1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file describes the target machine instruction set to the code generator. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_TARGET_TARGETINSTRINFO_H 14 #define LLVM_TARGET_TARGETINSTRINFO_H 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/CodeGen/MIRFormatter.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineCombinerPattern.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineOperand.h" 27 #include "llvm/CodeGen/MachineOutliner.h" 28 #include "llvm/CodeGen/VirtRegMap.h" 29 #include "llvm/MC/MCInstrInfo.h" 30 #include "llvm/Support/BranchProbability.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include <cassert> 33 #include <cstddef> 34 #include <cstdint> 35 #include <utility> 36 #include <vector> 37 38 namespace llvm { 39 40 class AAResults; 41 class DFAPacketizer; 42 class InstrItineraryData; 43 class LiveIntervals; 44 class LiveVariables; 45 class MachineLoop; 46 class MachineMemOperand; 47 class MachineRegisterInfo; 48 class MCAsmInfo; 49 class MCInst; 50 struct MCSchedModel; 51 class Module; 52 class ScheduleDAG; 53 class ScheduleDAGMI; 54 class ScheduleHazardRecognizer; 55 class SDNode; 56 class SelectionDAG; 57 class RegScavenger; 58 class TargetRegisterClass; 59 class TargetRegisterInfo; 60 class TargetSchedModel; 61 class TargetSubtargetInfo; 62 63 template <class T> class SmallVectorImpl; 64 65 using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>; 66 67 struct DestSourcePair { 68 const MachineOperand *Destination; 69 const MachineOperand *Source; 70 DestSourcePairDestSourcePair71 DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src) 72 : Destination(&Dest), Source(&Src) {} 73 }; 74 75 /// Used to describe a register and immediate addition. 76 struct RegImmPair { 77 Register Reg; 78 int64_t Imm; 79 RegImmPairRegImmPair80 RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {} 81 }; 82 83 /// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare. 84 /// It holds the register values, the scale value and the displacement. 85 struct ExtAddrMode { 86 Register BaseReg; 87 Register ScaledReg; 88 int64_t Scale; 89 int64_t Displacement; 90 }; 91 92 //--------------------------------------------------------------------------- 93 /// 94 /// TargetInstrInfo - Interface to description of machine instruction set 95 /// 96 class TargetInstrInfo : public MCInstrInfo { 97 public: 98 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u, 99 unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u) CallFrameSetupOpcode(CFSetupOpcode)100 : CallFrameSetupOpcode(CFSetupOpcode), 101 CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode), 102 ReturnOpcode(ReturnOpcode) {} 103 TargetInstrInfo(const TargetInstrInfo &) = delete; 104 TargetInstrInfo &operator=(const TargetInstrInfo &) = delete; 105 virtual ~TargetInstrInfo(); 106 isGenericOpcode(unsigned Opc)107 static bool isGenericOpcode(unsigned Opc) { 108 return Opc <= TargetOpcode::GENERIC_OP_END; 109 } 110 111 /// Given a machine instruction descriptor, returns the register 112 /// class constraint for OpNum, or NULL. 113 virtual 114 const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 115 const TargetRegisterInfo *TRI, 116 const MachineFunction &MF) const; 117 118 /// Return true if the instruction is trivially rematerializable, meaning it 119 /// has no side effects and requires no operands that aren't always available. 120 /// This means the only allowed uses are constants and unallocatable physical 121 /// registers so that the instructions result is independent of the place 122 /// in the function. 123 bool isTriviallyReMaterializable(const MachineInstr &MI, 124 AAResults *AA = nullptr) const { 125 return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF || 126 (MI.getDesc().isRematerializable() && 127 (isReallyTriviallyReMaterializable(MI, AA) || 128 isReallyTriviallyReMaterializableGeneric(MI, AA))); 129 } 130 131 protected: 132 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is 133 /// set, this hook lets the target specify whether the instruction is actually 134 /// trivially rematerializable, taking into consideration its operands. This 135 /// predicate must return false if the instruction has any side effects other 136 /// than producing a value, or if it requres any address registers that are 137 /// not always available. 138 /// Requirements must be check as stated in isTriviallyReMaterializable() . isReallyTriviallyReMaterializable(const MachineInstr & MI,AAResults * AA)139 virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI, 140 AAResults *AA) const { 141 return false; 142 } 143 144 /// This method commutes the operands of the given machine instruction MI. 145 /// The operands to be commuted are specified by their indices OpIdx1 and 146 /// OpIdx2. 147 /// 148 /// If a target has any instructions that are commutable but require 149 /// converting to different instructions or making non-trivial changes 150 /// to commute them, this method can be overloaded to do that. 151 /// The default implementation simply swaps the commutable operands. 152 /// 153 /// If NewMI is false, MI is modified in place and returned; otherwise, a 154 /// new machine instruction is created and returned. 155 /// 156 /// Do not call this method for a non-commutable instruction. 157 /// Even though the instruction is commutable, the method may still 158 /// fail to commute the operands, null pointer is returned in such cases. 159 virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, 160 unsigned OpIdx1, 161 unsigned OpIdx2) const; 162 163 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable 164 /// operand indices to (ResultIdx1, ResultIdx2). 165 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be 166 /// predefined to some indices or be undefined (designated by the special 167 /// value 'CommuteAnyOperandIndex'). 168 /// The predefined result indices cannot be re-defined. 169 /// The function returns true iff after the result pair redefinition 170 /// the fixed result pair is equal to or equivalent to the source pair of 171 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that 172 /// the pairs (x,y) and (y,x) are equivalent. 173 static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, 174 unsigned CommutableOpIdx1, 175 unsigned CommutableOpIdx2); 176 177 private: 178 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is 179 /// set and the target hook isReallyTriviallyReMaterializable returns false, 180 /// this function does target-independent tests to determine if the 181 /// instruction is really trivially rematerializable. 182 bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI, 183 AAResults *AA) const; 184 185 public: 186 /// These methods return the opcode of the frame setup/destroy instructions 187 /// if they exist (-1 otherwise). Some targets use pseudo instructions in 188 /// order to abstract away the difference between operating with a frame 189 /// pointer and operating without, through the use of these two instructions. 190 /// getCallFrameSetupOpcode()191 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; } getCallFrameDestroyOpcode()192 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; } 193 194 /// Returns true if the argument is a frame pseudo instruction. isFrameInstr(const MachineInstr & I)195 bool isFrameInstr(const MachineInstr &I) const { 196 return I.getOpcode() == getCallFrameSetupOpcode() || 197 I.getOpcode() == getCallFrameDestroyOpcode(); 198 } 199 200 /// Returns true if the argument is a frame setup pseudo instruction. isFrameSetup(const MachineInstr & I)201 bool isFrameSetup(const MachineInstr &I) const { 202 return I.getOpcode() == getCallFrameSetupOpcode(); 203 } 204 205 /// Returns size of the frame associated with the given frame instruction. 206 /// For frame setup instruction this is frame that is set up space set up 207 /// after the instruction. For frame destroy instruction this is the frame 208 /// freed by the caller. 209 /// Note, in some cases a call frame (or a part of it) may be prepared prior 210 /// to the frame setup instruction. It occurs in the calls that involve 211 /// inalloca arguments. This function reports only the size of the frame part 212 /// that is set up between the frame setup and destroy pseudo instructions. getFrameSize(const MachineInstr & I)213 int64_t getFrameSize(const MachineInstr &I) const { 214 assert(isFrameInstr(I) && "Not a frame instruction"); 215 assert(I.getOperand(0).getImm() >= 0); 216 return I.getOperand(0).getImm(); 217 } 218 219 /// Returns the total frame size, which is made up of the space set up inside 220 /// the pair of frame start-stop instructions and the space that is set up 221 /// prior to the pair. getFrameTotalSize(const MachineInstr & I)222 int64_t getFrameTotalSize(const MachineInstr &I) const { 223 if (isFrameSetup(I)) { 224 assert(I.getOperand(1).getImm() >= 0 && 225 "Frame size must not be negative"); 226 return getFrameSize(I) + I.getOperand(1).getImm(); 227 } 228 return getFrameSize(I); 229 } 230 getCatchReturnOpcode()231 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; } getReturnOpcode()232 unsigned getReturnOpcode() const { return ReturnOpcode; } 233 234 /// Returns the actual stack pointer adjustment made by an instruction 235 /// as part of a call sequence. By default, only call frame setup/destroy 236 /// instructions adjust the stack, but targets may want to override this 237 /// to enable more fine-grained adjustment, or adjust by a different value. 238 virtual int getSPAdjust(const MachineInstr &MI) const; 239 240 /// Return true if the instruction is a "coalescable" extension instruction. 241 /// That is, it's like a copy where it's legal for the source to overlap the 242 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's 243 /// expected the pre-extension value is available as a subreg of the result 244 /// register. This also returns the sub-register index in SubIdx. isCoalescableExtInstr(const MachineInstr & MI,Register & SrcReg,Register & DstReg,unsigned & SubIdx)245 virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg, 246 Register &DstReg, unsigned &SubIdx) const { 247 return false; 248 } 249 250 /// If the specified machine instruction is a direct 251 /// load from a stack slot, return the virtual or physical register number of 252 /// the destination along with the FrameIndex of the loaded stack slot. If 253 /// not, return 0. This predicate must return 0 if the instruction has 254 /// any side effects other than loading from the stack slot. isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex)255 virtual unsigned isLoadFromStackSlot(const MachineInstr &MI, 256 int &FrameIndex) const { 257 return 0; 258 } 259 260 /// Optional extension of isLoadFromStackSlot that returns the number of 261 /// bytes loaded from the stack. This must be implemented if a backend 262 /// supports partial stack slot spills/loads to further disambiguate 263 /// what the load does. isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes)264 virtual unsigned isLoadFromStackSlot(const MachineInstr &MI, 265 int &FrameIndex, 266 unsigned &MemBytes) const { 267 MemBytes = 0; 268 return isLoadFromStackSlot(MI, FrameIndex); 269 } 270 271 /// Check for post-frame ptr elimination stack locations as well. 272 /// This uses a heuristic so it isn't reliable for correctness. isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)273 virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI, 274 int &FrameIndex) const { 275 return 0; 276 } 277 278 /// If the specified machine instruction has a load from a stack slot, 279 /// return true along with the FrameIndices of the loaded stack slot and the 280 /// machine mem operands containing the reference. 281 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for 282 /// any instructions that loads from the stack. This is just a hint, as some 283 /// cases may be missed. 284 virtual bool hasLoadFromStackSlot( 285 const MachineInstr &MI, 286 SmallVectorImpl<const MachineMemOperand *> &Accesses) const; 287 288 /// If the specified machine instruction is a direct 289 /// store to a stack slot, return the virtual or physical register number of 290 /// the source reg along with the FrameIndex of the loaded stack slot. If 291 /// not, return 0. This predicate must return 0 if the instruction has 292 /// any side effects other than storing to the stack slot. isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex)293 virtual unsigned isStoreToStackSlot(const MachineInstr &MI, 294 int &FrameIndex) const { 295 return 0; 296 } 297 298 /// Optional extension of isStoreToStackSlot that returns the number of 299 /// bytes stored to the stack. This must be implemented if a backend 300 /// supports partial stack slot spills/loads to further disambiguate 301 /// what the store does. isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes)302 virtual unsigned isStoreToStackSlot(const MachineInstr &MI, 303 int &FrameIndex, 304 unsigned &MemBytes) const { 305 MemBytes = 0; 306 return isStoreToStackSlot(MI, FrameIndex); 307 } 308 309 /// Check for post-frame ptr elimination stack locations as well. 310 /// This uses a heuristic, so it isn't reliable for correctness. isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)311 virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI, 312 int &FrameIndex) const { 313 return 0; 314 } 315 316 /// If the specified machine instruction has a store to a stack slot, 317 /// return true along with the FrameIndices of the loaded stack slot and the 318 /// machine mem operands containing the reference. 319 /// If not, return false. Unlike isStoreToStackSlot, 320 /// this returns true for any instructions that stores to the 321 /// stack. This is just a hint, as some cases may be missed. 322 virtual bool hasStoreToStackSlot( 323 const MachineInstr &MI, 324 SmallVectorImpl<const MachineMemOperand *> &Accesses) const; 325 326 /// Return true if the specified machine instruction 327 /// is a copy of one stack slot to another and has no other effect. 328 /// Provide the identity of the two frame indices. isStackSlotCopy(const MachineInstr & MI,int & DestFrameIndex,int & SrcFrameIndex)329 virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, 330 int &SrcFrameIndex) const { 331 return false; 332 } 333 334 /// Compute the size in bytes and offset within a stack slot of a spilled 335 /// register or subregister. 336 /// 337 /// \param [out] Size in bytes of the spilled value. 338 /// \param [out] Offset in bytes within the stack slot. 339 /// \returns true if both Size and Offset are successfully computed. 340 /// 341 /// Not all subregisters have computable spill slots. For example, 342 /// subregisters registers may not be byte-sized, and a pair of discontiguous 343 /// subregisters has no single offset. 344 /// 345 /// Targets with nontrivial bigendian implementations may need to override 346 /// this, particularly to support spilled vector registers. 347 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, 348 unsigned &Size, unsigned &Offset, 349 const MachineFunction &MF) const; 350 351 /// Returns the size in bytes of the specified MachineInstr, or ~0U 352 /// when this function is not implemented by a target. getInstSizeInBytes(const MachineInstr & MI)353 virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const { 354 return ~0U; 355 } 356 357 /// Return true if the instruction is as cheap as a move instruction. 358 /// 359 /// Targets for different archs need to override this, and different 360 /// micro-architectures can also be finely tuned inside. isAsCheapAsAMove(const MachineInstr & MI)361 virtual bool isAsCheapAsAMove(const MachineInstr &MI) const { 362 return MI.isAsCheapAsAMove(); 363 } 364 365 /// Return true if the instruction should be sunk by MachineSink. 366 /// 367 /// MachineSink determines on its own whether the instruction is safe to sink; 368 /// this gives the target a hook to override the default behavior with regards 369 /// to which instructions should be sunk. shouldSink(const MachineInstr & MI)370 virtual bool shouldSink(const MachineInstr &MI) const { return true; } 371 372 /// Re-issue the specified 'original' instruction at the 373 /// specific location targeting a new destination register. 374 /// The register in Orig->getOperand(0).getReg() will be substituted by 375 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with 376 /// SubIdx. 377 virtual void reMaterialize(MachineBasicBlock &MBB, 378 MachineBasicBlock::iterator MI, Register DestReg, 379 unsigned SubIdx, const MachineInstr &Orig, 380 const TargetRegisterInfo &TRI) const; 381 382 /// Clones instruction or the whole instruction bundle \p Orig and 383 /// insert into \p MBB before \p InsertBefore. The target may update operands 384 /// that are required to be unique. 385 /// 386 /// \p Orig must not return true for MachineInstr::isNotDuplicable(). 387 virtual MachineInstr &duplicate(MachineBasicBlock &MBB, 388 MachineBasicBlock::iterator InsertBefore, 389 const MachineInstr &Orig) const; 390 391 /// This method must be implemented by targets that 392 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 393 /// may be able to convert a two-address instruction into one or more true 394 /// three-address instructions on demand. This allows the X86 target (for 395 /// example) to convert ADD and SHL instructions into LEA instructions if they 396 /// would require register copies due to two-addressness. 397 /// 398 /// This method returns a null pointer if the transformation cannot be 399 /// performed, otherwise it returns the last new instruction. 400 /// convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV)401 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, 402 MachineInstr &MI, 403 LiveVariables *LV) const { 404 return nullptr; 405 } 406 407 // This constant can be used as an input value of operand index passed to 408 // the method findCommutedOpIndices() to tell the method that the 409 // corresponding operand index is not pre-defined and that the method 410 // can pick any commutable operand. 411 static const unsigned CommuteAnyOperandIndex = ~0U; 412 413 /// This method commutes the operands of the given machine instruction MI. 414 /// 415 /// The operands to be commuted are specified by their indices OpIdx1 and 416 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value 417 /// 'CommuteAnyOperandIndex', which means that the method is free to choose 418 /// any arbitrarily chosen commutable operand. If both arguments are set to 419 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable 420 /// operands; then commutes them if such operands could be found. 421 /// 422 /// If NewMI is false, MI is modified in place and returned; otherwise, a 423 /// new machine instruction is created and returned. 424 /// 425 /// Do not call this method for a non-commutable instruction or 426 /// for non-commuable operands. 427 /// Even though the instruction is commutable, the method may still 428 /// fail to commute the operands, null pointer is returned in such cases. 429 MachineInstr * 430 commuteInstruction(MachineInstr &MI, bool NewMI = false, 431 unsigned OpIdx1 = CommuteAnyOperandIndex, 432 unsigned OpIdx2 = CommuteAnyOperandIndex) const; 433 434 /// Returns true iff the routine could find two commutable operands in the 435 /// given machine instruction. 436 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. 437 /// If any of the INPUT values is set to the special value 438 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable 439 /// operand, then returns its index in the corresponding argument. 440 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method 441 /// looks for 2 commutable operands. 442 /// If INPUT values refer to some operands of MI, then the method simply 443 /// returns true if the corresponding operands are commutable and returns 444 /// false otherwise. 445 /// 446 /// For example, calling this method this way: 447 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; 448 /// findCommutedOpIndices(MI, Op1, Op2); 449 /// can be interpreted as a query asking to find an operand that would be 450 /// commutable with the operand#1. 451 virtual bool findCommutedOpIndices(const MachineInstr &MI, 452 unsigned &SrcOpIdx1, 453 unsigned &SrcOpIdx2) const; 454 455 /// A pair composed of a register and a sub-register index. 456 /// Used to give some type checking when modeling Reg:SubReg. 457 struct RegSubRegPair { 458 Register Reg; 459 unsigned SubReg; 460 461 RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0) RegRegSubRegPair462 : Reg(Reg), SubReg(SubReg) {} 463 464 bool operator==(const RegSubRegPair& P) const { 465 return Reg == P.Reg && SubReg == P.SubReg; 466 } 467 bool operator!=(const RegSubRegPair& P) const { 468 return !(*this == P); 469 } 470 }; 471 472 /// A pair composed of a pair of a register and a sub-register index, 473 /// and another sub-register index. 474 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2. 475 struct RegSubRegPairAndIdx : RegSubRegPair { 476 unsigned SubIdx; 477 478 RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0, 479 unsigned SubIdx = 0) RegSubRegPairRegSubRegPairAndIdx480 : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {} 481 }; 482 483 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI 484 /// and \p DefIdx. 485 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of 486 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef 487 /// flag are not added to this list. 488 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce 489 /// two elements: 490 /// - %1:sub1, sub0 491 /// - %2<:0>, sub1 492 /// 493 /// \returns true if it is possible to build such an input sequence 494 /// with the pair \p MI, \p DefIdx. False otherwise. 495 /// 496 /// \pre MI.isRegSequence() or MI.isRegSequenceLike(). 497 /// 498 /// \note The generic implementation does not provide any support for 499 /// MI.isRegSequenceLike(). In other words, one has to override 500 /// getRegSequenceLikeInputs for target specific instructions. 501 bool 502 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, 503 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const; 504 505 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI 506 /// and \p DefIdx. 507 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG. 508 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce: 509 /// - %1:sub1, sub0 510 /// 511 /// \returns true if it is possible to build such an input sequence 512 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set. 513 /// False otherwise. 514 /// 515 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike(). 516 /// 517 /// \note The generic implementation does not provide any support for 518 /// MI.isExtractSubregLike(). In other words, one has to override 519 /// getExtractSubregLikeInputs for target specific instructions. 520 bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, 521 RegSubRegPairAndIdx &InputReg) const; 522 523 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI 524 /// and \p DefIdx. 525 /// \p [out] BaseReg and \p [out] InsertedReg contain 526 /// the equivalent inputs of INSERT_SUBREG. 527 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce: 528 /// - BaseReg: %0:sub0 529 /// - InsertedReg: %1:sub1, sub3 530 /// 531 /// \returns true if it is possible to build such an input sequence 532 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set. 533 /// False otherwise. 534 /// 535 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike(). 536 /// 537 /// \note The generic implementation does not provide any support for 538 /// MI.isInsertSubregLike(). In other words, one has to override 539 /// getInsertSubregLikeInputs for target specific instructions. 540 bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, 541 RegSubRegPair &BaseReg, 542 RegSubRegPairAndIdx &InsertedReg) const; 543 544 /// Return true if two machine instructions would produce identical values. 545 /// By default, this is only true when the two instructions 546 /// are deemed identical except for defs. If this function is called when the 547 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for 548 /// aggressive checks. 549 virtual bool produceSameValue(const MachineInstr &MI0, 550 const MachineInstr &MI1, 551 const MachineRegisterInfo *MRI = nullptr) const; 552 553 /// \returns true if a branch from an instruction with opcode \p BranchOpc 554 /// bytes is capable of jumping to a position \p BrOffset bytes away. isBranchOffsetInRange(unsigned BranchOpc,int64_t BrOffset)555 virtual bool isBranchOffsetInRange(unsigned BranchOpc, 556 int64_t BrOffset) const { 557 llvm_unreachable("target did not implement"); 558 } 559 560 /// \returns The block that branch instruction \p MI jumps to. getBranchDestBlock(const MachineInstr & MI)561 virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const { 562 llvm_unreachable("target did not implement"); 563 } 564 565 /// Insert an unconditional indirect branch at the end of \p MBB to \p 566 /// NewDestBB. \p BrOffset indicates the offset of \p NewDestBB relative to 567 /// the offset of the position to insert the new branch. 568 /// 569 /// \returns The number of bytes added to the block. 570 virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB, 571 MachineBasicBlock &NewDestBB, 572 const DebugLoc &DL, 573 int64_t BrOffset = 0, 574 RegScavenger *RS = nullptr) const { 575 llvm_unreachable("target did not implement"); 576 } 577 578 /// Analyze the branching code at the end of MBB, returning 579 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't 580 /// implemented for a target). Upon success, this returns false and returns 581 /// with the following information in various cases: 582 /// 583 /// 1. If this block ends with no branches (it just falls through to its succ) 584 /// just return false, leaving TBB/FBB null. 585 /// 2. If this block ends with only an unconditional branch, it sets TBB to be 586 /// the destination block. 587 /// 3. If this block ends with a conditional branch and it falls through to a 588 /// successor block, it sets TBB to be the branch destination block and a 589 /// list of operands that evaluate the condition. These operands can be 590 /// passed to other TargetInstrInfo methods to create new branches. 591 /// 4. If this block ends with a conditional branch followed by an 592 /// unconditional branch, it returns the 'true' destination in TBB, the 593 /// 'false' destination in FBB, and a list of operands that evaluate the 594 /// condition. These operands can be passed to other TargetInstrInfo 595 /// methods to create new branches. 596 /// 597 /// Note that removeBranch and insertBranch must be implemented to support 598 /// cases where this method returns success. 599 /// 600 /// If AllowModify is true, then this routine is allowed to modify the basic 601 /// block (e.g. delete instructions after the unconditional branch). 602 /// 603 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid 604 /// before calling this function. 605 virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 606 MachineBasicBlock *&FBB, 607 SmallVectorImpl<MachineOperand> &Cond, 608 bool AllowModify = false) const { 609 return true; 610 } 611 612 /// Represents a predicate at the MachineFunction level. The control flow a 613 /// MachineBranchPredicate represents is: 614 /// 615 /// Reg = LHS `Predicate` RHS == ConditionDef 616 /// if Reg then goto TrueDest else goto FalseDest 617 /// 618 struct MachineBranchPredicate { 619 enum ComparePredicate { 620 PRED_EQ, // True if two values are equal 621 PRED_NE, // True if two values are not equal 622 PRED_INVALID // Sentinel value 623 }; 624 625 ComparePredicate Predicate = PRED_INVALID; 626 MachineOperand LHS = MachineOperand::CreateImm(0); 627 MachineOperand RHS = MachineOperand::CreateImm(0); 628 MachineBasicBlock *TrueDest = nullptr; 629 MachineBasicBlock *FalseDest = nullptr; 630 MachineInstr *ConditionDef = nullptr; 631 632 /// SingleUseCondition is true if ConditionDef is dead except for the 633 /// branch(es) at the end of the basic block. 634 /// 635 bool SingleUseCondition = false; 636 637 explicit MachineBranchPredicate() = default; 638 }; 639 640 /// Analyze the branching code at the end of MBB and parse it into the 641 /// MachineBranchPredicate structure if possible. Returns false on success 642 /// and true on failure. 643 /// 644 /// If AllowModify is true, then this routine is allowed to modify the basic 645 /// block (e.g. delete instructions after the unconditional branch). 646 /// 647 virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, 648 MachineBranchPredicate &MBP, 649 bool AllowModify = false) const { 650 return true; 651 } 652 653 /// Remove the branching code at the end of the specific MBB. 654 /// This is only invoked in cases where analyzeBranch returns success. It 655 /// returns the number of instructions that were removed. 656 /// If \p BytesRemoved is non-null, report the change in code size from the 657 /// removed instructions. 658 virtual unsigned removeBranch(MachineBasicBlock &MBB, 659 int *BytesRemoved = nullptr) const { 660 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!"); 661 } 662 663 /// Insert branch code into the end of the specified MachineBasicBlock. The 664 /// operands to this method are the same as those returned by analyzeBranch. 665 /// This is only invoked in cases where analyzeBranch returns success. It 666 /// returns the number of instructions inserted. If \p BytesAdded is non-null, 667 /// report the change in code size from the added instructions. 668 /// 669 /// It is also invoked by tail merging to add unconditional branches in 670 /// cases where analyzeBranch doesn't apply because there was no original 671 /// branch to analyze. At least this much must be implemented, else tail 672 /// merging needs to be disabled. 673 /// 674 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid 675 /// before calling this function. 676 virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 677 MachineBasicBlock *FBB, 678 ArrayRef<MachineOperand> Cond, 679 const DebugLoc &DL, 680 int *BytesAdded = nullptr) const { 681 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!"); 682 } 683 684 unsigned insertUnconditionalBranch(MachineBasicBlock &MBB, 685 MachineBasicBlock *DestBB, 686 const DebugLoc &DL, 687 int *BytesAdded = nullptr) const { 688 return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL, 689 BytesAdded); 690 } 691 692 /// Object returned by analyzeLoopForPipelining. Allows software pipelining 693 /// implementations to query attributes of the loop being pipelined and to 694 /// apply target-specific updates to the loop once pipelining is complete. 695 class PipelinerLoopInfo { 696 public: 697 virtual ~PipelinerLoopInfo(); 698 /// Return true if the given instruction should not be pipelined and should 699 /// be ignored. An example could be a loop comparison, or induction variable 700 /// update with no users being pipelined. 701 virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0; 702 703 /// Create a condition to determine if the trip count of the loop is greater 704 /// than TC. 705 /// 706 /// If the trip count is statically known to be greater than TC, return 707 /// true. If the trip count is statically known to be not greater than TC, 708 /// return false. Otherwise return nullopt and fill out Cond with the test 709 /// condition. 710 virtual Optional<bool> 711 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 712 SmallVectorImpl<MachineOperand> &Cond) = 0; 713 714 /// Modify the loop such that the trip count is 715 /// OriginalTC + TripCountAdjust. 716 virtual void adjustTripCount(int TripCountAdjust) = 0; 717 718 /// Called when the loop's preheader has been modified to NewPreheader. 719 virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0; 720 721 /// Called when the loop is being removed. Any instructions in the preheader 722 /// should be removed. 723 /// 724 /// Once this function is called, no other functions on this object are 725 /// valid; the loop has been removed. 726 virtual void disposed() = 0; 727 }; 728 729 /// Analyze loop L, which must be a single-basic-block loop, and if the 730 /// conditions can be understood enough produce a PipelinerLoopInfo object. 731 virtual std::unique_ptr<PipelinerLoopInfo> analyzeLoopForPipelining(MachineBasicBlock * LoopBB)732 analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 733 return nullptr; 734 } 735 736 /// Analyze the loop code, return true if it cannot be understood. Upon 737 /// success, this function returns false and returns information about the 738 /// induction variable and compare instruction used at the end. analyzeLoop(MachineLoop & L,MachineInstr * & IndVarInst,MachineInstr * & CmpInst)739 virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, 740 MachineInstr *&CmpInst) const { 741 return true; 742 } 743 744 /// Generate code to reduce the loop iteration by one and check if the loop 745 /// is finished. Return the value/register of the new loop count. We need 746 /// this function when peeling off one or more iterations of a loop. This 747 /// function assumes the nth iteration is peeled first. reduceLoopCount(MachineBasicBlock & MBB,MachineBasicBlock & PreHeader,MachineInstr * IndVar,MachineInstr & Cmp,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & PrevInsts,unsigned Iter,unsigned MaxIter)748 virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, 749 MachineBasicBlock &PreHeader, 750 MachineInstr *IndVar, MachineInstr &Cmp, 751 SmallVectorImpl<MachineOperand> &Cond, 752 SmallVectorImpl<MachineInstr *> &PrevInsts, 753 unsigned Iter, unsigned MaxIter) const { 754 llvm_unreachable("Target didn't implement ReduceLoopCount"); 755 } 756 757 /// Delete the instruction OldInst and everything after it, replacing it with 758 /// an unconditional branch to NewDest. This is used by the tail merging pass. 759 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 760 MachineBasicBlock *NewDest) const; 761 762 /// Return true if it's legal to split the given basic 763 /// block at the specified instruction (i.e. instruction would be the start 764 /// of a new basic block). isLegalToSplitMBBAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI)765 virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, 766 MachineBasicBlock::iterator MBBI) const { 767 return true; 768 } 769 770 /// Return true if it's profitable to predicate 771 /// instructions with accumulated instruction latency of "NumCycles" 772 /// of the specified basic block, where the probability of the instructions 773 /// being executed is given by Probability, and Confidence is a measure 774 /// of our confidence that it will be properly predicted. isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability)775 virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 776 unsigned ExtraPredCycles, 777 BranchProbability Probability) const { 778 return false; 779 } 780 781 /// Second variant of isProfitableToIfCvt. This one 782 /// checks for the case where two basic blocks from true and false path 783 /// of a if-then-else (diamond) are predicated on mutually exclusive 784 /// predicates, where the probability of the true path being taken is given 785 /// by Probability, and Confidence is a measure of our confidence that it 786 /// will be properly predicted. isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,BranchProbability Probability)787 virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, 788 unsigned ExtraTCycles, 789 MachineBasicBlock &FMBB, unsigned NumFCycles, 790 unsigned ExtraFCycles, 791 BranchProbability Probability) const { 792 return false; 793 } 794 795 /// Return true if it's profitable for if-converter to duplicate instructions 796 /// of specified accumulated instruction latencies in the specified MBB to 797 /// enable if-conversion. 798 /// The probability of the instructions being executed is given by 799 /// Probability, and Confidence is a measure of our confidence that it 800 /// will be properly predicted. isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability)801 virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, 802 unsigned NumCycles, 803 BranchProbability Probability) const { 804 return false; 805 } 806 807 /// Return the increase in code size needed to predicate a contiguous run of 808 /// NumInsts instructions. extraSizeToPredicateInstructions(const MachineFunction & MF,unsigned NumInsts)809 virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF, 810 unsigned NumInsts) const { 811 return 0; 812 } 813 814 /// Return an estimate for the code size reduction (in bytes) which will be 815 /// caused by removing the given branch instruction during if-conversion. predictBranchSizeForIfCvt(MachineInstr & MI)816 virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const { 817 return getInstSizeInBytes(MI); 818 } 819 820 /// Return true if it's profitable to unpredicate 821 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually 822 /// exclusive predicates. 823 /// e.g. 824 /// subeq r0, r1, #1 825 /// addne r0, r1, #1 826 /// => 827 /// sub r0, r1, #1 828 /// addne r0, r1, #1 829 /// 830 /// This may be profitable is conditional instructions are always executed. isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB)831 virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, 832 MachineBasicBlock &FMBB) const { 833 return false; 834 } 835 836 /// Return true if it is possible to insert a select 837 /// instruction that chooses between TrueReg and FalseReg based on the 838 /// condition code in Cond. 839 /// 840 /// When successful, also return the latency in cycles from TrueReg, 841 /// FalseReg, and Cond to the destination register. In most cases, a select 842 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1 843 /// 844 /// Some x86 implementations have 2-cycle cmov instructions. 845 /// 846 /// @param MBB Block where select instruction would be inserted. 847 /// @param Cond Condition returned by analyzeBranch. 848 /// @param DstReg Virtual dest register that the result should write to. 849 /// @param TrueReg Virtual register to select when Cond is true. 850 /// @param FalseReg Virtual register to select when Cond is false. 851 /// @param CondCycles Latency from Cond+Branch to select output. 852 /// @param TrueCycles Latency from TrueReg to select output. 853 /// @param FalseCycles Latency from FalseReg to select output. canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,Register DstReg,Register TrueReg,Register FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles)854 virtual bool canInsertSelect(const MachineBasicBlock &MBB, 855 ArrayRef<MachineOperand> Cond, Register DstReg, 856 Register TrueReg, Register FalseReg, 857 int &CondCycles, int &TrueCycles, 858 int &FalseCycles) const { 859 return false; 860 } 861 862 /// Insert a select instruction into MBB before I that will copy TrueReg to 863 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false. 864 /// 865 /// This function can only be called after canInsertSelect() returned true. 866 /// The condition in Cond comes from analyzeBranch, and it can be assumed 867 /// that the same flags or registers required by Cond are available at the 868 /// insertion point. 869 /// 870 /// @param MBB Block where select instruction should be inserted. 871 /// @param I Insertion point. 872 /// @param DL Source location for debugging. 873 /// @param DstReg Virtual register to be defined by select instruction. 874 /// @param Cond Condition as computed by analyzeBranch. 875 /// @param TrueReg Virtual register to copy when Cond is true. 876 /// @param FalseReg Virtual register to copy when Cons is false. insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,Register DstReg,ArrayRef<MachineOperand> Cond,Register TrueReg,Register FalseReg)877 virtual void insertSelect(MachineBasicBlock &MBB, 878 MachineBasicBlock::iterator I, const DebugLoc &DL, 879 Register DstReg, ArrayRef<MachineOperand> Cond, 880 Register TrueReg, Register FalseReg) const { 881 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!"); 882 } 883 884 /// Analyze the given select instruction, returning true if 885 /// it cannot be understood. It is assumed that MI->isSelect() is true. 886 /// 887 /// When successful, return the controlling condition and the operands that 888 /// determine the true and false result values. 889 /// 890 /// Result = SELECT Cond, TrueOp, FalseOp 891 /// 892 /// Some targets can optimize select instructions, for example by predicating 893 /// the instruction defining one of the operands. Such targets should set 894 /// Optimizable. 895 /// 896 /// @param MI Select instruction to analyze. 897 /// @param Cond Condition controlling the select. 898 /// @param TrueOp Operand number of the value selected when Cond is true. 899 /// @param FalseOp Operand number of the value selected when Cond is false. 900 /// @param Optimizable Returned as true if MI is optimizable. 901 /// @returns False on success. analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable)902 virtual bool analyzeSelect(const MachineInstr &MI, 903 SmallVectorImpl<MachineOperand> &Cond, 904 unsigned &TrueOp, unsigned &FalseOp, 905 bool &Optimizable) const { 906 assert(MI.getDesc().isSelect() && "MI must be a select instruction"); 907 return true; 908 } 909 910 /// Given a select instruction that was understood by 911 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by 912 /// merging it with one of its operands. Returns NULL on failure. 913 /// 914 /// When successful, returns the new select instruction. The client is 915 /// responsible for deleting MI. 916 /// 917 /// If both sides of the select can be optimized, PreferFalse is used to pick 918 /// a side. 919 /// 920 /// @param MI Optimizable select instruction. 921 /// @param NewMIs Set that record all MIs in the basic block up to \p 922 /// MI. Has to be updated with any newly created MI or deleted ones. 923 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp. 924 /// @returns Optimized instruction or NULL. 925 virtual MachineInstr *optimizeSelect(MachineInstr &MI, 926 SmallPtrSetImpl<MachineInstr *> &NewMIs, 927 bool PreferFalse = false) const { 928 // This function must be implemented if Optimizable is ever set. 929 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!"); 930 } 931 932 /// Emit instructions to copy a pair of physical registers. 933 /// 934 /// This function should support copies within any legal register class as 935 /// well as any cross-class copies created during instruction selection. 936 /// 937 /// The source and destination registers may overlap, which may require a 938 /// careful implementation when multiple copy instructions are required for 939 /// large registers. See for example the ARM target. copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc)940 virtual void copyPhysReg(MachineBasicBlock &MBB, 941 MachineBasicBlock::iterator MI, const DebugLoc &DL, 942 MCRegister DestReg, MCRegister SrcReg, 943 bool KillSrc) const { 944 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!"); 945 } 946 947 protected: 948 /// Target-dependent implementation for IsCopyInstr. 949 /// If the specific machine instruction is a instruction that moves/copies 950 /// value from one register to another register return destination and source 951 /// registers as machine operands. 952 virtual Optional<DestSourcePair> isCopyInstrImpl(const MachineInstr & MI)953 isCopyInstrImpl(const MachineInstr &MI) const { 954 return None; 955 } 956 957 public: 958 /// If the specific machine instruction is a instruction that moves/copies 959 /// value from one register to another register return destination and source 960 /// registers as machine operands. 961 /// For COPY-instruction the method naturally returns destination and source 962 /// registers as machine operands, for all other instructions the method calls 963 /// target-dependent implementation. isCopyInstr(const MachineInstr & MI)964 Optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const { 965 if (MI.isCopy()) { 966 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 967 } 968 return isCopyInstrImpl(MI); 969 } 970 971 /// If the specific machine instruction is an instruction that adds an 972 /// immediate value and a physical register, and stores the result in 973 /// the given physical register \c Reg, return a pair of the source 974 /// register and the offset which has been added. isAddImmediate(const MachineInstr & MI,Register Reg)975 virtual Optional<RegImmPair> isAddImmediate(const MachineInstr &MI, 976 Register Reg) const { 977 return None; 978 } 979 980 /// Returns true if MI is an instruction that defines Reg to have a constant 981 /// value and the value is recorded in ImmVal. The ImmVal is a result that 982 /// should be interpreted as modulo size of Reg. getConstValDefinedInReg(const MachineInstr & MI,const Register Reg,int64_t & ImmVal)983 virtual bool getConstValDefinedInReg(const MachineInstr &MI, 984 const Register Reg, 985 int64_t &ImmVal) const { 986 return false; 987 } 988 989 /// Store the specified register of the given register class to the specified 990 /// stack frame index. The store instruction is to be added to the given 991 /// machine basic block before the specified machine instruction. If isKill 992 /// is true, the register operand is the last use and must be marked kill. storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register SrcReg,bool isKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)993 virtual void storeRegToStackSlot(MachineBasicBlock &MBB, 994 MachineBasicBlock::iterator MI, 995 Register SrcReg, bool isKill, int FrameIndex, 996 const TargetRegisterClass *RC, 997 const TargetRegisterInfo *TRI) const { 998 llvm_unreachable("Target didn't implement " 999 "TargetInstrInfo::storeRegToStackSlot!"); 1000 } 1001 1002 /// Load the specified register of the given register class from the specified 1003 /// stack frame index. The load instruction is to be added to the given 1004 /// machine basic block before the specified machine instruction. loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register DestReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)1005 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, 1006 MachineBasicBlock::iterator MI, 1007 Register DestReg, int FrameIndex, 1008 const TargetRegisterClass *RC, 1009 const TargetRegisterInfo *TRI) const { 1010 llvm_unreachable("Target didn't implement " 1011 "TargetInstrInfo::loadRegFromStackSlot!"); 1012 } 1013 1014 /// This function is called for all pseudo instructions 1015 /// that remain after register allocation. Many pseudo instructions are 1016 /// created to help register allocation. This is the place to convert them 1017 /// into real instructions. The target can edit MI in place, or it can insert 1018 /// new instructions and erase MI. The function should return true if 1019 /// anything was changed. expandPostRAPseudo(MachineInstr & MI)1020 virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; } 1021 1022 /// Check whether the target can fold a load that feeds a subreg operand 1023 /// (or a subreg operand that feeds a store). 1024 /// For example, X86 may want to return true if it can fold 1025 /// movl (%esp), %eax 1026 /// subb, %al, ... 1027 /// Into: 1028 /// subb (%esp), ... 1029 /// 1030 /// Ideally, we'd like the target implementation of foldMemoryOperand() to 1031 /// reject subregs - but since this behavior used to be enforced in the 1032 /// target-independent code, moving this responsibility to the targets 1033 /// has the potential of causing nasty silent breakage in out-of-tree targets. isSubregFoldable()1034 virtual bool isSubregFoldable() const { return false; } 1035 1036 /// Attempt to fold a load or store of the specified stack 1037 /// slot into the specified machine instruction for the specified operand(s). 1038 /// If this is possible, a new instruction is returned with the specified 1039 /// operand folded, otherwise NULL is returned. 1040 /// The new instruction is inserted before MI, and the client is responsible 1041 /// for removing the old instruction. 1042 /// If VRM is passed, the assigned physregs can be inspected by target to 1043 /// decide on using an opcode (note that those assignments can still change). 1044 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, 1045 int FI, 1046 LiveIntervals *LIS = nullptr, 1047 VirtRegMap *VRM = nullptr) const; 1048 1049 /// Same as the previous version except it allows folding of any load and 1050 /// store from / to any address, not just from a specific stack slot. 1051 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, 1052 MachineInstr &LoadMI, 1053 LiveIntervals *LIS = nullptr) const; 1054 1055 /// Return true when there is potentially a faster code sequence 1056 /// for an instruction chain ending in \p Root. All potential patterns are 1057 /// returned in the \p Pattern vector. Pattern should be sorted in priority 1058 /// order since the pattern evaluator stops checking as soon as it finds a 1059 /// faster sequence. 1060 /// \param Root - Instruction that could be combined with one of its operands 1061 /// \param Patterns - Vector of possible combination patterns 1062 virtual bool getMachineCombinerPatterns( 1063 MachineInstr &Root, 1064 SmallVectorImpl<MachineCombinerPattern> &Patterns) const; 1065 1066 /// Return true when a code sequence can improve throughput. It 1067 /// should be called only for instructions in loops. 1068 /// \param Pattern - combiner pattern 1069 virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const; 1070 1071 /// Return true if the input \P Inst is part of a chain of dependent ops 1072 /// that are suitable for reassociation, otherwise return false. 1073 /// If the instruction's operands must be commuted to have a previous 1074 /// instruction of the same type define the first source operand, \P Commuted 1075 /// will be set to true. 1076 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const; 1077 1078 /// Return true when \P Inst is both associative and commutative. isAssociativeAndCommutative(const MachineInstr & Inst)1079 virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const { 1080 return false; 1081 } 1082 1083 /// Return true when \P Inst has reassociable operands in the same \P MBB. 1084 virtual bool hasReassociableOperands(const MachineInstr &Inst, 1085 const MachineBasicBlock *MBB) const; 1086 1087 /// Return true when \P Inst has reassociable sibling. 1088 bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const; 1089 1090 /// When getMachineCombinerPatterns() finds patterns, this function generates 1091 /// the instructions that could replace the original code sequence. The client 1092 /// has to decide whether the actual replacement is beneficial or not. 1093 /// \param Root - Instruction that could be combined with one of its operands 1094 /// \param Pattern - Combination pattern for Root 1095 /// \param InsInstrs - Vector of new instructions that implement P 1096 /// \param DelInstrs - Old instructions, including Root, that could be 1097 /// replaced by InsInstr 1098 /// \param InstIdxForVirtReg - map of virtual register to instruction in 1099 /// InsInstr that defines it 1100 virtual void genAlternativeCodeSequence( 1101 MachineInstr &Root, MachineCombinerPattern Pattern, 1102 SmallVectorImpl<MachineInstr *> &InsInstrs, 1103 SmallVectorImpl<MachineInstr *> &DelInstrs, 1104 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const; 1105 1106 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to 1107 /// reduce critical path length. 1108 void reassociateOps(MachineInstr &Root, MachineInstr &Prev, 1109 MachineCombinerPattern Pattern, 1110 SmallVectorImpl<MachineInstr *> &InsInstrs, 1111 SmallVectorImpl<MachineInstr *> &DelInstrs, 1112 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; 1113 1114 /// The limit on resource length extension we accept in MachineCombiner Pass. getExtendResourceLenLimit()1115 virtual int getExtendResourceLenLimit() const { return 0; } 1116 1117 /// This is an architecture-specific helper function of reassociateOps. 1118 /// Set special operand attributes for new instructions after reassociation. setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2)1119 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, 1120 MachineInstr &NewMI1, 1121 MachineInstr &NewMI2) const {} 1122 setSpecialOperandAttr(MachineInstr & MI,uint16_t Flags)1123 virtual void setSpecialOperandAttr(MachineInstr &MI, uint16_t Flags) const {} 1124 1125 /// Return true when a target supports MachineCombiner. useMachineCombiner()1126 virtual bool useMachineCombiner() const { return false; } 1127 1128 /// Return true if the given SDNode can be copied during scheduling 1129 /// even if it has glue. canCopyGluedNodeDuringSchedule(SDNode * N)1130 virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; } 1131 1132 protected: 1133 /// Target-dependent implementation for foldMemoryOperand. 1134 /// Target-independent code in foldMemoryOperand will 1135 /// take care of adding a MachineMemOperand to the newly created instruction. 1136 /// The instruction and any auxiliary instructions necessary will be inserted 1137 /// at InsertPt. 1138 virtual MachineInstr * 1139 foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, 1140 ArrayRef<unsigned> Ops, 1141 MachineBasicBlock::iterator InsertPt, int FrameIndex, 1142 LiveIntervals *LIS = nullptr, 1143 VirtRegMap *VRM = nullptr) const { 1144 return nullptr; 1145 } 1146 1147 /// Target-dependent implementation for foldMemoryOperand. 1148 /// Target-independent code in foldMemoryOperand will 1149 /// take care of adding a MachineMemOperand to the newly created instruction. 1150 /// The instruction and any auxiliary instructions necessary will be inserted 1151 /// at InsertPt. 1152 virtual MachineInstr *foldMemoryOperandImpl( 1153 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1154 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1155 LiveIntervals *LIS = nullptr) const { 1156 return nullptr; 1157 } 1158 1159 /// Target-dependent implementation of getRegSequenceInputs. 1160 /// 1161 /// \returns true if it is possible to build the equivalent 1162 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise. 1163 /// 1164 /// \pre MI.isRegSequenceLike(). 1165 /// 1166 /// \see TargetInstrInfo::getRegSequenceInputs. getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs)1167 virtual bool getRegSequenceLikeInputs( 1168 const MachineInstr &MI, unsigned DefIdx, 1169 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 1170 return false; 1171 } 1172 1173 /// Target-dependent implementation of getExtractSubregInputs. 1174 /// 1175 /// \returns true if it is possible to build the equivalent 1176 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. 1177 /// 1178 /// \pre MI.isExtractSubregLike(). 1179 /// 1180 /// \see TargetInstrInfo::getExtractSubregInputs. getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg)1181 virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, 1182 unsigned DefIdx, 1183 RegSubRegPairAndIdx &InputReg) const { 1184 return false; 1185 } 1186 1187 /// Target-dependent implementation of getInsertSubregInputs. 1188 /// 1189 /// \returns true if it is possible to build the equivalent 1190 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. 1191 /// 1192 /// \pre MI.isInsertSubregLike(). 1193 /// 1194 /// \see TargetInstrInfo::getInsertSubregInputs. 1195 virtual bool getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg)1196 getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, 1197 RegSubRegPair &BaseReg, 1198 RegSubRegPairAndIdx &InsertedReg) const { 1199 return false; 1200 } 1201 1202 public: 1203 /// getAddressSpaceForPseudoSourceKind - Given the kind of memory 1204 /// (e.g. stack) the target returns the corresponding address space. 1205 virtual unsigned getAddressSpaceForPseudoSourceKind(unsigned Kind)1206 getAddressSpaceForPseudoSourceKind(unsigned Kind) const { 1207 return 0; 1208 } 1209 1210 /// unfoldMemoryOperand - Separate a single instruction which folded a load or 1211 /// a store or a load and a store into two or more instruction. If this is 1212 /// possible, returns true as well as the new instructions by reference. 1213 virtual bool unfoldMemoryOperand(MachineFunction & MF,MachineInstr & MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs)1214 unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, 1215 bool UnfoldLoad, bool UnfoldStore, 1216 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1217 return false; 1218 } 1219 unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes)1220 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 1221 SmallVectorImpl<SDNode *> &NewNodes) const { 1222 return false; 1223 } 1224 1225 /// Returns the opcode of the would be new 1226 /// instruction after load / store are unfolded from an instruction of the 1227 /// specified opcode. It returns zero if the specified unfolding is not 1228 /// possible. If LoadRegIndex is non-null, it is filled in with the operand 1229 /// index of the operand which will hold the register holding the loaded 1230 /// value. 1231 virtual unsigned 1232 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, 1233 unsigned *LoadRegIndex = nullptr) const { 1234 return 0; 1235 } 1236 1237 /// This is used by the pre-regalloc scheduler to determine if two loads are 1238 /// loading from the same base address. It should only return true if the base 1239 /// pointers are the same and the only differences between the two addresses 1240 /// are the offset. It also returns the offsets by reference. areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2)1241 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1242 int64_t &Offset1, 1243 int64_t &Offset2) const { 1244 return false; 1245 } 1246 1247 /// This is a used by the pre-regalloc scheduler to determine (in conjunction 1248 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together. 1249 /// On some targets if two loads are loading from 1250 /// addresses in the same cache line, it's better if they are scheduled 1251 /// together. This function takes two integers that represent the load offsets 1252 /// from the common base address. It returns true if it decides it's desirable 1253 /// to schedule the two loads together. "NumLoads" is the number of loads that 1254 /// have already been scheduled after Load1. shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads)1255 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1256 int64_t Offset1, int64_t Offset2, 1257 unsigned NumLoads) const { 1258 return false; 1259 } 1260 1261 /// Get the base operand and byte offset of an instruction that reads/writes 1262 /// memory. This is a convenience function for callers that are only prepared 1263 /// to handle a single base operand. 1264 bool getMemOperandWithOffset(const MachineInstr &MI, 1265 const MachineOperand *&BaseOp, int64_t &Offset, 1266 bool &OffsetIsScalable, 1267 const TargetRegisterInfo *TRI) const; 1268 1269 /// Get the base operands and byte offset of an instruction that reads/writes 1270 /// memory. 1271 /// It returns false if MI does not read/write memory. 1272 /// It returns false if no base operands and offset was found. 1273 /// It is not guaranteed to always recognize base operands and offsets in all 1274 /// cases. getMemOperandsWithOffsetWidth(const MachineInstr & MI,SmallVectorImpl<const MachineOperand * > & BaseOps,int64_t & Offset,bool & OffsetIsScalable,unsigned & Width,const TargetRegisterInfo * TRI)1275 virtual bool getMemOperandsWithOffsetWidth( 1276 const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps, 1277 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 1278 const TargetRegisterInfo *TRI) const { 1279 return false; 1280 } 1281 1282 /// Return true if the instruction contains a base register and offset. If 1283 /// true, the function also sets the operand position in the instruction 1284 /// for the base register and offset. getBaseAndOffsetPosition(const MachineInstr & MI,unsigned & BasePos,unsigned & OffsetPos)1285 virtual bool getBaseAndOffsetPosition(const MachineInstr &MI, 1286 unsigned &BasePos, 1287 unsigned &OffsetPos) const { 1288 return false; 1289 } 1290 1291 /// Target dependent implementation to get the values constituting the address 1292 /// MachineInstr that is accessing memory. These values are returned as a 1293 /// struct ExtAddrMode which contains all relevant information to make up the 1294 /// address. 1295 virtual Optional<ExtAddrMode> getAddrModeFromMemoryOp(const MachineInstr & MemI,const TargetRegisterInfo * TRI)1296 getAddrModeFromMemoryOp(const MachineInstr &MemI, 1297 const TargetRegisterInfo *TRI) const { 1298 return None; 1299 } 1300 1301 /// Returns true if MI's Def is NullValueReg, and the MI 1302 /// does not change the Zero value. i.e. cases such as rax = shr rax, X where 1303 /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this 1304 /// function can return true even if becomes zero. Specifically cases such as 1305 /// NullValueReg = shl NullValueReg, 63. preservesZeroValueInReg(const MachineInstr * MI,const Register NullValueReg,const TargetRegisterInfo * TRI)1306 virtual bool preservesZeroValueInReg(const MachineInstr *MI, 1307 const Register NullValueReg, 1308 const TargetRegisterInfo *TRI) const { 1309 return false; 1310 } 1311 1312 /// If the instruction is an increment of a constant value, return the amount. getIncrementValue(const MachineInstr & MI,int & Value)1313 virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const { 1314 return false; 1315 } 1316 1317 /// Returns true if the two given memory operations should be scheduled 1318 /// adjacent. Note that you have to add: 1319 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 1320 /// or 1321 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 1322 /// to TargetPassConfig::createMachineScheduler() to have an effect. 1323 /// 1324 /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations. 1325 /// \p NumLoads is the number of loads that will be in the cluster if this 1326 /// hook returns true. 1327 /// \p NumBytes is the number of bytes that will be loaded from all the 1328 /// clustered loads if this hook returns true. shouldClusterMemOps(ArrayRef<const MachineOperand * > BaseOps1,ArrayRef<const MachineOperand * > BaseOps2,unsigned NumLoads,unsigned NumBytes)1329 virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1, 1330 ArrayRef<const MachineOperand *> BaseOps2, 1331 unsigned NumLoads, unsigned NumBytes) const { 1332 llvm_unreachable("target did not implement shouldClusterMemOps()"); 1333 } 1334 1335 /// Reverses the branch condition of the specified condition list, 1336 /// returning false on success and true if it cannot be reversed. 1337 virtual bool reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond)1338 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1339 return true; 1340 } 1341 1342 /// Insert a noop into the instruction stream at the specified point. 1343 virtual void insertNoop(MachineBasicBlock &MBB, 1344 MachineBasicBlock::iterator MI) const; 1345 1346 /// Insert noops into the instruction stream at the specified point. 1347 virtual void insertNoops(MachineBasicBlock &MBB, 1348 MachineBasicBlock::iterator MI, 1349 unsigned Quantity) const; 1350 1351 /// Return the noop instruction to use for a noop. 1352 virtual void getNoop(MCInst &NopInst) const; 1353 1354 /// Return true for post-incremented instructions. isPostIncrement(const MachineInstr & MI)1355 virtual bool isPostIncrement(const MachineInstr &MI) const { return false; } 1356 1357 /// Returns true if the instruction is already predicated. isPredicated(const MachineInstr & MI)1358 virtual bool isPredicated(const MachineInstr &MI) const { return false; } 1359 1360 // Returns a MIRPrinter comment for this machine operand. 1361 virtual std::string 1362 createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op, 1363 unsigned OpIdx, const TargetRegisterInfo *TRI) const; 1364 1365 /// Returns true if the instruction is a 1366 /// terminator instruction that has not been predicated. 1367 bool isUnpredicatedTerminator(const MachineInstr &MI) const; 1368 1369 /// Returns true if MI is an unconditional tail call. isUnconditionalTailCall(const MachineInstr & MI)1370 virtual bool isUnconditionalTailCall(const MachineInstr &MI) const { 1371 return false; 1372 } 1373 1374 /// Returns true if the tail call can be made conditional on BranchCond. canMakeTailCallConditional(SmallVectorImpl<MachineOperand> & Cond,const MachineInstr & TailCall)1375 virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond, 1376 const MachineInstr &TailCall) const { 1377 return false; 1378 } 1379 1380 /// Replace the conditional branch in MBB with a conditional tail call. replaceBranchWithTailCall(MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & Cond,const MachineInstr & TailCall)1381 virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB, 1382 SmallVectorImpl<MachineOperand> &Cond, 1383 const MachineInstr &TailCall) const { 1384 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!"); 1385 } 1386 1387 /// Convert the instruction into a predicated instruction. 1388 /// It returns true if the operation was successful. 1389 virtual bool PredicateInstruction(MachineInstr &MI, 1390 ArrayRef<MachineOperand> Pred) const; 1391 1392 /// Returns true if the first specified predicate 1393 /// subsumes the second, e.g. GE subsumes GT. SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2)1394 virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1395 ArrayRef<MachineOperand> Pred2) const { 1396 return false; 1397 } 1398 1399 /// If the specified instruction defines any predicate 1400 /// or condition code register(s) used for predication, returns true as well 1401 /// as the definition predicate(s) by reference. 1402 /// SkipDead should be set to false at any point that dead 1403 /// predicate instructions should be considered as being defined. 1404 /// A dead predicate instruction is one that is guaranteed to be removed 1405 /// after a call to PredicateInstruction. ClobbersPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred,bool SkipDead)1406 virtual bool ClobbersPredicate(MachineInstr &MI, 1407 std::vector<MachineOperand> &Pred, 1408 bool SkipDead) const { 1409 return false; 1410 } 1411 1412 /// Return true if the specified instruction can be predicated. 1413 /// By default, this returns true for every instruction with a 1414 /// PredicateOperand. isPredicable(const MachineInstr & MI)1415 virtual bool isPredicable(const MachineInstr &MI) const { 1416 return MI.getDesc().isPredicable(); 1417 } 1418 1419 /// Return true if it's safe to move a machine 1420 /// instruction that defines the specified register class. isSafeToMoveRegClassDefs(const TargetRegisterClass * RC)1421 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 1422 return true; 1423 } 1424 1425 /// Test if the given instruction should be considered a scheduling boundary. 1426 /// This primarily includes labels and terminators. 1427 virtual bool isSchedulingBoundary(const MachineInstr &MI, 1428 const MachineBasicBlock *MBB, 1429 const MachineFunction &MF) const; 1430 1431 /// Measure the specified inline asm to determine an approximation of its 1432 /// length. 1433 virtual unsigned getInlineAsmLength( 1434 const char *Str, const MCAsmInfo &MAI, 1435 const TargetSubtargetInfo *STI = nullptr) const; 1436 1437 /// Allocate and return a hazard recognizer to use for this target when 1438 /// scheduling the machine instructions before register allocation. 1439 virtual ScheduleHazardRecognizer * 1440 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 1441 const ScheduleDAG *DAG) const; 1442 1443 /// Allocate and return a hazard recognizer to use for this target when 1444 /// scheduling the machine instructions before register allocation. 1445 virtual ScheduleHazardRecognizer * 1446 CreateTargetMIHazardRecognizer(const InstrItineraryData *, 1447 const ScheduleDAGMI *DAG) const; 1448 1449 /// Allocate and return a hazard recognizer to use for this target when 1450 /// scheduling the machine instructions after register allocation. 1451 virtual ScheduleHazardRecognizer * 1452 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, 1453 const ScheduleDAG *DAG) const; 1454 1455 /// Allocate and return a hazard recognizer to use for by non-scheduling 1456 /// passes. 1457 virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const MachineFunction & MF)1458 CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { 1459 return nullptr; 1460 } 1461 1462 /// Provide a global flag for disabling the PreRA hazard recognizer that 1463 /// targets may choose to honor. 1464 bool usePreRAHazardRecognizer() const; 1465 1466 /// For a comparison instruction, return the source registers 1467 /// in SrcReg and SrcReg2 if having two register operands, and the value it 1468 /// compares against in CmpValue. Return true if the comparison instruction 1469 /// can be analyzed. analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int & Mask,int & Value)1470 virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, 1471 Register &SrcReg2, int &Mask, int &Value) const { 1472 return false; 1473 } 1474 1475 /// See if the comparison instruction can be converted 1476 /// into something more efficient. E.g., on ARM most instructions can set the 1477 /// flags register, obviating the need for a separate CMP. optimizeCompareInstr(MachineInstr & CmpInstr,Register SrcReg,Register SrcReg2,int Mask,int Value,const MachineRegisterInfo * MRI)1478 virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 1479 Register SrcReg2, int Mask, int Value, 1480 const MachineRegisterInfo *MRI) const { 1481 return false; 1482 } optimizeCondBranch(MachineInstr & MI)1483 virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; } 1484 1485 /// Try to remove the load by folding it to a register operand at the use. 1486 /// We fold the load instructions if and only if the 1487 /// def and use are in the same BB. We only look at one load and see 1488 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register 1489 /// defined by the load we are trying to fold. DefMI returns the machine 1490 /// instruction that defines FoldAsLoadDefReg, and the function returns 1491 /// the machine instruction generated due to folding. optimizeLoadInstr(MachineInstr & MI,const MachineRegisterInfo * MRI,Register & FoldAsLoadDefReg,MachineInstr * & DefMI)1492 virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI, 1493 const MachineRegisterInfo *MRI, 1494 Register &FoldAsLoadDefReg, 1495 MachineInstr *&DefMI) const { 1496 return nullptr; 1497 } 1498 1499 /// 'Reg' is known to be defined by a move immediate instruction, 1500 /// try to fold the immediate into the use instruction. 1501 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true, 1502 /// then the caller may assume that DefMI has been erased from its parent 1503 /// block. The caller may assume that it will not be erased by this 1504 /// function otherwise. FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,Register Reg,MachineRegisterInfo * MRI)1505 virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1506 Register Reg, MachineRegisterInfo *MRI) const { 1507 return false; 1508 } 1509 1510 /// Return the number of u-operations the given machine 1511 /// instruction will be decoded to on the target cpu. The itinerary's 1512 /// IssueWidth is the number of microops that can be dispatched each 1513 /// cycle. An instruction with zero microops takes no dispatch resources. 1514 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, 1515 const MachineInstr &MI) const; 1516 1517 /// Return true for pseudo instructions that don't consume any 1518 /// machine resources in their current form. These are common cases that the 1519 /// scheduler should consider free, rather than conservatively handling them 1520 /// as instructions with no itinerary. isZeroCost(unsigned Opcode)1521 bool isZeroCost(unsigned Opcode) const { 1522 return Opcode <= TargetOpcode::COPY; 1523 } 1524 1525 virtual int getOperandLatency(const InstrItineraryData *ItinData, 1526 SDNode *DefNode, unsigned DefIdx, 1527 SDNode *UseNode, unsigned UseIdx) const; 1528 1529 /// Compute and return the use operand latency of a given pair of def and use. 1530 /// In most cases, the static scheduling itinerary was enough to determine the 1531 /// operand latency. But it may not be possible for instructions with variable 1532 /// number of defs / uses. 1533 /// 1534 /// This is a raw interface to the itinerary that may be directly overridden 1535 /// by a target. Use computeOperandLatency to get the best estimate of 1536 /// latency. 1537 virtual int getOperandLatency(const InstrItineraryData *ItinData, 1538 const MachineInstr &DefMI, unsigned DefIdx, 1539 const MachineInstr &UseMI, 1540 unsigned UseIdx) const; 1541 1542 /// Compute the instruction latency of a given instruction. 1543 /// If the instruction has higher cost when predicated, it's returned via 1544 /// PredCost. 1545 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, 1546 const MachineInstr &MI, 1547 unsigned *PredCost = nullptr) const; 1548 1549 virtual unsigned getPredicationCost(const MachineInstr &MI) const; 1550 1551 virtual int getInstrLatency(const InstrItineraryData *ItinData, 1552 SDNode *Node) const; 1553 1554 /// Return the default expected latency for a def based on its opcode. 1555 unsigned defaultDefLatency(const MCSchedModel &SchedModel, 1556 const MachineInstr &DefMI) const; 1557 1558 int computeDefOperandLatency(const InstrItineraryData *ItinData, 1559 const MachineInstr &DefMI) const; 1560 1561 /// Return true if this opcode has high latency to its result. isHighLatencyDef(int opc)1562 virtual bool isHighLatencyDef(int opc) const { return false; } 1563 1564 /// Compute operand latency between a def of 'Reg' 1565 /// and a use in the current loop. Return true if the target considered 1566 /// it 'high'. This is used by optimization passes such as machine LICM to 1567 /// determine whether it makes sense to hoist an instruction out even in a 1568 /// high register pressure situation. hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx)1569 virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel, 1570 const MachineRegisterInfo *MRI, 1571 const MachineInstr &DefMI, unsigned DefIdx, 1572 const MachineInstr &UseMI, 1573 unsigned UseIdx) const { 1574 return false; 1575 } 1576 1577 /// Compute operand latency of a def of 'Reg'. Return true 1578 /// if the target considered it 'low'. 1579 virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel, 1580 const MachineInstr &DefMI, 1581 unsigned DefIdx) const; 1582 1583 /// Perform target-specific instruction verification. verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo)1584 virtual bool verifyInstruction(const MachineInstr &MI, 1585 StringRef &ErrInfo) const { 1586 return true; 1587 } 1588 1589 /// Return the current execution domain and bit mask of 1590 /// possible domains for instruction. 1591 /// 1592 /// Some micro-architectures have multiple execution domains, and multiple 1593 /// opcodes that perform the same operation in different domains. For 1594 /// example, the x86 architecture provides the por, orps, and orpd 1595 /// instructions that all do the same thing. There is a latency penalty if a 1596 /// register is written in one domain and read in another. 1597 /// 1598 /// This function returns a pair (domain, mask) containing the execution 1599 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain 1600 /// function can be used to change the opcode to one of the domains in the 1601 /// bit mask. Instructions whose execution domain can't be changed should 1602 /// return a 0 mask. 1603 /// 1604 /// The execution domain numbers don't have any special meaning except domain 1605 /// 0 is used for instructions that are not associated with any interesting 1606 /// execution domain. 1607 /// 1608 virtual std::pair<uint16_t, uint16_t> getExecutionDomain(const MachineInstr & MI)1609 getExecutionDomain(const MachineInstr &MI) const { 1610 return std::make_pair(0, 0); 1611 } 1612 1613 /// Change the opcode of MI to execute in Domain. 1614 /// 1615 /// The bit (1 << Domain) must be set in the mask returned from 1616 /// getExecutionDomain(MI). setExecutionDomain(MachineInstr & MI,unsigned Domain)1617 virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {} 1618 1619 /// Returns the preferred minimum clearance 1620 /// before an instruction with an unwanted partial register update. 1621 /// 1622 /// Some instructions only write part of a register, and implicitly need to 1623 /// read the other parts of the register. This may cause unwanted stalls 1624 /// preventing otherwise unrelated instructions from executing in parallel in 1625 /// an out-of-order CPU. 1626 /// 1627 /// For example, the x86 instruction cvtsi2ss writes its result to bits 1628 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so 1629 /// the instruction needs to wait for the old value of the register to become 1630 /// available: 1631 /// 1632 /// addps %xmm1, %xmm0 1633 /// movaps %xmm0, (%rax) 1634 /// cvtsi2ss %rbx, %xmm0 1635 /// 1636 /// In the code above, the cvtsi2ss instruction needs to wait for the addps 1637 /// instruction before it can issue, even though the high bits of %xmm0 1638 /// probably aren't needed. 1639 /// 1640 /// This hook returns the preferred clearance before MI, measured in 1641 /// instructions. Other defs of MI's operand OpNum are avoided in the last N 1642 /// instructions before MI. It should only return a positive value for 1643 /// unwanted dependencies. If the old bits of the defined register have 1644 /// useful values, or if MI is determined to otherwise read the dependency, 1645 /// the hook should return 0. 1646 /// 1647 /// The unwanted dependency may be handled by: 1648 /// 1649 /// 1. Allocating the same register for an MI def and use. That makes the 1650 /// unwanted dependency identical to a required dependency. 1651 /// 1652 /// 2. Allocating a register for the def that has no defs in the previous N 1653 /// instructions. 1654 /// 1655 /// 3. Calling breakPartialRegDependency() with the same arguments. This 1656 /// allows the target to insert a dependency breaking instruction. 1657 /// 1658 virtual unsigned getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1659 getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, 1660 const TargetRegisterInfo *TRI) const { 1661 // The default implementation returns 0 for no partial register dependency. 1662 return 0; 1663 } 1664 1665 /// Return the minimum clearance before an instruction that reads an 1666 /// unused register. 1667 /// 1668 /// For example, AVX instructions may copy part of a register operand into 1669 /// the unused high bits of the destination register. 1670 /// 1671 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 1672 /// 1673 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a 1674 /// false dependence on any previous write to %xmm0. 1675 /// 1676 /// This hook works similarly to getPartialRegUpdateClearance, except that it 1677 /// does not take an operand index. Instead sets \p OpNum to the index of the 1678 /// unused register. getUndefRegClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1679 virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, 1680 const TargetRegisterInfo *TRI) const { 1681 // The default implementation returns 0 for no undef register dependency. 1682 return 0; 1683 } 1684 1685 /// Insert a dependency-breaking instruction 1686 /// before MI to eliminate an unwanted dependency on OpNum. 1687 /// 1688 /// If it wasn't possible to avoid a def in the last N instructions before MI 1689 /// (see getPartialRegUpdateClearance), this hook will be called to break the 1690 /// unwanted dependency. 1691 /// 1692 /// On x86, an xorps instruction can be used as a dependency breaker: 1693 /// 1694 /// addps %xmm1, %xmm0 1695 /// movaps %xmm0, (%rax) 1696 /// xorps %xmm0, %xmm0 1697 /// cvtsi2ss %rbx, %xmm0 1698 /// 1699 /// An <imp-kill> operand should be added to MI if an instruction was 1700 /// inserted. This ties the instructions together in the post-ra scheduler. 1701 /// breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1702 virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, 1703 const TargetRegisterInfo *TRI) const {} 1704 1705 /// Create machine specific model for scheduling. 1706 virtual DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &)1707 CreateTargetScheduleState(const TargetSubtargetInfo &) const { 1708 return nullptr; 1709 } 1710 1711 /// Sometimes, it is possible for the target 1712 /// to tell, even without aliasing information, that two MIs access different 1713 /// memory addresses. This function returns true if two MIs access different 1714 /// memory addresses and false otherwise. 1715 /// 1716 /// Assumes any physical registers used to compute addresses have the same 1717 /// value for both instructions. (This is the most useful assumption for 1718 /// post-RA scheduling.) 1719 /// 1720 /// See also MachineInstr::mayAlias, which is implemented on top of this 1721 /// function. 1722 virtual bool areMemAccessesTriviallyDisjoint(const MachineInstr & MIa,const MachineInstr & MIb)1723 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, 1724 const MachineInstr &MIb) const { 1725 assert(MIa.mayLoadOrStore() && 1726 "MIa must load from or modify a memory location"); 1727 assert(MIb.mayLoadOrStore() && 1728 "MIb must load from or modify a memory location"); 1729 return false; 1730 } 1731 1732 /// Return the value to use for the MachineCSE's LookAheadLimit, 1733 /// which is a heuristic used for CSE'ing phys reg defs. getMachineCSELookAheadLimit()1734 virtual unsigned getMachineCSELookAheadLimit() const { 1735 // The default lookahead is small to prevent unprofitable quadratic 1736 // behavior. 1737 return 5; 1738 } 1739 1740 /// Return the maximal number of alias checks on memory operands. For 1741 /// instructions with more than one memory operands, the alias check on a 1742 /// single MachineInstr pair has quadratic overhead and results in 1743 /// unacceptable performance in the worst case. The limit here is to clamp 1744 /// that maximal checks performed. Usually, that's the product of memory 1745 /// operand numbers from that pair of MachineInstr to be checked. For 1746 /// instance, with two MachineInstrs with 4 and 5 memory operands 1747 /// correspondingly, a total of 20 checks are required. With this limit set to 1748 /// 16, their alias check is skipped. We choose to limit the product instead 1749 /// of the individual instruction as targets may have special MachineInstrs 1750 /// with a considerably high number of memory operands, such as `ldm` in ARM. 1751 /// Setting this limit per MachineInstr would result in either too high 1752 /// overhead or too rigid restriction. getMemOperandAACheckLimit()1753 virtual unsigned getMemOperandAACheckLimit() const { return 16; } 1754 1755 /// Return an array that contains the ids of the target indices (used for the 1756 /// TargetIndex machine operand) and their names. 1757 /// 1758 /// MIR Serialization is able to serialize only the target indices that are 1759 /// defined by this method. 1760 virtual ArrayRef<std::pair<int, const char *>> getSerializableTargetIndices()1761 getSerializableTargetIndices() const { 1762 return None; 1763 } 1764 1765 /// Decompose the machine operand's target flags into two values - the direct 1766 /// target flag value and any of bit flags that are applied. 1767 virtual std::pair<unsigned, unsigned> decomposeMachineOperandsTargetFlags(unsigned)1768 decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const { 1769 return std::make_pair(0u, 0u); 1770 } 1771 1772 /// Return an array that contains the direct target flag values and their 1773 /// names. 1774 /// 1775 /// MIR Serialization is able to serialize only the target flags that are 1776 /// defined by this method. 1777 virtual ArrayRef<std::pair<unsigned, const char *>> getSerializableDirectMachineOperandTargetFlags()1778 getSerializableDirectMachineOperandTargetFlags() const { 1779 return None; 1780 } 1781 1782 /// Return an array that contains the bitmask target flag values and their 1783 /// names. 1784 /// 1785 /// MIR Serialization is able to serialize only the target flags that are 1786 /// defined by this method. 1787 virtual ArrayRef<std::pair<unsigned, const char *>> getSerializableBitmaskMachineOperandTargetFlags()1788 getSerializableBitmaskMachineOperandTargetFlags() const { 1789 return None; 1790 } 1791 1792 /// Return an array that contains the MMO target flag values and their 1793 /// names. 1794 /// 1795 /// MIR Serialization is able to serialize only the MMO target flags that are 1796 /// defined by this method. 1797 virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> getSerializableMachineMemOperandTargetFlags()1798 getSerializableMachineMemOperandTargetFlags() const { 1799 return None; 1800 } 1801 1802 /// Determines whether \p Inst is a tail call instruction. Override this 1803 /// method on targets that do not properly set MCID::Return and MCID::Call on 1804 /// tail call instructions." isTailCall(const MachineInstr & Inst)1805 virtual bool isTailCall(const MachineInstr &Inst) const { 1806 return Inst.isReturn() && Inst.isCall(); 1807 } 1808 1809 /// True if the instruction is bound to the top of its basic block and no 1810 /// other instructions shall be inserted before it. This can be implemented 1811 /// to prevent register allocator to insert spills before such instructions. isBasicBlockPrologue(const MachineInstr & MI)1812 virtual bool isBasicBlockPrologue(const MachineInstr &MI) const { 1813 return false; 1814 } 1815 1816 /// During PHI eleimination lets target to make necessary checks and 1817 /// insert the copy to the PHI destination register in a target specific 1818 /// manner. createPHIDestinationCopy(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsPt,const DebugLoc & DL,Register Src,Register Dst)1819 virtual MachineInstr *createPHIDestinationCopy( 1820 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, 1821 const DebugLoc &DL, Register Src, Register Dst) const { 1822 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst) 1823 .addReg(Src); 1824 } 1825 1826 /// During PHI eleimination lets target to make necessary checks and 1827 /// insert the copy to the PHI destination register in a target specific 1828 /// manner. createPHISourceCopy(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsPt,const DebugLoc & DL,Register Src,unsigned SrcSubReg,Register Dst)1829 virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB, 1830 MachineBasicBlock::iterator InsPt, 1831 const DebugLoc &DL, Register Src, 1832 unsigned SrcSubReg, 1833 Register Dst) const { 1834 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst) 1835 .addReg(Src, 0, SrcSubReg); 1836 } 1837 1838 /// Returns a \p outliner::OutlinedFunction struct containing target-specific 1839 /// information for a set of outlining candidates. getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs)1840 virtual outliner::OutlinedFunction getOutliningCandidateInfo( 1841 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 1842 llvm_unreachable( 1843 "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!"); 1844 } 1845 1846 /// Returns how or if \p MI should be outlined. 1847 virtual outliner::InstrType getOutliningType(MachineBasicBlock::iterator & MIT,unsigned Flags)1848 getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const { 1849 llvm_unreachable( 1850 "Target didn't implement TargetInstrInfo::getOutliningType!"); 1851 } 1852 1853 /// Optional target hook that returns true if \p MBB is safe to outline from, 1854 /// and returns any target-specific information in \p Flags. isMBBSafeToOutlineFrom(MachineBasicBlock & MBB,unsigned & Flags)1855 virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 1856 unsigned &Flags) const { 1857 return true; 1858 } 1859 1860 /// Insert a custom frame for outlined functions. buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF)1861 virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, 1862 const outliner::OutlinedFunction &OF) const { 1863 llvm_unreachable( 1864 "Target didn't implement TargetInstrInfo::buildOutlinedFrame!"); 1865 } 1866 1867 /// Insert a call to an outlined function into the program. 1868 /// Returns an iterator to the spot where we inserted the call. This must be 1869 /// implemented by the target. 1870 virtual MachineBasicBlock::iterator insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,const outliner::Candidate & C)1871 insertOutlinedCall(Module &M, MachineBasicBlock &MBB, 1872 MachineBasicBlock::iterator &It, MachineFunction &MF, 1873 const outliner::Candidate &C) const { 1874 llvm_unreachable( 1875 "Target didn't implement TargetInstrInfo::insertOutlinedCall!"); 1876 } 1877 1878 /// Return true if the function can safely be outlined from. 1879 /// A function \p MF is considered safe for outlining if an outlined function 1880 /// produced from instructions in F will produce a program which produces the 1881 /// same output for any set of given inputs. isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs)1882 virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF, 1883 bool OutlineFromLinkOnceODRs) const { 1884 llvm_unreachable("Target didn't implement " 1885 "TargetInstrInfo::isFunctionSafeToOutlineFrom!"); 1886 } 1887 1888 /// Return true if the function should be outlined from by default. shouldOutlineFromFunctionByDefault(MachineFunction & MF)1889 virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const { 1890 return false; 1891 } 1892 1893 /// Produce the expression describing the \p MI loading a value into 1894 /// the physical register \p Reg. This hook should only be used with 1895 /// \p MIs belonging to VReg-less functions. 1896 virtual Optional<ParamLoadedValue> describeLoadedValue(const MachineInstr &MI, 1897 Register Reg) const; 1898 1899 /// Return MIR formatter to format/parse MIR operands. Target can override 1900 /// this virtual function and return target specific MIR formatter. getMIRFormatter()1901 virtual const MIRFormatter *getMIRFormatter() const { 1902 if (!Formatter.get()) 1903 Formatter = std::make_unique<MIRFormatter>(); 1904 return Formatter.get(); 1905 } 1906 1907 private: 1908 mutable std::unique_ptr<MIRFormatter> Formatter; 1909 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode; 1910 unsigned CatchRetOpcode; 1911 unsigned ReturnOpcode; 1912 }; 1913 1914 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair. 1915 template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> { 1916 using RegInfo = DenseMapInfo<unsigned>; 1917 1918 static inline TargetInstrInfo::RegSubRegPair getEmptyKey() { 1919 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(), 1920 RegInfo::getEmptyKey()); 1921 } 1922 1923 static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() { 1924 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(), 1925 RegInfo::getTombstoneKey()); 1926 } 1927 1928 /// Reuse getHashValue implementation from 1929 /// std::pair<unsigned, unsigned>. 1930 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) { 1931 std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg); 1932 return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal); 1933 } 1934 1935 static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, 1936 const TargetInstrInfo::RegSubRegPair &RHS) { 1937 return RegInfo::isEqual(LHS.Reg, RHS.Reg) && 1938 RegInfo::isEqual(LHS.SubReg, RHS.SubReg); 1939 } 1940 }; 1941 1942 } // end namespace llvm 1943 1944 #endif // LLVM_TARGET_TARGETINSTRINFO_H 1945