1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #ifndef AOM_AV1_COMMON_BLOCKD_H_
13 #define AOM_AV1_COMMON_BLOCKD_H_
14
15 #include "config/aom_config.h"
16
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_ports/mem.h"
19 #include "aom_scale/yv12config.h"
20
21 #include "av1/common/common_data.h"
22 #include "av1/common/quant_common.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/mv.h"
26 #include "av1/common/scale.h"
27 #include "av1/common/seg_common.h"
28 #include "av1/common/tile_common.h"
29
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33
34 #define USE_B_QUANT_NO_TRELLIS 1
35
36 #define MAX_MB_PLANE 3
37
38 #define MAX_DIFFWTD_MASK_BITS 1
39
40 #define INTERINTRA_WEDGE_SIGN 0
41
42 // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
43 enum {
44 DIFFWTD_38 = 0,
45 DIFFWTD_38_INV,
46 DIFFWTD_MASK_TYPES,
47 } UENUM1BYTE(DIFFWTD_MASK_TYPE);
48
49 enum {
50 KEY_FRAME = 0,
51 INTER_FRAME = 1,
52 INTRA_ONLY_FRAME = 2, // replaces intra-only
53 S_FRAME = 3,
54 FRAME_TYPES,
55 } UENUM1BYTE(FRAME_TYPE);
56
is_comp_ref_allowed(BLOCK_SIZE bsize)57 static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
58 return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
59 }
60
is_inter_mode(PREDICTION_MODE mode)61 static INLINE int is_inter_mode(PREDICTION_MODE mode) {
62 return mode >= INTER_MODE_START && mode < INTER_MODE_END;
63 }
64
65 typedef struct {
66 uint8_t *plane[MAX_MB_PLANE];
67 int stride[MAX_MB_PLANE];
68 } BUFFER_SET;
69
is_inter_singleref_mode(PREDICTION_MODE mode)70 static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
71 return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
72 }
is_inter_compound_mode(PREDICTION_MODE mode)73 static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
74 return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
75 }
76
compound_ref0_mode(PREDICTION_MODE mode)77 static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
78 static const PREDICTION_MODE lut[] = {
79 DC_PRED, // DC_PRED
80 V_PRED, // V_PRED
81 H_PRED, // H_PRED
82 D45_PRED, // D45_PRED
83 D135_PRED, // D135_PRED
84 D113_PRED, // D113_PRED
85 D157_PRED, // D157_PRED
86 D203_PRED, // D203_PRED
87 D67_PRED, // D67_PRED
88 SMOOTH_PRED, // SMOOTH_PRED
89 SMOOTH_V_PRED, // SMOOTH_V_PRED
90 SMOOTH_H_PRED, // SMOOTH_H_PRED
91 PAETH_PRED, // PAETH_PRED
92 NEARESTMV, // NEARESTMV
93 NEARMV, // NEARMV
94 GLOBALMV, // GLOBALMV
95 NEWMV, // NEWMV
96 NEARESTMV, // NEAREST_NEARESTMV
97 NEARMV, // NEAR_NEARMV
98 NEARESTMV, // NEAREST_NEWMV
99 NEWMV, // NEW_NEARESTMV
100 NEARMV, // NEAR_NEWMV
101 NEWMV, // NEW_NEARMV
102 GLOBALMV, // GLOBAL_GLOBALMV
103 NEWMV, // NEW_NEWMV
104 };
105 assert(NELEMENTS(lut) == MB_MODE_COUNT);
106 assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
107 return lut[mode];
108 }
109
compound_ref1_mode(PREDICTION_MODE mode)110 static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
111 static const PREDICTION_MODE lut[] = {
112 MB_MODE_COUNT, // DC_PRED
113 MB_MODE_COUNT, // V_PRED
114 MB_MODE_COUNT, // H_PRED
115 MB_MODE_COUNT, // D45_PRED
116 MB_MODE_COUNT, // D135_PRED
117 MB_MODE_COUNT, // D113_PRED
118 MB_MODE_COUNT, // D157_PRED
119 MB_MODE_COUNT, // D203_PRED
120 MB_MODE_COUNT, // D67_PRED
121 MB_MODE_COUNT, // SMOOTH_PRED
122 MB_MODE_COUNT, // SMOOTH_V_PRED
123 MB_MODE_COUNT, // SMOOTH_H_PRED
124 MB_MODE_COUNT, // PAETH_PRED
125 MB_MODE_COUNT, // NEARESTMV
126 MB_MODE_COUNT, // NEARMV
127 MB_MODE_COUNT, // GLOBALMV
128 MB_MODE_COUNT, // NEWMV
129 NEARESTMV, // NEAREST_NEARESTMV
130 NEARMV, // NEAR_NEARMV
131 NEWMV, // NEAREST_NEWMV
132 NEARESTMV, // NEW_NEARESTMV
133 NEWMV, // NEAR_NEWMV
134 NEARMV, // NEW_NEARMV
135 GLOBALMV, // GLOBAL_GLOBALMV
136 NEWMV, // NEW_NEWMV
137 };
138 assert(NELEMENTS(lut) == MB_MODE_COUNT);
139 assert(is_inter_compound_mode(mode));
140 return lut[mode];
141 }
142
have_nearmv_in_inter_mode(PREDICTION_MODE mode)143 static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
144 return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
145 mode == NEW_NEARMV);
146 }
147
have_newmv_in_inter_mode(PREDICTION_MODE mode)148 static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
149 return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
150 mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
151 }
152
is_masked_compound_type(COMPOUND_TYPE type)153 static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
154 return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
155 }
156
157 /* For keyframes, intra block modes are predicted by the (already decoded)
158 modes for the Y blocks to the left and above us; for interframes, there
159 is a single probability table. */
160
161 typedef struct {
162 // Value of base colors for Y, U, and V
163 uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
164 // Number of base colors for Y (0) and UV (1)
165 uint8_t palette_size[2];
166 } PALETTE_MODE_INFO;
167
168 typedef struct {
169 FILTER_INTRA_MODE filter_intra_mode;
170 uint8_t use_filter_intra;
171 } FILTER_INTRA_MODE_INFO;
172
173 static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
174 DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
175 };
176
177 #if CONFIG_RD_DEBUG
178 #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
179 #endif
180
181 typedef struct RD_STATS {
182 int rate;
183 int64_t dist;
184 // Please be careful of using rdcost, it's not guaranteed to be set all the
185 // time.
186 // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
187 // these functions, make sure rdcost is always up-to-date according to
188 // rate/dist.
189 int64_t rdcost;
190 int64_t sse;
191 int skip; // sse should equal to dist when skip == 1
192 int zero_rate;
193 #if CONFIG_RD_DEBUG
194 int txb_coeff_cost[MAX_MB_PLANE];
195 // TODO(jingning): Temporary solution to silence stack over-size warning
196 // in handle_inter_mode. This should be fixed after rate-distortion
197 // optimization refactoring.
198 int16_t txb_coeff_cost_map[MAX_MB_PLANE][TXB_COEFF_COST_MAP_SIZE]
199 [TXB_COEFF_COST_MAP_SIZE];
200 #endif // CONFIG_RD_DEBUG
201 } RD_STATS;
202
203 // This struct is used to group function args that are commonly
204 // sent together in functions related to interinter compound modes
205 typedef struct {
206 uint8_t *seg_mask;
207 int8_t wedge_index;
208 int8_t wedge_sign;
209 DIFFWTD_MASK_TYPE mask_type;
210 COMPOUND_TYPE type;
211 } INTERINTER_COMPOUND_DATA;
212
213 #define INTER_TX_SIZE_BUF_LEN 16
214 #define TXK_TYPE_BUF_LEN 64
215 // This structure now relates to 4x4 block regions.
216 typedef struct MB_MODE_INFO {
217 // interinter members
218 INTERINTER_COMPOUND_DATA interinter_comp;
219 WarpedMotionParams wm_params;
220 int_mv mv[2];
221 int current_qindex;
222 // Only for INTER blocks
223 int_interpfilters interp_filters;
224 // TODO(debargha): Consolidate these flags
225 #if CONFIG_RD_DEBUG
226 RD_STATS rd_stats;
227 int mi_row;
228 int mi_col;
229 #endif
230 #if CONFIG_INSPECTION
231 int16_t tx_skip[TXK_TYPE_BUF_LEN];
232 #endif
233 PALETTE_MODE_INFO palette_mode_info;
234 // Common for both INTER and INTRA blocks
235 BLOCK_SIZE sb_type;
236 PREDICTION_MODE mode;
237 // Only for INTRA blocks
238 UV_PREDICTION_MODE uv_mode;
239 // interintra members
240 INTERINTRA_MODE interintra_mode;
241 MOTION_MODE motion_mode;
242 PARTITION_TYPE partition;
243 MV_REFERENCE_FRAME ref_frame[2];
244 FILTER_INTRA_MODE_INFO filter_intra_mode_info;
245 int8_t skip;
246 uint8_t inter_tx_size[INTER_TX_SIZE_BUF_LEN];
247 TX_SIZE tx_size;
248 int8_t delta_lf_from_base;
249 int8_t delta_lf[FRAME_LF_COUNT];
250 int8_t interintra_wedge_index;
251 // The actual prediction angle is the base angle + (angle_delta * step).
252 int8_t angle_delta[PLANE_TYPES];
253 /* deringing gain *per-superblock* */
254 // Joint sign of alpha Cb and alpha Cr
255 int8_t cfl_alpha_signs;
256 // Index of the alpha Cb and alpha Cr combination
257 uint8_t cfl_alpha_idx;
258 uint8_t num_proj_ref;
259 uint8_t overlappable_neighbors[2];
260 // If comp_group_idx=0, indicate if dist_wtd_comp(0) or avg_comp(1) is used.
261 uint8_t compound_idx;
262 uint8_t use_wedge_interintra : 1;
263 uint8_t segment_id : 3;
264 uint8_t seg_id_predicted : 1; // valid only when temporal_update is enabled
265 uint8_t skip_mode : 1;
266 uint8_t use_intrabc : 1;
267 uint8_t ref_mv_idx : 2;
268 // Indicate if masked compound is used(1) or not(0).
269 uint8_t comp_group_idx : 1;
270 int8_t cdef_strength : 4;
271 } MB_MODE_INFO;
272
is_intrabc_block(const MB_MODE_INFO * mbmi)273 static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
274 return mbmi->use_intrabc;
275 }
276
get_uv_mode(UV_PREDICTION_MODE mode)277 static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
278 assert(mode < UV_INTRA_MODES);
279 static const PREDICTION_MODE uv2y[] = {
280 DC_PRED, // UV_DC_PRED
281 V_PRED, // UV_V_PRED
282 H_PRED, // UV_H_PRED
283 D45_PRED, // UV_D45_PRED
284 D135_PRED, // UV_D135_PRED
285 D113_PRED, // UV_D113_PRED
286 D157_PRED, // UV_D157_PRED
287 D203_PRED, // UV_D203_PRED
288 D67_PRED, // UV_D67_PRED
289 SMOOTH_PRED, // UV_SMOOTH_PRED
290 SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
291 SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
292 PAETH_PRED, // UV_PAETH_PRED
293 DC_PRED, // UV_CFL_PRED
294 INTRA_INVALID, // UV_INTRA_MODES
295 INTRA_INVALID, // UV_MODE_INVALID
296 };
297 return uv2y[mode];
298 }
299
is_inter_block(const MB_MODE_INFO * mbmi)300 static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
301 return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
302 }
303
has_second_ref(const MB_MODE_INFO * mbmi)304 static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
305 return mbmi->ref_frame[1] > INTRA_FRAME;
306 }
307
has_uni_comp_refs(const MB_MODE_INFO * mbmi)308 static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
309 return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
310 (mbmi->ref_frame[1] >= BWDREF_FRAME)));
311 }
312
comp_ref0(int ref_idx)313 static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
314 static const MV_REFERENCE_FRAME lut[] = {
315 LAST_FRAME, // LAST_LAST2_FRAMES,
316 LAST_FRAME, // LAST_LAST3_FRAMES,
317 LAST_FRAME, // LAST_GOLDEN_FRAMES,
318 BWDREF_FRAME, // BWDREF_ALTREF_FRAMES,
319 LAST2_FRAME, // LAST2_LAST3_FRAMES
320 LAST2_FRAME, // LAST2_GOLDEN_FRAMES,
321 LAST3_FRAME, // LAST3_GOLDEN_FRAMES,
322 BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES,
323 ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES,
324 };
325 assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
326 return lut[ref_idx];
327 }
328
comp_ref1(int ref_idx)329 static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
330 static const MV_REFERENCE_FRAME lut[] = {
331 LAST2_FRAME, // LAST_LAST2_FRAMES,
332 LAST3_FRAME, // LAST_LAST3_FRAMES,
333 GOLDEN_FRAME, // LAST_GOLDEN_FRAMES,
334 ALTREF_FRAME, // BWDREF_ALTREF_FRAMES,
335 LAST3_FRAME, // LAST2_LAST3_FRAMES
336 GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES,
337 GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES,
338 ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES,
339 ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES,
340 };
341 assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
342 return lut[ref_idx];
343 }
344
345 PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
346
347 PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
348
is_global_mv_block(const MB_MODE_INFO * const mbmi,TransformationType type)349 static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
350 TransformationType type) {
351 const PREDICTION_MODE mode = mbmi->mode;
352 const BLOCK_SIZE bsize = mbmi->sb_type;
353 const int block_size_allowed =
354 AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
355 return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
356 block_size_allowed;
357 }
358
359 #if CONFIG_MISMATCH_DEBUG
mi_to_pixel_loc(int * pixel_c,int * pixel_r,int mi_col,int mi_row,int tx_blk_col,int tx_blk_row,int subsampling_x,int subsampling_y)360 static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
361 int mi_row, int tx_blk_col, int tx_blk_row,
362 int subsampling_x, int subsampling_y) {
363 *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
364 (tx_blk_col << MI_SIZE_LOG2);
365 *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
366 (tx_blk_row << MI_SIZE_LOG2);
367 }
368 #endif
369
370 enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
371
372 struct buf_2d {
373 uint8_t *buf;
374 uint8_t *buf0;
375 int width;
376 int height;
377 int stride;
378 };
379
380 typedef struct eob_info {
381 uint16_t eob;
382 uint16_t max_scan_line;
383 } eob_info;
384
385 typedef struct {
386 DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
387 eob_info eob_data[MAX_MB_PLANE]
388 [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
389 DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
390 } CB_BUFFER;
391
392 typedef struct macroblockd_plane {
393 tran_low_t *dqcoeff;
394 tran_low_t *dqcoeff_block;
395 eob_info *eob_data;
396 PLANE_TYPE plane_type;
397 int subsampling_x;
398 int subsampling_y;
399 struct buf_2d dst;
400 struct buf_2d pre[2];
401 ENTROPY_CONTEXT *above_entropy_context;
402 ENTROPY_CONTEXT *left_entropy_context;
403
404 // The dequantizers below are true dequantizers used only in the
405 // dequantization process. They have the same coefficient
406 // shift/scale as TX.
407 int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
408 uint8_t *color_index_map;
409
410 // block size in pixels
411 uint8_t width, height;
412
413 qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
414 qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
415 } MACROBLOCKD_PLANE;
416
417 #define BLOCK_OFFSET(i) ((i) << 4)
418
419 typedef struct {
420 DECLARE_ALIGNED(16, InterpKernel, vfilter);
421 DECLARE_ALIGNED(16, InterpKernel, hfilter);
422 } WienerInfo;
423
424 typedef struct {
425 int ep;
426 int xqd[2];
427 } SgrprojInfo;
428
429 #if CONFIG_DEBUG
430 #define CFL_SUB8X8_VAL_MI_SIZE (4)
431 #define CFL_SUB8X8_VAL_MI_SQUARE \
432 (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE)
433 #endif // CONFIG_DEBUG
434 #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
435 #define CFL_BUF_LINE (32)
436 #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
437 #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
438 #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
439 typedef struct cfl_ctx {
440 // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
441 // shifts)
442 uint16_t recon_buf_q3[CFL_BUF_SQUARE];
443 // Q3 AC contributions (reconstructed luma pixels - tx block avg)
444 int16_t ac_buf_q3[CFL_BUF_SQUARE];
445
446 // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
447 // for every scaling parameter
448 int dc_pred_is_cached[CFL_PRED_PLANES];
449 // The DC_PRED cache is disable when decoding
450 int use_dc_pred_cache;
451 // Only cache the first row of the DC_PRED
452 int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
453
454 // Height and width currently used in the CfL prediction buffer.
455 int buf_height, buf_width;
456
457 int are_parameters_computed;
458
459 // Chroma subsampling
460 int subsampling_x, subsampling_y;
461
462 // Whether the reconstructed luma pixels need to be stored
463 int store_y;
464
465 #if CONFIG_DEBUG
466 int rate;
467 #endif // CONFIG_DEBUG
468 } CFL_CTX;
469
470 typedef struct dist_wtd_comp_params {
471 int use_dist_wtd_comp_avg;
472 int fwd_offset;
473 int bck_offset;
474 } DIST_WTD_COMP_PARAMS;
475
476 struct scale_factors;
477
478 // Most/all of the pointers are mere pointers to actual arrays are allocated
479 // elsewhere. This is mostly for coding convenience.
480 typedef struct macroblockd {
481 // Row and column position of current macroblock in mi units.
482 int mi_row;
483 int mi_col;
484 // Same as cm->mi_params.mi_stride, copied here for convenience.
485 int mi_stride;
486
487 // True if current block transmits chroma information.
488 // More detail:
489 // Smallest supported block size for both luma and chroma plane is 4x4. Hence,
490 // in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma
491 // blocks smaller than 8x8 maybe combined into one chroma block.
492 // For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4
493 // luma blocks. Then, a single chroma block of size 4x4 will cover the area of
494 // these four luma blocks. This is implemented in bitstream as follows:
495 // - There are four MB_MODE_INFO structs for the four luma blocks.
496 // - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit
497 // any information for chroma planes.
498 // - Last block will have is_chroma_ref = true and transmits chroma
499 // information for the 4x4 chroma block that covers whole 8x8 area covered by
500 // four luma blocks.
501 // Similar logic applies for chroma blocks that cover 2 or 3 luma blocks.
502 bool is_chroma_ref;
503
504 struct macroblockd_plane plane[MAX_MB_PLANE];
505
506 TileInfo tile;
507
508 // Appropriate offset inside cm->mi_params.mi_grid_base based on current
509 // mi_row and mi_col.
510 MB_MODE_INFO **mi;
511
512 // True if 4x4 block above the current block is available.
513 bool up_available;
514 // True if 4x4 block to the left of the current block is available.
515 bool left_available;
516 // True if the above chrome reference block is available.
517 bool chroma_up_available;
518 // True if the left chrome reference block is available.
519 bool chroma_left_available;
520
521 // MB_MODE_INFO for 4x4 block to the left of the current block, if
522 // left_available == true; otherwise NULL.
523 MB_MODE_INFO *left_mbmi;
524 // MB_MODE_INFO for 4x4 block above the current block, if
525 // up_available == true; otherwise NULL.
526 MB_MODE_INFO *above_mbmi;
527 // Above chroma reference block if is_chroma_ref == true for the current block
528 // and chroma_up_available == true; otherwise NULL.
529 // See also: the special case logic when current chroma block covers more than
530 // one luma blocks in set_mi_row_col().
531 MB_MODE_INFO *chroma_left_mbmi;
532 // Left chroma reference block if is_chroma_ref == true for the current block
533 // and chroma_left_available == true; otherwise NULL.
534 // See also: the special case logic when current chroma block covers more than
535 // one luma blocks in set_mi_row_col().
536 MB_MODE_INFO *chroma_above_mbmi;
537
538 // Appropriate offset based on current 'mi_row' and 'mi_col', inside
539 // 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or
540 // 'MACROBLOCK' structs.
541 uint8_t *tx_type_map;
542 // Stride for 'tx_type_map'. Note that this may / may not be same as
543 // 'mi_stride', depending on which actual array 'tx_type_map' points to.
544 int tx_type_map_stride;
545
546 // Distance of this macroblock from frame edges in 1/8th pixel units.
547 int mb_to_left_edge;
548 int mb_to_right_edge;
549 int mb_to_top_edge;
550 int mb_to_bottom_edge;
551
552 // Scale factors for reference frames of the current block.
553 // These are pointers into 'cm->ref_scale_factors'.
554 const struct scale_factors *block_ref_scale_factors[2];
555
556 const YV12_BUFFER_CONFIG *cur_buf;
557
558 // Entropy contexts for the above blocks.
559 // above_entropy_context[i][j] corresponds to above entropy context for ith
560 // plane and jth mi column of this *frame*, wrt current 'mi_row'.
561 // These are pointers into 'cm->above_contexts.entropy'.
562 ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
563 // Entropy contexts for the left blocks.
564 // left_entropy_context[i][j] corresponds to left entropy context for ith
565 // plane and jth mi row of this *superblock*, wrt current 'mi_col'.
566 // Note: These contain actual data, NOT pointers.
567 ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
568
569 // Partition contexts for the above blocks.
570 // above_partition_context[i] corresponds to above partition context for ith
571 // mi column of this *frame*, wrt current 'mi_row'.
572 // These are pointers into 'cm->above_contexts.partition'.
573 PARTITION_CONTEXT *above_partition_context;
574 // Partition contexts for the left blocks.
575 // left_partition_context[i] corresponds to left partition context for ith
576 // mi row of this *superblock*, wrt current 'mi_col'.
577 // Note: These contain actual data, NOT pointers.
578 PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
579
580 // Transform contexts for the above blocks.
581 // TODO(urvang): Indexed two different ways from cm->above_contexts.txfm in
582 // code currently. Need to make it consistent / document why.
583 TXFM_CONTEXT *above_txfm_context;
584 // Transform contexts for the left blocks.
585 TXFM_CONTEXT *left_txfm_context;
586 // TODO(urvang): 'left_txfm_context' points to 'left_txfm_context_buffer'.
587 // Can we remove this indirection?
588 TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
589
590 // Default values for the two restoration filters for each plane.
591 // These values are used as reference values when writing the bitstream. That
592 // is, we transmit the delta between the actual values in
593 // cm->rst_info[plane].unit_info[unit_idx] and these reference values.
594 WienerInfo wiener_info[MAX_MB_PLANE];
595 SgrprojInfo sgrproj_info[MAX_MB_PLANE];
596
597 // Block dimensions in MB_MODE_INFO units.
598 uint8_t width;
599 uint8_t height;
600
601 uint8_t ref_mv_count[MODE_CTX_REF_FRAMES];
602 CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
603 uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
604 uint8_t is_sec_rect;
605
606 // Counts of each reference frame in the above and left neighboring blocks.
607 // NOTE: Take into account both single and comp references.
608 uint8_t neighbors_ref_counts[REF_FRAMES];
609
610 FRAME_CONTEXT *tile_ctx;
611 // Bit depth: copied from cm->seq_params.bit_depth for convenience.
612 int bd;
613
614 int qindex[MAX_SEGMENTS];
615 int lossless[MAX_SEGMENTS];
616 // TODO(urvang): Move to decoder.
617 int corrupted;
618 // Same as cm->features.cur_frame_force_integer_mv.
619 int cur_frame_force_integer_mv;
620 // Pointer to cm->error.
621 struct aom_internal_error_info *error_info;
622 // Same as cm->global_motion.
623 const WarpedMotionParams *global_motion;
624 int delta_qindex;
625 int current_qindex;
626 // Since actual frame level loop filtering level value is not available
627 // at the beginning of the tile (only available during actual filtering)
628 // at encoder side.we record the delta_lf (against the frame level loop
629 // filtering level) and code the delta between previous superblock's delta
630 // lf and current delta lf. It is equivalent to the delta between previous
631 // superblock's actual lf and current lf.
632 int8_t delta_lf_from_base;
633 // For this experiment, we have four frame filter levels for different plane
634 // and direction. So, to support the per superblock update, we need to add
635 // a few more params as below.
636 // 0: delta loop filter level for y plane vertical
637 // 1: delta loop filter level for y plane horizontal
638 // 2: delta loop filter level for u plane
639 // 3: delta loop filter level for v plane
640 // To make it consistent with the reference to each filter level in segment,
641 // we need to -1, since
642 // SEG_LVL_ALT_LF_Y_V = 1;
643 // SEG_LVL_ALT_LF_Y_H = 2;
644 // SEG_LVL_ALT_LF_U = 3;
645 // SEG_LVL_ALT_LF_V = 4;
646 int8_t delta_lf[FRAME_LF_COUNT];
647 // cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the
648 // current superblock has already been read from (decoder) / written to
649 // (encoder) the bitstream; and false otherwise.
650 // More detail:
651 // (1) CDEF strength is transmitted only once per CDEF unit, in the 1st
652 // non-skip coding block. So, we need this array to keep track of whether CDEF
653 // strengths for the given CDEF units have been transmitted yet or not.
654 // (2) Superblock size can be either 128x128 or 64x64, but CDEF unit size is
655 // fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if
656 // superblock size is 128x128). Hence the array size is 4.
657 // (3) In the current implementation, CDEF strength for this CDEF unit is
658 // stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside
659 // cm->mi_params.mi_grid_base).
660 bool cdef_transmitted[4];
661
662 DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]);
663 uint8_t *mc_buf[2];
664 CFL_CTX cfl;
665
666 DIST_WTD_COMP_PARAMS jcp_param;
667
668 uint16_t cb_offset[MAX_MB_PLANE];
669 uint16_t txb_offset[MAX_MB_PLANE];
670 uint16_t color_index_map_offset[2];
671
672 CONV_BUF_TYPE *tmp_conv_dst;
673 uint8_t *tmp_obmc_bufs[2];
674 } MACROBLOCKD;
675
is_cur_buf_hbd(const MACROBLOCKD * xd)676 static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
677 return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
678 }
679
get_buf_by_bd(const MACROBLOCKD * xd,uint8_t * buf16)680 static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
681 return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
682 ? CONVERT_TO_BYTEPTR(buf16)
683 : buf16;
684 }
685
get_sqr_bsize_idx(BLOCK_SIZE bsize)686 static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
687 switch (bsize) {
688 case BLOCK_4X4: return 0;
689 case BLOCK_8X8: return 1;
690 case BLOCK_16X16: return 2;
691 case BLOCK_32X32: return 3;
692 case BLOCK_64X64: return 4;
693 case BLOCK_128X128: return 5;
694 default: return SQR_BLOCK_SIZES;
695 }
696 }
697
698 // For a square block size 'bsize', returns the size of the sub-blocks used by
699 // the given partition type. If the partition produces sub-blocks of different
700 // sizes, then the function returns the largest sub-block size.
701 // Implements the Partition_Subsize lookup table in the spec (Section 9.3.
702 // Conversion tables).
703 // Note: the input block size should be square.
704 // Otherwise it's considered invalid.
get_partition_subsize(BLOCK_SIZE bsize,PARTITION_TYPE partition)705 static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
706 PARTITION_TYPE partition) {
707 if (partition == PARTITION_INVALID) {
708 return BLOCK_INVALID;
709 } else {
710 const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
711 return sqr_bsize_idx >= SQR_BLOCK_SIZES
712 ? BLOCK_INVALID
713 : subsize_lookup[partition][sqr_bsize_idx];
714 }
715 }
716
intra_mode_to_tx_type(const MB_MODE_INFO * mbmi,PLANE_TYPE plane_type)717 static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
718 PLANE_TYPE plane_type) {
719 static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
720 DCT_DCT, // DC_PRED
721 ADST_DCT, // V_PRED
722 DCT_ADST, // H_PRED
723 DCT_DCT, // D45_PRED
724 ADST_ADST, // D135_PRED
725 ADST_DCT, // D113_PRED
726 DCT_ADST, // D157_PRED
727 DCT_ADST, // D203_PRED
728 ADST_DCT, // D67_PRED
729 ADST_ADST, // SMOOTH_PRED
730 ADST_DCT, // SMOOTH_V_PRED
731 DCT_ADST, // SMOOTH_H_PRED
732 ADST_ADST, // PAETH_PRED
733 };
734 const PREDICTION_MODE mode =
735 (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
736 assert(mode < INTRA_MODES);
737 return _intra_mode_to_tx_type[mode];
738 }
739
is_rect_tx(TX_SIZE tx_size)740 static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
741
block_signals_txsize(BLOCK_SIZE bsize)742 static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
743 return bsize > BLOCK_4X4;
744 }
745
746 // Number of transform types in each set type
747 static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
748 1, 2, 5, 7, 12, 16,
749 };
750
751 static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
752 { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
753 { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
754 { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
755 { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
756 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
757 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
758 };
759
760 static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
761 0x080F, // DC_PRED: 0000 1000 0000 1111
762 0x040F, // V_PRED: 0000 0100 0000 1111
763 0x080F, // H_PRED: 0000 1000 0000 1111
764 0x020F, // D45_PRED: 0000 0010 0000 1111
765 0x080F, // D135_PRED: 0000 1000 0000 1111
766 0x040F, // D113_PRED: 0000 0100 0000 1111
767 0x080F, // D157_PRED: 0000 1000 0000 1111
768 0x080F, // D203_PRED: 0000 1000 0000 1111
769 0x040F, // D67_PRED: 0000 0100 0000 1111
770 0x080F, // SMOOTH_PRED: 0000 1000 0000 1111
771 0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111
772 0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111
773 0x0C0E, // PAETH_PRED: 0000 1100 0000 1110
774 };
775
776 static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
777 0x0001, // 0000 0000 0000 0001
778 0x0201, // 0000 0010 0000 0001
779 0x020F, // 0000 0010 0000 1111
780 0x0E0F, // 0000 1110 0000 1111
781 0x0FFF, // 0000 1111 1111 1111
782 0xFFFF, // 1111 1111 1111 1111
783 };
784
785 static const TxSetType av1_ext_tx_set_lookup[2][2] = {
786 { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
787 { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
788 };
789
av1_get_ext_tx_set_type(TX_SIZE tx_size,int is_inter,int use_reduced_set)790 static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
791 int use_reduced_set) {
792 const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
793 if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
794 if (tx_size_sqr_up == TX_32X32)
795 return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
796 if (use_reduced_set)
797 return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
798 const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
799 return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
800 }
801
802 // Maps tx set types to the indices.
803 static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
804 { // Intra
805 0, -1, 2, 1, -1, -1 },
806 { // Inter
807 0, 3, -1, -1, 2, 1 },
808 };
809
get_ext_tx_set(TX_SIZE tx_size,int is_inter,int use_reduced_set)810 static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
811 int use_reduced_set) {
812 const TxSetType set_type =
813 av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
814 return ext_tx_set_index[is_inter][set_type];
815 }
816
get_ext_tx_types(TX_SIZE tx_size,int is_inter,int use_reduced_set)817 static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
818 int use_reduced_set) {
819 const int set_type =
820 av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
821 return av1_num_ext_tx_set[set_type];
822 }
823
824 #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
825 #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
826
tx_size_from_tx_mode(BLOCK_SIZE bsize,TX_MODE tx_mode)827 static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
828 const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
829 const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
830 if (bsize == BLOCK_4X4)
831 return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
832 if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
833 return max_rect_tx_size;
834 else
835 return largest_tx_size;
836 }
837
838 static const uint8_t mode_to_angle_map[] = {
839 0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
840 };
841
842 // Converts block_index for given transform size to index of the block in raster
843 // order.
av1_block_index_to_raster_order(TX_SIZE tx_size,int block_idx)844 static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
845 int block_idx) {
846 // For transform size 4x8, the possible block_idx values are 0 & 2, because
847 // block_idx values are incremented in steps of size 'tx_width_unit x
848 // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
849 // block number 1 in raster order, inside an 8x8 MI block.
850 // For any other transform size, the two indices are equivalent.
851 return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
852 }
853
854 // Inverse of above function.
855 // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
av1_raster_order_to_block_index(TX_SIZE tx_size,int raster_order)856 static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
857 int raster_order) {
858 assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
859 // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
860 return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
861 }
862
get_default_tx_type(PLANE_TYPE plane_type,const MACROBLOCKD * xd,TX_SIZE tx_size,int is_screen_content_type)863 static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
864 const MACROBLOCKD *xd,
865 TX_SIZE tx_size,
866 int is_screen_content_type) {
867 const MB_MODE_INFO *const mbmi = xd->mi[0];
868
869 if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
870 xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
871 is_screen_content_type)
872 return DCT_DCT;
873
874 return intra_mode_to_tx_type(mbmi, plane_type);
875 }
876
877 // Implements the get_plane_residual_size() function in the spec (Section
878 // 5.11.38. Get plane residual size function).
get_plane_block_size(BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)879 static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
880 int subsampling_x,
881 int subsampling_y) {
882 assert(bsize < BLOCK_SIZES_ALL);
883 assert(subsampling_x >= 0 && subsampling_x < 2);
884 assert(subsampling_y >= 0 && subsampling_y < 2);
885 return ss_size_lookup[bsize][subsampling_x][subsampling_y];
886 }
887
888 /*
889 * Logic to generate the lookup tables:
890 *
891 * TX_SIZE txs = max_txsize_rect_lookup[bsize];
892 * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
893 * txs = sub_tx_size_map[txs];
894 * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
895 * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
896 * const int bw_uint_log2 = mi_size_wide_log2[bsize];
897 * const int stride_log2 = bw_uint_log2 - tx_w_log2;
898 */
av1_get_txb_size_index(BLOCK_SIZE bsize,int blk_row,int blk_col)899 static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
900 int blk_col) {
901 static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
902 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
903 };
904 static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
905 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
906 };
907 static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
908 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
909 };
910 const int index =
911 ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
912 (blk_col >> tw_w_log2_table[bsize]);
913 assert(index < INTER_TX_SIZE_BUF_LEN);
914 return index;
915 }
916
917 #if CONFIG_INSPECTION
918 /*
919 * Here is the logic to generate the lookup tables:
920 *
921 * TX_SIZE txs = max_txsize_rect_lookup[bsize];
922 * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
923 * txs = sub_tx_size_map[txs];
924 * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
925 * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
926 * const int bw_uint_log2 = mi_size_wide_log2[bsize];
927 * const int stride_log2 = bw_uint_log2 - tx_w_log2;
928 */
av1_get_txk_type_index(BLOCK_SIZE bsize,int blk_row,int blk_col)929 static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
930 int blk_col) {
931 static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
932 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
933 };
934 static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
935 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
936 };
937 static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
938 0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
939 };
940 const int index =
941 ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
942 (blk_col >> tw_w_log2_table[bsize]);
943 assert(index < TXK_TYPE_BUF_LEN);
944 return index;
945 }
946 #endif // CONFIG_INSPECTION
947
update_txk_array(MACROBLOCKD * const xd,int blk_row,int blk_col,TX_SIZE tx_size,TX_TYPE tx_type)948 static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
949 int blk_col, TX_SIZE tx_size,
950 TX_TYPE tx_type) {
951 const int stride = xd->tx_type_map_stride;
952 xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
953
954 const int txw = tx_size_wide_unit[tx_size];
955 const int txh = tx_size_high_unit[tx_size];
956 // The 16x16 unit is due to the constraint from tx_64x64 which sets the
957 // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
958 // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
959 // the intricacy, cover all the 16x16 units inside a 64 level transform.
960 if (txw == tx_size_wide_unit[TX_64X64] ||
961 txh == tx_size_high_unit[TX_64X64]) {
962 const int tx_unit = tx_size_wide_unit[TX_16X16];
963 for (int idy = 0; idy < txh; idy += tx_unit) {
964 for (int idx = 0; idx < txw; idx += tx_unit) {
965 xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
966 }
967 }
968 }
969 }
970
av1_get_tx_type(const MACROBLOCKD * xd,PLANE_TYPE plane_type,int blk_row,int blk_col,TX_SIZE tx_size,int reduced_tx_set)971 static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
972 PLANE_TYPE plane_type, int blk_row,
973 int blk_col, TX_SIZE tx_size,
974 int reduced_tx_set) {
975 const MB_MODE_INFO *const mbmi = xd->mi[0];
976 if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
977 return DCT_DCT;
978 }
979
980 TX_TYPE tx_type;
981 if (plane_type == PLANE_TYPE_Y) {
982 tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
983 } else {
984 if (is_inter_block(mbmi)) {
985 // scale back to y plane's coordinate
986 const struct macroblockd_plane *const pd = &xd->plane[plane_type];
987 blk_row <<= pd->subsampling_y;
988 blk_col <<= pd->subsampling_x;
989 tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
990 } else {
991 // In intra mode, uv planes don't share the same prediction mode as y
992 // plane, so the tx_type should not be shared
993 tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
994 }
995 const TxSetType tx_set_type =
996 av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
997 if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
998 }
999 assert(tx_type < TX_TYPES);
1000 assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
1001 reduced_tx_set)][tx_type]);
1002 return tx_type;
1003 }
1004
1005 void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
1006 const int num_planes);
1007
1008 /*
1009 * Logic to generate the lookup table:
1010 *
1011 * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1012 * int depth = 0;
1013 * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
1014 * depth++;
1015 * tx_size = sub_tx_size_map[tx_size];
1016 * }
1017 */
bsize_to_max_depth(BLOCK_SIZE bsize)1018 static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
1019 static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
1020 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1021 };
1022 return bsize_to_max_depth_table[bsize];
1023 }
1024
1025 /*
1026 * Logic to generate the lookup table:
1027 *
1028 * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1029 * assert(tx_size != TX_4X4);
1030 * int depth = 0;
1031 * while (tx_size != TX_4X4) {
1032 * depth++;
1033 * tx_size = sub_tx_size_map[tx_size];
1034 * }
1035 * assert(depth < 10);
1036 */
bsize_to_tx_size_cat(BLOCK_SIZE bsize)1037 static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
1038 assert(bsize < BLOCK_SIZES_ALL);
1039 static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
1040 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
1041 };
1042 const int depth = bsize_to_tx_size_depth_table[bsize];
1043 assert(depth <= MAX_TX_CATS);
1044 return depth - 1;
1045 }
1046
depth_to_tx_size(int depth,BLOCK_SIZE bsize)1047 static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
1048 TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1049 TX_SIZE tx_size = max_tx_size;
1050 for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
1051 return tx_size;
1052 }
1053
av1_get_adjusted_tx_size(TX_SIZE tx_size)1054 static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
1055 switch (tx_size) {
1056 case TX_64X64:
1057 case TX_64X32:
1058 case TX_32X64: return TX_32X32;
1059 case TX_64X16: return TX_32X16;
1060 case TX_16X64: return TX_16X32;
1061 default: return tx_size;
1062 }
1063 }
1064
av1_get_max_uv_txsize(BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1065 static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
1066 int subsampling_y) {
1067 const BLOCK_SIZE plane_bsize =
1068 get_plane_block_size(bsize, subsampling_x, subsampling_y);
1069 assert(plane_bsize < BLOCK_SIZES_ALL);
1070 const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
1071 return av1_get_adjusted_tx_size(uv_tx);
1072 }
1073
av1_get_tx_size(int plane,const MACROBLOCKD * xd)1074 static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
1075 const MB_MODE_INFO *mbmi = xd->mi[0];
1076 if (xd->lossless[mbmi->segment_id]) return TX_4X4;
1077 if (plane == 0) return mbmi->tx_size;
1078 const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
1079 return av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x,
1080 pd->subsampling_y);
1081 }
1082
1083 void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
1084 const int num_planes);
1085
1086 void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
1087
1088 void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
1089
1090 typedef void (*foreach_transformed_block_visitor)(int plane, int block,
1091 int blk_row, int blk_col,
1092 BLOCK_SIZE plane_bsize,
1093 TX_SIZE tx_size, void *arg);
1094
1095 void av1_set_entropy_contexts(const MACROBLOCKD *xd,
1096 struct macroblockd_plane *pd, int plane,
1097 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1098 int has_eob, int aoff, int loff);
1099
1100 #define MAX_INTERINTRA_SB_SQUARE 32 * 32
is_interintra_mode(const MB_MODE_INFO * mbmi)1101 static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
1102 return (mbmi->ref_frame[0] > INTRA_FRAME &&
1103 mbmi->ref_frame[1] == INTRA_FRAME);
1104 }
1105
is_interintra_allowed_bsize(const BLOCK_SIZE bsize)1106 static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
1107 return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
1108 }
1109
is_interintra_allowed_mode(const PREDICTION_MODE mode)1110 static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
1111 return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
1112 }
1113
is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2])1114 static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
1115 return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
1116 }
1117
is_interintra_allowed(const MB_MODE_INFO * mbmi)1118 static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
1119 return is_interintra_allowed_bsize(mbmi->sb_type) &&
1120 is_interintra_allowed_mode(mbmi->mode) &&
1121 is_interintra_allowed_ref(mbmi->ref_frame);
1122 }
1123
is_interintra_allowed_bsize_group(int group)1124 static INLINE int is_interintra_allowed_bsize_group(int group) {
1125 int i;
1126 for (i = 0; i < BLOCK_SIZES_ALL; i++) {
1127 if (size_group_lookup[i] == group &&
1128 is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
1129 return 1;
1130 }
1131 }
1132 return 0;
1133 }
1134
is_interintra_pred(const MB_MODE_INFO * mbmi)1135 static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
1136 return mbmi->ref_frame[0] > INTRA_FRAME &&
1137 mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
1138 }
1139
get_vartx_max_txsize(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1140 static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1141 int plane) {
1142 if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1143 const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
1144 if (plane == 0) return max_txsize; // luma
1145 return av1_get_adjusted_tx_size(max_txsize); // chroma
1146 }
1147
is_motion_variation_allowed_bsize(BLOCK_SIZE bsize)1148 static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
1149 assert(bsize < BLOCK_SIZES_ALL);
1150 return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
1151 }
1152
is_motion_variation_allowed_compound(const MB_MODE_INFO * mbmi)1153 static INLINE int is_motion_variation_allowed_compound(
1154 const MB_MODE_INFO *mbmi) {
1155 return !has_second_ref(mbmi);
1156 }
1157
1158 // input: log2 of length, 0(4), 1(8), ...
1159 static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
1160
check_num_overlappable_neighbors(const MB_MODE_INFO * mbmi)1161 static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
1162 return !(mbmi->overlappable_neighbors[0] == 0 &&
1163 mbmi->overlappable_neighbors[1] == 0);
1164 }
1165
1166 static INLINE MOTION_MODE
motion_mode_allowed(const WarpedMotionParams * gm_params,const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,int allow_warped_motion)1167 motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
1168 const MB_MODE_INFO *mbmi, int allow_warped_motion) {
1169 if (xd->cur_frame_force_integer_mv == 0) {
1170 const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
1171 if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
1172 }
1173 if (is_motion_variation_allowed_bsize(mbmi->sb_type) &&
1174 is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
1175 is_motion_variation_allowed_compound(mbmi)) {
1176 if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
1177 assert(!has_second_ref(mbmi));
1178 if (mbmi->num_proj_ref >= 1 &&
1179 (allow_warped_motion &&
1180 !av1_is_scaled(xd->block_ref_scale_factors[0]))) {
1181 if (xd->cur_frame_force_integer_mv) {
1182 return OBMC_CAUSAL;
1183 }
1184 return WARPED_CAUSAL;
1185 }
1186 return OBMC_CAUSAL;
1187 } else {
1188 return SIMPLE_TRANSLATION;
1189 }
1190 }
1191
is_neighbor_overlappable(const MB_MODE_INFO * mbmi)1192 static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
1193 return (is_inter_block(mbmi));
1194 }
1195
av1_allow_palette(int allow_screen_content_tools,BLOCK_SIZE sb_type)1196 static INLINE int av1_allow_palette(int allow_screen_content_tools,
1197 BLOCK_SIZE sb_type) {
1198 assert(sb_type < BLOCK_SIZES_ALL);
1199 return allow_screen_content_tools && block_size_wide[sb_type] <= 64 &&
1200 block_size_high[sb_type] <= 64 && sb_type >= BLOCK_8X8;
1201 }
1202
1203 // Returns sub-sampled dimensions of the given block.
1204 // The output values for 'rows_within_bounds' and 'cols_within_bounds' will
1205 // differ from 'height' and 'width' when part of the block is outside the
1206 // right
1207 // and/or bottom image boundary.
av1_get_block_dimensions(BLOCK_SIZE bsize,int plane,const MACROBLOCKD * xd,int * width,int * height,int * rows_within_bounds,int * cols_within_bounds)1208 static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
1209 const MACROBLOCKD *xd, int *width,
1210 int *height,
1211 int *rows_within_bounds,
1212 int *cols_within_bounds) {
1213 const int block_height = block_size_high[bsize];
1214 const int block_width = block_size_wide[bsize];
1215 const int block_rows = (xd->mb_to_bottom_edge >= 0)
1216 ? block_height
1217 : (xd->mb_to_bottom_edge >> 3) + block_height;
1218 const int block_cols = (xd->mb_to_right_edge >= 0)
1219 ? block_width
1220 : (xd->mb_to_right_edge >> 3) + block_width;
1221 const struct macroblockd_plane *const pd = &xd->plane[plane];
1222 assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
1223 assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
1224 assert(block_width >= block_cols);
1225 assert(block_height >= block_rows);
1226 const int plane_block_width = block_width >> pd->subsampling_x;
1227 const int plane_block_height = block_height >> pd->subsampling_y;
1228 // Special handling for chroma sub8x8.
1229 const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
1230 const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
1231 if (width) *width = plane_block_width + 2 * is_chroma_sub8_x;
1232 if (height) *height = plane_block_height + 2 * is_chroma_sub8_y;
1233 if (rows_within_bounds) {
1234 *rows_within_bounds =
1235 (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
1236 }
1237 if (cols_within_bounds) {
1238 *cols_within_bounds =
1239 (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
1240 }
1241 }
1242
1243 /* clang-format off */
1244 typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
1245 [CDF_SIZE(PALETTE_COLORS)];
1246 typedef const int (*ColorCost)[PALETTE_SIZES][PALETTE_COLOR_INDEX_CONTEXTS]
1247 [PALETTE_COLORS];
1248 /* clang-format on */
1249
1250 typedef struct {
1251 int rows;
1252 int cols;
1253 int n_colors;
1254 int plane_width;
1255 int plane_height;
1256 uint8_t *color_map;
1257 MapCdf map_cdf;
1258 ColorCost color_cost;
1259 } Av1ColorMapParam;
1260
is_nontrans_global_motion(const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi)1261 static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
1262 const MB_MODE_INFO *mbmi) {
1263 int ref;
1264
1265 // First check if all modes are GLOBALMV
1266 if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
1267
1268 if (AOMMIN(mi_size_wide[mbmi->sb_type], mi_size_high[mbmi->sb_type]) < 2)
1269 return 0;
1270
1271 // Now check if all global motion is non translational
1272 for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
1273 if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
1274 }
1275 return 1;
1276 }
1277
get_plane_type(int plane)1278 static INLINE PLANE_TYPE get_plane_type(int plane) {
1279 return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
1280 }
1281
av1_get_max_eob(TX_SIZE tx_size)1282 static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
1283 if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
1284 return 1024;
1285 }
1286 if (tx_size == TX_16X64 || tx_size == TX_64X16) {
1287 return 512;
1288 }
1289 return tx_size_2d[tx_size];
1290 }
1291
1292 #ifdef __cplusplus
1293 } // extern "C"
1294 #endif
1295
1296 #endif // AOM_AV1_COMMON_BLOCKD_H_
1297