AddCustomOp(
397     const string& name, const std::vector<uint8_t>& custom_option,
398     const std::function<TfLiteRegistration*()>& registration,
399     const std::vector<int32_t>& inputs, const std::vector<int32_t>& outputs) {
400   custom_registrations_[name] = registration;
401   opcodes_.push_back(
402       CreateOperatorCodeDirect(builder_, BuiltinOperator_CUSTOM, name.data()));
403   const int opcode_index = opcodes_.size() - 1;
404   operators_.push_back(CreateOperator(
405       builder_, opcode_index, builder_.CreateVector<int32_t>(inputs),
406       builder_.CreateVector<int32_t>(outputs), BuiltinOptions_NONE, 0,
407       builder_.CreateVector<uint8_t>(custom_option),
408       CustomOptionsFormat_FLEXBUFFERS));
409 }
410 }  // namespace tflite
411