• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 //  This file implements a semantic tree transformation that takes a given
9 //  AST and rebuilds it, possibly transforming some nodes in the process.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
14 #define LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
15 
16 #include "CoroutineStmtBuilder.h"
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprConcepts.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ExprOpenMP.h"
26 #include "clang/AST/OpenMPClause.h"
27 #include "clang/AST/Stmt.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/AST/StmtOpenMP.h"
31 #include "clang/Basic/DiagnosticParse.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Sema/Designator.h"
34 #include "clang/Sema/Lookup.h"
35 #include "clang/Sema/Ownership.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/ScopeInfo.h"
38 #include "clang/Sema/SemaDiagnostic.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <algorithm>
43 
44 using namespace llvm::omp;
45 
46 namespace clang {
47 using namespace sema;
48 
49 /// A semantic tree transformation that allows one to transform one
50 /// abstract syntax tree into another.
51 ///
52 /// A new tree transformation is defined by creating a new subclass \c X of
53 /// \c TreeTransform<X> and then overriding certain operations to provide
54 /// behavior specific to that transformation. For example, template
55 /// instantiation is implemented as a tree transformation where the
56 /// transformation of TemplateTypeParmType nodes involves substituting the
57 /// template arguments for their corresponding template parameters; a similar
58 /// transformation is performed for non-type template parameters and
59 /// template template parameters.
60 ///
61 /// This tree-transformation template uses static polymorphism to allow
62 /// subclasses to customize any of its operations. Thus, a subclass can
63 /// override any of the transformation or rebuild operators by providing an
64 /// operation with the same signature as the default implementation. The
65 /// overriding function should not be virtual.
66 ///
67 /// Semantic tree transformations are split into two stages, either of which
68 /// can be replaced by a subclass. The "transform" step transforms an AST node
69 /// or the parts of an AST node using the various transformation functions,
70 /// then passes the pieces on to the "rebuild" step, which constructs a new AST
71 /// node of the appropriate kind from the pieces. The default transformation
72 /// routines recursively transform the operands to composite AST nodes (e.g.,
73 /// the pointee type of a PointerType node) and, if any of those operand nodes
74 /// were changed by the transformation, invokes the rebuild operation to create
75 /// a new AST node.
76 ///
77 /// Subclasses can customize the transformation at various levels. The
78 /// most coarse-grained transformations involve replacing TransformType(),
79 /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(),
80 /// TransformTemplateName(), or TransformTemplateArgument() with entirely
81 /// new implementations.
82 ///
83 /// For more fine-grained transformations, subclasses can replace any of the
84 /// \c TransformXXX functions (where XXX is the name of an AST node, e.g.,
85 /// PointerType, StmtExpr) to alter the transformation. As mentioned previously,
86 /// replacing TransformTemplateTypeParmType() allows template instantiation
87 /// to substitute template arguments for their corresponding template
88 /// parameters. Additionally, subclasses can override the \c RebuildXXX
89 /// functions to control how AST nodes are rebuilt when their operands change.
90 /// By default, \c TreeTransform will invoke semantic analysis to rebuild
91 /// AST nodes. However, certain other tree transformations (e.g, cloning) may
92 /// be able to use more efficient rebuild steps.
93 ///
94 /// There are a handful of other functions that can be overridden, allowing one
95 /// to avoid traversing nodes that don't need any transformation
96 /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their
97 /// operands have not changed (\c AlwaysRebuild()), and customize the
98 /// default locations and entity names used for type-checking
99 /// (\c getBaseLocation(), \c getBaseEntity()).
100 template<typename Derived>
101 class TreeTransform {
102   /// Private RAII object that helps us forget and then re-remember
103   /// the template argument corresponding to a partially-substituted parameter
104   /// pack.
105   class ForgetPartiallySubstitutedPackRAII {
106     Derived &Self;
107     TemplateArgument Old;
108 
109   public:
ForgetPartiallySubstitutedPackRAII(Derived & Self)110     ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) {
111       Old = Self.ForgetPartiallySubstitutedPack();
112     }
113 
~ForgetPartiallySubstitutedPackRAII()114     ~ForgetPartiallySubstitutedPackRAII() {
115       Self.RememberPartiallySubstitutedPack(Old);
116     }
117   };
118 
119 protected:
120   Sema &SemaRef;
121 
122   /// The set of local declarations that have been transformed, for
123   /// cases where we are forced to build new declarations within the transformer
124   /// rather than in the subclass (e.g., lambda closure types).
125   llvm::DenseMap<Decl *, Decl *> TransformedLocalDecls;
126 
127 public:
128   /// Initializes a new tree transformer.
TreeTransform(Sema & SemaRef)129   TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { }
130 
131   /// Retrieves a reference to the derived class.
getDerived()132   Derived &getDerived() { return static_cast<Derived&>(*this); }
133 
134   /// Retrieves a reference to the derived class.
getDerived()135   const Derived &getDerived() const {
136     return static_cast<const Derived&>(*this);
137   }
138 
Owned(Expr * E)139   static inline ExprResult Owned(Expr *E) { return E; }
Owned(Stmt * S)140   static inline StmtResult Owned(Stmt *S) { return S; }
141 
142   /// Retrieves a reference to the semantic analysis object used for
143   /// this tree transform.
getSema()144   Sema &getSema() const { return SemaRef; }
145 
146   /// Whether the transformation should always rebuild AST nodes, even
147   /// if none of the children have changed.
148   ///
149   /// Subclasses may override this function to specify when the transformation
150   /// should rebuild all AST nodes.
151   ///
152   /// We must always rebuild all AST nodes when performing variadic template
153   /// pack expansion, in order to avoid violating the AST invariant that each
154   /// statement node appears at most once in its containing declaration.
AlwaysRebuild()155   bool AlwaysRebuild() { return SemaRef.ArgumentPackSubstitutionIndex != -1; }
156 
157   /// Whether the transformation is forming an expression or statement that
158   /// replaces the original. In this case, we'll reuse mangling numbers from
159   /// existing lambdas.
ReplacingOriginal()160   bool ReplacingOriginal() { return false; }
161 
162   /// Wether CXXConstructExpr can be skipped when they are implicit.
163   /// They will be reconstructed when used if needed.
164   /// This is usefull when the user that cause rebuilding of the
165   /// CXXConstructExpr is outside of the expression at which the TreeTransform
166   /// started.
AllowSkippingCXXConstructExpr()167   bool AllowSkippingCXXConstructExpr() { return true; }
168 
169   /// Returns the location of the entity being transformed, if that
170   /// information was not available elsewhere in the AST.
171   ///
172   /// By default, returns no source-location information. Subclasses can
173   /// provide an alternative implementation that provides better location
174   /// information.
getBaseLocation()175   SourceLocation getBaseLocation() { return SourceLocation(); }
176 
177   /// Returns the name of the entity being transformed, if that
178   /// information was not available elsewhere in the AST.
179   ///
180   /// By default, returns an empty name. Subclasses can provide an alternative
181   /// implementation with a more precise name.
getBaseEntity()182   DeclarationName getBaseEntity() { return DeclarationName(); }
183 
184   /// Sets the "base" location and entity when that
185   /// information is known based on another transformation.
186   ///
187   /// By default, the source location and entity are ignored. Subclasses can
188   /// override this function to provide a customized implementation.
setBase(SourceLocation Loc,DeclarationName Entity)189   void setBase(SourceLocation Loc, DeclarationName Entity) { }
190 
191   /// RAII object that temporarily sets the base location and entity
192   /// used for reporting diagnostics in types.
193   class TemporaryBase {
194     TreeTransform &Self;
195     SourceLocation OldLocation;
196     DeclarationName OldEntity;
197 
198   public:
TemporaryBase(TreeTransform & Self,SourceLocation Location,DeclarationName Entity)199     TemporaryBase(TreeTransform &Self, SourceLocation Location,
200                   DeclarationName Entity) : Self(Self) {
201       OldLocation = Self.getDerived().getBaseLocation();
202       OldEntity = Self.getDerived().getBaseEntity();
203 
204       if (Location.isValid())
205         Self.getDerived().setBase(Location, Entity);
206     }
207 
~TemporaryBase()208     ~TemporaryBase() {
209       Self.getDerived().setBase(OldLocation, OldEntity);
210     }
211   };
212 
213   /// Determine whether the given type \p T has already been
214   /// transformed.
215   ///
216   /// Subclasses can provide an alternative implementation of this routine
217   /// to short-circuit evaluation when it is known that a given type will
218   /// not change. For example, template instantiation need not traverse
219   /// non-dependent types.
AlreadyTransformed(QualType T)220   bool AlreadyTransformed(QualType T) {
221     return T.isNull();
222   }
223 
224   /// Transform a template parameter depth level.
225   ///
226   /// During a transformation that transforms template parameters, this maps
227   /// an old template parameter depth to a new depth.
TransformTemplateDepth(unsigned Depth)228   unsigned TransformTemplateDepth(unsigned Depth) {
229     return Depth;
230   }
231 
232   /// Determine whether the given call argument should be dropped, e.g.,
233   /// because it is a default argument.
234   ///
235   /// Subclasses can provide an alternative implementation of this routine to
236   /// determine which kinds of call arguments get dropped. By default,
237   /// CXXDefaultArgument nodes are dropped (prior to transformation).
DropCallArgument(Expr * E)238   bool DropCallArgument(Expr *E) {
239     return E->isDefaultArgument();
240   }
241 
242   /// Determine whether we should expand a pack expansion with the
243   /// given set of parameter packs into separate arguments by repeatedly
244   /// transforming the pattern.
245   ///
246   /// By default, the transformer never tries to expand pack expansions.
247   /// Subclasses can override this routine to provide different behavior.
248   ///
249   /// \param EllipsisLoc The location of the ellipsis that identifies the
250   /// pack expansion.
251   ///
252   /// \param PatternRange The source range that covers the entire pattern of
253   /// the pack expansion.
254   ///
255   /// \param Unexpanded The set of unexpanded parameter packs within the
256   /// pattern.
257   ///
258   /// \param ShouldExpand Will be set to \c true if the transformer should
259   /// expand the corresponding pack expansions into separate arguments. When
260   /// set, \c NumExpansions must also be set.
261   ///
262   /// \param RetainExpansion Whether the caller should add an unexpanded
263   /// pack expansion after all of the expanded arguments. This is used
264   /// when extending explicitly-specified template argument packs per
265   /// C++0x [temp.arg.explicit]p9.
266   ///
267   /// \param NumExpansions The number of separate arguments that will be in
268   /// the expanded form of the corresponding pack expansion. This is both an
269   /// input and an output parameter, which can be set by the caller if the
270   /// number of expansions is known a priori (e.g., due to a prior substitution)
271   /// and will be set by the callee when the number of expansions is known.
272   /// The callee must set this value when \c ShouldExpand is \c true; it may
273   /// set this value in other cases.
274   ///
275   /// \returns true if an error occurred (e.g., because the parameter packs
276   /// are to be instantiated with arguments of different lengths), false
277   /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
278   /// must be set.
TryExpandParameterPacks(SourceLocation EllipsisLoc,SourceRange PatternRange,ArrayRef<UnexpandedParameterPack> Unexpanded,bool & ShouldExpand,bool & RetainExpansion,Optional<unsigned> & NumExpansions)279   bool TryExpandParameterPacks(SourceLocation EllipsisLoc,
280                                SourceRange PatternRange,
281                                ArrayRef<UnexpandedParameterPack> Unexpanded,
282                                bool &ShouldExpand,
283                                bool &RetainExpansion,
284                                Optional<unsigned> &NumExpansions) {
285     ShouldExpand = false;
286     return false;
287   }
288 
289   /// "Forget" about the partially-substituted pack template argument,
290   /// when performing an instantiation that must preserve the parameter pack
291   /// use.
292   ///
293   /// This routine is meant to be overridden by the template instantiator.
ForgetPartiallySubstitutedPack()294   TemplateArgument ForgetPartiallySubstitutedPack() {
295     return TemplateArgument();
296   }
297 
298   /// "Remember" the partially-substituted pack template argument
299   /// after performing an instantiation that must preserve the parameter pack
300   /// use.
301   ///
302   /// This routine is meant to be overridden by the template instantiator.
RememberPartiallySubstitutedPack(TemplateArgument Arg)303   void RememberPartiallySubstitutedPack(TemplateArgument Arg) { }
304 
305   /// Note to the derived class when a function parameter pack is
306   /// being expanded.
ExpandingFunctionParameterPack(ParmVarDecl * Pack)307   void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { }
308 
309   /// Transforms the given type into another type.
310   ///
311   /// By default, this routine transforms a type by creating a
312   /// TypeSourceInfo for it and delegating to the appropriate
313   /// function.  This is expensive, but we don't mind, because
314   /// this method is deprecated anyway;  all users should be
315   /// switched to storing TypeSourceInfos.
316   ///
317   /// \returns the transformed type.
318   QualType TransformType(QualType T);
319 
320   /// Transforms the given type-with-location into a new
321   /// type-with-location.
322   ///
323   /// By default, this routine transforms a type by delegating to the
324   /// appropriate TransformXXXType to build a new type.  Subclasses
325   /// may override this function (to take over all type
326   /// transformations) or some set of the TransformXXXType functions
327   /// to alter the transformation.
328   TypeSourceInfo *TransformType(TypeSourceInfo *DI);
329 
330   /// Transform the given type-with-location into a new
331   /// type, collecting location information in the given builder
332   /// as necessary.
333   ///
334   QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL);
335 
336   /// Transform a type that is permitted to produce a
337   /// DeducedTemplateSpecializationType.
338   ///
339   /// This is used in the (relatively rare) contexts where it is acceptable
340   /// for transformation to produce a class template type with deduced
341   /// template arguments.
342   /// @{
343   QualType TransformTypeWithDeducedTST(QualType T);
344   TypeSourceInfo *TransformTypeWithDeducedTST(TypeSourceInfo *DI);
345   /// @}
346 
347   /// The reason why the value of a statement is not discarded, if any.
348   enum StmtDiscardKind {
349     SDK_Discarded,
350     SDK_NotDiscarded,
351     SDK_StmtExprResult,
352   };
353 
354   /// Transform the given statement.
355   ///
356   /// By default, this routine transforms a statement by delegating to the
357   /// appropriate TransformXXXStmt function to transform a specific kind of
358   /// statement or the TransformExpr() function to transform an expression.
359   /// Subclasses may override this function to transform statements using some
360   /// other mechanism.
361   ///
362   /// \returns the transformed statement.
363   StmtResult TransformStmt(Stmt *S, StmtDiscardKind SDK = SDK_Discarded);
364 
365   /// Transform the given statement.
366   ///
367   /// By default, this routine transforms a statement by delegating to the
368   /// appropriate TransformOMPXXXClause function to transform a specific kind
369   /// of clause. Subclasses may override this function to transform statements
370   /// using some other mechanism.
371   ///
372   /// \returns the transformed OpenMP clause.
373   OMPClause *TransformOMPClause(OMPClause *S);
374 
375   /// Transform the given attribute.
376   ///
377   /// By default, this routine transforms a statement by delegating to the
378   /// appropriate TransformXXXAttr function to transform a specific kind
379   /// of attribute. Subclasses may override this function to transform
380   /// attributed statements using some other mechanism.
381   ///
382   /// \returns the transformed attribute
383   const Attr *TransformAttr(const Attr *S);
384 
385 /// Transform the specified attribute.
386 ///
387 /// Subclasses should override the transformation of attributes with a pragma
388 /// spelling to transform expressions stored within the attribute.
389 ///
390 /// \returns the transformed attribute.
391 #define ATTR(X)
392 #define PRAGMA_SPELLING_ATTR(X)                                                \
393   const X##Attr *Transform##X##Attr(const X##Attr *R) { return R; }
394 #include "clang/Basic/AttrList.inc"
395 
396   /// Transform the given expression.
397   ///
398   /// By default, this routine transforms an expression by delegating to the
399   /// appropriate TransformXXXExpr function to build a new expression.
400   /// Subclasses may override this function to transform expressions using some
401   /// other mechanism.
402   ///
403   /// \returns the transformed expression.
404   ExprResult TransformExpr(Expr *E);
405 
406   /// Transform the given initializer.
407   ///
408   /// By default, this routine transforms an initializer by stripping off the
409   /// semantic nodes added by initialization, then passing the result to
410   /// TransformExpr or TransformExprs.
411   ///
412   /// \returns the transformed initializer.
413   ExprResult TransformInitializer(Expr *Init, bool NotCopyInit);
414 
415   /// Transform the given list of expressions.
416   ///
417   /// This routine transforms a list of expressions by invoking
418   /// \c TransformExpr() for each subexpression. However, it also provides
419   /// support for variadic templates by expanding any pack expansions (if the
420   /// derived class permits such expansion) along the way. When pack expansions
421   /// are present, the number of outputs may not equal the number of inputs.
422   ///
423   /// \param Inputs The set of expressions to be transformed.
424   ///
425   /// \param NumInputs The number of expressions in \c Inputs.
426   ///
427   /// \param IsCall If \c true, then this transform is being performed on
428   /// function-call arguments, and any arguments that should be dropped, will
429   /// be.
430   ///
431   /// \param Outputs The transformed input expressions will be added to this
432   /// vector.
433   ///
434   /// \param ArgChanged If non-NULL, will be set \c true if any argument changed
435   /// due to transformation.
436   ///
437   /// \returns true if an error occurred, false otherwise.
438   bool TransformExprs(Expr *const *Inputs, unsigned NumInputs, bool IsCall,
439                       SmallVectorImpl<Expr *> &Outputs,
440                       bool *ArgChanged = nullptr);
441 
442   /// Transform the given declaration, which is referenced from a type
443   /// or expression.
444   ///
445   /// By default, acts as the identity function on declarations, unless the
446   /// transformer has had to transform the declaration itself. Subclasses
447   /// may override this function to provide alternate behavior.
TransformDecl(SourceLocation Loc,Decl * D)448   Decl *TransformDecl(SourceLocation Loc, Decl *D) {
449     llvm::DenseMap<Decl *, Decl *>::iterator Known
450       = TransformedLocalDecls.find(D);
451     if (Known != TransformedLocalDecls.end())
452       return Known->second;
453 
454     return D;
455   }
456 
457   /// Transform the specified condition.
458   ///
459   /// By default, this transforms the variable and expression and rebuilds
460   /// the condition.
461   Sema::ConditionResult TransformCondition(SourceLocation Loc, VarDecl *Var,
462                                            Expr *Expr,
463                                            Sema::ConditionKind Kind);
464 
465   /// Transform the attributes associated with the given declaration and
466   /// place them on the new declaration.
467   ///
468   /// By default, this operation does nothing. Subclasses may override this
469   /// behavior to transform attributes.
transformAttrs(Decl * Old,Decl * New)470   void transformAttrs(Decl *Old, Decl *New) { }
471 
472   /// Note that a local declaration has been transformed by this
473   /// transformer.
474   ///
475   /// Local declarations are typically transformed via a call to
476   /// TransformDefinition. However, in some cases (e.g., lambda expressions),
477   /// the transformer itself has to transform the declarations. This routine
478   /// can be overridden by a subclass that keeps track of such mappings.
transformedLocalDecl(Decl * Old,ArrayRef<Decl * > New)479   void transformedLocalDecl(Decl *Old, ArrayRef<Decl *> New) {
480     assert(New.size() == 1 &&
481            "must override transformedLocalDecl if performing pack expansion");
482     TransformedLocalDecls[Old] = New.front();
483   }
484 
485   /// Transform the definition of the given declaration.
486   ///
487   /// By default, invokes TransformDecl() to transform the declaration.
488   /// Subclasses may override this function to provide alternate behavior.
TransformDefinition(SourceLocation Loc,Decl * D)489   Decl *TransformDefinition(SourceLocation Loc, Decl *D) {
490     return getDerived().TransformDecl(Loc, D);
491   }
492 
493   /// Transform the given declaration, which was the first part of a
494   /// nested-name-specifier in a member access expression.
495   ///
496   /// This specific declaration transformation only applies to the first
497   /// identifier in a nested-name-specifier of a member access expression, e.g.,
498   /// the \c T in \c x->T::member
499   ///
500   /// By default, invokes TransformDecl() to transform the declaration.
501   /// Subclasses may override this function to provide alternate behavior.
TransformFirstQualifierInScope(NamedDecl * D,SourceLocation Loc)502   NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) {
503     return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D));
504   }
505 
506   /// Transform the set of declarations in an OverloadExpr.
507   bool TransformOverloadExprDecls(OverloadExpr *Old, bool RequiresADL,
508                                   LookupResult &R);
509 
510   /// Transform the given nested-name-specifier with source-location
511   /// information.
512   ///
513   /// By default, transforms all of the types and declarations within the
514   /// nested-name-specifier. Subclasses may override this function to provide
515   /// alternate behavior.
516   NestedNameSpecifierLoc
517   TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
518                                   QualType ObjectType = QualType(),
519                                   NamedDecl *FirstQualifierInScope = nullptr);
520 
521   /// Transform the given declaration name.
522   ///
523   /// By default, transforms the types of conversion function, constructor,
524   /// and destructor names and then (if needed) rebuilds the declaration name.
525   /// Identifiers and selectors are returned unmodified. Sublcasses may
526   /// override this function to provide alternate behavior.
527   DeclarationNameInfo
528   TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo);
529 
530   bool TransformRequiresExprRequirements(ArrayRef<concepts::Requirement *> Reqs,
531       llvm::SmallVectorImpl<concepts::Requirement *> &Transformed);
532   concepts::TypeRequirement *
533   TransformTypeRequirement(concepts::TypeRequirement *Req);
534   concepts::ExprRequirement *
535   TransformExprRequirement(concepts::ExprRequirement *Req);
536   concepts::NestedRequirement *
537   TransformNestedRequirement(concepts::NestedRequirement *Req);
538 
539   /// Transform the given template name.
540   ///
541   /// \param SS The nested-name-specifier that qualifies the template
542   /// name. This nested-name-specifier must already have been transformed.
543   ///
544   /// \param Name The template name to transform.
545   ///
546   /// \param NameLoc The source location of the template name.
547   ///
548   /// \param ObjectType If we're translating a template name within a member
549   /// access expression, this is the type of the object whose member template
550   /// is being referenced.
551   ///
552   /// \param FirstQualifierInScope If the first part of a nested-name-specifier
553   /// also refers to a name within the current (lexical) scope, this is the
554   /// declaration it refers to.
555   ///
556   /// By default, transforms the template name by transforming the declarations
557   /// and nested-name-specifiers that occur within the template name.
558   /// Subclasses may override this function to provide alternate behavior.
559   TemplateName
560   TransformTemplateName(CXXScopeSpec &SS, TemplateName Name,
561                         SourceLocation NameLoc,
562                         QualType ObjectType = QualType(),
563                         NamedDecl *FirstQualifierInScope = nullptr,
564                         bool AllowInjectedClassName = false);
565 
566   /// Transform the given template argument.
567   ///
568   /// By default, this operation transforms the type, expression, or
569   /// declaration stored within the template argument and constructs a
570   /// new template argument from the transformed result. Subclasses may
571   /// override this function to provide alternate behavior.
572   ///
573   /// Returns true if there was an error.
574   bool TransformTemplateArgument(const TemplateArgumentLoc &Input,
575                                  TemplateArgumentLoc &Output,
576                                  bool Uneval = false);
577 
578   /// Transform the given set of template arguments.
579   ///
580   /// By default, this operation transforms all of the template arguments
581   /// in the input set using \c TransformTemplateArgument(), and appends
582   /// the transformed arguments to the output list.
583   ///
584   /// Note that this overload of \c TransformTemplateArguments() is merely
585   /// a convenience function. Subclasses that wish to override this behavior
586   /// should override the iterator-based member template version.
587   ///
588   /// \param Inputs The set of template arguments to be transformed.
589   ///
590   /// \param NumInputs The number of template arguments in \p Inputs.
591   ///
592   /// \param Outputs The set of transformed template arguments output by this
593   /// routine.
594   ///
595   /// Returns true if an error occurred.
596   bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs,
597                                   unsigned NumInputs,
598                                   TemplateArgumentListInfo &Outputs,
599                                   bool Uneval = false) {
600     return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs,
601                                       Uneval);
602   }
603 
604   /// Transform the given set of template arguments.
605   ///
606   /// By default, this operation transforms all of the template arguments
607   /// in the input set using \c TransformTemplateArgument(), and appends
608   /// the transformed arguments to the output list.
609   ///
610   /// \param First An iterator to the first template argument.
611   ///
612   /// \param Last An iterator one step past the last template argument.
613   ///
614   /// \param Outputs The set of transformed template arguments output by this
615   /// routine.
616   ///
617   /// Returns true if an error occurred.
618   template<typename InputIterator>
619   bool TransformTemplateArguments(InputIterator First,
620                                   InputIterator Last,
621                                   TemplateArgumentListInfo &Outputs,
622                                   bool Uneval = false);
623 
624   /// Fakes up a TemplateArgumentLoc for a given TemplateArgument.
625   void InventTemplateArgumentLoc(const TemplateArgument &Arg,
626                                  TemplateArgumentLoc &ArgLoc);
627 
628   /// Fakes up a TypeSourceInfo for a type.
InventTypeSourceInfo(QualType T)629   TypeSourceInfo *InventTypeSourceInfo(QualType T) {
630     return SemaRef.Context.getTrivialTypeSourceInfo(T,
631                        getDerived().getBaseLocation());
632   }
633 
634 #define ABSTRACT_TYPELOC(CLASS, PARENT)
635 #define TYPELOC(CLASS, PARENT)                                   \
636   QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T);
637 #include "clang/AST/TypeLocNodes.def"
638 
639   template<typename Fn>
640   QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
641                                       FunctionProtoTypeLoc TL,
642                                       CXXRecordDecl *ThisContext,
643                                       Qualifiers ThisTypeQuals,
644                                       Fn TransformExceptionSpec);
645 
646   bool TransformExceptionSpec(SourceLocation Loc,
647                               FunctionProtoType::ExceptionSpecInfo &ESI,
648                               SmallVectorImpl<QualType> &Exceptions,
649                               bool &Changed);
650 
651   StmtResult TransformSEHHandler(Stmt *Handler);
652 
653   QualType
654   TransformTemplateSpecializationType(TypeLocBuilder &TLB,
655                                       TemplateSpecializationTypeLoc TL,
656                                       TemplateName Template);
657 
658   QualType
659   TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
660                                       DependentTemplateSpecializationTypeLoc TL,
661                                                TemplateName Template,
662                                                CXXScopeSpec &SS);
663 
664   QualType TransformDependentTemplateSpecializationType(
665       TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL,
666       NestedNameSpecifierLoc QualifierLoc);
667 
668   /// Transforms the parameters of a function type into the
669   /// given vectors.
670   ///
671   /// The result vectors should be kept in sync; null entries in the
672   /// variables vector are acceptable.
673   ///
674   /// Return true on error.
675   bool TransformFunctionTypeParams(
676       SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
677       const QualType *ParamTypes,
678       const FunctionProtoType::ExtParameterInfo *ParamInfos,
679       SmallVectorImpl<QualType> &PTypes, SmallVectorImpl<ParmVarDecl *> *PVars,
680       Sema::ExtParameterInfoBuilder &PInfos);
681 
682   /// Transforms a single function-type parameter.  Return null
683   /// on error.
684   ///
685   /// \param indexAdjustment - A number to add to the parameter's
686   ///   scope index;  can be negative
687   ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm,
688                                           int indexAdjustment,
689                                           Optional<unsigned> NumExpansions,
690                                           bool ExpectParameterPack);
691 
692   /// Transform the body of a lambda-expression.
693   StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body);
694   /// Alternative implementation of TransformLambdaBody that skips transforming
695   /// the body.
696   StmtResult SkipLambdaBody(LambdaExpr *E, Stmt *Body);
697 
698   QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL);
699 
700   StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr);
701   ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E);
702 
TransformTemplateParameterList(TemplateParameterList * TPL)703   TemplateParameterList *TransformTemplateParameterList(
704         TemplateParameterList *TPL) {
705     return TPL;
706   }
707 
708   ExprResult TransformAddressOfOperand(Expr *E);
709 
710   ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E,
711                                                 bool IsAddressOfOperand,
712                                                 TypeSourceInfo **RecoveryTSI);
713 
714   ExprResult TransformParenDependentScopeDeclRefExpr(
715       ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool IsAddressOfOperand,
716       TypeSourceInfo **RecoveryTSI);
717 
718   StmtResult TransformOMPExecutableDirective(OMPExecutableDirective *S);
719 
720 // FIXME: We use LLVM_ATTRIBUTE_NOINLINE because inlining causes a ridiculous
721 // amount of stack usage with clang.
722 #define STMT(Node, Parent)                        \
723   LLVM_ATTRIBUTE_NOINLINE \
724   StmtResult Transform##Node(Node *S);
725 #define VALUESTMT(Node, Parent)                   \
726   LLVM_ATTRIBUTE_NOINLINE \
727   StmtResult Transform##Node(Node *S, StmtDiscardKind SDK);
728 #define EXPR(Node, Parent)                        \
729   LLVM_ATTRIBUTE_NOINLINE \
730   ExprResult Transform##Node(Node *E);
731 #define ABSTRACT_STMT(Stmt)
732 #include "clang/AST/StmtNodes.inc"
733 
734 #define OMP_CLAUSE_CLASS(Enum, Str, Class)                                           \
735   LLVM_ATTRIBUTE_NOINLINE \
736   OMPClause *Transform ## Class(Class *S);
737 #include "llvm/Frontend/OpenMP/OMPKinds.def"
738 
739   /// Build a new qualified type given its unqualified type and type location.
740   ///
741   /// By default, this routine adds type qualifiers only to types that can
742   /// have qualifiers, and silently suppresses those qualifiers that are not
743   /// permitted. Subclasses may override this routine to provide different
744   /// behavior.
745   QualType RebuildQualifiedType(QualType T, QualifiedTypeLoc TL);
746 
747   /// Build a new pointer type given its pointee type.
748   ///
749   /// By default, performs semantic analysis when building the pointer type.
750   /// Subclasses may override this routine to provide different behavior.
751   QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil);
752 
753   /// Build a new block pointer type given its pointee type.
754   ///
755   /// By default, performs semantic analysis when building the block pointer
756   /// type. Subclasses may override this routine to provide different behavior.
757   QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil);
758 
759   /// Build a new reference type given the type it references.
760   ///
761   /// By default, performs semantic analysis when building the
762   /// reference type. Subclasses may override this routine to provide
763   /// different behavior.
764   ///
765   /// \param LValue whether the type was written with an lvalue sigil
766   /// or an rvalue sigil.
767   QualType RebuildReferenceType(QualType ReferentType,
768                                 bool LValue,
769                                 SourceLocation Sigil);
770 
771   /// Build a new member pointer type given the pointee type and the
772   /// class type it refers into.
773   ///
774   /// By default, performs semantic analysis when building the member pointer
775   /// type. Subclasses may override this routine to provide different behavior.
776   QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType,
777                                     SourceLocation Sigil);
778 
779   QualType RebuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
780                                     SourceLocation ProtocolLAngleLoc,
781                                     ArrayRef<ObjCProtocolDecl *> Protocols,
782                                     ArrayRef<SourceLocation> ProtocolLocs,
783                                     SourceLocation ProtocolRAngleLoc);
784 
785   /// Build an Objective-C object type.
786   ///
787   /// By default, performs semantic analysis when building the object type.
788   /// Subclasses may override this routine to provide different behavior.
789   QualType RebuildObjCObjectType(QualType BaseType,
790                                  SourceLocation Loc,
791                                  SourceLocation TypeArgsLAngleLoc,
792                                  ArrayRef<TypeSourceInfo *> TypeArgs,
793                                  SourceLocation TypeArgsRAngleLoc,
794                                  SourceLocation ProtocolLAngleLoc,
795                                  ArrayRef<ObjCProtocolDecl *> Protocols,
796                                  ArrayRef<SourceLocation> ProtocolLocs,
797                                  SourceLocation ProtocolRAngleLoc);
798 
799   /// Build a new Objective-C object pointer type given the pointee type.
800   ///
801   /// By default, directly builds the pointer type, with no additional semantic
802   /// analysis.
803   QualType RebuildObjCObjectPointerType(QualType PointeeType,
804                                         SourceLocation Star);
805 
806   /// Build a new array type given the element type, size
807   /// modifier, size of the array (if known), size expression, and index type
808   /// qualifiers.
809   ///
810   /// By default, performs semantic analysis when building the array type.
811   /// Subclasses may override this routine to provide different behavior.
812   /// Also by default, all of the other Rebuild*Array
813   QualType RebuildArrayType(QualType ElementType,
814                             ArrayType::ArraySizeModifier SizeMod,
815                             const llvm::APInt *Size,
816                             Expr *SizeExpr,
817                             unsigned IndexTypeQuals,
818                             SourceRange BracketsRange);
819 
820   /// Build a new constant array type given the element type, size
821   /// modifier, (known) size of the array, and index type qualifiers.
822   ///
823   /// By default, performs semantic analysis when building the array type.
824   /// Subclasses may override this routine to provide different behavior.
825   QualType RebuildConstantArrayType(QualType ElementType,
826                                     ArrayType::ArraySizeModifier SizeMod,
827                                     const llvm::APInt &Size,
828                                     Expr *SizeExpr,
829                                     unsigned IndexTypeQuals,
830                                     SourceRange BracketsRange);
831 
832   /// Build a new incomplete array type given the element type, size
833   /// modifier, and index type qualifiers.
834   ///
835   /// By default, performs semantic analysis when building the array type.
836   /// Subclasses may override this routine to provide different behavior.
837   QualType RebuildIncompleteArrayType(QualType ElementType,
838                                       ArrayType::ArraySizeModifier SizeMod,
839                                       unsigned IndexTypeQuals,
840                                       SourceRange BracketsRange);
841 
842   /// Build a new variable-length array type given the element type,
843   /// size modifier, size expression, and index type qualifiers.
844   ///
845   /// By default, performs semantic analysis when building the array type.
846   /// Subclasses may override this routine to provide different behavior.
847   QualType RebuildVariableArrayType(QualType ElementType,
848                                     ArrayType::ArraySizeModifier SizeMod,
849                                     Expr *SizeExpr,
850                                     unsigned IndexTypeQuals,
851                                     SourceRange BracketsRange);
852 
853   /// Build a new dependent-sized array type given the element type,
854   /// size modifier, size expression, and index type qualifiers.
855   ///
856   /// By default, performs semantic analysis when building the array type.
857   /// Subclasses may override this routine to provide different behavior.
858   QualType RebuildDependentSizedArrayType(QualType ElementType,
859                                           ArrayType::ArraySizeModifier SizeMod,
860                                           Expr *SizeExpr,
861                                           unsigned IndexTypeQuals,
862                                           SourceRange BracketsRange);
863 
864   /// Build a new vector type given the element type and
865   /// number of elements.
866   ///
867   /// By default, performs semantic analysis when building the vector type.
868   /// Subclasses may override this routine to provide different behavior.
869   QualType RebuildVectorType(QualType ElementType, unsigned NumElements,
870                              VectorType::VectorKind VecKind);
871 
872   /// Build a new potentially dependently-sized extended vector type
873   /// given the element type and number of elements.
874   ///
875   /// By default, performs semantic analysis when building the vector type.
876   /// Subclasses may override this routine to provide different behavior.
877   QualType RebuildDependentVectorType(QualType ElementType, Expr *SizeExpr,
878                                            SourceLocation AttributeLoc,
879                                            VectorType::VectorKind);
880 
881   /// Build a new extended vector type given the element type and
882   /// number of elements.
883   ///
884   /// By default, performs semantic analysis when building the vector type.
885   /// Subclasses may override this routine to provide different behavior.
886   QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements,
887                                 SourceLocation AttributeLoc);
888 
889   /// Build a new potentially dependently-sized extended vector type
890   /// given the element type and number of elements.
891   ///
892   /// By default, performs semantic analysis when building the vector type.
893   /// Subclasses may override this routine to provide different behavior.
894   QualType RebuildDependentSizedExtVectorType(QualType ElementType,
895                                               Expr *SizeExpr,
896                                               SourceLocation AttributeLoc);
897 
898   /// Build a new matrix type given the element type and dimensions.
899   QualType RebuildConstantMatrixType(QualType ElementType, unsigned NumRows,
900                                      unsigned NumColumns);
901 
902   /// Build a new matrix type given the type and dependently-defined
903   /// dimensions.
904   QualType RebuildDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
905                                            Expr *ColumnExpr,
906                                            SourceLocation AttributeLoc);
907 
908   /// Build a new DependentAddressSpaceType or return the pointee
909   /// type variable with the correct address space (retrieved from
910   /// AddrSpaceExpr) applied to it. The former will be returned in cases
911   /// where the address space remains dependent.
912   ///
913   /// By default, performs semantic analysis when building the type with address
914   /// space applied. Subclasses may override this routine to provide different
915   /// behavior.
916   QualType RebuildDependentAddressSpaceType(QualType PointeeType,
917                                             Expr *AddrSpaceExpr,
918                                             SourceLocation AttributeLoc);
919 
920   /// Build a new function type.
921   ///
922   /// By default, performs semantic analysis when building the function type.
923   /// Subclasses may override this routine to provide different behavior.
924   QualType RebuildFunctionProtoType(QualType T,
925                                     MutableArrayRef<QualType> ParamTypes,
926                                     const FunctionProtoType::ExtProtoInfo &EPI);
927 
928   /// Build a new unprototyped function type.
929   QualType RebuildFunctionNoProtoType(QualType ResultType);
930 
931   /// Rebuild an unresolved typename type, given the decl that
932   /// the UnresolvedUsingTypenameDecl was transformed to.
933   QualType RebuildUnresolvedUsingType(SourceLocation NameLoc, Decl *D);
934 
935   /// Build a new typedef type.
RebuildTypedefType(TypedefNameDecl * Typedef)936   QualType RebuildTypedefType(TypedefNameDecl *Typedef) {
937     return SemaRef.Context.getTypeDeclType(Typedef);
938   }
939 
940   /// Build a new MacroDefined type.
RebuildMacroQualifiedType(QualType T,const IdentifierInfo * MacroII)941   QualType RebuildMacroQualifiedType(QualType T,
942                                      const IdentifierInfo *MacroII) {
943     return SemaRef.Context.getMacroQualifiedType(T, MacroII);
944   }
945 
946   /// Build a new class/struct/union type.
RebuildRecordType(RecordDecl * Record)947   QualType RebuildRecordType(RecordDecl *Record) {
948     return SemaRef.Context.getTypeDeclType(Record);
949   }
950 
951   /// Build a new Enum type.
RebuildEnumType(EnumDecl * Enum)952   QualType RebuildEnumType(EnumDecl *Enum) {
953     return SemaRef.Context.getTypeDeclType(Enum);
954   }
955 
956   /// Build a new typeof(expr) type.
957   ///
958   /// By default, performs semantic analysis when building the typeof type.
959   /// Subclasses may override this routine to provide different behavior.
960   QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc);
961 
962   /// Build a new typeof(type) type.
963   ///
964   /// By default, builds a new TypeOfType with the given underlying type.
965   QualType RebuildTypeOfType(QualType Underlying);
966 
967   /// Build a new unary transform type.
968   QualType RebuildUnaryTransformType(QualType BaseType,
969                                      UnaryTransformType::UTTKind UKind,
970                                      SourceLocation Loc);
971 
972   /// Build a new C++11 decltype type.
973   ///
974   /// By default, performs semantic analysis when building the decltype type.
975   /// Subclasses may override this routine to provide different behavior.
976   QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc);
977 
978   /// Build a new C++11 auto type.
979   ///
980   /// By default, builds a new AutoType with the given deduced type.
RebuildAutoType(QualType Deduced,AutoTypeKeyword Keyword,ConceptDecl * TypeConstraintConcept,ArrayRef<TemplateArgument> TypeConstraintArgs)981   QualType RebuildAutoType(QualType Deduced, AutoTypeKeyword Keyword,
982                            ConceptDecl *TypeConstraintConcept,
983                            ArrayRef<TemplateArgument> TypeConstraintArgs) {
984     // Note, IsDependent is always false here: we implicitly convert an 'auto'
985     // which has been deduced to a dependent type into an undeduced 'auto', so
986     // that we'll retry deduction after the transformation.
987     return SemaRef.Context.getAutoType(Deduced, Keyword,
988                                        /*IsDependent*/ false, /*IsPack=*/false,
989                                        TypeConstraintConcept,
990                                        TypeConstraintArgs);
991   }
992 
993   /// By default, builds a new DeducedTemplateSpecializationType with the given
994   /// deduced type.
RebuildDeducedTemplateSpecializationType(TemplateName Template,QualType Deduced)995   QualType RebuildDeducedTemplateSpecializationType(TemplateName Template,
996       QualType Deduced) {
997     return SemaRef.Context.getDeducedTemplateSpecializationType(
998         Template, Deduced, /*IsDependent*/ false);
999   }
1000 
1001   /// Build a new template specialization type.
1002   ///
1003   /// By default, performs semantic analysis when building the template
1004   /// specialization type. Subclasses may override this routine to provide
1005   /// different behavior.
1006   QualType RebuildTemplateSpecializationType(TemplateName Template,
1007                                              SourceLocation TemplateLoc,
1008                                              TemplateArgumentListInfo &Args);
1009 
1010   /// Build a new parenthesized type.
1011   ///
1012   /// By default, builds a new ParenType type from the inner type.
1013   /// Subclasses may override this routine to provide different behavior.
RebuildParenType(QualType InnerType)1014   QualType RebuildParenType(QualType InnerType) {
1015     return SemaRef.BuildParenType(InnerType);
1016   }
1017 
1018   /// Build a new qualified name type.
1019   ///
1020   /// By default, builds a new ElaboratedType type from the keyword,
1021   /// the nested-name-specifier and the named type.
1022   /// Subclasses may override this routine to provide different behavior.
RebuildElaboratedType(SourceLocation KeywordLoc,ElaboratedTypeKeyword Keyword,NestedNameSpecifierLoc QualifierLoc,QualType Named)1023   QualType RebuildElaboratedType(SourceLocation KeywordLoc,
1024                                  ElaboratedTypeKeyword Keyword,
1025                                  NestedNameSpecifierLoc QualifierLoc,
1026                                  QualType Named) {
1027     return SemaRef.Context.getElaboratedType(Keyword,
1028                                          QualifierLoc.getNestedNameSpecifier(),
1029                                              Named);
1030   }
1031 
1032   /// Build a new typename type that refers to a template-id.
1033   ///
1034   /// By default, builds a new DependentNameType type from the
1035   /// nested-name-specifier and the given type. Subclasses may override
1036   /// this routine to provide different behavior.
RebuildDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const IdentifierInfo * Name,SourceLocation NameLoc,TemplateArgumentListInfo & Args,bool AllowInjectedClassName)1037   QualType RebuildDependentTemplateSpecializationType(
1038                                           ElaboratedTypeKeyword Keyword,
1039                                           NestedNameSpecifierLoc QualifierLoc,
1040                                           SourceLocation TemplateKWLoc,
1041                                           const IdentifierInfo *Name,
1042                                           SourceLocation NameLoc,
1043                                           TemplateArgumentListInfo &Args,
1044                                           bool AllowInjectedClassName) {
1045     // Rebuild the template name.
1046     // TODO: avoid TemplateName abstraction
1047     CXXScopeSpec SS;
1048     SS.Adopt(QualifierLoc);
1049     TemplateName InstName = getDerived().RebuildTemplateName(
1050         SS, TemplateKWLoc, *Name, NameLoc, QualType(), nullptr,
1051         AllowInjectedClassName);
1052 
1053     if (InstName.isNull())
1054       return QualType();
1055 
1056     // If it's still dependent, make a dependent specialization.
1057     if (InstName.getAsDependentTemplateName())
1058       return SemaRef.Context.getDependentTemplateSpecializationType(Keyword,
1059                                           QualifierLoc.getNestedNameSpecifier(),
1060                                                                     Name,
1061                                                                     Args);
1062 
1063     // Otherwise, make an elaborated type wrapping a non-dependent
1064     // specialization.
1065     QualType T =
1066     getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args);
1067     if (T.isNull()) return QualType();
1068 
1069     if (Keyword == ETK_None && QualifierLoc.getNestedNameSpecifier() == nullptr)
1070       return T;
1071 
1072     return SemaRef.Context.getElaboratedType(Keyword,
1073                                        QualifierLoc.getNestedNameSpecifier(),
1074                                              T);
1075   }
1076 
1077   /// Build a new typename type that refers to an identifier.
1078   ///
1079   /// By default, performs semantic analysis when building the typename type
1080   /// (or elaborated type). Subclasses may override this routine to provide
1081   /// different behavior.
RebuildDependentNameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo * Id,SourceLocation IdLoc,bool DeducedTSTContext)1082   QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword,
1083                                     SourceLocation KeywordLoc,
1084                                     NestedNameSpecifierLoc QualifierLoc,
1085                                     const IdentifierInfo *Id,
1086                                     SourceLocation IdLoc,
1087                                     bool DeducedTSTContext) {
1088     CXXScopeSpec SS;
1089     SS.Adopt(QualifierLoc);
1090 
1091     if (QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1092       // If the name is still dependent, just build a new dependent name type.
1093       if (!SemaRef.computeDeclContext(SS))
1094         return SemaRef.Context.getDependentNameType(Keyword,
1095                                           QualifierLoc.getNestedNameSpecifier(),
1096                                                     Id);
1097     }
1098 
1099     if (Keyword == ETK_None || Keyword == ETK_Typename) {
1100       return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc,
1101                                        *Id, IdLoc, DeducedTSTContext);
1102     }
1103 
1104     TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
1105 
1106     // We had a dependent elaborated-type-specifier that has been transformed
1107     // into a non-dependent elaborated-type-specifier. Find the tag we're
1108     // referring to.
1109     LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
1110     DeclContext *DC = SemaRef.computeDeclContext(SS, false);
1111     if (!DC)
1112       return QualType();
1113 
1114     if (SemaRef.RequireCompleteDeclContext(SS, DC))
1115       return QualType();
1116 
1117     TagDecl *Tag = nullptr;
1118     SemaRef.LookupQualifiedName(Result, DC);
1119     switch (Result.getResultKind()) {
1120       case LookupResult::NotFound:
1121       case LookupResult::NotFoundInCurrentInstantiation:
1122         break;
1123 
1124       case LookupResult::Found:
1125         Tag = Result.getAsSingle<TagDecl>();
1126         break;
1127 
1128       case LookupResult::FoundOverloaded:
1129       case LookupResult::FoundUnresolvedValue:
1130         llvm_unreachable("Tag lookup cannot find non-tags");
1131 
1132       case LookupResult::Ambiguous:
1133         // Let the LookupResult structure handle ambiguities.
1134         return QualType();
1135     }
1136 
1137     if (!Tag) {
1138       // Check where the name exists but isn't a tag type and use that to emit
1139       // better diagnostics.
1140       LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
1141       SemaRef.LookupQualifiedName(Result, DC);
1142       switch (Result.getResultKind()) {
1143         case LookupResult::Found:
1144         case LookupResult::FoundOverloaded:
1145         case LookupResult::FoundUnresolvedValue: {
1146           NamedDecl *SomeDecl = Result.getRepresentativeDecl();
1147           Sema::NonTagKind NTK = SemaRef.getNonTagTypeDeclKind(SomeDecl, Kind);
1148           SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << SomeDecl
1149                                                                << NTK << Kind;
1150           SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at);
1151           break;
1152         }
1153         default:
1154           SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope)
1155               << Kind << Id << DC << QualifierLoc.getSourceRange();
1156           break;
1157       }
1158       return QualType();
1159     }
1160 
1161     if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false,
1162                                               IdLoc, Id)) {
1163       SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id;
1164       SemaRef.Diag(Tag->getLocation(), diag::note_previous_use);
1165       return QualType();
1166     }
1167 
1168     // Build the elaborated-type-specifier type.
1169     QualType T = SemaRef.Context.getTypeDeclType(Tag);
1170     return SemaRef.Context.getElaboratedType(Keyword,
1171                                          QualifierLoc.getNestedNameSpecifier(),
1172                                              T);
1173   }
1174 
1175   /// Build a new pack expansion type.
1176   ///
1177   /// By default, builds a new PackExpansionType type from the given pattern.
1178   /// Subclasses may override this routine to provide different behavior.
RebuildPackExpansionType(QualType Pattern,SourceRange PatternRange,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)1179   QualType RebuildPackExpansionType(QualType Pattern,
1180                                     SourceRange PatternRange,
1181                                     SourceLocation EllipsisLoc,
1182                                     Optional<unsigned> NumExpansions) {
1183     return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc,
1184                                         NumExpansions);
1185   }
1186 
1187   /// Build a new atomic type given its value type.
1188   ///
1189   /// By default, performs semantic analysis when building the atomic type.
1190   /// Subclasses may override this routine to provide different behavior.
1191   QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc);
1192 
1193   /// Build a new pipe type given its value type.
1194   QualType RebuildPipeType(QualType ValueType, SourceLocation KWLoc,
1195                            bool isReadPipe);
1196 
1197    /// Build an extended int given its value type.
1198   QualType RebuildExtIntType(bool IsUnsigned, unsigned NumBits,
1199                              SourceLocation Loc);
1200 
1201   /// Build a dependent extended int given its value type.
1202   QualType RebuildDependentExtIntType(bool IsUnsigned, Expr *NumBitsExpr,
1203                                       SourceLocation Loc);
1204 
1205   /// Build a new template name given a nested name specifier, a flag
1206   /// indicating whether the "template" keyword was provided, and the template
1207   /// that the template name refers to.
1208   ///
1209   /// By default, builds the new template name directly. Subclasses may override
1210   /// this routine to provide different behavior.
1211   TemplateName RebuildTemplateName(CXXScopeSpec &SS,
1212                                    bool TemplateKW,
1213                                    TemplateDecl *Template);
1214 
1215   /// Build a new template name given a nested name specifier and the
1216   /// name that is referred to as a template.
1217   ///
1218   /// By default, performs semantic analysis to determine whether the name can
1219   /// be resolved to a specific template, then builds the appropriate kind of
1220   /// template name. Subclasses may override this routine to provide different
1221   /// behavior.
1222   TemplateName RebuildTemplateName(CXXScopeSpec &SS,
1223                                    SourceLocation TemplateKWLoc,
1224                                    const IdentifierInfo &Name,
1225                                    SourceLocation NameLoc, QualType ObjectType,
1226                                    NamedDecl *FirstQualifierInScope,
1227                                    bool AllowInjectedClassName);
1228 
1229   /// Build a new template name given a nested name specifier and the
1230   /// overloaded operator name that is referred to as a template.
1231   ///
1232   /// By default, performs semantic analysis to determine whether the name can
1233   /// be resolved to a specific template, then builds the appropriate kind of
1234   /// template name. Subclasses may override this routine to provide different
1235   /// behavior.
1236   TemplateName RebuildTemplateName(CXXScopeSpec &SS,
1237                                    SourceLocation TemplateKWLoc,
1238                                    OverloadedOperatorKind Operator,
1239                                    SourceLocation NameLoc, QualType ObjectType,
1240                                    bool AllowInjectedClassName);
1241 
1242   /// Build a new template name given a template template parameter pack
1243   /// and the
1244   ///
1245   /// By default, performs semantic analysis to determine whether the name can
1246   /// be resolved to a specific template, then builds the appropriate kind of
1247   /// template name. Subclasses may override this routine to provide different
1248   /// behavior.
RebuildTemplateName(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack)1249   TemplateName RebuildTemplateName(TemplateTemplateParmDecl *Param,
1250                                    const TemplateArgument &ArgPack) {
1251     return getSema().Context.getSubstTemplateTemplateParmPack(Param, ArgPack);
1252   }
1253 
1254   /// Build a new compound statement.
1255   ///
1256   /// By default, performs semantic analysis to build the new statement.
1257   /// Subclasses may override this routine to provide different behavior.
RebuildCompoundStmt(SourceLocation LBraceLoc,MultiStmtArg Statements,SourceLocation RBraceLoc,bool IsStmtExpr)1258   StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc,
1259                                        MultiStmtArg Statements,
1260                                        SourceLocation RBraceLoc,
1261                                        bool IsStmtExpr) {
1262     return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements,
1263                                        IsStmtExpr);
1264   }
1265 
1266   /// Build a new case statement.
1267   ///
1268   /// By default, performs semantic analysis to build the new statement.
1269   /// Subclasses may override this routine to provide different behavior.
RebuildCaseStmt(SourceLocation CaseLoc,Expr * LHS,SourceLocation EllipsisLoc,Expr * RHS,SourceLocation ColonLoc)1270   StmtResult RebuildCaseStmt(SourceLocation CaseLoc,
1271                                    Expr *LHS,
1272                                    SourceLocation EllipsisLoc,
1273                                    Expr *RHS,
1274                                    SourceLocation ColonLoc) {
1275     return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS,
1276                                    ColonLoc);
1277   }
1278 
1279   /// Attach the body to a new case statement.
1280   ///
1281   /// By default, performs semantic analysis to build the new statement.
1282   /// Subclasses may override this routine to provide different behavior.
RebuildCaseStmtBody(Stmt * S,Stmt * Body)1283   StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) {
1284     getSema().ActOnCaseStmtBody(S, Body);
1285     return S;
1286   }
1287 
1288   /// Build a new default statement.
1289   ///
1290   /// By default, performs semantic analysis to build the new statement.
1291   /// Subclasses may override this routine to provide different behavior.
RebuildDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt)1292   StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc,
1293                                       SourceLocation ColonLoc,
1294                                       Stmt *SubStmt) {
1295     return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt,
1296                                       /*CurScope=*/nullptr);
1297   }
1298 
1299   /// Build a new label statement.
1300   ///
1301   /// By default, performs semantic analysis to build the new statement.
1302   /// Subclasses may override this routine to provide different behavior.
RebuildLabelStmt(SourceLocation IdentLoc,LabelDecl * L,SourceLocation ColonLoc,Stmt * SubStmt)1303   StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L,
1304                               SourceLocation ColonLoc, Stmt *SubStmt) {
1305     return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt);
1306   }
1307 
1308   /// Build a new attributed statement.
1309   ///
1310   /// By default, performs semantic analysis to build the new statement.
1311   /// Subclasses may override this routine to provide different behavior.
RebuildAttributedStmt(SourceLocation AttrLoc,ArrayRef<const Attr * > Attrs,Stmt * SubStmt)1312   StmtResult RebuildAttributedStmt(SourceLocation AttrLoc,
1313                                    ArrayRef<const Attr*> Attrs,
1314                                    Stmt *SubStmt) {
1315     return SemaRef.ActOnAttributedStmt(AttrLoc, Attrs, SubStmt);
1316   }
1317 
1318   /// Build a new "if" statement.
1319   ///
1320   /// By default, performs semantic analysis to build the new statement.
1321   /// Subclasses may override this routine to provide different behavior.
RebuildIfStmt(SourceLocation IfLoc,bool IsConstexpr,SourceLocation LParenLoc,Sema::ConditionResult Cond,SourceLocation RParenLoc,Stmt * Init,Stmt * Then,SourceLocation ElseLoc,Stmt * Else)1322   StmtResult RebuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
1323                            SourceLocation LParenLoc, Sema::ConditionResult Cond,
1324                            SourceLocation RParenLoc, Stmt *Init, Stmt *Then,
1325                            SourceLocation ElseLoc, Stmt *Else) {
1326     return getSema().ActOnIfStmt(IfLoc, IsConstexpr, LParenLoc, Init, Cond,
1327                                  RParenLoc, Then, ElseLoc, Else);
1328   }
1329 
1330   /// Start building a new switch statement.
1331   ///
1332   /// By default, performs semantic analysis to build the new statement.
1333   /// Subclasses may override this routine to provide different behavior.
RebuildSwitchStmtStart(SourceLocation SwitchLoc,SourceLocation LParenLoc,Stmt * Init,Sema::ConditionResult Cond,SourceLocation RParenLoc)1334   StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc,
1335                                     SourceLocation LParenLoc, Stmt *Init,
1336                                     Sema::ConditionResult Cond,
1337                                     SourceLocation RParenLoc) {
1338     return getSema().ActOnStartOfSwitchStmt(SwitchLoc, LParenLoc, Init, Cond,
1339                                             RParenLoc);
1340   }
1341 
1342   /// Attach the body to the switch statement.
1343   ///
1344   /// By default, performs semantic analysis to build the new statement.
1345   /// Subclasses may override this routine to provide different behavior.
RebuildSwitchStmtBody(SourceLocation SwitchLoc,Stmt * Switch,Stmt * Body)1346   StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc,
1347                                    Stmt *Switch, Stmt *Body) {
1348     return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body);
1349   }
1350 
1351   /// Build a new while statement.
1352   ///
1353   /// By default, performs semantic analysis to build the new statement.
1354   /// Subclasses may override this routine to provide different behavior.
RebuildWhileStmt(SourceLocation WhileLoc,SourceLocation LParenLoc,Sema::ConditionResult Cond,SourceLocation RParenLoc,Stmt * Body)1355   StmtResult RebuildWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
1356                               Sema::ConditionResult Cond,
1357                               SourceLocation RParenLoc, Stmt *Body) {
1358     return getSema().ActOnWhileStmt(WhileLoc, LParenLoc, Cond, RParenLoc, Body);
1359   }
1360 
1361   /// Build a new do-while statement.
1362   ///
1363   /// By default, performs semantic analysis to build the new statement.
1364   /// Subclasses may override this routine to provide different behavior.
RebuildDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation LParenLoc,Expr * Cond,SourceLocation RParenLoc)1365   StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body,
1366                            SourceLocation WhileLoc, SourceLocation LParenLoc,
1367                            Expr *Cond, SourceLocation RParenLoc) {
1368     return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc,
1369                                  Cond, RParenLoc);
1370   }
1371 
1372   /// Build a new for statement.
1373   ///
1374   /// By default, performs semantic analysis to build the new statement.
1375   /// Subclasses may override this routine to provide different behavior.
RebuildForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * Init,Sema::ConditionResult Cond,Sema::FullExprArg Inc,SourceLocation RParenLoc,Stmt * Body)1376   StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1377                             Stmt *Init, Sema::ConditionResult Cond,
1378                             Sema::FullExprArg Inc, SourceLocation RParenLoc,
1379                             Stmt *Body) {
1380     return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond,
1381                                   Inc, RParenLoc, Body);
1382   }
1383 
1384   /// Build a new goto statement.
1385   ///
1386   /// By default, performs semantic analysis to build the new statement.
1387   /// Subclasses may override this routine to provide different behavior.
RebuildGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * Label)1388   StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
1389                              LabelDecl *Label) {
1390     return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label);
1391   }
1392 
1393   /// Build a new indirect goto statement.
1394   ///
1395   /// By default, performs semantic analysis to build the new statement.
1396   /// Subclasses may override this routine to provide different behavior.
RebuildIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * Target)1397   StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc,
1398                                      SourceLocation StarLoc,
1399                                      Expr *Target) {
1400     return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target);
1401   }
1402 
1403   /// Build a new return statement.
1404   ///
1405   /// By default, performs semantic analysis to build the new statement.
1406   /// Subclasses may override this routine to provide different behavior.
RebuildReturnStmt(SourceLocation ReturnLoc,Expr * Result)1407   StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) {
1408     return getSema().BuildReturnStmt(ReturnLoc, Result);
1409   }
1410 
1411   /// Build a new declaration statement.
1412   ///
1413   /// By default, performs semantic analysis to build the new statement.
1414   /// Subclasses may override this routine to provide different behavior.
RebuildDeclStmt(MutableArrayRef<Decl * > Decls,SourceLocation StartLoc,SourceLocation EndLoc)1415   StmtResult RebuildDeclStmt(MutableArrayRef<Decl *> Decls,
1416                              SourceLocation StartLoc, SourceLocation EndLoc) {
1417     Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls);
1418     return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc);
1419   }
1420 
1421   /// Build a new inline asm statement.
1422   ///
1423   /// By default, performs semantic analysis to build the new statement.
1424   /// Subclasses may override this routine to provide different behavior.
RebuildGCCAsmStmt(SourceLocation AsmLoc,bool IsSimple,bool IsVolatile,unsigned NumOutputs,unsigned NumInputs,IdentifierInfo ** Names,MultiExprArg Constraints,MultiExprArg Exprs,Expr * AsmString,MultiExprArg Clobbers,unsigned NumLabels,SourceLocation RParenLoc)1425   StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
1426                                bool IsVolatile, unsigned NumOutputs,
1427                                unsigned NumInputs, IdentifierInfo **Names,
1428                                MultiExprArg Constraints, MultiExprArg Exprs,
1429                                Expr *AsmString, MultiExprArg Clobbers,
1430                                unsigned NumLabels,
1431                                SourceLocation RParenLoc) {
1432     return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
1433                                      NumInputs, Names, Constraints, Exprs,
1434                                      AsmString, Clobbers, NumLabels, RParenLoc);
1435   }
1436 
1437   /// Build a new MS style inline asm statement.
1438   ///
1439   /// By default, performs semantic analysis to build the new statement.
1440   /// Subclasses may override this routine to provide different behavior.
RebuildMSAsmStmt(SourceLocation AsmLoc,SourceLocation LBraceLoc,ArrayRef<Token> AsmToks,StringRef AsmString,unsigned NumOutputs,unsigned NumInputs,ArrayRef<StringRef> Constraints,ArrayRef<StringRef> Clobbers,ArrayRef<Expr * > Exprs,SourceLocation EndLoc)1441   StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
1442                               ArrayRef<Token> AsmToks,
1443                               StringRef AsmString,
1444                               unsigned NumOutputs, unsigned NumInputs,
1445                               ArrayRef<StringRef> Constraints,
1446                               ArrayRef<StringRef> Clobbers,
1447                               ArrayRef<Expr*> Exprs,
1448                               SourceLocation EndLoc) {
1449     return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString,
1450                                     NumOutputs, NumInputs,
1451                                     Constraints, Clobbers, Exprs, EndLoc);
1452   }
1453 
1454   /// Build a new co_return statement.
1455   ///
1456   /// By default, performs semantic analysis to build the new statement.
1457   /// Subclasses may override this routine to provide different behavior.
RebuildCoreturnStmt(SourceLocation CoreturnLoc,Expr * Result,bool IsImplicit)1458   StmtResult RebuildCoreturnStmt(SourceLocation CoreturnLoc, Expr *Result,
1459                                  bool IsImplicit) {
1460     return getSema().BuildCoreturnStmt(CoreturnLoc, Result, IsImplicit);
1461   }
1462 
1463   /// Build a new co_await expression.
1464   ///
1465   /// By default, performs semantic analysis to build the new expression.
1466   /// Subclasses may override this routine to provide different behavior.
RebuildCoawaitExpr(SourceLocation CoawaitLoc,Expr * Result,bool IsImplicit)1467   ExprResult RebuildCoawaitExpr(SourceLocation CoawaitLoc, Expr *Result,
1468                                 bool IsImplicit) {
1469     return getSema().BuildResolvedCoawaitExpr(CoawaitLoc, Result, IsImplicit);
1470   }
1471 
1472   /// Build a new co_await expression.
1473   ///
1474   /// By default, performs semantic analysis to build the new expression.
1475   /// Subclasses may override this routine to provide different behavior.
RebuildDependentCoawaitExpr(SourceLocation CoawaitLoc,Expr * Result,UnresolvedLookupExpr * Lookup)1476   ExprResult RebuildDependentCoawaitExpr(SourceLocation CoawaitLoc,
1477                                          Expr *Result,
1478                                          UnresolvedLookupExpr *Lookup) {
1479     return getSema().BuildUnresolvedCoawaitExpr(CoawaitLoc, Result, Lookup);
1480   }
1481 
1482   /// Build a new co_yield expression.
1483   ///
1484   /// By default, performs semantic analysis to build the new expression.
1485   /// Subclasses may override this routine to provide different behavior.
RebuildCoyieldExpr(SourceLocation CoyieldLoc,Expr * Result)1486   ExprResult RebuildCoyieldExpr(SourceLocation CoyieldLoc, Expr *Result) {
1487     return getSema().BuildCoyieldExpr(CoyieldLoc, Result);
1488   }
1489 
RebuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args)1490   StmtResult RebuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
1491     return getSema().BuildCoroutineBodyStmt(Args);
1492   }
1493 
1494   /// Build a new Objective-C \@try statement.
1495   ///
1496   /// By default, performs semantic analysis to build the new statement.
1497   /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtTryStmt(SourceLocation AtLoc,Stmt * TryBody,MultiStmtArg CatchStmts,Stmt * Finally)1498   StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc,
1499                                         Stmt *TryBody,
1500                                         MultiStmtArg CatchStmts,
1501                                         Stmt *Finally) {
1502     return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts,
1503                                         Finally);
1504   }
1505 
1506   /// Rebuild an Objective-C exception declaration.
1507   ///
1508   /// By default, performs semantic analysis to build the new declaration.
1509   /// Subclasses may override this routine to provide different behavior.
RebuildObjCExceptionDecl(VarDecl * ExceptionDecl,TypeSourceInfo * TInfo,QualType T)1510   VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
1511                                     TypeSourceInfo *TInfo, QualType T) {
1512     return getSema().BuildObjCExceptionDecl(TInfo, T,
1513                                             ExceptionDecl->getInnerLocStart(),
1514                                             ExceptionDecl->getLocation(),
1515                                             ExceptionDecl->getIdentifier());
1516   }
1517 
1518   /// Build a new Objective-C \@catch statement.
1519   ///
1520   /// By default, performs semantic analysis to build the new statement.
1521   /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParenLoc,VarDecl * Var,Stmt * Body)1522   StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc,
1523                                           SourceLocation RParenLoc,
1524                                           VarDecl *Var,
1525                                           Stmt *Body) {
1526     return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc,
1527                                           Var, Body);
1528   }
1529 
1530   /// Build a new Objective-C \@finally statement.
1531   ///
1532   /// By default, performs semantic analysis to build the new statement.
1533   /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)1534   StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc,
1535                                             Stmt *Body) {
1536     return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body);
1537   }
1538 
1539   /// Build a new Objective-C \@throw statement.
1540   ///
1541   /// By default, performs semantic analysis to build the new statement.
1542   /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Operand)1543   StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc,
1544                                           Expr *Operand) {
1545     return getSema().BuildObjCAtThrowStmt(AtLoc, Operand);
1546   }
1547 
1548   /// Build a new OpenMP executable directive.
1549   ///
1550   /// By default, performs semantic analysis to build the new statement.
1551   /// Subclasses may override this routine to provide different behavior.
RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind,DeclarationNameInfo DirName,OpenMPDirectiveKind CancelRegion,ArrayRef<OMPClause * > Clauses,Stmt * AStmt,SourceLocation StartLoc,SourceLocation EndLoc)1552   StmtResult RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind,
1553                                            DeclarationNameInfo DirName,
1554                                            OpenMPDirectiveKind CancelRegion,
1555                                            ArrayRef<OMPClause *> Clauses,
1556                                            Stmt *AStmt, SourceLocation StartLoc,
1557                                            SourceLocation EndLoc) {
1558     return getSema().ActOnOpenMPExecutableDirective(
1559         Kind, DirName, CancelRegion, Clauses, AStmt, StartLoc, EndLoc);
1560   }
1561 
1562   /// Build a new OpenMP 'if' clause.
1563   ///
1564   /// By default, performs semantic analysis to build the new OpenMP clause.
1565   /// Subclasses may override this routine to provide different behavior.
RebuildOMPIfClause(OpenMPDirectiveKind NameModifier,Expr * Condition,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation NameModifierLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1566   OMPClause *RebuildOMPIfClause(OpenMPDirectiveKind NameModifier,
1567                                 Expr *Condition, SourceLocation StartLoc,
1568                                 SourceLocation LParenLoc,
1569                                 SourceLocation NameModifierLoc,
1570                                 SourceLocation ColonLoc,
1571                                 SourceLocation EndLoc) {
1572     return getSema().ActOnOpenMPIfClause(NameModifier, Condition, StartLoc,
1573                                          LParenLoc, NameModifierLoc, ColonLoc,
1574                                          EndLoc);
1575   }
1576 
1577   /// Build a new OpenMP 'final' clause.
1578   ///
1579   /// By default, performs semantic analysis to build the new OpenMP clause.
1580   /// Subclasses may override this routine to provide different behavior.
RebuildOMPFinalClause(Expr * Condition,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1581   OMPClause *RebuildOMPFinalClause(Expr *Condition, SourceLocation StartLoc,
1582                                    SourceLocation LParenLoc,
1583                                    SourceLocation EndLoc) {
1584     return getSema().ActOnOpenMPFinalClause(Condition, StartLoc, LParenLoc,
1585                                             EndLoc);
1586   }
1587 
1588   /// Build a new OpenMP 'num_threads' clause.
1589   ///
1590   /// By default, performs semantic analysis to build the new OpenMP clause.
1591   /// Subclasses may override this routine to provide different behavior.
RebuildOMPNumThreadsClause(Expr * NumThreads,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1592   OMPClause *RebuildOMPNumThreadsClause(Expr *NumThreads,
1593                                         SourceLocation StartLoc,
1594                                         SourceLocation LParenLoc,
1595                                         SourceLocation EndLoc) {
1596     return getSema().ActOnOpenMPNumThreadsClause(NumThreads, StartLoc,
1597                                                  LParenLoc, EndLoc);
1598   }
1599 
1600   /// Build a new OpenMP 'safelen' clause.
1601   ///
1602   /// By default, performs semantic analysis to build the new OpenMP clause.
1603   /// Subclasses may override this routine to provide different behavior.
RebuildOMPSafelenClause(Expr * Len,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1604   OMPClause *RebuildOMPSafelenClause(Expr *Len, SourceLocation StartLoc,
1605                                      SourceLocation LParenLoc,
1606                                      SourceLocation EndLoc) {
1607     return getSema().ActOnOpenMPSafelenClause(Len, StartLoc, LParenLoc, EndLoc);
1608   }
1609 
1610   /// Build a new OpenMP 'simdlen' clause.
1611   ///
1612   /// By default, performs semantic analysis to build the new OpenMP clause.
1613   /// Subclasses may override this routine to provide different behavior.
RebuildOMPSimdlenClause(Expr * Len,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1614   OMPClause *RebuildOMPSimdlenClause(Expr *Len, SourceLocation StartLoc,
1615                                      SourceLocation LParenLoc,
1616                                      SourceLocation EndLoc) {
1617     return getSema().ActOnOpenMPSimdlenClause(Len, StartLoc, LParenLoc, EndLoc);
1618   }
1619 
1620   /// Build a new OpenMP 'allocator' clause.
1621   ///
1622   /// By default, performs semantic analysis to build the new OpenMP clause.
1623   /// Subclasses may override this routine to provide different behavior.
RebuildOMPAllocatorClause(Expr * A,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1624   OMPClause *RebuildOMPAllocatorClause(Expr *A, SourceLocation StartLoc,
1625                                        SourceLocation LParenLoc,
1626                                        SourceLocation EndLoc) {
1627     return getSema().ActOnOpenMPAllocatorClause(A, StartLoc, LParenLoc, EndLoc);
1628   }
1629 
1630   /// Build a new OpenMP 'collapse' clause.
1631   ///
1632   /// By default, performs semantic analysis to build the new OpenMP clause.
1633   /// Subclasses may override this routine to provide different behavior.
RebuildOMPCollapseClause(Expr * Num,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1634   OMPClause *RebuildOMPCollapseClause(Expr *Num, SourceLocation StartLoc,
1635                                       SourceLocation LParenLoc,
1636                                       SourceLocation EndLoc) {
1637     return getSema().ActOnOpenMPCollapseClause(Num, StartLoc, LParenLoc,
1638                                                EndLoc);
1639   }
1640 
1641   /// Build a new OpenMP 'default' clause.
1642   ///
1643   /// By default, performs semantic analysis to build the new OpenMP clause.
1644   /// Subclasses may override this routine to provide different behavior.
RebuildOMPDefaultClause(DefaultKind Kind,SourceLocation KindKwLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1645   OMPClause *RebuildOMPDefaultClause(DefaultKind Kind, SourceLocation KindKwLoc,
1646                                      SourceLocation StartLoc,
1647                                      SourceLocation LParenLoc,
1648                                      SourceLocation EndLoc) {
1649     return getSema().ActOnOpenMPDefaultClause(Kind, KindKwLoc,
1650                                               StartLoc, LParenLoc, EndLoc);
1651   }
1652 
1653   /// Build a new OpenMP 'proc_bind' clause.
1654   ///
1655   /// By default, performs semantic analysis to build the new OpenMP clause.
1656   /// Subclasses may override this routine to provide different behavior.
RebuildOMPProcBindClause(ProcBindKind Kind,SourceLocation KindKwLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1657   OMPClause *RebuildOMPProcBindClause(ProcBindKind Kind,
1658                                       SourceLocation KindKwLoc,
1659                                       SourceLocation StartLoc,
1660                                       SourceLocation LParenLoc,
1661                                       SourceLocation EndLoc) {
1662     return getSema().ActOnOpenMPProcBindClause(Kind, KindKwLoc,
1663                                                StartLoc, LParenLoc, EndLoc);
1664   }
1665 
1666   /// Build a new OpenMP 'schedule' clause.
1667   ///
1668   /// By default, performs semantic analysis to build the new OpenMP clause.
1669   /// Subclasses may override this routine to provide different behavior.
RebuildOMPScheduleClause(OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2,OpenMPScheduleClauseKind Kind,Expr * ChunkSize,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation M1Loc,SourceLocation M2Loc,SourceLocation KindLoc,SourceLocation CommaLoc,SourceLocation EndLoc)1670   OMPClause *RebuildOMPScheduleClause(
1671       OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
1672       OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
1673       SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
1674       SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc) {
1675     return getSema().ActOnOpenMPScheduleClause(
1676         M1, M2, Kind, ChunkSize, StartLoc, LParenLoc, M1Loc, M2Loc, KindLoc,
1677         CommaLoc, EndLoc);
1678   }
1679 
1680   /// Build a new OpenMP 'ordered' clause.
1681   ///
1682   /// By default, performs semantic analysis to build the new OpenMP clause.
1683   /// Subclasses may override this routine to provide different behavior.
RebuildOMPOrderedClause(SourceLocation StartLoc,SourceLocation EndLoc,SourceLocation LParenLoc,Expr * Num)1684   OMPClause *RebuildOMPOrderedClause(SourceLocation StartLoc,
1685                                      SourceLocation EndLoc,
1686                                      SourceLocation LParenLoc, Expr *Num) {
1687     return getSema().ActOnOpenMPOrderedClause(StartLoc, EndLoc, LParenLoc, Num);
1688   }
1689 
1690   /// Build a new OpenMP 'private' clause.
1691   ///
1692   /// By default, performs semantic analysis to build the new OpenMP clause.
1693   /// Subclasses may override this routine to provide different behavior.
RebuildOMPPrivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1694   OMPClause *RebuildOMPPrivateClause(ArrayRef<Expr *> VarList,
1695                                      SourceLocation StartLoc,
1696                                      SourceLocation LParenLoc,
1697                                      SourceLocation EndLoc) {
1698     return getSema().ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc,
1699                                               EndLoc);
1700   }
1701 
1702   /// Build a new OpenMP 'firstprivate' clause.
1703   ///
1704   /// By default, performs semantic analysis to build the new OpenMP clause.
1705   /// Subclasses may override this routine to provide different behavior.
RebuildOMPFirstprivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1706   OMPClause *RebuildOMPFirstprivateClause(ArrayRef<Expr *> VarList,
1707                                           SourceLocation StartLoc,
1708                                           SourceLocation LParenLoc,
1709                                           SourceLocation EndLoc) {
1710     return getSema().ActOnOpenMPFirstprivateClause(VarList, StartLoc, LParenLoc,
1711                                                    EndLoc);
1712   }
1713 
1714   /// Build a new OpenMP 'lastprivate' clause.
1715   ///
1716   /// By default, performs semantic analysis to build the new OpenMP clause.
1717   /// Subclasses may override this routine to provide different behavior.
RebuildOMPLastprivateClause(ArrayRef<Expr * > VarList,OpenMPLastprivateModifier LPKind,SourceLocation LPKindLoc,SourceLocation ColonLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1718   OMPClause *RebuildOMPLastprivateClause(ArrayRef<Expr *> VarList,
1719                                          OpenMPLastprivateModifier LPKind,
1720                                          SourceLocation LPKindLoc,
1721                                          SourceLocation ColonLoc,
1722                                          SourceLocation StartLoc,
1723                                          SourceLocation LParenLoc,
1724                                          SourceLocation EndLoc) {
1725     return getSema().ActOnOpenMPLastprivateClause(
1726         VarList, LPKind, LPKindLoc, ColonLoc, StartLoc, LParenLoc, EndLoc);
1727   }
1728 
1729   /// Build a new OpenMP 'shared' clause.
1730   ///
1731   /// By default, performs semantic analysis to build the new OpenMP clause.
1732   /// Subclasses may override this routine to provide different behavior.
RebuildOMPSharedClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1733   OMPClause *RebuildOMPSharedClause(ArrayRef<Expr *> VarList,
1734                                     SourceLocation StartLoc,
1735                                     SourceLocation LParenLoc,
1736                                     SourceLocation EndLoc) {
1737     return getSema().ActOnOpenMPSharedClause(VarList, StartLoc, LParenLoc,
1738                                              EndLoc);
1739   }
1740 
1741   /// Build a new OpenMP 'reduction' clause.
1742   ///
1743   /// By default, performs semantic analysis to build the new statement.
1744   /// Subclasses may override this routine to provide different behavior.
RebuildOMPReductionClause(ArrayRef<Expr * > VarList,OpenMPReductionClauseModifier Modifier,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ModifierLoc,SourceLocation ColonLoc,SourceLocation EndLoc,CXXScopeSpec & ReductionIdScopeSpec,const DeclarationNameInfo & ReductionId,ArrayRef<Expr * > UnresolvedReductions)1745   OMPClause *RebuildOMPReductionClause(
1746       ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
1747       SourceLocation StartLoc, SourceLocation LParenLoc,
1748       SourceLocation ModifierLoc, SourceLocation ColonLoc,
1749       SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec,
1750       const DeclarationNameInfo &ReductionId,
1751       ArrayRef<Expr *> UnresolvedReductions) {
1752     return getSema().ActOnOpenMPReductionClause(
1753         VarList, Modifier, StartLoc, LParenLoc, ModifierLoc, ColonLoc, EndLoc,
1754         ReductionIdScopeSpec, ReductionId, UnresolvedReductions);
1755   }
1756 
1757   /// Build a new OpenMP 'task_reduction' clause.
1758   ///
1759   /// By default, performs semantic analysis to build the new statement.
1760   /// Subclasses may override this routine to provide different behavior.
RebuildOMPTaskReductionClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc,CXXScopeSpec & ReductionIdScopeSpec,const DeclarationNameInfo & ReductionId,ArrayRef<Expr * > UnresolvedReductions)1761   OMPClause *RebuildOMPTaskReductionClause(
1762       ArrayRef<Expr *> VarList, SourceLocation StartLoc,
1763       SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
1764       CXXScopeSpec &ReductionIdScopeSpec,
1765       const DeclarationNameInfo &ReductionId,
1766       ArrayRef<Expr *> UnresolvedReductions) {
1767     return getSema().ActOnOpenMPTaskReductionClause(
1768         VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec,
1769         ReductionId, UnresolvedReductions);
1770   }
1771 
1772   /// Build a new OpenMP 'in_reduction' clause.
1773   ///
1774   /// By default, performs semantic analysis to build the new statement.
1775   /// Subclasses may override this routine to provide different behavior.
1776   OMPClause *
RebuildOMPInReductionClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc,CXXScopeSpec & ReductionIdScopeSpec,const DeclarationNameInfo & ReductionId,ArrayRef<Expr * > UnresolvedReductions)1777   RebuildOMPInReductionClause(ArrayRef<Expr *> VarList, SourceLocation StartLoc,
1778                               SourceLocation LParenLoc, SourceLocation ColonLoc,
1779                               SourceLocation EndLoc,
1780                               CXXScopeSpec &ReductionIdScopeSpec,
1781                               const DeclarationNameInfo &ReductionId,
1782                               ArrayRef<Expr *> UnresolvedReductions) {
1783     return getSema().ActOnOpenMPInReductionClause(
1784         VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec,
1785         ReductionId, UnresolvedReductions);
1786   }
1787 
1788   /// Build a new OpenMP 'linear' clause.
1789   ///
1790   /// By default, performs semantic analysis to build the new OpenMP clause.
1791   /// Subclasses may override this routine to provide different behavior.
RebuildOMPLinearClause(ArrayRef<Expr * > VarList,Expr * Step,SourceLocation StartLoc,SourceLocation LParenLoc,OpenMPLinearClauseKind Modifier,SourceLocation ModifierLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1792   OMPClause *RebuildOMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
1793                                     SourceLocation StartLoc,
1794                                     SourceLocation LParenLoc,
1795                                     OpenMPLinearClauseKind Modifier,
1796                                     SourceLocation ModifierLoc,
1797                                     SourceLocation ColonLoc,
1798                                     SourceLocation EndLoc) {
1799     return getSema().ActOnOpenMPLinearClause(VarList, Step, StartLoc, LParenLoc,
1800                                              Modifier, ModifierLoc, ColonLoc,
1801                                              EndLoc);
1802   }
1803 
1804   /// Build a new OpenMP 'aligned' clause.
1805   ///
1806   /// By default, performs semantic analysis to build the new OpenMP clause.
1807   /// Subclasses may override this routine to provide different behavior.
RebuildOMPAlignedClause(ArrayRef<Expr * > VarList,Expr * Alignment,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1808   OMPClause *RebuildOMPAlignedClause(ArrayRef<Expr *> VarList, Expr *Alignment,
1809                                      SourceLocation StartLoc,
1810                                      SourceLocation LParenLoc,
1811                                      SourceLocation ColonLoc,
1812                                      SourceLocation EndLoc) {
1813     return getSema().ActOnOpenMPAlignedClause(VarList, Alignment, StartLoc,
1814                                               LParenLoc, ColonLoc, EndLoc);
1815   }
1816 
1817   /// Build a new OpenMP 'copyin' clause.
1818   ///
1819   /// By default, performs semantic analysis to build the new OpenMP clause.
1820   /// Subclasses may override this routine to provide different behavior.
RebuildOMPCopyinClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1821   OMPClause *RebuildOMPCopyinClause(ArrayRef<Expr *> VarList,
1822                                     SourceLocation StartLoc,
1823                                     SourceLocation LParenLoc,
1824                                     SourceLocation EndLoc) {
1825     return getSema().ActOnOpenMPCopyinClause(VarList, StartLoc, LParenLoc,
1826                                              EndLoc);
1827   }
1828 
1829   /// Build a new OpenMP 'copyprivate' clause.
1830   ///
1831   /// By default, performs semantic analysis to build the new OpenMP clause.
1832   /// Subclasses may override this routine to provide different behavior.
RebuildOMPCopyprivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1833   OMPClause *RebuildOMPCopyprivateClause(ArrayRef<Expr *> VarList,
1834                                          SourceLocation StartLoc,
1835                                          SourceLocation LParenLoc,
1836                                          SourceLocation EndLoc) {
1837     return getSema().ActOnOpenMPCopyprivateClause(VarList, StartLoc, LParenLoc,
1838                                                   EndLoc);
1839   }
1840 
1841   /// Build a new OpenMP 'flush' pseudo clause.
1842   ///
1843   /// By default, performs semantic analysis to build the new OpenMP clause.
1844   /// Subclasses may override this routine to provide different behavior.
RebuildOMPFlushClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1845   OMPClause *RebuildOMPFlushClause(ArrayRef<Expr *> VarList,
1846                                    SourceLocation StartLoc,
1847                                    SourceLocation LParenLoc,
1848                                    SourceLocation EndLoc) {
1849     return getSema().ActOnOpenMPFlushClause(VarList, StartLoc, LParenLoc,
1850                                             EndLoc);
1851   }
1852 
1853   /// Build a new OpenMP 'depobj' pseudo clause.
1854   ///
1855   /// By default, performs semantic analysis to build the new OpenMP clause.
1856   /// Subclasses may override this routine to provide different behavior.
RebuildOMPDepobjClause(Expr * Depobj,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1857   OMPClause *RebuildOMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
1858                                     SourceLocation LParenLoc,
1859                                     SourceLocation EndLoc) {
1860     return getSema().ActOnOpenMPDepobjClause(Depobj, StartLoc, LParenLoc,
1861                                              EndLoc);
1862   }
1863 
1864   /// Build a new OpenMP 'depend' pseudo clause.
1865   ///
1866   /// By default, performs semantic analysis to build the new OpenMP clause.
1867   /// Subclasses may override this routine to provide different behavior.
1868   OMPClause *
RebuildOMPDependClause(Expr * DepModifier,OpenMPDependClauseKind DepKind,SourceLocation DepLoc,SourceLocation ColonLoc,ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1869   RebuildOMPDependClause(Expr *DepModifier, OpenMPDependClauseKind DepKind,
1870                          SourceLocation DepLoc, SourceLocation ColonLoc,
1871                          ArrayRef<Expr *> VarList, SourceLocation StartLoc,
1872                          SourceLocation LParenLoc, SourceLocation EndLoc) {
1873     return getSema().ActOnOpenMPDependClause(DepModifier, DepKind, DepLoc,
1874                                              ColonLoc, VarList, StartLoc,
1875                                              LParenLoc, EndLoc);
1876   }
1877 
1878   /// Build a new OpenMP 'device' clause.
1879   ///
1880   /// By default, performs semantic analysis to build the new statement.
1881   /// Subclasses may override this routine to provide different behavior.
RebuildOMPDeviceClause(OpenMPDeviceClauseModifier Modifier,Expr * Device,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ModifierLoc,SourceLocation EndLoc)1882   OMPClause *RebuildOMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
1883                                     Expr *Device, SourceLocation StartLoc,
1884                                     SourceLocation LParenLoc,
1885                                     SourceLocation ModifierLoc,
1886                                     SourceLocation EndLoc) {
1887     return getSema().ActOnOpenMPDeviceClause(Modifier, Device, StartLoc,
1888                                              LParenLoc, ModifierLoc, EndLoc);
1889   }
1890 
1891   /// Build a new OpenMP 'map' clause.
1892   ///
1893   /// By default, performs semantic analysis to build the new OpenMP clause.
1894   /// Subclasses may override this routine to provide different behavior.
RebuildOMPMapClause(ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,ArrayRef<SourceLocation> MapTypeModifiersLoc,CXXScopeSpec MapperIdScopeSpec,DeclarationNameInfo MapperId,OpenMPMapClauseKind MapType,bool IsMapTypeImplicit,SourceLocation MapLoc,SourceLocation ColonLoc,ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs,ArrayRef<Expr * > UnresolvedMappers)1895   OMPClause *RebuildOMPMapClause(
1896       ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
1897       ArrayRef<SourceLocation> MapTypeModifiersLoc,
1898       CXXScopeSpec MapperIdScopeSpec, DeclarationNameInfo MapperId,
1899       OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
1900       SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
1901       const OMPVarListLocTy &Locs, ArrayRef<Expr *> UnresolvedMappers) {
1902     return getSema().ActOnOpenMPMapClause(MapTypeModifiers, MapTypeModifiersLoc,
1903                                           MapperIdScopeSpec, MapperId, MapType,
1904                                           IsMapTypeImplicit, MapLoc, ColonLoc,
1905                                           VarList, Locs, UnresolvedMappers);
1906   }
1907 
1908   /// Build a new OpenMP 'allocate' clause.
1909   ///
1910   /// By default, performs semantic analysis to build the new OpenMP clause.
1911   /// Subclasses may override this routine to provide different behavior.
RebuildOMPAllocateClause(Expr * Allocate,ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1912   OMPClause *RebuildOMPAllocateClause(Expr *Allocate, ArrayRef<Expr *> VarList,
1913                                       SourceLocation StartLoc,
1914                                       SourceLocation LParenLoc,
1915                                       SourceLocation ColonLoc,
1916                                       SourceLocation EndLoc) {
1917     return getSema().ActOnOpenMPAllocateClause(Allocate, VarList, StartLoc,
1918                                                LParenLoc, ColonLoc, EndLoc);
1919   }
1920 
1921   /// Build a new OpenMP 'num_teams' clause.
1922   ///
1923   /// By default, performs semantic analysis to build the new statement.
1924   /// Subclasses may override this routine to provide different behavior.
RebuildOMPNumTeamsClause(Expr * NumTeams,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1925   OMPClause *RebuildOMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc,
1926                                       SourceLocation LParenLoc,
1927                                       SourceLocation EndLoc) {
1928     return getSema().ActOnOpenMPNumTeamsClause(NumTeams, StartLoc, LParenLoc,
1929                                                EndLoc);
1930   }
1931 
1932   /// Build a new OpenMP 'thread_limit' clause.
1933   ///
1934   /// By default, performs semantic analysis to build the new statement.
1935   /// Subclasses may override this routine to provide different behavior.
RebuildOMPThreadLimitClause(Expr * ThreadLimit,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1936   OMPClause *RebuildOMPThreadLimitClause(Expr *ThreadLimit,
1937                                          SourceLocation StartLoc,
1938                                          SourceLocation LParenLoc,
1939                                          SourceLocation EndLoc) {
1940     return getSema().ActOnOpenMPThreadLimitClause(ThreadLimit, StartLoc,
1941                                                   LParenLoc, EndLoc);
1942   }
1943 
1944   /// Build a new OpenMP 'priority' clause.
1945   ///
1946   /// By default, performs semantic analysis to build the new statement.
1947   /// Subclasses may override this routine to provide different behavior.
RebuildOMPPriorityClause(Expr * Priority,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1948   OMPClause *RebuildOMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
1949                                       SourceLocation LParenLoc,
1950                                       SourceLocation EndLoc) {
1951     return getSema().ActOnOpenMPPriorityClause(Priority, StartLoc, LParenLoc,
1952                                                EndLoc);
1953   }
1954 
1955   /// Build a new OpenMP 'grainsize' clause.
1956   ///
1957   /// By default, performs semantic analysis to build the new statement.
1958   /// Subclasses may override this routine to provide different behavior.
RebuildOMPGrainsizeClause(Expr * Grainsize,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1959   OMPClause *RebuildOMPGrainsizeClause(Expr *Grainsize, SourceLocation StartLoc,
1960                                        SourceLocation LParenLoc,
1961                                        SourceLocation EndLoc) {
1962     return getSema().ActOnOpenMPGrainsizeClause(Grainsize, StartLoc, LParenLoc,
1963                                                 EndLoc);
1964   }
1965 
1966   /// Build a new OpenMP 'num_tasks' clause.
1967   ///
1968   /// By default, performs semantic analysis to build the new statement.
1969   /// Subclasses may override this routine to provide different behavior.
RebuildOMPNumTasksClause(Expr * NumTasks,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1970   OMPClause *RebuildOMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc,
1971                                       SourceLocation LParenLoc,
1972                                       SourceLocation EndLoc) {
1973     return getSema().ActOnOpenMPNumTasksClause(NumTasks, StartLoc, LParenLoc,
1974                                                EndLoc);
1975   }
1976 
1977   /// Build a new OpenMP 'hint' clause.
1978   ///
1979   /// By default, performs semantic analysis to build the new statement.
1980   /// Subclasses may override this routine to provide different behavior.
RebuildOMPHintClause(Expr * Hint,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1981   OMPClause *RebuildOMPHintClause(Expr *Hint, SourceLocation StartLoc,
1982                                   SourceLocation LParenLoc,
1983                                   SourceLocation EndLoc) {
1984     return getSema().ActOnOpenMPHintClause(Hint, StartLoc, LParenLoc, EndLoc);
1985   }
1986 
1987   /// Build a new OpenMP 'detach' clause.
1988   ///
1989   /// By default, performs semantic analysis to build the new statement.
1990   /// Subclasses may override this routine to provide different behavior.
RebuildOMPDetachClause(Expr * Evt,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1991   OMPClause *RebuildOMPDetachClause(Expr *Evt, SourceLocation StartLoc,
1992                                     SourceLocation LParenLoc,
1993                                     SourceLocation EndLoc) {
1994     return getSema().ActOnOpenMPDetachClause(Evt, StartLoc, LParenLoc, EndLoc);
1995   }
1996 
1997   /// Build a new OpenMP 'dist_schedule' clause.
1998   ///
1999   /// By default, performs semantic analysis to build the new OpenMP clause.
2000   /// Subclasses may override this routine to provide different behavior.
2001   OMPClause *
RebuildOMPDistScheduleClause(OpenMPDistScheduleClauseKind Kind,Expr * ChunkSize,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation KindLoc,SourceLocation CommaLoc,SourceLocation EndLoc)2002   RebuildOMPDistScheduleClause(OpenMPDistScheduleClauseKind Kind,
2003                                Expr *ChunkSize, SourceLocation StartLoc,
2004                                SourceLocation LParenLoc, SourceLocation KindLoc,
2005                                SourceLocation CommaLoc, SourceLocation EndLoc) {
2006     return getSema().ActOnOpenMPDistScheduleClause(
2007         Kind, ChunkSize, StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc);
2008   }
2009 
2010   /// Build a new OpenMP 'to' clause.
2011   ///
2012   /// By default, performs semantic analysis to build the new statement.
2013   /// Subclasses may override this routine to provide different behavior.
2014   OMPClause *
RebuildOMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,ArrayRef<SourceLocation> MotionModifiersLoc,CXXScopeSpec & MapperIdScopeSpec,DeclarationNameInfo & MapperId,SourceLocation ColonLoc,ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs,ArrayRef<Expr * > UnresolvedMappers)2015   RebuildOMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
2016                      ArrayRef<SourceLocation> MotionModifiersLoc,
2017                      CXXScopeSpec &MapperIdScopeSpec,
2018                      DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
2019                      ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
2020                      ArrayRef<Expr *> UnresolvedMappers) {
2021     return getSema().ActOnOpenMPToClause(MotionModifiers, MotionModifiersLoc,
2022                                          MapperIdScopeSpec, MapperId, ColonLoc,
2023                                          VarList, Locs, UnresolvedMappers);
2024   }
2025 
2026   /// Build a new OpenMP 'from' clause.
2027   ///
2028   /// By default, performs semantic analysis to build the new statement.
2029   /// Subclasses may override this routine to provide different behavior.
2030   OMPClause *
RebuildOMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,ArrayRef<SourceLocation> MotionModifiersLoc,CXXScopeSpec & MapperIdScopeSpec,DeclarationNameInfo & MapperId,SourceLocation ColonLoc,ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs,ArrayRef<Expr * > UnresolvedMappers)2031   RebuildOMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
2032                        ArrayRef<SourceLocation> MotionModifiersLoc,
2033                        CXXScopeSpec &MapperIdScopeSpec,
2034                        DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
2035                        ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
2036                        ArrayRef<Expr *> UnresolvedMappers) {
2037     return getSema().ActOnOpenMPFromClause(
2038         MotionModifiers, MotionModifiersLoc, MapperIdScopeSpec, MapperId,
2039         ColonLoc, VarList, Locs, UnresolvedMappers);
2040   }
2041 
2042   /// Build a new OpenMP 'use_device_ptr' clause.
2043   ///
2044   /// By default, performs semantic analysis to build the new OpenMP clause.
2045   /// Subclasses may override this routine to provide different behavior.
RebuildOMPUseDevicePtrClause(ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs)2046   OMPClause *RebuildOMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
2047                                           const OMPVarListLocTy &Locs) {
2048     return getSema().ActOnOpenMPUseDevicePtrClause(VarList, Locs);
2049   }
2050 
2051   /// Build a new OpenMP 'use_device_addr' clause.
2052   ///
2053   /// By default, performs semantic analysis to build the new OpenMP clause.
2054   /// Subclasses may override this routine to provide different behavior.
RebuildOMPUseDeviceAddrClause(ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs)2055   OMPClause *RebuildOMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
2056                                            const OMPVarListLocTy &Locs) {
2057     return getSema().ActOnOpenMPUseDeviceAddrClause(VarList, Locs);
2058   }
2059 
2060   /// Build a new OpenMP 'is_device_ptr' clause.
2061   ///
2062   /// By default, performs semantic analysis to build the new OpenMP clause.
2063   /// Subclasses may override this routine to provide different behavior.
RebuildOMPIsDevicePtrClause(ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs)2064   OMPClause *RebuildOMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
2065                                          const OMPVarListLocTy &Locs) {
2066     return getSema().ActOnOpenMPIsDevicePtrClause(VarList, Locs);
2067   }
2068 
2069   /// Build a new OpenMP 'defaultmap' clause.
2070   ///
2071   /// By default, performs semantic analysis to build the new OpenMP clause.
2072   /// Subclasses may override this routine to provide different behavior.
RebuildOMPDefaultmapClause(OpenMPDefaultmapClauseModifier M,OpenMPDefaultmapClauseKind Kind,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation MLoc,SourceLocation KindLoc,SourceLocation EndLoc)2073   OMPClause *RebuildOMPDefaultmapClause(OpenMPDefaultmapClauseModifier M,
2074                                         OpenMPDefaultmapClauseKind Kind,
2075                                         SourceLocation StartLoc,
2076                                         SourceLocation LParenLoc,
2077                                         SourceLocation MLoc,
2078                                         SourceLocation KindLoc,
2079                                         SourceLocation EndLoc) {
2080     return getSema().ActOnOpenMPDefaultmapClause(M, Kind, StartLoc, LParenLoc,
2081                                                  MLoc, KindLoc, EndLoc);
2082   }
2083 
2084   /// Build a new OpenMP 'nontemporal' clause.
2085   ///
2086   /// By default, performs semantic analysis to build the new OpenMP clause.
2087   /// Subclasses may override this routine to provide different behavior.
RebuildOMPNontemporalClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2088   OMPClause *RebuildOMPNontemporalClause(ArrayRef<Expr *> VarList,
2089                                          SourceLocation StartLoc,
2090                                          SourceLocation LParenLoc,
2091                                          SourceLocation EndLoc) {
2092     return getSema().ActOnOpenMPNontemporalClause(VarList, StartLoc, LParenLoc,
2093                                                   EndLoc);
2094   }
2095 
2096   /// Build a new OpenMP 'inclusive' clause.
2097   ///
2098   /// By default, performs semantic analysis to build the new OpenMP clause.
2099   /// Subclasses may override this routine to provide different behavior.
RebuildOMPInclusiveClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2100   OMPClause *RebuildOMPInclusiveClause(ArrayRef<Expr *> VarList,
2101                                        SourceLocation StartLoc,
2102                                        SourceLocation LParenLoc,
2103                                        SourceLocation EndLoc) {
2104     return getSema().ActOnOpenMPInclusiveClause(VarList, StartLoc, LParenLoc,
2105                                                 EndLoc);
2106   }
2107 
2108   /// Build a new OpenMP 'exclusive' clause.
2109   ///
2110   /// By default, performs semantic analysis to build the new OpenMP clause.
2111   /// Subclasses may override this routine to provide different behavior.
RebuildOMPExclusiveClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2112   OMPClause *RebuildOMPExclusiveClause(ArrayRef<Expr *> VarList,
2113                                        SourceLocation StartLoc,
2114                                        SourceLocation LParenLoc,
2115                                        SourceLocation EndLoc) {
2116     return getSema().ActOnOpenMPExclusiveClause(VarList, StartLoc, LParenLoc,
2117                                                 EndLoc);
2118   }
2119 
2120   /// Build a new OpenMP 'uses_allocators' clause.
2121   ///
2122   /// By default, performs semantic analysis to build the new OpenMP clause.
2123   /// Subclasses may override this routine to provide different behavior.
RebuildOMPUsesAllocatorsClause(ArrayRef<Sema::UsesAllocatorsData> Data,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2124   OMPClause *RebuildOMPUsesAllocatorsClause(
2125       ArrayRef<Sema::UsesAllocatorsData> Data, SourceLocation StartLoc,
2126       SourceLocation LParenLoc, SourceLocation EndLoc) {
2127     return getSema().ActOnOpenMPUsesAllocatorClause(StartLoc, LParenLoc, EndLoc,
2128                                                     Data);
2129   }
2130 
2131   /// Build a new OpenMP 'affinity' clause.
2132   ///
2133   /// By default, performs semantic analysis to build the new OpenMP clause.
2134   /// Subclasses may override this routine to provide different behavior.
RebuildOMPAffinityClause(SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc,Expr * Modifier,ArrayRef<Expr * > Locators)2135   OMPClause *RebuildOMPAffinityClause(SourceLocation StartLoc,
2136                                       SourceLocation LParenLoc,
2137                                       SourceLocation ColonLoc,
2138                                       SourceLocation EndLoc, Expr *Modifier,
2139                                       ArrayRef<Expr *> Locators) {
2140     return getSema().ActOnOpenMPAffinityClause(StartLoc, LParenLoc, ColonLoc,
2141                                                EndLoc, Modifier, Locators);
2142   }
2143 
2144   /// Build a new OpenMP 'order' clause.
2145   ///
2146   /// By default, performs semantic analysis to build the new OpenMP clause.
2147   /// Subclasses may override this routine to provide different behavior.
RebuildOMPOrderClause(OpenMPOrderClauseKind Kind,SourceLocation KindKwLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2148   OMPClause *RebuildOMPOrderClause(OpenMPOrderClauseKind Kind,
2149                                    SourceLocation KindKwLoc,
2150                                    SourceLocation StartLoc,
2151                                    SourceLocation LParenLoc,
2152                                    SourceLocation EndLoc) {
2153     return getSema().ActOnOpenMPOrderClause(Kind, KindKwLoc, StartLoc,
2154                                             LParenLoc, EndLoc);
2155   }
2156 
2157   /// Rebuild the operand to an Objective-C \@synchronized statement.
2158   ///
2159   /// By default, performs semantic analysis to build the new statement.
2160   /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * object)2161   ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,
2162                                               Expr *object) {
2163     return getSema().ActOnObjCAtSynchronizedOperand(atLoc, object);
2164   }
2165 
2166   /// Build a new Objective-C \@synchronized statement.
2167   ///
2168   /// By default, performs semantic analysis to build the new statement.
2169   /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * Object,Stmt * Body)2170   StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,
2171                                            Expr *Object, Stmt *Body) {
2172     return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body);
2173   }
2174 
2175   /// Build a new Objective-C \@autoreleasepool statement.
2176   ///
2177   /// By default, performs semantic analysis to build the new statement.
2178   /// Subclasses may override this routine to provide different behavior.
RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)2179   StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,
2180                                             Stmt *Body) {
2181     return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body);
2182   }
2183 
2184   /// Build a new Objective-C fast enumeration statement.
2185   ///
2186   /// By default, performs semantic analysis to build the new statement.
2187   /// Subclasses may override this routine to provide different behavior.
RebuildObjCForCollectionStmt(SourceLocation ForLoc,Stmt * Element,Expr * Collection,SourceLocation RParenLoc,Stmt * Body)2188   StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc,
2189                                           Stmt *Element,
2190                                           Expr *Collection,
2191                                           SourceLocation RParenLoc,
2192                                           Stmt *Body) {
2193     StmtResult ForEachStmt = getSema().ActOnObjCForCollectionStmt(ForLoc,
2194                                                 Element,
2195                                                 Collection,
2196                                                 RParenLoc);
2197     if (ForEachStmt.isInvalid())
2198       return StmtError();
2199 
2200     return getSema().FinishObjCForCollectionStmt(ForEachStmt.get(), Body);
2201   }
2202 
2203   /// Build a new C++ exception declaration.
2204   ///
2205   /// By default, performs semantic analysis to build the new decaration.
2206   /// Subclasses may override this routine to provide different behavior.
RebuildExceptionDecl(VarDecl * ExceptionDecl,TypeSourceInfo * Declarator,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id)2207   VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
2208                                 TypeSourceInfo *Declarator,
2209                                 SourceLocation StartLoc,
2210                                 SourceLocation IdLoc,
2211                                 IdentifierInfo *Id) {
2212     VarDecl *Var = getSema().BuildExceptionDeclaration(nullptr, Declarator,
2213                                                        StartLoc, IdLoc, Id);
2214     if (Var)
2215       getSema().CurContext->addDecl(Var);
2216     return Var;
2217   }
2218 
2219   /// Build a new C++ catch statement.
2220   ///
2221   /// By default, performs semantic analysis to build the new statement.
2222   /// Subclasses may override this routine to provide different behavior.
RebuildCXXCatchStmt(SourceLocation CatchLoc,VarDecl * ExceptionDecl,Stmt * Handler)2223   StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc,
2224                                  VarDecl *ExceptionDecl,
2225                                  Stmt *Handler) {
2226     return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl,
2227                                                       Handler));
2228   }
2229 
2230   /// Build a new C++ try statement.
2231   ///
2232   /// By default, performs semantic analysis to build the new statement.
2233   /// Subclasses may override this routine to provide different behavior.
RebuildCXXTryStmt(SourceLocation TryLoc,Stmt * TryBlock,ArrayRef<Stmt * > Handlers)2234   StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, Stmt *TryBlock,
2235                                ArrayRef<Stmt *> Handlers) {
2236     return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers);
2237   }
2238 
2239   /// Build a new C++0x range-based for statement.
2240   ///
2241   /// By default, performs semantic analysis to build the new statement.
2242   /// Subclasses may override this routine to provide different behavior.
RebuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation CoawaitLoc,Stmt * Init,SourceLocation ColonLoc,Stmt * Range,Stmt * Begin,Stmt * End,Expr * Cond,Expr * Inc,Stmt * LoopVar,SourceLocation RParenLoc)2243   StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc,
2244                                     SourceLocation CoawaitLoc, Stmt *Init,
2245                                     SourceLocation ColonLoc, Stmt *Range,
2246                                     Stmt *Begin, Stmt *End, Expr *Cond,
2247                                     Expr *Inc, Stmt *LoopVar,
2248                                     SourceLocation RParenLoc) {
2249     // If we've just learned that the range is actually an Objective-C
2250     // collection, treat this as an Objective-C fast enumeration loop.
2251     if (DeclStmt *RangeStmt = dyn_cast<DeclStmt>(Range)) {
2252       if (RangeStmt->isSingleDecl()) {
2253         if (VarDecl *RangeVar = dyn_cast<VarDecl>(RangeStmt->getSingleDecl())) {
2254           if (RangeVar->isInvalidDecl())
2255             return StmtError();
2256 
2257           Expr *RangeExpr = RangeVar->getInit();
2258           if (!RangeExpr->isTypeDependent() &&
2259               RangeExpr->getType()->isObjCObjectPointerType()) {
2260             // FIXME: Support init-statements in Objective-C++20 ranged for
2261             // statement.
2262             if (Init) {
2263               return SemaRef.Diag(Init->getBeginLoc(),
2264                                   diag::err_objc_for_range_init_stmt)
2265                          << Init->getSourceRange();
2266             }
2267             return getSema().ActOnObjCForCollectionStmt(ForLoc, LoopVar,
2268                                                         RangeExpr, RParenLoc);
2269           }
2270         }
2271       }
2272     }
2273 
2274     return getSema().BuildCXXForRangeStmt(ForLoc, CoawaitLoc, Init, ColonLoc,
2275                                           Range, Begin, End, Cond, Inc, LoopVar,
2276                                           RParenLoc, Sema::BFRK_Rebuild);
2277   }
2278 
2279   /// Build a new C++0x range-based for statement.
2280   ///
2281   /// By default, performs semantic analysis to build the new statement.
2282   /// Subclasses may override this routine to provide different behavior.
RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)2283   StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2284                                           bool IsIfExists,
2285                                           NestedNameSpecifierLoc QualifierLoc,
2286                                           DeclarationNameInfo NameInfo,
2287                                           Stmt *Nested) {
2288     return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2289                                                 QualifierLoc, NameInfo, Nested);
2290   }
2291 
2292   /// Attach body to a C++0x range-based for statement.
2293   ///
2294   /// By default, performs semantic analysis to finish the new statement.
2295   /// Subclasses may override this routine to provide different behavior.
FinishCXXForRangeStmt(Stmt * ForRange,Stmt * Body)2296   StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) {
2297     return getSema().FinishCXXForRangeStmt(ForRange, Body);
2298   }
2299 
RebuildSEHTryStmt(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)2300   StmtResult RebuildSEHTryStmt(bool IsCXXTry, SourceLocation TryLoc,
2301                                Stmt *TryBlock, Stmt *Handler) {
2302     return getSema().ActOnSEHTryBlock(IsCXXTry, TryLoc, TryBlock, Handler);
2303   }
2304 
RebuildSEHExceptStmt(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)2305   StmtResult RebuildSEHExceptStmt(SourceLocation Loc, Expr *FilterExpr,
2306                                   Stmt *Block) {
2307     return getSema().ActOnSEHExceptBlock(Loc, FilterExpr, Block);
2308   }
2309 
RebuildSEHFinallyStmt(SourceLocation Loc,Stmt * Block)2310   StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, Stmt *Block) {
2311     return SEHFinallyStmt::Create(getSema().getASTContext(), Loc, Block);
2312   }
2313 
2314   /// Build a new predefined expression.
2315   ///
2316   /// By default, performs semantic analysis to build the new expression.
2317   /// Subclasses may override this routine to provide different behavior.
RebuildPredefinedExpr(SourceLocation Loc,PredefinedExpr::IdentKind IK)2318   ExprResult RebuildPredefinedExpr(SourceLocation Loc,
2319                                    PredefinedExpr::IdentKind IK) {
2320     return getSema().BuildPredefinedExpr(Loc, IK);
2321   }
2322 
2323   /// Build a new expression that references a declaration.
2324   ///
2325   /// By default, performs semantic analysis to build the new expression.
2326   /// Subclasses may override this routine to provide different behavior.
RebuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool RequiresADL)2327   ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS,
2328                                         LookupResult &R,
2329                                         bool RequiresADL) {
2330     return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL);
2331   }
2332 
2333 
2334   /// Build a new expression that references a declaration.
2335   ///
2336   /// By default, performs semantic analysis to build the new expression.
2337   /// Subclasses may override this routine to provide different behavior.
RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,ValueDecl * VD,const DeclarationNameInfo & NameInfo,NamedDecl * Found,TemplateArgumentListInfo * TemplateArgs)2338   ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
2339                                 ValueDecl *VD,
2340                                 const DeclarationNameInfo &NameInfo,
2341                                 NamedDecl *Found,
2342                                 TemplateArgumentListInfo *TemplateArgs) {
2343     CXXScopeSpec SS;
2344     SS.Adopt(QualifierLoc);
2345     return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD, Found,
2346                                               TemplateArgs);
2347   }
2348 
2349   /// Build a new expression in parentheses.
2350   ///
2351   /// By default, performs semantic analysis to build the new expression.
2352   /// Subclasses may override this routine to provide different behavior.
RebuildParenExpr(Expr * SubExpr,SourceLocation LParen,SourceLocation RParen)2353   ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen,
2354                                     SourceLocation RParen) {
2355     return getSema().ActOnParenExpr(LParen, RParen, SubExpr);
2356   }
2357 
2358   /// Build a new pseudo-destructor expression.
2359   ///
2360   /// By default, performs semantic analysis to build the new expression.
2361   /// Subclasses may override this routine to provide different behavior.
2362   ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base,
2363                                             SourceLocation OperatorLoc,
2364                                             bool isArrow,
2365                                             CXXScopeSpec &SS,
2366                                             TypeSourceInfo *ScopeType,
2367                                             SourceLocation CCLoc,
2368                                             SourceLocation TildeLoc,
2369                                         PseudoDestructorTypeStorage Destroyed);
2370 
2371   /// Build a new unary operator expression.
2372   ///
2373   /// By default, performs semantic analysis to build the new expression.
2374   /// Subclasses may override this routine to provide different behavior.
RebuildUnaryOperator(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * SubExpr)2375   ExprResult RebuildUnaryOperator(SourceLocation OpLoc,
2376                                         UnaryOperatorKind Opc,
2377                                         Expr *SubExpr) {
2378     return getSema().BuildUnaryOp(/*Scope=*/nullptr, OpLoc, Opc, SubExpr);
2379   }
2380 
2381   /// Build a new builtin offsetof expression.
2382   ///
2383   /// By default, performs semantic analysis to build the new expression.
2384   /// Subclasses may override this routine to provide different behavior.
RebuildOffsetOfExpr(SourceLocation OperatorLoc,TypeSourceInfo * Type,ArrayRef<Sema::OffsetOfComponent> Components,SourceLocation RParenLoc)2385   ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc,
2386                                  TypeSourceInfo *Type,
2387                                  ArrayRef<Sema::OffsetOfComponent> Components,
2388                                  SourceLocation RParenLoc) {
2389     return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components,
2390                                           RParenLoc);
2391   }
2392 
2393   /// Build a new sizeof, alignof or vec_step expression with a
2394   /// type argument.
2395   ///
2396   /// By default, performs semantic analysis to build the new expression.
2397   /// Subclasses may override this routine to provide different behavior.
RebuildUnaryExprOrTypeTrait(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)2398   ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo,
2399                                          SourceLocation OpLoc,
2400                                          UnaryExprOrTypeTrait ExprKind,
2401                                          SourceRange R) {
2402     return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R);
2403   }
2404 
2405   /// Build a new sizeof, alignof or vec step expression with an
2406   /// expression argument.
2407   ///
2408   /// By default, performs semantic analysis to build the new expression.
2409   /// Subclasses may override this routine to provide different behavior.
RebuildUnaryExprOrTypeTrait(Expr * SubExpr,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)2410   ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc,
2411                                          UnaryExprOrTypeTrait ExprKind,
2412                                          SourceRange R) {
2413     ExprResult Result
2414       = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind);
2415     if (Result.isInvalid())
2416       return ExprError();
2417 
2418     return Result;
2419   }
2420 
2421   /// Build a new array subscript expression.
2422   ///
2423   /// By default, performs semantic analysis to build the new expression.
2424   /// Subclasses may override this routine to provide different behavior.
RebuildArraySubscriptExpr(Expr * LHS,SourceLocation LBracketLoc,Expr * RHS,SourceLocation RBracketLoc)2425   ExprResult RebuildArraySubscriptExpr(Expr *LHS,
2426                                              SourceLocation LBracketLoc,
2427                                              Expr *RHS,
2428                                              SourceLocation RBracketLoc) {
2429     return getSema().ActOnArraySubscriptExpr(/*Scope=*/nullptr, LHS,
2430                                              LBracketLoc, RHS,
2431                                              RBracketLoc);
2432   }
2433 
2434   /// Build a new matrix subscript expression.
2435   ///
2436   /// By default, performs semantic analysis to build the new expression.
2437   /// Subclasses may override this routine to provide different behavior.
RebuildMatrixSubscriptExpr(Expr * Base,Expr * RowIdx,Expr * ColumnIdx,SourceLocation RBracketLoc)2438   ExprResult RebuildMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
2439                                         Expr *ColumnIdx,
2440                                         SourceLocation RBracketLoc) {
2441     return getSema().CreateBuiltinMatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
2442                                                       RBracketLoc);
2443   }
2444 
2445   /// Build a new array section expression.
2446   ///
2447   /// By default, performs semantic analysis to build the new expression.
2448   /// Subclasses may override this routine to provide different behavior.
RebuildOMPArraySectionExpr(Expr * Base,SourceLocation LBracketLoc,Expr * LowerBound,SourceLocation ColonLocFirst,SourceLocation ColonLocSecond,Expr * Length,Expr * Stride,SourceLocation RBracketLoc)2449   ExprResult RebuildOMPArraySectionExpr(Expr *Base, SourceLocation LBracketLoc,
2450                                         Expr *LowerBound,
2451                                         SourceLocation ColonLocFirst,
2452                                         SourceLocation ColonLocSecond,
2453                                         Expr *Length, Expr *Stride,
2454                                         SourceLocation RBracketLoc) {
2455     return getSema().ActOnOMPArraySectionExpr(Base, LBracketLoc, LowerBound,
2456                                               ColonLocFirst, ColonLocSecond,
2457                                               Length, Stride, RBracketLoc);
2458   }
2459 
2460   /// Build a new array shaping expression.
2461   ///
2462   /// By default, performs semantic analysis to build the new expression.
2463   /// Subclasses may override this routine to provide different behavior.
RebuildOMPArrayShapingExpr(Expr * Base,SourceLocation LParenLoc,SourceLocation RParenLoc,ArrayRef<Expr * > Dims,ArrayRef<SourceRange> BracketsRanges)2464   ExprResult RebuildOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
2465                                         SourceLocation RParenLoc,
2466                                         ArrayRef<Expr *> Dims,
2467                                         ArrayRef<SourceRange> BracketsRanges) {
2468     return getSema().ActOnOMPArrayShapingExpr(Base, LParenLoc, RParenLoc, Dims,
2469                                               BracketsRanges);
2470   }
2471 
2472   /// Build a new iterator expression.
2473   ///
2474   /// By default, performs semantic analysis to build the new expression.
2475   /// Subclasses may override this routine to provide different behavior.
RebuildOMPIteratorExpr(SourceLocation IteratorKwLoc,SourceLocation LLoc,SourceLocation RLoc,ArrayRef<Sema::OMPIteratorData> Data)2476   ExprResult RebuildOMPIteratorExpr(
2477       SourceLocation IteratorKwLoc, SourceLocation LLoc, SourceLocation RLoc,
2478       ArrayRef<Sema::OMPIteratorData> Data) {
2479     return getSema().ActOnOMPIteratorExpr(/*Scope=*/nullptr, IteratorKwLoc,
2480                                           LLoc, RLoc, Data);
2481   }
2482 
2483   /// Build a new call expression.
2484   ///
2485   /// By default, performs semantic analysis to build the new expression.
2486   /// Subclasses may override this routine to provide different behavior.
2487   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
2488                                    MultiExprArg Args,
2489                                    SourceLocation RParenLoc,
2490                                    Expr *ExecConfig = nullptr) {
2491     return getSema().ActOnCallExpr(
2492         /*Scope=*/nullptr, Callee, LParenLoc, Args, RParenLoc, ExecConfig);
2493   }
2494 
2495   /// Build a new member access expression.
2496   ///
2497   /// By default, performs semantic analysis to build the new expression.
2498   /// Subclasses may override this routine to provide different behavior.
RebuildMemberExpr(Expr * Base,SourceLocation OpLoc,bool isArrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const DeclarationNameInfo & MemberNameInfo,ValueDecl * Member,NamedDecl * FoundDecl,const TemplateArgumentListInfo * ExplicitTemplateArgs,NamedDecl * FirstQualifierInScope)2499   ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc,
2500                                bool isArrow,
2501                                NestedNameSpecifierLoc QualifierLoc,
2502                                SourceLocation TemplateKWLoc,
2503                                const DeclarationNameInfo &MemberNameInfo,
2504                                ValueDecl *Member,
2505                                NamedDecl *FoundDecl,
2506                         const TemplateArgumentListInfo *ExplicitTemplateArgs,
2507                                NamedDecl *FirstQualifierInScope) {
2508     ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base,
2509                                                                       isArrow);
2510     if (!Member->getDeclName()) {
2511       // We have a reference to an unnamed field.  This is always the
2512       // base of an anonymous struct/union member access, i.e. the
2513       // field is always of record type.
2514       assert(Member->getType()->isRecordType() &&
2515              "unnamed member not of record type?");
2516 
2517       BaseResult =
2518         getSema().PerformObjectMemberConversion(BaseResult.get(),
2519                                                 QualifierLoc.getNestedNameSpecifier(),
2520                                                 FoundDecl, Member);
2521       if (BaseResult.isInvalid())
2522         return ExprError();
2523       Base = BaseResult.get();
2524 
2525       CXXScopeSpec EmptySS;
2526       return getSema().BuildFieldReferenceExpr(
2527           Base, isArrow, OpLoc, EmptySS, cast<FieldDecl>(Member),
2528           DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), MemberNameInfo);
2529     }
2530 
2531     CXXScopeSpec SS;
2532     SS.Adopt(QualifierLoc);
2533 
2534     Base = BaseResult.get();
2535     QualType BaseType = Base->getType();
2536 
2537     if (isArrow && !BaseType->isPointerType())
2538       return ExprError();
2539 
2540     // FIXME: this involves duplicating earlier analysis in a lot of
2541     // cases; we should avoid this when possible.
2542     LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName);
2543     R.addDecl(FoundDecl);
2544     R.resolveKind();
2545 
2546     return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow,
2547                                               SS, TemplateKWLoc,
2548                                               FirstQualifierInScope,
2549                                               R, ExplicitTemplateArgs,
2550                                               /*S*/nullptr);
2551   }
2552 
2553   /// Build a new binary operator expression.
2554   ///
2555   /// By default, performs semantic analysis to build the new expression.
2556   /// Subclasses may override this routine to provide different behavior.
RebuildBinaryOperator(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)2557   ExprResult RebuildBinaryOperator(SourceLocation OpLoc,
2558                                          BinaryOperatorKind Opc,
2559                                          Expr *LHS, Expr *RHS) {
2560     return getSema().BuildBinOp(/*Scope=*/nullptr, OpLoc, Opc, LHS, RHS);
2561   }
2562 
2563   /// Build a new rewritten operator expression.
2564   ///
2565   /// By default, performs semantic analysis to build the new expression.
2566   /// Subclasses may override this routine to provide different behavior.
RebuildCXXRewrittenBinaryOperator(SourceLocation OpLoc,BinaryOperatorKind Opcode,const UnresolvedSetImpl & UnqualLookups,Expr * LHS,Expr * RHS)2567   ExprResult RebuildCXXRewrittenBinaryOperator(
2568       SourceLocation OpLoc, BinaryOperatorKind Opcode,
2569       const UnresolvedSetImpl &UnqualLookups, Expr *LHS, Expr *RHS) {
2570     return getSema().CreateOverloadedBinOp(OpLoc, Opcode, UnqualLookups, LHS,
2571                                            RHS, /*RequiresADL*/false);
2572   }
2573 
2574   /// Build a new conditional operator expression.
2575   ///
2576   /// By default, performs semantic analysis to build the new expression.
2577   /// Subclasses may override this routine to provide different behavior.
RebuildConditionalOperator(Expr * Cond,SourceLocation QuestionLoc,Expr * LHS,SourceLocation ColonLoc,Expr * RHS)2578   ExprResult RebuildConditionalOperator(Expr *Cond,
2579                                         SourceLocation QuestionLoc,
2580                                         Expr *LHS,
2581                                         SourceLocation ColonLoc,
2582                                         Expr *RHS) {
2583     return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond,
2584                                         LHS, RHS);
2585   }
2586 
2587   /// Build a new C-style cast expression.
2588   ///
2589   /// By default, performs semantic analysis to build the new expression.
2590   /// Subclasses may override this routine to provide different behavior.
RebuildCStyleCastExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * SubExpr)2591   ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc,
2592                                          TypeSourceInfo *TInfo,
2593                                          SourceLocation RParenLoc,
2594                                          Expr *SubExpr) {
2595     return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc,
2596                                          SubExpr);
2597   }
2598 
2599   /// Build a new compound literal expression.
2600   ///
2601   /// By default, performs semantic analysis to build the new expression.
2602   /// Subclasses may override this routine to provide different behavior.
RebuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * Init)2603   ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc,
2604                                               TypeSourceInfo *TInfo,
2605                                               SourceLocation RParenLoc,
2606                                               Expr *Init) {
2607     return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc,
2608                                               Init);
2609   }
2610 
2611   /// Build a new extended vector element access expression.
2612   ///
2613   /// By default, performs semantic analysis to build the new expression.
2614   /// Subclasses may override this routine to provide different behavior.
RebuildExtVectorElementExpr(Expr * Base,SourceLocation OpLoc,SourceLocation AccessorLoc,IdentifierInfo & Accessor)2615   ExprResult RebuildExtVectorElementExpr(Expr *Base,
2616                                                SourceLocation OpLoc,
2617                                                SourceLocation AccessorLoc,
2618                                                IdentifierInfo &Accessor) {
2619 
2620     CXXScopeSpec SS;
2621     DeclarationNameInfo NameInfo(&Accessor, AccessorLoc);
2622     return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
2623                                               OpLoc, /*IsArrow*/ false,
2624                                               SS, SourceLocation(),
2625                                               /*FirstQualifierInScope*/ nullptr,
2626                                               NameInfo,
2627                                               /* TemplateArgs */ nullptr,
2628                                               /*S*/ nullptr);
2629   }
2630 
2631   /// Build a new initializer list expression.
2632   ///
2633   /// By default, performs semantic analysis to build the new expression.
2634   /// Subclasses may override this routine to provide different behavior.
RebuildInitList(SourceLocation LBraceLoc,MultiExprArg Inits,SourceLocation RBraceLoc)2635   ExprResult RebuildInitList(SourceLocation LBraceLoc,
2636                              MultiExprArg Inits,
2637                              SourceLocation RBraceLoc) {
2638     return SemaRef.BuildInitList(LBraceLoc, Inits, RBraceLoc);
2639   }
2640 
2641   /// Build a new designated initializer expression.
2642   ///
2643   /// By default, performs semantic analysis to build the new expression.
2644   /// Subclasses may override this routine to provide different behavior.
RebuildDesignatedInitExpr(Designation & Desig,MultiExprArg ArrayExprs,SourceLocation EqualOrColonLoc,bool GNUSyntax,Expr * Init)2645   ExprResult RebuildDesignatedInitExpr(Designation &Desig,
2646                                              MultiExprArg ArrayExprs,
2647                                              SourceLocation EqualOrColonLoc,
2648                                              bool GNUSyntax,
2649                                              Expr *Init) {
2650     ExprResult Result
2651       = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax,
2652                                            Init);
2653     if (Result.isInvalid())
2654       return ExprError();
2655 
2656     return Result;
2657   }
2658 
2659   /// Build a new value-initialized expression.
2660   ///
2661   /// By default, builds the implicit value initialization without performing
2662   /// any semantic analysis. Subclasses may override this routine to provide
2663   /// different behavior.
RebuildImplicitValueInitExpr(QualType T)2664   ExprResult RebuildImplicitValueInitExpr(QualType T) {
2665     return new (SemaRef.Context) ImplicitValueInitExpr(T);
2666   }
2667 
2668   /// Build a new \c va_arg expression.
2669   ///
2670   /// By default, performs semantic analysis to build the new expression.
2671   /// Subclasses may override this routine to provide different behavior.
RebuildVAArgExpr(SourceLocation BuiltinLoc,Expr * SubExpr,TypeSourceInfo * TInfo,SourceLocation RParenLoc)2672   ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc,
2673                                     Expr *SubExpr, TypeSourceInfo *TInfo,
2674                                     SourceLocation RParenLoc) {
2675     return getSema().BuildVAArgExpr(BuiltinLoc,
2676                                     SubExpr, TInfo,
2677                                     RParenLoc);
2678   }
2679 
2680   /// Build a new expression list in parentheses.
2681   ///
2682   /// By default, performs semantic analysis to build the new expression.
2683   /// Subclasses may override this routine to provide different behavior.
RebuildParenListExpr(SourceLocation LParenLoc,MultiExprArg SubExprs,SourceLocation RParenLoc)2684   ExprResult RebuildParenListExpr(SourceLocation LParenLoc,
2685                                   MultiExprArg SubExprs,
2686                                   SourceLocation RParenLoc) {
2687     return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs);
2688   }
2689 
2690   /// Build a new address-of-label expression.
2691   ///
2692   /// By default, performs semantic analysis, using the name of the label
2693   /// rather than attempting to map the label statement itself.
2694   /// Subclasses may override this routine to provide different behavior.
RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,SourceLocation LabelLoc,LabelDecl * Label)2695   ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,
2696                                   SourceLocation LabelLoc, LabelDecl *Label) {
2697     return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label);
2698   }
2699 
2700   /// Build a new GNU statement expression.
2701   ///
2702   /// By default, performs semantic analysis to build the new expression.
2703   /// Subclasses may override this routine to provide different behavior.
RebuildStmtExpr(SourceLocation LParenLoc,Stmt * SubStmt,SourceLocation RParenLoc,unsigned TemplateDepth)2704   ExprResult RebuildStmtExpr(SourceLocation LParenLoc, Stmt *SubStmt,
2705                              SourceLocation RParenLoc, unsigned TemplateDepth) {
2706     return getSema().BuildStmtExpr(LParenLoc, SubStmt, RParenLoc,
2707                                    TemplateDepth);
2708   }
2709 
2710   /// Build a new __builtin_choose_expr expression.
2711   ///
2712   /// By default, performs semantic analysis to build the new expression.
2713   /// Subclasses may override this routine to provide different behavior.
RebuildChooseExpr(SourceLocation BuiltinLoc,Expr * Cond,Expr * LHS,Expr * RHS,SourceLocation RParenLoc)2714   ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc,
2715                                      Expr *Cond, Expr *LHS, Expr *RHS,
2716                                      SourceLocation RParenLoc) {
2717     return SemaRef.ActOnChooseExpr(BuiltinLoc,
2718                                    Cond, LHS, RHS,
2719                                    RParenLoc);
2720   }
2721 
2722   /// Build a new generic selection expression.
2723   ///
2724   /// By default, performs semantic analysis to build the new expression.
2725   /// Subclasses may override this routine to provide different behavior.
RebuildGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > Types,ArrayRef<Expr * > Exprs)2726   ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc,
2727                                          SourceLocation DefaultLoc,
2728                                          SourceLocation RParenLoc,
2729                                          Expr *ControllingExpr,
2730                                          ArrayRef<TypeSourceInfo *> Types,
2731                                          ArrayRef<Expr *> Exprs) {
2732     return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
2733                                                 ControllingExpr, Types, Exprs);
2734   }
2735 
2736   /// Build a new overloaded operator call expression.
2737   ///
2738   /// By default, performs semantic analysis to build the new expression.
2739   /// The semantic analysis provides the behavior of template instantiation,
2740   /// copying with transformations that turn what looks like an overloaded
2741   /// operator call into a use of a builtin operator, performing
2742   /// argument-dependent lookup, etc. Subclasses may override this routine to
2743   /// provide different behavior.
2744   ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
2745                                               SourceLocation OpLoc,
2746                                               Expr *Callee,
2747                                               Expr *First,
2748                                               Expr *Second);
2749 
2750   /// Build a new C++ "named" cast expression, such as static_cast or
2751   /// reinterpret_cast.
2752   ///
2753   /// By default, this routine dispatches to one of the more-specific routines
2754   /// for a particular named case, e.g., RebuildCXXStaticCastExpr().
2755   /// Subclasses may override this routine to provide different behavior.
RebuildCXXNamedCastExpr(SourceLocation OpLoc,Stmt::StmtClass Class,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2756   ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc,
2757                                            Stmt::StmtClass Class,
2758                                            SourceLocation LAngleLoc,
2759                                            TypeSourceInfo *TInfo,
2760                                            SourceLocation RAngleLoc,
2761                                            SourceLocation LParenLoc,
2762                                            Expr *SubExpr,
2763                                            SourceLocation RParenLoc) {
2764     switch (Class) {
2765     case Stmt::CXXStaticCastExprClass:
2766       return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo,
2767                                                    RAngleLoc, LParenLoc,
2768                                                    SubExpr, RParenLoc);
2769 
2770     case Stmt::CXXDynamicCastExprClass:
2771       return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo,
2772                                                     RAngleLoc, LParenLoc,
2773                                                     SubExpr, RParenLoc);
2774 
2775     case Stmt::CXXReinterpretCastExprClass:
2776       return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo,
2777                                                         RAngleLoc, LParenLoc,
2778                                                         SubExpr,
2779                                                         RParenLoc);
2780 
2781     case Stmt::CXXConstCastExprClass:
2782       return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo,
2783                                                    RAngleLoc, LParenLoc,
2784                                                    SubExpr, RParenLoc);
2785 
2786     case Stmt::CXXAddrspaceCastExprClass:
2787       return getDerived().RebuildCXXAddrspaceCastExpr(
2788           OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc);
2789 
2790     default:
2791       llvm_unreachable("Invalid C++ named cast");
2792     }
2793   }
2794 
2795   /// Build a new C++ static_cast expression.
2796   ///
2797   /// By default, performs semantic analysis to build the new expression.
2798   /// Subclasses may override this routine to provide different behavior.
RebuildCXXStaticCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2799   ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc,
2800                                             SourceLocation LAngleLoc,
2801                                             TypeSourceInfo *TInfo,
2802                                             SourceLocation RAngleLoc,
2803                                             SourceLocation LParenLoc,
2804                                             Expr *SubExpr,
2805                                             SourceLocation RParenLoc) {
2806     return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast,
2807                                        TInfo, SubExpr,
2808                                        SourceRange(LAngleLoc, RAngleLoc),
2809                                        SourceRange(LParenLoc, RParenLoc));
2810   }
2811 
2812   /// Build a new C++ dynamic_cast expression.
2813   ///
2814   /// By default, performs semantic analysis to build the new expression.
2815   /// Subclasses may override this routine to provide different behavior.
RebuildCXXDynamicCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2816   ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc,
2817                                              SourceLocation LAngleLoc,
2818                                              TypeSourceInfo *TInfo,
2819                                              SourceLocation RAngleLoc,
2820                                              SourceLocation LParenLoc,
2821                                              Expr *SubExpr,
2822                                              SourceLocation RParenLoc) {
2823     return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast,
2824                                        TInfo, SubExpr,
2825                                        SourceRange(LAngleLoc, RAngleLoc),
2826                                        SourceRange(LParenLoc, RParenLoc));
2827   }
2828 
2829   /// Build a new C++ reinterpret_cast expression.
2830   ///
2831   /// By default, performs semantic analysis to build the new expression.
2832   /// Subclasses may override this routine to provide different behavior.
RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2833   ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,
2834                                                  SourceLocation LAngleLoc,
2835                                                  TypeSourceInfo *TInfo,
2836                                                  SourceLocation RAngleLoc,
2837                                                  SourceLocation LParenLoc,
2838                                                  Expr *SubExpr,
2839                                                  SourceLocation RParenLoc) {
2840     return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast,
2841                                        TInfo, SubExpr,
2842                                        SourceRange(LAngleLoc, RAngleLoc),
2843                                        SourceRange(LParenLoc, RParenLoc));
2844   }
2845 
2846   /// Build a new C++ const_cast expression.
2847   ///
2848   /// By default, performs semantic analysis to build the new expression.
2849   /// Subclasses may override this routine to provide different behavior.
RebuildCXXConstCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2850   ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc,
2851                                            SourceLocation LAngleLoc,
2852                                            TypeSourceInfo *TInfo,
2853                                            SourceLocation RAngleLoc,
2854                                            SourceLocation LParenLoc,
2855                                            Expr *SubExpr,
2856                                            SourceLocation RParenLoc) {
2857     return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast,
2858                                        TInfo, SubExpr,
2859                                        SourceRange(LAngleLoc, RAngleLoc),
2860                                        SourceRange(LParenLoc, RParenLoc));
2861   }
2862 
2863   ExprResult
RebuildCXXAddrspaceCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2864   RebuildCXXAddrspaceCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc,
2865                               TypeSourceInfo *TInfo, SourceLocation RAngleLoc,
2866                               SourceLocation LParenLoc, Expr *SubExpr,
2867                               SourceLocation RParenLoc) {
2868     return getSema().BuildCXXNamedCast(
2869         OpLoc, tok::kw_addrspace_cast, TInfo, SubExpr,
2870         SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc));
2871   }
2872 
2873   /// Build a new C++ functional-style cast expression.
2874   ///
2875   /// By default, performs semantic analysis to build the new expression.
2876   /// Subclasses may override this routine to provide different behavior.
RebuildCXXFunctionalCastExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,Expr * Sub,SourceLocation RParenLoc,bool ListInitialization)2877   ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
2878                                           SourceLocation LParenLoc,
2879                                           Expr *Sub,
2880                                           SourceLocation RParenLoc,
2881                                           bool ListInitialization) {
2882     return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc,
2883                                                MultiExprArg(&Sub, 1), RParenLoc,
2884                                                ListInitialization);
2885   }
2886 
2887   /// Build a new C++ __builtin_bit_cast expression.
2888   ///
2889   /// By default, performs semantic analysis to build the new expression.
2890   /// Subclasses may override this routine to provide different behavior.
RebuildBuiltinBitCastExpr(SourceLocation KWLoc,TypeSourceInfo * TSI,Expr * Sub,SourceLocation RParenLoc)2891   ExprResult RebuildBuiltinBitCastExpr(SourceLocation KWLoc,
2892                                        TypeSourceInfo *TSI, Expr *Sub,
2893                                        SourceLocation RParenLoc) {
2894     return getSema().BuildBuiltinBitCastExpr(KWLoc, TSI, Sub, RParenLoc);
2895   }
2896 
2897   /// Build a new C++ typeid(type) expression.
2898   ///
2899   /// By default, performs semantic analysis to build the new expression.
2900   /// Subclasses may override this routine to provide different behavior.
RebuildCXXTypeidExpr(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)2901   ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
2902                                         SourceLocation TypeidLoc,
2903                                         TypeSourceInfo *Operand,
2904                                         SourceLocation RParenLoc) {
2905     return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
2906                                     RParenLoc);
2907   }
2908 
2909 
2910   /// Build a new C++ typeid(expr) expression.
2911   ///
2912   /// By default, performs semantic analysis to build the new expression.
2913   /// Subclasses may override this routine to provide different behavior.
RebuildCXXTypeidExpr(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * Operand,SourceLocation RParenLoc)2914   ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
2915                                         SourceLocation TypeidLoc,
2916                                         Expr *Operand,
2917                                         SourceLocation RParenLoc) {
2918     return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
2919                                     RParenLoc);
2920   }
2921 
2922   /// Build a new C++ __uuidof(type) expression.
2923   ///
2924   /// By default, performs semantic analysis to build the new expression.
2925   /// Subclasses may override this routine to provide different behavior.
RebuildCXXUuidofExpr(QualType Type,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)2926   ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc,
2927                                   TypeSourceInfo *Operand,
2928                                   SourceLocation RParenLoc) {
2929     return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc);
2930   }
2931 
2932   /// Build a new C++ __uuidof(expr) expression.
2933   ///
2934   /// By default, performs semantic analysis to build the new expression.
2935   /// Subclasses may override this routine to provide different behavior.
RebuildCXXUuidofExpr(QualType Type,SourceLocation TypeidLoc,Expr * Operand,SourceLocation RParenLoc)2936   ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc,
2937                                   Expr *Operand, SourceLocation RParenLoc) {
2938     return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc);
2939   }
2940 
2941   /// Build a new C++ "this" expression.
2942   ///
2943   /// By default, builds a new "this" expression without performing any
2944   /// semantic analysis. Subclasses may override this routine to provide
2945   /// different behavior.
RebuildCXXThisExpr(SourceLocation ThisLoc,QualType ThisType,bool isImplicit)2946   ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc,
2947                                 QualType ThisType,
2948                                 bool isImplicit) {
2949     return getSema().BuildCXXThisExpr(ThisLoc, ThisType, isImplicit);
2950   }
2951 
2952   /// Build a new C++ throw expression.
2953   ///
2954   /// By default, performs semantic analysis to build the new expression.
2955   /// Subclasses may override this routine to provide different behavior.
RebuildCXXThrowExpr(SourceLocation ThrowLoc,Expr * Sub,bool IsThrownVariableInScope)2956   ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub,
2957                                  bool IsThrownVariableInScope) {
2958     return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope);
2959   }
2960 
2961   /// Build a new C++ default-argument expression.
2962   ///
2963   /// By default, builds a new default-argument expression, which does not
2964   /// require any semantic analysis. Subclasses may override this routine to
2965   /// provide different behavior.
RebuildCXXDefaultArgExpr(SourceLocation Loc,ParmVarDecl * Param)2966   ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc, ParmVarDecl *Param) {
2967     return CXXDefaultArgExpr::Create(getSema().Context, Loc, Param,
2968                                      getSema().CurContext);
2969   }
2970 
2971   /// Build a new C++11 default-initialization expression.
2972   ///
2973   /// By default, builds a new default field initialization expression, which
2974   /// does not require any semantic analysis. Subclasses may override this
2975   /// routine to provide different behavior.
RebuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)2976   ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc,
2977                                        FieldDecl *Field) {
2978     return CXXDefaultInitExpr::Create(getSema().Context, Loc, Field,
2979                                       getSema().CurContext);
2980   }
2981 
2982   /// Build a new C++ zero-initialization expression.
2983   ///
2984   /// By default, performs semantic analysis to build the new expression.
2985   /// Subclasses may override this routine to provide different behavior.
RebuildCXXScalarValueInitExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,SourceLocation RParenLoc)2986   ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo,
2987                                            SourceLocation LParenLoc,
2988                                            SourceLocation RParenLoc) {
2989     return getSema().BuildCXXTypeConstructExpr(
2990         TSInfo, LParenLoc, None, RParenLoc, /*ListInitialization=*/false);
2991   }
2992 
2993   /// Build a new C++ "new" expression.
2994   ///
2995   /// By default, performs semantic analysis to build the new expression.
2996   /// Subclasses may override this routine to provide different behavior.
RebuildCXXNewExpr(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocatedType,TypeSourceInfo * AllocatedTypeInfo,Optional<Expr * > ArraySize,SourceRange DirectInitRange,Expr * Initializer)2997   ExprResult RebuildCXXNewExpr(SourceLocation StartLoc,
2998                                bool UseGlobal,
2999                                SourceLocation PlacementLParen,
3000                                MultiExprArg PlacementArgs,
3001                                SourceLocation PlacementRParen,
3002                                SourceRange TypeIdParens,
3003                                QualType AllocatedType,
3004                                TypeSourceInfo *AllocatedTypeInfo,
3005                                Optional<Expr *> ArraySize,
3006                                SourceRange DirectInitRange,
3007                                Expr *Initializer) {
3008     return getSema().BuildCXXNew(StartLoc, UseGlobal,
3009                                  PlacementLParen,
3010                                  PlacementArgs,
3011                                  PlacementRParen,
3012                                  TypeIdParens,
3013                                  AllocatedType,
3014                                  AllocatedTypeInfo,
3015                                  ArraySize,
3016                                  DirectInitRange,
3017                                  Initializer);
3018   }
3019 
3020   /// Build a new C++ "delete" expression.
3021   ///
3022   /// By default, performs semantic analysis to build the new expression.
3023   /// Subclasses may override this routine to provide different behavior.
RebuildCXXDeleteExpr(SourceLocation StartLoc,bool IsGlobalDelete,bool IsArrayForm,Expr * Operand)3024   ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc,
3025                                         bool IsGlobalDelete,
3026                                         bool IsArrayForm,
3027                                         Expr *Operand) {
3028     return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm,
3029                                     Operand);
3030   }
3031 
3032   /// Build a new type trait expression.
3033   ///
3034   /// By default, performs semantic analysis to build the new expression.
3035   /// Subclasses may override this routine to provide different behavior.
RebuildTypeTrait(TypeTrait Trait,SourceLocation StartLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3036   ExprResult RebuildTypeTrait(TypeTrait Trait,
3037                               SourceLocation StartLoc,
3038                               ArrayRef<TypeSourceInfo *> Args,
3039                               SourceLocation RParenLoc) {
3040     return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc);
3041   }
3042 
3043   /// Build a new array type trait expression.
3044   ///
3045   /// By default, performs semantic analysis to build the new expression.
3046   /// Subclasses may override this routine to provide different behavior.
RebuildArrayTypeTrait(ArrayTypeTrait Trait,SourceLocation StartLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParenLoc)3047   ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait,
3048                                    SourceLocation StartLoc,
3049                                    TypeSourceInfo *TSInfo,
3050                                    Expr *DimExpr,
3051                                    SourceLocation RParenLoc) {
3052     return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc);
3053   }
3054 
3055   /// Build a new expression trait expression.
3056   ///
3057   /// By default, performs semantic analysis to build the new expression.
3058   /// Subclasses may override this routine to provide different behavior.
RebuildExpressionTrait(ExpressionTrait Trait,SourceLocation StartLoc,Expr * Queried,SourceLocation RParenLoc)3059   ExprResult RebuildExpressionTrait(ExpressionTrait Trait,
3060                                    SourceLocation StartLoc,
3061                                    Expr *Queried,
3062                                    SourceLocation RParenLoc) {
3063     return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc);
3064   }
3065 
3066   /// Build a new (previously unresolved) declaration reference
3067   /// expression.
3068   ///
3069   /// By default, performs semantic analysis to build the new expression.
3070   /// Subclasses may override this routine to provide different behavior.
RebuildDependentScopeDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs,bool IsAddressOfOperand,TypeSourceInfo ** RecoveryTSI)3071   ExprResult RebuildDependentScopeDeclRefExpr(
3072                                           NestedNameSpecifierLoc QualifierLoc,
3073                                           SourceLocation TemplateKWLoc,
3074                                        const DeclarationNameInfo &NameInfo,
3075                               const TemplateArgumentListInfo *TemplateArgs,
3076                                           bool IsAddressOfOperand,
3077                                           TypeSourceInfo **RecoveryTSI) {
3078     CXXScopeSpec SS;
3079     SS.Adopt(QualifierLoc);
3080 
3081     if (TemplateArgs || TemplateKWLoc.isValid())
3082       return getSema().BuildQualifiedTemplateIdExpr(SS, TemplateKWLoc, NameInfo,
3083                                                     TemplateArgs);
3084 
3085     return getSema().BuildQualifiedDeclarationNameExpr(
3086         SS, NameInfo, IsAddressOfOperand, /*S*/nullptr, RecoveryTSI);
3087   }
3088 
3089   /// Build a new template-id expression.
3090   ///
3091   /// By default, performs semantic analysis to build the new expression.
3092   /// Subclasses may override this routine to provide different behavior.
RebuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)3093   ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS,
3094                                    SourceLocation TemplateKWLoc,
3095                                    LookupResult &R,
3096                                    bool RequiresADL,
3097                               const TemplateArgumentListInfo *TemplateArgs) {
3098     return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL,
3099                                          TemplateArgs);
3100   }
3101 
3102   /// Build a new object-construction expression.
3103   ///
3104   /// By default, performs semantic analysis to build the new expression.
3105   /// Subclasses may override this routine to provide different behavior.
RebuildCXXConstructExpr(QualType T,SourceLocation Loc,CXXConstructorDecl * Constructor,bool IsElidable,MultiExprArg Args,bool HadMultipleCandidates,bool ListInitialization,bool StdInitListInitialization,bool RequiresZeroInit,CXXConstructExpr::ConstructionKind ConstructKind,SourceRange ParenRange)3106   ExprResult RebuildCXXConstructExpr(QualType T,
3107                                      SourceLocation Loc,
3108                                      CXXConstructorDecl *Constructor,
3109                                      bool IsElidable,
3110                                      MultiExprArg Args,
3111                                      bool HadMultipleCandidates,
3112                                      bool ListInitialization,
3113                                      bool StdInitListInitialization,
3114                                      bool RequiresZeroInit,
3115                              CXXConstructExpr::ConstructionKind ConstructKind,
3116                                      SourceRange ParenRange) {
3117     // Reconstruct the constructor we originally found, which might be
3118     // different if this is a call to an inherited constructor.
3119     CXXConstructorDecl *FoundCtor = Constructor;
3120     if (Constructor->isInheritingConstructor())
3121       FoundCtor = Constructor->getInheritedConstructor().getConstructor();
3122 
3123     SmallVector<Expr*, 8> ConvertedArgs;
3124     if (getSema().CompleteConstructorCall(FoundCtor, Args, Loc, ConvertedArgs))
3125       return ExprError();
3126 
3127     return getSema().BuildCXXConstructExpr(Loc, T, Constructor,
3128                                            IsElidable,
3129                                            ConvertedArgs,
3130                                            HadMultipleCandidates,
3131                                            ListInitialization,
3132                                            StdInitListInitialization,
3133                                            RequiresZeroInit, ConstructKind,
3134                                            ParenRange);
3135   }
3136 
3137   /// Build a new implicit construction via inherited constructor
3138   /// expression.
RebuildCXXInheritedCtorInitExpr(QualType T,SourceLocation Loc,CXXConstructorDecl * Constructor,bool ConstructsVBase,bool InheritedFromVBase)3139   ExprResult RebuildCXXInheritedCtorInitExpr(QualType T, SourceLocation Loc,
3140                                              CXXConstructorDecl *Constructor,
3141                                              bool ConstructsVBase,
3142                                              bool InheritedFromVBase) {
3143     return new (getSema().Context) CXXInheritedCtorInitExpr(
3144         Loc, T, Constructor, ConstructsVBase, InheritedFromVBase);
3145   }
3146 
3147   /// Build a new object-construction expression.
3148   ///
3149   /// By default, performs semantic analysis to build the new expression.
3150   /// Subclasses may override this routine to provide different behavior.
RebuildCXXTemporaryObjectExpr(TypeSourceInfo * TSInfo,SourceLocation LParenOrBraceLoc,MultiExprArg Args,SourceLocation RParenOrBraceLoc,bool ListInitialization)3151   ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo,
3152                                            SourceLocation LParenOrBraceLoc,
3153                                            MultiExprArg Args,
3154                                            SourceLocation RParenOrBraceLoc,
3155                                            bool ListInitialization) {
3156     return getSema().BuildCXXTypeConstructExpr(
3157         TSInfo, LParenOrBraceLoc, Args, RParenOrBraceLoc, ListInitialization);
3158   }
3159 
3160   /// Build a new object-construction expression.
3161   ///
3162   /// By default, performs semantic analysis to build the new expression.
3163   /// Subclasses may override this routine to provide different behavior.
RebuildCXXUnresolvedConstructExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,bool ListInitialization)3164   ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo,
3165                                                SourceLocation LParenLoc,
3166                                                MultiExprArg Args,
3167                                                SourceLocation RParenLoc,
3168                                                bool ListInitialization) {
3169     return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, Args,
3170                                                RParenLoc, ListInitialization);
3171   }
3172 
3173   /// Build a new member reference expression.
3174   ///
3175   /// By default, performs semantic analysis to build the new expression.
3176   /// Subclasses may override this routine to provide different behavior.
RebuildCXXDependentScopeMemberExpr(Expr * BaseE,QualType BaseType,bool IsArrow,SourceLocation OperatorLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & MemberNameInfo,const TemplateArgumentListInfo * TemplateArgs)3177   ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE,
3178                                                 QualType BaseType,
3179                                                 bool IsArrow,
3180                                                 SourceLocation OperatorLoc,
3181                                           NestedNameSpecifierLoc QualifierLoc,
3182                                                 SourceLocation TemplateKWLoc,
3183                                             NamedDecl *FirstQualifierInScope,
3184                                    const DeclarationNameInfo &MemberNameInfo,
3185                               const TemplateArgumentListInfo *TemplateArgs) {
3186     CXXScopeSpec SS;
3187     SS.Adopt(QualifierLoc);
3188 
3189     return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
3190                                             OperatorLoc, IsArrow,
3191                                             SS, TemplateKWLoc,
3192                                             FirstQualifierInScope,
3193                                             MemberNameInfo,
3194                                             TemplateArgs, /*S*/nullptr);
3195   }
3196 
3197   /// Build a new member reference expression.
3198   ///
3199   /// By default, performs semantic analysis to build the new expression.
3200   /// Subclasses may override this routine to provide different behavior.
RebuildUnresolvedMemberExpr(Expr * BaseE,QualType BaseType,SourceLocation OperatorLoc,bool IsArrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs)3201   ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType,
3202                                          SourceLocation OperatorLoc,
3203                                          bool IsArrow,
3204                                          NestedNameSpecifierLoc QualifierLoc,
3205                                          SourceLocation TemplateKWLoc,
3206                                          NamedDecl *FirstQualifierInScope,
3207                                          LookupResult &R,
3208                                 const TemplateArgumentListInfo *TemplateArgs) {
3209     CXXScopeSpec SS;
3210     SS.Adopt(QualifierLoc);
3211 
3212     return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
3213                                             OperatorLoc, IsArrow,
3214                                             SS, TemplateKWLoc,
3215                                             FirstQualifierInScope,
3216                                             R, TemplateArgs, /*S*/nullptr);
3217   }
3218 
3219   /// Build a new noexcept expression.
3220   ///
3221   /// By default, performs semantic analysis to build the new expression.
3222   /// Subclasses may override this routine to provide different behavior.
RebuildCXXNoexceptExpr(SourceRange Range,Expr * Arg)3223   ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) {
3224     return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd());
3225   }
3226 
3227   /// Build a new expression to compute the length of a parameter pack.
RebuildSizeOfPackExpr(SourceLocation OperatorLoc,NamedDecl * Pack,SourceLocation PackLoc,SourceLocation RParenLoc,Optional<unsigned> Length,ArrayRef<TemplateArgument> PartialArgs)3228   ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc,
3229                                    NamedDecl *Pack,
3230                                    SourceLocation PackLoc,
3231                                    SourceLocation RParenLoc,
3232                                    Optional<unsigned> Length,
3233                                    ArrayRef<TemplateArgument> PartialArgs) {
3234     return SizeOfPackExpr::Create(SemaRef.Context, OperatorLoc, Pack, PackLoc,
3235                                   RParenLoc, Length, PartialArgs);
3236   }
3237 
3238   /// Build a new expression representing a call to a source location
3239   ///  builtin.
3240   ///
3241   /// By default, performs semantic analysis to build the new expression.
3242   /// Subclasses may override this routine to provide different behavior.
RebuildSourceLocExpr(SourceLocExpr::IdentKind Kind,SourceLocation BuiltinLoc,SourceLocation RPLoc,DeclContext * ParentContext)3243   ExprResult RebuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
3244                                   SourceLocation BuiltinLoc,
3245                                   SourceLocation RPLoc,
3246                                   DeclContext *ParentContext) {
3247     return getSema().BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, ParentContext);
3248   }
3249 
3250   /// Build a new Objective-C boxed expression.
3251   ///
3252   /// By default, performs semantic analysis to build the new expression.
3253   /// Subclasses may override this routine to provide different behavior.
RebuildConceptSpecializationExpr(NestedNameSpecifierLoc NNS,SourceLocation TemplateKWLoc,DeclarationNameInfo ConceptNameInfo,NamedDecl * FoundDecl,ConceptDecl * NamedConcept,TemplateArgumentListInfo * TALI)3254   ExprResult RebuildConceptSpecializationExpr(NestedNameSpecifierLoc NNS,
3255       SourceLocation TemplateKWLoc, DeclarationNameInfo ConceptNameInfo,
3256       NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
3257       TemplateArgumentListInfo *TALI) {
3258     CXXScopeSpec SS;
3259     SS.Adopt(NNS);
3260     ExprResult Result = getSema().CheckConceptTemplateId(SS, TemplateKWLoc,
3261                                                          ConceptNameInfo,
3262                                                          FoundDecl,
3263                                                          NamedConcept, TALI);
3264     if (Result.isInvalid())
3265       return ExprError();
3266     return Result;
3267   }
3268 
3269   /// \brief Build a new requires expression.
3270   ///
3271   /// By default, performs semantic analysis to build the new expression.
3272   /// Subclasses may override this routine to provide different behavior.
RebuildRequiresExpr(SourceLocation RequiresKWLoc,RequiresExprBodyDecl * Body,ArrayRef<ParmVarDecl * > LocalParameters,ArrayRef<concepts::Requirement * > Requirements,SourceLocation ClosingBraceLoc)3273   ExprResult RebuildRequiresExpr(SourceLocation RequiresKWLoc,
3274                                  RequiresExprBodyDecl *Body,
3275                                  ArrayRef<ParmVarDecl *> LocalParameters,
3276                                  ArrayRef<concepts::Requirement *> Requirements,
3277                                  SourceLocation ClosingBraceLoc) {
3278     return RequiresExpr::Create(SemaRef.Context, RequiresKWLoc, Body,
3279                                 LocalParameters, Requirements, ClosingBraceLoc);
3280   }
3281 
3282   concepts::TypeRequirement *
RebuildTypeRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag)3283   RebuildTypeRequirement(
3284       concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
3285     return SemaRef.BuildTypeRequirement(SubstDiag);
3286   }
3287 
RebuildTypeRequirement(TypeSourceInfo * T)3288   concepts::TypeRequirement *RebuildTypeRequirement(TypeSourceInfo *T) {
3289     return SemaRef.BuildTypeRequirement(T);
3290   }
3291 
3292   concepts::ExprRequirement *
RebuildExprRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag,bool IsSimple,SourceLocation NoexceptLoc,concepts::ExprRequirement::ReturnTypeRequirement Ret)3293   RebuildExprRequirement(
3294       concepts::Requirement::SubstitutionDiagnostic *SubstDiag, bool IsSimple,
3295       SourceLocation NoexceptLoc,
3296       concepts::ExprRequirement::ReturnTypeRequirement Ret) {
3297     return SemaRef.BuildExprRequirement(SubstDiag, IsSimple, NoexceptLoc,
3298                                         std::move(Ret));
3299   }
3300 
3301   concepts::ExprRequirement *
RebuildExprRequirement(Expr * E,bool IsSimple,SourceLocation NoexceptLoc,concepts::ExprRequirement::ReturnTypeRequirement Ret)3302   RebuildExprRequirement(Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
3303                          concepts::ExprRequirement::ReturnTypeRequirement Ret) {
3304     return SemaRef.BuildExprRequirement(E, IsSimple, NoexceptLoc,
3305                                         std::move(Ret));
3306   }
3307 
3308   concepts::NestedRequirement *
RebuildNestedRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag)3309   RebuildNestedRequirement(
3310       concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
3311     return SemaRef.BuildNestedRequirement(SubstDiag);
3312   }
3313 
RebuildNestedRequirement(Expr * Constraint)3314   concepts::NestedRequirement *RebuildNestedRequirement(Expr *Constraint) {
3315     return SemaRef.BuildNestedRequirement(Constraint);
3316   }
3317 
3318   /// \brief Build a new Objective-C boxed expression.
3319   ///
3320   /// By default, performs semantic analysis to build the new expression.
3321   /// Subclasses may override this routine to provide different behavior.
RebuildObjCBoxedExpr(SourceRange SR,Expr * ValueExpr)3322   ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
3323     return getSema().BuildObjCBoxedExpr(SR, ValueExpr);
3324   }
3325 
3326   /// Build a new Objective-C array literal.
3327   ///
3328   /// By default, performs semantic analysis to build the new expression.
3329   /// Subclasses may override this routine to provide different behavior.
RebuildObjCArrayLiteral(SourceRange Range,Expr ** Elements,unsigned NumElements)3330   ExprResult RebuildObjCArrayLiteral(SourceRange Range,
3331                                      Expr **Elements, unsigned NumElements) {
3332     return getSema().BuildObjCArrayLiteral(Range,
3333                                            MultiExprArg(Elements, NumElements));
3334   }
3335 
RebuildObjCSubscriptRefExpr(SourceLocation RB,Expr * Base,Expr * Key,ObjCMethodDecl * getterMethod,ObjCMethodDecl * setterMethod)3336   ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB,
3337                                          Expr *Base, Expr *Key,
3338                                          ObjCMethodDecl *getterMethod,
3339                                          ObjCMethodDecl *setterMethod) {
3340     return  getSema().BuildObjCSubscriptExpression(RB, Base, Key,
3341                                                    getterMethod, setterMethod);
3342   }
3343 
3344   /// Build a new Objective-C dictionary literal.
3345   ///
3346   /// By default, performs semantic analysis to build the new expression.
3347   /// Subclasses may override this routine to provide different behavior.
RebuildObjCDictionaryLiteral(SourceRange Range,MutableArrayRef<ObjCDictionaryElement> Elements)3348   ExprResult RebuildObjCDictionaryLiteral(SourceRange Range,
3349                               MutableArrayRef<ObjCDictionaryElement> Elements) {
3350     return getSema().BuildObjCDictionaryLiteral(Range, Elements);
3351   }
3352 
3353   /// Build a new Objective-C \@encode expression.
3354   ///
3355   /// By default, performs semantic analysis to build the new expression.
3356   /// Subclasses may override this routine to provide different behavior.
RebuildObjCEncodeExpr(SourceLocation AtLoc,TypeSourceInfo * EncodeTypeInfo,SourceLocation RParenLoc)3357   ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc,
3358                                          TypeSourceInfo *EncodeTypeInfo,
3359                                          SourceLocation RParenLoc) {
3360     return SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo, RParenLoc);
3361   }
3362 
3363   /// Build a new Objective-C class message.
RebuildObjCMessageExpr(TypeSourceInfo * ReceiverTypeInfo,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)3364   ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo,
3365                                           Selector Sel,
3366                                           ArrayRef<SourceLocation> SelectorLocs,
3367                                           ObjCMethodDecl *Method,
3368                                           SourceLocation LBracLoc,
3369                                           MultiExprArg Args,
3370                                           SourceLocation RBracLoc) {
3371     return SemaRef.BuildClassMessage(ReceiverTypeInfo,
3372                                      ReceiverTypeInfo->getType(),
3373                                      /*SuperLoc=*/SourceLocation(),
3374                                      Sel, Method, LBracLoc, SelectorLocs,
3375                                      RBracLoc, Args);
3376   }
3377 
3378   /// Build a new Objective-C instance message.
RebuildObjCMessageExpr(Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)3379   ExprResult RebuildObjCMessageExpr(Expr *Receiver,
3380                                           Selector Sel,
3381                                           ArrayRef<SourceLocation> SelectorLocs,
3382                                           ObjCMethodDecl *Method,
3383                                           SourceLocation LBracLoc,
3384                                           MultiExprArg Args,
3385                                           SourceLocation RBracLoc) {
3386     return SemaRef.BuildInstanceMessage(Receiver,
3387                                         Receiver->getType(),
3388                                         /*SuperLoc=*/SourceLocation(),
3389                                         Sel, Method, LBracLoc, SelectorLocs,
3390                                         RBracLoc, Args);
3391   }
3392 
3393   /// Build a new Objective-C instance/class message to 'super'.
RebuildObjCMessageExpr(SourceLocation SuperLoc,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,QualType SuperType,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)3394   ExprResult RebuildObjCMessageExpr(SourceLocation SuperLoc,
3395                                     Selector Sel,
3396                                     ArrayRef<SourceLocation> SelectorLocs,
3397                                     QualType SuperType,
3398                                     ObjCMethodDecl *Method,
3399                                     SourceLocation LBracLoc,
3400                                     MultiExprArg Args,
3401                                     SourceLocation RBracLoc) {
3402     return Method->isInstanceMethod() ? SemaRef.BuildInstanceMessage(nullptr,
3403                                           SuperType,
3404                                           SuperLoc,
3405                                           Sel, Method, LBracLoc, SelectorLocs,
3406                                           RBracLoc, Args)
3407                                       : SemaRef.BuildClassMessage(nullptr,
3408                                           SuperType,
3409                                           SuperLoc,
3410                                           Sel, Method, LBracLoc, SelectorLocs,
3411                                           RBracLoc, Args);
3412 
3413 
3414   }
3415 
3416   /// Build a new Objective-C ivar reference expression.
3417   ///
3418   /// By default, performs semantic analysis to build the new expression.
3419   /// Subclasses may override this routine to provide different behavior.
RebuildObjCIvarRefExpr(Expr * BaseArg,ObjCIvarDecl * Ivar,SourceLocation IvarLoc,bool IsArrow,bool IsFreeIvar)3420   ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar,
3421                                           SourceLocation IvarLoc,
3422                                           bool IsArrow, bool IsFreeIvar) {
3423     CXXScopeSpec SS;
3424     DeclarationNameInfo NameInfo(Ivar->getDeclName(), IvarLoc);
3425     ExprResult Result = getSema().BuildMemberReferenceExpr(
3426         BaseArg, BaseArg->getType(),
3427         /*FIXME:*/ IvarLoc, IsArrow, SS, SourceLocation(),
3428         /*FirstQualifierInScope=*/nullptr, NameInfo,
3429         /*TemplateArgs=*/nullptr,
3430         /*S=*/nullptr);
3431     if (IsFreeIvar && Result.isUsable())
3432       cast<ObjCIvarRefExpr>(Result.get())->setIsFreeIvar(IsFreeIvar);
3433     return Result;
3434   }
3435 
3436   /// Build a new Objective-C property reference expression.
3437   ///
3438   /// By default, performs semantic analysis to build the new expression.
3439   /// Subclasses may override this routine to provide different behavior.
RebuildObjCPropertyRefExpr(Expr * BaseArg,ObjCPropertyDecl * Property,SourceLocation PropertyLoc)3440   ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg,
3441                                         ObjCPropertyDecl *Property,
3442                                         SourceLocation PropertyLoc) {
3443     CXXScopeSpec SS;
3444     DeclarationNameInfo NameInfo(Property->getDeclName(), PropertyLoc);
3445     return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
3446                                               /*FIXME:*/PropertyLoc,
3447                                               /*IsArrow=*/false,
3448                                               SS, SourceLocation(),
3449                                               /*FirstQualifierInScope=*/nullptr,
3450                                               NameInfo,
3451                                               /*TemplateArgs=*/nullptr,
3452                                               /*S=*/nullptr);
3453   }
3454 
3455   /// Build a new Objective-C property reference expression.
3456   ///
3457   /// By default, performs semantic analysis to build the new expression.
3458   /// Subclasses may override this routine to provide different behavior.
RebuildObjCPropertyRefExpr(Expr * Base,QualType T,ObjCMethodDecl * Getter,ObjCMethodDecl * Setter,SourceLocation PropertyLoc)3459   ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T,
3460                                         ObjCMethodDecl *Getter,
3461                                         ObjCMethodDecl *Setter,
3462                                         SourceLocation PropertyLoc) {
3463     // Since these expressions can only be value-dependent, we do not
3464     // need to perform semantic analysis again.
3465     return Owned(
3466       new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T,
3467                                                   VK_LValue, OK_ObjCProperty,
3468                                                   PropertyLoc, Base));
3469   }
3470 
3471   /// Build a new Objective-C "isa" expression.
3472   ///
3473   /// By default, performs semantic analysis to build the new expression.
3474   /// Subclasses may override this routine to provide different behavior.
RebuildObjCIsaExpr(Expr * BaseArg,SourceLocation IsaLoc,SourceLocation OpLoc,bool IsArrow)3475   ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc,
3476                                 SourceLocation OpLoc, bool IsArrow) {
3477     CXXScopeSpec SS;
3478     DeclarationNameInfo NameInfo(&getSema().Context.Idents.get("isa"), IsaLoc);
3479     return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
3480                                               OpLoc, IsArrow,
3481                                               SS, SourceLocation(),
3482                                               /*FirstQualifierInScope=*/nullptr,
3483                                               NameInfo,
3484                                               /*TemplateArgs=*/nullptr,
3485                                               /*S=*/nullptr);
3486   }
3487 
3488   /// Build a new shuffle vector expression.
3489   ///
3490   /// By default, performs semantic analysis to build the new expression.
3491   /// Subclasses may override this routine to provide different behavior.
RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,MultiExprArg SubExprs,SourceLocation RParenLoc)3492   ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,
3493                                       MultiExprArg SubExprs,
3494                                       SourceLocation RParenLoc) {
3495     // Find the declaration for __builtin_shufflevector
3496     const IdentifierInfo &Name
3497       = SemaRef.Context.Idents.get("__builtin_shufflevector");
3498     TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl();
3499     DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name));
3500     assert(!Lookup.empty() && "No __builtin_shufflevector?");
3501 
3502     // Build a reference to the __builtin_shufflevector builtin
3503     FunctionDecl *Builtin = cast<FunctionDecl>(Lookup.front());
3504     Expr *Callee = new (SemaRef.Context)
3505         DeclRefExpr(SemaRef.Context, Builtin, false,
3506                     SemaRef.Context.BuiltinFnTy, VK_RValue, BuiltinLoc);
3507     QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType());
3508     Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy,
3509                                        CK_BuiltinFnToFnPtr).get();
3510 
3511     // Build the CallExpr
3512     ExprResult TheCall = CallExpr::Create(
3513         SemaRef.Context, Callee, SubExprs, Builtin->getCallResultType(),
3514         Expr::getValueKindForType(Builtin->getReturnType()), RParenLoc,
3515         FPOptionsOverride());
3516 
3517     // Type-check the __builtin_shufflevector expression.
3518     return SemaRef.SemaBuiltinShuffleVector(cast<CallExpr>(TheCall.get()));
3519   }
3520 
3521   /// Build a new convert vector expression.
RebuildConvertVectorExpr(SourceLocation BuiltinLoc,Expr * SrcExpr,TypeSourceInfo * DstTInfo,SourceLocation RParenLoc)3522   ExprResult RebuildConvertVectorExpr(SourceLocation BuiltinLoc,
3523                                       Expr *SrcExpr, TypeSourceInfo *DstTInfo,
3524                                       SourceLocation RParenLoc) {
3525     return SemaRef.SemaConvertVectorExpr(SrcExpr, DstTInfo,
3526                                          BuiltinLoc, RParenLoc);
3527   }
3528 
3529   /// Build a new template argument pack expansion.
3530   ///
3531   /// By default, performs semantic analysis to build a new pack expansion
3532   /// for a template argument. Subclasses may override this routine to provide
3533   /// different behavior.
RebuildPackExpansion(TemplateArgumentLoc Pattern,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)3534   TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern,
3535                                            SourceLocation EllipsisLoc,
3536                                            Optional<unsigned> NumExpansions) {
3537     switch (Pattern.getArgument().getKind()) {
3538     case TemplateArgument::Expression: {
3539       ExprResult Result
3540         = getSema().CheckPackExpansion(Pattern.getSourceExpression(),
3541                                        EllipsisLoc, NumExpansions);
3542       if (Result.isInvalid())
3543         return TemplateArgumentLoc();
3544 
3545       return TemplateArgumentLoc(Result.get(), Result.get());
3546     }
3547 
3548     case TemplateArgument::Template:
3549       return TemplateArgumentLoc(
3550           SemaRef.Context,
3551           TemplateArgument(Pattern.getArgument().getAsTemplate(),
3552                            NumExpansions),
3553           Pattern.getTemplateQualifierLoc(), Pattern.getTemplateNameLoc(),
3554           EllipsisLoc);
3555 
3556     case TemplateArgument::Null:
3557     case TemplateArgument::Integral:
3558     case TemplateArgument::Declaration:
3559     case TemplateArgument::Pack:
3560     case TemplateArgument::TemplateExpansion:
3561     case TemplateArgument::NullPtr:
3562       llvm_unreachable("Pack expansion pattern has no parameter packs");
3563 
3564     case TemplateArgument::Type:
3565       if (TypeSourceInfo *Expansion
3566             = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(),
3567                                            EllipsisLoc,
3568                                            NumExpansions))
3569         return TemplateArgumentLoc(TemplateArgument(Expansion->getType()),
3570                                    Expansion);
3571       break;
3572     }
3573 
3574     return TemplateArgumentLoc();
3575   }
3576 
3577   /// Build a new expression pack expansion.
3578   ///
3579   /// By default, performs semantic analysis to build a new pack expansion
3580   /// for an expression. Subclasses may override this routine to provide
3581   /// different behavior.
RebuildPackExpansion(Expr * Pattern,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)3582   ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
3583                                   Optional<unsigned> NumExpansions) {
3584     return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions);
3585   }
3586 
3587   /// Build a new C++1z fold-expression.
3588   ///
3589   /// By default, performs semantic analysis in order to build a new fold
3590   /// expression.
RebuildCXXFoldExpr(UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,Expr * LHS,BinaryOperatorKind Operator,SourceLocation EllipsisLoc,Expr * RHS,SourceLocation RParenLoc,Optional<unsigned> NumExpansions)3591   ExprResult RebuildCXXFoldExpr(UnresolvedLookupExpr *ULE,
3592                                 SourceLocation LParenLoc, Expr *LHS,
3593                                 BinaryOperatorKind Operator,
3594                                 SourceLocation EllipsisLoc, Expr *RHS,
3595                                 SourceLocation RParenLoc,
3596                                 Optional<unsigned> NumExpansions) {
3597     return getSema().BuildCXXFoldExpr(ULE, LParenLoc, LHS, Operator,
3598                                       EllipsisLoc, RHS, RParenLoc,
3599                                       NumExpansions);
3600   }
3601 
3602   /// Build an empty C++1z fold-expression with the given operator.
3603   ///
3604   /// By default, produces the fallback value for the fold-expression, or
3605   /// produce an error if there is no fallback value.
RebuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,BinaryOperatorKind Operator)3606   ExprResult RebuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
3607                                      BinaryOperatorKind Operator) {
3608     return getSema().BuildEmptyCXXFoldExpr(EllipsisLoc, Operator);
3609   }
3610 
3611   /// Build a new atomic operation expression.
3612   ///
3613   /// By default, performs semantic analysis to build the new expression.
3614   /// Subclasses may override this routine to provide different behavior.
RebuildAtomicExpr(SourceLocation BuiltinLoc,MultiExprArg SubExprs,AtomicExpr::AtomicOp Op,SourceLocation RParenLoc)3615   ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc, MultiExprArg SubExprs,
3616                                AtomicExpr::AtomicOp Op,
3617                                SourceLocation RParenLoc) {
3618     // Use this for all of the locations, since we don't know the difference
3619     // between the call and the expr at this point.
3620     SourceRange Range{BuiltinLoc, RParenLoc};
3621     return getSema().BuildAtomicExpr(Range, Range, RParenLoc, SubExprs, Op,
3622                                      Sema::AtomicArgumentOrder::AST);
3623   }
3624 
RebuildRecoveryExpr(SourceLocation BeginLoc,SourceLocation EndLoc,ArrayRef<Expr * > SubExprs,QualType Type)3625   ExprResult RebuildRecoveryExpr(SourceLocation BeginLoc, SourceLocation EndLoc,
3626                                  ArrayRef<Expr *> SubExprs, QualType Type) {
3627     return getSema().CreateRecoveryExpr(BeginLoc, EndLoc, SubExprs, Type);
3628   }
3629 
3630 private:
3631   TypeLoc TransformTypeInObjectScope(TypeLoc TL,
3632                                      QualType ObjectType,
3633                                      NamedDecl *FirstQualifierInScope,
3634                                      CXXScopeSpec &SS);
3635 
3636   TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
3637                                              QualType ObjectType,
3638                                              NamedDecl *FirstQualifierInScope,
3639                                              CXXScopeSpec &SS);
3640 
3641   TypeSourceInfo *TransformTSIInObjectScope(TypeLoc TL, QualType ObjectType,
3642                                             NamedDecl *FirstQualifierInScope,
3643                                             CXXScopeSpec &SS);
3644 
3645   QualType TransformDependentNameType(TypeLocBuilder &TLB,
3646                                       DependentNameTypeLoc TL,
3647                                       bool DeducibleTSTContext);
3648 };
3649 
3650 template <typename Derived>
TransformStmt(Stmt * S,StmtDiscardKind SDK)3651 StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S, StmtDiscardKind SDK) {
3652   if (!S)
3653     return S;
3654 
3655   switch (S->getStmtClass()) {
3656   case Stmt::NoStmtClass: break;
3657 
3658   // Transform individual statement nodes
3659   // Pass SDK into statements that can produce a value
3660 #define STMT(Node, Parent)                                              \
3661   case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S));
3662 #define VALUESTMT(Node, Parent)                                         \
3663   case Stmt::Node##Class:                                               \
3664     return getDerived().Transform##Node(cast<Node>(S), SDK);
3665 #define ABSTRACT_STMT(Node)
3666 #define EXPR(Node, Parent)
3667 #include "clang/AST/StmtNodes.inc"
3668 
3669   // Transform expressions by calling TransformExpr.
3670 #define STMT(Node, Parent)
3671 #define ABSTRACT_STMT(Stmt)
3672 #define EXPR(Node, Parent) case Stmt::Node##Class:
3673 #include "clang/AST/StmtNodes.inc"
3674     {
3675       ExprResult E = getDerived().TransformExpr(cast<Expr>(S));
3676 
3677       if (SDK == SDK_StmtExprResult)
3678         E = getSema().ActOnStmtExprResult(E);
3679       return getSema().ActOnExprStmt(E, SDK == SDK_Discarded);
3680     }
3681   }
3682 
3683   return S;
3684 }
3685 
3686 template<typename Derived>
TransformOMPClause(OMPClause * S)3687 OMPClause *TreeTransform<Derived>::TransformOMPClause(OMPClause *S) {
3688   if (!S)
3689     return S;
3690 
3691   switch (S->getClauseKind()) {
3692   default: break;
3693   // Transform individual clause nodes
3694 #define OMP_CLAUSE_CLASS(Enum, Str, Class) \
3695   case Enum:                                                                   \
3696     return getDerived().Transform ## Class(cast<Class>(S));
3697 #include "llvm/Frontend/OpenMP/OMPKinds.def"
3698   }
3699 
3700   return S;
3701 }
3702 
3703 
3704 template<typename Derived>
TransformExpr(Expr * E)3705 ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) {
3706   if (!E)
3707     return E;
3708 
3709   switch (E->getStmtClass()) {
3710     case Stmt::NoStmtClass: break;
3711 #define STMT(Node, Parent) case Stmt::Node##Class: break;
3712 #define ABSTRACT_STMT(Stmt)
3713 #define EXPR(Node, Parent)                                              \
3714     case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E));
3715 #include "clang/AST/StmtNodes.inc"
3716   }
3717 
3718   return E;
3719 }
3720 
3721 template<typename Derived>
TransformInitializer(Expr * Init,bool NotCopyInit)3722 ExprResult TreeTransform<Derived>::TransformInitializer(Expr *Init,
3723                                                         bool NotCopyInit) {
3724   // Initializers are instantiated like expressions, except that various outer
3725   // layers are stripped.
3726   if (!Init)
3727     return Init;
3728 
3729   if (auto *FE = dyn_cast<FullExpr>(Init))
3730     Init = FE->getSubExpr();
3731 
3732   if (auto *AIL = dyn_cast<ArrayInitLoopExpr>(Init))
3733     Init = AIL->getCommonExpr();
3734 
3735   if (MaterializeTemporaryExpr *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
3736     Init = MTE->getSubExpr();
3737 
3738   while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init))
3739     Init = Binder->getSubExpr();
3740 
3741   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init))
3742     Init = ICE->getSubExprAsWritten();
3743 
3744   if (CXXStdInitializerListExpr *ILE =
3745           dyn_cast<CXXStdInitializerListExpr>(Init))
3746     return TransformInitializer(ILE->getSubExpr(), NotCopyInit);
3747 
3748   // If this is copy-initialization, we only need to reconstruct
3749   // InitListExprs. Other forms of copy-initialization will be a no-op if
3750   // the initializer is already the right type.
3751   CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init);
3752   if (!NotCopyInit && !(Construct && Construct->isListInitialization()))
3753     return getDerived().TransformExpr(Init);
3754 
3755   // Revert value-initialization back to empty parens.
3756   if (CXXScalarValueInitExpr *VIE = dyn_cast<CXXScalarValueInitExpr>(Init)) {
3757     SourceRange Parens = VIE->getSourceRange();
3758     return getDerived().RebuildParenListExpr(Parens.getBegin(), None,
3759                                              Parens.getEnd());
3760   }
3761 
3762   // FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization.
3763   if (isa<ImplicitValueInitExpr>(Init))
3764     return getDerived().RebuildParenListExpr(SourceLocation(), None,
3765                                              SourceLocation());
3766 
3767   // Revert initialization by constructor back to a parenthesized or braced list
3768   // of expressions. Any other form of initializer can just be reused directly.
3769   if (!Construct || isa<CXXTemporaryObjectExpr>(Construct))
3770     return getDerived().TransformExpr(Init);
3771 
3772   // If the initialization implicitly converted an initializer list to a
3773   // std::initializer_list object, unwrap the std::initializer_list too.
3774   if (Construct && Construct->isStdInitListInitialization())
3775     return TransformInitializer(Construct->getArg(0), NotCopyInit);
3776 
3777   // Enter a list-init context if this was list initialization.
3778   EnterExpressionEvaluationContext Context(
3779       getSema(), EnterExpressionEvaluationContext::InitList,
3780       Construct->isListInitialization());
3781 
3782   SmallVector<Expr*, 8> NewArgs;
3783   bool ArgChanged = false;
3784   if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(),
3785                                   /*IsCall*/true, NewArgs, &ArgChanged))
3786     return ExprError();
3787 
3788   // If this was list initialization, revert to syntactic list form.
3789   if (Construct->isListInitialization())
3790     return getDerived().RebuildInitList(Construct->getBeginLoc(), NewArgs,
3791                                         Construct->getEndLoc());
3792 
3793   // Build a ParenListExpr to represent anything else.
3794   SourceRange Parens = Construct->getParenOrBraceRange();
3795   if (Parens.isInvalid()) {
3796     // This was a variable declaration's initialization for which no initializer
3797     // was specified.
3798     assert(NewArgs.empty() &&
3799            "no parens or braces but have direct init with arguments?");
3800     return ExprEmpty();
3801   }
3802   return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs,
3803                                            Parens.getEnd());
3804 }
3805 
3806 template<typename Derived>
TransformExprs(Expr * const * Inputs,unsigned NumInputs,bool IsCall,SmallVectorImpl<Expr * > & Outputs,bool * ArgChanged)3807 bool TreeTransform<Derived>::TransformExprs(Expr *const *Inputs,
3808                                             unsigned NumInputs,
3809                                             bool IsCall,
3810                                       SmallVectorImpl<Expr *> &Outputs,
3811                                             bool *ArgChanged) {
3812   for (unsigned I = 0; I != NumInputs; ++I) {
3813     // If requested, drop call arguments that need to be dropped.
3814     if (IsCall && getDerived().DropCallArgument(Inputs[I])) {
3815       if (ArgChanged)
3816         *ArgChanged = true;
3817 
3818       break;
3819     }
3820 
3821     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) {
3822       Expr *Pattern = Expansion->getPattern();
3823 
3824       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3825       getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
3826       assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
3827 
3828       // Determine whether the set of unexpanded parameter packs can and should
3829       // be expanded.
3830       bool Expand = true;
3831       bool RetainExpansion = false;
3832       Optional<unsigned> OrigNumExpansions = Expansion->getNumExpansions();
3833       Optional<unsigned> NumExpansions = OrigNumExpansions;
3834       if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(),
3835                                                Pattern->getSourceRange(),
3836                                                Unexpanded,
3837                                                Expand, RetainExpansion,
3838                                                NumExpansions))
3839         return true;
3840 
3841       if (!Expand) {
3842         // The transform has determined that we should perform a simple
3843         // transformation on the pack expansion, producing another pack
3844         // expansion.
3845         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
3846         ExprResult OutPattern = getDerived().TransformExpr(Pattern);
3847         if (OutPattern.isInvalid())
3848           return true;
3849 
3850         ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(),
3851                                                 Expansion->getEllipsisLoc(),
3852                                                            NumExpansions);
3853         if (Out.isInvalid())
3854           return true;
3855 
3856         if (ArgChanged)
3857           *ArgChanged = true;
3858         Outputs.push_back(Out.get());
3859         continue;
3860       }
3861 
3862       // Record right away that the argument was changed.  This needs
3863       // to happen even if the array expands to nothing.
3864       if (ArgChanged) *ArgChanged = true;
3865 
3866       // The transform has determined that we should perform an elementwise
3867       // expansion of the pattern. Do so.
3868       for (unsigned I = 0; I != *NumExpansions; ++I) {
3869         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
3870         ExprResult Out = getDerived().TransformExpr(Pattern);
3871         if (Out.isInvalid())
3872           return true;
3873 
3874         if (Out.get()->containsUnexpandedParameterPack()) {
3875           Out = getDerived().RebuildPackExpansion(
3876               Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
3877           if (Out.isInvalid())
3878             return true;
3879         }
3880 
3881         Outputs.push_back(Out.get());
3882       }
3883 
3884       // If we're supposed to retain a pack expansion, do so by temporarily
3885       // forgetting the partially-substituted parameter pack.
3886       if (RetainExpansion) {
3887         ForgetPartiallySubstitutedPackRAII Forget(getDerived());
3888 
3889         ExprResult Out = getDerived().TransformExpr(Pattern);
3890         if (Out.isInvalid())
3891           return true;
3892 
3893         Out = getDerived().RebuildPackExpansion(
3894             Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
3895         if (Out.isInvalid())
3896           return true;
3897 
3898         Outputs.push_back(Out.get());
3899       }
3900 
3901       continue;
3902     }
3903 
3904     ExprResult Result =
3905       IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false)
3906              : getDerived().TransformExpr(Inputs[I]);
3907     if (Result.isInvalid())
3908       return true;
3909 
3910     if (Result.get() != Inputs[I] && ArgChanged)
3911       *ArgChanged = true;
3912 
3913     Outputs.push_back(Result.get());
3914   }
3915 
3916   return false;
3917 }
3918 
3919 template <typename Derived>
TransformCondition(SourceLocation Loc,VarDecl * Var,Expr * Expr,Sema::ConditionKind Kind)3920 Sema::ConditionResult TreeTransform<Derived>::TransformCondition(
3921     SourceLocation Loc, VarDecl *Var, Expr *Expr, Sema::ConditionKind Kind) {
3922   if (Var) {
3923     VarDecl *ConditionVar = cast_or_null<VarDecl>(
3924         getDerived().TransformDefinition(Var->getLocation(), Var));
3925 
3926     if (!ConditionVar)
3927       return Sema::ConditionError();
3928 
3929     return getSema().ActOnConditionVariable(ConditionVar, Loc, Kind);
3930   }
3931 
3932   if (Expr) {
3933     ExprResult CondExpr = getDerived().TransformExpr(Expr);
3934 
3935     if (CondExpr.isInvalid())
3936       return Sema::ConditionError();
3937 
3938     return getSema().ActOnCondition(nullptr, Loc, CondExpr.get(), Kind);
3939   }
3940 
3941   return Sema::ConditionResult();
3942 }
3943 
3944 template<typename Derived>
3945 NestedNameSpecifierLoc
TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,QualType ObjectType,NamedDecl * FirstQualifierInScope)3946 TreeTransform<Derived>::TransformNestedNameSpecifierLoc(
3947                                                     NestedNameSpecifierLoc NNS,
3948                                                      QualType ObjectType,
3949                                              NamedDecl *FirstQualifierInScope) {
3950   SmallVector<NestedNameSpecifierLoc, 4> Qualifiers;
3951   for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier;
3952        Qualifier = Qualifier.getPrefix())
3953     Qualifiers.push_back(Qualifier);
3954 
3955   CXXScopeSpec SS;
3956   while (!Qualifiers.empty()) {
3957     NestedNameSpecifierLoc Q = Qualifiers.pop_back_val();
3958     NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier();
3959 
3960     switch (QNNS->getKind()) {
3961     case NestedNameSpecifier::Identifier: {
3962       Sema::NestedNameSpecInfo IdInfo(QNNS->getAsIdentifier(),
3963                           Q.getLocalBeginLoc(), Q.getLocalEndLoc(), ObjectType);
3964       if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/nullptr, IdInfo, false,
3965                                               SS, FirstQualifierInScope, false))
3966         return NestedNameSpecifierLoc();
3967     }
3968       break;
3969 
3970     case NestedNameSpecifier::Namespace: {
3971       NamespaceDecl *NS
3972         = cast_or_null<NamespaceDecl>(
3973                                     getDerived().TransformDecl(
3974                                                           Q.getLocalBeginLoc(),
3975                                                        QNNS->getAsNamespace()));
3976       SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc());
3977       break;
3978     }
3979 
3980     case NestedNameSpecifier::NamespaceAlias: {
3981       NamespaceAliasDecl *Alias
3982         = cast_or_null<NamespaceAliasDecl>(
3983                       getDerived().TransformDecl(Q.getLocalBeginLoc(),
3984                                                  QNNS->getAsNamespaceAlias()));
3985       SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(),
3986                 Q.getLocalEndLoc());
3987       break;
3988     }
3989 
3990     case NestedNameSpecifier::Global:
3991       // There is no meaningful transformation that one could perform on the
3992       // global scope.
3993       SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc());
3994       break;
3995 
3996     case NestedNameSpecifier::Super: {
3997       CXXRecordDecl *RD =
3998           cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
3999               SourceLocation(), QNNS->getAsRecordDecl()));
4000       SS.MakeSuper(SemaRef.Context, RD, Q.getBeginLoc(), Q.getEndLoc());
4001       break;
4002     }
4003 
4004     case NestedNameSpecifier::TypeSpecWithTemplate:
4005     case NestedNameSpecifier::TypeSpec: {
4006       TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType,
4007                                               FirstQualifierInScope, SS);
4008 
4009       if (!TL)
4010         return NestedNameSpecifierLoc();
4011 
4012       if (TL.getType()->isDependentType() || TL.getType()->isRecordType() ||
4013           (SemaRef.getLangOpts().CPlusPlus11 &&
4014            TL.getType()->isEnumeralType())) {
4015         assert(!TL.getType().hasLocalQualifiers() &&
4016                "Can't get cv-qualifiers here");
4017         if (TL.getType()->isEnumeralType())
4018           SemaRef.Diag(TL.getBeginLoc(),
4019                        diag::warn_cxx98_compat_enum_nested_name_spec);
4020         SS.Extend(SemaRef.Context, /*FIXME:*/SourceLocation(), TL,
4021                   Q.getLocalEndLoc());
4022         break;
4023       }
4024       // If the nested-name-specifier is an invalid type def, don't emit an
4025       // error because a previous error should have already been emitted.
4026       TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>();
4027       if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) {
4028         SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag)
4029           << TL.getType() << SS.getRange();
4030       }
4031       return NestedNameSpecifierLoc();
4032     }
4033     }
4034 
4035     // The qualifier-in-scope and object type only apply to the leftmost entity.
4036     FirstQualifierInScope = nullptr;
4037     ObjectType = QualType();
4038   }
4039 
4040   // Don't rebuild the nested-name-specifier if we don't have to.
4041   if (SS.getScopeRep() == NNS.getNestedNameSpecifier() &&
4042       !getDerived().AlwaysRebuild())
4043     return NNS;
4044 
4045   // If we can re-use the source-location data from the original
4046   // nested-name-specifier, do so.
4047   if (SS.location_size() == NNS.getDataLength() &&
4048       memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0)
4049     return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData());
4050 
4051   // Allocate new nested-name-specifier location information.
4052   return SS.getWithLocInContext(SemaRef.Context);
4053 }
4054 
4055 template<typename Derived>
4056 DeclarationNameInfo
4057 TreeTransform<Derived>
TransformDeclarationNameInfo(const DeclarationNameInfo & NameInfo)4058 ::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) {
4059   DeclarationName Name = NameInfo.getName();
4060   if (!Name)
4061     return DeclarationNameInfo();
4062 
4063   switch (Name.getNameKind()) {
4064   case DeclarationName::Identifier:
4065   case DeclarationName::ObjCZeroArgSelector:
4066   case DeclarationName::ObjCOneArgSelector:
4067   case DeclarationName::ObjCMultiArgSelector:
4068   case DeclarationName::CXXOperatorName:
4069   case DeclarationName::CXXLiteralOperatorName:
4070   case DeclarationName::CXXUsingDirective:
4071     return NameInfo;
4072 
4073   case DeclarationName::CXXDeductionGuideName: {
4074     TemplateDecl *OldTemplate = Name.getCXXDeductionGuideTemplate();
4075     TemplateDecl *NewTemplate = cast_or_null<TemplateDecl>(
4076         getDerived().TransformDecl(NameInfo.getLoc(), OldTemplate));
4077     if (!NewTemplate)
4078       return DeclarationNameInfo();
4079 
4080     DeclarationNameInfo NewNameInfo(NameInfo);
4081     NewNameInfo.setName(
4082         SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(NewTemplate));
4083     return NewNameInfo;
4084   }
4085 
4086   case DeclarationName::CXXConstructorName:
4087   case DeclarationName::CXXDestructorName:
4088   case DeclarationName::CXXConversionFunctionName: {
4089     TypeSourceInfo *NewTInfo;
4090     CanQualType NewCanTy;
4091     if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) {
4092       NewTInfo = getDerived().TransformType(OldTInfo);
4093       if (!NewTInfo)
4094         return DeclarationNameInfo();
4095       NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType());
4096     }
4097     else {
4098       NewTInfo = nullptr;
4099       TemporaryBase Rebase(*this, NameInfo.getLoc(), Name);
4100       QualType NewT = getDerived().TransformType(Name.getCXXNameType());
4101       if (NewT.isNull())
4102         return DeclarationNameInfo();
4103       NewCanTy = SemaRef.Context.getCanonicalType(NewT);
4104     }
4105 
4106     DeclarationName NewName
4107       = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(),
4108                                                            NewCanTy);
4109     DeclarationNameInfo NewNameInfo(NameInfo);
4110     NewNameInfo.setName(NewName);
4111     NewNameInfo.setNamedTypeInfo(NewTInfo);
4112     return NewNameInfo;
4113   }
4114   }
4115 
4116   llvm_unreachable("Unknown name kind.");
4117 }
4118 
4119 template<typename Derived>
4120 TemplateName
TransformTemplateName(CXXScopeSpec & SS,TemplateName Name,SourceLocation NameLoc,QualType ObjectType,NamedDecl * FirstQualifierInScope,bool AllowInjectedClassName)4121 TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS,
4122                                               TemplateName Name,
4123                                               SourceLocation NameLoc,
4124                                               QualType ObjectType,
4125                                               NamedDecl *FirstQualifierInScope,
4126                                               bool AllowInjectedClassName) {
4127   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
4128     TemplateDecl *Template = QTN->getTemplateDecl();
4129     assert(Template && "qualified template name must refer to a template");
4130 
4131     TemplateDecl *TransTemplate
4132       = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
4133                                                               Template));
4134     if (!TransTemplate)
4135       return TemplateName();
4136 
4137     if (!getDerived().AlwaysRebuild() &&
4138         SS.getScopeRep() == QTN->getQualifier() &&
4139         TransTemplate == Template)
4140       return Name;
4141 
4142     return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(),
4143                                             TransTemplate);
4144   }
4145 
4146   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
4147     if (SS.getScopeRep()) {
4148       // These apply to the scope specifier, not the template.
4149       ObjectType = QualType();
4150       FirstQualifierInScope = nullptr;
4151     }
4152 
4153     if (!getDerived().AlwaysRebuild() &&
4154         SS.getScopeRep() == DTN->getQualifier() &&
4155         ObjectType.isNull())
4156       return Name;
4157 
4158     // FIXME: Preserve the location of the "template" keyword.
4159     SourceLocation TemplateKWLoc = NameLoc;
4160 
4161     if (DTN->isIdentifier()) {
4162       return getDerived().RebuildTemplateName(SS,
4163                                               TemplateKWLoc,
4164                                               *DTN->getIdentifier(),
4165                                               NameLoc,
4166                                               ObjectType,
4167                                               FirstQualifierInScope,
4168                                               AllowInjectedClassName);
4169     }
4170 
4171     return getDerived().RebuildTemplateName(SS, TemplateKWLoc,
4172                                             DTN->getOperator(), NameLoc,
4173                                             ObjectType, AllowInjectedClassName);
4174   }
4175 
4176   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4177     TemplateDecl *TransTemplate
4178       = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
4179                                                               Template));
4180     if (!TransTemplate)
4181       return TemplateName();
4182 
4183     if (!getDerived().AlwaysRebuild() &&
4184         TransTemplate == Template)
4185       return Name;
4186 
4187     return TemplateName(TransTemplate);
4188   }
4189 
4190   if (SubstTemplateTemplateParmPackStorage *SubstPack
4191       = Name.getAsSubstTemplateTemplateParmPack()) {
4192     TemplateTemplateParmDecl *TransParam
4193     = cast_or_null<TemplateTemplateParmDecl>(
4194             getDerived().TransformDecl(NameLoc, SubstPack->getParameterPack()));
4195     if (!TransParam)
4196       return TemplateName();
4197 
4198     if (!getDerived().AlwaysRebuild() &&
4199         TransParam == SubstPack->getParameterPack())
4200       return Name;
4201 
4202     return getDerived().RebuildTemplateName(TransParam,
4203                                             SubstPack->getArgumentPack());
4204   }
4205 
4206   // These should be getting filtered out before they reach the AST.
4207   llvm_unreachable("overloaded function decl survived to here");
4208 }
4209 
4210 template<typename Derived>
InventTemplateArgumentLoc(const TemplateArgument & Arg,TemplateArgumentLoc & Output)4211 void TreeTransform<Derived>::InventTemplateArgumentLoc(
4212                                          const TemplateArgument &Arg,
4213                                          TemplateArgumentLoc &Output) {
4214   Output = getSema().getTrivialTemplateArgumentLoc(
4215       Arg, QualType(), getDerived().getBaseLocation());
4216 }
4217 
4218 template<typename Derived>
TransformTemplateArgument(const TemplateArgumentLoc & Input,TemplateArgumentLoc & Output,bool Uneval)4219 bool TreeTransform<Derived>::TransformTemplateArgument(
4220                                          const TemplateArgumentLoc &Input,
4221                                          TemplateArgumentLoc &Output, bool Uneval) {
4222   const TemplateArgument &Arg = Input.getArgument();
4223   switch (Arg.getKind()) {
4224   case TemplateArgument::Null:
4225   case TemplateArgument::Pack:
4226     llvm_unreachable("Unexpected TemplateArgument");
4227 
4228   case TemplateArgument::Integral:
4229   case TemplateArgument::NullPtr:
4230   case TemplateArgument::Declaration: {
4231     // Transform a resolved template argument straight to a resolved template
4232     // argument. We get here when substituting into an already-substituted
4233     // template type argument during concept satisfaction checking.
4234     QualType T = Arg.getNonTypeTemplateArgumentType();
4235     QualType NewT = getDerived().TransformType(T);
4236     if (NewT.isNull())
4237       return true;
4238 
4239     ValueDecl *D = Arg.getKind() == TemplateArgument::Declaration
4240                        ? Arg.getAsDecl()
4241                        : nullptr;
4242     ValueDecl *NewD = D ? cast_or_null<ValueDecl>(getDerived().TransformDecl(
4243                               getDerived().getBaseLocation(), D))
4244                         : nullptr;
4245     if (D && !NewD)
4246       return true;
4247 
4248     if (NewT == T && D == NewD)
4249       Output = Input;
4250     else if (Arg.getKind() == TemplateArgument::Integral)
4251       Output = TemplateArgumentLoc(
4252           TemplateArgument(getSema().Context, Arg.getAsIntegral(), NewT),
4253           TemplateArgumentLocInfo());
4254     else if (Arg.getKind() == TemplateArgument::NullPtr)
4255       Output = TemplateArgumentLoc(TemplateArgument(NewT, /*IsNullPtr=*/true),
4256                                    TemplateArgumentLocInfo());
4257     else
4258       Output = TemplateArgumentLoc(TemplateArgument(NewD, NewT),
4259                                    TemplateArgumentLocInfo());
4260 
4261     return false;
4262   }
4263 
4264   case TemplateArgument::Type: {
4265     TypeSourceInfo *DI = Input.getTypeSourceInfo();
4266     if (!DI)
4267       DI = InventTypeSourceInfo(Input.getArgument().getAsType());
4268 
4269     DI = getDerived().TransformType(DI);
4270     if (!DI) return true;
4271 
4272     Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
4273     return false;
4274   }
4275 
4276   case TemplateArgument::Template: {
4277     NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc();
4278     if (QualifierLoc) {
4279       QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc);
4280       if (!QualifierLoc)
4281         return true;
4282     }
4283 
4284     CXXScopeSpec SS;
4285     SS.Adopt(QualifierLoc);
4286     TemplateName Template
4287       = getDerived().TransformTemplateName(SS, Arg.getAsTemplate(),
4288                                            Input.getTemplateNameLoc());
4289     if (Template.isNull())
4290       return true;
4291 
4292     Output = TemplateArgumentLoc(SemaRef.Context, TemplateArgument(Template),
4293                                  QualifierLoc, Input.getTemplateNameLoc());
4294     return false;
4295   }
4296 
4297   case TemplateArgument::TemplateExpansion:
4298     llvm_unreachable("Caller should expand pack expansions");
4299 
4300   case TemplateArgument::Expression: {
4301     // Template argument expressions are constant expressions.
4302     EnterExpressionEvaluationContext Unevaluated(
4303         getSema(),
4304         Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
4305                : Sema::ExpressionEvaluationContext::ConstantEvaluated,
4306         /*LambdaContextDecl=*/nullptr, /*ExprContext=*/
4307         Sema::ExpressionEvaluationContextRecord::EK_TemplateArgument);
4308 
4309     Expr *InputExpr = Input.getSourceExpression();
4310     if (!InputExpr) InputExpr = Input.getArgument().getAsExpr();
4311 
4312     ExprResult E = getDerived().TransformExpr(InputExpr);
4313     E = SemaRef.ActOnConstantExpression(E);
4314     if (E.isInvalid()) return true;
4315     Output = TemplateArgumentLoc(TemplateArgument(E.get()), E.get());
4316     return false;
4317   }
4318   }
4319 
4320   // Work around bogus GCC warning
4321   return true;
4322 }
4323 
4324 /// Iterator adaptor that invents template argument location information
4325 /// for each of the template arguments in its underlying iterator.
4326 template<typename Derived, typename InputIterator>
4327 class TemplateArgumentLocInventIterator {
4328   TreeTransform<Derived> &Self;
4329   InputIterator Iter;
4330 
4331 public:
4332   typedef TemplateArgumentLoc value_type;
4333   typedef TemplateArgumentLoc reference;
4334   typedef typename std::iterator_traits<InputIterator>::difference_type
4335     difference_type;
4336   typedef std::input_iterator_tag iterator_category;
4337 
4338   class pointer {
4339     TemplateArgumentLoc Arg;
4340 
4341   public:
pointer(TemplateArgumentLoc Arg)4342     explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
4343 
4344     const TemplateArgumentLoc *operator->() const { return &Arg; }
4345   };
4346 
TemplateArgumentLocInventIterator()4347   TemplateArgumentLocInventIterator() { }
4348 
TemplateArgumentLocInventIterator(TreeTransform<Derived> & Self,InputIterator Iter)4349   explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self,
4350                                              InputIterator Iter)
4351     : Self(Self), Iter(Iter) { }
4352 
4353   TemplateArgumentLocInventIterator &operator++() {
4354     ++Iter;
4355     return *this;
4356   }
4357 
4358   TemplateArgumentLocInventIterator operator++(int) {
4359     TemplateArgumentLocInventIterator Old(*this);
4360     ++(*this);
4361     return Old;
4362   }
4363 
4364   reference operator*() const {
4365     TemplateArgumentLoc Result;
4366     Self.InventTemplateArgumentLoc(*Iter, Result);
4367     return Result;
4368   }
4369 
4370   pointer operator->() const { return pointer(**this); }
4371 
4372   friend bool operator==(const TemplateArgumentLocInventIterator &X,
4373                          const TemplateArgumentLocInventIterator &Y) {
4374     return X.Iter == Y.Iter;
4375   }
4376 
4377   friend bool operator!=(const TemplateArgumentLocInventIterator &X,
4378                          const TemplateArgumentLocInventIterator &Y) {
4379     return X.Iter != Y.Iter;
4380   }
4381 };
4382 
4383 template<typename Derived>
4384 template<typename InputIterator>
TransformTemplateArguments(InputIterator First,InputIterator Last,TemplateArgumentListInfo & Outputs,bool Uneval)4385 bool TreeTransform<Derived>::TransformTemplateArguments(
4386     InputIterator First, InputIterator Last, TemplateArgumentListInfo &Outputs,
4387     bool Uneval) {
4388   for (; First != Last; ++First) {
4389     TemplateArgumentLoc Out;
4390     TemplateArgumentLoc In = *First;
4391 
4392     if (In.getArgument().getKind() == TemplateArgument::Pack) {
4393       // Unpack argument packs, which we translate them into separate
4394       // arguments.
4395       // FIXME: We could do much better if we could guarantee that the
4396       // TemplateArgumentLocInfo for the pack expansion would be usable for
4397       // all of the template arguments in the argument pack.
4398       typedef TemplateArgumentLocInventIterator<Derived,
4399                                                 TemplateArgument::pack_iterator>
4400         PackLocIterator;
4401       if (TransformTemplateArguments(PackLocIterator(*this,
4402                                                  In.getArgument().pack_begin()),
4403                                      PackLocIterator(*this,
4404                                                    In.getArgument().pack_end()),
4405                                      Outputs, Uneval))
4406         return true;
4407 
4408       continue;
4409     }
4410 
4411     if (In.getArgument().isPackExpansion()) {
4412       // We have a pack expansion, for which we will be substituting into
4413       // the pattern.
4414       SourceLocation Ellipsis;
4415       Optional<unsigned> OrigNumExpansions;
4416       TemplateArgumentLoc Pattern
4417         = getSema().getTemplateArgumentPackExpansionPattern(
4418               In, Ellipsis, OrigNumExpansions);
4419 
4420       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
4421       getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
4422       assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
4423 
4424       // Determine whether the set of unexpanded parameter packs can and should
4425       // be expanded.
4426       bool Expand = true;
4427       bool RetainExpansion = false;
4428       Optional<unsigned> NumExpansions = OrigNumExpansions;
4429       if (getDerived().TryExpandParameterPacks(Ellipsis,
4430                                                Pattern.getSourceRange(),
4431                                                Unexpanded,
4432                                                Expand,
4433                                                RetainExpansion,
4434                                                NumExpansions))
4435         return true;
4436 
4437       if (!Expand) {
4438         // The transform has determined that we should perform a simple
4439         // transformation on the pack expansion, producing another pack
4440         // expansion.
4441         TemplateArgumentLoc OutPattern;
4442         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
4443         if (getDerived().TransformTemplateArgument(Pattern, OutPattern, Uneval))
4444           return true;
4445 
4446         Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis,
4447                                                 NumExpansions);
4448         if (Out.getArgument().isNull())
4449           return true;
4450 
4451         Outputs.addArgument(Out);
4452         continue;
4453       }
4454 
4455       // The transform has determined that we should perform an elementwise
4456       // expansion of the pattern. Do so.
4457       for (unsigned I = 0; I != *NumExpansions; ++I) {
4458         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
4459 
4460         if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval))
4461           return true;
4462 
4463         if (Out.getArgument().containsUnexpandedParameterPack()) {
4464           Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
4465                                                   OrigNumExpansions);
4466           if (Out.getArgument().isNull())
4467             return true;
4468         }
4469 
4470         Outputs.addArgument(Out);
4471       }
4472 
4473       // If we're supposed to retain a pack expansion, do so by temporarily
4474       // forgetting the partially-substituted parameter pack.
4475       if (RetainExpansion) {
4476         ForgetPartiallySubstitutedPackRAII Forget(getDerived());
4477 
4478         if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval))
4479           return true;
4480 
4481         Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
4482                                                 OrigNumExpansions);
4483         if (Out.getArgument().isNull())
4484           return true;
4485 
4486         Outputs.addArgument(Out);
4487       }
4488 
4489       continue;
4490     }
4491 
4492     // The simple case:
4493     if (getDerived().TransformTemplateArgument(In, Out, Uneval))
4494       return true;
4495 
4496     Outputs.addArgument(Out);
4497   }
4498 
4499   return false;
4500 
4501 }
4502 
4503 //===----------------------------------------------------------------------===//
4504 // Type transformation
4505 //===----------------------------------------------------------------------===//
4506 
4507 template<typename Derived>
TransformType(QualType T)4508 QualType TreeTransform<Derived>::TransformType(QualType T) {
4509   if (getDerived().AlreadyTransformed(T))
4510     return T;
4511 
4512   // Temporary workaround.  All of these transformations should
4513   // eventually turn into transformations on TypeLocs.
4514   TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
4515                                                 getDerived().getBaseLocation());
4516 
4517   TypeSourceInfo *NewDI = getDerived().TransformType(DI);
4518 
4519   if (!NewDI)
4520     return QualType();
4521 
4522   return NewDI->getType();
4523 }
4524 
4525 template<typename Derived>
TransformType(TypeSourceInfo * DI)4526 TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) {
4527   // Refine the base location to the type's location.
4528   TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
4529                        getDerived().getBaseEntity());
4530   if (getDerived().AlreadyTransformed(DI->getType()))
4531     return DI;
4532 
4533   TypeLocBuilder TLB;
4534 
4535   TypeLoc TL = DI->getTypeLoc();
4536   TLB.reserve(TL.getFullDataSize());
4537 
4538   QualType Result = getDerived().TransformType(TLB, TL);
4539   if (Result.isNull())
4540     return nullptr;
4541 
4542   return TLB.getTypeSourceInfo(SemaRef.Context, Result);
4543 }
4544 
4545 template<typename Derived>
4546 QualType
TransformType(TypeLocBuilder & TLB,TypeLoc T)4547 TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) {
4548   switch (T.getTypeLocClass()) {
4549 #define ABSTRACT_TYPELOC(CLASS, PARENT)
4550 #define TYPELOC(CLASS, PARENT)                                                 \
4551   case TypeLoc::CLASS:                                                         \
4552     return getDerived().Transform##CLASS##Type(TLB,                            \
4553                                                T.castAs<CLASS##TypeLoc>());
4554 #include "clang/AST/TypeLocNodes.def"
4555   }
4556 
4557   llvm_unreachable("unhandled type loc!");
4558 }
4559 
4560 template<typename Derived>
TransformTypeWithDeducedTST(QualType T)4561 QualType TreeTransform<Derived>::TransformTypeWithDeducedTST(QualType T) {
4562   if (!isa<DependentNameType>(T))
4563     return TransformType(T);
4564 
4565   if (getDerived().AlreadyTransformed(T))
4566     return T;
4567   TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
4568                                                 getDerived().getBaseLocation());
4569   TypeSourceInfo *NewDI = getDerived().TransformTypeWithDeducedTST(DI);
4570   return NewDI ? NewDI->getType() : QualType();
4571 }
4572 
4573 template<typename Derived>
4574 TypeSourceInfo *
TransformTypeWithDeducedTST(TypeSourceInfo * DI)4575 TreeTransform<Derived>::TransformTypeWithDeducedTST(TypeSourceInfo *DI) {
4576   if (!isa<DependentNameType>(DI->getType()))
4577     return TransformType(DI);
4578 
4579   // Refine the base location to the type's location.
4580   TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
4581                        getDerived().getBaseEntity());
4582   if (getDerived().AlreadyTransformed(DI->getType()))
4583     return DI;
4584 
4585   TypeLocBuilder TLB;
4586 
4587   TypeLoc TL = DI->getTypeLoc();
4588   TLB.reserve(TL.getFullDataSize());
4589 
4590   auto QTL = TL.getAs<QualifiedTypeLoc>();
4591   if (QTL)
4592     TL = QTL.getUnqualifiedLoc();
4593 
4594   auto DNTL = TL.castAs<DependentNameTypeLoc>();
4595 
4596   QualType Result = getDerived().TransformDependentNameType(
4597       TLB, DNTL, /*DeducedTSTContext*/true);
4598   if (Result.isNull())
4599     return nullptr;
4600 
4601   if (QTL) {
4602     Result = getDerived().RebuildQualifiedType(Result, QTL);
4603     if (Result.isNull())
4604       return nullptr;
4605     TLB.TypeWasModifiedSafely(Result);
4606   }
4607 
4608   return TLB.getTypeSourceInfo(SemaRef.Context, Result);
4609 }
4610 
4611 template<typename Derived>
4612 QualType
TransformQualifiedType(TypeLocBuilder & TLB,QualifiedTypeLoc T)4613 TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
4614                                                QualifiedTypeLoc T) {
4615   QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc());
4616   if (Result.isNull())
4617     return QualType();
4618 
4619   Result = getDerived().RebuildQualifiedType(Result, T);
4620 
4621   if (Result.isNull())
4622     return QualType();
4623 
4624   // RebuildQualifiedType might have updated the type, but not in a way
4625   // that invalidates the TypeLoc. (There's no location information for
4626   // qualifiers.)
4627   TLB.TypeWasModifiedSafely(Result);
4628 
4629   return Result;
4630 }
4631 
4632 template <typename Derived>
RebuildQualifiedType(QualType T,QualifiedTypeLoc TL)4633 QualType TreeTransform<Derived>::RebuildQualifiedType(QualType T,
4634                                                       QualifiedTypeLoc TL) {
4635 
4636   SourceLocation Loc = TL.getBeginLoc();
4637   Qualifiers Quals = TL.getType().getLocalQualifiers();
4638 
4639   if (((T.getAddressSpace() != LangAS::Default &&
4640         Quals.getAddressSpace() != LangAS::Default)) &&
4641       T.getAddressSpace() != Quals.getAddressSpace()) {
4642     SemaRef.Diag(Loc, diag::err_address_space_mismatch_templ_inst)
4643         << TL.getType() << T;
4644     return QualType();
4645   }
4646 
4647   // C++ [dcl.fct]p7:
4648   //   [When] adding cv-qualifications on top of the function type [...] the
4649   //   cv-qualifiers are ignored.
4650   if (T->isFunctionType()) {
4651     T = SemaRef.getASTContext().getAddrSpaceQualType(T,
4652                                                      Quals.getAddressSpace());
4653     return T;
4654   }
4655 
4656   // C++ [dcl.ref]p1:
4657   //   when the cv-qualifiers are introduced through the use of a typedef-name
4658   //   or decltype-specifier [...] the cv-qualifiers are ignored.
4659   // Note that [dcl.ref]p1 lists all cases in which cv-qualifiers can be
4660   // applied to a reference type.
4661   if (T->isReferenceType()) {
4662     // The only qualifier that applies to a reference type is restrict.
4663     if (!Quals.hasRestrict())
4664       return T;
4665     Quals = Qualifiers::fromCVRMask(Qualifiers::Restrict);
4666   }
4667 
4668   // Suppress Objective-C lifetime qualifiers if they don't make sense for the
4669   // resulting type.
4670   if (Quals.hasObjCLifetime()) {
4671     if (!T->isObjCLifetimeType() && !T->isDependentType())
4672       Quals.removeObjCLifetime();
4673     else if (T.getObjCLifetime()) {
4674       // Objective-C ARC:
4675       //   A lifetime qualifier applied to a substituted template parameter
4676       //   overrides the lifetime qualifier from the template argument.
4677       const AutoType *AutoTy;
4678       if (const SubstTemplateTypeParmType *SubstTypeParam
4679                                 = dyn_cast<SubstTemplateTypeParmType>(T)) {
4680         QualType Replacement = SubstTypeParam->getReplacementType();
4681         Qualifiers Qs = Replacement.getQualifiers();
4682         Qs.removeObjCLifetime();
4683         Replacement = SemaRef.Context.getQualifiedType(
4684             Replacement.getUnqualifiedType(), Qs);
4685         T = SemaRef.Context.getSubstTemplateTypeParmType(
4686             SubstTypeParam->getReplacedParameter(), Replacement);
4687       } else if ((AutoTy = dyn_cast<AutoType>(T)) && AutoTy->isDeduced()) {
4688         // 'auto' types behave the same way as template parameters.
4689         QualType Deduced = AutoTy->getDeducedType();
4690         Qualifiers Qs = Deduced.getQualifiers();
4691         Qs.removeObjCLifetime();
4692         Deduced =
4693             SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(), Qs);
4694         T = SemaRef.Context.getAutoType(Deduced, AutoTy->getKeyword(),
4695                                         AutoTy->isDependentType(),
4696                                         /*isPack=*/false,
4697                                         AutoTy->getTypeConstraintConcept(),
4698                                         AutoTy->getTypeConstraintArguments());
4699       } else {
4700         // Otherwise, complain about the addition of a qualifier to an
4701         // already-qualified type.
4702         // FIXME: Why is this check not in Sema::BuildQualifiedType?
4703         SemaRef.Diag(Loc, diag::err_attr_objc_ownership_redundant) << T;
4704         Quals.removeObjCLifetime();
4705       }
4706     }
4707   }
4708 
4709   return SemaRef.BuildQualifiedType(T, Loc, Quals);
4710 }
4711 
4712 template<typename Derived>
4713 TypeLoc
TransformTypeInObjectScope(TypeLoc TL,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)4714 TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL,
4715                                                    QualType ObjectType,
4716                                                    NamedDecl *UnqualLookup,
4717                                                    CXXScopeSpec &SS) {
4718   if (getDerived().AlreadyTransformed(TL.getType()))
4719     return TL;
4720 
4721   TypeSourceInfo *TSI =
4722       TransformTSIInObjectScope(TL, ObjectType, UnqualLookup, SS);
4723   if (TSI)
4724     return TSI->getTypeLoc();
4725   return TypeLoc();
4726 }
4727 
4728 template<typename Derived>
4729 TypeSourceInfo *
TransformTypeInObjectScope(TypeSourceInfo * TSInfo,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)4730 TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
4731                                                    QualType ObjectType,
4732                                                    NamedDecl *UnqualLookup,
4733                                                    CXXScopeSpec &SS) {
4734   if (getDerived().AlreadyTransformed(TSInfo->getType()))
4735     return TSInfo;
4736 
4737   return TransformTSIInObjectScope(TSInfo->getTypeLoc(), ObjectType,
4738                                    UnqualLookup, SS);
4739 }
4740 
4741 template <typename Derived>
TransformTSIInObjectScope(TypeLoc TL,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)4742 TypeSourceInfo *TreeTransform<Derived>::TransformTSIInObjectScope(
4743     TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup,
4744     CXXScopeSpec &SS) {
4745   QualType T = TL.getType();
4746   assert(!getDerived().AlreadyTransformed(T));
4747 
4748   TypeLocBuilder TLB;
4749   QualType Result;
4750 
4751   if (isa<TemplateSpecializationType>(T)) {
4752     TemplateSpecializationTypeLoc SpecTL =
4753         TL.castAs<TemplateSpecializationTypeLoc>();
4754 
4755     TemplateName Template = getDerived().TransformTemplateName(
4756         SS, SpecTL.getTypePtr()->getTemplateName(), SpecTL.getTemplateNameLoc(),
4757         ObjectType, UnqualLookup, /*AllowInjectedClassName*/true);
4758     if (Template.isNull())
4759       return nullptr;
4760 
4761     Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
4762                                                               Template);
4763   } else if (isa<DependentTemplateSpecializationType>(T)) {
4764     DependentTemplateSpecializationTypeLoc SpecTL =
4765         TL.castAs<DependentTemplateSpecializationTypeLoc>();
4766 
4767     TemplateName Template
4768       = getDerived().RebuildTemplateName(SS,
4769                                          SpecTL.getTemplateKeywordLoc(),
4770                                          *SpecTL.getTypePtr()->getIdentifier(),
4771                                          SpecTL.getTemplateNameLoc(),
4772                                          ObjectType, UnqualLookup,
4773                                          /*AllowInjectedClassName*/true);
4774     if (Template.isNull())
4775       return nullptr;
4776 
4777     Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
4778                                                                        SpecTL,
4779                                                                        Template,
4780                                                                        SS);
4781   } else {
4782     // Nothing special needs to be done for these.
4783     Result = getDerived().TransformType(TLB, TL);
4784   }
4785 
4786   if (Result.isNull())
4787     return nullptr;
4788 
4789   return TLB.getTypeSourceInfo(SemaRef.Context, Result);
4790 }
4791 
4792 template <class TyLoc> static inline
TransformTypeSpecType(TypeLocBuilder & TLB,TyLoc T)4793 QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) {
4794   TyLoc NewT = TLB.push<TyLoc>(T.getType());
4795   NewT.setNameLoc(T.getNameLoc());
4796   return T.getType();
4797 }
4798 
4799 template<typename Derived>
TransformBuiltinType(TypeLocBuilder & TLB,BuiltinTypeLoc T)4800 QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB,
4801                                                       BuiltinTypeLoc T) {
4802   BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType());
4803   NewT.setBuiltinLoc(T.getBuiltinLoc());
4804   if (T.needsExtraLocalData())
4805     NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs();
4806   return T.getType();
4807 }
4808 
4809 template<typename Derived>
TransformComplexType(TypeLocBuilder & TLB,ComplexTypeLoc T)4810 QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB,
4811                                                       ComplexTypeLoc T) {
4812   // FIXME: recurse?
4813   return TransformTypeSpecType(TLB, T);
4814 }
4815 
4816 template <typename Derived>
TransformAdjustedType(TypeLocBuilder & TLB,AdjustedTypeLoc TL)4817 QualType TreeTransform<Derived>::TransformAdjustedType(TypeLocBuilder &TLB,
4818                                                        AdjustedTypeLoc TL) {
4819   // Adjustments applied during transformation are handled elsewhere.
4820   return getDerived().TransformType(TLB, TL.getOriginalLoc());
4821 }
4822 
4823 template<typename Derived>
TransformDecayedType(TypeLocBuilder & TLB,DecayedTypeLoc TL)4824 QualType TreeTransform<Derived>::TransformDecayedType(TypeLocBuilder &TLB,
4825                                                       DecayedTypeLoc TL) {
4826   QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc());
4827   if (OriginalType.isNull())
4828     return QualType();
4829 
4830   QualType Result = TL.getType();
4831   if (getDerived().AlwaysRebuild() ||
4832       OriginalType != TL.getOriginalLoc().getType())
4833     Result = SemaRef.Context.getDecayedType(OriginalType);
4834   TLB.push<DecayedTypeLoc>(Result);
4835   // Nothing to set for DecayedTypeLoc.
4836   return Result;
4837 }
4838 
4839 template<typename Derived>
TransformPointerType(TypeLocBuilder & TLB,PointerTypeLoc TL)4840 QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB,
4841                                                       PointerTypeLoc TL) {
4842   QualType PointeeType
4843     = getDerived().TransformType(TLB, TL.getPointeeLoc());
4844   if (PointeeType.isNull())
4845     return QualType();
4846 
4847   QualType Result = TL.getType();
4848   if (PointeeType->getAs<ObjCObjectType>()) {
4849     // A dependent pointer type 'T *' has is being transformed such
4850     // that an Objective-C class type is being replaced for 'T'. The
4851     // resulting pointer type is an ObjCObjectPointerType, not a
4852     // PointerType.
4853     Result = SemaRef.Context.getObjCObjectPointerType(PointeeType);
4854 
4855     ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
4856     NewT.setStarLoc(TL.getStarLoc());
4857     return Result;
4858   }
4859 
4860   if (getDerived().AlwaysRebuild() ||
4861       PointeeType != TL.getPointeeLoc().getType()) {
4862     Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc());
4863     if (Result.isNull())
4864       return QualType();
4865   }
4866 
4867   // Objective-C ARC can add lifetime qualifiers to the type that we're
4868   // pointing to.
4869   TLB.TypeWasModifiedSafely(Result->getPointeeType());
4870 
4871   PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result);
4872   NewT.setSigilLoc(TL.getSigilLoc());
4873   return Result;
4874 }
4875 
4876 template<typename Derived>
4877 QualType
TransformBlockPointerType(TypeLocBuilder & TLB,BlockPointerTypeLoc TL)4878 TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB,
4879                                                   BlockPointerTypeLoc TL) {
4880   QualType PointeeType
4881     = getDerived().TransformType(TLB, TL.getPointeeLoc());
4882   if (PointeeType.isNull())
4883     return QualType();
4884 
4885   QualType Result = TL.getType();
4886   if (getDerived().AlwaysRebuild() ||
4887       PointeeType != TL.getPointeeLoc().getType()) {
4888     Result = getDerived().RebuildBlockPointerType(PointeeType,
4889                                                   TL.getSigilLoc());
4890     if (Result.isNull())
4891       return QualType();
4892   }
4893 
4894   BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result);
4895   NewT.setSigilLoc(TL.getSigilLoc());
4896   return Result;
4897 }
4898 
4899 /// Transforms a reference type.  Note that somewhat paradoxically we
4900 /// don't care whether the type itself is an l-value type or an r-value
4901 /// type;  we only care if the type was *written* as an l-value type
4902 /// or an r-value type.
4903 template<typename Derived>
4904 QualType
TransformReferenceType(TypeLocBuilder & TLB,ReferenceTypeLoc TL)4905 TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB,
4906                                                ReferenceTypeLoc TL) {
4907   const ReferenceType *T = TL.getTypePtr();
4908 
4909   // Note that this works with the pointee-as-written.
4910   QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
4911   if (PointeeType.isNull())
4912     return QualType();
4913 
4914   QualType Result = TL.getType();
4915   if (getDerived().AlwaysRebuild() ||
4916       PointeeType != T->getPointeeTypeAsWritten()) {
4917     Result = getDerived().RebuildReferenceType(PointeeType,
4918                                                T->isSpelledAsLValue(),
4919                                                TL.getSigilLoc());
4920     if (Result.isNull())
4921       return QualType();
4922   }
4923 
4924   // Objective-C ARC can add lifetime qualifiers to the type that we're
4925   // referring to.
4926   TLB.TypeWasModifiedSafely(
4927       Result->castAs<ReferenceType>()->getPointeeTypeAsWritten());
4928 
4929   // r-value references can be rebuilt as l-value references.
4930   ReferenceTypeLoc NewTL;
4931   if (isa<LValueReferenceType>(Result))
4932     NewTL = TLB.push<LValueReferenceTypeLoc>(Result);
4933   else
4934     NewTL = TLB.push<RValueReferenceTypeLoc>(Result);
4935   NewTL.setSigilLoc(TL.getSigilLoc());
4936 
4937   return Result;
4938 }
4939 
4940 template<typename Derived>
4941 QualType
TransformLValueReferenceType(TypeLocBuilder & TLB,LValueReferenceTypeLoc TL)4942 TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB,
4943                                                  LValueReferenceTypeLoc TL) {
4944   return TransformReferenceType(TLB, TL);
4945 }
4946 
4947 template<typename Derived>
4948 QualType
TransformRValueReferenceType(TypeLocBuilder & TLB,RValueReferenceTypeLoc TL)4949 TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB,
4950                                                  RValueReferenceTypeLoc TL) {
4951   return TransformReferenceType(TLB, TL);
4952 }
4953 
4954 template<typename Derived>
4955 QualType
TransformMemberPointerType(TypeLocBuilder & TLB,MemberPointerTypeLoc TL)4956 TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB,
4957                                                    MemberPointerTypeLoc TL) {
4958   QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
4959   if (PointeeType.isNull())
4960     return QualType();
4961 
4962   TypeSourceInfo* OldClsTInfo = TL.getClassTInfo();
4963   TypeSourceInfo *NewClsTInfo = nullptr;
4964   if (OldClsTInfo) {
4965     NewClsTInfo = getDerived().TransformType(OldClsTInfo);
4966     if (!NewClsTInfo)
4967       return QualType();
4968   }
4969 
4970   const MemberPointerType *T = TL.getTypePtr();
4971   QualType OldClsType = QualType(T->getClass(), 0);
4972   QualType NewClsType;
4973   if (NewClsTInfo)
4974     NewClsType = NewClsTInfo->getType();
4975   else {
4976     NewClsType = getDerived().TransformType(OldClsType);
4977     if (NewClsType.isNull())
4978       return QualType();
4979   }
4980 
4981   QualType Result = TL.getType();
4982   if (getDerived().AlwaysRebuild() ||
4983       PointeeType != T->getPointeeType() ||
4984       NewClsType != OldClsType) {
4985     Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType,
4986                                                    TL.getStarLoc());
4987     if (Result.isNull())
4988       return QualType();
4989   }
4990 
4991   // If we had to adjust the pointee type when building a member pointer, make
4992   // sure to push TypeLoc info for it.
4993   const MemberPointerType *MPT = Result->getAs<MemberPointerType>();
4994   if (MPT && PointeeType != MPT->getPointeeType()) {
4995     assert(isa<AdjustedType>(MPT->getPointeeType()));
4996     TLB.push<AdjustedTypeLoc>(MPT->getPointeeType());
4997   }
4998 
4999   MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result);
5000   NewTL.setSigilLoc(TL.getSigilLoc());
5001   NewTL.setClassTInfo(NewClsTInfo);
5002 
5003   return Result;
5004 }
5005 
5006 template<typename Derived>
5007 QualType
TransformConstantArrayType(TypeLocBuilder & TLB,ConstantArrayTypeLoc TL)5008 TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB,
5009                                                    ConstantArrayTypeLoc TL) {
5010   const ConstantArrayType *T = TL.getTypePtr();
5011   QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5012   if (ElementType.isNull())
5013     return QualType();
5014 
5015   // Prefer the expression from the TypeLoc;  the other may have been uniqued.
5016   Expr *OldSize = TL.getSizeExpr();
5017   if (!OldSize)
5018     OldSize = const_cast<Expr*>(T->getSizeExpr());
5019   Expr *NewSize = nullptr;
5020   if (OldSize) {
5021     EnterExpressionEvaluationContext Unevaluated(
5022         SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5023     NewSize = getDerived().TransformExpr(OldSize).template getAs<Expr>();
5024     NewSize = SemaRef.ActOnConstantExpression(NewSize).get();
5025   }
5026 
5027   QualType Result = TL.getType();
5028   if (getDerived().AlwaysRebuild() ||
5029       ElementType != T->getElementType() ||
5030       (T->getSizeExpr() && NewSize != OldSize)) {
5031     Result = getDerived().RebuildConstantArrayType(ElementType,
5032                                                    T->getSizeModifier(),
5033                                                    T->getSize(), NewSize,
5034                                              T->getIndexTypeCVRQualifiers(),
5035                                                    TL.getBracketsRange());
5036     if (Result.isNull())
5037       return QualType();
5038   }
5039 
5040   // We might have either a ConstantArrayType or a VariableArrayType now:
5041   // a ConstantArrayType is allowed to have an element type which is a
5042   // VariableArrayType if the type is dependent.  Fortunately, all array
5043   // types have the same location layout.
5044   ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
5045   NewTL.setLBracketLoc(TL.getLBracketLoc());
5046   NewTL.setRBracketLoc(TL.getRBracketLoc());
5047   NewTL.setSizeExpr(NewSize);
5048 
5049   return Result;
5050 }
5051 
5052 template<typename Derived>
TransformIncompleteArrayType(TypeLocBuilder & TLB,IncompleteArrayTypeLoc TL)5053 QualType TreeTransform<Derived>::TransformIncompleteArrayType(
5054                                               TypeLocBuilder &TLB,
5055                                               IncompleteArrayTypeLoc TL) {
5056   const IncompleteArrayType *T = TL.getTypePtr();
5057   QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5058   if (ElementType.isNull())
5059     return QualType();
5060 
5061   QualType Result = TL.getType();
5062   if (getDerived().AlwaysRebuild() ||
5063       ElementType != T->getElementType()) {
5064     Result = getDerived().RebuildIncompleteArrayType(ElementType,
5065                                                      T->getSizeModifier(),
5066                                            T->getIndexTypeCVRQualifiers(),
5067                                                      TL.getBracketsRange());
5068     if (Result.isNull())
5069       return QualType();
5070   }
5071 
5072   IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result);
5073   NewTL.setLBracketLoc(TL.getLBracketLoc());
5074   NewTL.setRBracketLoc(TL.getRBracketLoc());
5075   NewTL.setSizeExpr(nullptr);
5076 
5077   return Result;
5078 }
5079 
5080 template<typename Derived>
5081 QualType
TransformVariableArrayType(TypeLocBuilder & TLB,VariableArrayTypeLoc TL)5082 TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB,
5083                                                    VariableArrayTypeLoc TL) {
5084   const VariableArrayType *T = TL.getTypePtr();
5085   QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5086   if (ElementType.isNull())
5087     return QualType();
5088 
5089   ExprResult SizeResult;
5090   {
5091     EnterExpressionEvaluationContext Context(
5092         SemaRef, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
5093     SizeResult = getDerived().TransformExpr(T->getSizeExpr());
5094   }
5095   if (SizeResult.isInvalid())
5096     return QualType();
5097   SizeResult =
5098       SemaRef.ActOnFinishFullExpr(SizeResult.get(), /*DiscardedValue*/ false);
5099   if (SizeResult.isInvalid())
5100     return QualType();
5101 
5102   Expr *Size = SizeResult.get();
5103 
5104   QualType Result = TL.getType();
5105   if (getDerived().AlwaysRebuild() ||
5106       ElementType != T->getElementType() ||
5107       Size != T->getSizeExpr()) {
5108     Result = getDerived().RebuildVariableArrayType(ElementType,
5109                                                    T->getSizeModifier(),
5110                                                    Size,
5111                                              T->getIndexTypeCVRQualifiers(),
5112                                                    TL.getBracketsRange());
5113     if (Result.isNull())
5114       return QualType();
5115   }
5116 
5117   // We might have constant size array now, but fortunately it has the same
5118   // location layout.
5119   ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
5120   NewTL.setLBracketLoc(TL.getLBracketLoc());
5121   NewTL.setRBracketLoc(TL.getRBracketLoc());
5122   NewTL.setSizeExpr(Size);
5123 
5124   return Result;
5125 }
5126 
5127 template<typename Derived>
5128 QualType
TransformDependentSizedArrayType(TypeLocBuilder & TLB,DependentSizedArrayTypeLoc TL)5129 TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB,
5130                                              DependentSizedArrayTypeLoc TL) {
5131   const DependentSizedArrayType *T = TL.getTypePtr();
5132   QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5133   if (ElementType.isNull())
5134     return QualType();
5135 
5136   // Array bounds are constant expressions.
5137   EnterExpressionEvaluationContext Unevaluated(
5138       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5139 
5140   // Prefer the expression from the TypeLoc;  the other may have been uniqued.
5141   Expr *origSize = TL.getSizeExpr();
5142   if (!origSize) origSize = T->getSizeExpr();
5143 
5144   ExprResult sizeResult
5145     = getDerived().TransformExpr(origSize);
5146   sizeResult = SemaRef.ActOnConstantExpression(sizeResult);
5147   if (sizeResult.isInvalid())
5148     return QualType();
5149 
5150   Expr *size = sizeResult.get();
5151 
5152   QualType Result = TL.getType();
5153   if (getDerived().AlwaysRebuild() ||
5154       ElementType != T->getElementType() ||
5155       size != origSize) {
5156     Result = getDerived().RebuildDependentSizedArrayType(ElementType,
5157                                                          T->getSizeModifier(),
5158                                                          size,
5159                                                 T->getIndexTypeCVRQualifiers(),
5160                                                         TL.getBracketsRange());
5161     if (Result.isNull())
5162       return QualType();
5163   }
5164 
5165   // We might have any sort of array type now, but fortunately they
5166   // all have the same location layout.
5167   ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
5168   NewTL.setLBracketLoc(TL.getLBracketLoc());
5169   NewTL.setRBracketLoc(TL.getRBracketLoc());
5170   NewTL.setSizeExpr(size);
5171 
5172   return Result;
5173 }
5174 
5175 template <typename Derived>
TransformDependentVectorType(TypeLocBuilder & TLB,DependentVectorTypeLoc TL)5176 QualType TreeTransform<Derived>::TransformDependentVectorType(
5177     TypeLocBuilder &TLB, DependentVectorTypeLoc TL) {
5178   const DependentVectorType *T = TL.getTypePtr();
5179   QualType ElementType = getDerived().TransformType(T->getElementType());
5180   if (ElementType.isNull())
5181     return QualType();
5182 
5183   EnterExpressionEvaluationContext Unevaluated(
5184       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5185 
5186   ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
5187   Size = SemaRef.ActOnConstantExpression(Size);
5188   if (Size.isInvalid())
5189     return QualType();
5190 
5191   QualType Result = TL.getType();
5192   if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() ||
5193       Size.get() != T->getSizeExpr()) {
5194     Result = getDerived().RebuildDependentVectorType(
5195         ElementType, Size.get(), T->getAttributeLoc(), T->getVectorKind());
5196     if (Result.isNull())
5197       return QualType();
5198   }
5199 
5200   // Result might be dependent or not.
5201   if (isa<DependentVectorType>(Result)) {
5202     DependentVectorTypeLoc NewTL =
5203         TLB.push<DependentVectorTypeLoc>(Result);
5204     NewTL.setNameLoc(TL.getNameLoc());
5205   } else {
5206     VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
5207     NewTL.setNameLoc(TL.getNameLoc());
5208   }
5209 
5210   return Result;
5211 }
5212 
5213 template<typename Derived>
TransformDependentSizedExtVectorType(TypeLocBuilder & TLB,DependentSizedExtVectorTypeLoc TL)5214 QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType(
5215                                       TypeLocBuilder &TLB,
5216                                       DependentSizedExtVectorTypeLoc TL) {
5217   const DependentSizedExtVectorType *T = TL.getTypePtr();
5218 
5219   // FIXME: ext vector locs should be nested
5220   QualType ElementType = getDerived().TransformType(T->getElementType());
5221   if (ElementType.isNull())
5222     return QualType();
5223 
5224   // Vector sizes are constant expressions.
5225   EnterExpressionEvaluationContext Unevaluated(
5226       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5227 
5228   ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
5229   Size = SemaRef.ActOnConstantExpression(Size);
5230   if (Size.isInvalid())
5231     return QualType();
5232 
5233   QualType Result = TL.getType();
5234   if (getDerived().AlwaysRebuild() ||
5235       ElementType != T->getElementType() ||
5236       Size.get() != T->getSizeExpr()) {
5237     Result = getDerived().RebuildDependentSizedExtVectorType(ElementType,
5238                                                              Size.get(),
5239                                                          T->getAttributeLoc());
5240     if (Result.isNull())
5241       return QualType();
5242   }
5243 
5244   // Result might be dependent or not.
5245   if (isa<DependentSizedExtVectorType>(Result)) {
5246     DependentSizedExtVectorTypeLoc NewTL
5247       = TLB.push<DependentSizedExtVectorTypeLoc>(Result);
5248     NewTL.setNameLoc(TL.getNameLoc());
5249   } else {
5250     ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
5251     NewTL.setNameLoc(TL.getNameLoc());
5252   }
5253 
5254   return Result;
5255 }
5256 
5257 template <typename Derived>
5258 QualType
TransformConstantMatrixType(TypeLocBuilder & TLB,ConstantMatrixTypeLoc TL)5259 TreeTransform<Derived>::TransformConstantMatrixType(TypeLocBuilder &TLB,
5260                                                     ConstantMatrixTypeLoc TL) {
5261   const ConstantMatrixType *T = TL.getTypePtr();
5262   QualType ElementType = getDerived().TransformType(T->getElementType());
5263   if (ElementType.isNull())
5264     return QualType();
5265 
5266   QualType Result = TL.getType();
5267   if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) {
5268     Result = getDerived().RebuildConstantMatrixType(
5269         ElementType, T->getNumRows(), T->getNumColumns());
5270     if (Result.isNull())
5271       return QualType();
5272   }
5273 
5274   ConstantMatrixTypeLoc NewTL = TLB.push<ConstantMatrixTypeLoc>(Result);
5275   NewTL.setAttrNameLoc(TL.getAttrNameLoc());
5276   NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
5277   NewTL.setAttrRowOperand(TL.getAttrRowOperand());
5278   NewTL.setAttrColumnOperand(TL.getAttrColumnOperand());
5279 
5280   return Result;
5281 }
5282 
5283 template <typename Derived>
TransformDependentSizedMatrixType(TypeLocBuilder & TLB,DependentSizedMatrixTypeLoc TL)5284 QualType TreeTransform<Derived>::TransformDependentSizedMatrixType(
5285     TypeLocBuilder &TLB, DependentSizedMatrixTypeLoc TL) {
5286   const DependentSizedMatrixType *T = TL.getTypePtr();
5287 
5288   QualType ElementType = getDerived().TransformType(T->getElementType());
5289   if (ElementType.isNull()) {
5290     return QualType();
5291   }
5292 
5293   // Matrix dimensions are constant expressions.
5294   EnterExpressionEvaluationContext Unevaluated(
5295       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5296 
5297   Expr *origRows = TL.getAttrRowOperand();
5298   if (!origRows)
5299     origRows = T->getRowExpr();
5300   Expr *origColumns = TL.getAttrColumnOperand();
5301   if (!origColumns)
5302     origColumns = T->getColumnExpr();
5303 
5304   ExprResult rowResult = getDerived().TransformExpr(origRows);
5305   rowResult = SemaRef.ActOnConstantExpression(rowResult);
5306   if (rowResult.isInvalid())
5307     return QualType();
5308 
5309   ExprResult columnResult = getDerived().TransformExpr(origColumns);
5310   columnResult = SemaRef.ActOnConstantExpression(columnResult);
5311   if (columnResult.isInvalid())
5312     return QualType();
5313 
5314   Expr *rows = rowResult.get();
5315   Expr *columns = columnResult.get();
5316 
5317   QualType Result = TL.getType();
5318   if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() ||
5319       rows != origRows || columns != origColumns) {
5320     Result = getDerived().RebuildDependentSizedMatrixType(
5321         ElementType, rows, columns, T->getAttributeLoc());
5322 
5323     if (Result.isNull())
5324       return QualType();
5325   }
5326 
5327   // We might have any sort of matrix type now, but fortunately they
5328   // all have the same location layout.
5329   MatrixTypeLoc NewTL = TLB.push<MatrixTypeLoc>(Result);
5330   NewTL.setAttrNameLoc(TL.getAttrNameLoc());
5331   NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
5332   NewTL.setAttrRowOperand(rows);
5333   NewTL.setAttrColumnOperand(columns);
5334   return Result;
5335 }
5336 
5337 template <typename Derived>
TransformDependentAddressSpaceType(TypeLocBuilder & TLB,DependentAddressSpaceTypeLoc TL)5338 QualType TreeTransform<Derived>::TransformDependentAddressSpaceType(
5339     TypeLocBuilder &TLB, DependentAddressSpaceTypeLoc TL) {
5340   const DependentAddressSpaceType *T = TL.getTypePtr();
5341 
5342   QualType pointeeType = getDerived().TransformType(T->getPointeeType());
5343 
5344   if (pointeeType.isNull())
5345     return QualType();
5346 
5347   // Address spaces are constant expressions.
5348   EnterExpressionEvaluationContext Unevaluated(
5349       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5350 
5351   ExprResult AddrSpace = getDerived().TransformExpr(T->getAddrSpaceExpr());
5352   AddrSpace = SemaRef.ActOnConstantExpression(AddrSpace);
5353   if (AddrSpace.isInvalid())
5354     return QualType();
5355 
5356   QualType Result = TL.getType();
5357   if (getDerived().AlwaysRebuild() || pointeeType != T->getPointeeType() ||
5358       AddrSpace.get() != T->getAddrSpaceExpr()) {
5359     Result = getDerived().RebuildDependentAddressSpaceType(
5360         pointeeType, AddrSpace.get(), T->getAttributeLoc());
5361     if (Result.isNull())
5362       return QualType();
5363   }
5364 
5365   // Result might be dependent or not.
5366   if (isa<DependentAddressSpaceType>(Result)) {
5367     DependentAddressSpaceTypeLoc NewTL =
5368         TLB.push<DependentAddressSpaceTypeLoc>(Result);
5369 
5370     NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
5371     NewTL.setAttrExprOperand(TL.getAttrExprOperand());
5372     NewTL.setAttrNameLoc(TL.getAttrNameLoc());
5373 
5374   } else {
5375     TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(
5376         Result, getDerived().getBaseLocation());
5377     TransformType(TLB, DI->getTypeLoc());
5378   }
5379 
5380   return Result;
5381 }
5382 
5383 template <typename Derived>
TransformVectorType(TypeLocBuilder & TLB,VectorTypeLoc TL)5384 QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB,
5385                                                      VectorTypeLoc TL) {
5386   const VectorType *T = TL.getTypePtr();
5387   QualType ElementType = getDerived().TransformType(T->getElementType());
5388   if (ElementType.isNull())
5389     return QualType();
5390 
5391   QualType Result = TL.getType();
5392   if (getDerived().AlwaysRebuild() ||
5393       ElementType != T->getElementType()) {
5394     Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(),
5395                                             T->getVectorKind());
5396     if (Result.isNull())
5397       return QualType();
5398   }
5399 
5400   VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
5401   NewTL.setNameLoc(TL.getNameLoc());
5402 
5403   return Result;
5404 }
5405 
5406 template<typename Derived>
TransformExtVectorType(TypeLocBuilder & TLB,ExtVectorTypeLoc TL)5407 QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB,
5408                                                         ExtVectorTypeLoc TL) {
5409   const VectorType *T = TL.getTypePtr();
5410   QualType ElementType = getDerived().TransformType(T->getElementType());
5411   if (ElementType.isNull())
5412     return QualType();
5413 
5414   QualType Result = TL.getType();
5415   if (getDerived().AlwaysRebuild() ||
5416       ElementType != T->getElementType()) {
5417     Result = getDerived().RebuildExtVectorType(ElementType,
5418                                                T->getNumElements(),
5419                                                /*FIXME*/ SourceLocation());
5420     if (Result.isNull())
5421       return QualType();
5422   }
5423 
5424   ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
5425   NewTL.setNameLoc(TL.getNameLoc());
5426 
5427   return Result;
5428 }
5429 
5430 template <typename Derived>
TransformFunctionTypeParam(ParmVarDecl * OldParm,int indexAdjustment,Optional<unsigned> NumExpansions,bool ExpectParameterPack)5431 ParmVarDecl *TreeTransform<Derived>::TransformFunctionTypeParam(
5432     ParmVarDecl *OldParm, int indexAdjustment, Optional<unsigned> NumExpansions,
5433     bool ExpectParameterPack) {
5434   TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
5435   TypeSourceInfo *NewDI = nullptr;
5436 
5437   if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) {
5438     // If we're substituting into a pack expansion type and we know the
5439     // length we want to expand to, just substitute for the pattern.
5440     TypeLoc OldTL = OldDI->getTypeLoc();
5441     PackExpansionTypeLoc OldExpansionTL = OldTL.castAs<PackExpansionTypeLoc>();
5442 
5443     TypeLocBuilder TLB;
5444     TypeLoc NewTL = OldDI->getTypeLoc();
5445     TLB.reserve(NewTL.getFullDataSize());
5446 
5447     QualType Result = getDerived().TransformType(TLB,
5448                                                OldExpansionTL.getPatternLoc());
5449     if (Result.isNull())
5450       return nullptr;
5451 
5452     Result = RebuildPackExpansionType(Result,
5453                                 OldExpansionTL.getPatternLoc().getSourceRange(),
5454                                       OldExpansionTL.getEllipsisLoc(),
5455                                       NumExpansions);
5456     if (Result.isNull())
5457       return nullptr;
5458 
5459     PackExpansionTypeLoc NewExpansionTL
5460       = TLB.push<PackExpansionTypeLoc>(Result);
5461     NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc());
5462     NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result);
5463   } else
5464     NewDI = getDerived().TransformType(OldDI);
5465   if (!NewDI)
5466     return nullptr;
5467 
5468   if (NewDI == OldDI && indexAdjustment == 0)
5469     return OldParm;
5470 
5471   ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context,
5472                                              OldParm->getDeclContext(),
5473                                              OldParm->getInnerLocStart(),
5474                                              OldParm->getLocation(),
5475                                              OldParm->getIdentifier(),
5476                                              NewDI->getType(),
5477                                              NewDI,
5478                                              OldParm->getStorageClass(),
5479                                              /* DefArg */ nullptr);
5480   newParm->setScopeInfo(OldParm->getFunctionScopeDepth(),
5481                         OldParm->getFunctionScopeIndex() + indexAdjustment);
5482   transformedLocalDecl(OldParm, {newParm});
5483   return newParm;
5484 }
5485 
5486 template <typename Derived>
TransformFunctionTypeParams(SourceLocation Loc,ArrayRef<ParmVarDecl * > Params,const QualType * ParamTypes,const FunctionProtoType::ExtParameterInfo * ParamInfos,SmallVectorImpl<QualType> & OutParamTypes,SmallVectorImpl<ParmVarDecl * > * PVars,Sema::ExtParameterInfoBuilder & PInfos)5487 bool TreeTransform<Derived>::TransformFunctionTypeParams(
5488     SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
5489     const QualType *ParamTypes,
5490     const FunctionProtoType::ExtParameterInfo *ParamInfos,
5491     SmallVectorImpl<QualType> &OutParamTypes,
5492     SmallVectorImpl<ParmVarDecl *> *PVars,
5493     Sema::ExtParameterInfoBuilder &PInfos) {
5494   int indexAdjustment = 0;
5495 
5496   unsigned NumParams = Params.size();
5497   for (unsigned i = 0; i != NumParams; ++i) {
5498     if (ParmVarDecl *OldParm = Params[i]) {
5499       assert(OldParm->getFunctionScopeIndex() == i);
5500 
5501       Optional<unsigned> NumExpansions;
5502       ParmVarDecl *NewParm = nullptr;
5503       if (OldParm->isParameterPack()) {
5504         // We have a function parameter pack that may need to be expanded.
5505         SmallVector<UnexpandedParameterPack, 2> Unexpanded;
5506 
5507         // Find the parameter packs that could be expanded.
5508         TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc();
5509         PackExpansionTypeLoc ExpansionTL = TL.castAs<PackExpansionTypeLoc>();
5510         TypeLoc Pattern = ExpansionTL.getPatternLoc();
5511         SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
5512 
5513         // Determine whether we should expand the parameter packs.
5514         bool ShouldExpand = false;
5515         bool RetainExpansion = false;
5516         Optional<unsigned> OrigNumExpansions;
5517         if (Unexpanded.size() > 0) {
5518           OrigNumExpansions = ExpansionTL.getTypePtr()->getNumExpansions();
5519           NumExpansions = OrigNumExpansions;
5520           if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
5521                                                    Pattern.getSourceRange(),
5522                                                    Unexpanded,
5523                                                    ShouldExpand,
5524                                                    RetainExpansion,
5525                                                    NumExpansions)) {
5526             return true;
5527           }
5528         } else {
5529 #ifndef NDEBUG
5530           const AutoType *AT =
5531               Pattern.getType().getTypePtr()->getContainedAutoType();
5532           assert((AT && (!AT->isDeduced() || AT->getDeducedType().isNull())) &&
5533                  "Could not find parameter packs or undeduced auto type!");
5534 #endif
5535         }
5536 
5537         if (ShouldExpand) {
5538           // Expand the function parameter pack into multiple, separate
5539           // parameters.
5540           getDerived().ExpandingFunctionParameterPack(OldParm);
5541           for (unsigned I = 0; I != *NumExpansions; ++I) {
5542             Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
5543             ParmVarDecl *NewParm
5544               = getDerived().TransformFunctionTypeParam(OldParm,
5545                                                         indexAdjustment++,
5546                                                         OrigNumExpansions,
5547                                                 /*ExpectParameterPack=*/false);
5548             if (!NewParm)
5549               return true;
5550 
5551             if (ParamInfos)
5552               PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5553             OutParamTypes.push_back(NewParm->getType());
5554             if (PVars)
5555               PVars->push_back(NewParm);
5556           }
5557 
5558           // If we're supposed to retain a pack expansion, do so by temporarily
5559           // forgetting the partially-substituted parameter pack.
5560           if (RetainExpansion) {
5561             ForgetPartiallySubstitutedPackRAII Forget(getDerived());
5562             ParmVarDecl *NewParm
5563               = getDerived().TransformFunctionTypeParam(OldParm,
5564                                                         indexAdjustment++,
5565                                                         OrigNumExpansions,
5566                                                 /*ExpectParameterPack=*/false);
5567             if (!NewParm)
5568               return true;
5569 
5570             if (ParamInfos)
5571               PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5572             OutParamTypes.push_back(NewParm->getType());
5573             if (PVars)
5574               PVars->push_back(NewParm);
5575           }
5576 
5577           // The next parameter should have the same adjustment as the
5578           // last thing we pushed, but we post-incremented indexAdjustment
5579           // on every push.  Also, if we push nothing, the adjustment should
5580           // go down by one.
5581           indexAdjustment--;
5582 
5583           // We're done with the pack expansion.
5584           continue;
5585         }
5586 
5587         // We'll substitute the parameter now without expanding the pack
5588         // expansion.
5589         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
5590         NewParm = getDerived().TransformFunctionTypeParam(OldParm,
5591                                                           indexAdjustment,
5592                                                           NumExpansions,
5593                                                   /*ExpectParameterPack=*/true);
5594         assert(NewParm->isParameterPack() &&
5595                "Parameter pack no longer a parameter pack after "
5596                "transformation.");
5597       } else {
5598         NewParm = getDerived().TransformFunctionTypeParam(
5599             OldParm, indexAdjustment, None, /*ExpectParameterPack=*/ false);
5600       }
5601 
5602       if (!NewParm)
5603         return true;
5604 
5605       if (ParamInfos)
5606         PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5607       OutParamTypes.push_back(NewParm->getType());
5608       if (PVars)
5609         PVars->push_back(NewParm);
5610       continue;
5611     }
5612 
5613     // Deal with the possibility that we don't have a parameter
5614     // declaration for this parameter.
5615     QualType OldType = ParamTypes[i];
5616     bool IsPackExpansion = false;
5617     Optional<unsigned> NumExpansions;
5618     QualType NewType;
5619     if (const PackExpansionType *Expansion
5620                                        = dyn_cast<PackExpansionType>(OldType)) {
5621       // We have a function parameter pack that may need to be expanded.
5622       QualType Pattern = Expansion->getPattern();
5623       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
5624       getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
5625 
5626       // Determine whether we should expand the parameter packs.
5627       bool ShouldExpand = false;
5628       bool RetainExpansion = false;
5629       if (getDerived().TryExpandParameterPacks(Loc, SourceRange(),
5630                                                Unexpanded,
5631                                                ShouldExpand,
5632                                                RetainExpansion,
5633                                                NumExpansions)) {
5634         return true;
5635       }
5636 
5637       if (ShouldExpand) {
5638         // Expand the function parameter pack into multiple, separate
5639         // parameters.
5640         for (unsigned I = 0; I != *NumExpansions; ++I) {
5641           Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
5642           QualType NewType = getDerived().TransformType(Pattern);
5643           if (NewType.isNull())
5644             return true;
5645 
5646           if (NewType->containsUnexpandedParameterPack()) {
5647             NewType =
5648                 getSema().getASTContext().getPackExpansionType(NewType, None);
5649 
5650             if (NewType.isNull())
5651               return true;
5652           }
5653 
5654           if (ParamInfos)
5655             PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5656           OutParamTypes.push_back(NewType);
5657           if (PVars)
5658             PVars->push_back(nullptr);
5659         }
5660 
5661         // We're done with the pack expansion.
5662         continue;
5663       }
5664 
5665       // If we're supposed to retain a pack expansion, do so by temporarily
5666       // forgetting the partially-substituted parameter pack.
5667       if (RetainExpansion) {
5668         ForgetPartiallySubstitutedPackRAII Forget(getDerived());
5669         QualType NewType = getDerived().TransformType(Pattern);
5670         if (NewType.isNull())
5671           return true;
5672 
5673         if (ParamInfos)
5674           PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5675         OutParamTypes.push_back(NewType);
5676         if (PVars)
5677           PVars->push_back(nullptr);
5678       }
5679 
5680       // We'll substitute the parameter now without expanding the pack
5681       // expansion.
5682       OldType = Expansion->getPattern();
5683       IsPackExpansion = true;
5684       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
5685       NewType = getDerived().TransformType(OldType);
5686     } else {
5687       NewType = getDerived().TransformType(OldType);
5688     }
5689 
5690     if (NewType.isNull())
5691       return true;
5692 
5693     if (IsPackExpansion)
5694       NewType = getSema().Context.getPackExpansionType(NewType,
5695                                                        NumExpansions);
5696 
5697     if (ParamInfos)
5698       PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5699     OutParamTypes.push_back(NewType);
5700     if (PVars)
5701       PVars->push_back(nullptr);
5702   }
5703 
5704 #ifndef NDEBUG
5705   if (PVars) {
5706     for (unsigned i = 0, e = PVars->size(); i != e; ++i)
5707       if (ParmVarDecl *parm = (*PVars)[i])
5708         assert(parm->getFunctionScopeIndex() == i);
5709   }
5710 #endif
5711 
5712   return false;
5713 }
5714 
5715 template<typename Derived>
5716 QualType
TransformFunctionProtoType(TypeLocBuilder & TLB,FunctionProtoTypeLoc TL)5717 TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
5718                                                    FunctionProtoTypeLoc TL) {
5719   SmallVector<QualType, 4> ExceptionStorage;
5720   TreeTransform *This = this; // Work around gcc.gnu.org/PR56135.
5721   return getDerived().TransformFunctionProtoType(
5722       TLB, TL, nullptr, Qualifiers(),
5723       [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) {
5724         return This->TransformExceptionSpec(TL.getBeginLoc(), ESI,
5725                                             ExceptionStorage, Changed);
5726       });
5727 }
5728 
5729 template<typename Derived> template<typename Fn>
TransformFunctionProtoType(TypeLocBuilder & TLB,FunctionProtoTypeLoc TL,CXXRecordDecl * ThisContext,Qualifiers ThisTypeQuals,Fn TransformExceptionSpec)5730 QualType TreeTransform<Derived>::TransformFunctionProtoType(
5731     TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext,
5732     Qualifiers ThisTypeQuals, Fn TransformExceptionSpec) {
5733 
5734   // Transform the parameters and return type.
5735   //
5736   // We are required to instantiate the params and return type in source order.
5737   // When the function has a trailing return type, we instantiate the
5738   // parameters before the return type,  since the return type can then refer
5739   // to the parameters themselves (via decltype, sizeof, etc.).
5740   //
5741   SmallVector<QualType, 4> ParamTypes;
5742   SmallVector<ParmVarDecl*, 4> ParamDecls;
5743   Sema::ExtParameterInfoBuilder ExtParamInfos;
5744   const FunctionProtoType *T = TL.getTypePtr();
5745 
5746   QualType ResultType;
5747 
5748   if (T->hasTrailingReturn()) {
5749     if (getDerived().TransformFunctionTypeParams(
5750             TL.getBeginLoc(), TL.getParams(),
5751             TL.getTypePtr()->param_type_begin(),
5752             T->getExtParameterInfosOrNull(),
5753             ParamTypes, &ParamDecls, ExtParamInfos))
5754       return QualType();
5755 
5756     {
5757       // C++11 [expr.prim.general]p3:
5758       //   If a declaration declares a member function or member function
5759       //   template of a class X, the expression this is a prvalue of type
5760       //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
5761       //   and the end of the function-definition, member-declarator, or
5762       //   declarator.
5763       Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals);
5764 
5765       ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
5766       if (ResultType.isNull())
5767         return QualType();
5768     }
5769   }
5770   else {
5771     ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
5772     if (ResultType.isNull())
5773       return QualType();
5774 
5775     if (getDerived().TransformFunctionTypeParams(
5776             TL.getBeginLoc(), TL.getParams(),
5777             TL.getTypePtr()->param_type_begin(),
5778             T->getExtParameterInfosOrNull(),
5779             ParamTypes, &ParamDecls, ExtParamInfos))
5780       return QualType();
5781   }
5782 
5783   FunctionProtoType::ExtProtoInfo EPI = T->getExtProtoInfo();
5784 
5785   bool EPIChanged = false;
5786   if (TransformExceptionSpec(EPI.ExceptionSpec, EPIChanged))
5787     return QualType();
5788 
5789   // Handle extended parameter information.
5790   if (auto NewExtParamInfos =
5791         ExtParamInfos.getPointerOrNull(ParamTypes.size())) {
5792     if (!EPI.ExtParameterInfos ||
5793         llvm::makeArrayRef(EPI.ExtParameterInfos, TL.getNumParams())
5794           != llvm::makeArrayRef(NewExtParamInfos, ParamTypes.size())) {
5795       EPIChanged = true;
5796     }
5797     EPI.ExtParameterInfos = NewExtParamInfos;
5798   } else if (EPI.ExtParameterInfos) {
5799     EPIChanged = true;
5800     EPI.ExtParameterInfos = nullptr;
5801   }
5802 
5803   QualType Result = TL.getType();
5804   if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType() ||
5805       T->getParamTypes() != llvm::makeArrayRef(ParamTypes) || EPIChanged) {
5806     Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes, EPI);
5807     if (Result.isNull())
5808       return QualType();
5809   }
5810 
5811   FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
5812   NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
5813   NewTL.setLParenLoc(TL.getLParenLoc());
5814   NewTL.setRParenLoc(TL.getRParenLoc());
5815   NewTL.setExceptionSpecRange(TL.getExceptionSpecRange());
5816   NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
5817   for (unsigned i = 0, e = NewTL.getNumParams(); i != e; ++i)
5818     NewTL.setParam(i, ParamDecls[i]);
5819 
5820   return Result;
5821 }
5822 
5823 template<typename Derived>
TransformExceptionSpec(SourceLocation Loc,FunctionProtoType::ExceptionSpecInfo & ESI,SmallVectorImpl<QualType> & Exceptions,bool & Changed)5824 bool TreeTransform<Derived>::TransformExceptionSpec(
5825     SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI,
5826     SmallVectorImpl<QualType> &Exceptions, bool &Changed) {
5827   assert(ESI.Type != EST_Uninstantiated && ESI.Type != EST_Unevaluated);
5828 
5829   // Instantiate a dynamic noexcept expression, if any.
5830   if (isComputedNoexcept(ESI.Type)) {
5831     EnterExpressionEvaluationContext Unevaluated(
5832         getSema(), Sema::ExpressionEvaluationContext::ConstantEvaluated);
5833     ExprResult NoexceptExpr = getDerived().TransformExpr(ESI.NoexceptExpr);
5834     if (NoexceptExpr.isInvalid())
5835       return true;
5836 
5837     ExceptionSpecificationType EST = ESI.Type;
5838     NoexceptExpr =
5839         getSema().ActOnNoexceptSpec(Loc, NoexceptExpr.get(), EST);
5840     if (NoexceptExpr.isInvalid())
5841       return true;
5842 
5843     if (ESI.NoexceptExpr != NoexceptExpr.get() || EST != ESI.Type)
5844       Changed = true;
5845     ESI.NoexceptExpr = NoexceptExpr.get();
5846     ESI.Type = EST;
5847   }
5848 
5849   if (ESI.Type != EST_Dynamic)
5850     return false;
5851 
5852   // Instantiate a dynamic exception specification's type.
5853   for (QualType T : ESI.Exceptions) {
5854     if (const PackExpansionType *PackExpansion =
5855             T->getAs<PackExpansionType>()) {
5856       Changed = true;
5857 
5858       // We have a pack expansion. Instantiate it.
5859       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
5860       SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(),
5861                                               Unexpanded);
5862       assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
5863 
5864       // Determine whether the set of unexpanded parameter packs can and
5865       // should
5866       // be expanded.
5867       bool Expand = false;
5868       bool RetainExpansion = false;
5869       Optional<unsigned> NumExpansions = PackExpansion->getNumExpansions();
5870       // FIXME: Track the location of the ellipsis (and track source location
5871       // information for the types in the exception specification in general).
5872       if (getDerived().TryExpandParameterPacks(
5873               Loc, SourceRange(), Unexpanded, Expand,
5874               RetainExpansion, NumExpansions))
5875         return true;
5876 
5877       if (!Expand) {
5878         // We can't expand this pack expansion into separate arguments yet;
5879         // just substitute into the pattern and create a new pack expansion
5880         // type.
5881         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
5882         QualType U = getDerived().TransformType(PackExpansion->getPattern());
5883         if (U.isNull())
5884           return true;
5885 
5886         U = SemaRef.Context.getPackExpansionType(U, NumExpansions);
5887         Exceptions.push_back(U);
5888         continue;
5889       }
5890 
5891       // Substitute into the pack expansion pattern for each slice of the
5892       // pack.
5893       for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) {
5894         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx);
5895 
5896         QualType U = getDerived().TransformType(PackExpansion->getPattern());
5897         if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc))
5898           return true;
5899 
5900         Exceptions.push_back(U);
5901       }
5902     } else {
5903       QualType U = getDerived().TransformType(T);
5904       if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc))
5905         return true;
5906       if (T != U)
5907         Changed = true;
5908 
5909       Exceptions.push_back(U);
5910     }
5911   }
5912 
5913   ESI.Exceptions = Exceptions;
5914   if (ESI.Exceptions.empty())
5915     ESI.Type = EST_DynamicNone;
5916   return false;
5917 }
5918 
5919 template<typename Derived>
TransformFunctionNoProtoType(TypeLocBuilder & TLB,FunctionNoProtoTypeLoc TL)5920 QualType TreeTransform<Derived>::TransformFunctionNoProtoType(
5921                                                  TypeLocBuilder &TLB,
5922                                                  FunctionNoProtoTypeLoc TL) {
5923   const FunctionNoProtoType *T = TL.getTypePtr();
5924   QualType ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
5925   if (ResultType.isNull())
5926     return QualType();
5927 
5928   QualType Result = TL.getType();
5929   if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType())
5930     Result = getDerived().RebuildFunctionNoProtoType(ResultType);
5931 
5932   FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result);
5933   NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
5934   NewTL.setLParenLoc(TL.getLParenLoc());
5935   NewTL.setRParenLoc(TL.getRParenLoc());
5936   NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
5937 
5938   return Result;
5939 }
5940 
5941 template<typename Derived> QualType
TransformUnresolvedUsingType(TypeLocBuilder & TLB,UnresolvedUsingTypeLoc TL)5942 TreeTransform<Derived>::TransformUnresolvedUsingType(TypeLocBuilder &TLB,
5943                                                  UnresolvedUsingTypeLoc TL) {
5944   const UnresolvedUsingType *T = TL.getTypePtr();
5945   Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl());
5946   if (!D)
5947     return QualType();
5948 
5949   QualType Result = TL.getType();
5950   if (getDerived().AlwaysRebuild() || D != T->getDecl()) {
5951     Result = getDerived().RebuildUnresolvedUsingType(TL.getNameLoc(), D);
5952     if (Result.isNull())
5953       return QualType();
5954   }
5955 
5956   // We might get an arbitrary type spec type back.  We should at
5957   // least always get a type spec type, though.
5958   TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result);
5959   NewTL.setNameLoc(TL.getNameLoc());
5960 
5961   return Result;
5962 }
5963 
5964 template<typename Derived>
TransformTypedefType(TypeLocBuilder & TLB,TypedefTypeLoc TL)5965 QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB,
5966                                                       TypedefTypeLoc TL) {
5967   const TypedefType *T = TL.getTypePtr();
5968   TypedefNameDecl *Typedef
5969     = cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(),
5970                                                                T->getDecl()));
5971   if (!Typedef)
5972     return QualType();
5973 
5974   QualType Result = TL.getType();
5975   if (getDerived().AlwaysRebuild() ||
5976       Typedef != T->getDecl()) {
5977     Result = getDerived().RebuildTypedefType(Typedef);
5978     if (Result.isNull())
5979       return QualType();
5980   }
5981 
5982   TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result);
5983   NewTL.setNameLoc(TL.getNameLoc());
5984 
5985   return Result;
5986 }
5987 
5988 template<typename Derived>
TransformTypeOfExprType(TypeLocBuilder & TLB,TypeOfExprTypeLoc TL)5989 QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB,
5990                                                       TypeOfExprTypeLoc TL) {
5991   // typeof expressions are not potentially evaluated contexts
5992   EnterExpressionEvaluationContext Unevaluated(
5993       SemaRef, Sema::ExpressionEvaluationContext::Unevaluated,
5994       Sema::ReuseLambdaContextDecl);
5995 
5996   ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr());
5997   if (E.isInvalid())
5998     return QualType();
5999 
6000   E = SemaRef.HandleExprEvaluationContextForTypeof(E.get());
6001   if (E.isInvalid())
6002     return QualType();
6003 
6004   QualType Result = TL.getType();
6005   if (getDerived().AlwaysRebuild() ||
6006       E.get() != TL.getUnderlyingExpr()) {
6007     Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc());
6008     if (Result.isNull())
6009       return QualType();
6010   }
6011   else E.get();
6012 
6013   TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result);
6014   NewTL.setTypeofLoc(TL.getTypeofLoc());
6015   NewTL.setLParenLoc(TL.getLParenLoc());
6016   NewTL.setRParenLoc(TL.getRParenLoc());
6017 
6018   return Result;
6019 }
6020 
6021 template<typename Derived>
TransformTypeOfType(TypeLocBuilder & TLB,TypeOfTypeLoc TL)6022 QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB,
6023                                                      TypeOfTypeLoc TL) {
6024   TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo();
6025   TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI);
6026   if (!New_Under_TI)
6027     return QualType();
6028 
6029   QualType Result = TL.getType();
6030   if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) {
6031     Result = getDerived().RebuildTypeOfType(New_Under_TI->getType());
6032     if (Result.isNull())
6033       return QualType();
6034   }
6035 
6036   TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result);
6037   NewTL.setTypeofLoc(TL.getTypeofLoc());
6038   NewTL.setLParenLoc(TL.getLParenLoc());
6039   NewTL.setRParenLoc(TL.getRParenLoc());
6040   NewTL.setUnderlyingTInfo(New_Under_TI);
6041 
6042   return Result;
6043 }
6044 
6045 template<typename Derived>
TransformDecltypeType(TypeLocBuilder & TLB,DecltypeTypeLoc TL)6046 QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
6047                                                        DecltypeTypeLoc TL) {
6048   const DecltypeType *T = TL.getTypePtr();
6049 
6050   // decltype expressions are not potentially evaluated contexts
6051   EnterExpressionEvaluationContext Unevaluated(
6052       SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, nullptr,
6053       Sema::ExpressionEvaluationContextRecord::EK_Decltype);
6054 
6055   ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr());
6056   if (E.isInvalid())
6057     return QualType();
6058 
6059   E = getSema().ActOnDecltypeExpression(E.get());
6060   if (E.isInvalid())
6061     return QualType();
6062 
6063   QualType Result = TL.getType();
6064   if (getDerived().AlwaysRebuild() ||
6065       E.get() != T->getUnderlyingExpr()) {
6066     Result = getDerived().RebuildDecltypeType(E.get(), TL.getNameLoc());
6067     if (Result.isNull())
6068       return QualType();
6069   }
6070   else E.get();
6071 
6072   DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result);
6073   NewTL.setNameLoc(TL.getNameLoc());
6074 
6075   return Result;
6076 }
6077 
6078 template<typename Derived>
TransformUnaryTransformType(TypeLocBuilder & TLB,UnaryTransformTypeLoc TL)6079 QualType TreeTransform<Derived>::TransformUnaryTransformType(
6080                                                             TypeLocBuilder &TLB,
6081                                                      UnaryTransformTypeLoc TL) {
6082   QualType Result = TL.getType();
6083   if (Result->isDependentType()) {
6084     const UnaryTransformType *T = TL.getTypePtr();
6085     QualType NewBase =
6086       getDerived().TransformType(TL.getUnderlyingTInfo())->getType();
6087     Result = getDerived().RebuildUnaryTransformType(NewBase,
6088                                                     T->getUTTKind(),
6089                                                     TL.getKWLoc());
6090     if (Result.isNull())
6091       return QualType();
6092   }
6093 
6094   UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result);
6095   NewTL.setKWLoc(TL.getKWLoc());
6096   NewTL.setParensRange(TL.getParensRange());
6097   NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo());
6098   return Result;
6099 }
6100 
6101 template<typename Derived>
TransformDeducedTemplateSpecializationType(TypeLocBuilder & TLB,DeducedTemplateSpecializationTypeLoc TL)6102 QualType TreeTransform<Derived>::TransformDeducedTemplateSpecializationType(
6103     TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
6104   const DeducedTemplateSpecializationType *T = TL.getTypePtr();
6105 
6106   CXXScopeSpec SS;
6107   TemplateName TemplateName = getDerived().TransformTemplateName(
6108       SS, T->getTemplateName(), TL.getTemplateNameLoc());
6109   if (TemplateName.isNull())
6110     return QualType();
6111 
6112   QualType OldDeduced = T->getDeducedType();
6113   QualType NewDeduced;
6114   if (!OldDeduced.isNull()) {
6115     NewDeduced = getDerived().TransformType(OldDeduced);
6116     if (NewDeduced.isNull())
6117       return QualType();
6118   }
6119 
6120   QualType Result = getDerived().RebuildDeducedTemplateSpecializationType(
6121       TemplateName, NewDeduced);
6122   if (Result.isNull())
6123     return QualType();
6124 
6125   DeducedTemplateSpecializationTypeLoc NewTL =
6126       TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
6127   NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6128 
6129   return Result;
6130 }
6131 
6132 template<typename Derived>
TransformRecordType(TypeLocBuilder & TLB,RecordTypeLoc TL)6133 QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB,
6134                                                      RecordTypeLoc TL) {
6135   const RecordType *T = TL.getTypePtr();
6136   RecordDecl *Record
6137     = cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(),
6138                                                           T->getDecl()));
6139   if (!Record)
6140     return QualType();
6141 
6142   QualType Result = TL.getType();
6143   if (getDerived().AlwaysRebuild() ||
6144       Record != T->getDecl()) {
6145     Result = getDerived().RebuildRecordType(Record);
6146     if (Result.isNull())
6147       return QualType();
6148   }
6149 
6150   RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
6151   NewTL.setNameLoc(TL.getNameLoc());
6152 
6153   return Result;
6154 }
6155 
6156 template<typename Derived>
TransformEnumType(TypeLocBuilder & TLB,EnumTypeLoc TL)6157 QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB,
6158                                                    EnumTypeLoc TL) {
6159   const EnumType *T = TL.getTypePtr();
6160   EnumDecl *Enum
6161     = cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(),
6162                                                         T->getDecl()));
6163   if (!Enum)
6164     return QualType();
6165 
6166   QualType Result = TL.getType();
6167   if (getDerived().AlwaysRebuild() ||
6168       Enum != T->getDecl()) {
6169     Result = getDerived().RebuildEnumType(Enum);
6170     if (Result.isNull())
6171       return QualType();
6172   }
6173 
6174   EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result);
6175   NewTL.setNameLoc(TL.getNameLoc());
6176 
6177   return Result;
6178 }
6179 
6180 template<typename Derived>
TransformInjectedClassNameType(TypeLocBuilder & TLB,InjectedClassNameTypeLoc TL)6181 QualType TreeTransform<Derived>::TransformInjectedClassNameType(
6182                                          TypeLocBuilder &TLB,
6183                                          InjectedClassNameTypeLoc TL) {
6184   Decl *D = getDerived().TransformDecl(TL.getNameLoc(),
6185                                        TL.getTypePtr()->getDecl());
6186   if (!D) return QualType();
6187 
6188   QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D));
6189   TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc());
6190   return T;
6191 }
6192 
6193 template<typename Derived>
TransformTemplateTypeParmType(TypeLocBuilder & TLB,TemplateTypeParmTypeLoc TL)6194 QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
6195                                                 TypeLocBuilder &TLB,
6196                                                 TemplateTypeParmTypeLoc TL) {
6197   return TransformTypeSpecType(TLB, TL);
6198 }
6199 
6200 template<typename Derived>
TransformSubstTemplateTypeParmType(TypeLocBuilder & TLB,SubstTemplateTypeParmTypeLoc TL)6201 QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType(
6202                                          TypeLocBuilder &TLB,
6203                                          SubstTemplateTypeParmTypeLoc TL) {
6204   const SubstTemplateTypeParmType *T = TL.getTypePtr();
6205 
6206   // Substitute into the replacement type, which itself might involve something
6207   // that needs to be transformed. This only tends to occur with default
6208   // template arguments of template template parameters.
6209   TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName());
6210   QualType Replacement = getDerived().TransformType(T->getReplacementType());
6211   if (Replacement.isNull())
6212     return QualType();
6213 
6214   // Always canonicalize the replacement type.
6215   Replacement = SemaRef.Context.getCanonicalType(Replacement);
6216   QualType Result
6217     = SemaRef.Context.getSubstTemplateTypeParmType(T->getReplacedParameter(),
6218                                                    Replacement);
6219 
6220   // Propagate type-source information.
6221   SubstTemplateTypeParmTypeLoc NewTL
6222     = TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
6223   NewTL.setNameLoc(TL.getNameLoc());
6224   return Result;
6225 
6226 }
6227 
6228 template<typename Derived>
TransformSubstTemplateTypeParmPackType(TypeLocBuilder & TLB,SubstTemplateTypeParmPackTypeLoc TL)6229 QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType(
6230                                           TypeLocBuilder &TLB,
6231                                           SubstTemplateTypeParmPackTypeLoc TL) {
6232   return TransformTypeSpecType(TLB, TL);
6233 }
6234 
6235 template<typename Derived>
TransformTemplateSpecializationType(TypeLocBuilder & TLB,TemplateSpecializationTypeLoc TL)6236 QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
6237                                                         TypeLocBuilder &TLB,
6238                                            TemplateSpecializationTypeLoc TL) {
6239   const TemplateSpecializationType *T = TL.getTypePtr();
6240 
6241   // The nested-name-specifier never matters in a TemplateSpecializationType,
6242   // because we can't have a dependent nested-name-specifier anyway.
6243   CXXScopeSpec SS;
6244   TemplateName Template
6245     = getDerived().TransformTemplateName(SS, T->getTemplateName(),
6246                                          TL.getTemplateNameLoc());
6247   if (Template.isNull())
6248     return QualType();
6249 
6250   return getDerived().TransformTemplateSpecializationType(TLB, TL, Template);
6251 }
6252 
6253 template<typename Derived>
TransformAtomicType(TypeLocBuilder & TLB,AtomicTypeLoc TL)6254 QualType TreeTransform<Derived>::TransformAtomicType(TypeLocBuilder &TLB,
6255                                                      AtomicTypeLoc TL) {
6256   QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
6257   if (ValueType.isNull())
6258     return QualType();
6259 
6260   QualType Result = TL.getType();
6261   if (getDerived().AlwaysRebuild() ||
6262       ValueType != TL.getValueLoc().getType()) {
6263     Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc());
6264     if (Result.isNull())
6265       return QualType();
6266   }
6267 
6268   AtomicTypeLoc NewTL = TLB.push<AtomicTypeLoc>(Result);
6269   NewTL.setKWLoc(TL.getKWLoc());
6270   NewTL.setLParenLoc(TL.getLParenLoc());
6271   NewTL.setRParenLoc(TL.getRParenLoc());
6272 
6273   return Result;
6274 }
6275 
6276 template <typename Derived>
TransformPipeType(TypeLocBuilder & TLB,PipeTypeLoc TL)6277 QualType TreeTransform<Derived>::TransformPipeType(TypeLocBuilder &TLB,
6278                                                    PipeTypeLoc TL) {
6279   QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
6280   if (ValueType.isNull())
6281     return QualType();
6282 
6283   QualType Result = TL.getType();
6284   if (getDerived().AlwaysRebuild() || ValueType != TL.getValueLoc().getType()) {
6285     const PipeType *PT = Result->castAs<PipeType>();
6286     bool isReadPipe = PT->isReadOnly();
6287     Result = getDerived().RebuildPipeType(ValueType, TL.getKWLoc(), isReadPipe);
6288     if (Result.isNull())
6289       return QualType();
6290   }
6291 
6292   PipeTypeLoc NewTL = TLB.push<PipeTypeLoc>(Result);
6293   NewTL.setKWLoc(TL.getKWLoc());
6294 
6295   return Result;
6296 }
6297 
6298 template <typename Derived>
TransformExtIntType(TypeLocBuilder & TLB,ExtIntTypeLoc TL)6299 QualType TreeTransform<Derived>::TransformExtIntType(TypeLocBuilder &TLB,
6300                                                      ExtIntTypeLoc TL) {
6301   const ExtIntType *EIT = TL.getTypePtr();
6302   QualType Result = TL.getType();
6303 
6304   if (getDerived().AlwaysRebuild()) {
6305     Result = getDerived().RebuildExtIntType(EIT->isUnsigned(),
6306                                             EIT->getNumBits(), TL.getNameLoc());
6307     if (Result.isNull())
6308       return QualType();
6309   }
6310 
6311   ExtIntTypeLoc NewTL = TLB.push<ExtIntTypeLoc>(Result);
6312   NewTL.setNameLoc(TL.getNameLoc());
6313   return Result;
6314 }
6315 
6316 template <typename Derived>
TransformDependentExtIntType(TypeLocBuilder & TLB,DependentExtIntTypeLoc TL)6317 QualType TreeTransform<Derived>::TransformDependentExtIntType(
6318     TypeLocBuilder &TLB, DependentExtIntTypeLoc TL) {
6319   const DependentExtIntType *EIT = TL.getTypePtr();
6320 
6321   EnterExpressionEvaluationContext Unevaluated(
6322       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6323   ExprResult BitsExpr = getDerived().TransformExpr(EIT->getNumBitsExpr());
6324   BitsExpr = SemaRef.ActOnConstantExpression(BitsExpr);
6325 
6326   if (BitsExpr.isInvalid())
6327     return QualType();
6328 
6329   QualType Result = TL.getType();
6330 
6331   if (getDerived().AlwaysRebuild() || BitsExpr.get() != EIT->getNumBitsExpr()) {
6332     Result = getDerived().RebuildDependentExtIntType(
6333         EIT->isUnsigned(), BitsExpr.get(), TL.getNameLoc());
6334 
6335     if (Result.isNull())
6336       return QualType();
6337   }
6338 
6339   if (isa<DependentExtIntType>(Result)) {
6340     DependentExtIntTypeLoc NewTL = TLB.push<DependentExtIntTypeLoc>(Result);
6341     NewTL.setNameLoc(TL.getNameLoc());
6342   } else {
6343     ExtIntTypeLoc NewTL = TLB.push<ExtIntTypeLoc>(Result);
6344     NewTL.setNameLoc(TL.getNameLoc());
6345   }
6346   return Result;
6347 }
6348 
6349   /// Simple iterator that traverses the template arguments in a
6350   /// container that provides a \c getArgLoc() member function.
6351   ///
6352   /// This iterator is intended to be used with the iterator form of
6353   /// \c TreeTransform<Derived>::TransformTemplateArguments().
6354   template<typename ArgLocContainer>
6355   class TemplateArgumentLocContainerIterator {
6356     ArgLocContainer *Container;
6357     unsigned Index;
6358 
6359   public:
6360     typedef TemplateArgumentLoc value_type;
6361     typedef TemplateArgumentLoc reference;
6362     typedef int difference_type;
6363     typedef std::input_iterator_tag iterator_category;
6364 
6365     class pointer {
6366       TemplateArgumentLoc Arg;
6367 
6368     public:
pointer(TemplateArgumentLoc Arg)6369       explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
6370 
6371       const TemplateArgumentLoc *operator->() const {
6372         return &Arg;
6373       }
6374     };
6375 
6376 
TemplateArgumentLocContainerIterator()6377     TemplateArgumentLocContainerIterator() {}
6378 
TemplateArgumentLocContainerIterator(ArgLocContainer & Container,unsigned Index)6379     TemplateArgumentLocContainerIterator(ArgLocContainer &Container,
6380                                  unsigned Index)
6381       : Container(&Container), Index(Index) { }
6382 
6383     TemplateArgumentLocContainerIterator &operator++() {
6384       ++Index;
6385       return *this;
6386     }
6387 
6388     TemplateArgumentLocContainerIterator operator++(int) {
6389       TemplateArgumentLocContainerIterator Old(*this);
6390       ++(*this);
6391       return Old;
6392     }
6393 
6394     TemplateArgumentLoc operator*() const {
6395       return Container->getArgLoc(Index);
6396     }
6397 
6398     pointer operator->() const {
6399       return pointer(Container->getArgLoc(Index));
6400     }
6401 
6402     friend bool operator==(const TemplateArgumentLocContainerIterator &X,
6403                            const TemplateArgumentLocContainerIterator &Y) {
6404       return X.Container == Y.Container && X.Index == Y.Index;
6405     }
6406 
6407     friend bool operator!=(const TemplateArgumentLocContainerIterator &X,
6408                            const TemplateArgumentLocContainerIterator &Y) {
6409       return !(X == Y);
6410     }
6411   };
6412 
6413 template<typename Derived>
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)6414 QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB,
6415                                                    AutoTypeLoc TL) {
6416   const AutoType *T = TL.getTypePtr();
6417   QualType OldDeduced = T->getDeducedType();
6418   QualType NewDeduced;
6419   if (!OldDeduced.isNull()) {
6420     NewDeduced = getDerived().TransformType(OldDeduced);
6421     if (NewDeduced.isNull())
6422       return QualType();
6423   }
6424 
6425   ConceptDecl *NewCD = nullptr;
6426   TemplateArgumentListInfo NewTemplateArgs;
6427   NestedNameSpecifierLoc NewNestedNameSpec;
6428   if (TL.getTypePtr()->isConstrained()) {
6429     NewCD = cast_or_null<ConceptDecl>(
6430         getDerived().TransformDecl(
6431             TL.getConceptNameLoc(),
6432             TL.getTypePtr()->getTypeConstraintConcept()));
6433 
6434     NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
6435     NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
6436     typedef TemplateArgumentLocContainerIterator<AutoTypeLoc> ArgIterator;
6437     if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
6438                                                 ArgIterator(TL,
6439                                                             TL.getNumArgs()),
6440                                                 NewTemplateArgs))
6441       return QualType();
6442 
6443     if (TL.getNestedNameSpecifierLoc()) {
6444       NewNestedNameSpec
6445         = getDerived().TransformNestedNameSpecifierLoc(
6446             TL.getNestedNameSpecifierLoc());
6447       if (!NewNestedNameSpec)
6448         return QualType();
6449     }
6450   }
6451 
6452   QualType Result = TL.getType();
6453   if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced ||
6454       T->isDependentType()) {
6455     llvm::SmallVector<TemplateArgument, 4> NewArgList;
6456     NewArgList.reserve(NewArgList.size());
6457     for (const auto &ArgLoc : NewTemplateArgs.arguments())
6458       NewArgList.push_back(ArgLoc.getArgument());
6459     Result = getDerived().RebuildAutoType(NewDeduced, T->getKeyword(), NewCD,
6460                                           NewArgList);
6461     if (Result.isNull())
6462       return QualType();
6463   }
6464 
6465   AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
6466   NewTL.setNameLoc(TL.getNameLoc());
6467   NewTL.setNestedNameSpecifierLoc(NewNestedNameSpec);
6468   NewTL.setTemplateKWLoc(TL.getTemplateKWLoc());
6469   NewTL.setConceptNameLoc(TL.getConceptNameLoc());
6470   NewTL.setFoundDecl(TL.getFoundDecl());
6471   NewTL.setLAngleLoc(TL.getLAngleLoc());
6472   NewTL.setRAngleLoc(TL.getRAngleLoc());
6473   for (unsigned I = 0; I < TL.getNumArgs(); ++I)
6474     NewTL.setArgLocInfo(I, NewTemplateArgs.arguments()[I].getLocInfo());
6475 
6476   return Result;
6477 }
6478 
6479 template <typename Derived>
TransformTemplateSpecializationType(TypeLocBuilder & TLB,TemplateSpecializationTypeLoc TL,TemplateName Template)6480 QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
6481                                                         TypeLocBuilder &TLB,
6482                                            TemplateSpecializationTypeLoc TL,
6483                                                       TemplateName Template) {
6484   TemplateArgumentListInfo NewTemplateArgs;
6485   NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
6486   NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
6487   typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc>
6488     ArgIterator;
6489   if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
6490                                               ArgIterator(TL, TL.getNumArgs()),
6491                                               NewTemplateArgs))
6492     return QualType();
6493 
6494   // FIXME: maybe don't rebuild if all the template arguments are the same.
6495 
6496   QualType Result =
6497     getDerived().RebuildTemplateSpecializationType(Template,
6498                                                    TL.getTemplateNameLoc(),
6499                                                    NewTemplateArgs);
6500 
6501   if (!Result.isNull()) {
6502     // Specializations of template template parameters are represented as
6503     // TemplateSpecializationTypes, and substitution of type alias templates
6504     // within a dependent context can transform them into
6505     // DependentTemplateSpecializationTypes.
6506     if (isa<DependentTemplateSpecializationType>(Result)) {
6507       DependentTemplateSpecializationTypeLoc NewTL
6508         = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
6509       NewTL.setElaboratedKeywordLoc(SourceLocation());
6510       NewTL.setQualifierLoc(NestedNameSpecifierLoc());
6511       NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6512       NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6513       NewTL.setLAngleLoc(TL.getLAngleLoc());
6514       NewTL.setRAngleLoc(TL.getRAngleLoc());
6515       for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
6516         NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
6517       return Result;
6518     }
6519 
6520     TemplateSpecializationTypeLoc NewTL
6521       = TLB.push<TemplateSpecializationTypeLoc>(Result);
6522     NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6523     NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6524     NewTL.setLAngleLoc(TL.getLAngleLoc());
6525     NewTL.setRAngleLoc(TL.getRAngleLoc());
6526     for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
6527       NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
6528   }
6529 
6530   return Result;
6531 }
6532 
6533 template <typename Derived>
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL,TemplateName Template,CXXScopeSpec & SS)6534 QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType(
6535                                      TypeLocBuilder &TLB,
6536                                      DependentTemplateSpecializationTypeLoc TL,
6537                                      TemplateName Template,
6538                                      CXXScopeSpec &SS) {
6539   TemplateArgumentListInfo NewTemplateArgs;
6540   NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
6541   NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
6542   typedef TemplateArgumentLocContainerIterator<
6543             DependentTemplateSpecializationTypeLoc> ArgIterator;
6544   if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
6545                                               ArgIterator(TL, TL.getNumArgs()),
6546                                               NewTemplateArgs))
6547     return QualType();
6548 
6549   // FIXME: maybe don't rebuild if all the template arguments are the same.
6550 
6551   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6552     QualType Result
6553       = getSema().Context.getDependentTemplateSpecializationType(
6554                                                 TL.getTypePtr()->getKeyword(),
6555                                                          DTN->getQualifier(),
6556                                                          DTN->getIdentifier(),
6557                                                                NewTemplateArgs);
6558 
6559     DependentTemplateSpecializationTypeLoc NewTL
6560       = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
6561     NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6562     NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context));
6563     NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6564     NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6565     NewTL.setLAngleLoc(TL.getLAngleLoc());
6566     NewTL.setRAngleLoc(TL.getRAngleLoc());
6567     for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
6568       NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
6569     return Result;
6570   }
6571 
6572   QualType Result
6573     = getDerived().RebuildTemplateSpecializationType(Template,
6574                                                      TL.getTemplateNameLoc(),
6575                                                      NewTemplateArgs);
6576 
6577   if (!Result.isNull()) {
6578     /// FIXME: Wrap this in an elaborated-type-specifier?
6579     TemplateSpecializationTypeLoc NewTL
6580       = TLB.push<TemplateSpecializationTypeLoc>(Result);
6581     NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6582     NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6583     NewTL.setLAngleLoc(TL.getLAngleLoc());
6584     NewTL.setRAngleLoc(TL.getRAngleLoc());
6585     for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
6586       NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
6587   }
6588 
6589   return Result;
6590 }
6591 
6592 template<typename Derived>
6593 QualType
TransformElaboratedType(TypeLocBuilder & TLB,ElaboratedTypeLoc TL)6594 TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB,
6595                                                 ElaboratedTypeLoc TL) {
6596   const ElaboratedType *T = TL.getTypePtr();
6597 
6598   NestedNameSpecifierLoc QualifierLoc;
6599   // NOTE: the qualifier in an ElaboratedType is optional.
6600   if (TL.getQualifierLoc()) {
6601     QualifierLoc
6602       = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
6603     if (!QualifierLoc)
6604       return QualType();
6605   }
6606 
6607   QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc());
6608   if (NamedT.isNull())
6609     return QualType();
6610 
6611   // C++0x [dcl.type.elab]p2:
6612   //   If the identifier resolves to a typedef-name or the simple-template-id
6613   //   resolves to an alias template specialization, the
6614   //   elaborated-type-specifier is ill-formed.
6615   if (T->getKeyword() != ETK_None && T->getKeyword() != ETK_Typename) {
6616     if (const TemplateSpecializationType *TST =
6617           NamedT->getAs<TemplateSpecializationType>()) {
6618       TemplateName Template = TST->getTemplateName();
6619       if (TypeAliasTemplateDecl *TAT = dyn_cast_or_null<TypeAliasTemplateDecl>(
6620               Template.getAsTemplateDecl())) {
6621         SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(),
6622                      diag::err_tag_reference_non_tag)
6623             << TAT << Sema::NTK_TypeAliasTemplate
6624             << ElaboratedType::getTagTypeKindForKeyword(T->getKeyword());
6625         SemaRef.Diag(TAT->getLocation(), diag::note_declared_at);
6626       }
6627     }
6628   }
6629 
6630   QualType Result = TL.getType();
6631   if (getDerived().AlwaysRebuild() ||
6632       QualifierLoc != TL.getQualifierLoc() ||
6633       NamedT != T->getNamedType()) {
6634     Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(),
6635                                                 T->getKeyword(),
6636                                                 QualifierLoc, NamedT);
6637     if (Result.isNull())
6638       return QualType();
6639   }
6640 
6641   ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
6642   NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6643   NewTL.setQualifierLoc(QualifierLoc);
6644   return Result;
6645 }
6646 
6647 template<typename Derived>
TransformAttributedType(TypeLocBuilder & TLB,AttributedTypeLoc TL)6648 QualType TreeTransform<Derived>::TransformAttributedType(
6649                                                 TypeLocBuilder &TLB,
6650                                                 AttributedTypeLoc TL) {
6651   const AttributedType *oldType = TL.getTypePtr();
6652   QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc());
6653   if (modifiedType.isNull())
6654     return QualType();
6655 
6656   // oldAttr can be null if we started with a QualType rather than a TypeLoc.
6657   const Attr *oldAttr = TL.getAttr();
6658   const Attr *newAttr = oldAttr ? getDerived().TransformAttr(oldAttr) : nullptr;
6659   if (oldAttr && !newAttr)
6660     return QualType();
6661 
6662   QualType result = TL.getType();
6663 
6664   // FIXME: dependent operand expressions?
6665   if (getDerived().AlwaysRebuild() ||
6666       modifiedType != oldType->getModifiedType()) {
6667     // TODO: this is really lame; we should really be rebuilding the
6668     // equivalent type from first principles.
6669     QualType equivalentType
6670       = getDerived().TransformType(oldType->getEquivalentType());
6671     if (equivalentType.isNull())
6672       return QualType();
6673 
6674     // Check whether we can add nullability; it is only represented as
6675     // type sugar, and therefore cannot be diagnosed in any other way.
6676     if (auto nullability = oldType->getImmediateNullability()) {
6677       if (!modifiedType->canHaveNullability()) {
6678         SemaRef.Diag(TL.getAttr()->getLocation(),
6679                      diag::err_nullability_nonpointer)
6680             << DiagNullabilityKind(*nullability, false) << modifiedType;
6681         return QualType();
6682       }
6683     }
6684 
6685     result = SemaRef.Context.getAttributedType(TL.getAttrKind(),
6686                                                modifiedType,
6687                                                equivalentType);
6688   }
6689 
6690   AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result);
6691   newTL.setAttr(newAttr);
6692   return result;
6693 }
6694 
6695 template<typename Derived>
6696 QualType
TransformParenType(TypeLocBuilder & TLB,ParenTypeLoc TL)6697 TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB,
6698                                            ParenTypeLoc TL) {
6699   QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
6700   if (Inner.isNull())
6701     return QualType();
6702 
6703   QualType Result = TL.getType();
6704   if (getDerived().AlwaysRebuild() ||
6705       Inner != TL.getInnerLoc().getType()) {
6706     Result = getDerived().RebuildParenType(Inner);
6707     if (Result.isNull())
6708       return QualType();
6709   }
6710 
6711   ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result);
6712   NewTL.setLParenLoc(TL.getLParenLoc());
6713   NewTL.setRParenLoc(TL.getRParenLoc());
6714   return Result;
6715 }
6716 
6717 template <typename Derived>
6718 QualType
TransformMacroQualifiedType(TypeLocBuilder & TLB,MacroQualifiedTypeLoc TL)6719 TreeTransform<Derived>::TransformMacroQualifiedType(TypeLocBuilder &TLB,
6720                                                     MacroQualifiedTypeLoc TL) {
6721   QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
6722   if (Inner.isNull())
6723     return QualType();
6724 
6725   QualType Result = TL.getType();
6726   if (getDerived().AlwaysRebuild() || Inner != TL.getInnerLoc().getType()) {
6727     Result =
6728         getDerived().RebuildMacroQualifiedType(Inner, TL.getMacroIdentifier());
6729     if (Result.isNull())
6730       return QualType();
6731   }
6732 
6733   MacroQualifiedTypeLoc NewTL = TLB.push<MacroQualifiedTypeLoc>(Result);
6734   NewTL.setExpansionLoc(TL.getExpansionLoc());
6735   return Result;
6736 }
6737 
6738 template<typename Derived>
TransformDependentNameType(TypeLocBuilder & TLB,DependentNameTypeLoc TL)6739 QualType TreeTransform<Derived>::TransformDependentNameType(
6740     TypeLocBuilder &TLB, DependentNameTypeLoc TL) {
6741   return TransformDependentNameType(TLB, TL, false);
6742 }
6743 
6744 template<typename Derived>
TransformDependentNameType(TypeLocBuilder & TLB,DependentNameTypeLoc TL,bool DeducedTSTContext)6745 QualType TreeTransform<Derived>::TransformDependentNameType(
6746     TypeLocBuilder &TLB, DependentNameTypeLoc TL, bool DeducedTSTContext) {
6747   const DependentNameType *T = TL.getTypePtr();
6748 
6749   NestedNameSpecifierLoc QualifierLoc
6750     = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
6751   if (!QualifierLoc)
6752     return QualType();
6753 
6754   QualType Result
6755     = getDerived().RebuildDependentNameType(T->getKeyword(),
6756                                             TL.getElaboratedKeywordLoc(),
6757                                             QualifierLoc,
6758                                             T->getIdentifier(),
6759                                             TL.getNameLoc(),
6760                                             DeducedTSTContext);
6761   if (Result.isNull())
6762     return QualType();
6763 
6764   if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) {
6765     QualType NamedT = ElabT->getNamedType();
6766     TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc());
6767 
6768     ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
6769     NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6770     NewTL.setQualifierLoc(QualifierLoc);
6771   } else {
6772     DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
6773     NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6774     NewTL.setQualifierLoc(QualifierLoc);
6775     NewTL.setNameLoc(TL.getNameLoc());
6776   }
6777   return Result;
6778 }
6779 
6780 template<typename Derived>
6781 QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL)6782           TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
6783                                  DependentTemplateSpecializationTypeLoc TL) {
6784   NestedNameSpecifierLoc QualifierLoc;
6785   if (TL.getQualifierLoc()) {
6786     QualifierLoc
6787       = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
6788     if (!QualifierLoc)
6789       return QualType();
6790   }
6791 
6792   return getDerived()
6793            .TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc);
6794 }
6795 
6796 template<typename Derived>
6797 QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL,NestedNameSpecifierLoc QualifierLoc)6798 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
6799                                    DependentTemplateSpecializationTypeLoc TL,
6800                                        NestedNameSpecifierLoc QualifierLoc) {
6801   const DependentTemplateSpecializationType *T = TL.getTypePtr();
6802 
6803   TemplateArgumentListInfo NewTemplateArgs;
6804   NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
6805   NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
6806 
6807   typedef TemplateArgumentLocContainerIterator<
6808   DependentTemplateSpecializationTypeLoc> ArgIterator;
6809   if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
6810                                               ArgIterator(TL, TL.getNumArgs()),
6811                                               NewTemplateArgs))
6812     return QualType();
6813 
6814   QualType Result = getDerived().RebuildDependentTemplateSpecializationType(
6815       T->getKeyword(), QualifierLoc, TL.getTemplateKeywordLoc(),
6816       T->getIdentifier(), TL.getTemplateNameLoc(), NewTemplateArgs,
6817       /*AllowInjectedClassName*/ false);
6818   if (Result.isNull())
6819     return QualType();
6820 
6821   if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) {
6822     QualType NamedT = ElabT->getNamedType();
6823 
6824     // Copy information relevant to the template specialization.
6825     TemplateSpecializationTypeLoc NamedTL
6826       = TLB.push<TemplateSpecializationTypeLoc>(NamedT);
6827     NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6828     NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6829     NamedTL.setLAngleLoc(TL.getLAngleLoc());
6830     NamedTL.setRAngleLoc(TL.getRAngleLoc());
6831     for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
6832       NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
6833 
6834     // Copy information relevant to the elaborated type.
6835     ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
6836     NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6837     NewTL.setQualifierLoc(QualifierLoc);
6838   } else if (isa<DependentTemplateSpecializationType>(Result)) {
6839     DependentTemplateSpecializationTypeLoc SpecTL
6840       = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
6841     SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6842     SpecTL.setQualifierLoc(QualifierLoc);
6843     SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6844     SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6845     SpecTL.setLAngleLoc(TL.getLAngleLoc());
6846     SpecTL.setRAngleLoc(TL.getRAngleLoc());
6847     for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
6848       SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
6849   } else {
6850     TemplateSpecializationTypeLoc SpecTL
6851       = TLB.push<TemplateSpecializationTypeLoc>(Result);
6852     SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6853     SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6854     SpecTL.setLAngleLoc(TL.getLAngleLoc());
6855     SpecTL.setRAngleLoc(TL.getRAngleLoc());
6856     for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
6857       SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
6858   }
6859   return Result;
6860 }
6861 
6862 template<typename Derived>
TransformPackExpansionType(TypeLocBuilder & TLB,PackExpansionTypeLoc TL)6863 QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB,
6864                                                       PackExpansionTypeLoc TL) {
6865   QualType Pattern
6866     = getDerived().TransformType(TLB, TL.getPatternLoc());
6867   if (Pattern.isNull())
6868     return QualType();
6869 
6870   QualType Result = TL.getType();
6871   if (getDerived().AlwaysRebuild() ||
6872       Pattern != TL.getPatternLoc().getType()) {
6873     Result = getDerived().RebuildPackExpansionType(Pattern,
6874                                            TL.getPatternLoc().getSourceRange(),
6875                                                    TL.getEllipsisLoc(),
6876                                            TL.getTypePtr()->getNumExpansions());
6877     if (Result.isNull())
6878       return QualType();
6879   }
6880 
6881   PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result);
6882   NewT.setEllipsisLoc(TL.getEllipsisLoc());
6883   return Result;
6884 }
6885 
6886 template<typename Derived>
6887 QualType
TransformObjCInterfaceType(TypeLocBuilder & TLB,ObjCInterfaceTypeLoc TL)6888 TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB,
6889                                                    ObjCInterfaceTypeLoc TL) {
6890   // ObjCInterfaceType is never dependent.
6891   TLB.pushFullCopy(TL);
6892   return TL.getType();
6893 }
6894 
6895 template<typename Derived>
6896 QualType
TransformObjCTypeParamType(TypeLocBuilder & TLB,ObjCTypeParamTypeLoc TL)6897 TreeTransform<Derived>::TransformObjCTypeParamType(TypeLocBuilder &TLB,
6898                                                    ObjCTypeParamTypeLoc TL) {
6899   const ObjCTypeParamType *T = TL.getTypePtr();
6900   ObjCTypeParamDecl *OTP = cast_or_null<ObjCTypeParamDecl>(
6901       getDerived().TransformDecl(T->getDecl()->getLocation(), T->getDecl()));
6902   if (!OTP)
6903     return QualType();
6904 
6905   QualType Result = TL.getType();
6906   if (getDerived().AlwaysRebuild() ||
6907       OTP != T->getDecl()) {
6908     Result = getDerived().RebuildObjCTypeParamType(OTP,
6909                  TL.getProtocolLAngleLoc(),
6910                  llvm::makeArrayRef(TL.getTypePtr()->qual_begin(),
6911                                     TL.getNumProtocols()),
6912                  TL.getProtocolLocs(),
6913                  TL.getProtocolRAngleLoc());
6914     if (Result.isNull())
6915       return QualType();
6916   }
6917 
6918   ObjCTypeParamTypeLoc NewTL = TLB.push<ObjCTypeParamTypeLoc>(Result);
6919   if (TL.getNumProtocols()) {
6920     NewTL.setProtocolLAngleLoc(TL.getProtocolLAngleLoc());
6921     for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i)
6922       NewTL.setProtocolLoc(i, TL.getProtocolLoc(i));
6923     NewTL.setProtocolRAngleLoc(TL.getProtocolRAngleLoc());
6924   }
6925   return Result;
6926 }
6927 
6928 template<typename Derived>
6929 QualType
TransformObjCObjectType(TypeLocBuilder & TLB,ObjCObjectTypeLoc TL)6930 TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB,
6931                                                 ObjCObjectTypeLoc TL) {
6932   // Transform base type.
6933   QualType BaseType = getDerived().TransformType(TLB, TL.getBaseLoc());
6934   if (BaseType.isNull())
6935     return QualType();
6936 
6937   bool AnyChanged = BaseType != TL.getBaseLoc().getType();
6938 
6939   // Transform type arguments.
6940   SmallVector<TypeSourceInfo *, 4> NewTypeArgInfos;
6941   for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i) {
6942     TypeSourceInfo *TypeArgInfo = TL.getTypeArgTInfo(i);
6943     TypeLoc TypeArgLoc = TypeArgInfo->getTypeLoc();
6944     QualType TypeArg = TypeArgInfo->getType();
6945     if (auto PackExpansionLoc = TypeArgLoc.getAs<PackExpansionTypeLoc>()) {
6946       AnyChanged = true;
6947 
6948       // We have a pack expansion. Instantiate it.
6949       const auto *PackExpansion = PackExpansionLoc.getType()
6950                                     ->castAs<PackExpansionType>();
6951       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
6952       SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(),
6953                                               Unexpanded);
6954       assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
6955 
6956       // Determine whether the set of unexpanded parameter packs can
6957       // and should be expanded.
6958       TypeLoc PatternLoc = PackExpansionLoc.getPatternLoc();
6959       bool Expand = false;
6960       bool RetainExpansion = false;
6961       Optional<unsigned> NumExpansions = PackExpansion->getNumExpansions();
6962       if (getDerived().TryExpandParameterPacks(
6963             PackExpansionLoc.getEllipsisLoc(), PatternLoc.getSourceRange(),
6964             Unexpanded, Expand, RetainExpansion, NumExpansions))
6965         return QualType();
6966 
6967       if (!Expand) {
6968         // We can't expand this pack expansion into separate arguments yet;
6969         // just substitute into the pattern and create a new pack expansion
6970         // type.
6971         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
6972 
6973         TypeLocBuilder TypeArgBuilder;
6974         TypeArgBuilder.reserve(PatternLoc.getFullDataSize());
6975         QualType NewPatternType = getDerived().TransformType(TypeArgBuilder,
6976                                                              PatternLoc);
6977         if (NewPatternType.isNull())
6978           return QualType();
6979 
6980         QualType NewExpansionType = SemaRef.Context.getPackExpansionType(
6981                                       NewPatternType, NumExpansions);
6982         auto NewExpansionLoc = TLB.push<PackExpansionTypeLoc>(NewExpansionType);
6983         NewExpansionLoc.setEllipsisLoc(PackExpansionLoc.getEllipsisLoc());
6984         NewTypeArgInfos.push_back(
6985           TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewExpansionType));
6986         continue;
6987       }
6988 
6989       // Substitute into the pack expansion pattern for each slice of the
6990       // pack.
6991       for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) {
6992         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx);
6993 
6994         TypeLocBuilder TypeArgBuilder;
6995         TypeArgBuilder.reserve(PatternLoc.getFullDataSize());
6996 
6997         QualType NewTypeArg = getDerived().TransformType(TypeArgBuilder,
6998                                                          PatternLoc);
6999         if (NewTypeArg.isNull())
7000           return QualType();
7001 
7002         NewTypeArgInfos.push_back(
7003           TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg));
7004       }
7005 
7006       continue;
7007     }
7008 
7009     TypeLocBuilder TypeArgBuilder;
7010     TypeArgBuilder.reserve(TypeArgLoc.getFullDataSize());
7011     QualType NewTypeArg = getDerived().TransformType(TypeArgBuilder, TypeArgLoc);
7012     if (NewTypeArg.isNull())
7013       return QualType();
7014 
7015     // If nothing changed, just keep the old TypeSourceInfo.
7016     if (NewTypeArg == TypeArg) {
7017       NewTypeArgInfos.push_back(TypeArgInfo);
7018       continue;
7019     }
7020 
7021     NewTypeArgInfos.push_back(
7022       TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg));
7023     AnyChanged = true;
7024   }
7025 
7026   QualType Result = TL.getType();
7027   if (getDerived().AlwaysRebuild() || AnyChanged) {
7028     // Rebuild the type.
7029     Result = getDerived().RebuildObjCObjectType(
7030         BaseType, TL.getBeginLoc(), TL.getTypeArgsLAngleLoc(), NewTypeArgInfos,
7031         TL.getTypeArgsRAngleLoc(), TL.getProtocolLAngleLoc(),
7032         llvm::makeArrayRef(TL.getTypePtr()->qual_begin(), TL.getNumProtocols()),
7033         TL.getProtocolLocs(), TL.getProtocolRAngleLoc());
7034 
7035     if (Result.isNull())
7036       return QualType();
7037   }
7038 
7039   ObjCObjectTypeLoc NewT = TLB.push<ObjCObjectTypeLoc>(Result);
7040   NewT.setHasBaseTypeAsWritten(true);
7041   NewT.setTypeArgsLAngleLoc(TL.getTypeArgsLAngleLoc());
7042   for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i)
7043     NewT.setTypeArgTInfo(i, NewTypeArgInfos[i]);
7044   NewT.setTypeArgsRAngleLoc(TL.getTypeArgsRAngleLoc());
7045   NewT.setProtocolLAngleLoc(TL.getProtocolLAngleLoc());
7046   for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i)
7047     NewT.setProtocolLoc(i, TL.getProtocolLoc(i));
7048   NewT.setProtocolRAngleLoc(TL.getProtocolRAngleLoc());
7049   return Result;
7050 }
7051 
7052 template<typename Derived>
7053 QualType
TransformObjCObjectPointerType(TypeLocBuilder & TLB,ObjCObjectPointerTypeLoc TL)7054 TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB,
7055                                                ObjCObjectPointerTypeLoc TL) {
7056   QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
7057   if (PointeeType.isNull())
7058     return QualType();
7059 
7060   QualType Result = TL.getType();
7061   if (getDerived().AlwaysRebuild() ||
7062       PointeeType != TL.getPointeeLoc().getType()) {
7063     Result = getDerived().RebuildObjCObjectPointerType(PointeeType,
7064                                                        TL.getStarLoc());
7065     if (Result.isNull())
7066       return QualType();
7067   }
7068 
7069   ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
7070   NewT.setStarLoc(TL.getStarLoc());
7071   return Result;
7072 }
7073 
7074 //===----------------------------------------------------------------------===//
7075 // Statement transformation
7076 //===----------------------------------------------------------------------===//
7077 template<typename Derived>
7078 StmtResult
TransformNullStmt(NullStmt * S)7079 TreeTransform<Derived>::TransformNullStmt(NullStmt *S) {
7080   return S;
7081 }
7082 
7083 template<typename Derived>
7084 StmtResult
TransformCompoundStmt(CompoundStmt * S)7085 TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) {
7086   return getDerived().TransformCompoundStmt(S, false);
7087 }
7088 
7089 template<typename Derived>
7090 StmtResult
TransformCompoundStmt(CompoundStmt * S,bool IsStmtExpr)7091 TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S,
7092                                               bool IsStmtExpr) {
7093   Sema::CompoundScopeRAII CompoundScope(getSema());
7094 
7095   const Stmt *ExprResult = S->getStmtExprResult();
7096   bool SubStmtInvalid = false;
7097   bool SubStmtChanged = false;
7098   SmallVector<Stmt*, 8> Statements;
7099   for (auto *B : S->body()) {
7100     StmtResult Result = getDerived().TransformStmt(
7101         B, IsStmtExpr && B == ExprResult ? SDK_StmtExprResult : SDK_Discarded);
7102 
7103     if (Result.isInvalid()) {
7104       // Immediately fail if this was a DeclStmt, since it's very
7105       // likely that this will cause problems for future statements.
7106       if (isa<DeclStmt>(B))
7107         return StmtError();
7108 
7109       // Otherwise, just keep processing substatements and fail later.
7110       SubStmtInvalid = true;
7111       continue;
7112     }
7113 
7114     SubStmtChanged = SubStmtChanged || Result.get() != B;
7115     Statements.push_back(Result.getAs<Stmt>());
7116   }
7117 
7118   if (SubStmtInvalid)
7119     return StmtError();
7120 
7121   if (!getDerived().AlwaysRebuild() &&
7122       !SubStmtChanged)
7123     return S;
7124 
7125   return getDerived().RebuildCompoundStmt(S->getLBracLoc(),
7126                                           Statements,
7127                                           S->getRBracLoc(),
7128                                           IsStmtExpr);
7129 }
7130 
7131 template<typename Derived>
7132 StmtResult
TransformCaseStmt(CaseStmt * S)7133 TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) {
7134   ExprResult LHS, RHS;
7135   {
7136     EnterExpressionEvaluationContext Unevaluated(
7137         SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
7138 
7139     // Transform the left-hand case value.
7140     LHS = getDerived().TransformExpr(S->getLHS());
7141     LHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), LHS);
7142     if (LHS.isInvalid())
7143       return StmtError();
7144 
7145     // Transform the right-hand case value (for the GNU case-range extension).
7146     RHS = getDerived().TransformExpr(S->getRHS());
7147     RHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), RHS);
7148     if (RHS.isInvalid())
7149       return StmtError();
7150   }
7151 
7152   // Build the case statement.
7153   // Case statements are always rebuilt so that they will attached to their
7154   // transformed switch statement.
7155   StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(),
7156                                                        LHS.get(),
7157                                                        S->getEllipsisLoc(),
7158                                                        RHS.get(),
7159                                                        S->getColonLoc());
7160   if (Case.isInvalid())
7161     return StmtError();
7162 
7163   // Transform the statement following the case
7164   StmtResult SubStmt =
7165       getDerived().TransformStmt(S->getSubStmt());
7166   if (SubStmt.isInvalid())
7167     return StmtError();
7168 
7169   // Attach the body to the case statement
7170   return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get());
7171 }
7172 
7173 template <typename Derived>
TransformDefaultStmt(DefaultStmt * S)7174 StmtResult TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) {
7175   // Transform the statement following the default case
7176   StmtResult SubStmt =
7177       getDerived().TransformStmt(S->getSubStmt());
7178   if (SubStmt.isInvalid())
7179     return StmtError();
7180 
7181   // Default statements are always rebuilt
7182   return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(),
7183                                          SubStmt.get());
7184 }
7185 
7186 template<typename Derived>
7187 StmtResult
TransformLabelStmt(LabelStmt * S,StmtDiscardKind SDK)7188 TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S, StmtDiscardKind SDK) {
7189   StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK);
7190   if (SubStmt.isInvalid())
7191     return StmtError();
7192 
7193   Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(),
7194                                         S->getDecl());
7195   if (!LD)
7196     return StmtError();
7197 
7198   // If we're transforming "in-place" (we're not creating new local
7199   // declarations), assume we're replacing the old label statement
7200   // and clear out the reference to it.
7201   if (LD == S->getDecl())
7202     S->getDecl()->setStmt(nullptr);
7203 
7204   // FIXME: Pass the real colon location in.
7205   return getDerived().RebuildLabelStmt(S->getIdentLoc(),
7206                                        cast<LabelDecl>(LD), SourceLocation(),
7207                                        SubStmt.get());
7208 }
7209 
7210 template <typename Derived>
TransformAttr(const Attr * R)7211 const Attr *TreeTransform<Derived>::TransformAttr(const Attr *R) {
7212   if (!R)
7213     return R;
7214 
7215   switch (R->getKind()) {
7216 // Transform attributes with a pragma spelling by calling TransformXXXAttr.
7217 #define ATTR(X)
7218 #define PRAGMA_SPELLING_ATTR(X)                                                \
7219   case attr::X:                                                                \
7220     return getDerived().Transform##X##Attr(cast<X##Attr>(R));
7221 #include "clang/Basic/AttrList.inc"
7222   default:
7223     return R;
7224   }
7225 }
7226 
7227 template <typename Derived>
7228 StmtResult
TransformAttributedStmt(AttributedStmt * S,StmtDiscardKind SDK)7229 TreeTransform<Derived>::TransformAttributedStmt(AttributedStmt *S,
7230                                                 StmtDiscardKind SDK) {
7231   bool AttrsChanged = false;
7232   SmallVector<const Attr *, 1> Attrs;
7233 
7234   // Visit attributes and keep track if any are transformed.
7235   for (const auto *I : S->getAttrs()) {
7236     const Attr *R = getDerived().TransformAttr(I);
7237     AttrsChanged |= (I != R);
7238     Attrs.push_back(R);
7239   }
7240 
7241   StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK);
7242   if (SubStmt.isInvalid())
7243     return StmtError();
7244 
7245   if (SubStmt.get() == S->getSubStmt() && !AttrsChanged)
7246     return S;
7247 
7248   return getDerived().RebuildAttributedStmt(S->getAttrLoc(), Attrs,
7249                                             SubStmt.get());
7250 }
7251 
7252 template<typename Derived>
7253 StmtResult
TransformIfStmt(IfStmt * S)7254 TreeTransform<Derived>::TransformIfStmt(IfStmt *S) {
7255   // Transform the initialization statement
7256   StmtResult Init = getDerived().TransformStmt(S->getInit());
7257   if (Init.isInvalid())
7258     return StmtError();
7259 
7260   // Transform the condition
7261   Sema::ConditionResult Cond = getDerived().TransformCondition(
7262       S->getIfLoc(), S->getConditionVariable(), S->getCond(),
7263       S->isConstexpr() ? Sema::ConditionKind::ConstexprIf
7264                        : Sema::ConditionKind::Boolean);
7265   if (Cond.isInvalid())
7266     return StmtError();
7267 
7268   // If this is a constexpr if, determine which arm we should instantiate.
7269   llvm::Optional<bool> ConstexprConditionValue;
7270   if (S->isConstexpr())
7271     ConstexprConditionValue = Cond.getKnownValue();
7272 
7273   // Transform the "then" branch.
7274   StmtResult Then;
7275   if (!ConstexprConditionValue || *ConstexprConditionValue) {
7276     Then = getDerived().TransformStmt(S->getThen());
7277     if (Then.isInvalid())
7278       return StmtError();
7279   } else {
7280     Then = new (getSema().Context) NullStmt(S->getThen()->getBeginLoc());
7281   }
7282 
7283   // Transform the "else" branch.
7284   StmtResult Else;
7285   if (!ConstexprConditionValue || !*ConstexprConditionValue) {
7286     Else = getDerived().TransformStmt(S->getElse());
7287     if (Else.isInvalid())
7288       return StmtError();
7289   }
7290 
7291   if (!getDerived().AlwaysRebuild() &&
7292       Init.get() == S->getInit() &&
7293       Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) &&
7294       Then.get() == S->getThen() &&
7295       Else.get() == S->getElse())
7296     return S;
7297 
7298   return getDerived().RebuildIfStmt(
7299       S->getIfLoc(), S->isConstexpr(), S->getLParenLoc(), Cond,
7300       S->getRParenLoc(), Init.get(), Then.get(), S->getElseLoc(), Else.get());
7301 }
7302 
7303 template<typename Derived>
7304 StmtResult
TransformSwitchStmt(SwitchStmt * S)7305 TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) {
7306   // Transform the initialization statement
7307   StmtResult Init = getDerived().TransformStmt(S->getInit());
7308   if (Init.isInvalid())
7309     return StmtError();
7310 
7311   // Transform the condition.
7312   Sema::ConditionResult Cond = getDerived().TransformCondition(
7313       S->getSwitchLoc(), S->getConditionVariable(), S->getCond(),
7314       Sema::ConditionKind::Switch);
7315   if (Cond.isInvalid())
7316     return StmtError();
7317 
7318   // Rebuild the switch statement.
7319   StmtResult Switch =
7320       getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), S->getLParenLoc(),
7321                                           Init.get(), Cond, S->getRParenLoc());
7322   if (Switch.isInvalid())
7323     return StmtError();
7324 
7325   // Transform the body of the switch statement.
7326   StmtResult Body = getDerived().TransformStmt(S->getBody());
7327   if (Body.isInvalid())
7328     return StmtError();
7329 
7330   // Complete the switch statement.
7331   return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(),
7332                                             Body.get());
7333 }
7334 
7335 template<typename Derived>
7336 StmtResult
TransformWhileStmt(WhileStmt * S)7337 TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) {
7338   // Transform the condition
7339   Sema::ConditionResult Cond = getDerived().TransformCondition(
7340       S->getWhileLoc(), S->getConditionVariable(), S->getCond(),
7341       Sema::ConditionKind::Boolean);
7342   if (Cond.isInvalid())
7343     return StmtError();
7344 
7345   // Transform the body
7346   StmtResult Body = getDerived().TransformStmt(S->getBody());
7347   if (Body.isInvalid())
7348     return StmtError();
7349 
7350   if (!getDerived().AlwaysRebuild() &&
7351       Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) &&
7352       Body.get() == S->getBody())
7353     return Owned(S);
7354 
7355   return getDerived().RebuildWhileStmt(S->getWhileLoc(), S->getLParenLoc(),
7356                                        Cond, S->getRParenLoc(), Body.get());
7357 }
7358 
7359 template<typename Derived>
7360 StmtResult
TransformDoStmt(DoStmt * S)7361 TreeTransform<Derived>::TransformDoStmt(DoStmt *S) {
7362   // Transform the body
7363   StmtResult Body = getDerived().TransformStmt(S->getBody());
7364   if (Body.isInvalid())
7365     return StmtError();
7366 
7367   // Transform the condition
7368   ExprResult Cond = getDerived().TransformExpr(S->getCond());
7369   if (Cond.isInvalid())
7370     return StmtError();
7371 
7372   if (!getDerived().AlwaysRebuild() &&
7373       Cond.get() == S->getCond() &&
7374       Body.get() == S->getBody())
7375     return S;
7376 
7377   return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(),
7378                                     /*FIXME:*/S->getWhileLoc(), Cond.get(),
7379                                     S->getRParenLoc());
7380 }
7381 
7382 template<typename Derived>
7383 StmtResult
TransformForStmt(ForStmt * S)7384 TreeTransform<Derived>::TransformForStmt(ForStmt *S) {
7385   if (getSema().getLangOpts().OpenMP)
7386     getSema().startOpenMPLoop();
7387 
7388   // Transform the initialization statement
7389   StmtResult Init = getDerived().TransformStmt(S->getInit());
7390   if (Init.isInvalid())
7391     return StmtError();
7392 
7393   // In OpenMP loop region loop control variable must be captured and be
7394   // private. Perform analysis of first part (if any).
7395   if (getSema().getLangOpts().OpenMP && Init.isUsable())
7396     getSema().ActOnOpenMPLoopInitialization(S->getForLoc(), Init.get());
7397 
7398   // Transform the condition
7399   Sema::ConditionResult Cond = getDerived().TransformCondition(
7400       S->getForLoc(), S->getConditionVariable(), S->getCond(),
7401       Sema::ConditionKind::Boolean);
7402   if (Cond.isInvalid())
7403     return StmtError();
7404 
7405   // Transform the increment
7406   ExprResult Inc = getDerived().TransformExpr(S->getInc());
7407   if (Inc.isInvalid())
7408     return StmtError();
7409 
7410   Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get()));
7411   if (S->getInc() && !FullInc.get())
7412     return StmtError();
7413 
7414   // Transform the body
7415   StmtResult Body = getDerived().TransformStmt(S->getBody());
7416   if (Body.isInvalid())
7417     return StmtError();
7418 
7419   if (!getDerived().AlwaysRebuild() &&
7420       Init.get() == S->getInit() &&
7421       Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) &&
7422       Inc.get() == S->getInc() &&
7423       Body.get() == S->getBody())
7424     return S;
7425 
7426   return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(),
7427                                      Init.get(), Cond, FullInc,
7428                                      S->getRParenLoc(), Body.get());
7429 }
7430 
7431 template<typename Derived>
7432 StmtResult
TransformGotoStmt(GotoStmt * S)7433 TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) {
7434   Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(),
7435                                         S->getLabel());
7436   if (!LD)
7437     return StmtError();
7438 
7439   // Goto statements must always be rebuilt, to resolve the label.
7440   return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(),
7441                                       cast<LabelDecl>(LD));
7442 }
7443 
7444 template<typename Derived>
7445 StmtResult
TransformIndirectGotoStmt(IndirectGotoStmt * S)7446 TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) {
7447   ExprResult Target = getDerived().TransformExpr(S->getTarget());
7448   if (Target.isInvalid())
7449     return StmtError();
7450   Target = SemaRef.MaybeCreateExprWithCleanups(Target.get());
7451 
7452   if (!getDerived().AlwaysRebuild() &&
7453       Target.get() == S->getTarget())
7454     return S;
7455 
7456   return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(),
7457                                               Target.get());
7458 }
7459 
7460 template<typename Derived>
7461 StmtResult
TransformContinueStmt(ContinueStmt * S)7462 TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) {
7463   return S;
7464 }
7465 
7466 template<typename Derived>
7467 StmtResult
TransformBreakStmt(BreakStmt * S)7468 TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) {
7469   return S;
7470 }
7471 
7472 template<typename Derived>
7473 StmtResult
TransformReturnStmt(ReturnStmt * S)7474 TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) {
7475   ExprResult Result = getDerived().TransformInitializer(S->getRetValue(),
7476                                                         /*NotCopyInit*/false);
7477   if (Result.isInvalid())
7478     return StmtError();
7479 
7480   // FIXME: We always rebuild the return statement because there is no way
7481   // to tell whether the return type of the function has changed.
7482   return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get());
7483 }
7484 
7485 template<typename Derived>
7486 StmtResult
TransformDeclStmt(DeclStmt * S)7487 TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) {
7488   bool DeclChanged = false;
7489   SmallVector<Decl *, 4> Decls;
7490   for (auto *D : S->decls()) {
7491     Decl *Transformed = getDerived().TransformDefinition(D->getLocation(), D);
7492     if (!Transformed)
7493       return StmtError();
7494 
7495     if (Transformed != D)
7496       DeclChanged = true;
7497 
7498     Decls.push_back(Transformed);
7499   }
7500 
7501   if (!getDerived().AlwaysRebuild() && !DeclChanged)
7502     return S;
7503 
7504   return getDerived().RebuildDeclStmt(Decls, S->getBeginLoc(), S->getEndLoc());
7505 }
7506 
7507 template<typename Derived>
7508 StmtResult
TransformGCCAsmStmt(GCCAsmStmt * S)7509 TreeTransform<Derived>::TransformGCCAsmStmt(GCCAsmStmt *S) {
7510 
7511   SmallVector<Expr*, 8> Constraints;
7512   SmallVector<Expr*, 8> Exprs;
7513   SmallVector<IdentifierInfo *, 4> Names;
7514 
7515   ExprResult AsmString;
7516   SmallVector<Expr*, 8> Clobbers;
7517 
7518   bool ExprsChanged = false;
7519 
7520   // Go through the outputs.
7521   for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) {
7522     Names.push_back(S->getOutputIdentifier(I));
7523 
7524     // No need to transform the constraint literal.
7525     Constraints.push_back(S->getOutputConstraintLiteral(I));
7526 
7527     // Transform the output expr.
7528     Expr *OutputExpr = S->getOutputExpr(I);
7529     ExprResult Result = getDerived().TransformExpr(OutputExpr);
7530     if (Result.isInvalid())
7531       return StmtError();
7532 
7533     ExprsChanged |= Result.get() != OutputExpr;
7534 
7535     Exprs.push_back(Result.get());
7536   }
7537 
7538   // Go through the inputs.
7539   for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) {
7540     Names.push_back(S->getInputIdentifier(I));
7541 
7542     // No need to transform the constraint literal.
7543     Constraints.push_back(S->getInputConstraintLiteral(I));
7544 
7545     // Transform the input expr.
7546     Expr *InputExpr = S->getInputExpr(I);
7547     ExprResult Result = getDerived().TransformExpr(InputExpr);
7548     if (Result.isInvalid())
7549       return StmtError();
7550 
7551     ExprsChanged |= Result.get() != InputExpr;
7552 
7553     Exprs.push_back(Result.get());
7554   }
7555 
7556   // Go through the Labels.
7557   for (unsigned I = 0, E = S->getNumLabels(); I != E; ++I) {
7558     Names.push_back(S->getLabelIdentifier(I));
7559 
7560     ExprResult Result = getDerived().TransformExpr(S->getLabelExpr(I));
7561     if (Result.isInvalid())
7562       return StmtError();
7563     ExprsChanged |= Result.get() != S->getLabelExpr(I);
7564     Exprs.push_back(Result.get());
7565   }
7566   if (!getDerived().AlwaysRebuild() && !ExprsChanged)
7567     return S;
7568 
7569   // Go through the clobbers.
7570   for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I)
7571     Clobbers.push_back(S->getClobberStringLiteral(I));
7572 
7573   // No need to transform the asm string literal.
7574   AsmString = S->getAsmString();
7575   return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(),
7576                                         S->isVolatile(), S->getNumOutputs(),
7577                                         S->getNumInputs(), Names.data(),
7578                                         Constraints, Exprs, AsmString.get(),
7579                                         Clobbers, S->getNumLabels(),
7580                                         S->getRParenLoc());
7581 }
7582 
7583 template<typename Derived>
7584 StmtResult
TransformMSAsmStmt(MSAsmStmt * S)7585 TreeTransform<Derived>::TransformMSAsmStmt(MSAsmStmt *S) {
7586   ArrayRef<Token> AsmToks =
7587     llvm::makeArrayRef(S->getAsmToks(), S->getNumAsmToks());
7588 
7589   bool HadError = false, HadChange = false;
7590 
7591   ArrayRef<Expr*> SrcExprs = S->getAllExprs();
7592   SmallVector<Expr*, 8> TransformedExprs;
7593   TransformedExprs.reserve(SrcExprs.size());
7594   for (unsigned i = 0, e = SrcExprs.size(); i != e; ++i) {
7595     ExprResult Result = getDerived().TransformExpr(SrcExprs[i]);
7596     if (!Result.isUsable()) {
7597       HadError = true;
7598     } else {
7599       HadChange |= (Result.get() != SrcExprs[i]);
7600       TransformedExprs.push_back(Result.get());
7601     }
7602   }
7603 
7604   if (HadError) return StmtError();
7605   if (!HadChange && !getDerived().AlwaysRebuild())
7606     return Owned(S);
7607 
7608   return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(),
7609                                        AsmToks, S->getAsmString(),
7610                                        S->getNumOutputs(), S->getNumInputs(),
7611                                        S->getAllConstraints(), S->getClobbers(),
7612                                        TransformedExprs, S->getEndLoc());
7613 }
7614 
7615 // C++ Coroutines TS
7616 
7617 template<typename Derived>
7618 StmtResult
TransformCoroutineBodyStmt(CoroutineBodyStmt * S)7619 TreeTransform<Derived>::TransformCoroutineBodyStmt(CoroutineBodyStmt *S) {
7620   auto *ScopeInfo = SemaRef.getCurFunction();
7621   auto *FD = cast<FunctionDecl>(SemaRef.CurContext);
7622   assert(FD && ScopeInfo && !ScopeInfo->CoroutinePromise &&
7623          ScopeInfo->NeedsCoroutineSuspends &&
7624          ScopeInfo->CoroutineSuspends.first == nullptr &&
7625          ScopeInfo->CoroutineSuspends.second == nullptr &&
7626          "expected clean scope info");
7627 
7628   // Set that we have (possibly-invalid) suspend points before we do anything
7629   // that may fail.
7630   ScopeInfo->setNeedsCoroutineSuspends(false);
7631 
7632   // We re-build the coroutine promise object (and the coroutine parameters its
7633   // type and constructor depend on) based on the types used in our current
7634   // function. We must do so, and set it on the current FunctionScopeInfo,
7635   // before attempting to transform the other parts of the coroutine body
7636   // statement, such as the implicit suspend statements (because those
7637   // statements reference the FunctionScopeInfo::CoroutinePromise).
7638   if (!SemaRef.buildCoroutineParameterMoves(FD->getLocation()))
7639     return StmtError();
7640   auto *Promise = SemaRef.buildCoroutinePromise(FD->getLocation());
7641   if (!Promise)
7642     return StmtError();
7643   getDerived().transformedLocalDecl(S->getPromiseDecl(), {Promise});
7644   ScopeInfo->CoroutinePromise = Promise;
7645 
7646   // Transform the implicit coroutine statements constructed using dependent
7647   // types during the previous parse: initial and final suspensions, the return
7648   // object, and others. We also transform the coroutine function's body.
7649   StmtResult InitSuspend = getDerived().TransformStmt(S->getInitSuspendStmt());
7650   if (InitSuspend.isInvalid())
7651     return StmtError();
7652   StmtResult FinalSuspend =
7653       getDerived().TransformStmt(S->getFinalSuspendStmt());
7654   if (FinalSuspend.isInvalid() ||
7655       !SemaRef.checkFinalSuspendNoThrow(FinalSuspend.get()))
7656     return StmtError();
7657   ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
7658   assert(isa<Expr>(InitSuspend.get()) && isa<Expr>(FinalSuspend.get()));
7659 
7660   StmtResult BodyRes = getDerived().TransformStmt(S->getBody());
7661   if (BodyRes.isInvalid())
7662     return StmtError();
7663 
7664   CoroutineStmtBuilder Builder(SemaRef, *FD, *ScopeInfo, BodyRes.get());
7665   if (Builder.isInvalid())
7666     return StmtError();
7667 
7668   Expr *ReturnObject = S->getReturnValueInit();
7669   assert(ReturnObject && "the return object is expected to be valid");
7670   ExprResult Res = getDerived().TransformInitializer(ReturnObject,
7671                                                      /*NoCopyInit*/ false);
7672   if (Res.isInvalid())
7673     return StmtError();
7674   Builder.ReturnValue = Res.get();
7675 
7676   // If during the previous parse the coroutine still had a dependent promise
7677   // statement, we may need to build some implicit coroutine statements
7678   // (such as exception and fallthrough handlers) for the first time.
7679   if (S->hasDependentPromiseType()) {
7680     // We can only build these statements, however, if the current promise type
7681     // is not dependent.
7682     if (!Promise->getType()->isDependentType()) {
7683       assert(!S->getFallthroughHandler() && !S->getExceptionHandler() &&
7684              !S->getReturnStmtOnAllocFailure() && !S->getDeallocate() &&
7685              "these nodes should not have been built yet");
7686       if (!Builder.buildDependentStatements())
7687         return StmtError();
7688     }
7689   } else {
7690     if (auto *OnFallthrough = S->getFallthroughHandler()) {
7691       StmtResult Res = getDerived().TransformStmt(OnFallthrough);
7692       if (Res.isInvalid())
7693         return StmtError();
7694       Builder.OnFallthrough = Res.get();
7695     }
7696 
7697     if (auto *OnException = S->getExceptionHandler()) {
7698       StmtResult Res = getDerived().TransformStmt(OnException);
7699       if (Res.isInvalid())
7700         return StmtError();
7701       Builder.OnException = Res.get();
7702     }
7703 
7704     if (auto *OnAllocFailure = S->getReturnStmtOnAllocFailure()) {
7705       StmtResult Res = getDerived().TransformStmt(OnAllocFailure);
7706       if (Res.isInvalid())
7707         return StmtError();
7708       Builder.ReturnStmtOnAllocFailure = Res.get();
7709     }
7710 
7711     // Transform any additional statements we may have already built
7712     assert(S->getAllocate() && S->getDeallocate() &&
7713            "allocation and deallocation calls must already be built");
7714     ExprResult AllocRes = getDerived().TransformExpr(S->getAllocate());
7715     if (AllocRes.isInvalid())
7716       return StmtError();
7717     Builder.Allocate = AllocRes.get();
7718 
7719     ExprResult DeallocRes = getDerived().TransformExpr(S->getDeallocate());
7720     if (DeallocRes.isInvalid())
7721       return StmtError();
7722     Builder.Deallocate = DeallocRes.get();
7723 
7724     assert(S->getResultDecl() && "ResultDecl must already be built");
7725     StmtResult ResultDecl = getDerived().TransformStmt(S->getResultDecl());
7726     if (ResultDecl.isInvalid())
7727       return StmtError();
7728     Builder.ResultDecl = ResultDecl.get();
7729 
7730     if (auto *ReturnStmt = S->getReturnStmt()) {
7731       StmtResult Res = getDerived().TransformStmt(ReturnStmt);
7732       if (Res.isInvalid())
7733         return StmtError();
7734       Builder.ReturnStmt = Res.get();
7735     }
7736   }
7737 
7738   return getDerived().RebuildCoroutineBodyStmt(Builder);
7739 }
7740 
7741 template<typename Derived>
7742 StmtResult
TransformCoreturnStmt(CoreturnStmt * S)7743 TreeTransform<Derived>::TransformCoreturnStmt(CoreturnStmt *S) {
7744   ExprResult Result = getDerived().TransformInitializer(S->getOperand(),
7745                                                         /*NotCopyInit*/false);
7746   if (Result.isInvalid())
7747     return StmtError();
7748 
7749   // Always rebuild; we don't know if this needs to be injected into a new
7750   // context or if the promise type has changed.
7751   return getDerived().RebuildCoreturnStmt(S->getKeywordLoc(), Result.get(),
7752                                           S->isImplicit());
7753 }
7754 
7755 template<typename Derived>
7756 ExprResult
TransformCoawaitExpr(CoawaitExpr * E)7757 TreeTransform<Derived>::TransformCoawaitExpr(CoawaitExpr *E) {
7758   ExprResult Result = getDerived().TransformInitializer(E->getOperand(),
7759                                                         /*NotCopyInit*/false);
7760   if (Result.isInvalid())
7761     return ExprError();
7762 
7763   // Always rebuild; we don't know if this needs to be injected into a new
7764   // context or if the promise type has changed.
7765   return getDerived().RebuildCoawaitExpr(E->getKeywordLoc(), Result.get(),
7766                                          E->isImplicit());
7767 }
7768 
7769 template <typename Derived>
7770 ExprResult
TransformDependentCoawaitExpr(DependentCoawaitExpr * E)7771 TreeTransform<Derived>::TransformDependentCoawaitExpr(DependentCoawaitExpr *E) {
7772   ExprResult OperandResult = getDerived().TransformInitializer(E->getOperand(),
7773                                                         /*NotCopyInit*/ false);
7774   if (OperandResult.isInvalid())
7775     return ExprError();
7776 
7777   ExprResult LookupResult = getDerived().TransformUnresolvedLookupExpr(
7778           E->getOperatorCoawaitLookup());
7779 
7780   if (LookupResult.isInvalid())
7781     return ExprError();
7782 
7783   // Always rebuild; we don't know if this needs to be injected into a new
7784   // context or if the promise type has changed.
7785   return getDerived().RebuildDependentCoawaitExpr(
7786       E->getKeywordLoc(), OperandResult.get(),
7787       cast<UnresolvedLookupExpr>(LookupResult.get()));
7788 }
7789 
7790 template<typename Derived>
7791 ExprResult
TransformCoyieldExpr(CoyieldExpr * E)7792 TreeTransform<Derived>::TransformCoyieldExpr(CoyieldExpr *E) {
7793   ExprResult Result = getDerived().TransformInitializer(E->getOperand(),
7794                                                         /*NotCopyInit*/false);
7795   if (Result.isInvalid())
7796     return ExprError();
7797 
7798   // Always rebuild; we don't know if this needs to be injected into a new
7799   // context or if the promise type has changed.
7800   return getDerived().RebuildCoyieldExpr(E->getKeywordLoc(), Result.get());
7801 }
7802 
7803 // Objective-C Statements.
7804 
7805 template<typename Derived>
7806 StmtResult
TransformObjCAtTryStmt(ObjCAtTryStmt * S)7807 TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) {
7808   // Transform the body of the @try.
7809   StmtResult TryBody = getDerived().TransformStmt(S->getTryBody());
7810   if (TryBody.isInvalid())
7811     return StmtError();
7812 
7813   // Transform the @catch statements (if present).
7814   bool AnyCatchChanged = false;
7815   SmallVector<Stmt*, 8> CatchStmts;
7816   for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
7817     StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I));
7818     if (Catch.isInvalid())
7819       return StmtError();
7820     if (Catch.get() != S->getCatchStmt(I))
7821       AnyCatchChanged = true;
7822     CatchStmts.push_back(Catch.get());
7823   }
7824 
7825   // Transform the @finally statement (if present).
7826   StmtResult Finally;
7827   if (S->getFinallyStmt()) {
7828     Finally = getDerived().TransformStmt(S->getFinallyStmt());
7829     if (Finally.isInvalid())
7830       return StmtError();
7831   }
7832 
7833   // If nothing changed, just retain this statement.
7834   if (!getDerived().AlwaysRebuild() &&
7835       TryBody.get() == S->getTryBody() &&
7836       !AnyCatchChanged &&
7837       Finally.get() == S->getFinallyStmt())
7838     return S;
7839 
7840   // Build a new statement.
7841   return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(),
7842                                            CatchStmts, Finally.get());
7843 }
7844 
7845 template<typename Derived>
7846 StmtResult
TransformObjCAtCatchStmt(ObjCAtCatchStmt * S)7847 TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) {
7848   // Transform the @catch parameter, if there is one.
7849   VarDecl *Var = nullptr;
7850   if (VarDecl *FromVar = S->getCatchParamDecl()) {
7851     TypeSourceInfo *TSInfo = nullptr;
7852     if (FromVar->getTypeSourceInfo()) {
7853       TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo());
7854       if (!TSInfo)
7855         return StmtError();
7856     }
7857 
7858     QualType T;
7859     if (TSInfo)
7860       T = TSInfo->getType();
7861     else {
7862       T = getDerived().TransformType(FromVar->getType());
7863       if (T.isNull())
7864         return StmtError();
7865     }
7866 
7867     Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T);
7868     if (!Var)
7869       return StmtError();
7870   }
7871 
7872   StmtResult Body = getDerived().TransformStmt(S->getCatchBody());
7873   if (Body.isInvalid())
7874     return StmtError();
7875 
7876   return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(),
7877                                              S->getRParenLoc(),
7878                                              Var, Body.get());
7879 }
7880 
7881 template<typename Derived>
7882 StmtResult
TransformObjCAtFinallyStmt(ObjCAtFinallyStmt * S)7883 TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
7884   // Transform the body.
7885   StmtResult Body = getDerived().TransformStmt(S->getFinallyBody());
7886   if (Body.isInvalid())
7887     return StmtError();
7888 
7889   // If nothing changed, just retain this statement.
7890   if (!getDerived().AlwaysRebuild() &&
7891       Body.get() == S->getFinallyBody())
7892     return S;
7893 
7894   // Build a new statement.
7895   return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(),
7896                                                Body.get());
7897 }
7898 
7899 template<typename Derived>
7900 StmtResult
TransformObjCAtThrowStmt(ObjCAtThrowStmt * S)7901 TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) {
7902   ExprResult Operand;
7903   if (S->getThrowExpr()) {
7904     Operand = getDerived().TransformExpr(S->getThrowExpr());
7905     if (Operand.isInvalid())
7906       return StmtError();
7907   }
7908 
7909   if (!getDerived().AlwaysRebuild() &&
7910       Operand.get() == S->getThrowExpr())
7911     return S;
7912 
7913   return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get());
7914 }
7915 
7916 template<typename Derived>
7917 StmtResult
TransformObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt * S)7918 TreeTransform<Derived>::TransformObjCAtSynchronizedStmt(
7919                                                   ObjCAtSynchronizedStmt *S) {
7920   // Transform the object we are locking.
7921   ExprResult Object = getDerived().TransformExpr(S->getSynchExpr());
7922   if (Object.isInvalid())
7923     return StmtError();
7924   Object =
7925     getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(),
7926                                                   Object.get());
7927   if (Object.isInvalid())
7928     return StmtError();
7929 
7930   // Transform the body.
7931   StmtResult Body = getDerived().TransformStmt(S->getSynchBody());
7932   if (Body.isInvalid())
7933     return StmtError();
7934 
7935   // If nothing change, just retain the current statement.
7936   if (!getDerived().AlwaysRebuild() &&
7937       Object.get() == S->getSynchExpr() &&
7938       Body.get() == S->getSynchBody())
7939     return S;
7940 
7941   // Build a new statement.
7942   return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(),
7943                                                     Object.get(), Body.get());
7944 }
7945 
7946 template<typename Derived>
7947 StmtResult
TransformObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt * S)7948 TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt(
7949                                               ObjCAutoreleasePoolStmt *S) {
7950   // Transform the body.
7951   StmtResult Body = getDerived().TransformStmt(S->getSubStmt());
7952   if (Body.isInvalid())
7953     return StmtError();
7954 
7955   // If nothing changed, just retain this statement.
7956   if (!getDerived().AlwaysRebuild() &&
7957       Body.get() == S->getSubStmt())
7958     return S;
7959 
7960   // Build a new statement.
7961   return getDerived().RebuildObjCAutoreleasePoolStmt(
7962                         S->getAtLoc(), Body.get());
7963 }
7964 
7965 template<typename Derived>
7966 StmtResult
TransformObjCForCollectionStmt(ObjCForCollectionStmt * S)7967 TreeTransform<Derived>::TransformObjCForCollectionStmt(
7968                                                   ObjCForCollectionStmt *S) {
7969   // Transform the element statement.
7970   StmtResult Element =
7971       getDerived().TransformStmt(S->getElement(), SDK_NotDiscarded);
7972   if (Element.isInvalid())
7973     return StmtError();
7974 
7975   // Transform the collection expression.
7976   ExprResult Collection = getDerived().TransformExpr(S->getCollection());
7977   if (Collection.isInvalid())
7978     return StmtError();
7979 
7980   // Transform the body.
7981   StmtResult Body = getDerived().TransformStmt(S->getBody());
7982   if (Body.isInvalid())
7983     return StmtError();
7984 
7985   // If nothing changed, just retain this statement.
7986   if (!getDerived().AlwaysRebuild() &&
7987       Element.get() == S->getElement() &&
7988       Collection.get() == S->getCollection() &&
7989       Body.get() == S->getBody())
7990     return S;
7991 
7992   // Build a new statement.
7993   return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(),
7994                                                    Element.get(),
7995                                                    Collection.get(),
7996                                                    S->getRParenLoc(),
7997                                                    Body.get());
7998 }
7999 
8000 template <typename Derived>
TransformCXXCatchStmt(CXXCatchStmt * S)8001 StmtResult TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) {
8002   // Transform the exception declaration, if any.
8003   VarDecl *Var = nullptr;
8004   if (VarDecl *ExceptionDecl = S->getExceptionDecl()) {
8005     TypeSourceInfo *T =
8006         getDerived().TransformType(ExceptionDecl->getTypeSourceInfo());
8007     if (!T)
8008       return StmtError();
8009 
8010     Var = getDerived().RebuildExceptionDecl(
8011         ExceptionDecl, T, ExceptionDecl->getInnerLocStart(),
8012         ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier());
8013     if (!Var || Var->isInvalidDecl())
8014       return StmtError();
8015   }
8016 
8017   // Transform the actual exception handler.
8018   StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock());
8019   if (Handler.isInvalid())
8020     return StmtError();
8021 
8022   if (!getDerived().AlwaysRebuild() && !Var &&
8023       Handler.get() == S->getHandlerBlock())
8024     return S;
8025 
8026   return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), Var, Handler.get());
8027 }
8028 
8029 template <typename Derived>
TransformCXXTryStmt(CXXTryStmt * S)8030 StmtResult TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) {
8031   // Transform the try block itself.
8032   StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
8033   if (TryBlock.isInvalid())
8034     return StmtError();
8035 
8036   // Transform the handlers.
8037   bool HandlerChanged = false;
8038   SmallVector<Stmt *, 8> Handlers;
8039   for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) {
8040     StmtResult Handler = getDerived().TransformCXXCatchStmt(S->getHandler(I));
8041     if (Handler.isInvalid())
8042       return StmtError();
8043 
8044     HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I);
8045     Handlers.push_back(Handler.getAs<Stmt>());
8046   }
8047 
8048   if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
8049       !HandlerChanged)
8050     return S;
8051 
8052   return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(),
8053                                         Handlers);
8054 }
8055 
8056 template<typename Derived>
8057 StmtResult
TransformCXXForRangeStmt(CXXForRangeStmt * S)8058 TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) {
8059   StmtResult Init =
8060       S->getInit() ? getDerived().TransformStmt(S->getInit()) : StmtResult();
8061   if (Init.isInvalid())
8062     return StmtError();
8063 
8064   StmtResult Range = getDerived().TransformStmt(S->getRangeStmt());
8065   if (Range.isInvalid())
8066     return StmtError();
8067 
8068   StmtResult Begin = getDerived().TransformStmt(S->getBeginStmt());
8069   if (Begin.isInvalid())
8070     return StmtError();
8071   StmtResult End = getDerived().TransformStmt(S->getEndStmt());
8072   if (End.isInvalid())
8073     return StmtError();
8074 
8075   ExprResult Cond = getDerived().TransformExpr(S->getCond());
8076   if (Cond.isInvalid())
8077     return StmtError();
8078   if (Cond.get())
8079     Cond = SemaRef.CheckBooleanCondition(S->getColonLoc(), Cond.get());
8080   if (Cond.isInvalid())
8081     return StmtError();
8082   if (Cond.get())
8083     Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.get());
8084 
8085   ExprResult Inc = getDerived().TransformExpr(S->getInc());
8086   if (Inc.isInvalid())
8087     return StmtError();
8088   if (Inc.get())
8089     Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.get());
8090 
8091   StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt());
8092   if (LoopVar.isInvalid())
8093     return StmtError();
8094 
8095   StmtResult NewStmt = S;
8096   if (getDerived().AlwaysRebuild() ||
8097       Init.get() != S->getInit() ||
8098       Range.get() != S->getRangeStmt() ||
8099       Begin.get() != S->getBeginStmt() ||
8100       End.get() != S->getEndStmt() ||
8101       Cond.get() != S->getCond() ||
8102       Inc.get() != S->getInc() ||
8103       LoopVar.get() != S->getLoopVarStmt()) {
8104     NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
8105                                                   S->getCoawaitLoc(), Init.get(),
8106                                                   S->getColonLoc(), Range.get(),
8107                                                   Begin.get(), End.get(),
8108                                                   Cond.get(),
8109                                                   Inc.get(), LoopVar.get(),
8110                                                   S->getRParenLoc());
8111     if (NewStmt.isInvalid() && LoopVar.get() != S->getLoopVarStmt()) {
8112       // Might not have attached any initializer to the loop variable.
8113       getSema().ActOnInitializerError(
8114           cast<DeclStmt>(LoopVar.get())->getSingleDecl());
8115       return StmtError();
8116     }
8117   }
8118 
8119   StmtResult Body = getDerived().TransformStmt(S->getBody());
8120   if (Body.isInvalid())
8121     return StmtError();
8122 
8123   // Body has changed but we didn't rebuild the for-range statement. Rebuild
8124   // it now so we have a new statement to attach the body to.
8125   if (Body.get() != S->getBody() && NewStmt.get() == S) {
8126     NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
8127                                                   S->getCoawaitLoc(), Init.get(),
8128                                                   S->getColonLoc(), Range.get(),
8129                                                   Begin.get(), End.get(),
8130                                                   Cond.get(),
8131                                                   Inc.get(), LoopVar.get(),
8132                                                   S->getRParenLoc());
8133     if (NewStmt.isInvalid())
8134       return StmtError();
8135   }
8136 
8137   if (NewStmt.get() == S)
8138     return S;
8139 
8140   return FinishCXXForRangeStmt(NewStmt.get(), Body.get());
8141 }
8142 
8143 template<typename Derived>
8144 StmtResult
TransformMSDependentExistsStmt(MSDependentExistsStmt * S)8145 TreeTransform<Derived>::TransformMSDependentExistsStmt(
8146                                                     MSDependentExistsStmt *S) {
8147   // Transform the nested-name-specifier, if any.
8148   NestedNameSpecifierLoc QualifierLoc;
8149   if (S->getQualifierLoc()) {
8150     QualifierLoc
8151       = getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc());
8152     if (!QualifierLoc)
8153       return StmtError();
8154   }
8155 
8156   // Transform the declaration name.
8157   DeclarationNameInfo NameInfo = S->getNameInfo();
8158   if (NameInfo.getName()) {
8159     NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
8160     if (!NameInfo.getName())
8161       return StmtError();
8162   }
8163 
8164   // Check whether anything changed.
8165   if (!getDerived().AlwaysRebuild() &&
8166       QualifierLoc == S->getQualifierLoc() &&
8167       NameInfo.getName() == S->getNameInfo().getName())
8168     return S;
8169 
8170   // Determine whether this name exists, if we can.
8171   CXXScopeSpec SS;
8172   SS.Adopt(QualifierLoc);
8173   bool Dependent = false;
8174   switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/nullptr, SS, NameInfo)) {
8175   case Sema::IER_Exists:
8176     if (S->isIfExists())
8177       break;
8178 
8179     return new (getSema().Context) NullStmt(S->getKeywordLoc());
8180 
8181   case Sema::IER_DoesNotExist:
8182     if (S->isIfNotExists())
8183       break;
8184 
8185     return new (getSema().Context) NullStmt(S->getKeywordLoc());
8186 
8187   case Sema::IER_Dependent:
8188     Dependent = true;
8189     break;
8190 
8191   case Sema::IER_Error:
8192     return StmtError();
8193   }
8194 
8195   // We need to continue with the instantiation, so do so now.
8196   StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt());
8197   if (SubStmt.isInvalid())
8198     return StmtError();
8199 
8200   // If we have resolved the name, just transform to the substatement.
8201   if (!Dependent)
8202     return SubStmt;
8203 
8204   // The name is still dependent, so build a dependent expression again.
8205   return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(),
8206                                                    S->isIfExists(),
8207                                                    QualifierLoc,
8208                                                    NameInfo,
8209                                                    SubStmt.get());
8210 }
8211 
8212 template<typename Derived>
8213 ExprResult
TransformMSPropertyRefExpr(MSPropertyRefExpr * E)8214 TreeTransform<Derived>::TransformMSPropertyRefExpr(MSPropertyRefExpr *E) {
8215   NestedNameSpecifierLoc QualifierLoc;
8216   if (E->getQualifierLoc()) {
8217     QualifierLoc
8218     = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
8219     if (!QualifierLoc)
8220       return ExprError();
8221   }
8222 
8223   MSPropertyDecl *PD = cast_or_null<MSPropertyDecl>(
8224     getDerived().TransformDecl(E->getMemberLoc(), E->getPropertyDecl()));
8225   if (!PD)
8226     return ExprError();
8227 
8228   ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
8229   if (Base.isInvalid())
8230     return ExprError();
8231 
8232   return new (SemaRef.getASTContext())
8233       MSPropertyRefExpr(Base.get(), PD, E->isArrow(),
8234                         SemaRef.getASTContext().PseudoObjectTy, VK_LValue,
8235                         QualifierLoc, E->getMemberLoc());
8236 }
8237 
8238 template <typename Derived>
TransformMSPropertySubscriptExpr(MSPropertySubscriptExpr * E)8239 ExprResult TreeTransform<Derived>::TransformMSPropertySubscriptExpr(
8240     MSPropertySubscriptExpr *E) {
8241   auto BaseRes = getDerived().TransformExpr(E->getBase());
8242   if (BaseRes.isInvalid())
8243     return ExprError();
8244   auto IdxRes = getDerived().TransformExpr(E->getIdx());
8245   if (IdxRes.isInvalid())
8246     return ExprError();
8247 
8248   if (!getDerived().AlwaysRebuild() &&
8249       BaseRes.get() == E->getBase() &&
8250       IdxRes.get() == E->getIdx())
8251     return E;
8252 
8253   return getDerived().RebuildArraySubscriptExpr(
8254       BaseRes.get(), SourceLocation(), IdxRes.get(), E->getRBracketLoc());
8255 }
8256 
8257 template <typename Derived>
TransformSEHTryStmt(SEHTryStmt * S)8258 StmtResult TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) {
8259   StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
8260   if (TryBlock.isInvalid())
8261     return StmtError();
8262 
8263   StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler());
8264   if (Handler.isInvalid())
8265     return StmtError();
8266 
8267   if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
8268       Handler.get() == S->getHandler())
8269     return S;
8270 
8271   return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(), S->getTryLoc(),
8272                                         TryBlock.get(), Handler.get());
8273 }
8274 
8275 template <typename Derived>
TransformSEHFinallyStmt(SEHFinallyStmt * S)8276 StmtResult TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) {
8277   StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
8278   if (Block.isInvalid())
8279     return StmtError();
8280 
8281   return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(), Block.get());
8282 }
8283 
8284 template <typename Derived>
TransformSEHExceptStmt(SEHExceptStmt * S)8285 StmtResult TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) {
8286   ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr());
8287   if (FilterExpr.isInvalid())
8288     return StmtError();
8289 
8290   StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
8291   if (Block.isInvalid())
8292     return StmtError();
8293 
8294   return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(), FilterExpr.get(),
8295                                            Block.get());
8296 }
8297 
8298 template <typename Derived>
TransformSEHHandler(Stmt * Handler)8299 StmtResult TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) {
8300   if (isa<SEHFinallyStmt>(Handler))
8301     return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler));
8302   else
8303     return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler));
8304 }
8305 
8306 template<typename Derived>
8307 StmtResult
TransformSEHLeaveStmt(SEHLeaveStmt * S)8308 TreeTransform<Derived>::TransformSEHLeaveStmt(SEHLeaveStmt *S) {
8309   return S;
8310 }
8311 
8312 //===----------------------------------------------------------------------===//
8313 // OpenMP directive transformation
8314 //===----------------------------------------------------------------------===//
8315 template <typename Derived>
TransformOMPExecutableDirective(OMPExecutableDirective * D)8316 StmtResult TreeTransform<Derived>::TransformOMPExecutableDirective(
8317     OMPExecutableDirective *D) {
8318 
8319   // Transform the clauses
8320   llvm::SmallVector<OMPClause *, 16> TClauses;
8321   ArrayRef<OMPClause *> Clauses = D->clauses();
8322   TClauses.reserve(Clauses.size());
8323   for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
8324        I != E; ++I) {
8325     if (*I) {
8326       getDerived().getSema().StartOpenMPClause((*I)->getClauseKind());
8327       OMPClause *Clause = getDerived().TransformOMPClause(*I);
8328       getDerived().getSema().EndOpenMPClause();
8329       if (Clause)
8330         TClauses.push_back(Clause);
8331     } else {
8332       TClauses.push_back(nullptr);
8333     }
8334   }
8335   StmtResult AssociatedStmt;
8336   if (D->hasAssociatedStmt() && D->getAssociatedStmt()) {
8337     getDerived().getSema().ActOnOpenMPRegionStart(D->getDirectiveKind(),
8338                                                   /*CurScope=*/nullptr);
8339     StmtResult Body;
8340     {
8341       Sema::CompoundScopeRAII CompoundScope(getSema());
8342       Stmt *CS;
8343       if (D->getDirectiveKind() == OMPD_atomic ||
8344           D->getDirectiveKind() == OMPD_critical ||
8345           D->getDirectiveKind() == OMPD_section ||
8346           D->getDirectiveKind() == OMPD_master)
8347         CS = D->getAssociatedStmt();
8348       else
8349         CS = D->getInnermostCapturedStmt()->getCapturedStmt();
8350       Body = getDerived().TransformStmt(CS);
8351     }
8352     AssociatedStmt =
8353         getDerived().getSema().ActOnOpenMPRegionEnd(Body, TClauses);
8354     if (AssociatedStmt.isInvalid()) {
8355       return StmtError();
8356     }
8357   }
8358   if (TClauses.size() != Clauses.size()) {
8359     return StmtError();
8360   }
8361 
8362   // Transform directive name for 'omp critical' directive.
8363   DeclarationNameInfo DirName;
8364   if (D->getDirectiveKind() == OMPD_critical) {
8365     DirName = cast<OMPCriticalDirective>(D)->getDirectiveName();
8366     DirName = getDerived().TransformDeclarationNameInfo(DirName);
8367   }
8368   OpenMPDirectiveKind CancelRegion = OMPD_unknown;
8369   if (D->getDirectiveKind() == OMPD_cancellation_point) {
8370     CancelRegion = cast<OMPCancellationPointDirective>(D)->getCancelRegion();
8371   } else if (D->getDirectiveKind() == OMPD_cancel) {
8372     CancelRegion = cast<OMPCancelDirective>(D)->getCancelRegion();
8373   }
8374 
8375   return getDerived().RebuildOMPExecutableDirective(
8376       D->getDirectiveKind(), DirName, CancelRegion, TClauses,
8377       AssociatedStmt.get(), D->getBeginLoc(), D->getEndLoc());
8378 }
8379 
8380 template <typename Derived>
8381 StmtResult
TransformOMPParallelDirective(OMPParallelDirective * D)8382 TreeTransform<Derived>::TransformOMPParallelDirective(OMPParallelDirective *D) {
8383   DeclarationNameInfo DirName;
8384   getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel, DirName, nullptr,
8385                                              D->getBeginLoc());
8386   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8387   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8388   return Res;
8389 }
8390 
8391 template <typename Derived>
8392 StmtResult
TransformOMPSimdDirective(OMPSimdDirective * D)8393 TreeTransform<Derived>::TransformOMPSimdDirective(OMPSimdDirective *D) {
8394   DeclarationNameInfo DirName;
8395   getDerived().getSema().StartOpenMPDSABlock(OMPD_simd, DirName, nullptr,
8396                                              D->getBeginLoc());
8397   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8398   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8399   return Res;
8400 }
8401 
8402 template <typename Derived>
8403 StmtResult
TransformOMPForDirective(OMPForDirective * D)8404 TreeTransform<Derived>::TransformOMPForDirective(OMPForDirective *D) {
8405   DeclarationNameInfo DirName;
8406   getDerived().getSema().StartOpenMPDSABlock(OMPD_for, DirName, nullptr,
8407                                              D->getBeginLoc());
8408   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8409   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8410   return Res;
8411 }
8412 
8413 template <typename Derived>
8414 StmtResult
TransformOMPForSimdDirective(OMPForSimdDirective * D)8415 TreeTransform<Derived>::TransformOMPForSimdDirective(OMPForSimdDirective *D) {
8416   DeclarationNameInfo DirName;
8417   getDerived().getSema().StartOpenMPDSABlock(OMPD_for_simd, DirName, nullptr,
8418                                              D->getBeginLoc());
8419   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8420   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8421   return Res;
8422 }
8423 
8424 template <typename Derived>
8425 StmtResult
TransformOMPSectionsDirective(OMPSectionsDirective * D)8426 TreeTransform<Derived>::TransformOMPSectionsDirective(OMPSectionsDirective *D) {
8427   DeclarationNameInfo DirName;
8428   getDerived().getSema().StartOpenMPDSABlock(OMPD_sections, DirName, nullptr,
8429                                              D->getBeginLoc());
8430   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8431   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8432   return Res;
8433 }
8434 
8435 template <typename Derived>
8436 StmtResult
TransformOMPSectionDirective(OMPSectionDirective * D)8437 TreeTransform<Derived>::TransformOMPSectionDirective(OMPSectionDirective *D) {
8438   DeclarationNameInfo DirName;
8439   getDerived().getSema().StartOpenMPDSABlock(OMPD_section, DirName, nullptr,
8440                                              D->getBeginLoc());
8441   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8442   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8443   return Res;
8444 }
8445 
8446 template <typename Derived>
8447 StmtResult
TransformOMPSingleDirective(OMPSingleDirective * D)8448 TreeTransform<Derived>::TransformOMPSingleDirective(OMPSingleDirective *D) {
8449   DeclarationNameInfo DirName;
8450   getDerived().getSema().StartOpenMPDSABlock(OMPD_single, DirName, nullptr,
8451                                              D->getBeginLoc());
8452   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8453   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8454   return Res;
8455 }
8456 
8457 template <typename Derived>
8458 StmtResult
TransformOMPMasterDirective(OMPMasterDirective * D)8459 TreeTransform<Derived>::TransformOMPMasterDirective(OMPMasterDirective *D) {
8460   DeclarationNameInfo DirName;
8461   getDerived().getSema().StartOpenMPDSABlock(OMPD_master, DirName, nullptr,
8462                                              D->getBeginLoc());
8463   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8464   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8465   return Res;
8466 }
8467 
8468 template <typename Derived>
8469 StmtResult
TransformOMPCriticalDirective(OMPCriticalDirective * D)8470 TreeTransform<Derived>::TransformOMPCriticalDirective(OMPCriticalDirective *D) {
8471   getDerived().getSema().StartOpenMPDSABlock(
8472       OMPD_critical, D->getDirectiveName(), nullptr, D->getBeginLoc());
8473   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8474   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8475   return Res;
8476 }
8477 
8478 template <typename Derived>
TransformOMPParallelForDirective(OMPParallelForDirective * D)8479 StmtResult TreeTransform<Derived>::TransformOMPParallelForDirective(
8480     OMPParallelForDirective *D) {
8481   DeclarationNameInfo DirName;
8482   getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_for, DirName,
8483                                              nullptr, D->getBeginLoc());
8484   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8485   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8486   return Res;
8487 }
8488 
8489 template <typename Derived>
TransformOMPParallelForSimdDirective(OMPParallelForSimdDirective * D)8490 StmtResult TreeTransform<Derived>::TransformOMPParallelForSimdDirective(
8491     OMPParallelForSimdDirective *D) {
8492   DeclarationNameInfo DirName;
8493   getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_for_simd, DirName,
8494                                              nullptr, D->getBeginLoc());
8495   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8496   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8497   return Res;
8498 }
8499 
8500 template <typename Derived>
TransformOMPParallelMasterDirective(OMPParallelMasterDirective * D)8501 StmtResult TreeTransform<Derived>::TransformOMPParallelMasterDirective(
8502     OMPParallelMasterDirective *D) {
8503   DeclarationNameInfo DirName;
8504   getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_master, DirName,
8505                                              nullptr, D->getBeginLoc());
8506   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8507   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8508   return Res;
8509 }
8510 
8511 template <typename Derived>
TransformOMPParallelSectionsDirective(OMPParallelSectionsDirective * D)8512 StmtResult TreeTransform<Derived>::TransformOMPParallelSectionsDirective(
8513     OMPParallelSectionsDirective *D) {
8514   DeclarationNameInfo DirName;
8515   getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_sections, DirName,
8516                                              nullptr, D->getBeginLoc());
8517   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8518   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8519   return Res;
8520 }
8521 
8522 template <typename Derived>
8523 StmtResult
TransformOMPTaskDirective(OMPTaskDirective * D)8524 TreeTransform<Derived>::TransformOMPTaskDirective(OMPTaskDirective *D) {
8525   DeclarationNameInfo DirName;
8526   getDerived().getSema().StartOpenMPDSABlock(OMPD_task, DirName, nullptr,
8527                                              D->getBeginLoc());
8528   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8529   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8530   return Res;
8531 }
8532 
8533 template <typename Derived>
TransformOMPTaskyieldDirective(OMPTaskyieldDirective * D)8534 StmtResult TreeTransform<Derived>::TransformOMPTaskyieldDirective(
8535     OMPTaskyieldDirective *D) {
8536   DeclarationNameInfo DirName;
8537   getDerived().getSema().StartOpenMPDSABlock(OMPD_taskyield, DirName, nullptr,
8538                                              D->getBeginLoc());
8539   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8540   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8541   return Res;
8542 }
8543 
8544 template <typename Derived>
8545 StmtResult
TransformOMPBarrierDirective(OMPBarrierDirective * D)8546 TreeTransform<Derived>::TransformOMPBarrierDirective(OMPBarrierDirective *D) {
8547   DeclarationNameInfo DirName;
8548   getDerived().getSema().StartOpenMPDSABlock(OMPD_barrier, DirName, nullptr,
8549                                              D->getBeginLoc());
8550   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8551   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8552   return Res;
8553 }
8554 
8555 template <typename Derived>
8556 StmtResult
TransformOMPTaskwaitDirective(OMPTaskwaitDirective * D)8557 TreeTransform<Derived>::TransformOMPTaskwaitDirective(OMPTaskwaitDirective *D) {
8558   DeclarationNameInfo DirName;
8559   getDerived().getSema().StartOpenMPDSABlock(OMPD_taskwait, DirName, nullptr,
8560                                              D->getBeginLoc());
8561   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8562   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8563   return Res;
8564 }
8565 
8566 template <typename Derived>
TransformOMPTaskgroupDirective(OMPTaskgroupDirective * D)8567 StmtResult TreeTransform<Derived>::TransformOMPTaskgroupDirective(
8568     OMPTaskgroupDirective *D) {
8569   DeclarationNameInfo DirName;
8570   getDerived().getSema().StartOpenMPDSABlock(OMPD_taskgroup, DirName, nullptr,
8571                                              D->getBeginLoc());
8572   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8573   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8574   return Res;
8575 }
8576 
8577 template <typename Derived>
8578 StmtResult
TransformOMPFlushDirective(OMPFlushDirective * D)8579 TreeTransform<Derived>::TransformOMPFlushDirective(OMPFlushDirective *D) {
8580   DeclarationNameInfo DirName;
8581   getDerived().getSema().StartOpenMPDSABlock(OMPD_flush, DirName, nullptr,
8582                                              D->getBeginLoc());
8583   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8584   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8585   return Res;
8586 }
8587 
8588 template <typename Derived>
8589 StmtResult
TransformOMPDepobjDirective(OMPDepobjDirective * D)8590 TreeTransform<Derived>::TransformOMPDepobjDirective(OMPDepobjDirective *D) {
8591   DeclarationNameInfo DirName;
8592   getDerived().getSema().StartOpenMPDSABlock(OMPD_depobj, DirName, nullptr,
8593                                              D->getBeginLoc());
8594   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8595   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8596   return Res;
8597 }
8598 
8599 template <typename Derived>
8600 StmtResult
TransformOMPScanDirective(OMPScanDirective * D)8601 TreeTransform<Derived>::TransformOMPScanDirective(OMPScanDirective *D) {
8602   DeclarationNameInfo DirName;
8603   getDerived().getSema().StartOpenMPDSABlock(OMPD_scan, DirName, nullptr,
8604                                              D->getBeginLoc());
8605   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8606   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8607   return Res;
8608 }
8609 
8610 template <typename Derived>
8611 StmtResult
TransformOMPOrderedDirective(OMPOrderedDirective * D)8612 TreeTransform<Derived>::TransformOMPOrderedDirective(OMPOrderedDirective *D) {
8613   DeclarationNameInfo DirName;
8614   getDerived().getSema().StartOpenMPDSABlock(OMPD_ordered, DirName, nullptr,
8615                                              D->getBeginLoc());
8616   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8617   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8618   return Res;
8619 }
8620 
8621 template <typename Derived>
8622 StmtResult
TransformOMPAtomicDirective(OMPAtomicDirective * D)8623 TreeTransform<Derived>::TransformOMPAtomicDirective(OMPAtomicDirective *D) {
8624   DeclarationNameInfo DirName;
8625   getDerived().getSema().StartOpenMPDSABlock(OMPD_atomic, DirName, nullptr,
8626                                              D->getBeginLoc());
8627   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8628   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8629   return Res;
8630 }
8631 
8632 template <typename Derived>
8633 StmtResult
TransformOMPTargetDirective(OMPTargetDirective * D)8634 TreeTransform<Derived>::TransformOMPTargetDirective(OMPTargetDirective *D) {
8635   DeclarationNameInfo DirName;
8636   getDerived().getSema().StartOpenMPDSABlock(OMPD_target, DirName, nullptr,
8637                                              D->getBeginLoc());
8638   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8639   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8640   return Res;
8641 }
8642 
8643 template <typename Derived>
TransformOMPTargetDataDirective(OMPTargetDataDirective * D)8644 StmtResult TreeTransform<Derived>::TransformOMPTargetDataDirective(
8645     OMPTargetDataDirective *D) {
8646   DeclarationNameInfo DirName;
8647   getDerived().getSema().StartOpenMPDSABlock(OMPD_target_data, DirName, nullptr,
8648                                              D->getBeginLoc());
8649   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8650   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8651   return Res;
8652 }
8653 
8654 template <typename Derived>
TransformOMPTargetEnterDataDirective(OMPTargetEnterDataDirective * D)8655 StmtResult TreeTransform<Derived>::TransformOMPTargetEnterDataDirective(
8656     OMPTargetEnterDataDirective *D) {
8657   DeclarationNameInfo DirName;
8658   getDerived().getSema().StartOpenMPDSABlock(OMPD_target_enter_data, DirName,
8659                                              nullptr, D->getBeginLoc());
8660   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8661   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8662   return Res;
8663 }
8664 
8665 template <typename Derived>
TransformOMPTargetExitDataDirective(OMPTargetExitDataDirective * D)8666 StmtResult TreeTransform<Derived>::TransformOMPTargetExitDataDirective(
8667     OMPTargetExitDataDirective *D) {
8668   DeclarationNameInfo DirName;
8669   getDerived().getSema().StartOpenMPDSABlock(OMPD_target_exit_data, DirName,
8670                                              nullptr, D->getBeginLoc());
8671   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8672   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8673   return Res;
8674 }
8675 
8676 template <typename Derived>
TransformOMPTargetParallelDirective(OMPTargetParallelDirective * D)8677 StmtResult TreeTransform<Derived>::TransformOMPTargetParallelDirective(
8678     OMPTargetParallelDirective *D) {
8679   DeclarationNameInfo DirName;
8680   getDerived().getSema().StartOpenMPDSABlock(OMPD_target_parallel, DirName,
8681                                              nullptr, D->getBeginLoc());
8682   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8683   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8684   return Res;
8685 }
8686 
8687 template <typename Derived>
TransformOMPTargetParallelForDirective(OMPTargetParallelForDirective * D)8688 StmtResult TreeTransform<Derived>::TransformOMPTargetParallelForDirective(
8689     OMPTargetParallelForDirective *D) {
8690   DeclarationNameInfo DirName;
8691   getDerived().getSema().StartOpenMPDSABlock(OMPD_target_parallel_for, DirName,
8692                                              nullptr, D->getBeginLoc());
8693   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8694   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8695   return Res;
8696 }
8697 
8698 template <typename Derived>
TransformOMPTargetUpdateDirective(OMPTargetUpdateDirective * D)8699 StmtResult TreeTransform<Derived>::TransformOMPTargetUpdateDirective(
8700     OMPTargetUpdateDirective *D) {
8701   DeclarationNameInfo DirName;
8702   getDerived().getSema().StartOpenMPDSABlock(OMPD_target_update, DirName,
8703                                              nullptr, D->getBeginLoc());
8704   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8705   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8706   return Res;
8707 }
8708 
8709 template <typename Derived>
8710 StmtResult
TransformOMPTeamsDirective(OMPTeamsDirective * D)8711 TreeTransform<Derived>::TransformOMPTeamsDirective(OMPTeamsDirective *D) {
8712   DeclarationNameInfo DirName;
8713   getDerived().getSema().StartOpenMPDSABlock(OMPD_teams, DirName, nullptr,
8714                                              D->getBeginLoc());
8715   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8716   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8717   return Res;
8718 }
8719 
8720 template <typename Derived>
TransformOMPCancellationPointDirective(OMPCancellationPointDirective * D)8721 StmtResult TreeTransform<Derived>::TransformOMPCancellationPointDirective(
8722     OMPCancellationPointDirective *D) {
8723   DeclarationNameInfo DirName;
8724   getDerived().getSema().StartOpenMPDSABlock(OMPD_cancellation_point, DirName,
8725                                              nullptr, D->getBeginLoc());
8726   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8727   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8728   return Res;
8729 }
8730 
8731 template <typename Derived>
8732 StmtResult
TransformOMPCancelDirective(OMPCancelDirective * D)8733 TreeTransform<Derived>::TransformOMPCancelDirective(OMPCancelDirective *D) {
8734   DeclarationNameInfo DirName;
8735   getDerived().getSema().StartOpenMPDSABlock(OMPD_cancel, DirName, nullptr,
8736                                              D->getBeginLoc());
8737   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8738   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8739   return Res;
8740 }
8741 
8742 template <typename Derived>
8743 StmtResult
TransformOMPTaskLoopDirective(OMPTaskLoopDirective * D)8744 TreeTransform<Derived>::TransformOMPTaskLoopDirective(OMPTaskLoopDirective *D) {
8745   DeclarationNameInfo DirName;
8746   getDerived().getSema().StartOpenMPDSABlock(OMPD_taskloop, DirName, nullptr,
8747                                              D->getBeginLoc());
8748   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8749   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8750   return Res;
8751 }
8752 
8753 template <typename Derived>
TransformOMPTaskLoopSimdDirective(OMPTaskLoopSimdDirective * D)8754 StmtResult TreeTransform<Derived>::TransformOMPTaskLoopSimdDirective(
8755     OMPTaskLoopSimdDirective *D) {
8756   DeclarationNameInfo DirName;
8757   getDerived().getSema().StartOpenMPDSABlock(OMPD_taskloop_simd, DirName,
8758                                              nullptr, D->getBeginLoc());
8759   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8760   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8761   return Res;
8762 }
8763 
8764 template <typename Derived>
TransformOMPMasterTaskLoopDirective(OMPMasterTaskLoopDirective * D)8765 StmtResult TreeTransform<Derived>::TransformOMPMasterTaskLoopDirective(
8766     OMPMasterTaskLoopDirective *D) {
8767   DeclarationNameInfo DirName;
8768   getDerived().getSema().StartOpenMPDSABlock(OMPD_master_taskloop, DirName,
8769                                              nullptr, D->getBeginLoc());
8770   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8771   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8772   return Res;
8773 }
8774 
8775 template <typename Derived>
TransformOMPMasterTaskLoopSimdDirective(OMPMasterTaskLoopSimdDirective * D)8776 StmtResult TreeTransform<Derived>::TransformOMPMasterTaskLoopSimdDirective(
8777     OMPMasterTaskLoopSimdDirective *D) {
8778   DeclarationNameInfo DirName;
8779   getDerived().getSema().StartOpenMPDSABlock(OMPD_master_taskloop_simd, DirName,
8780                                              nullptr, D->getBeginLoc());
8781   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8782   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8783   return Res;
8784 }
8785 
8786 template <typename Derived>
TransformOMPParallelMasterTaskLoopDirective(OMPParallelMasterTaskLoopDirective * D)8787 StmtResult TreeTransform<Derived>::TransformOMPParallelMasterTaskLoopDirective(
8788     OMPParallelMasterTaskLoopDirective *D) {
8789   DeclarationNameInfo DirName;
8790   getDerived().getSema().StartOpenMPDSABlock(
8791       OMPD_parallel_master_taskloop, DirName, nullptr, D->getBeginLoc());
8792   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8793   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8794   return Res;
8795 }
8796 
8797 template <typename Derived>
8798 StmtResult
TransformOMPParallelMasterTaskLoopSimdDirective(OMPParallelMasterTaskLoopSimdDirective * D)8799 TreeTransform<Derived>::TransformOMPParallelMasterTaskLoopSimdDirective(
8800     OMPParallelMasterTaskLoopSimdDirective *D) {
8801   DeclarationNameInfo DirName;
8802   getDerived().getSema().StartOpenMPDSABlock(
8803       OMPD_parallel_master_taskloop_simd, DirName, nullptr, D->getBeginLoc());
8804   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8805   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8806   return Res;
8807 }
8808 
8809 template <typename Derived>
TransformOMPDistributeDirective(OMPDistributeDirective * D)8810 StmtResult TreeTransform<Derived>::TransformOMPDistributeDirective(
8811     OMPDistributeDirective *D) {
8812   DeclarationNameInfo DirName;
8813   getDerived().getSema().StartOpenMPDSABlock(OMPD_distribute, DirName, nullptr,
8814                                              D->getBeginLoc());
8815   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8816   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8817   return Res;
8818 }
8819 
8820 template <typename Derived>
TransformOMPDistributeParallelForDirective(OMPDistributeParallelForDirective * D)8821 StmtResult TreeTransform<Derived>::TransformOMPDistributeParallelForDirective(
8822     OMPDistributeParallelForDirective *D) {
8823   DeclarationNameInfo DirName;
8824   getDerived().getSema().StartOpenMPDSABlock(
8825       OMPD_distribute_parallel_for, DirName, nullptr, D->getBeginLoc());
8826   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8827   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8828   return Res;
8829 }
8830 
8831 template <typename Derived>
8832 StmtResult
TransformOMPDistributeParallelForSimdDirective(OMPDistributeParallelForSimdDirective * D)8833 TreeTransform<Derived>::TransformOMPDistributeParallelForSimdDirective(
8834     OMPDistributeParallelForSimdDirective *D) {
8835   DeclarationNameInfo DirName;
8836   getDerived().getSema().StartOpenMPDSABlock(
8837       OMPD_distribute_parallel_for_simd, DirName, nullptr, D->getBeginLoc());
8838   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8839   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8840   return Res;
8841 }
8842 
8843 template <typename Derived>
TransformOMPDistributeSimdDirective(OMPDistributeSimdDirective * D)8844 StmtResult TreeTransform<Derived>::TransformOMPDistributeSimdDirective(
8845     OMPDistributeSimdDirective *D) {
8846   DeclarationNameInfo DirName;
8847   getDerived().getSema().StartOpenMPDSABlock(OMPD_distribute_simd, DirName,
8848                                              nullptr, D->getBeginLoc());
8849   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8850   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8851   return Res;
8852 }
8853 
8854 template <typename Derived>
TransformOMPTargetParallelForSimdDirective(OMPTargetParallelForSimdDirective * D)8855 StmtResult TreeTransform<Derived>::TransformOMPTargetParallelForSimdDirective(
8856     OMPTargetParallelForSimdDirective *D) {
8857   DeclarationNameInfo DirName;
8858   getDerived().getSema().StartOpenMPDSABlock(
8859       OMPD_target_parallel_for_simd, DirName, nullptr, D->getBeginLoc());
8860   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8861   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8862   return Res;
8863 }
8864 
8865 template <typename Derived>
TransformOMPTargetSimdDirective(OMPTargetSimdDirective * D)8866 StmtResult TreeTransform<Derived>::TransformOMPTargetSimdDirective(
8867     OMPTargetSimdDirective *D) {
8868   DeclarationNameInfo DirName;
8869   getDerived().getSema().StartOpenMPDSABlock(OMPD_target_simd, DirName, nullptr,
8870                                              D->getBeginLoc());
8871   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8872   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8873   return Res;
8874 }
8875 
8876 template <typename Derived>
TransformOMPTeamsDistributeDirective(OMPTeamsDistributeDirective * D)8877 StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeDirective(
8878     OMPTeamsDistributeDirective *D) {
8879   DeclarationNameInfo DirName;
8880   getDerived().getSema().StartOpenMPDSABlock(OMPD_teams_distribute, DirName,
8881                                              nullptr, D->getBeginLoc());
8882   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8883   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8884   return Res;
8885 }
8886 
8887 template <typename Derived>
TransformOMPTeamsDistributeSimdDirective(OMPTeamsDistributeSimdDirective * D)8888 StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeSimdDirective(
8889     OMPTeamsDistributeSimdDirective *D) {
8890   DeclarationNameInfo DirName;
8891   getDerived().getSema().StartOpenMPDSABlock(
8892       OMPD_teams_distribute_simd, DirName, nullptr, D->getBeginLoc());
8893   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8894   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8895   return Res;
8896 }
8897 
8898 template <typename Derived>
TransformOMPTeamsDistributeParallelForSimdDirective(OMPTeamsDistributeParallelForSimdDirective * D)8899 StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeParallelForSimdDirective(
8900     OMPTeamsDistributeParallelForSimdDirective *D) {
8901   DeclarationNameInfo DirName;
8902   getDerived().getSema().StartOpenMPDSABlock(
8903       OMPD_teams_distribute_parallel_for_simd, DirName, nullptr,
8904       D->getBeginLoc());
8905   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8906   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8907   return Res;
8908 }
8909 
8910 template <typename Derived>
TransformOMPTeamsDistributeParallelForDirective(OMPTeamsDistributeParallelForDirective * D)8911 StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeParallelForDirective(
8912     OMPTeamsDistributeParallelForDirective *D) {
8913   DeclarationNameInfo DirName;
8914   getDerived().getSema().StartOpenMPDSABlock(
8915       OMPD_teams_distribute_parallel_for, DirName, nullptr, D->getBeginLoc());
8916   StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8917   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8918   return Res;
8919 }
8920 
8921 template <typename Derived>
TransformOMPTargetTeamsDirective(OMPTargetTeamsDirective * D)8922 StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsDirective(
8923     OMPTargetTeamsDirective *D) {
8924   DeclarationNameInfo DirName;
8925   getDerived().getSema().StartOpenMPDSABlock(OMPD_target_teams, DirName,
8926                                              nullptr, D->getBeginLoc());
8927   auto Res = getDerived().TransformOMPExecutableDirective(D);
8928   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8929   return Res;
8930 }
8931 
8932 template <typename Derived>
TransformOMPTargetTeamsDistributeDirective(OMPTargetTeamsDistributeDirective * D)8933 StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsDistributeDirective(
8934     OMPTargetTeamsDistributeDirective *D) {
8935   DeclarationNameInfo DirName;
8936   getDerived().getSema().StartOpenMPDSABlock(
8937       OMPD_target_teams_distribute, DirName, nullptr, D->getBeginLoc());
8938   auto Res = getDerived().TransformOMPExecutableDirective(D);
8939   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8940   return Res;
8941 }
8942 
8943 template <typename Derived>
8944 StmtResult
TransformOMPTargetTeamsDistributeParallelForDirective(OMPTargetTeamsDistributeParallelForDirective * D)8945 TreeTransform<Derived>::TransformOMPTargetTeamsDistributeParallelForDirective(
8946     OMPTargetTeamsDistributeParallelForDirective *D) {
8947   DeclarationNameInfo DirName;
8948   getDerived().getSema().StartOpenMPDSABlock(
8949       OMPD_target_teams_distribute_parallel_for, DirName, nullptr,
8950       D->getBeginLoc());
8951   auto Res = getDerived().TransformOMPExecutableDirective(D);
8952   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8953   return Res;
8954 }
8955 
8956 template <typename Derived>
8957 StmtResult TreeTransform<Derived>::
TransformOMPTargetTeamsDistributeParallelForSimdDirective(OMPTargetTeamsDistributeParallelForSimdDirective * D)8958     TransformOMPTargetTeamsDistributeParallelForSimdDirective(
8959         OMPTargetTeamsDistributeParallelForSimdDirective *D) {
8960   DeclarationNameInfo DirName;
8961   getDerived().getSema().StartOpenMPDSABlock(
8962       OMPD_target_teams_distribute_parallel_for_simd, DirName, nullptr,
8963       D->getBeginLoc());
8964   auto Res = getDerived().TransformOMPExecutableDirective(D);
8965   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8966   return Res;
8967 }
8968 
8969 template <typename Derived>
8970 StmtResult
TransformOMPTargetTeamsDistributeSimdDirective(OMPTargetTeamsDistributeSimdDirective * D)8971 TreeTransform<Derived>::TransformOMPTargetTeamsDistributeSimdDirective(
8972     OMPTargetTeamsDistributeSimdDirective *D) {
8973   DeclarationNameInfo DirName;
8974   getDerived().getSema().StartOpenMPDSABlock(
8975       OMPD_target_teams_distribute_simd, DirName, nullptr, D->getBeginLoc());
8976   auto Res = getDerived().TransformOMPExecutableDirective(D);
8977   getDerived().getSema().EndOpenMPDSABlock(Res.get());
8978   return Res;
8979 }
8980 
8981 
8982 //===----------------------------------------------------------------------===//
8983 // OpenMP clause transformation
8984 //===----------------------------------------------------------------------===//
8985 template <typename Derived>
TransformOMPIfClause(OMPIfClause * C)8986 OMPClause *TreeTransform<Derived>::TransformOMPIfClause(OMPIfClause *C) {
8987   ExprResult Cond = getDerived().TransformExpr(C->getCondition());
8988   if (Cond.isInvalid())
8989     return nullptr;
8990   return getDerived().RebuildOMPIfClause(
8991       C->getNameModifier(), Cond.get(), C->getBeginLoc(), C->getLParenLoc(),
8992       C->getNameModifierLoc(), C->getColonLoc(), C->getEndLoc());
8993 }
8994 
8995 template <typename Derived>
TransformOMPFinalClause(OMPFinalClause * C)8996 OMPClause *TreeTransform<Derived>::TransformOMPFinalClause(OMPFinalClause *C) {
8997   ExprResult Cond = getDerived().TransformExpr(C->getCondition());
8998   if (Cond.isInvalid())
8999     return nullptr;
9000   return getDerived().RebuildOMPFinalClause(Cond.get(), C->getBeginLoc(),
9001                                             C->getLParenLoc(), C->getEndLoc());
9002 }
9003 
9004 template <typename Derived>
9005 OMPClause *
TransformOMPNumThreadsClause(OMPNumThreadsClause * C)9006 TreeTransform<Derived>::TransformOMPNumThreadsClause(OMPNumThreadsClause *C) {
9007   ExprResult NumThreads = getDerived().TransformExpr(C->getNumThreads());
9008   if (NumThreads.isInvalid())
9009     return nullptr;
9010   return getDerived().RebuildOMPNumThreadsClause(
9011       NumThreads.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9012 }
9013 
9014 template <typename Derived>
9015 OMPClause *
TransformOMPSafelenClause(OMPSafelenClause * C)9016 TreeTransform<Derived>::TransformOMPSafelenClause(OMPSafelenClause *C) {
9017   ExprResult E = getDerived().TransformExpr(C->getSafelen());
9018   if (E.isInvalid())
9019     return nullptr;
9020   return getDerived().RebuildOMPSafelenClause(
9021       E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9022 }
9023 
9024 template <typename Derived>
9025 OMPClause *
TransformOMPAllocatorClause(OMPAllocatorClause * C)9026 TreeTransform<Derived>::TransformOMPAllocatorClause(OMPAllocatorClause *C) {
9027   ExprResult E = getDerived().TransformExpr(C->getAllocator());
9028   if (E.isInvalid())
9029     return nullptr;
9030   return getDerived().RebuildOMPAllocatorClause(
9031       E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9032 }
9033 
9034 template <typename Derived>
9035 OMPClause *
TransformOMPSimdlenClause(OMPSimdlenClause * C)9036 TreeTransform<Derived>::TransformOMPSimdlenClause(OMPSimdlenClause *C) {
9037   ExprResult E = getDerived().TransformExpr(C->getSimdlen());
9038   if (E.isInvalid())
9039     return nullptr;
9040   return getDerived().RebuildOMPSimdlenClause(
9041       E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9042 }
9043 
9044 template <typename Derived>
9045 OMPClause *
TransformOMPCollapseClause(OMPCollapseClause * C)9046 TreeTransform<Derived>::TransformOMPCollapseClause(OMPCollapseClause *C) {
9047   ExprResult E = getDerived().TransformExpr(C->getNumForLoops());
9048   if (E.isInvalid())
9049     return nullptr;
9050   return getDerived().RebuildOMPCollapseClause(
9051       E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9052 }
9053 
9054 template <typename Derived>
9055 OMPClause *
TransformOMPDefaultClause(OMPDefaultClause * C)9056 TreeTransform<Derived>::TransformOMPDefaultClause(OMPDefaultClause *C) {
9057   return getDerived().RebuildOMPDefaultClause(
9058       C->getDefaultKind(), C->getDefaultKindKwLoc(), C->getBeginLoc(),
9059       C->getLParenLoc(), C->getEndLoc());
9060 }
9061 
9062 template <typename Derived>
9063 OMPClause *
TransformOMPProcBindClause(OMPProcBindClause * C)9064 TreeTransform<Derived>::TransformOMPProcBindClause(OMPProcBindClause *C) {
9065   return getDerived().RebuildOMPProcBindClause(
9066       C->getProcBindKind(), C->getProcBindKindKwLoc(), C->getBeginLoc(),
9067       C->getLParenLoc(), C->getEndLoc());
9068 }
9069 
9070 template <typename Derived>
9071 OMPClause *
TransformOMPScheduleClause(OMPScheduleClause * C)9072 TreeTransform<Derived>::TransformOMPScheduleClause(OMPScheduleClause *C) {
9073   ExprResult E = getDerived().TransformExpr(C->getChunkSize());
9074   if (E.isInvalid())
9075     return nullptr;
9076   return getDerived().RebuildOMPScheduleClause(
9077       C->getFirstScheduleModifier(), C->getSecondScheduleModifier(),
9078       C->getScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
9079       C->getFirstScheduleModifierLoc(), C->getSecondScheduleModifierLoc(),
9080       C->getScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc());
9081 }
9082 
9083 template <typename Derived>
9084 OMPClause *
TransformOMPOrderedClause(OMPOrderedClause * C)9085 TreeTransform<Derived>::TransformOMPOrderedClause(OMPOrderedClause *C) {
9086   ExprResult E;
9087   if (auto *Num = C->getNumForLoops()) {
9088     E = getDerived().TransformExpr(Num);
9089     if (E.isInvalid())
9090       return nullptr;
9091   }
9092   return getDerived().RebuildOMPOrderedClause(C->getBeginLoc(), C->getEndLoc(),
9093                                               C->getLParenLoc(), E.get());
9094 }
9095 
9096 template <typename Derived>
9097 OMPClause *
TransformOMPDetachClause(OMPDetachClause * C)9098 TreeTransform<Derived>::TransformOMPDetachClause(OMPDetachClause *C) {
9099   ExprResult E;
9100   if (Expr *Evt = C->getEventHandler()) {
9101     E = getDerived().TransformExpr(Evt);
9102     if (E.isInvalid())
9103       return nullptr;
9104   }
9105   return getDerived().RebuildOMPDetachClause(E.get(), C->getBeginLoc(),
9106                                              C->getLParenLoc(), C->getEndLoc());
9107 }
9108 
9109 template <typename Derived>
9110 OMPClause *
TransformOMPNowaitClause(OMPNowaitClause * C)9111 TreeTransform<Derived>::TransformOMPNowaitClause(OMPNowaitClause *C) {
9112   // No need to rebuild this clause, no template-dependent parameters.
9113   return C;
9114 }
9115 
9116 template <typename Derived>
9117 OMPClause *
TransformOMPUntiedClause(OMPUntiedClause * C)9118 TreeTransform<Derived>::TransformOMPUntiedClause(OMPUntiedClause *C) {
9119   // No need to rebuild this clause, no template-dependent parameters.
9120   return C;
9121 }
9122 
9123 template <typename Derived>
9124 OMPClause *
TransformOMPMergeableClause(OMPMergeableClause * C)9125 TreeTransform<Derived>::TransformOMPMergeableClause(OMPMergeableClause *C) {
9126   // No need to rebuild this clause, no template-dependent parameters.
9127   return C;
9128 }
9129 
9130 template <typename Derived>
TransformOMPReadClause(OMPReadClause * C)9131 OMPClause *TreeTransform<Derived>::TransformOMPReadClause(OMPReadClause *C) {
9132   // No need to rebuild this clause, no template-dependent parameters.
9133   return C;
9134 }
9135 
9136 template <typename Derived>
TransformOMPWriteClause(OMPWriteClause * C)9137 OMPClause *TreeTransform<Derived>::TransformOMPWriteClause(OMPWriteClause *C) {
9138   // No need to rebuild this clause, no template-dependent parameters.
9139   return C;
9140 }
9141 
9142 template <typename Derived>
9143 OMPClause *
TransformOMPUpdateClause(OMPUpdateClause * C)9144 TreeTransform<Derived>::TransformOMPUpdateClause(OMPUpdateClause *C) {
9145   // No need to rebuild this clause, no template-dependent parameters.
9146   return C;
9147 }
9148 
9149 template <typename Derived>
9150 OMPClause *
TransformOMPCaptureClause(OMPCaptureClause * C)9151 TreeTransform<Derived>::TransformOMPCaptureClause(OMPCaptureClause *C) {
9152   // No need to rebuild this clause, no template-dependent parameters.
9153   return C;
9154 }
9155 
9156 template <typename Derived>
9157 OMPClause *
TransformOMPSeqCstClause(OMPSeqCstClause * C)9158 TreeTransform<Derived>::TransformOMPSeqCstClause(OMPSeqCstClause *C) {
9159   // No need to rebuild this clause, no template-dependent parameters.
9160   return C;
9161 }
9162 
9163 template <typename Derived>
9164 OMPClause *
TransformOMPAcqRelClause(OMPAcqRelClause * C)9165 TreeTransform<Derived>::TransformOMPAcqRelClause(OMPAcqRelClause *C) {
9166   // No need to rebuild this clause, no template-dependent parameters.
9167   return C;
9168 }
9169 
9170 template <typename Derived>
9171 OMPClause *
TransformOMPAcquireClause(OMPAcquireClause * C)9172 TreeTransform<Derived>::TransformOMPAcquireClause(OMPAcquireClause *C) {
9173   // No need to rebuild this clause, no template-dependent parameters.
9174   return C;
9175 }
9176 
9177 template <typename Derived>
9178 OMPClause *
TransformOMPReleaseClause(OMPReleaseClause * C)9179 TreeTransform<Derived>::TransformOMPReleaseClause(OMPReleaseClause *C) {
9180   // No need to rebuild this clause, no template-dependent parameters.
9181   return C;
9182 }
9183 
9184 template <typename Derived>
9185 OMPClause *
TransformOMPRelaxedClause(OMPRelaxedClause * C)9186 TreeTransform<Derived>::TransformOMPRelaxedClause(OMPRelaxedClause *C) {
9187   // No need to rebuild this clause, no template-dependent parameters.
9188   return C;
9189 }
9190 
9191 template <typename Derived>
9192 OMPClause *
TransformOMPThreadsClause(OMPThreadsClause * C)9193 TreeTransform<Derived>::TransformOMPThreadsClause(OMPThreadsClause *C) {
9194   // No need to rebuild this clause, no template-dependent parameters.
9195   return C;
9196 }
9197 
9198 template <typename Derived>
TransformOMPSIMDClause(OMPSIMDClause * C)9199 OMPClause *TreeTransform<Derived>::TransformOMPSIMDClause(OMPSIMDClause *C) {
9200   // No need to rebuild this clause, no template-dependent parameters.
9201   return C;
9202 }
9203 
9204 template <typename Derived>
9205 OMPClause *
TransformOMPNogroupClause(OMPNogroupClause * C)9206 TreeTransform<Derived>::TransformOMPNogroupClause(OMPNogroupClause *C) {
9207   // No need to rebuild this clause, no template-dependent parameters.
9208   return C;
9209 }
9210 
9211 template <typename Derived>
9212 OMPClause *
TransformOMPDestroyClause(OMPDestroyClause * C)9213 TreeTransform<Derived>::TransformOMPDestroyClause(OMPDestroyClause *C) {
9214   // No need to rebuild this clause, no template-dependent parameters.
9215   return C;
9216 }
9217 
9218 template <typename Derived>
TransformOMPUnifiedAddressClause(OMPUnifiedAddressClause * C)9219 OMPClause *TreeTransform<Derived>::TransformOMPUnifiedAddressClause(
9220     OMPUnifiedAddressClause *C) {
9221   llvm_unreachable("unified_address clause cannot appear in dependent context");
9222 }
9223 
9224 template <typename Derived>
TransformOMPUnifiedSharedMemoryClause(OMPUnifiedSharedMemoryClause * C)9225 OMPClause *TreeTransform<Derived>::TransformOMPUnifiedSharedMemoryClause(
9226     OMPUnifiedSharedMemoryClause *C) {
9227   llvm_unreachable(
9228       "unified_shared_memory clause cannot appear in dependent context");
9229 }
9230 
9231 template <typename Derived>
TransformOMPReverseOffloadClause(OMPReverseOffloadClause * C)9232 OMPClause *TreeTransform<Derived>::TransformOMPReverseOffloadClause(
9233     OMPReverseOffloadClause *C) {
9234   llvm_unreachable("reverse_offload clause cannot appear in dependent context");
9235 }
9236 
9237 template <typename Derived>
TransformOMPDynamicAllocatorsClause(OMPDynamicAllocatorsClause * C)9238 OMPClause *TreeTransform<Derived>::TransformOMPDynamicAllocatorsClause(
9239     OMPDynamicAllocatorsClause *C) {
9240   llvm_unreachable(
9241       "dynamic_allocators clause cannot appear in dependent context");
9242 }
9243 
9244 template <typename Derived>
TransformOMPAtomicDefaultMemOrderClause(OMPAtomicDefaultMemOrderClause * C)9245 OMPClause *TreeTransform<Derived>::TransformOMPAtomicDefaultMemOrderClause(
9246     OMPAtomicDefaultMemOrderClause *C) {
9247   llvm_unreachable(
9248       "atomic_default_mem_order clause cannot appear in dependent context");
9249 }
9250 
9251 template <typename Derived>
9252 OMPClause *
TransformOMPPrivateClause(OMPPrivateClause * C)9253 TreeTransform<Derived>::TransformOMPPrivateClause(OMPPrivateClause *C) {
9254   llvm::SmallVector<Expr *, 16> Vars;
9255   Vars.reserve(C->varlist_size());
9256   for (auto *VE : C->varlists()) {
9257     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9258     if (EVar.isInvalid())
9259       return nullptr;
9260     Vars.push_back(EVar.get());
9261   }
9262   return getDerived().RebuildOMPPrivateClause(
9263       Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9264 }
9265 
9266 template <typename Derived>
TransformOMPFirstprivateClause(OMPFirstprivateClause * C)9267 OMPClause *TreeTransform<Derived>::TransformOMPFirstprivateClause(
9268     OMPFirstprivateClause *C) {
9269   llvm::SmallVector<Expr *, 16> Vars;
9270   Vars.reserve(C->varlist_size());
9271   for (auto *VE : C->varlists()) {
9272     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9273     if (EVar.isInvalid())
9274       return nullptr;
9275     Vars.push_back(EVar.get());
9276   }
9277   return getDerived().RebuildOMPFirstprivateClause(
9278       Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9279 }
9280 
9281 template <typename Derived>
9282 OMPClause *
TransformOMPLastprivateClause(OMPLastprivateClause * C)9283 TreeTransform<Derived>::TransformOMPLastprivateClause(OMPLastprivateClause *C) {
9284   llvm::SmallVector<Expr *, 16> Vars;
9285   Vars.reserve(C->varlist_size());
9286   for (auto *VE : C->varlists()) {
9287     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9288     if (EVar.isInvalid())
9289       return nullptr;
9290     Vars.push_back(EVar.get());
9291   }
9292   return getDerived().RebuildOMPLastprivateClause(
9293       Vars, C->getKind(), C->getKindLoc(), C->getColonLoc(), C->getBeginLoc(),
9294       C->getLParenLoc(), C->getEndLoc());
9295 }
9296 
9297 template <typename Derived>
9298 OMPClause *
TransformOMPSharedClause(OMPSharedClause * C)9299 TreeTransform<Derived>::TransformOMPSharedClause(OMPSharedClause *C) {
9300   llvm::SmallVector<Expr *, 16> Vars;
9301   Vars.reserve(C->varlist_size());
9302   for (auto *VE : C->varlists()) {
9303     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9304     if (EVar.isInvalid())
9305       return nullptr;
9306     Vars.push_back(EVar.get());
9307   }
9308   return getDerived().RebuildOMPSharedClause(Vars, C->getBeginLoc(),
9309                                              C->getLParenLoc(), C->getEndLoc());
9310 }
9311 
9312 template <typename Derived>
9313 OMPClause *
TransformOMPReductionClause(OMPReductionClause * C)9314 TreeTransform<Derived>::TransformOMPReductionClause(OMPReductionClause *C) {
9315   llvm::SmallVector<Expr *, 16> Vars;
9316   Vars.reserve(C->varlist_size());
9317   for (auto *VE : C->varlists()) {
9318     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9319     if (EVar.isInvalid())
9320       return nullptr;
9321     Vars.push_back(EVar.get());
9322   }
9323   CXXScopeSpec ReductionIdScopeSpec;
9324   ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
9325 
9326   DeclarationNameInfo NameInfo = C->getNameInfo();
9327   if (NameInfo.getName()) {
9328     NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
9329     if (!NameInfo.getName())
9330       return nullptr;
9331   }
9332   // Build a list of all UDR decls with the same names ranged by the Scopes.
9333   // The Scope boundary is a duplication of the previous decl.
9334   llvm::SmallVector<Expr *, 16> UnresolvedReductions;
9335   for (auto *E : C->reduction_ops()) {
9336     // Transform all the decls.
9337     if (E) {
9338       auto *ULE = cast<UnresolvedLookupExpr>(E);
9339       UnresolvedSet<8> Decls;
9340       for (auto *D : ULE->decls()) {
9341         NamedDecl *InstD =
9342             cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D));
9343         Decls.addDecl(InstD, InstD->getAccess());
9344       }
9345       UnresolvedReductions.push_back(
9346        UnresolvedLookupExpr::Create(
9347           SemaRef.Context, /*NamingClass=*/nullptr,
9348           ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context),
9349           NameInfo, /*ADL=*/true, ULE->isOverloaded(),
9350           Decls.begin(), Decls.end()));
9351     } else
9352       UnresolvedReductions.push_back(nullptr);
9353   }
9354   return getDerived().RebuildOMPReductionClause(
9355       Vars, C->getModifier(), C->getBeginLoc(), C->getLParenLoc(),
9356       C->getModifierLoc(), C->getColonLoc(), C->getEndLoc(),
9357       ReductionIdScopeSpec, NameInfo, UnresolvedReductions);
9358 }
9359 
9360 template <typename Derived>
TransformOMPTaskReductionClause(OMPTaskReductionClause * C)9361 OMPClause *TreeTransform<Derived>::TransformOMPTaskReductionClause(
9362     OMPTaskReductionClause *C) {
9363   llvm::SmallVector<Expr *, 16> Vars;
9364   Vars.reserve(C->varlist_size());
9365   for (auto *VE : C->varlists()) {
9366     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9367     if (EVar.isInvalid())
9368       return nullptr;
9369     Vars.push_back(EVar.get());
9370   }
9371   CXXScopeSpec ReductionIdScopeSpec;
9372   ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
9373 
9374   DeclarationNameInfo NameInfo = C->getNameInfo();
9375   if (NameInfo.getName()) {
9376     NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
9377     if (!NameInfo.getName())
9378       return nullptr;
9379   }
9380   // Build a list of all UDR decls with the same names ranged by the Scopes.
9381   // The Scope boundary is a duplication of the previous decl.
9382   llvm::SmallVector<Expr *, 16> UnresolvedReductions;
9383   for (auto *E : C->reduction_ops()) {
9384     // Transform all the decls.
9385     if (E) {
9386       auto *ULE = cast<UnresolvedLookupExpr>(E);
9387       UnresolvedSet<8> Decls;
9388       for (auto *D : ULE->decls()) {
9389         NamedDecl *InstD =
9390             cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D));
9391         Decls.addDecl(InstD, InstD->getAccess());
9392       }
9393       UnresolvedReductions.push_back(UnresolvedLookupExpr::Create(
9394           SemaRef.Context, /*NamingClass=*/nullptr,
9395           ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo,
9396           /*ADL=*/true, ULE->isOverloaded(), Decls.begin(), Decls.end()));
9397     } else
9398       UnresolvedReductions.push_back(nullptr);
9399   }
9400   return getDerived().RebuildOMPTaskReductionClause(
9401       Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(),
9402       C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions);
9403 }
9404 
9405 template <typename Derived>
9406 OMPClause *
TransformOMPInReductionClause(OMPInReductionClause * C)9407 TreeTransform<Derived>::TransformOMPInReductionClause(OMPInReductionClause *C) {
9408   llvm::SmallVector<Expr *, 16> Vars;
9409   Vars.reserve(C->varlist_size());
9410   for (auto *VE : C->varlists()) {
9411     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9412     if (EVar.isInvalid())
9413       return nullptr;
9414     Vars.push_back(EVar.get());
9415   }
9416   CXXScopeSpec ReductionIdScopeSpec;
9417   ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
9418 
9419   DeclarationNameInfo NameInfo = C->getNameInfo();
9420   if (NameInfo.getName()) {
9421     NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
9422     if (!NameInfo.getName())
9423       return nullptr;
9424   }
9425   // Build a list of all UDR decls with the same names ranged by the Scopes.
9426   // The Scope boundary is a duplication of the previous decl.
9427   llvm::SmallVector<Expr *, 16> UnresolvedReductions;
9428   for (auto *E : C->reduction_ops()) {
9429     // Transform all the decls.
9430     if (E) {
9431       auto *ULE = cast<UnresolvedLookupExpr>(E);
9432       UnresolvedSet<8> Decls;
9433       for (auto *D : ULE->decls()) {
9434         NamedDecl *InstD =
9435             cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D));
9436         Decls.addDecl(InstD, InstD->getAccess());
9437       }
9438       UnresolvedReductions.push_back(UnresolvedLookupExpr::Create(
9439           SemaRef.Context, /*NamingClass=*/nullptr,
9440           ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo,
9441           /*ADL=*/true, ULE->isOverloaded(), Decls.begin(), Decls.end()));
9442     } else
9443       UnresolvedReductions.push_back(nullptr);
9444   }
9445   return getDerived().RebuildOMPInReductionClause(
9446       Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(),
9447       C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions);
9448 }
9449 
9450 template <typename Derived>
9451 OMPClause *
TransformOMPLinearClause(OMPLinearClause * C)9452 TreeTransform<Derived>::TransformOMPLinearClause(OMPLinearClause *C) {
9453   llvm::SmallVector<Expr *, 16> Vars;
9454   Vars.reserve(C->varlist_size());
9455   for (auto *VE : C->varlists()) {
9456     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9457     if (EVar.isInvalid())
9458       return nullptr;
9459     Vars.push_back(EVar.get());
9460   }
9461   ExprResult Step = getDerived().TransformExpr(C->getStep());
9462   if (Step.isInvalid())
9463     return nullptr;
9464   return getDerived().RebuildOMPLinearClause(
9465       Vars, Step.get(), C->getBeginLoc(), C->getLParenLoc(), C->getModifier(),
9466       C->getModifierLoc(), C->getColonLoc(), C->getEndLoc());
9467 }
9468 
9469 template <typename Derived>
9470 OMPClause *
TransformOMPAlignedClause(OMPAlignedClause * C)9471 TreeTransform<Derived>::TransformOMPAlignedClause(OMPAlignedClause *C) {
9472   llvm::SmallVector<Expr *, 16> Vars;
9473   Vars.reserve(C->varlist_size());
9474   for (auto *VE : C->varlists()) {
9475     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9476     if (EVar.isInvalid())
9477       return nullptr;
9478     Vars.push_back(EVar.get());
9479   }
9480   ExprResult Alignment = getDerived().TransformExpr(C->getAlignment());
9481   if (Alignment.isInvalid())
9482     return nullptr;
9483   return getDerived().RebuildOMPAlignedClause(
9484       Vars, Alignment.get(), C->getBeginLoc(), C->getLParenLoc(),
9485       C->getColonLoc(), C->getEndLoc());
9486 }
9487 
9488 template <typename Derived>
9489 OMPClause *
TransformOMPCopyinClause(OMPCopyinClause * C)9490 TreeTransform<Derived>::TransformOMPCopyinClause(OMPCopyinClause *C) {
9491   llvm::SmallVector<Expr *, 16> Vars;
9492   Vars.reserve(C->varlist_size());
9493   for (auto *VE : C->varlists()) {
9494     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9495     if (EVar.isInvalid())
9496       return nullptr;
9497     Vars.push_back(EVar.get());
9498   }
9499   return getDerived().RebuildOMPCopyinClause(Vars, C->getBeginLoc(),
9500                                              C->getLParenLoc(), C->getEndLoc());
9501 }
9502 
9503 template <typename Derived>
9504 OMPClause *
TransformOMPCopyprivateClause(OMPCopyprivateClause * C)9505 TreeTransform<Derived>::TransformOMPCopyprivateClause(OMPCopyprivateClause *C) {
9506   llvm::SmallVector<Expr *, 16> Vars;
9507   Vars.reserve(C->varlist_size());
9508   for (auto *VE : C->varlists()) {
9509     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9510     if (EVar.isInvalid())
9511       return nullptr;
9512     Vars.push_back(EVar.get());
9513   }
9514   return getDerived().RebuildOMPCopyprivateClause(
9515       Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9516 }
9517 
9518 template <typename Derived>
TransformOMPFlushClause(OMPFlushClause * C)9519 OMPClause *TreeTransform<Derived>::TransformOMPFlushClause(OMPFlushClause *C) {
9520   llvm::SmallVector<Expr *, 16> Vars;
9521   Vars.reserve(C->varlist_size());
9522   for (auto *VE : C->varlists()) {
9523     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9524     if (EVar.isInvalid())
9525       return nullptr;
9526     Vars.push_back(EVar.get());
9527   }
9528   return getDerived().RebuildOMPFlushClause(Vars, C->getBeginLoc(),
9529                                             C->getLParenLoc(), C->getEndLoc());
9530 }
9531 
9532 template <typename Derived>
9533 OMPClause *
TransformOMPDepobjClause(OMPDepobjClause * C)9534 TreeTransform<Derived>::TransformOMPDepobjClause(OMPDepobjClause *C) {
9535   ExprResult E = getDerived().TransformExpr(C->getDepobj());
9536   if (E.isInvalid())
9537     return nullptr;
9538   return getDerived().RebuildOMPDepobjClause(E.get(), C->getBeginLoc(),
9539                                              C->getLParenLoc(), C->getEndLoc());
9540 }
9541 
9542 template <typename Derived>
9543 OMPClause *
TransformOMPDependClause(OMPDependClause * C)9544 TreeTransform<Derived>::TransformOMPDependClause(OMPDependClause *C) {
9545   llvm::SmallVector<Expr *, 16> Vars;
9546   Expr *DepModifier = C->getModifier();
9547   if (DepModifier) {
9548     ExprResult DepModRes = getDerived().TransformExpr(DepModifier);
9549     if (DepModRes.isInvalid())
9550       return nullptr;
9551     DepModifier = DepModRes.get();
9552   }
9553   Vars.reserve(C->varlist_size());
9554   for (auto *VE : C->varlists()) {
9555     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9556     if (EVar.isInvalid())
9557       return nullptr;
9558     Vars.push_back(EVar.get());
9559   }
9560   return getDerived().RebuildOMPDependClause(
9561       DepModifier, C->getDependencyKind(), C->getDependencyLoc(),
9562       C->getColonLoc(), Vars, C->getBeginLoc(), C->getLParenLoc(),
9563       C->getEndLoc());
9564 }
9565 
9566 template <typename Derived>
9567 OMPClause *
TransformOMPDeviceClause(OMPDeviceClause * C)9568 TreeTransform<Derived>::TransformOMPDeviceClause(OMPDeviceClause *C) {
9569   ExprResult E = getDerived().TransformExpr(C->getDevice());
9570   if (E.isInvalid())
9571     return nullptr;
9572   return getDerived().RebuildOMPDeviceClause(
9573       C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
9574       C->getModifierLoc(), C->getEndLoc());
9575 }
9576 
9577 template <typename Derived, class T>
transformOMPMappableExprListClause(TreeTransform<Derived> & TT,OMPMappableExprListClause<T> * C,llvm::SmallVectorImpl<Expr * > & Vars,CXXScopeSpec & MapperIdScopeSpec,DeclarationNameInfo & MapperIdInfo,llvm::SmallVectorImpl<Expr * > & UnresolvedMappers)9578 bool transformOMPMappableExprListClause(
9579     TreeTransform<Derived> &TT, OMPMappableExprListClause<T> *C,
9580     llvm::SmallVectorImpl<Expr *> &Vars, CXXScopeSpec &MapperIdScopeSpec,
9581     DeclarationNameInfo &MapperIdInfo,
9582     llvm::SmallVectorImpl<Expr *> &UnresolvedMappers) {
9583   // Transform expressions in the list.
9584   Vars.reserve(C->varlist_size());
9585   for (auto *VE : C->varlists()) {
9586     ExprResult EVar = TT.getDerived().TransformExpr(cast<Expr>(VE));
9587     if (EVar.isInvalid())
9588       return true;
9589     Vars.push_back(EVar.get());
9590   }
9591   // Transform mapper scope specifier and identifier.
9592   NestedNameSpecifierLoc QualifierLoc;
9593   if (C->getMapperQualifierLoc()) {
9594     QualifierLoc = TT.getDerived().TransformNestedNameSpecifierLoc(
9595         C->getMapperQualifierLoc());
9596     if (!QualifierLoc)
9597       return true;
9598   }
9599   MapperIdScopeSpec.Adopt(QualifierLoc);
9600   MapperIdInfo = C->getMapperIdInfo();
9601   if (MapperIdInfo.getName()) {
9602     MapperIdInfo = TT.getDerived().TransformDeclarationNameInfo(MapperIdInfo);
9603     if (!MapperIdInfo.getName())
9604       return true;
9605   }
9606   // Build a list of all candidate OMPDeclareMapperDecls, which is provided by
9607   // the previous user-defined mapper lookup in dependent environment.
9608   for (auto *E : C->mapperlists()) {
9609     // Transform all the decls.
9610     if (E) {
9611       auto *ULE = cast<UnresolvedLookupExpr>(E);
9612       UnresolvedSet<8> Decls;
9613       for (auto *D : ULE->decls()) {
9614         NamedDecl *InstD =
9615             cast<NamedDecl>(TT.getDerived().TransformDecl(E->getExprLoc(), D));
9616         Decls.addDecl(InstD, InstD->getAccess());
9617       }
9618       UnresolvedMappers.push_back(UnresolvedLookupExpr::Create(
9619           TT.getSema().Context, /*NamingClass=*/nullptr,
9620           MapperIdScopeSpec.getWithLocInContext(TT.getSema().Context),
9621           MapperIdInfo, /*ADL=*/true, ULE->isOverloaded(), Decls.begin(),
9622           Decls.end()));
9623     } else {
9624       UnresolvedMappers.push_back(nullptr);
9625     }
9626   }
9627   return false;
9628 }
9629 
9630 template <typename Derived>
TransformOMPMapClause(OMPMapClause * C)9631 OMPClause *TreeTransform<Derived>::TransformOMPMapClause(OMPMapClause *C) {
9632   OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9633   llvm::SmallVector<Expr *, 16> Vars;
9634   CXXScopeSpec MapperIdScopeSpec;
9635   DeclarationNameInfo MapperIdInfo;
9636   llvm::SmallVector<Expr *, 16> UnresolvedMappers;
9637   if (transformOMPMappableExprListClause<Derived, OMPMapClause>(
9638           *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers))
9639     return nullptr;
9640   return getDerived().RebuildOMPMapClause(
9641       C->getMapTypeModifiers(), C->getMapTypeModifiersLoc(), MapperIdScopeSpec,
9642       MapperIdInfo, C->getMapType(), C->isImplicitMapType(), C->getMapLoc(),
9643       C->getColonLoc(), Vars, Locs, UnresolvedMappers);
9644 }
9645 
9646 template <typename Derived>
9647 OMPClause *
TransformOMPAllocateClause(OMPAllocateClause * C)9648 TreeTransform<Derived>::TransformOMPAllocateClause(OMPAllocateClause *C) {
9649   Expr *Allocator = C->getAllocator();
9650   if (Allocator) {
9651     ExprResult AllocatorRes = getDerived().TransformExpr(Allocator);
9652     if (AllocatorRes.isInvalid())
9653       return nullptr;
9654     Allocator = AllocatorRes.get();
9655   }
9656   llvm::SmallVector<Expr *, 16> Vars;
9657   Vars.reserve(C->varlist_size());
9658   for (auto *VE : C->varlists()) {
9659     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9660     if (EVar.isInvalid())
9661       return nullptr;
9662     Vars.push_back(EVar.get());
9663   }
9664   return getDerived().RebuildOMPAllocateClause(
9665       Allocator, Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(),
9666       C->getEndLoc());
9667 }
9668 
9669 template <typename Derived>
9670 OMPClause *
TransformOMPNumTeamsClause(OMPNumTeamsClause * C)9671 TreeTransform<Derived>::TransformOMPNumTeamsClause(OMPNumTeamsClause *C) {
9672   ExprResult E = getDerived().TransformExpr(C->getNumTeams());
9673   if (E.isInvalid())
9674     return nullptr;
9675   return getDerived().RebuildOMPNumTeamsClause(
9676       E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9677 }
9678 
9679 template <typename Derived>
9680 OMPClause *
TransformOMPThreadLimitClause(OMPThreadLimitClause * C)9681 TreeTransform<Derived>::TransformOMPThreadLimitClause(OMPThreadLimitClause *C) {
9682   ExprResult E = getDerived().TransformExpr(C->getThreadLimit());
9683   if (E.isInvalid())
9684     return nullptr;
9685   return getDerived().RebuildOMPThreadLimitClause(
9686       E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9687 }
9688 
9689 template <typename Derived>
9690 OMPClause *
TransformOMPPriorityClause(OMPPriorityClause * C)9691 TreeTransform<Derived>::TransformOMPPriorityClause(OMPPriorityClause *C) {
9692   ExprResult E = getDerived().TransformExpr(C->getPriority());
9693   if (E.isInvalid())
9694     return nullptr;
9695   return getDerived().RebuildOMPPriorityClause(
9696       E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9697 }
9698 
9699 template <typename Derived>
9700 OMPClause *
TransformOMPGrainsizeClause(OMPGrainsizeClause * C)9701 TreeTransform<Derived>::TransformOMPGrainsizeClause(OMPGrainsizeClause *C) {
9702   ExprResult E = getDerived().TransformExpr(C->getGrainsize());
9703   if (E.isInvalid())
9704     return nullptr;
9705   return getDerived().RebuildOMPGrainsizeClause(
9706       E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9707 }
9708 
9709 template <typename Derived>
9710 OMPClause *
TransformOMPNumTasksClause(OMPNumTasksClause * C)9711 TreeTransform<Derived>::TransformOMPNumTasksClause(OMPNumTasksClause *C) {
9712   ExprResult E = getDerived().TransformExpr(C->getNumTasks());
9713   if (E.isInvalid())
9714     return nullptr;
9715   return getDerived().RebuildOMPNumTasksClause(
9716       E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9717 }
9718 
9719 template <typename Derived>
TransformOMPHintClause(OMPHintClause * C)9720 OMPClause *TreeTransform<Derived>::TransformOMPHintClause(OMPHintClause *C) {
9721   ExprResult E = getDerived().TransformExpr(C->getHint());
9722   if (E.isInvalid())
9723     return nullptr;
9724   return getDerived().RebuildOMPHintClause(E.get(), C->getBeginLoc(),
9725                                            C->getLParenLoc(), C->getEndLoc());
9726 }
9727 
9728 template <typename Derived>
TransformOMPDistScheduleClause(OMPDistScheduleClause * C)9729 OMPClause *TreeTransform<Derived>::TransformOMPDistScheduleClause(
9730     OMPDistScheduleClause *C) {
9731   ExprResult E = getDerived().TransformExpr(C->getChunkSize());
9732   if (E.isInvalid())
9733     return nullptr;
9734   return getDerived().RebuildOMPDistScheduleClause(
9735       C->getDistScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
9736       C->getDistScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc());
9737 }
9738 
9739 template <typename Derived>
9740 OMPClause *
TransformOMPDefaultmapClause(OMPDefaultmapClause * C)9741 TreeTransform<Derived>::TransformOMPDefaultmapClause(OMPDefaultmapClause *C) {
9742   // Rebuild Defaultmap Clause since we need to invoke the checking of
9743   // defaultmap(none:variable-category) after template initialization.
9744   return getDerived().RebuildOMPDefaultmapClause(C->getDefaultmapModifier(),
9745                                                  C->getDefaultmapKind(),
9746                                                  C->getBeginLoc(),
9747                                                  C->getLParenLoc(),
9748                                                  C->getDefaultmapModifierLoc(),
9749                                                  C->getDefaultmapKindLoc(),
9750                                                  C->getEndLoc());
9751 }
9752 
9753 template <typename Derived>
TransformOMPToClause(OMPToClause * C)9754 OMPClause *TreeTransform<Derived>::TransformOMPToClause(OMPToClause *C) {
9755   OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9756   llvm::SmallVector<Expr *, 16> Vars;
9757   CXXScopeSpec MapperIdScopeSpec;
9758   DeclarationNameInfo MapperIdInfo;
9759   llvm::SmallVector<Expr *, 16> UnresolvedMappers;
9760   if (transformOMPMappableExprListClause<Derived, OMPToClause>(
9761           *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers))
9762     return nullptr;
9763   return getDerived().RebuildOMPToClause(
9764       C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec,
9765       MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers);
9766 }
9767 
9768 template <typename Derived>
TransformOMPFromClause(OMPFromClause * C)9769 OMPClause *TreeTransform<Derived>::TransformOMPFromClause(OMPFromClause *C) {
9770   OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9771   llvm::SmallVector<Expr *, 16> Vars;
9772   CXXScopeSpec MapperIdScopeSpec;
9773   DeclarationNameInfo MapperIdInfo;
9774   llvm::SmallVector<Expr *, 16> UnresolvedMappers;
9775   if (transformOMPMappableExprListClause<Derived, OMPFromClause>(
9776           *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers))
9777     return nullptr;
9778   return getDerived().RebuildOMPFromClause(
9779       C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec,
9780       MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers);
9781 }
9782 
9783 template <typename Derived>
TransformOMPUseDevicePtrClause(OMPUseDevicePtrClause * C)9784 OMPClause *TreeTransform<Derived>::TransformOMPUseDevicePtrClause(
9785     OMPUseDevicePtrClause *C) {
9786   llvm::SmallVector<Expr *, 16> Vars;
9787   Vars.reserve(C->varlist_size());
9788   for (auto *VE : C->varlists()) {
9789     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9790     if (EVar.isInvalid())
9791       return nullptr;
9792     Vars.push_back(EVar.get());
9793   }
9794   OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9795   return getDerived().RebuildOMPUseDevicePtrClause(Vars, Locs);
9796 }
9797 
9798 template <typename Derived>
TransformOMPUseDeviceAddrClause(OMPUseDeviceAddrClause * C)9799 OMPClause *TreeTransform<Derived>::TransformOMPUseDeviceAddrClause(
9800     OMPUseDeviceAddrClause *C) {
9801   llvm::SmallVector<Expr *, 16> Vars;
9802   Vars.reserve(C->varlist_size());
9803   for (auto *VE : C->varlists()) {
9804     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9805     if (EVar.isInvalid())
9806       return nullptr;
9807     Vars.push_back(EVar.get());
9808   }
9809   OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9810   return getDerived().RebuildOMPUseDeviceAddrClause(Vars, Locs);
9811 }
9812 
9813 template <typename Derived>
9814 OMPClause *
TransformOMPIsDevicePtrClause(OMPIsDevicePtrClause * C)9815 TreeTransform<Derived>::TransformOMPIsDevicePtrClause(OMPIsDevicePtrClause *C) {
9816   llvm::SmallVector<Expr *, 16> Vars;
9817   Vars.reserve(C->varlist_size());
9818   for (auto *VE : C->varlists()) {
9819     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9820     if (EVar.isInvalid())
9821       return nullptr;
9822     Vars.push_back(EVar.get());
9823   }
9824   OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9825   return getDerived().RebuildOMPIsDevicePtrClause(Vars, Locs);
9826 }
9827 
9828 template <typename Derived>
9829 OMPClause *
TransformOMPNontemporalClause(OMPNontemporalClause * C)9830 TreeTransform<Derived>::TransformOMPNontemporalClause(OMPNontemporalClause *C) {
9831   llvm::SmallVector<Expr *, 16> Vars;
9832   Vars.reserve(C->varlist_size());
9833   for (auto *VE : C->varlists()) {
9834     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9835     if (EVar.isInvalid())
9836       return nullptr;
9837     Vars.push_back(EVar.get());
9838   }
9839   return getDerived().RebuildOMPNontemporalClause(
9840       Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9841 }
9842 
9843 template <typename Derived>
9844 OMPClause *
TransformOMPInclusiveClause(OMPInclusiveClause * C)9845 TreeTransform<Derived>::TransformOMPInclusiveClause(OMPInclusiveClause *C) {
9846   llvm::SmallVector<Expr *, 16> Vars;
9847   Vars.reserve(C->varlist_size());
9848   for (auto *VE : C->varlists()) {
9849     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9850     if (EVar.isInvalid())
9851       return nullptr;
9852     Vars.push_back(EVar.get());
9853   }
9854   return getDerived().RebuildOMPInclusiveClause(
9855       Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9856 }
9857 
9858 template <typename Derived>
9859 OMPClause *
TransformOMPExclusiveClause(OMPExclusiveClause * C)9860 TreeTransform<Derived>::TransformOMPExclusiveClause(OMPExclusiveClause *C) {
9861   llvm::SmallVector<Expr *, 16> Vars;
9862   Vars.reserve(C->varlist_size());
9863   for (auto *VE : C->varlists()) {
9864     ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9865     if (EVar.isInvalid())
9866       return nullptr;
9867     Vars.push_back(EVar.get());
9868   }
9869   return getDerived().RebuildOMPExclusiveClause(
9870       Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9871 }
9872 
9873 template <typename Derived>
TransformOMPUsesAllocatorsClause(OMPUsesAllocatorsClause * C)9874 OMPClause *TreeTransform<Derived>::TransformOMPUsesAllocatorsClause(
9875     OMPUsesAllocatorsClause *C) {
9876   SmallVector<Sema::UsesAllocatorsData, 16> Data;
9877   Data.reserve(C->getNumberOfAllocators());
9878   for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
9879     OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
9880     ExprResult Allocator = getDerived().TransformExpr(D.Allocator);
9881     if (Allocator.isInvalid())
9882       continue;
9883     ExprResult AllocatorTraits;
9884     if (Expr *AT = D.AllocatorTraits) {
9885       AllocatorTraits = getDerived().TransformExpr(AT);
9886       if (AllocatorTraits.isInvalid())
9887         continue;
9888     }
9889     Sema::UsesAllocatorsData &NewD = Data.emplace_back();
9890     NewD.Allocator = Allocator.get();
9891     NewD.AllocatorTraits = AllocatorTraits.get();
9892     NewD.LParenLoc = D.LParenLoc;
9893     NewD.RParenLoc = D.RParenLoc;
9894   }
9895   return getDerived().RebuildOMPUsesAllocatorsClause(
9896       Data, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9897 }
9898 
9899 template <typename Derived>
9900 OMPClause *
TransformOMPAffinityClause(OMPAffinityClause * C)9901 TreeTransform<Derived>::TransformOMPAffinityClause(OMPAffinityClause *C) {
9902   SmallVector<Expr *, 4> Locators;
9903   Locators.reserve(C->varlist_size());
9904   ExprResult ModifierRes;
9905   if (Expr *Modifier = C->getModifier()) {
9906     ModifierRes = getDerived().TransformExpr(Modifier);
9907     if (ModifierRes.isInvalid())
9908       return nullptr;
9909   }
9910   for (Expr *E : C->varlists()) {
9911     ExprResult Locator = getDerived().TransformExpr(E);
9912     if (Locator.isInvalid())
9913       continue;
9914     Locators.push_back(Locator.get());
9915   }
9916   return getDerived().RebuildOMPAffinityClause(
9917       C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), C->getEndLoc(),
9918       ModifierRes.get(), Locators);
9919 }
9920 
9921 template <typename Derived>
TransformOMPOrderClause(OMPOrderClause * C)9922 OMPClause *TreeTransform<Derived>::TransformOMPOrderClause(OMPOrderClause *C) {
9923   return getDerived().RebuildOMPOrderClause(C->getKind(), C->getKindKwLoc(),
9924                                             C->getBeginLoc(), C->getLParenLoc(),
9925                                             C->getEndLoc());
9926 }
9927 
9928 //===----------------------------------------------------------------------===//
9929 // Expression transformation
9930 //===----------------------------------------------------------------------===//
9931 template<typename Derived>
9932 ExprResult
TransformConstantExpr(ConstantExpr * E)9933 TreeTransform<Derived>::TransformConstantExpr(ConstantExpr *E) {
9934   return TransformExpr(E->getSubExpr());
9935 }
9936 
9937 template<typename Derived>
9938 ExprResult
TransformPredefinedExpr(PredefinedExpr * E)9939 TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) {
9940   if (!E->isTypeDependent())
9941     return E;
9942 
9943   return getDerived().RebuildPredefinedExpr(E->getLocation(),
9944                                             E->getIdentKind());
9945 }
9946 
9947 template<typename Derived>
9948 ExprResult
TransformDeclRefExpr(DeclRefExpr * E)9949 TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) {
9950   NestedNameSpecifierLoc QualifierLoc;
9951   if (E->getQualifierLoc()) {
9952     QualifierLoc
9953       = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
9954     if (!QualifierLoc)
9955       return ExprError();
9956   }
9957 
9958   ValueDecl *ND
9959     = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
9960                                                          E->getDecl()));
9961   if (!ND)
9962     return ExprError();
9963 
9964   NamedDecl *Found = ND;
9965   if (E->getFoundDecl() != E->getDecl()) {
9966     Found = cast_or_null<NamedDecl>(
9967         getDerived().TransformDecl(E->getLocation(), E->getFoundDecl()));
9968     if (!Found)
9969       return ExprError();
9970   }
9971 
9972   DeclarationNameInfo NameInfo = E->getNameInfo();
9973   if (NameInfo.getName()) {
9974     NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
9975     if (!NameInfo.getName())
9976       return ExprError();
9977   }
9978 
9979   if (!getDerived().AlwaysRebuild() &&
9980       QualifierLoc == E->getQualifierLoc() &&
9981       ND == E->getDecl() &&
9982       Found == E->getFoundDecl() &&
9983       NameInfo.getName() == E->getDecl()->getDeclName() &&
9984       !E->hasExplicitTemplateArgs()) {
9985 
9986     // Mark it referenced in the new context regardless.
9987     // FIXME: this is a bit instantiation-specific.
9988     SemaRef.MarkDeclRefReferenced(E);
9989 
9990     return E;
9991   }
9992 
9993   TemplateArgumentListInfo TransArgs, *TemplateArgs = nullptr;
9994   if (E->hasExplicitTemplateArgs()) {
9995     TemplateArgs = &TransArgs;
9996     TransArgs.setLAngleLoc(E->getLAngleLoc());
9997     TransArgs.setRAngleLoc(E->getRAngleLoc());
9998     if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
9999                                                 E->getNumTemplateArgs(),
10000                                                 TransArgs))
10001       return ExprError();
10002   }
10003 
10004   return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo,
10005                                          Found, TemplateArgs);
10006 }
10007 
10008 template<typename Derived>
10009 ExprResult
TransformIntegerLiteral(IntegerLiteral * E)10010 TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) {
10011   return E;
10012 }
10013 
10014 template <typename Derived>
TransformFixedPointLiteral(FixedPointLiteral * E)10015 ExprResult TreeTransform<Derived>::TransformFixedPointLiteral(
10016     FixedPointLiteral *E) {
10017   return E;
10018 }
10019 
10020 template<typename Derived>
10021 ExprResult
TransformFloatingLiteral(FloatingLiteral * E)10022 TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) {
10023   return E;
10024 }
10025 
10026 template<typename Derived>
10027 ExprResult
TransformImaginaryLiteral(ImaginaryLiteral * E)10028 TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) {
10029   return E;
10030 }
10031 
10032 template<typename Derived>
10033 ExprResult
TransformStringLiteral(StringLiteral * E)10034 TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) {
10035   return E;
10036 }
10037 
10038 template<typename Derived>
10039 ExprResult
TransformCharacterLiteral(CharacterLiteral * E)10040 TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) {
10041   return E;
10042 }
10043 
10044 template<typename Derived>
10045 ExprResult
TransformUserDefinedLiteral(UserDefinedLiteral * E)10046 TreeTransform<Derived>::TransformUserDefinedLiteral(UserDefinedLiteral *E) {
10047   if (FunctionDecl *FD = E->getDirectCallee())
10048     SemaRef.MarkFunctionReferenced(E->getBeginLoc(), FD);
10049   return SemaRef.MaybeBindToTemporary(E);
10050 }
10051 
10052 template<typename Derived>
10053 ExprResult
TransformGenericSelectionExpr(GenericSelectionExpr * E)10054 TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) {
10055   ExprResult ControllingExpr =
10056     getDerived().TransformExpr(E->getControllingExpr());
10057   if (ControllingExpr.isInvalid())
10058     return ExprError();
10059 
10060   SmallVector<Expr *, 4> AssocExprs;
10061   SmallVector<TypeSourceInfo *, 4> AssocTypes;
10062   for (const GenericSelectionExpr::Association Assoc : E->associations()) {
10063     TypeSourceInfo *TSI = Assoc.getTypeSourceInfo();
10064     if (TSI) {
10065       TypeSourceInfo *AssocType = getDerived().TransformType(TSI);
10066       if (!AssocType)
10067         return ExprError();
10068       AssocTypes.push_back(AssocType);
10069     } else {
10070       AssocTypes.push_back(nullptr);
10071     }
10072 
10073     ExprResult AssocExpr =
10074         getDerived().TransformExpr(Assoc.getAssociationExpr());
10075     if (AssocExpr.isInvalid())
10076       return ExprError();
10077     AssocExprs.push_back(AssocExpr.get());
10078   }
10079 
10080   return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(),
10081                                                   E->getDefaultLoc(),
10082                                                   E->getRParenLoc(),
10083                                                   ControllingExpr.get(),
10084                                                   AssocTypes,
10085                                                   AssocExprs);
10086 }
10087 
10088 template<typename Derived>
10089 ExprResult
TransformParenExpr(ParenExpr * E)10090 TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) {
10091   ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
10092   if (SubExpr.isInvalid())
10093     return ExprError();
10094 
10095   if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
10096     return E;
10097 
10098   return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(),
10099                                        E->getRParen());
10100 }
10101 
10102 /// The operand of a unary address-of operator has special rules: it's
10103 /// allowed to refer to a non-static member of a class even if there's no 'this'
10104 /// object available.
10105 template<typename Derived>
10106 ExprResult
TransformAddressOfOperand(Expr * E)10107 TreeTransform<Derived>::TransformAddressOfOperand(Expr *E) {
10108   if (DependentScopeDeclRefExpr *DRE = dyn_cast<DependentScopeDeclRefExpr>(E))
10109     return getDerived().TransformDependentScopeDeclRefExpr(DRE, true, nullptr);
10110   else
10111     return getDerived().TransformExpr(E);
10112 }
10113 
10114 template<typename Derived>
10115 ExprResult
TransformUnaryOperator(UnaryOperator * E)10116 TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) {
10117   ExprResult SubExpr;
10118   if (E->getOpcode() == UO_AddrOf)
10119     SubExpr = TransformAddressOfOperand(E->getSubExpr());
10120   else
10121     SubExpr = TransformExpr(E->getSubExpr());
10122   if (SubExpr.isInvalid())
10123     return ExprError();
10124 
10125   if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
10126     return E;
10127 
10128   return getDerived().RebuildUnaryOperator(E->getOperatorLoc(),
10129                                            E->getOpcode(),
10130                                            SubExpr.get());
10131 }
10132 
10133 template<typename Derived>
10134 ExprResult
TransformOffsetOfExpr(OffsetOfExpr * E)10135 TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) {
10136   // Transform the type.
10137   TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
10138   if (!Type)
10139     return ExprError();
10140 
10141   // Transform all of the components into components similar to what the
10142   // parser uses.
10143   // FIXME: It would be slightly more efficient in the non-dependent case to
10144   // just map FieldDecls, rather than requiring the rebuilder to look for
10145   // the fields again. However, __builtin_offsetof is rare enough in
10146   // template code that we don't care.
10147   bool ExprChanged = false;
10148   typedef Sema::OffsetOfComponent Component;
10149   SmallVector<Component, 4> Components;
10150   for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
10151     const OffsetOfNode &ON = E->getComponent(I);
10152     Component Comp;
10153     Comp.isBrackets = true;
10154     Comp.LocStart = ON.getSourceRange().getBegin();
10155     Comp.LocEnd = ON.getSourceRange().getEnd();
10156     switch (ON.getKind()) {
10157     case OffsetOfNode::Array: {
10158       Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex());
10159       ExprResult Index = getDerived().TransformExpr(FromIndex);
10160       if (Index.isInvalid())
10161         return ExprError();
10162 
10163       ExprChanged = ExprChanged || Index.get() != FromIndex;
10164       Comp.isBrackets = true;
10165       Comp.U.E = Index.get();
10166       break;
10167     }
10168 
10169     case OffsetOfNode::Field:
10170     case OffsetOfNode::Identifier:
10171       Comp.isBrackets = false;
10172       Comp.U.IdentInfo = ON.getFieldName();
10173       if (!Comp.U.IdentInfo)
10174         continue;
10175 
10176       break;
10177 
10178     case OffsetOfNode::Base:
10179       // Will be recomputed during the rebuild.
10180       continue;
10181     }
10182 
10183     Components.push_back(Comp);
10184   }
10185 
10186   // If nothing changed, retain the existing expression.
10187   if (!getDerived().AlwaysRebuild() &&
10188       Type == E->getTypeSourceInfo() &&
10189       !ExprChanged)
10190     return E;
10191 
10192   // Build a new offsetof expression.
10193   return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type,
10194                                           Components, E->getRParenLoc());
10195 }
10196 
10197 template<typename Derived>
10198 ExprResult
TransformOpaqueValueExpr(OpaqueValueExpr * E)10199 TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) {
10200   assert((!E->getSourceExpr() || getDerived().AlreadyTransformed(E->getType())) &&
10201          "opaque value expression requires transformation");
10202   return E;
10203 }
10204 
10205 template<typename Derived>
10206 ExprResult
TransformTypoExpr(TypoExpr * E)10207 TreeTransform<Derived>::TransformTypoExpr(TypoExpr *E) {
10208   return E;
10209 }
10210 
10211 template <typename Derived>
TransformRecoveryExpr(RecoveryExpr * E)10212 ExprResult TreeTransform<Derived>::TransformRecoveryExpr(RecoveryExpr *E) {
10213   llvm::SmallVector<Expr *, 8> Children;
10214   bool Changed = false;
10215   for (Expr *C : E->subExpressions()) {
10216     ExprResult NewC = getDerived().TransformExpr(C);
10217     if (NewC.isInvalid())
10218       return ExprError();
10219     Children.push_back(NewC.get());
10220 
10221     Changed |= NewC.get() != C;
10222   }
10223   if (!getDerived().AlwaysRebuild() && !Changed)
10224     return E;
10225   return getDerived().RebuildRecoveryExpr(E->getBeginLoc(), E->getEndLoc(),
10226                                           Children, E->getType());
10227 }
10228 
10229 template<typename Derived>
10230 ExprResult
TransformPseudoObjectExpr(PseudoObjectExpr * E)10231 TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) {
10232   // Rebuild the syntactic form.  The original syntactic form has
10233   // opaque-value expressions in it, so strip those away and rebuild
10234   // the result.  This is a really awful way of doing this, but the
10235   // better solution (rebuilding the semantic expressions and
10236   // rebinding OVEs as necessary) doesn't work; we'd need
10237   // TreeTransform to not strip away implicit conversions.
10238   Expr *newSyntacticForm = SemaRef.recreateSyntacticForm(E);
10239   ExprResult result = getDerived().TransformExpr(newSyntacticForm);
10240   if (result.isInvalid()) return ExprError();
10241 
10242   // If that gives us a pseudo-object result back, the pseudo-object
10243   // expression must have been an lvalue-to-rvalue conversion which we
10244   // should reapply.
10245   if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject))
10246     result = SemaRef.checkPseudoObjectRValue(result.get());
10247 
10248   return result;
10249 }
10250 
10251 template<typename Derived>
10252 ExprResult
TransformUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr * E)10253 TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr(
10254                                                 UnaryExprOrTypeTraitExpr *E) {
10255   if (E->isArgumentType()) {
10256     TypeSourceInfo *OldT = E->getArgumentTypeInfo();
10257 
10258     TypeSourceInfo *NewT = getDerived().TransformType(OldT);
10259     if (!NewT)
10260       return ExprError();
10261 
10262     if (!getDerived().AlwaysRebuild() && OldT == NewT)
10263       return E;
10264 
10265     return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(),
10266                                                     E->getKind(),
10267                                                     E->getSourceRange());
10268   }
10269 
10270   // C++0x [expr.sizeof]p1:
10271   //   The operand is either an expression, which is an unevaluated operand
10272   //   [...]
10273   EnterExpressionEvaluationContext Unevaluated(
10274       SemaRef, Sema::ExpressionEvaluationContext::Unevaluated,
10275       Sema::ReuseLambdaContextDecl);
10276 
10277   // Try to recover if we have something like sizeof(T::X) where X is a type.
10278   // Notably, there must be *exactly* one set of parens if X is a type.
10279   TypeSourceInfo *RecoveryTSI = nullptr;
10280   ExprResult SubExpr;
10281   auto *PE = dyn_cast<ParenExpr>(E->getArgumentExpr());
10282   if (auto *DRE =
10283           PE ? dyn_cast<DependentScopeDeclRefExpr>(PE->getSubExpr()) : nullptr)
10284     SubExpr = getDerived().TransformParenDependentScopeDeclRefExpr(
10285         PE, DRE, false, &RecoveryTSI);
10286   else
10287     SubExpr = getDerived().TransformExpr(E->getArgumentExpr());
10288 
10289   if (RecoveryTSI) {
10290     return getDerived().RebuildUnaryExprOrTypeTrait(
10291         RecoveryTSI, E->getOperatorLoc(), E->getKind(), E->getSourceRange());
10292   } else if (SubExpr.isInvalid())
10293     return ExprError();
10294 
10295   if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr())
10296     return E;
10297 
10298   return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(),
10299                                                   E->getOperatorLoc(),
10300                                                   E->getKind(),
10301                                                   E->getSourceRange());
10302 }
10303 
10304 template<typename Derived>
10305 ExprResult
TransformArraySubscriptExpr(ArraySubscriptExpr * E)10306 TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) {
10307   ExprResult LHS = getDerived().TransformExpr(E->getLHS());
10308   if (LHS.isInvalid())
10309     return ExprError();
10310 
10311   ExprResult RHS = getDerived().TransformExpr(E->getRHS());
10312   if (RHS.isInvalid())
10313     return ExprError();
10314 
10315 
10316   if (!getDerived().AlwaysRebuild() &&
10317       LHS.get() == E->getLHS() &&
10318       RHS.get() == E->getRHS())
10319     return E;
10320 
10321   return getDerived().RebuildArraySubscriptExpr(
10322       LHS.get(),
10323       /*FIXME:*/ E->getLHS()->getBeginLoc(), RHS.get(), E->getRBracketLoc());
10324 }
10325 
10326 template <typename Derived>
10327 ExprResult
TransformMatrixSubscriptExpr(MatrixSubscriptExpr * E)10328 TreeTransform<Derived>::TransformMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
10329   ExprResult Base = getDerived().TransformExpr(E->getBase());
10330   if (Base.isInvalid())
10331     return ExprError();
10332 
10333   ExprResult RowIdx = getDerived().TransformExpr(E->getRowIdx());
10334   if (RowIdx.isInvalid())
10335     return ExprError();
10336 
10337   ExprResult ColumnIdx = getDerived().TransformExpr(E->getColumnIdx());
10338   if (ColumnIdx.isInvalid())
10339     return ExprError();
10340 
10341   if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() &&
10342       RowIdx.get() == E->getRowIdx() && ColumnIdx.get() == E->getColumnIdx())
10343     return E;
10344 
10345   return getDerived().RebuildMatrixSubscriptExpr(
10346       Base.get(), RowIdx.get(), ColumnIdx.get(), E->getRBracketLoc());
10347 }
10348 
10349 template <typename Derived>
10350 ExprResult
TransformOMPArraySectionExpr(OMPArraySectionExpr * E)10351 TreeTransform<Derived>::TransformOMPArraySectionExpr(OMPArraySectionExpr *E) {
10352   ExprResult Base = getDerived().TransformExpr(E->getBase());
10353   if (Base.isInvalid())
10354     return ExprError();
10355 
10356   ExprResult LowerBound;
10357   if (E->getLowerBound()) {
10358     LowerBound = getDerived().TransformExpr(E->getLowerBound());
10359     if (LowerBound.isInvalid())
10360       return ExprError();
10361   }
10362 
10363   ExprResult Length;
10364   if (E->getLength()) {
10365     Length = getDerived().TransformExpr(E->getLength());
10366     if (Length.isInvalid())
10367       return ExprError();
10368   }
10369 
10370   ExprResult Stride;
10371   if (Expr *Str = E->getStride()) {
10372     Stride = getDerived().TransformExpr(Str);
10373     if (Stride.isInvalid())
10374       return ExprError();
10375   }
10376 
10377   if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() &&
10378       LowerBound.get() == E->getLowerBound() && Length.get() == E->getLength())
10379     return E;
10380 
10381   return getDerived().RebuildOMPArraySectionExpr(
10382       Base.get(), E->getBase()->getEndLoc(), LowerBound.get(),
10383       E->getColonLocFirst(), E->getColonLocSecond(), Length.get(), Stride.get(),
10384       E->getRBracketLoc());
10385 }
10386 
10387 template <typename Derived>
10388 ExprResult
TransformOMPArrayShapingExpr(OMPArrayShapingExpr * E)10389 TreeTransform<Derived>::TransformOMPArrayShapingExpr(OMPArrayShapingExpr *E) {
10390   ExprResult Base = getDerived().TransformExpr(E->getBase());
10391   if (Base.isInvalid())
10392     return ExprError();
10393 
10394   SmallVector<Expr *, 4> Dims;
10395   bool ErrorFound = false;
10396   for (Expr *Dim : E->getDimensions()) {
10397     ExprResult DimRes = getDerived().TransformExpr(Dim);
10398     if (DimRes.isInvalid()) {
10399       ErrorFound = true;
10400       continue;
10401     }
10402     Dims.push_back(DimRes.get());
10403   }
10404 
10405   if (ErrorFound)
10406     return ExprError();
10407   return getDerived().RebuildOMPArrayShapingExpr(Base.get(), E->getLParenLoc(),
10408                                                  E->getRParenLoc(), Dims,
10409                                                  E->getBracketsRanges());
10410 }
10411 
10412 template <typename Derived>
10413 ExprResult
TransformOMPIteratorExpr(OMPIteratorExpr * E)10414 TreeTransform<Derived>::TransformOMPIteratorExpr(OMPIteratorExpr *E) {
10415   unsigned NumIterators = E->numOfIterators();
10416   SmallVector<Sema::OMPIteratorData, 4> Data(NumIterators);
10417 
10418   bool ErrorFound = false;
10419   bool NeedToRebuild = getDerived().AlwaysRebuild();
10420   for (unsigned I = 0; I < NumIterators; ++I) {
10421     auto *D = cast<VarDecl>(E->getIteratorDecl(I));
10422     Data[I].DeclIdent = D->getIdentifier();
10423     Data[I].DeclIdentLoc = D->getLocation();
10424     if (D->getLocation() == D->getBeginLoc()) {
10425       assert(SemaRef.Context.hasSameType(D->getType(), SemaRef.Context.IntTy) &&
10426              "Implicit type must be int.");
10427     } else {
10428       TypeSourceInfo *TSI = getDerived().TransformType(D->getTypeSourceInfo());
10429       QualType DeclTy = getDerived().TransformType(D->getType());
10430       Data[I].Type = SemaRef.CreateParsedType(DeclTy, TSI);
10431     }
10432     OMPIteratorExpr::IteratorRange Range = E->getIteratorRange(I);
10433     ExprResult Begin = getDerived().TransformExpr(Range.Begin);
10434     ExprResult End = getDerived().TransformExpr(Range.End);
10435     ExprResult Step = getDerived().TransformExpr(Range.Step);
10436     ErrorFound = ErrorFound ||
10437                  !(!D->getTypeSourceInfo() || (Data[I].Type.getAsOpaquePtr() &&
10438                                                !Data[I].Type.get().isNull())) ||
10439                  Begin.isInvalid() || End.isInvalid() || Step.isInvalid();
10440     if (ErrorFound)
10441       continue;
10442     Data[I].Range.Begin = Begin.get();
10443     Data[I].Range.End = End.get();
10444     Data[I].Range.Step = Step.get();
10445     Data[I].AssignLoc = E->getAssignLoc(I);
10446     Data[I].ColonLoc = E->getColonLoc(I);
10447     Data[I].SecColonLoc = E->getSecondColonLoc(I);
10448     NeedToRebuild =
10449         NeedToRebuild ||
10450         (D->getTypeSourceInfo() && Data[I].Type.get().getTypePtrOrNull() !=
10451                                        D->getType().getTypePtrOrNull()) ||
10452         Range.Begin != Data[I].Range.Begin || Range.End != Data[I].Range.End ||
10453         Range.Step != Data[I].Range.Step;
10454   }
10455   if (ErrorFound)
10456     return ExprError();
10457   if (!NeedToRebuild)
10458     return E;
10459 
10460   ExprResult Res = getDerived().RebuildOMPIteratorExpr(
10461       E->getIteratorKwLoc(), E->getLParenLoc(), E->getRParenLoc(), Data);
10462   if (!Res.isUsable())
10463     return Res;
10464   auto *IE = cast<OMPIteratorExpr>(Res.get());
10465   for (unsigned I = 0; I < NumIterators; ++I)
10466     getDerived().transformedLocalDecl(E->getIteratorDecl(I),
10467                                       IE->getIteratorDecl(I));
10468   return Res;
10469 }
10470 
10471 template<typename Derived>
10472 ExprResult
TransformCallExpr(CallExpr * E)10473 TreeTransform<Derived>::TransformCallExpr(CallExpr *E) {
10474   // Transform the callee.
10475   ExprResult Callee = getDerived().TransformExpr(E->getCallee());
10476   if (Callee.isInvalid())
10477     return ExprError();
10478 
10479   // Transform arguments.
10480   bool ArgChanged = false;
10481   SmallVector<Expr*, 8> Args;
10482   if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
10483                                   &ArgChanged))
10484     return ExprError();
10485 
10486   if (!getDerived().AlwaysRebuild() &&
10487       Callee.get() == E->getCallee() &&
10488       !ArgChanged)
10489     return SemaRef.MaybeBindToTemporary(E);
10490 
10491   // FIXME: Wrong source location information for the '('.
10492   SourceLocation FakeLParenLoc
10493     = ((Expr *)Callee.get())->getSourceRange().getBegin();
10494 
10495   Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
10496   if (E->hasStoredFPFeatures()) {
10497     FPOptionsOverride NewOverrides = E->getFPFeatures();
10498     getSema().CurFPFeatures =
10499         NewOverrides.applyOverrides(getSema().getLangOpts());
10500     getSema().FpPragmaStack.CurrentValue = NewOverrides;
10501   }
10502 
10503   return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
10504                                       Args,
10505                                       E->getRParenLoc());
10506 }
10507 
10508 template<typename Derived>
10509 ExprResult
TransformMemberExpr(MemberExpr * E)10510 TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) {
10511   ExprResult Base = getDerived().TransformExpr(E->getBase());
10512   if (Base.isInvalid())
10513     return ExprError();
10514 
10515   NestedNameSpecifierLoc QualifierLoc;
10516   if (E->hasQualifier()) {
10517     QualifierLoc
10518       = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
10519 
10520     if (!QualifierLoc)
10521       return ExprError();
10522   }
10523   SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
10524 
10525   ValueDecl *Member
10526     = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(),
10527                                                          E->getMemberDecl()));
10528   if (!Member)
10529     return ExprError();
10530 
10531   NamedDecl *FoundDecl = E->getFoundDecl();
10532   if (FoundDecl == E->getMemberDecl()) {
10533     FoundDecl = Member;
10534   } else {
10535     FoundDecl = cast_or_null<NamedDecl>(
10536                    getDerived().TransformDecl(E->getMemberLoc(), FoundDecl));
10537     if (!FoundDecl)
10538       return ExprError();
10539   }
10540 
10541   if (!getDerived().AlwaysRebuild() &&
10542       Base.get() == E->getBase() &&
10543       QualifierLoc == E->getQualifierLoc() &&
10544       Member == E->getMemberDecl() &&
10545       FoundDecl == E->getFoundDecl() &&
10546       !E->hasExplicitTemplateArgs()) {
10547 
10548     // Mark it referenced in the new context regardless.
10549     // FIXME: this is a bit instantiation-specific.
10550     SemaRef.MarkMemberReferenced(E);
10551 
10552     return E;
10553   }
10554 
10555   TemplateArgumentListInfo TransArgs;
10556   if (E->hasExplicitTemplateArgs()) {
10557     TransArgs.setLAngleLoc(E->getLAngleLoc());
10558     TransArgs.setRAngleLoc(E->getRAngleLoc());
10559     if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
10560                                                 E->getNumTemplateArgs(),
10561                                                 TransArgs))
10562       return ExprError();
10563   }
10564 
10565   // FIXME: Bogus source location for the operator
10566   SourceLocation FakeOperatorLoc =
10567       SemaRef.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd());
10568 
10569   // FIXME: to do this check properly, we will need to preserve the
10570   // first-qualifier-in-scope here, just in case we had a dependent
10571   // base (and therefore couldn't do the check) and a
10572   // nested-name-qualifier (and therefore could do the lookup).
10573   NamedDecl *FirstQualifierInScope = nullptr;
10574   DeclarationNameInfo MemberNameInfo = E->getMemberNameInfo();
10575   if (MemberNameInfo.getName()) {
10576     MemberNameInfo = getDerived().TransformDeclarationNameInfo(MemberNameInfo);
10577     if (!MemberNameInfo.getName())
10578       return ExprError();
10579   }
10580 
10581   return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc,
10582                                         E->isArrow(),
10583                                         QualifierLoc,
10584                                         TemplateKWLoc,
10585                                         MemberNameInfo,
10586                                         Member,
10587                                         FoundDecl,
10588                                         (E->hasExplicitTemplateArgs()
10589                                            ? &TransArgs : nullptr),
10590                                         FirstQualifierInScope);
10591 }
10592 
10593 template<typename Derived>
10594 ExprResult
TransformBinaryOperator(BinaryOperator * E)10595 TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) {
10596   ExprResult LHS = getDerived().TransformExpr(E->getLHS());
10597   if (LHS.isInvalid())
10598     return ExprError();
10599 
10600   ExprResult RHS = getDerived().TransformExpr(E->getRHS());
10601   if (RHS.isInvalid())
10602     return ExprError();
10603 
10604   if (!getDerived().AlwaysRebuild() &&
10605       LHS.get() == E->getLHS() &&
10606       RHS.get() == E->getRHS())
10607     return E;
10608 
10609   if (E->isCompoundAssignmentOp())
10610     // FPFeatures has already been established from trailing storage
10611     return getDerived().RebuildBinaryOperator(
10612         E->getOperatorLoc(), E->getOpcode(), LHS.get(), RHS.get());
10613   Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
10614   FPOptionsOverride NewOverrides(E->getFPFeatures(getSema().getLangOpts()));
10615   getSema().CurFPFeatures =
10616       NewOverrides.applyOverrides(getSema().getLangOpts());
10617   getSema().FpPragmaStack.CurrentValue = NewOverrides;
10618   return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(),
10619                                             LHS.get(), RHS.get());
10620 }
10621 
10622 template <typename Derived>
TransformCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)10623 ExprResult TreeTransform<Derived>::TransformCXXRewrittenBinaryOperator(
10624     CXXRewrittenBinaryOperator *E) {
10625   CXXRewrittenBinaryOperator::DecomposedForm Decomp = E->getDecomposedForm();
10626 
10627   ExprResult LHS = getDerived().TransformExpr(const_cast<Expr*>(Decomp.LHS));
10628   if (LHS.isInvalid())
10629     return ExprError();
10630 
10631   ExprResult RHS = getDerived().TransformExpr(const_cast<Expr*>(Decomp.RHS));
10632   if (RHS.isInvalid())
10633     return ExprError();
10634 
10635   if (!getDerived().AlwaysRebuild() &&
10636       LHS.get() == Decomp.LHS &&
10637       RHS.get() == Decomp.RHS)
10638     return E;
10639 
10640   // Extract the already-resolved callee declarations so that we can restrict
10641   // ourselves to using them as the unqualified lookup results when rebuilding.
10642   UnresolvedSet<2> UnqualLookups;
10643   Expr *PossibleBinOps[] = {E->getSemanticForm(),
10644                             const_cast<Expr *>(Decomp.InnerBinOp)};
10645   for (Expr *PossibleBinOp : PossibleBinOps) {
10646     auto *Op = dyn_cast<CXXOperatorCallExpr>(PossibleBinOp->IgnoreImplicit());
10647     if (!Op)
10648       continue;
10649     auto *Callee = dyn_cast<DeclRefExpr>(Op->getCallee()->IgnoreImplicit());
10650     if (!Callee || isa<CXXMethodDecl>(Callee->getDecl()))
10651       continue;
10652 
10653     // Transform the callee in case we built a call to a local extern
10654     // declaration.
10655     NamedDecl *Found = cast_or_null<NamedDecl>(getDerived().TransformDecl(
10656         E->getOperatorLoc(), Callee->getFoundDecl()));
10657     if (!Found)
10658       return ExprError();
10659     UnqualLookups.addDecl(Found);
10660   }
10661 
10662   return getDerived().RebuildCXXRewrittenBinaryOperator(
10663       E->getOperatorLoc(), Decomp.Opcode, UnqualLookups, LHS.get(), RHS.get());
10664 }
10665 
10666 template<typename Derived>
10667 ExprResult
TransformCompoundAssignOperator(CompoundAssignOperator * E)10668 TreeTransform<Derived>::TransformCompoundAssignOperator(
10669                                                       CompoundAssignOperator *E) {
10670   Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
10671   FPOptionsOverride NewOverrides(E->getFPFeatures(getSema().getLangOpts()));
10672   getSema().CurFPFeatures =
10673       NewOverrides.applyOverrides(getSema().getLangOpts());
10674   getSema().FpPragmaStack.CurrentValue = NewOverrides;
10675   return getDerived().TransformBinaryOperator(E);
10676 }
10677 
10678 template<typename Derived>
10679 ExprResult TreeTransform<Derived>::
TransformBinaryConditionalOperator(BinaryConditionalOperator * e)10680 TransformBinaryConditionalOperator(BinaryConditionalOperator *e) {
10681   // Just rebuild the common and RHS expressions and see whether we
10682   // get any changes.
10683 
10684   ExprResult commonExpr = getDerived().TransformExpr(e->getCommon());
10685   if (commonExpr.isInvalid())
10686     return ExprError();
10687 
10688   ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr());
10689   if (rhs.isInvalid())
10690     return ExprError();
10691 
10692   if (!getDerived().AlwaysRebuild() &&
10693       commonExpr.get() == e->getCommon() &&
10694       rhs.get() == e->getFalseExpr())
10695     return e;
10696 
10697   return getDerived().RebuildConditionalOperator(commonExpr.get(),
10698                                                  e->getQuestionLoc(),
10699                                                  nullptr,
10700                                                  e->getColonLoc(),
10701                                                  rhs.get());
10702 }
10703 
10704 template<typename Derived>
10705 ExprResult
TransformConditionalOperator(ConditionalOperator * E)10706 TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) {
10707   ExprResult Cond = getDerived().TransformExpr(E->getCond());
10708   if (Cond.isInvalid())
10709     return ExprError();
10710 
10711   ExprResult LHS = getDerived().TransformExpr(E->getLHS());
10712   if (LHS.isInvalid())
10713     return ExprError();
10714 
10715   ExprResult RHS = getDerived().TransformExpr(E->getRHS());
10716   if (RHS.isInvalid())
10717     return ExprError();
10718 
10719   if (!getDerived().AlwaysRebuild() &&
10720       Cond.get() == E->getCond() &&
10721       LHS.get() == E->getLHS() &&
10722       RHS.get() == E->getRHS())
10723     return E;
10724 
10725   return getDerived().RebuildConditionalOperator(Cond.get(),
10726                                                  E->getQuestionLoc(),
10727                                                  LHS.get(),
10728                                                  E->getColonLoc(),
10729                                                  RHS.get());
10730 }
10731 
10732 template<typename Derived>
10733 ExprResult
TransformImplicitCastExpr(ImplicitCastExpr * E)10734 TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) {
10735   // Implicit casts are eliminated during transformation, since they
10736   // will be recomputed by semantic analysis after transformation.
10737   return getDerived().TransformExpr(E->getSubExprAsWritten());
10738 }
10739 
10740 template<typename Derived>
10741 ExprResult
TransformCStyleCastExpr(CStyleCastExpr * E)10742 TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) {
10743   TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
10744   if (!Type)
10745     return ExprError();
10746 
10747   ExprResult SubExpr
10748     = getDerived().TransformExpr(E->getSubExprAsWritten());
10749   if (SubExpr.isInvalid())
10750     return ExprError();
10751 
10752   if (!getDerived().AlwaysRebuild() &&
10753       Type == E->getTypeInfoAsWritten() &&
10754       SubExpr.get() == E->getSubExpr())
10755     return E;
10756 
10757   return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(),
10758                                             Type,
10759                                             E->getRParenLoc(),
10760                                             SubExpr.get());
10761 }
10762 
10763 template<typename Derived>
10764 ExprResult
TransformCompoundLiteralExpr(CompoundLiteralExpr * E)10765 TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) {
10766   TypeSourceInfo *OldT = E->getTypeSourceInfo();
10767   TypeSourceInfo *NewT = getDerived().TransformType(OldT);
10768   if (!NewT)
10769     return ExprError();
10770 
10771   ExprResult Init = getDerived().TransformExpr(E->getInitializer());
10772   if (Init.isInvalid())
10773     return ExprError();
10774 
10775   if (!getDerived().AlwaysRebuild() &&
10776       OldT == NewT &&
10777       Init.get() == E->getInitializer())
10778     return SemaRef.MaybeBindToTemporary(E);
10779 
10780   // Note: the expression type doesn't necessarily match the
10781   // type-as-written, but that's okay, because it should always be
10782   // derivable from the initializer.
10783 
10784   return getDerived().RebuildCompoundLiteralExpr(
10785       E->getLParenLoc(), NewT,
10786       /*FIXME:*/ E->getInitializer()->getEndLoc(), Init.get());
10787 }
10788 
10789 template<typename Derived>
10790 ExprResult
TransformExtVectorElementExpr(ExtVectorElementExpr * E)10791 TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) {
10792   ExprResult Base = getDerived().TransformExpr(E->getBase());
10793   if (Base.isInvalid())
10794     return ExprError();
10795 
10796   if (!getDerived().AlwaysRebuild() &&
10797       Base.get() == E->getBase())
10798     return E;
10799 
10800   // FIXME: Bad source location
10801   SourceLocation FakeOperatorLoc =
10802       SemaRef.getLocForEndOfToken(E->getBase()->getEndLoc());
10803   return getDerived().RebuildExtVectorElementExpr(Base.get(), FakeOperatorLoc,
10804                                                   E->getAccessorLoc(),
10805                                                   E->getAccessor());
10806 }
10807 
10808 template<typename Derived>
10809 ExprResult
TransformInitListExpr(InitListExpr * E)10810 TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) {
10811   if (InitListExpr *Syntactic = E->getSyntacticForm())
10812     E = Syntactic;
10813 
10814   bool InitChanged = false;
10815 
10816   EnterExpressionEvaluationContext Context(
10817       getSema(), EnterExpressionEvaluationContext::InitList);
10818 
10819   SmallVector<Expr*, 4> Inits;
10820   if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false,
10821                                   Inits, &InitChanged))
10822     return ExprError();
10823 
10824   if (!getDerived().AlwaysRebuild() && !InitChanged) {
10825     // FIXME: Attempt to reuse the existing syntactic form of the InitListExpr
10826     // in some cases. We can't reuse it in general, because the syntactic and
10827     // semantic forms are linked, and we can't know that semantic form will
10828     // match even if the syntactic form does.
10829   }
10830 
10831   return getDerived().RebuildInitList(E->getLBraceLoc(), Inits,
10832                                       E->getRBraceLoc());
10833 }
10834 
10835 template<typename Derived>
10836 ExprResult
TransformDesignatedInitExpr(DesignatedInitExpr * E)10837 TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) {
10838   Designation Desig;
10839 
10840   // transform the initializer value
10841   ExprResult Init = getDerived().TransformExpr(E->getInit());
10842   if (Init.isInvalid())
10843     return ExprError();
10844 
10845   // transform the designators.
10846   SmallVector<Expr*, 4> ArrayExprs;
10847   bool ExprChanged = false;
10848   for (const DesignatedInitExpr::Designator &D : E->designators()) {
10849     if (D.isFieldDesignator()) {
10850       Desig.AddDesignator(Designator::getField(D.getFieldName(),
10851                                                D.getDotLoc(),
10852                                                D.getFieldLoc()));
10853       if (D.getField()) {
10854         FieldDecl *Field = cast_or_null<FieldDecl>(
10855             getDerived().TransformDecl(D.getFieldLoc(), D.getField()));
10856         if (Field != D.getField())
10857           // Rebuild the expression when the transformed FieldDecl is
10858           // different to the already assigned FieldDecl.
10859           ExprChanged = true;
10860       } else {
10861         // Ensure that the designator expression is rebuilt when there isn't
10862         // a resolved FieldDecl in the designator as we don't want to assign
10863         // a FieldDecl to a pattern designator that will be instantiated again.
10864         ExprChanged = true;
10865       }
10866       continue;
10867     }
10868 
10869     if (D.isArrayDesignator()) {
10870       ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(D));
10871       if (Index.isInvalid())
10872         return ExprError();
10873 
10874       Desig.AddDesignator(
10875           Designator::getArray(Index.get(), D.getLBracketLoc()));
10876 
10877       ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(D);
10878       ArrayExprs.push_back(Index.get());
10879       continue;
10880     }
10881 
10882     assert(D.isArrayRangeDesignator() && "New kind of designator?");
10883     ExprResult Start
10884       = getDerived().TransformExpr(E->getArrayRangeStart(D));
10885     if (Start.isInvalid())
10886       return ExprError();
10887 
10888     ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(D));
10889     if (End.isInvalid())
10890       return ExprError();
10891 
10892     Desig.AddDesignator(Designator::getArrayRange(Start.get(),
10893                                                   End.get(),
10894                                                   D.getLBracketLoc(),
10895                                                   D.getEllipsisLoc()));
10896 
10897     ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(D) ||
10898                   End.get() != E->getArrayRangeEnd(D);
10899 
10900     ArrayExprs.push_back(Start.get());
10901     ArrayExprs.push_back(End.get());
10902   }
10903 
10904   if (!getDerived().AlwaysRebuild() &&
10905       Init.get() == E->getInit() &&
10906       !ExprChanged)
10907     return E;
10908 
10909   return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs,
10910                                                 E->getEqualOrColonLoc(),
10911                                                 E->usesGNUSyntax(), Init.get());
10912 }
10913 
10914 // Seems that if TransformInitListExpr() only works on the syntactic form of an
10915 // InitListExpr, then a DesignatedInitUpdateExpr is not encountered.
10916 template<typename Derived>
10917 ExprResult
TransformDesignatedInitUpdateExpr(DesignatedInitUpdateExpr * E)10918 TreeTransform<Derived>::TransformDesignatedInitUpdateExpr(
10919     DesignatedInitUpdateExpr *E) {
10920   llvm_unreachable("Unexpected DesignatedInitUpdateExpr in syntactic form of "
10921                    "initializer");
10922   return ExprError();
10923 }
10924 
10925 template<typename Derived>
10926 ExprResult
TransformNoInitExpr(NoInitExpr * E)10927 TreeTransform<Derived>::TransformNoInitExpr(
10928     NoInitExpr *E) {
10929   llvm_unreachable("Unexpected NoInitExpr in syntactic form of initializer");
10930   return ExprError();
10931 }
10932 
10933 template<typename Derived>
10934 ExprResult
TransformArrayInitLoopExpr(ArrayInitLoopExpr * E)10935 TreeTransform<Derived>::TransformArrayInitLoopExpr(ArrayInitLoopExpr *E) {
10936   llvm_unreachable("Unexpected ArrayInitLoopExpr outside of initializer");
10937   return ExprError();
10938 }
10939 
10940 template<typename Derived>
10941 ExprResult
TransformArrayInitIndexExpr(ArrayInitIndexExpr * E)10942 TreeTransform<Derived>::TransformArrayInitIndexExpr(ArrayInitIndexExpr *E) {
10943   llvm_unreachable("Unexpected ArrayInitIndexExpr outside of initializer");
10944   return ExprError();
10945 }
10946 
10947 template<typename Derived>
10948 ExprResult
TransformImplicitValueInitExpr(ImplicitValueInitExpr * E)10949 TreeTransform<Derived>::TransformImplicitValueInitExpr(
10950                                                      ImplicitValueInitExpr *E) {
10951   TemporaryBase Rebase(*this, E->getBeginLoc(), DeclarationName());
10952 
10953   // FIXME: Will we ever have proper type location here? Will we actually
10954   // need to transform the type?
10955   QualType T = getDerived().TransformType(E->getType());
10956   if (T.isNull())
10957     return ExprError();
10958 
10959   if (!getDerived().AlwaysRebuild() &&
10960       T == E->getType())
10961     return E;
10962 
10963   return getDerived().RebuildImplicitValueInitExpr(T);
10964 }
10965 
10966 template<typename Derived>
10967 ExprResult
TransformVAArgExpr(VAArgExpr * E)10968 TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) {
10969   TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo());
10970   if (!TInfo)
10971     return ExprError();
10972 
10973   ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
10974   if (SubExpr.isInvalid())
10975     return ExprError();
10976 
10977   if (!getDerived().AlwaysRebuild() &&
10978       TInfo == E->getWrittenTypeInfo() &&
10979       SubExpr.get() == E->getSubExpr())
10980     return E;
10981 
10982   return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(),
10983                                        TInfo, E->getRParenLoc());
10984 }
10985 
10986 template<typename Derived>
10987 ExprResult
TransformParenListExpr(ParenListExpr * E)10988 TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) {
10989   bool ArgumentChanged = false;
10990   SmallVector<Expr*, 4> Inits;
10991   if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits,
10992                      &ArgumentChanged))
10993     return ExprError();
10994 
10995   return getDerived().RebuildParenListExpr(E->getLParenLoc(),
10996                                            Inits,
10997                                            E->getRParenLoc());
10998 }
10999 
11000 /// Transform an address-of-label expression.
11001 ///
11002 /// By default, the transformation of an address-of-label expression always
11003 /// rebuilds the expression, so that the label identifier can be resolved to
11004 /// the corresponding label statement by semantic analysis.
11005 template<typename Derived>
11006 ExprResult
TransformAddrLabelExpr(AddrLabelExpr * E)11007 TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) {
11008   Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(),
11009                                         E->getLabel());
11010   if (!LD)
11011     return ExprError();
11012 
11013   return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(),
11014                                            cast<LabelDecl>(LD));
11015 }
11016 
11017 template<typename Derived>
11018 ExprResult
TransformStmtExpr(StmtExpr * E)11019 TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) {
11020   SemaRef.ActOnStartStmtExpr();
11021   StmtResult SubStmt
11022     = getDerived().TransformCompoundStmt(E->getSubStmt(), true);
11023   if (SubStmt.isInvalid()) {
11024     SemaRef.ActOnStmtExprError();
11025     return ExprError();
11026   }
11027 
11028   unsigned OldDepth = E->getTemplateDepth();
11029   unsigned NewDepth = getDerived().TransformTemplateDepth(OldDepth);
11030 
11031   if (!getDerived().AlwaysRebuild() && OldDepth == NewDepth &&
11032       SubStmt.get() == E->getSubStmt()) {
11033     // Calling this an 'error' is unintuitive, but it does the right thing.
11034     SemaRef.ActOnStmtExprError();
11035     return SemaRef.MaybeBindToTemporary(E);
11036   }
11037 
11038   return getDerived().RebuildStmtExpr(E->getLParenLoc(), SubStmt.get(),
11039                                       E->getRParenLoc(), NewDepth);
11040 }
11041 
11042 template<typename Derived>
11043 ExprResult
TransformChooseExpr(ChooseExpr * E)11044 TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) {
11045   ExprResult Cond = getDerived().TransformExpr(E->getCond());
11046   if (Cond.isInvalid())
11047     return ExprError();
11048 
11049   ExprResult LHS = getDerived().TransformExpr(E->getLHS());
11050   if (LHS.isInvalid())
11051     return ExprError();
11052 
11053   ExprResult RHS = getDerived().TransformExpr(E->getRHS());
11054   if (RHS.isInvalid())
11055     return ExprError();
11056 
11057   if (!getDerived().AlwaysRebuild() &&
11058       Cond.get() == E->getCond() &&
11059       LHS.get() == E->getLHS() &&
11060       RHS.get() == E->getRHS())
11061     return E;
11062 
11063   return getDerived().RebuildChooseExpr(E->getBuiltinLoc(),
11064                                         Cond.get(), LHS.get(), RHS.get(),
11065                                         E->getRParenLoc());
11066 }
11067 
11068 template<typename Derived>
11069 ExprResult
TransformGNUNullExpr(GNUNullExpr * E)11070 TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) {
11071   return E;
11072 }
11073 
11074 template<typename Derived>
11075 ExprResult
TransformCXXOperatorCallExpr(CXXOperatorCallExpr * E)11076 TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
11077   switch (E->getOperator()) {
11078   case OO_New:
11079   case OO_Delete:
11080   case OO_Array_New:
11081   case OO_Array_Delete:
11082     llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr");
11083 
11084   case OO_Call: {
11085     // This is a call to an object's operator().
11086     assert(E->getNumArgs() >= 1 && "Object call is missing arguments");
11087 
11088     // Transform the object itself.
11089     ExprResult Object = getDerived().TransformExpr(E->getArg(0));
11090     if (Object.isInvalid())
11091       return ExprError();
11092 
11093     // FIXME: Poor location information
11094     SourceLocation FakeLParenLoc = SemaRef.getLocForEndOfToken(
11095         static_cast<Expr *>(Object.get())->getEndLoc());
11096 
11097     // Transform the call arguments.
11098     SmallVector<Expr*, 8> Args;
11099     if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true,
11100                                     Args))
11101       return ExprError();
11102 
11103     return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc, Args,
11104                                         E->getEndLoc());
11105   }
11106 
11107 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
11108   case OO_##Name:
11109 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
11110 #include "clang/Basic/OperatorKinds.def"
11111   case OO_Subscript:
11112     // Handled below.
11113     break;
11114 
11115   case OO_Conditional:
11116     llvm_unreachable("conditional operator is not actually overloadable");
11117 
11118   case OO_None:
11119   case NUM_OVERLOADED_OPERATORS:
11120     llvm_unreachable("not an overloaded operator?");
11121   }
11122 
11123   ExprResult Callee = getDerived().TransformExpr(E->getCallee());
11124   if (Callee.isInvalid())
11125     return ExprError();
11126 
11127   ExprResult First;
11128   if (E->getOperator() == OO_Amp)
11129     First = getDerived().TransformAddressOfOperand(E->getArg(0));
11130   else
11131     First = getDerived().TransformExpr(E->getArg(0));
11132   if (First.isInvalid())
11133     return ExprError();
11134 
11135   ExprResult Second;
11136   if (E->getNumArgs() == 2) {
11137     Second = getDerived().TransformExpr(E->getArg(1));
11138     if (Second.isInvalid())
11139       return ExprError();
11140   }
11141 
11142   if (!getDerived().AlwaysRebuild() &&
11143       Callee.get() == E->getCallee() &&
11144       First.get() == E->getArg(0) &&
11145       (E->getNumArgs() != 2 || Second.get() == E->getArg(1)))
11146     return SemaRef.MaybeBindToTemporary(E);
11147 
11148   Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
11149   FPOptionsOverride NewOverrides(E->getFPFeatures());
11150   getSema().CurFPFeatures =
11151       NewOverrides.applyOverrides(getSema().getLangOpts());
11152   getSema().FpPragmaStack.CurrentValue = NewOverrides;
11153 
11154   return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(),
11155                                                  E->getOperatorLoc(),
11156                                                  Callee.get(),
11157                                                  First.get(),
11158                                                  Second.get());
11159 }
11160 
11161 template<typename Derived>
11162 ExprResult
TransformCXXMemberCallExpr(CXXMemberCallExpr * E)11163 TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) {
11164   return getDerived().TransformCallExpr(E);
11165 }
11166 
11167 template <typename Derived>
TransformSourceLocExpr(SourceLocExpr * E)11168 ExprResult TreeTransform<Derived>::TransformSourceLocExpr(SourceLocExpr *E) {
11169   bool NeedRebuildFunc = E->getIdentKind() == SourceLocExpr::Function &&
11170                          getSema().CurContext != E->getParentContext();
11171 
11172   if (!getDerived().AlwaysRebuild() && !NeedRebuildFunc)
11173     return E;
11174 
11175   return getDerived().RebuildSourceLocExpr(E->getIdentKind(), E->getBeginLoc(),
11176                                            E->getEndLoc(),
11177                                            getSema().CurContext);
11178 }
11179 
11180 template<typename Derived>
11181 ExprResult
TransformCUDAKernelCallExpr(CUDAKernelCallExpr * E)11182 TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
11183   // Transform the callee.
11184   ExprResult Callee = getDerived().TransformExpr(E->getCallee());
11185   if (Callee.isInvalid())
11186     return ExprError();
11187 
11188   // Transform exec config.
11189   ExprResult EC = getDerived().TransformCallExpr(E->getConfig());
11190   if (EC.isInvalid())
11191     return ExprError();
11192 
11193   // Transform arguments.
11194   bool ArgChanged = false;
11195   SmallVector<Expr*, 8> Args;
11196   if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
11197                                   &ArgChanged))
11198     return ExprError();
11199 
11200   if (!getDerived().AlwaysRebuild() &&
11201       Callee.get() == E->getCallee() &&
11202       !ArgChanged)
11203     return SemaRef.MaybeBindToTemporary(E);
11204 
11205   // FIXME: Wrong source location information for the '('.
11206   SourceLocation FakeLParenLoc
11207     = ((Expr *)Callee.get())->getSourceRange().getBegin();
11208   return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
11209                                       Args,
11210                                       E->getRParenLoc(), EC.get());
11211 }
11212 
11213 template<typename Derived>
11214 ExprResult
TransformCXXNamedCastExpr(CXXNamedCastExpr * E)11215 TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) {
11216   TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
11217   if (!Type)
11218     return ExprError();
11219 
11220   ExprResult SubExpr
11221     = getDerived().TransformExpr(E->getSubExprAsWritten());
11222   if (SubExpr.isInvalid())
11223     return ExprError();
11224 
11225   if (!getDerived().AlwaysRebuild() &&
11226       Type == E->getTypeInfoAsWritten() &&
11227       SubExpr.get() == E->getSubExpr())
11228     return E;
11229   return getDerived().RebuildCXXNamedCastExpr(
11230       E->getOperatorLoc(), E->getStmtClass(), E->getAngleBrackets().getBegin(),
11231       Type, E->getAngleBrackets().getEnd(),
11232       // FIXME. this should be '(' location
11233       E->getAngleBrackets().getEnd(), SubExpr.get(), E->getRParenLoc());
11234 }
11235 
11236 template<typename Derived>
11237 ExprResult
TransformBuiltinBitCastExpr(BuiltinBitCastExpr * BCE)11238 TreeTransform<Derived>::TransformBuiltinBitCastExpr(BuiltinBitCastExpr *BCE) {
11239   TypeSourceInfo *TSI =
11240       getDerived().TransformType(BCE->getTypeInfoAsWritten());
11241   if (!TSI)
11242     return ExprError();
11243 
11244   ExprResult Sub = getDerived().TransformExpr(BCE->getSubExpr());
11245   if (Sub.isInvalid())
11246     return ExprError();
11247 
11248   return getDerived().RebuildBuiltinBitCastExpr(BCE->getBeginLoc(), TSI,
11249                                                 Sub.get(), BCE->getEndLoc());
11250 }
11251 
11252 template<typename Derived>
11253 ExprResult
TransformCXXStaticCastExpr(CXXStaticCastExpr * E)11254 TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) {
11255   return getDerived().TransformCXXNamedCastExpr(E);
11256 }
11257 
11258 template<typename Derived>
11259 ExprResult
TransformCXXDynamicCastExpr(CXXDynamicCastExpr * E)11260 TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
11261   return getDerived().TransformCXXNamedCastExpr(E);
11262 }
11263 
11264 template<typename Derived>
11265 ExprResult
TransformCXXReinterpretCastExpr(CXXReinterpretCastExpr * E)11266 TreeTransform<Derived>::TransformCXXReinterpretCastExpr(
11267                                                       CXXReinterpretCastExpr *E) {
11268   return getDerived().TransformCXXNamedCastExpr(E);
11269 }
11270 
11271 template<typename Derived>
11272 ExprResult
TransformCXXConstCastExpr(CXXConstCastExpr * E)11273 TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) {
11274   return getDerived().TransformCXXNamedCastExpr(E);
11275 }
11276 
11277 template<typename Derived>
11278 ExprResult
TransformCXXAddrspaceCastExpr(CXXAddrspaceCastExpr * E)11279 TreeTransform<Derived>::TransformCXXAddrspaceCastExpr(CXXAddrspaceCastExpr *E) {
11280   return getDerived().TransformCXXNamedCastExpr(E);
11281 }
11282 
11283 template<typename Derived>
11284 ExprResult
TransformCXXFunctionalCastExpr(CXXFunctionalCastExpr * E)11285 TreeTransform<Derived>::TransformCXXFunctionalCastExpr(
11286                                                      CXXFunctionalCastExpr *E) {
11287   TypeSourceInfo *Type =
11288       getDerived().TransformTypeWithDeducedTST(E->getTypeInfoAsWritten());
11289   if (!Type)
11290     return ExprError();
11291 
11292   ExprResult SubExpr
11293     = getDerived().TransformExpr(E->getSubExprAsWritten());
11294   if (SubExpr.isInvalid())
11295     return ExprError();
11296 
11297   if (!getDerived().AlwaysRebuild() &&
11298       Type == E->getTypeInfoAsWritten() &&
11299       SubExpr.get() == E->getSubExpr())
11300     return E;
11301 
11302   return getDerived().RebuildCXXFunctionalCastExpr(Type,
11303                                                    E->getLParenLoc(),
11304                                                    SubExpr.get(),
11305                                                    E->getRParenLoc(),
11306                                                    E->isListInitialization());
11307 }
11308 
11309 template<typename Derived>
11310 ExprResult
TransformCXXTypeidExpr(CXXTypeidExpr * E)11311 TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) {
11312   if (E->isTypeOperand()) {
11313     TypeSourceInfo *TInfo
11314       = getDerived().TransformType(E->getTypeOperandSourceInfo());
11315     if (!TInfo)
11316       return ExprError();
11317 
11318     if (!getDerived().AlwaysRebuild() &&
11319         TInfo == E->getTypeOperandSourceInfo())
11320       return E;
11321 
11322     return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(),
11323                                              TInfo, E->getEndLoc());
11324   }
11325 
11326   // We don't know whether the subexpression is potentially evaluated until
11327   // after we perform semantic analysis.  We speculatively assume it is
11328   // unevaluated; it will get fixed later if the subexpression is in fact
11329   // potentially evaluated.
11330   EnterExpressionEvaluationContext Unevaluated(
11331       SemaRef, Sema::ExpressionEvaluationContext::Unevaluated,
11332       Sema::ReuseLambdaContextDecl);
11333 
11334   ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
11335   if (SubExpr.isInvalid())
11336     return ExprError();
11337 
11338   if (!getDerived().AlwaysRebuild() &&
11339       SubExpr.get() == E->getExprOperand())
11340     return E;
11341 
11342   return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(),
11343                                            SubExpr.get(), E->getEndLoc());
11344 }
11345 
11346 template<typename Derived>
11347 ExprResult
TransformCXXUuidofExpr(CXXUuidofExpr * E)11348 TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) {
11349   if (E->isTypeOperand()) {
11350     TypeSourceInfo *TInfo
11351       = getDerived().TransformType(E->getTypeOperandSourceInfo());
11352     if (!TInfo)
11353       return ExprError();
11354 
11355     if (!getDerived().AlwaysRebuild() &&
11356         TInfo == E->getTypeOperandSourceInfo())
11357       return E;
11358 
11359     return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(),
11360                                              TInfo, E->getEndLoc());
11361   }
11362 
11363   EnterExpressionEvaluationContext Unevaluated(
11364       SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
11365 
11366   ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
11367   if (SubExpr.isInvalid())
11368     return ExprError();
11369 
11370   if (!getDerived().AlwaysRebuild() &&
11371       SubExpr.get() == E->getExprOperand())
11372     return E;
11373 
11374   return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(),
11375                                            SubExpr.get(), E->getEndLoc());
11376 }
11377 
11378 template<typename Derived>
11379 ExprResult
TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)11380 TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
11381   return E;
11382 }
11383 
11384 template<typename Derived>
11385 ExprResult
TransformCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr * E)11386 TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr(
11387                                                      CXXNullPtrLiteralExpr *E) {
11388   return E;
11389 }
11390 
11391 template<typename Derived>
11392 ExprResult
TransformCXXThisExpr(CXXThisExpr * E)11393 TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) {
11394   QualType T = getSema().getCurrentThisType();
11395 
11396   if (!getDerived().AlwaysRebuild() && T == E->getType()) {
11397     // Mark it referenced in the new context regardless.
11398     // FIXME: this is a bit instantiation-specific.
11399     getSema().MarkThisReferenced(E);
11400     return E;
11401   }
11402 
11403   return getDerived().RebuildCXXThisExpr(E->getBeginLoc(), T, E->isImplicit());
11404 }
11405 
11406 template<typename Derived>
11407 ExprResult
TransformCXXThrowExpr(CXXThrowExpr * E)11408 TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) {
11409   ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
11410   if (SubExpr.isInvalid())
11411     return ExprError();
11412 
11413   if (!getDerived().AlwaysRebuild() &&
11414       SubExpr.get() == E->getSubExpr())
11415     return E;
11416 
11417   return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(),
11418                                           E->isThrownVariableInScope());
11419 }
11420 
11421 template<typename Derived>
11422 ExprResult
TransformCXXDefaultArgExpr(CXXDefaultArgExpr * E)11423 TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
11424   ParmVarDecl *Param = cast_or_null<ParmVarDecl>(
11425       getDerived().TransformDecl(E->getBeginLoc(), E->getParam()));
11426   if (!Param)
11427     return ExprError();
11428 
11429   if (!getDerived().AlwaysRebuild() && Param == E->getParam() &&
11430       E->getUsedContext() == SemaRef.CurContext)
11431     return E;
11432 
11433   return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param);
11434 }
11435 
11436 template<typename Derived>
11437 ExprResult
TransformCXXDefaultInitExpr(CXXDefaultInitExpr * E)11438 TreeTransform<Derived>::TransformCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
11439   FieldDecl *Field = cast_or_null<FieldDecl>(
11440       getDerived().TransformDecl(E->getBeginLoc(), E->getField()));
11441   if (!Field)
11442     return ExprError();
11443 
11444   if (!getDerived().AlwaysRebuild() && Field == E->getField() &&
11445       E->getUsedContext() == SemaRef.CurContext)
11446     return E;
11447 
11448   return getDerived().RebuildCXXDefaultInitExpr(E->getExprLoc(), Field);
11449 }
11450 
11451 template<typename Derived>
11452 ExprResult
TransformCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)11453 TreeTransform<Derived>::TransformCXXScalarValueInitExpr(
11454                                                     CXXScalarValueInitExpr *E) {
11455   TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
11456   if (!T)
11457     return ExprError();
11458 
11459   if (!getDerived().AlwaysRebuild() &&
11460       T == E->getTypeSourceInfo())
11461     return E;
11462 
11463   return getDerived().RebuildCXXScalarValueInitExpr(T,
11464                                           /*FIXME:*/T->getTypeLoc().getEndLoc(),
11465                                                     E->getRParenLoc());
11466 }
11467 
11468 template<typename Derived>
11469 ExprResult
TransformCXXNewExpr(CXXNewExpr * E)11470 TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) {
11471   // Transform the type that we're allocating
11472   TypeSourceInfo *AllocTypeInfo =
11473       getDerived().TransformTypeWithDeducedTST(E->getAllocatedTypeSourceInfo());
11474   if (!AllocTypeInfo)
11475     return ExprError();
11476 
11477   // Transform the size of the array we're allocating (if any).
11478   Optional<Expr *> ArraySize;
11479   if (Optional<Expr *> OldArraySize = E->getArraySize()) {
11480     ExprResult NewArraySize;
11481     if (*OldArraySize) {
11482       NewArraySize = getDerived().TransformExpr(*OldArraySize);
11483       if (NewArraySize.isInvalid())
11484         return ExprError();
11485     }
11486     ArraySize = NewArraySize.get();
11487   }
11488 
11489   // Transform the placement arguments (if any).
11490   bool ArgumentChanged = false;
11491   SmallVector<Expr*, 8> PlacementArgs;
11492   if (getDerived().TransformExprs(E->getPlacementArgs(),
11493                                   E->getNumPlacementArgs(), true,
11494                                   PlacementArgs, &ArgumentChanged))
11495     return ExprError();
11496 
11497   // Transform the initializer (if any).
11498   Expr *OldInit = E->getInitializer();
11499   ExprResult NewInit;
11500   if (OldInit)
11501     NewInit = getDerived().TransformInitializer(OldInit, true);
11502   if (NewInit.isInvalid())
11503     return ExprError();
11504 
11505   // Transform new operator and delete operator.
11506   FunctionDecl *OperatorNew = nullptr;
11507   if (E->getOperatorNew()) {
11508     OperatorNew = cast_or_null<FunctionDecl>(
11509         getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorNew()));
11510     if (!OperatorNew)
11511       return ExprError();
11512   }
11513 
11514   FunctionDecl *OperatorDelete = nullptr;
11515   if (E->getOperatorDelete()) {
11516     OperatorDelete = cast_or_null<FunctionDecl>(
11517         getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete()));
11518     if (!OperatorDelete)
11519       return ExprError();
11520   }
11521 
11522   if (!getDerived().AlwaysRebuild() &&
11523       AllocTypeInfo == E->getAllocatedTypeSourceInfo() &&
11524       ArraySize == E->getArraySize() &&
11525       NewInit.get() == OldInit &&
11526       OperatorNew == E->getOperatorNew() &&
11527       OperatorDelete == E->getOperatorDelete() &&
11528       !ArgumentChanged) {
11529     // Mark any declarations we need as referenced.
11530     // FIXME: instantiation-specific.
11531     if (OperatorNew)
11532       SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorNew);
11533     if (OperatorDelete)
11534       SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete);
11535 
11536     if (E->isArray() && !E->getAllocatedType()->isDependentType()) {
11537       QualType ElementType
11538         = SemaRef.Context.getBaseElementType(E->getAllocatedType());
11539       if (const RecordType *RecordT = ElementType->getAs<RecordType>()) {
11540         CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordT->getDecl());
11541         if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) {
11542           SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Destructor);
11543         }
11544       }
11545     }
11546 
11547     return E;
11548   }
11549 
11550   QualType AllocType = AllocTypeInfo->getType();
11551   if (!ArraySize) {
11552     // If no array size was specified, but the new expression was
11553     // instantiated with an array type (e.g., "new T" where T is
11554     // instantiated with "int[4]"), extract the outer bound from the
11555     // array type as our array size. We do this with constant and
11556     // dependently-sized array types.
11557     const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType);
11558     if (!ArrayT) {
11559       // Do nothing
11560     } else if (const ConstantArrayType *ConsArrayT
11561                                      = dyn_cast<ConstantArrayType>(ArrayT)) {
11562       ArraySize = IntegerLiteral::Create(SemaRef.Context, ConsArrayT->getSize(),
11563                                          SemaRef.Context.getSizeType(),
11564                                          /*FIXME:*/ E->getBeginLoc());
11565       AllocType = ConsArrayT->getElementType();
11566     } else if (const DependentSizedArrayType *DepArrayT
11567                               = dyn_cast<DependentSizedArrayType>(ArrayT)) {
11568       if (DepArrayT->getSizeExpr()) {
11569         ArraySize = DepArrayT->getSizeExpr();
11570         AllocType = DepArrayT->getElementType();
11571       }
11572     }
11573   }
11574 
11575   return getDerived().RebuildCXXNewExpr(
11576       E->getBeginLoc(), E->isGlobalNew(),
11577       /*FIXME:*/ E->getBeginLoc(), PlacementArgs,
11578       /*FIXME:*/ E->getBeginLoc(), E->getTypeIdParens(), AllocType,
11579       AllocTypeInfo, ArraySize, E->getDirectInitRange(), NewInit.get());
11580 }
11581 
11582 template<typename Derived>
11583 ExprResult
TransformCXXDeleteExpr(CXXDeleteExpr * E)11584 TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) {
11585   ExprResult Operand = getDerived().TransformExpr(E->getArgument());
11586   if (Operand.isInvalid())
11587     return ExprError();
11588 
11589   // Transform the delete operator, if known.
11590   FunctionDecl *OperatorDelete = nullptr;
11591   if (E->getOperatorDelete()) {
11592     OperatorDelete = cast_or_null<FunctionDecl>(
11593         getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete()));
11594     if (!OperatorDelete)
11595       return ExprError();
11596   }
11597 
11598   if (!getDerived().AlwaysRebuild() &&
11599       Operand.get() == E->getArgument() &&
11600       OperatorDelete == E->getOperatorDelete()) {
11601     // Mark any declarations we need as referenced.
11602     // FIXME: instantiation-specific.
11603     if (OperatorDelete)
11604       SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete);
11605 
11606     if (!E->getArgument()->isTypeDependent()) {
11607       QualType Destroyed = SemaRef.Context.getBaseElementType(
11608                                                          E->getDestroyedType());
11609       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
11610         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
11611         SemaRef.MarkFunctionReferenced(E->getBeginLoc(),
11612                                        SemaRef.LookupDestructor(Record));
11613       }
11614     }
11615 
11616     return E;
11617   }
11618 
11619   return getDerived().RebuildCXXDeleteExpr(
11620       E->getBeginLoc(), E->isGlobalDelete(), E->isArrayForm(), Operand.get());
11621 }
11622 
11623 template<typename Derived>
11624 ExprResult
TransformCXXPseudoDestructorExpr(CXXPseudoDestructorExpr * E)11625 TreeTransform<Derived>::TransformCXXPseudoDestructorExpr(
11626                                                      CXXPseudoDestructorExpr *E) {
11627   ExprResult Base = getDerived().TransformExpr(E->getBase());
11628   if (Base.isInvalid())
11629     return ExprError();
11630 
11631   ParsedType ObjectTypePtr;
11632   bool MayBePseudoDestructor = false;
11633   Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
11634                                               E->getOperatorLoc(),
11635                                         E->isArrow()? tok::arrow : tok::period,
11636                                               ObjectTypePtr,
11637                                               MayBePseudoDestructor);
11638   if (Base.isInvalid())
11639     return ExprError();
11640 
11641   QualType ObjectType = ObjectTypePtr.get();
11642   NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc();
11643   if (QualifierLoc) {
11644     QualifierLoc
11645       = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType);
11646     if (!QualifierLoc)
11647       return ExprError();
11648   }
11649   CXXScopeSpec SS;
11650   SS.Adopt(QualifierLoc);
11651 
11652   PseudoDestructorTypeStorage Destroyed;
11653   if (E->getDestroyedTypeInfo()) {
11654     TypeSourceInfo *DestroyedTypeInfo
11655       = getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(),
11656                                                 ObjectType, nullptr, SS);
11657     if (!DestroyedTypeInfo)
11658       return ExprError();
11659     Destroyed = DestroyedTypeInfo;
11660   } else if (!ObjectType.isNull() && ObjectType->isDependentType()) {
11661     // We aren't likely to be able to resolve the identifier down to a type
11662     // now anyway, so just retain the identifier.
11663     Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(),
11664                                             E->getDestroyedTypeLoc());
11665   } else {
11666     // Look for a destructor known with the given name.
11667     ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(),
11668                                               *E->getDestroyedTypeIdentifier(),
11669                                                 E->getDestroyedTypeLoc(),
11670                                                 /*Scope=*/nullptr,
11671                                                 SS, ObjectTypePtr,
11672                                                 false);
11673     if (!T)
11674       return ExprError();
11675 
11676     Destroyed
11677       = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T),
11678                                                  E->getDestroyedTypeLoc());
11679   }
11680 
11681   TypeSourceInfo *ScopeTypeInfo = nullptr;
11682   if (E->getScopeTypeInfo()) {
11683     CXXScopeSpec EmptySS;
11684     ScopeTypeInfo = getDerived().TransformTypeInObjectScope(
11685                       E->getScopeTypeInfo(), ObjectType, nullptr, EmptySS);
11686     if (!ScopeTypeInfo)
11687       return ExprError();
11688   }
11689 
11690   return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(),
11691                                                      E->getOperatorLoc(),
11692                                                      E->isArrow(),
11693                                                      SS,
11694                                                      ScopeTypeInfo,
11695                                                      E->getColonColonLoc(),
11696                                                      E->getTildeLoc(),
11697                                                      Destroyed);
11698 }
11699 
11700 template <typename Derived>
TransformOverloadExprDecls(OverloadExpr * Old,bool RequiresADL,LookupResult & R)11701 bool TreeTransform<Derived>::TransformOverloadExprDecls(OverloadExpr *Old,
11702                                                         bool RequiresADL,
11703                                                         LookupResult &R) {
11704   // Transform all the decls.
11705   bool AllEmptyPacks = true;
11706   for (auto *OldD : Old->decls()) {
11707     Decl *InstD = getDerived().TransformDecl(Old->getNameLoc(), OldD);
11708     if (!InstD) {
11709       // Silently ignore these if a UsingShadowDecl instantiated to nothing.
11710       // This can happen because of dependent hiding.
11711       if (isa<UsingShadowDecl>(OldD))
11712         continue;
11713       else {
11714         R.clear();
11715         return true;
11716       }
11717     }
11718 
11719     // Expand using pack declarations.
11720     NamedDecl *SingleDecl = cast<NamedDecl>(InstD);
11721     ArrayRef<NamedDecl*> Decls = SingleDecl;
11722     if (auto *UPD = dyn_cast<UsingPackDecl>(InstD))
11723       Decls = UPD->expansions();
11724 
11725     // Expand using declarations.
11726     for (auto *D : Decls) {
11727       if (auto *UD = dyn_cast<UsingDecl>(D)) {
11728         for (auto *SD : UD->shadows())
11729           R.addDecl(SD);
11730       } else {
11731         R.addDecl(D);
11732       }
11733     }
11734 
11735     AllEmptyPacks &= Decls.empty();
11736   };
11737 
11738   // C++ [temp.res]/8.4.2:
11739   //   The program is ill-formed, no diagnostic required, if [...] lookup for
11740   //   a name in the template definition found a using-declaration, but the
11741   //   lookup in the corresponding scope in the instantiation odoes not find
11742   //   any declarations because the using-declaration was a pack expansion and
11743   //   the corresponding pack is empty
11744   if (AllEmptyPacks && !RequiresADL) {
11745     getSema().Diag(Old->getNameLoc(), diag::err_using_pack_expansion_empty)
11746         << isa<UnresolvedMemberExpr>(Old) << Old->getName();
11747     return true;
11748   }
11749 
11750   // Resolve a kind, but don't do any further analysis.  If it's
11751   // ambiguous, the callee needs to deal with it.
11752   R.resolveKind();
11753   return false;
11754 }
11755 
11756 template<typename Derived>
11757 ExprResult
TransformUnresolvedLookupExpr(UnresolvedLookupExpr * Old)11758 TreeTransform<Derived>::TransformUnresolvedLookupExpr(
11759                                                   UnresolvedLookupExpr *Old) {
11760   LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(),
11761                  Sema::LookupOrdinaryName);
11762 
11763   // Transform the declaration set.
11764   if (TransformOverloadExprDecls(Old, Old->requiresADL(), R))
11765     return ExprError();
11766 
11767   // Rebuild the nested-name qualifier, if present.
11768   CXXScopeSpec SS;
11769   if (Old->getQualifierLoc()) {
11770     NestedNameSpecifierLoc QualifierLoc
11771       = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
11772     if (!QualifierLoc)
11773       return ExprError();
11774 
11775     SS.Adopt(QualifierLoc);
11776   }
11777 
11778   if (Old->getNamingClass()) {
11779     CXXRecordDecl *NamingClass
11780       = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
11781                                                             Old->getNameLoc(),
11782                                                         Old->getNamingClass()));
11783     if (!NamingClass) {
11784       R.clear();
11785       return ExprError();
11786     }
11787 
11788     R.setNamingClass(NamingClass);
11789   }
11790 
11791   SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
11792 
11793   // If we have neither explicit template arguments, nor the template keyword,
11794   // it's a normal declaration name or member reference.
11795   if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid()) {
11796     NamedDecl *D = R.getAsSingle<NamedDecl>();
11797     // In a C++11 unevaluated context, an UnresolvedLookupExpr might refer to an
11798     // instance member. In other contexts, BuildPossibleImplicitMemberExpr will
11799     // give a good diagnostic.
11800     if (D && D->isCXXInstanceMember()) {
11801       return SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
11802                                                      /*TemplateArgs=*/nullptr,
11803                                                      /*Scope=*/nullptr);
11804     }
11805 
11806     return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL());
11807   }
11808 
11809   // If we have template arguments, rebuild them, then rebuild the
11810   // templateid expression.
11811   TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc());
11812   if (Old->hasExplicitTemplateArgs() &&
11813       getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
11814                                               Old->getNumTemplateArgs(),
11815                                               TransArgs)) {
11816     R.clear();
11817     return ExprError();
11818   }
11819 
11820   return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R,
11821                                             Old->requiresADL(), &TransArgs);
11822 }
11823 
11824 template<typename Derived>
11825 ExprResult
TransformTypeTraitExpr(TypeTraitExpr * E)11826 TreeTransform<Derived>::TransformTypeTraitExpr(TypeTraitExpr *E) {
11827   bool ArgChanged = false;
11828   SmallVector<TypeSourceInfo *, 4> Args;
11829   for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
11830     TypeSourceInfo *From = E->getArg(I);
11831     TypeLoc FromTL = From->getTypeLoc();
11832     if (!FromTL.getAs<PackExpansionTypeLoc>()) {
11833       TypeLocBuilder TLB;
11834       TLB.reserve(FromTL.getFullDataSize());
11835       QualType To = getDerived().TransformType(TLB, FromTL);
11836       if (To.isNull())
11837         return ExprError();
11838 
11839       if (To == From->getType())
11840         Args.push_back(From);
11841       else {
11842         Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
11843         ArgChanged = true;
11844       }
11845       continue;
11846     }
11847 
11848     ArgChanged = true;
11849 
11850     // We have a pack expansion. Instantiate it.
11851     PackExpansionTypeLoc ExpansionTL = FromTL.castAs<PackExpansionTypeLoc>();
11852     TypeLoc PatternTL = ExpansionTL.getPatternLoc();
11853     SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11854     SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded);
11855 
11856     // Determine whether the set of unexpanded parameter packs can and should
11857     // be expanded.
11858     bool Expand = true;
11859     bool RetainExpansion = false;
11860     Optional<unsigned> OrigNumExpansions =
11861         ExpansionTL.getTypePtr()->getNumExpansions();
11862     Optional<unsigned> NumExpansions = OrigNumExpansions;
11863     if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
11864                                              PatternTL.getSourceRange(),
11865                                              Unexpanded,
11866                                              Expand, RetainExpansion,
11867                                              NumExpansions))
11868       return ExprError();
11869 
11870     if (!Expand) {
11871       // The transform has determined that we should perform a simple
11872       // transformation on the pack expansion, producing another pack
11873       // expansion.
11874       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
11875 
11876       TypeLocBuilder TLB;
11877       TLB.reserve(From->getTypeLoc().getFullDataSize());
11878 
11879       QualType To = getDerived().TransformType(TLB, PatternTL);
11880       if (To.isNull())
11881         return ExprError();
11882 
11883       To = getDerived().RebuildPackExpansionType(To,
11884                                                  PatternTL.getSourceRange(),
11885                                                  ExpansionTL.getEllipsisLoc(),
11886                                                  NumExpansions);
11887       if (To.isNull())
11888         return ExprError();
11889 
11890       PackExpansionTypeLoc ToExpansionTL
11891         = TLB.push<PackExpansionTypeLoc>(To);
11892       ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
11893       Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
11894       continue;
11895     }
11896 
11897     // Expand the pack expansion by substituting for each argument in the
11898     // pack(s).
11899     for (unsigned I = 0; I != *NumExpansions; ++I) {
11900       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
11901       TypeLocBuilder TLB;
11902       TLB.reserve(PatternTL.getFullDataSize());
11903       QualType To = getDerived().TransformType(TLB, PatternTL);
11904       if (To.isNull())
11905         return ExprError();
11906 
11907       if (To->containsUnexpandedParameterPack()) {
11908         To = getDerived().RebuildPackExpansionType(To,
11909                                                    PatternTL.getSourceRange(),
11910                                                    ExpansionTL.getEllipsisLoc(),
11911                                                    NumExpansions);
11912         if (To.isNull())
11913           return ExprError();
11914 
11915         PackExpansionTypeLoc ToExpansionTL
11916           = TLB.push<PackExpansionTypeLoc>(To);
11917         ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
11918       }
11919 
11920       Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
11921     }
11922 
11923     if (!RetainExpansion)
11924       continue;
11925 
11926     // If we're supposed to retain a pack expansion, do so by temporarily
11927     // forgetting the partially-substituted parameter pack.
11928     ForgetPartiallySubstitutedPackRAII Forget(getDerived());
11929 
11930     TypeLocBuilder TLB;
11931     TLB.reserve(From->getTypeLoc().getFullDataSize());
11932 
11933     QualType To = getDerived().TransformType(TLB, PatternTL);
11934     if (To.isNull())
11935       return ExprError();
11936 
11937     To = getDerived().RebuildPackExpansionType(To,
11938                                                PatternTL.getSourceRange(),
11939                                                ExpansionTL.getEllipsisLoc(),
11940                                                NumExpansions);
11941     if (To.isNull())
11942       return ExprError();
11943 
11944     PackExpansionTypeLoc ToExpansionTL
11945       = TLB.push<PackExpansionTypeLoc>(To);
11946     ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
11947     Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
11948   }
11949 
11950   if (!getDerived().AlwaysRebuild() && !ArgChanged)
11951     return E;
11952 
11953   return getDerived().RebuildTypeTrait(E->getTrait(), E->getBeginLoc(), Args,
11954                                        E->getEndLoc());
11955 }
11956 
11957 template<typename Derived>
11958 ExprResult
TransformConceptSpecializationExpr(ConceptSpecializationExpr * E)11959 TreeTransform<Derived>::TransformConceptSpecializationExpr(
11960                                                  ConceptSpecializationExpr *E) {
11961   const ASTTemplateArgumentListInfo *Old = E->getTemplateArgsAsWritten();
11962   TemplateArgumentListInfo TransArgs(Old->LAngleLoc, Old->RAngleLoc);
11963   if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
11964                                               Old->NumTemplateArgs, TransArgs))
11965     return ExprError();
11966 
11967   return getDerived().RebuildConceptSpecializationExpr(
11968       E->getNestedNameSpecifierLoc(), E->getTemplateKWLoc(),
11969       E->getConceptNameInfo(), E->getFoundDecl(), E->getNamedConcept(),
11970       &TransArgs);
11971 }
11972 
11973 template<typename Derived>
11974 ExprResult
TransformRequiresExpr(RequiresExpr * E)11975 TreeTransform<Derived>::TransformRequiresExpr(RequiresExpr *E) {
11976   SmallVector<ParmVarDecl*, 4> TransParams;
11977   SmallVector<QualType, 4> TransParamTypes;
11978   Sema::ExtParameterInfoBuilder ExtParamInfos;
11979 
11980   // C++2a [expr.prim.req]p2
11981   // Expressions appearing within a requirement-body are unevaluated operands.
11982   EnterExpressionEvaluationContext Ctx(
11983       SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
11984 
11985   RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(
11986       getSema().Context, getSema().CurContext,
11987       E->getBody()->getBeginLoc());
11988 
11989   Sema::ContextRAII SavedContext(getSema(), Body, /*NewThisContext*/false);
11990 
11991   if (getDerived().TransformFunctionTypeParams(E->getRequiresKWLoc(),
11992                                                E->getLocalParameters(),
11993                                                /*ParamTypes=*/nullptr,
11994                                                /*ParamInfos=*/nullptr,
11995                                                TransParamTypes, &TransParams,
11996                                                ExtParamInfos))
11997     return ExprError();
11998 
11999   for (ParmVarDecl *Param : TransParams)
12000     Param->setDeclContext(Body);
12001 
12002   SmallVector<concepts::Requirement *, 4> TransReqs;
12003   if (getDerived().TransformRequiresExprRequirements(E->getRequirements(),
12004                                                      TransReqs))
12005     return ExprError();
12006 
12007   for (concepts::Requirement *Req : TransReqs) {
12008     if (auto *ER = dyn_cast<concepts::ExprRequirement>(Req)) {
12009       if (ER->getReturnTypeRequirement().isTypeConstraint()) {
12010         ER->getReturnTypeRequirement()
12011                 .getTypeConstraintTemplateParameterList()->getParam(0)
12012                 ->setDeclContext(Body);
12013       }
12014     }
12015   }
12016 
12017   return getDerived().RebuildRequiresExpr(E->getRequiresKWLoc(), Body,
12018                                           TransParams, TransReqs,
12019                                           E->getRBraceLoc());
12020 }
12021 
12022 template<typename Derived>
TransformRequiresExprRequirements(ArrayRef<concepts::Requirement * > Reqs,SmallVectorImpl<concepts::Requirement * > & Transformed)12023 bool TreeTransform<Derived>::TransformRequiresExprRequirements(
12024     ArrayRef<concepts::Requirement *> Reqs,
12025     SmallVectorImpl<concepts::Requirement *> &Transformed) {
12026   for (concepts::Requirement *Req : Reqs) {
12027     concepts::Requirement *TransReq = nullptr;
12028     if (auto *TypeReq = dyn_cast<concepts::TypeRequirement>(Req))
12029       TransReq = getDerived().TransformTypeRequirement(TypeReq);
12030     else if (auto *ExprReq = dyn_cast<concepts::ExprRequirement>(Req))
12031       TransReq = getDerived().TransformExprRequirement(ExprReq);
12032     else
12033       TransReq = getDerived().TransformNestedRequirement(
12034                      cast<concepts::NestedRequirement>(Req));
12035     if (!TransReq)
12036       return true;
12037     Transformed.push_back(TransReq);
12038   }
12039   return false;
12040 }
12041 
12042 template<typename Derived>
12043 concepts::TypeRequirement *
TransformTypeRequirement(concepts::TypeRequirement * Req)12044 TreeTransform<Derived>::TransformTypeRequirement(
12045     concepts::TypeRequirement *Req) {
12046   if (Req->isSubstitutionFailure()) {
12047     if (getDerived().AlwaysRebuild())
12048       return getDerived().RebuildTypeRequirement(
12049               Req->getSubstitutionDiagnostic());
12050     return Req;
12051   }
12052   TypeSourceInfo *TransType = getDerived().TransformType(Req->getType());
12053   if (!TransType)
12054     return nullptr;
12055   return getDerived().RebuildTypeRequirement(TransType);
12056 }
12057 
12058 template<typename Derived>
12059 concepts::ExprRequirement *
TransformExprRequirement(concepts::ExprRequirement * Req)12060 TreeTransform<Derived>::TransformExprRequirement(concepts::ExprRequirement *Req) {
12061   llvm::PointerUnion<Expr *, concepts::Requirement::SubstitutionDiagnostic *> TransExpr;
12062   if (Req->isExprSubstitutionFailure())
12063     TransExpr = Req->getExprSubstitutionDiagnostic();
12064   else {
12065     ExprResult TransExprRes = getDerived().TransformExpr(Req->getExpr());
12066     if (TransExprRes.isInvalid())
12067       return nullptr;
12068     TransExpr = TransExprRes.get();
12069   }
12070 
12071   llvm::Optional<concepts::ExprRequirement::ReturnTypeRequirement> TransRetReq;
12072   const auto &RetReq = Req->getReturnTypeRequirement();
12073   if (RetReq.isEmpty())
12074     TransRetReq.emplace();
12075   else if (RetReq.isSubstitutionFailure())
12076     TransRetReq.emplace(RetReq.getSubstitutionDiagnostic());
12077   else if (RetReq.isTypeConstraint()) {
12078     TemplateParameterList *OrigTPL =
12079         RetReq.getTypeConstraintTemplateParameterList();
12080     TemplateParameterList *TPL =
12081         getDerived().TransformTemplateParameterList(OrigTPL);
12082     if (!TPL)
12083       return nullptr;
12084     TransRetReq.emplace(TPL);
12085   }
12086   assert(TransRetReq.hasValue() &&
12087          "All code paths leading here must set TransRetReq");
12088   if (Expr *E = TransExpr.dyn_cast<Expr *>())
12089     return getDerived().RebuildExprRequirement(E, Req->isSimple(),
12090                                                Req->getNoexceptLoc(),
12091                                                std::move(*TransRetReq));
12092   return getDerived().RebuildExprRequirement(
12093       TransExpr.get<concepts::Requirement::SubstitutionDiagnostic *>(),
12094       Req->isSimple(), Req->getNoexceptLoc(), std::move(*TransRetReq));
12095 }
12096 
12097 template<typename Derived>
12098 concepts::NestedRequirement *
TransformNestedRequirement(concepts::NestedRequirement * Req)12099 TreeTransform<Derived>::TransformNestedRequirement(
12100     concepts::NestedRequirement *Req) {
12101   if (Req->isSubstitutionFailure()) {
12102     if (getDerived().AlwaysRebuild())
12103       return getDerived().RebuildNestedRequirement(
12104           Req->getSubstitutionDiagnostic());
12105     return Req;
12106   }
12107   ExprResult TransConstraint =
12108       getDerived().TransformExpr(Req->getConstraintExpr());
12109   if (TransConstraint.isInvalid())
12110     return nullptr;
12111   return getDerived().RebuildNestedRequirement(TransConstraint.get());
12112 }
12113 
12114 template<typename Derived>
12115 ExprResult
TransformArrayTypeTraitExpr(ArrayTypeTraitExpr * E)12116 TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
12117   TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
12118   if (!T)
12119     return ExprError();
12120 
12121   if (!getDerived().AlwaysRebuild() &&
12122       T == E->getQueriedTypeSourceInfo())
12123     return E;
12124 
12125   ExprResult SubExpr;
12126   {
12127     EnterExpressionEvaluationContext Unevaluated(
12128         SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
12129     SubExpr = getDerived().TransformExpr(E->getDimensionExpression());
12130     if (SubExpr.isInvalid())
12131       return ExprError();
12132 
12133     if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression())
12134       return E;
12135   }
12136 
12137   return getDerived().RebuildArrayTypeTrait(E->getTrait(), E->getBeginLoc(), T,
12138                                             SubExpr.get(), E->getEndLoc());
12139 }
12140 
12141 template<typename Derived>
12142 ExprResult
TransformExpressionTraitExpr(ExpressionTraitExpr * E)12143 TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) {
12144   ExprResult SubExpr;
12145   {
12146     EnterExpressionEvaluationContext Unevaluated(
12147         SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
12148     SubExpr = getDerived().TransformExpr(E->getQueriedExpression());
12149     if (SubExpr.isInvalid())
12150       return ExprError();
12151 
12152     if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression())
12153       return E;
12154   }
12155 
12156   return getDerived().RebuildExpressionTrait(E->getTrait(), E->getBeginLoc(),
12157                                              SubExpr.get(), E->getEndLoc());
12158 }
12159 
12160 template <typename Derived>
TransformParenDependentScopeDeclRefExpr(ParenExpr * PE,DependentScopeDeclRefExpr * DRE,bool AddrTaken,TypeSourceInfo ** RecoveryTSI)12161 ExprResult TreeTransform<Derived>::TransformParenDependentScopeDeclRefExpr(
12162     ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool AddrTaken,
12163     TypeSourceInfo **RecoveryTSI) {
12164   ExprResult NewDRE = getDerived().TransformDependentScopeDeclRefExpr(
12165       DRE, AddrTaken, RecoveryTSI);
12166 
12167   // Propagate both errors and recovered types, which return ExprEmpty.
12168   if (!NewDRE.isUsable())
12169     return NewDRE;
12170 
12171   // We got an expr, wrap it up in parens.
12172   if (!getDerived().AlwaysRebuild() && NewDRE.get() == DRE)
12173     return PE;
12174   return getDerived().RebuildParenExpr(NewDRE.get(), PE->getLParen(),
12175                                        PE->getRParen());
12176 }
12177 
12178 template <typename Derived>
TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * E)12179 ExprResult TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
12180     DependentScopeDeclRefExpr *E) {
12181   return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand=*/false,
12182                                             nullptr);
12183 }
12184 
12185 template<typename Derived>
12186 ExprResult
TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * E,bool IsAddressOfOperand,TypeSourceInfo ** RecoveryTSI)12187 TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
12188                                                DependentScopeDeclRefExpr *E,
12189                                                bool IsAddressOfOperand,
12190                                                TypeSourceInfo **RecoveryTSI) {
12191   assert(E->getQualifierLoc());
12192   NestedNameSpecifierLoc QualifierLoc
12193   = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
12194   if (!QualifierLoc)
12195     return ExprError();
12196   SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
12197 
12198   // TODO: If this is a conversion-function-id, verify that the
12199   // destination type name (if present) resolves the same way after
12200   // instantiation as it did in the local scope.
12201 
12202   DeclarationNameInfo NameInfo
12203     = getDerived().TransformDeclarationNameInfo(E->getNameInfo());
12204   if (!NameInfo.getName())
12205     return ExprError();
12206 
12207   if (!E->hasExplicitTemplateArgs()) {
12208     if (!getDerived().AlwaysRebuild() &&
12209         QualifierLoc == E->getQualifierLoc() &&
12210         // Note: it is sufficient to compare the Name component of NameInfo:
12211         // if name has not changed, DNLoc has not changed either.
12212         NameInfo.getName() == E->getDeclName())
12213       return E;
12214 
12215     return getDerived().RebuildDependentScopeDeclRefExpr(
12216         QualifierLoc, TemplateKWLoc, NameInfo, /*TemplateArgs=*/nullptr,
12217         IsAddressOfOperand, RecoveryTSI);
12218   }
12219 
12220   TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
12221   if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
12222                                               E->getNumTemplateArgs(),
12223                                               TransArgs))
12224     return ExprError();
12225 
12226   return getDerived().RebuildDependentScopeDeclRefExpr(
12227       QualifierLoc, TemplateKWLoc, NameInfo, &TransArgs, IsAddressOfOperand,
12228       RecoveryTSI);
12229 }
12230 
12231 template<typename Derived>
12232 ExprResult
TransformCXXConstructExpr(CXXConstructExpr * E)12233 TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) {
12234   // CXXConstructExprs other than for list-initialization and
12235   // CXXTemporaryObjectExpr are always implicit, so when we have
12236   // a 1-argument construction we just transform that argument.
12237   if (getDerived().AllowSkippingCXXConstructExpr() &&
12238       ((E->getNumArgs() == 1 ||
12239         (E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) &&
12240        (!getDerived().DropCallArgument(E->getArg(0))) &&
12241        !E->isListInitialization()))
12242     return getDerived().TransformExpr(E->getArg(0));
12243 
12244   TemporaryBase Rebase(*this, /*FIXME*/ E->getBeginLoc(), DeclarationName());
12245 
12246   QualType T = getDerived().TransformType(E->getType());
12247   if (T.isNull())
12248     return ExprError();
12249 
12250   CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>(
12251       getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor()));
12252   if (!Constructor)
12253     return ExprError();
12254 
12255   bool ArgumentChanged = false;
12256   SmallVector<Expr*, 8> Args;
12257   {
12258     EnterExpressionEvaluationContext Context(
12259         getSema(), EnterExpressionEvaluationContext::InitList,
12260         E->isListInitialization());
12261     if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
12262                                     &ArgumentChanged))
12263       return ExprError();
12264   }
12265 
12266   if (!getDerived().AlwaysRebuild() &&
12267       T == E->getType() &&
12268       Constructor == E->getConstructor() &&
12269       !ArgumentChanged) {
12270     // Mark the constructor as referenced.
12271     // FIXME: Instantiation-specific
12272     SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor);
12273     return E;
12274   }
12275 
12276   return getDerived().RebuildCXXConstructExpr(
12277       T, /*FIXME:*/ E->getBeginLoc(), Constructor, E->isElidable(), Args,
12278       E->hadMultipleCandidates(), E->isListInitialization(),
12279       E->isStdInitListInitialization(), E->requiresZeroInitialization(),
12280       E->getConstructionKind(), E->getParenOrBraceRange());
12281 }
12282 
12283 template<typename Derived>
TransformCXXInheritedCtorInitExpr(CXXInheritedCtorInitExpr * E)12284 ExprResult TreeTransform<Derived>::TransformCXXInheritedCtorInitExpr(
12285     CXXInheritedCtorInitExpr *E) {
12286   QualType T = getDerived().TransformType(E->getType());
12287   if (T.isNull())
12288     return ExprError();
12289 
12290   CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>(
12291       getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor()));
12292   if (!Constructor)
12293     return ExprError();
12294 
12295   if (!getDerived().AlwaysRebuild() &&
12296       T == E->getType() &&
12297       Constructor == E->getConstructor()) {
12298     // Mark the constructor as referenced.
12299     // FIXME: Instantiation-specific
12300     SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor);
12301     return E;
12302   }
12303 
12304   return getDerived().RebuildCXXInheritedCtorInitExpr(
12305       T, E->getLocation(), Constructor,
12306       E->constructsVBase(), E->inheritedFromVBase());
12307 }
12308 
12309 /// Transform a C++ temporary-binding expression.
12310 ///
12311 /// Since CXXBindTemporaryExpr nodes are implicitly generated, we just
12312 /// transform the subexpression and return that.
12313 template<typename Derived>
12314 ExprResult
TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)12315 TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
12316   return getDerived().TransformExpr(E->getSubExpr());
12317 }
12318 
12319 /// Transform a C++ expression that contains cleanups that should
12320 /// be run after the expression is evaluated.
12321 ///
12322 /// Since ExprWithCleanups nodes are implicitly generated, we
12323 /// just transform the subexpression and return that.
12324 template<typename Derived>
12325 ExprResult
TransformExprWithCleanups(ExprWithCleanups * E)12326 TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) {
12327   return getDerived().TransformExpr(E->getSubExpr());
12328 }
12329 
12330 template<typename Derived>
12331 ExprResult
TransformCXXTemporaryObjectExpr(CXXTemporaryObjectExpr * E)12332 TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
12333                                                     CXXTemporaryObjectExpr *E) {
12334   TypeSourceInfo *T =
12335       getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo());
12336   if (!T)
12337     return ExprError();
12338 
12339   CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>(
12340       getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor()));
12341   if (!Constructor)
12342     return ExprError();
12343 
12344   bool ArgumentChanged = false;
12345   SmallVector<Expr*, 8> Args;
12346   Args.reserve(E->getNumArgs());
12347   {
12348     EnterExpressionEvaluationContext Context(
12349         getSema(), EnterExpressionEvaluationContext::InitList,
12350         E->isListInitialization());
12351     if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
12352                        &ArgumentChanged))
12353       return ExprError();
12354   }
12355 
12356   if (!getDerived().AlwaysRebuild() &&
12357       T == E->getTypeSourceInfo() &&
12358       Constructor == E->getConstructor() &&
12359       !ArgumentChanged) {
12360     // FIXME: Instantiation-specific
12361     SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor);
12362     return SemaRef.MaybeBindToTemporary(E);
12363   }
12364 
12365   // FIXME: We should just pass E->isListInitialization(), but we're not
12366   // prepared to handle list-initialization without a child InitListExpr.
12367   SourceLocation LParenLoc = T->getTypeLoc().getEndLoc();
12368   return getDerived().RebuildCXXTemporaryObjectExpr(
12369       T, LParenLoc, Args, E->getEndLoc(),
12370       /*ListInitialization=*/LParenLoc.isInvalid());
12371 }
12372 
12373 template<typename Derived>
12374 ExprResult
TransformLambdaExpr(LambdaExpr * E)12375 TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) {
12376   // Transform any init-capture expressions before entering the scope of the
12377   // lambda body, because they are not semantically within that scope.
12378   typedef std::pair<ExprResult, QualType> InitCaptureInfoTy;
12379   struct TransformedInitCapture {
12380     // The location of the ... if the result is retaining a pack expansion.
12381     SourceLocation EllipsisLoc;
12382     // Zero or more expansions of the init-capture.
12383     SmallVector<InitCaptureInfoTy, 4> Expansions;
12384   };
12385   SmallVector<TransformedInitCapture, 4> InitCaptures;
12386   InitCaptures.resize(E->explicit_capture_end() - E->explicit_capture_begin());
12387   for (LambdaExpr::capture_iterator C = E->capture_begin(),
12388                                     CEnd = E->capture_end();
12389        C != CEnd; ++C) {
12390     if (!E->isInitCapture(C))
12391       continue;
12392 
12393     TransformedInitCapture &Result = InitCaptures[C - E->capture_begin()];
12394     VarDecl *OldVD = C->getCapturedVar();
12395 
12396     auto SubstInitCapture = [&](SourceLocation EllipsisLoc,
12397                                 Optional<unsigned> NumExpansions) {
12398       ExprResult NewExprInitResult = getDerived().TransformInitializer(
12399           OldVD->getInit(), OldVD->getInitStyle() == VarDecl::CallInit);
12400 
12401       if (NewExprInitResult.isInvalid()) {
12402         Result.Expansions.push_back(InitCaptureInfoTy(ExprError(), QualType()));
12403         return;
12404       }
12405       Expr *NewExprInit = NewExprInitResult.get();
12406 
12407       QualType NewInitCaptureType =
12408           getSema().buildLambdaInitCaptureInitialization(
12409               C->getLocation(), OldVD->getType()->isReferenceType(),
12410               EllipsisLoc, NumExpansions, OldVD->getIdentifier(),
12411               C->getCapturedVar()->getInitStyle() != VarDecl::CInit,
12412               NewExprInit);
12413       Result.Expansions.push_back(
12414           InitCaptureInfoTy(NewExprInit, NewInitCaptureType));
12415     };
12416 
12417     // If this is an init-capture pack, consider expanding the pack now.
12418     if (OldVD->isParameterPack()) {
12419       PackExpansionTypeLoc ExpansionTL = OldVD->getTypeSourceInfo()
12420                                              ->getTypeLoc()
12421                                              .castAs<PackExpansionTypeLoc>();
12422       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12423       SemaRef.collectUnexpandedParameterPacks(OldVD->getInit(), Unexpanded);
12424 
12425       // Determine whether the set of unexpanded parameter packs can and should
12426       // be expanded.
12427       bool Expand = true;
12428       bool RetainExpansion = false;
12429       Optional<unsigned> OrigNumExpansions =
12430           ExpansionTL.getTypePtr()->getNumExpansions();
12431       Optional<unsigned> NumExpansions = OrigNumExpansions;
12432       if (getDerived().TryExpandParameterPacks(
12433               ExpansionTL.getEllipsisLoc(),
12434               OldVD->getInit()->getSourceRange(), Unexpanded, Expand,
12435               RetainExpansion, NumExpansions))
12436         return ExprError();
12437       if (Expand) {
12438         for (unsigned I = 0; I != *NumExpansions; ++I) {
12439           Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
12440           SubstInitCapture(SourceLocation(), None);
12441         }
12442       }
12443       if (!Expand || RetainExpansion) {
12444         ForgetPartiallySubstitutedPackRAII Forget(getDerived());
12445         SubstInitCapture(ExpansionTL.getEllipsisLoc(), NumExpansions);
12446         Result.EllipsisLoc = ExpansionTL.getEllipsisLoc();
12447       }
12448     } else {
12449       SubstInitCapture(SourceLocation(), None);
12450     }
12451   }
12452 
12453   LambdaScopeInfo *LSI = getSema().PushLambdaScope();
12454   Sema::FunctionScopeRAII FuncScopeCleanup(getSema());
12455 
12456   // Transform the template parameters, and add them to the current
12457   // instantiation scope. The null case is handled correctly.
12458   auto TPL = getDerived().TransformTemplateParameterList(
12459       E->getTemplateParameterList());
12460   LSI->GLTemplateParameterList = TPL;
12461 
12462   // Transform the type of the original lambda's call operator.
12463   // The transformation MUST be done in the CurrentInstantiationScope since
12464   // it introduces a mapping of the original to the newly created
12465   // transformed parameters.
12466   TypeSourceInfo *NewCallOpTSI = nullptr;
12467   {
12468     TypeSourceInfo *OldCallOpTSI = E->getCallOperator()->getTypeSourceInfo();
12469     FunctionProtoTypeLoc OldCallOpFPTL =
12470         OldCallOpTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
12471 
12472     TypeLocBuilder NewCallOpTLBuilder;
12473     SmallVector<QualType, 4> ExceptionStorage;
12474     TreeTransform *This = this; // Work around gcc.gnu.org/PR56135.
12475     QualType NewCallOpType = TransformFunctionProtoType(
12476         NewCallOpTLBuilder, OldCallOpFPTL, nullptr, Qualifiers(),
12477         [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) {
12478           return This->TransformExceptionSpec(OldCallOpFPTL.getBeginLoc(), ESI,
12479                                               ExceptionStorage, Changed);
12480         });
12481     if (NewCallOpType.isNull())
12482       return ExprError();
12483     NewCallOpTSI = NewCallOpTLBuilder.getTypeSourceInfo(getSema().Context,
12484                                                         NewCallOpType);
12485   }
12486 
12487   // Transform the trailing requires clause
12488   ExprResult NewTrailingRequiresClause;
12489   if (Expr *TRC = E->getCallOperator()->getTrailingRequiresClause())
12490     // FIXME: Concepts: Substitution into requires clause should only happen
12491     //                  when checking satisfaction.
12492     NewTrailingRequiresClause = getDerived().TransformExpr(TRC);
12493 
12494   // Create the local class that will describe the lambda.
12495   // FIXME: KnownDependent below is wrong when substituting inside a templated
12496   // context that isn't a DeclContext (such as a variable template).
12497   CXXRecordDecl *OldClass = E->getLambdaClass();
12498   CXXRecordDecl *Class
12499     = getSema().createLambdaClosureType(E->getIntroducerRange(),
12500                                         NewCallOpTSI,
12501                                         /*KnownDependent=*/false,
12502                                         E->getCaptureDefault());
12503   getDerived().transformedLocalDecl(OldClass, {Class});
12504 
12505   Optional<std::tuple<unsigned, bool, Decl *>> Mangling;
12506   if (getDerived().ReplacingOriginal())
12507     Mangling = std::make_tuple(OldClass->getLambdaManglingNumber(),
12508                                OldClass->hasKnownLambdaInternalLinkage(),
12509                                OldClass->getLambdaContextDecl());
12510 
12511   // Build the call operator.
12512   CXXMethodDecl *NewCallOperator = getSema().startLambdaDefinition(
12513       Class, E->getIntroducerRange(), NewCallOpTSI,
12514       E->getCallOperator()->getEndLoc(),
12515       NewCallOpTSI->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(),
12516       E->getCallOperator()->getConstexprKind(),
12517       NewTrailingRequiresClause.get());
12518 
12519   LSI->CallOperator = NewCallOperator;
12520 
12521   getDerived().transformAttrs(E->getCallOperator(), NewCallOperator);
12522   getDerived().transformedLocalDecl(E->getCallOperator(), {NewCallOperator});
12523 
12524   // Number the lambda for linkage purposes if necessary.
12525   getSema().handleLambdaNumbering(Class, NewCallOperator, Mangling);
12526 
12527   // Introduce the context of the call operator.
12528   Sema::ContextRAII SavedContext(getSema(), NewCallOperator,
12529                                  /*NewThisContext*/false);
12530 
12531   // Enter the scope of the lambda.
12532   getSema().buildLambdaScope(LSI, NewCallOperator,
12533                              E->getIntroducerRange(),
12534                              E->getCaptureDefault(),
12535                              E->getCaptureDefaultLoc(),
12536                              E->hasExplicitParameters(),
12537                              E->hasExplicitResultType(),
12538                              E->isMutable());
12539 
12540   bool Invalid = false;
12541 
12542   // Transform captures.
12543   for (LambdaExpr::capture_iterator C = E->capture_begin(),
12544                                  CEnd = E->capture_end();
12545        C != CEnd; ++C) {
12546     // When we hit the first implicit capture, tell Sema that we've finished
12547     // the list of explicit captures.
12548     if (C->isImplicit())
12549       break;
12550 
12551     // Capturing 'this' is trivial.
12552     if (C->capturesThis()) {
12553       getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(),
12554                                     /*BuildAndDiagnose*/ true, nullptr,
12555                                     C->getCaptureKind() == LCK_StarThis);
12556       continue;
12557     }
12558     // Captured expression will be recaptured during captured variables
12559     // rebuilding.
12560     if (C->capturesVLAType())
12561       continue;
12562 
12563     // Rebuild init-captures, including the implied field declaration.
12564     if (E->isInitCapture(C)) {
12565       TransformedInitCapture &NewC = InitCaptures[C - E->capture_begin()];
12566 
12567       VarDecl *OldVD = C->getCapturedVar();
12568       llvm::SmallVector<Decl*, 4> NewVDs;
12569 
12570       for (InitCaptureInfoTy &Info : NewC.Expansions) {
12571         ExprResult Init = Info.first;
12572         QualType InitQualType = Info.second;
12573         if (Init.isInvalid() || InitQualType.isNull()) {
12574           Invalid = true;
12575           break;
12576         }
12577         VarDecl *NewVD = getSema().createLambdaInitCaptureVarDecl(
12578             OldVD->getLocation(), InitQualType, NewC.EllipsisLoc,
12579             OldVD->getIdentifier(), OldVD->getInitStyle(), Init.get());
12580         if (!NewVD) {
12581           Invalid = true;
12582           break;
12583         }
12584         NewVDs.push_back(NewVD);
12585         getSema().addInitCapture(LSI, NewVD);
12586       }
12587 
12588       if (Invalid)
12589         break;
12590 
12591       getDerived().transformedLocalDecl(OldVD, NewVDs);
12592       continue;
12593     }
12594 
12595     assert(C->capturesVariable() && "unexpected kind of lambda capture");
12596 
12597     // Determine the capture kind for Sema.
12598     Sema::TryCaptureKind Kind
12599       = C->isImplicit()? Sema::TryCapture_Implicit
12600                        : C->getCaptureKind() == LCK_ByCopy
12601                            ? Sema::TryCapture_ExplicitByVal
12602                            : Sema::TryCapture_ExplicitByRef;
12603     SourceLocation EllipsisLoc;
12604     if (C->isPackExpansion()) {
12605       UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation());
12606       bool ShouldExpand = false;
12607       bool RetainExpansion = false;
12608       Optional<unsigned> NumExpansions;
12609       if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(),
12610                                                C->getLocation(),
12611                                                Unexpanded,
12612                                                ShouldExpand, RetainExpansion,
12613                                                NumExpansions)) {
12614         Invalid = true;
12615         continue;
12616       }
12617 
12618       if (ShouldExpand) {
12619         // The transform has determined that we should perform an expansion;
12620         // transform and capture each of the arguments.
12621         // expansion of the pattern. Do so.
12622         VarDecl *Pack = C->getCapturedVar();
12623         for (unsigned I = 0; I != *NumExpansions; ++I) {
12624           Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
12625           VarDecl *CapturedVar
12626             = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
12627                                                                Pack));
12628           if (!CapturedVar) {
12629             Invalid = true;
12630             continue;
12631           }
12632 
12633           // Capture the transformed variable.
12634           getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
12635         }
12636 
12637         // FIXME: Retain a pack expansion if RetainExpansion is true.
12638 
12639         continue;
12640       }
12641 
12642       EllipsisLoc = C->getEllipsisLoc();
12643     }
12644 
12645     // Transform the captured variable.
12646     VarDecl *CapturedVar
12647       = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
12648                                                          C->getCapturedVar()));
12649     if (!CapturedVar || CapturedVar->isInvalidDecl()) {
12650       Invalid = true;
12651       continue;
12652     }
12653 
12654     // Capture the transformed variable.
12655     getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind,
12656                                  EllipsisLoc);
12657   }
12658   getSema().finishLambdaExplicitCaptures(LSI);
12659 
12660   // FIXME: Sema's lambda-building mechanism expects us to push an expression
12661   // evaluation context even if we're not transforming the function body.
12662   getSema().PushExpressionEvaluationContext(
12663       Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
12664 
12665   // Instantiate the body of the lambda expression.
12666   StmtResult Body =
12667       Invalid ? StmtError() : getDerived().TransformLambdaBody(E, E->getBody());
12668 
12669   // ActOnLambda* will pop the function scope for us.
12670   FuncScopeCleanup.disable();
12671 
12672   if (Body.isInvalid()) {
12673     SavedContext.pop();
12674     getSema().ActOnLambdaError(E->getBeginLoc(), /*CurScope=*/nullptr,
12675                                /*IsInstantiation=*/true);
12676     return ExprError();
12677   }
12678 
12679   // Copy the LSI before ActOnFinishFunctionBody removes it.
12680   // FIXME: This is dumb. Store the lambda information somewhere that outlives
12681   // the call operator.
12682   auto LSICopy = *LSI;
12683   getSema().ActOnFinishFunctionBody(NewCallOperator, Body.get(),
12684                                     /*IsInstantiation*/ true);
12685   SavedContext.pop();
12686 
12687   return getSema().BuildLambdaExpr(E->getBeginLoc(), Body.get()->getEndLoc(),
12688                                    &LSICopy);
12689 }
12690 
12691 template<typename Derived>
12692 StmtResult
TransformLambdaBody(LambdaExpr * E,Stmt * S)12693 TreeTransform<Derived>::TransformLambdaBody(LambdaExpr *E, Stmt *S) {
12694   return TransformStmt(S);
12695 }
12696 
12697 template<typename Derived>
12698 StmtResult
SkipLambdaBody(LambdaExpr * E,Stmt * S)12699 TreeTransform<Derived>::SkipLambdaBody(LambdaExpr *E, Stmt *S) {
12700   // Transform captures.
12701   for (LambdaExpr::capture_iterator C = E->capture_begin(),
12702                                  CEnd = E->capture_end();
12703        C != CEnd; ++C) {
12704     // When we hit the first implicit capture, tell Sema that we've finished
12705     // the list of explicit captures.
12706     if (!C->isImplicit())
12707       continue;
12708 
12709     // Capturing 'this' is trivial.
12710     if (C->capturesThis()) {
12711       getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(),
12712                                     /*BuildAndDiagnose*/ true, nullptr,
12713                                     C->getCaptureKind() == LCK_StarThis);
12714       continue;
12715     }
12716     // Captured expression will be recaptured during captured variables
12717     // rebuilding.
12718     if (C->capturesVLAType())
12719       continue;
12720 
12721     assert(C->capturesVariable() && "unexpected kind of lambda capture");
12722     assert(!E->isInitCapture(C) && "implicit init-capture?");
12723 
12724     // Transform the captured variable.
12725     VarDecl *CapturedVar = cast_or_null<VarDecl>(
12726         getDerived().TransformDecl(C->getLocation(), C->getCapturedVar()));
12727     if (!CapturedVar || CapturedVar->isInvalidDecl())
12728       return StmtError();
12729 
12730     // Capture the transformed variable.
12731     getSema().tryCaptureVariable(CapturedVar, C->getLocation());
12732   }
12733 
12734   return S;
12735 }
12736 
12737 template<typename Derived>
12738 ExprResult
TransformCXXUnresolvedConstructExpr(CXXUnresolvedConstructExpr * E)12739 TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr(
12740                                                   CXXUnresolvedConstructExpr *E) {
12741   TypeSourceInfo *T =
12742       getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo());
12743   if (!T)
12744     return ExprError();
12745 
12746   bool ArgumentChanged = false;
12747   SmallVector<Expr*, 8> Args;
12748   Args.reserve(E->getNumArgs());
12749   {
12750     EnterExpressionEvaluationContext Context(
12751         getSema(), EnterExpressionEvaluationContext::InitList,
12752         E->isListInitialization());
12753     if (getDerived().TransformExprs(E->arg_begin(), E->getNumArgs(), true, Args,
12754                                     &ArgumentChanged))
12755       return ExprError();
12756   }
12757 
12758   if (!getDerived().AlwaysRebuild() &&
12759       T == E->getTypeSourceInfo() &&
12760       !ArgumentChanged)
12761     return E;
12762 
12763   // FIXME: we're faking the locations of the commas
12764   return getDerived().RebuildCXXUnresolvedConstructExpr(
12765       T, E->getLParenLoc(), Args, E->getRParenLoc(), E->isListInitialization());
12766 }
12767 
12768 template<typename Derived>
12769 ExprResult
TransformCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr * E)12770 TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr(
12771                                              CXXDependentScopeMemberExpr *E) {
12772   // Transform the base of the expression.
12773   ExprResult Base((Expr*) nullptr);
12774   Expr *OldBase;
12775   QualType BaseType;
12776   QualType ObjectType;
12777   if (!E->isImplicitAccess()) {
12778     OldBase = E->getBase();
12779     Base = getDerived().TransformExpr(OldBase);
12780     if (Base.isInvalid())
12781       return ExprError();
12782 
12783     // Start the member reference and compute the object's type.
12784     ParsedType ObjectTy;
12785     bool MayBePseudoDestructor = false;
12786     Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
12787                                                 E->getOperatorLoc(),
12788                                       E->isArrow()? tok::arrow : tok::period,
12789                                                 ObjectTy,
12790                                                 MayBePseudoDestructor);
12791     if (Base.isInvalid())
12792       return ExprError();
12793 
12794     ObjectType = ObjectTy.get();
12795     BaseType = ((Expr*) Base.get())->getType();
12796   } else {
12797     OldBase = nullptr;
12798     BaseType = getDerived().TransformType(E->getBaseType());
12799     ObjectType = BaseType->castAs<PointerType>()->getPointeeType();
12800   }
12801 
12802   // Transform the first part of the nested-name-specifier that qualifies
12803   // the member name.
12804   NamedDecl *FirstQualifierInScope
12805     = getDerived().TransformFirstQualifierInScope(
12806                                             E->getFirstQualifierFoundInScope(),
12807                                             E->getQualifierLoc().getBeginLoc());
12808 
12809   NestedNameSpecifierLoc QualifierLoc;
12810   if (E->getQualifier()) {
12811     QualifierLoc
12812       = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(),
12813                                                      ObjectType,
12814                                                      FirstQualifierInScope);
12815     if (!QualifierLoc)
12816       return ExprError();
12817   }
12818 
12819   SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
12820 
12821   // TODO: If this is a conversion-function-id, verify that the
12822   // destination type name (if present) resolves the same way after
12823   // instantiation as it did in the local scope.
12824 
12825   DeclarationNameInfo NameInfo
12826     = getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo());
12827   if (!NameInfo.getName())
12828     return ExprError();
12829 
12830   if (!E->hasExplicitTemplateArgs()) {
12831     // This is a reference to a member without an explicitly-specified
12832     // template argument list. Optimize for this common case.
12833     if (!getDerived().AlwaysRebuild() &&
12834         Base.get() == OldBase &&
12835         BaseType == E->getBaseType() &&
12836         QualifierLoc == E->getQualifierLoc() &&
12837         NameInfo.getName() == E->getMember() &&
12838         FirstQualifierInScope == E->getFirstQualifierFoundInScope())
12839       return E;
12840 
12841     return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
12842                                                        BaseType,
12843                                                        E->isArrow(),
12844                                                        E->getOperatorLoc(),
12845                                                        QualifierLoc,
12846                                                        TemplateKWLoc,
12847                                                        FirstQualifierInScope,
12848                                                        NameInfo,
12849                                                        /*TemplateArgs*/nullptr);
12850   }
12851 
12852   TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
12853   if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
12854                                               E->getNumTemplateArgs(),
12855                                               TransArgs))
12856     return ExprError();
12857 
12858   return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
12859                                                      BaseType,
12860                                                      E->isArrow(),
12861                                                      E->getOperatorLoc(),
12862                                                      QualifierLoc,
12863                                                      TemplateKWLoc,
12864                                                      FirstQualifierInScope,
12865                                                      NameInfo,
12866                                                      &TransArgs);
12867 }
12868 
12869 template<typename Derived>
12870 ExprResult
TransformUnresolvedMemberExpr(UnresolvedMemberExpr * Old)12871 TreeTransform<Derived>::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old) {
12872   // Transform the base of the expression.
12873   ExprResult Base((Expr*) nullptr);
12874   QualType BaseType;
12875   if (!Old->isImplicitAccess()) {
12876     Base = getDerived().TransformExpr(Old->getBase());
12877     if (Base.isInvalid())
12878       return ExprError();
12879     Base = getSema().PerformMemberExprBaseConversion(Base.get(),
12880                                                      Old->isArrow());
12881     if (Base.isInvalid())
12882       return ExprError();
12883     BaseType = Base.get()->getType();
12884   } else {
12885     BaseType = getDerived().TransformType(Old->getBaseType());
12886   }
12887 
12888   NestedNameSpecifierLoc QualifierLoc;
12889   if (Old->getQualifierLoc()) {
12890     QualifierLoc
12891     = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
12892     if (!QualifierLoc)
12893       return ExprError();
12894   }
12895 
12896   SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
12897 
12898   LookupResult R(SemaRef, Old->getMemberNameInfo(),
12899                  Sema::LookupOrdinaryName);
12900 
12901   // Transform the declaration set.
12902   if (TransformOverloadExprDecls(Old, /*RequiresADL*/false, R))
12903     return ExprError();
12904 
12905   // Determine the naming class.
12906   if (Old->getNamingClass()) {
12907     CXXRecordDecl *NamingClass
12908       = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
12909                                                           Old->getMemberLoc(),
12910                                                         Old->getNamingClass()));
12911     if (!NamingClass)
12912       return ExprError();
12913 
12914     R.setNamingClass(NamingClass);
12915   }
12916 
12917   TemplateArgumentListInfo TransArgs;
12918   if (Old->hasExplicitTemplateArgs()) {
12919     TransArgs.setLAngleLoc(Old->getLAngleLoc());
12920     TransArgs.setRAngleLoc(Old->getRAngleLoc());
12921     if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
12922                                                 Old->getNumTemplateArgs(),
12923                                                 TransArgs))
12924       return ExprError();
12925   }
12926 
12927   // FIXME: to do this check properly, we will need to preserve the
12928   // first-qualifier-in-scope here, just in case we had a dependent
12929   // base (and therefore couldn't do the check) and a
12930   // nested-name-qualifier (and therefore could do the lookup).
12931   NamedDecl *FirstQualifierInScope = nullptr;
12932 
12933   return getDerived().RebuildUnresolvedMemberExpr(Base.get(),
12934                                                   BaseType,
12935                                                   Old->getOperatorLoc(),
12936                                                   Old->isArrow(),
12937                                                   QualifierLoc,
12938                                                   TemplateKWLoc,
12939                                                   FirstQualifierInScope,
12940                                                   R,
12941                                               (Old->hasExplicitTemplateArgs()
12942                                                   ? &TransArgs : nullptr));
12943 }
12944 
12945 template<typename Derived>
12946 ExprResult
TransformCXXNoexceptExpr(CXXNoexceptExpr * E)12947 TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) {
12948   EnterExpressionEvaluationContext Unevaluated(
12949       SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
12950   ExprResult SubExpr = getDerived().TransformExpr(E->getOperand());
12951   if (SubExpr.isInvalid())
12952     return ExprError();
12953 
12954   if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand())
12955     return E;
12956 
12957   return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get());
12958 }
12959 
12960 template<typename Derived>
12961 ExprResult
TransformPackExpansionExpr(PackExpansionExpr * E)12962 TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) {
12963   ExprResult Pattern = getDerived().TransformExpr(E->getPattern());
12964   if (Pattern.isInvalid())
12965     return ExprError();
12966 
12967   if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern())
12968     return E;
12969 
12970   return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(),
12971                                            E->getNumExpansions());
12972 }
12973 
12974 template<typename Derived>
12975 ExprResult
TransformSizeOfPackExpr(SizeOfPackExpr * E)12976 TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) {
12977   // If E is not value-dependent, then nothing will change when we transform it.
12978   // Note: This is an instantiation-centric view.
12979   if (!E->isValueDependent())
12980     return E;
12981 
12982   EnterExpressionEvaluationContext Unevaluated(
12983       getSema(), Sema::ExpressionEvaluationContext::Unevaluated);
12984 
12985   ArrayRef<TemplateArgument> PackArgs;
12986   TemplateArgument ArgStorage;
12987 
12988   // Find the argument list to transform.
12989   if (E->isPartiallySubstituted()) {
12990     PackArgs = E->getPartialArguments();
12991   } else if (E->isValueDependent()) {
12992     UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc());
12993     bool ShouldExpand = false;
12994     bool RetainExpansion = false;
12995     Optional<unsigned> NumExpansions;
12996     if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(),
12997                                              Unexpanded,
12998                                              ShouldExpand, RetainExpansion,
12999                                              NumExpansions))
13000       return ExprError();
13001 
13002     // If we need to expand the pack, build a template argument from it and
13003     // expand that.
13004     if (ShouldExpand) {
13005       auto *Pack = E->getPack();
13006       if (auto *TTPD = dyn_cast<TemplateTypeParmDecl>(Pack)) {
13007         ArgStorage = getSema().Context.getPackExpansionType(
13008             getSema().Context.getTypeDeclType(TTPD), None);
13009       } else if (auto *TTPD = dyn_cast<TemplateTemplateParmDecl>(Pack)) {
13010         ArgStorage = TemplateArgument(TemplateName(TTPD), None);
13011       } else {
13012         auto *VD = cast<ValueDecl>(Pack);
13013         ExprResult DRE = getSema().BuildDeclRefExpr(
13014             VD, VD->getType().getNonLValueExprType(getSema().Context),
13015             VD->getType()->isReferenceType() ? VK_LValue : VK_RValue,
13016             E->getPackLoc());
13017         if (DRE.isInvalid())
13018           return ExprError();
13019         ArgStorage = new (getSema().Context) PackExpansionExpr(
13020             getSema().Context.DependentTy, DRE.get(), E->getPackLoc(), None);
13021       }
13022       PackArgs = ArgStorage;
13023     }
13024   }
13025 
13026   // If we're not expanding the pack, just transform the decl.
13027   if (!PackArgs.size()) {
13028     auto *Pack = cast_or_null<NamedDecl>(
13029         getDerived().TransformDecl(E->getPackLoc(), E->getPack()));
13030     if (!Pack)
13031       return ExprError();
13032     return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), Pack,
13033                                               E->getPackLoc(),
13034                                               E->getRParenLoc(), None, None);
13035   }
13036 
13037   // Try to compute the result without performing a partial substitution.
13038   Optional<unsigned> Result = 0;
13039   for (const TemplateArgument &Arg : PackArgs) {
13040     if (!Arg.isPackExpansion()) {
13041       Result = *Result + 1;
13042       continue;
13043     }
13044 
13045     TemplateArgumentLoc ArgLoc;
13046     InventTemplateArgumentLoc(Arg, ArgLoc);
13047 
13048     // Find the pattern of the pack expansion.
13049     SourceLocation Ellipsis;
13050     Optional<unsigned> OrigNumExpansions;
13051     TemplateArgumentLoc Pattern =
13052         getSema().getTemplateArgumentPackExpansionPattern(ArgLoc, Ellipsis,
13053                                                           OrigNumExpansions);
13054 
13055     // Substitute under the pack expansion. Do not expand the pack (yet).
13056     TemplateArgumentLoc OutPattern;
13057     Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
13058     if (getDerived().TransformTemplateArgument(Pattern, OutPattern,
13059                                                /*Uneval*/ true))
13060       return true;
13061 
13062     // See if we can determine the number of arguments from the result.
13063     Optional<unsigned> NumExpansions =
13064         getSema().getFullyPackExpandedSize(OutPattern.getArgument());
13065     if (!NumExpansions) {
13066       // No: we must be in an alias template expansion, and we're going to need
13067       // to actually expand the packs.
13068       Result = None;
13069       break;
13070     }
13071 
13072     Result = *Result + *NumExpansions;
13073   }
13074 
13075   // Common case: we could determine the number of expansions without
13076   // substituting.
13077   if (Result)
13078     return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(),
13079                                               E->getPackLoc(),
13080                                               E->getRParenLoc(), *Result, None);
13081 
13082   TemplateArgumentListInfo TransformedPackArgs(E->getPackLoc(),
13083                                                E->getPackLoc());
13084   {
13085     TemporaryBase Rebase(*this, E->getPackLoc(), getBaseEntity());
13086     typedef TemplateArgumentLocInventIterator<
13087         Derived, const TemplateArgument*> PackLocIterator;
13088     if (TransformTemplateArguments(PackLocIterator(*this, PackArgs.begin()),
13089                                    PackLocIterator(*this, PackArgs.end()),
13090                                    TransformedPackArgs, /*Uneval*/true))
13091       return ExprError();
13092   }
13093 
13094   // Check whether we managed to fully-expand the pack.
13095   // FIXME: Is it possible for us to do so and not hit the early exit path?
13096   SmallVector<TemplateArgument, 8> Args;
13097   bool PartialSubstitution = false;
13098   for (auto &Loc : TransformedPackArgs.arguments()) {
13099     Args.push_back(Loc.getArgument());
13100     if (Loc.getArgument().isPackExpansion())
13101       PartialSubstitution = true;
13102   }
13103 
13104   if (PartialSubstitution)
13105     return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(),
13106                                               E->getPackLoc(),
13107                                               E->getRParenLoc(), None, Args);
13108 
13109   return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(),
13110                                             E->getPackLoc(), E->getRParenLoc(),
13111                                             Args.size(), None);
13112 }
13113 
13114 template<typename Derived>
13115 ExprResult
TransformSubstNonTypeTemplateParmPackExpr(SubstNonTypeTemplateParmPackExpr * E)13116 TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr(
13117                                           SubstNonTypeTemplateParmPackExpr *E) {
13118   // Default behavior is to do nothing with this transformation.
13119   return E;
13120 }
13121 
13122 template<typename Derived>
13123 ExprResult
TransformSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)13124 TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr(
13125                                           SubstNonTypeTemplateParmExpr *E) {
13126   // Default behavior is to do nothing with this transformation.
13127   return E;
13128 }
13129 
13130 template<typename Derived>
13131 ExprResult
TransformFunctionParmPackExpr(FunctionParmPackExpr * E)13132 TreeTransform<Derived>::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) {
13133   // Default behavior is to do nothing with this transformation.
13134   return E;
13135 }
13136 
13137 template<typename Derived>
13138 ExprResult
TransformMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)13139 TreeTransform<Derived>::TransformMaterializeTemporaryExpr(
13140                                                   MaterializeTemporaryExpr *E) {
13141   return getDerived().TransformExpr(E->getSubExpr());
13142 }
13143 
13144 template<typename Derived>
13145 ExprResult
TransformCXXFoldExpr(CXXFoldExpr * E)13146 TreeTransform<Derived>::TransformCXXFoldExpr(CXXFoldExpr *E) {
13147   UnresolvedLookupExpr *Callee = nullptr;
13148   if (Expr *OldCallee = E->getCallee()) {
13149     ExprResult CalleeResult = getDerived().TransformExpr(OldCallee);
13150     if (CalleeResult.isInvalid())
13151       return ExprError();
13152     Callee = cast<UnresolvedLookupExpr>(CalleeResult.get());
13153   }
13154 
13155   Expr *Pattern = E->getPattern();
13156 
13157   SmallVector<UnexpandedParameterPack, 2> Unexpanded;
13158   getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
13159   assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
13160 
13161   // Determine whether the set of unexpanded parameter packs can and should
13162   // be expanded.
13163   bool Expand = true;
13164   bool RetainExpansion = false;
13165   Optional<unsigned> OrigNumExpansions = E->getNumExpansions(),
13166                      NumExpansions = OrigNumExpansions;
13167   if (getDerived().TryExpandParameterPacks(E->getEllipsisLoc(),
13168                                            Pattern->getSourceRange(),
13169                                            Unexpanded,
13170                                            Expand, RetainExpansion,
13171                                            NumExpansions))
13172     return true;
13173 
13174   if (!Expand) {
13175     // Do not expand any packs here, just transform and rebuild a fold
13176     // expression.
13177     Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
13178 
13179     ExprResult LHS =
13180         E->getLHS() ? getDerived().TransformExpr(E->getLHS()) : ExprResult();
13181     if (LHS.isInvalid())
13182       return true;
13183 
13184     ExprResult RHS =
13185         E->getRHS() ? getDerived().TransformExpr(E->getRHS()) : ExprResult();
13186     if (RHS.isInvalid())
13187       return true;
13188 
13189     if (!getDerived().AlwaysRebuild() &&
13190         LHS.get() == E->getLHS() && RHS.get() == E->getRHS())
13191       return E;
13192 
13193     return getDerived().RebuildCXXFoldExpr(
13194         Callee, E->getBeginLoc(), LHS.get(), E->getOperator(),
13195         E->getEllipsisLoc(), RHS.get(), E->getEndLoc(), NumExpansions);
13196   }
13197 
13198   // Formally a fold expression expands to nested parenthesized expressions.
13199   // Enforce this limit to avoid creating trees so deep we can't safely traverse
13200   // them.
13201   if (NumExpansions && SemaRef.getLangOpts().BracketDepth < NumExpansions) {
13202     SemaRef.Diag(E->getEllipsisLoc(),
13203                  clang::diag::err_fold_expression_limit_exceeded)
13204         << *NumExpansions << SemaRef.getLangOpts().BracketDepth
13205         << E->getSourceRange();
13206     SemaRef.Diag(E->getEllipsisLoc(), diag::note_bracket_depth);
13207     return ExprError();
13208   }
13209 
13210   // The transform has determined that we should perform an elementwise
13211   // expansion of the pattern. Do so.
13212   ExprResult Result = getDerived().TransformExpr(E->getInit());
13213   if (Result.isInvalid())
13214     return true;
13215   bool LeftFold = E->isLeftFold();
13216 
13217   // If we're retaining an expansion for a right fold, it is the innermost
13218   // component and takes the init (if any).
13219   if (!LeftFold && RetainExpansion) {
13220     ForgetPartiallySubstitutedPackRAII Forget(getDerived());
13221 
13222     ExprResult Out = getDerived().TransformExpr(Pattern);
13223     if (Out.isInvalid())
13224       return true;
13225 
13226     Result = getDerived().RebuildCXXFoldExpr(
13227         Callee, E->getBeginLoc(), Out.get(), E->getOperator(),
13228         E->getEllipsisLoc(), Result.get(), E->getEndLoc(), OrigNumExpansions);
13229     if (Result.isInvalid())
13230       return true;
13231   }
13232 
13233   for (unsigned I = 0; I != *NumExpansions; ++I) {
13234     Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(
13235         getSema(), LeftFold ? I : *NumExpansions - I - 1);
13236     ExprResult Out = getDerived().TransformExpr(Pattern);
13237     if (Out.isInvalid())
13238       return true;
13239 
13240     if (Out.get()->containsUnexpandedParameterPack()) {
13241       // We still have a pack; retain a pack expansion for this slice.
13242       Result = getDerived().RebuildCXXFoldExpr(
13243           Callee, E->getBeginLoc(), LeftFold ? Result.get() : Out.get(),
13244           E->getOperator(), E->getEllipsisLoc(),
13245           LeftFold ? Out.get() : Result.get(), E->getEndLoc(),
13246           OrigNumExpansions);
13247     } else if (Result.isUsable()) {
13248       // We've got down to a single element; build a binary operator.
13249       Expr *LHS = LeftFold ? Result.get() : Out.get();
13250       Expr *RHS = LeftFold ? Out.get() : Result.get();
13251       if (Callee)
13252         Result = getDerived().RebuildCXXOperatorCallExpr(
13253             BinaryOperator::getOverloadedOperator(E->getOperator()),
13254             E->getEllipsisLoc(), Callee, LHS, RHS);
13255       else
13256         Result = getDerived().RebuildBinaryOperator(E->getEllipsisLoc(),
13257                                                     E->getOperator(), LHS, RHS);
13258     } else
13259       Result = Out;
13260 
13261     if (Result.isInvalid())
13262       return true;
13263   }
13264 
13265   // If we're retaining an expansion for a left fold, it is the outermost
13266   // component and takes the complete expansion so far as its init (if any).
13267   if (LeftFold && RetainExpansion) {
13268     ForgetPartiallySubstitutedPackRAII Forget(getDerived());
13269 
13270     ExprResult Out = getDerived().TransformExpr(Pattern);
13271     if (Out.isInvalid())
13272       return true;
13273 
13274     Result = getDerived().RebuildCXXFoldExpr(
13275         Callee, E->getBeginLoc(), Result.get(), E->getOperator(),
13276         E->getEllipsisLoc(), Out.get(), E->getEndLoc(), OrigNumExpansions);
13277     if (Result.isInvalid())
13278       return true;
13279   }
13280 
13281   // If we had no init and an empty pack, and we're not retaining an expansion,
13282   // then produce a fallback value or error.
13283   if (Result.isUnset())
13284     return getDerived().RebuildEmptyCXXFoldExpr(E->getEllipsisLoc(),
13285                                                 E->getOperator());
13286 
13287   return Result;
13288 }
13289 
13290 template<typename Derived>
13291 ExprResult
TransformCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)13292 TreeTransform<Derived>::TransformCXXStdInitializerListExpr(
13293     CXXStdInitializerListExpr *E) {
13294   return getDerived().TransformExpr(E->getSubExpr());
13295 }
13296 
13297 template<typename Derived>
13298 ExprResult
TransformObjCStringLiteral(ObjCStringLiteral * E)13299 TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) {
13300   return SemaRef.MaybeBindToTemporary(E);
13301 }
13302 
13303 template<typename Derived>
13304 ExprResult
TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr * E)13305 TreeTransform<Derived>::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) {
13306   return E;
13307 }
13308 
13309 template<typename Derived>
13310 ExprResult
TransformObjCBoxedExpr(ObjCBoxedExpr * E)13311 TreeTransform<Derived>::TransformObjCBoxedExpr(ObjCBoxedExpr *E) {
13312   ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
13313   if (SubExpr.isInvalid())
13314     return ExprError();
13315 
13316   if (!getDerived().AlwaysRebuild() &&
13317       SubExpr.get() == E->getSubExpr())
13318     return E;
13319 
13320   return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get());
13321 }
13322 
13323 template<typename Derived>
13324 ExprResult
TransformObjCArrayLiteral(ObjCArrayLiteral * E)13325 TreeTransform<Derived>::TransformObjCArrayLiteral(ObjCArrayLiteral *E) {
13326   // Transform each of the elements.
13327   SmallVector<Expr *, 8> Elements;
13328   bool ArgChanged = false;
13329   if (getDerived().TransformExprs(E->getElements(), E->getNumElements(),
13330                                   /*IsCall=*/false, Elements, &ArgChanged))
13331     return ExprError();
13332 
13333   if (!getDerived().AlwaysRebuild() && !ArgChanged)
13334     return SemaRef.MaybeBindToTemporary(E);
13335 
13336   return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(),
13337                                               Elements.data(),
13338                                               Elements.size());
13339 }
13340 
13341 template<typename Derived>
13342 ExprResult
TransformObjCDictionaryLiteral(ObjCDictionaryLiteral * E)13343 TreeTransform<Derived>::TransformObjCDictionaryLiteral(
13344                                                     ObjCDictionaryLiteral *E) {
13345   // Transform each of the elements.
13346   SmallVector<ObjCDictionaryElement, 8> Elements;
13347   bool ArgChanged = false;
13348   for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
13349     ObjCDictionaryElement OrigElement = E->getKeyValueElement(I);
13350 
13351     if (OrigElement.isPackExpansion()) {
13352       // This key/value element is a pack expansion.
13353       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
13354       getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded);
13355       getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded);
13356       assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
13357 
13358       // Determine whether the set of unexpanded parameter packs can
13359       // and should be expanded.
13360       bool Expand = true;
13361       bool RetainExpansion = false;
13362       Optional<unsigned> OrigNumExpansions = OrigElement.NumExpansions;
13363       Optional<unsigned> NumExpansions = OrigNumExpansions;
13364       SourceRange PatternRange(OrigElement.Key->getBeginLoc(),
13365                                OrigElement.Value->getEndLoc());
13366       if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc,
13367                                                PatternRange, Unexpanded, Expand,
13368                                                RetainExpansion, NumExpansions))
13369         return ExprError();
13370 
13371       if (!Expand) {
13372         // The transform has determined that we should perform a simple
13373         // transformation on the pack expansion, producing another pack
13374         // expansion.
13375         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
13376         ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
13377         if (Key.isInvalid())
13378           return ExprError();
13379 
13380         if (Key.get() != OrigElement.Key)
13381           ArgChanged = true;
13382 
13383         ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
13384         if (Value.isInvalid())
13385           return ExprError();
13386 
13387         if (Value.get() != OrigElement.Value)
13388           ArgChanged = true;
13389 
13390         ObjCDictionaryElement Expansion = {
13391           Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions
13392         };
13393         Elements.push_back(Expansion);
13394         continue;
13395       }
13396 
13397       // Record right away that the argument was changed.  This needs
13398       // to happen even if the array expands to nothing.
13399       ArgChanged = true;
13400 
13401       // The transform has determined that we should perform an elementwise
13402       // expansion of the pattern. Do so.
13403       for (unsigned I = 0; I != *NumExpansions; ++I) {
13404         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
13405         ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
13406         if (Key.isInvalid())
13407           return ExprError();
13408 
13409         ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
13410         if (Value.isInvalid())
13411           return ExprError();
13412 
13413         ObjCDictionaryElement Element = {
13414           Key.get(), Value.get(), SourceLocation(), NumExpansions
13415         };
13416 
13417         // If any unexpanded parameter packs remain, we still have a
13418         // pack expansion.
13419         // FIXME: Can this really happen?
13420         if (Key.get()->containsUnexpandedParameterPack() ||
13421             Value.get()->containsUnexpandedParameterPack())
13422           Element.EllipsisLoc = OrigElement.EllipsisLoc;
13423 
13424         Elements.push_back(Element);
13425       }
13426 
13427       // FIXME: Retain a pack expansion if RetainExpansion is true.
13428 
13429       // We've finished with this pack expansion.
13430       continue;
13431     }
13432 
13433     // Transform and check key.
13434     ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
13435     if (Key.isInvalid())
13436       return ExprError();
13437 
13438     if (Key.get() != OrigElement.Key)
13439       ArgChanged = true;
13440 
13441     // Transform and check value.
13442     ExprResult Value
13443       = getDerived().TransformExpr(OrigElement.Value);
13444     if (Value.isInvalid())
13445       return ExprError();
13446 
13447     if (Value.get() != OrigElement.Value)
13448       ArgChanged = true;
13449 
13450     ObjCDictionaryElement Element = {
13451       Key.get(), Value.get(), SourceLocation(), None
13452     };
13453     Elements.push_back(Element);
13454   }
13455 
13456   if (!getDerived().AlwaysRebuild() && !ArgChanged)
13457     return SemaRef.MaybeBindToTemporary(E);
13458 
13459   return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(),
13460                                                    Elements);
13461 }
13462 
13463 template<typename Derived>
13464 ExprResult
TransformObjCEncodeExpr(ObjCEncodeExpr * E)13465 TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) {
13466   TypeSourceInfo *EncodedTypeInfo
13467     = getDerived().TransformType(E->getEncodedTypeSourceInfo());
13468   if (!EncodedTypeInfo)
13469     return ExprError();
13470 
13471   if (!getDerived().AlwaysRebuild() &&
13472       EncodedTypeInfo == E->getEncodedTypeSourceInfo())
13473     return E;
13474 
13475   return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(),
13476                                             EncodedTypeInfo,
13477                                             E->getRParenLoc());
13478 }
13479 
13480 template<typename Derived>
13481 ExprResult TreeTransform<Derived>::
TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr * E)13482 TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
13483   // This is a kind of implicit conversion, and it needs to get dropped
13484   // and recomputed for the same general reasons that ImplicitCastExprs
13485   // do, as well a more specific one: this expression is only valid when
13486   // it appears *immediately* as an argument expression.
13487   return getDerived().TransformExpr(E->getSubExpr());
13488 }
13489 
13490 template<typename Derived>
13491 ExprResult TreeTransform<Derived>::
TransformObjCBridgedCastExpr(ObjCBridgedCastExpr * E)13492 TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
13493   TypeSourceInfo *TSInfo
13494     = getDerived().TransformType(E->getTypeInfoAsWritten());
13495   if (!TSInfo)
13496     return ExprError();
13497 
13498   ExprResult Result = getDerived().TransformExpr(E->getSubExpr());
13499   if (Result.isInvalid())
13500     return ExprError();
13501 
13502   if (!getDerived().AlwaysRebuild() &&
13503       TSInfo == E->getTypeInfoAsWritten() &&
13504       Result.get() == E->getSubExpr())
13505     return E;
13506 
13507   return SemaRef.BuildObjCBridgedCast(E->getLParenLoc(), E->getBridgeKind(),
13508                                       E->getBridgeKeywordLoc(), TSInfo,
13509                                       Result.get());
13510 }
13511 
13512 template <typename Derived>
TransformObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr * E)13513 ExprResult TreeTransform<Derived>::TransformObjCAvailabilityCheckExpr(
13514     ObjCAvailabilityCheckExpr *E) {
13515   return E;
13516 }
13517 
13518 template<typename Derived>
13519 ExprResult
TransformObjCMessageExpr(ObjCMessageExpr * E)13520 TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) {
13521   // Transform arguments.
13522   bool ArgChanged = false;
13523   SmallVector<Expr*, 8> Args;
13524   Args.reserve(E->getNumArgs());
13525   if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args,
13526                                   &ArgChanged))
13527     return ExprError();
13528 
13529   if (E->getReceiverKind() == ObjCMessageExpr::Class) {
13530     // Class message: transform the receiver type.
13531     TypeSourceInfo *ReceiverTypeInfo
13532       = getDerived().TransformType(E->getClassReceiverTypeInfo());
13533     if (!ReceiverTypeInfo)
13534       return ExprError();
13535 
13536     // If nothing changed, just retain the existing message send.
13537     if (!getDerived().AlwaysRebuild() &&
13538         ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged)
13539       return SemaRef.MaybeBindToTemporary(E);
13540 
13541     // Build a new class message send.
13542     SmallVector<SourceLocation, 16> SelLocs;
13543     E->getSelectorLocs(SelLocs);
13544     return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo,
13545                                                E->getSelector(),
13546                                                SelLocs,
13547                                                E->getMethodDecl(),
13548                                                E->getLeftLoc(),
13549                                                Args,
13550                                                E->getRightLoc());
13551   }
13552   else if (E->getReceiverKind() == ObjCMessageExpr::SuperClass ||
13553            E->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
13554     if (!E->getMethodDecl())
13555       return ExprError();
13556 
13557     // Build a new class message send to 'super'.
13558     SmallVector<SourceLocation, 16> SelLocs;
13559     E->getSelectorLocs(SelLocs);
13560     return getDerived().RebuildObjCMessageExpr(E->getSuperLoc(),
13561                                                E->getSelector(),
13562                                                SelLocs,
13563                                                E->getReceiverType(),
13564                                                E->getMethodDecl(),
13565                                                E->getLeftLoc(),
13566                                                Args,
13567                                                E->getRightLoc());
13568   }
13569 
13570   // Instance message: transform the receiver
13571   assert(E->getReceiverKind() == ObjCMessageExpr::Instance &&
13572          "Only class and instance messages may be instantiated");
13573   ExprResult Receiver
13574     = getDerived().TransformExpr(E->getInstanceReceiver());
13575   if (Receiver.isInvalid())
13576     return ExprError();
13577 
13578   // If nothing changed, just retain the existing message send.
13579   if (!getDerived().AlwaysRebuild() &&
13580       Receiver.get() == E->getInstanceReceiver() && !ArgChanged)
13581     return SemaRef.MaybeBindToTemporary(E);
13582 
13583   // Build a new instance message send.
13584   SmallVector<SourceLocation, 16> SelLocs;
13585   E->getSelectorLocs(SelLocs);
13586   return getDerived().RebuildObjCMessageExpr(Receiver.get(),
13587                                              E->getSelector(),
13588                                              SelLocs,
13589                                              E->getMethodDecl(),
13590                                              E->getLeftLoc(),
13591                                              Args,
13592                                              E->getRightLoc());
13593 }
13594 
13595 template<typename Derived>
13596 ExprResult
TransformObjCSelectorExpr(ObjCSelectorExpr * E)13597 TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) {
13598   return E;
13599 }
13600 
13601 template<typename Derived>
13602 ExprResult
TransformObjCProtocolExpr(ObjCProtocolExpr * E)13603 TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) {
13604   return E;
13605 }
13606 
13607 template<typename Derived>
13608 ExprResult
TransformObjCIvarRefExpr(ObjCIvarRefExpr * E)13609 TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
13610   // Transform the base expression.
13611   ExprResult Base = getDerived().TransformExpr(E->getBase());
13612   if (Base.isInvalid())
13613     return ExprError();
13614 
13615   // We don't need to transform the ivar; it will never change.
13616 
13617   // If nothing changed, just retain the existing expression.
13618   if (!getDerived().AlwaysRebuild() &&
13619       Base.get() == E->getBase())
13620     return E;
13621 
13622   return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(),
13623                                              E->getLocation(),
13624                                              E->isArrow(), E->isFreeIvar());
13625 }
13626 
13627 template<typename Derived>
13628 ExprResult
TransformObjCPropertyRefExpr(ObjCPropertyRefExpr * E)13629 TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
13630   // 'super' and types never change. Property never changes. Just
13631   // retain the existing expression.
13632   if (!E->isObjectReceiver())
13633     return E;
13634 
13635   // Transform the base expression.
13636   ExprResult Base = getDerived().TransformExpr(E->getBase());
13637   if (Base.isInvalid())
13638     return ExprError();
13639 
13640   // We don't need to transform the property; it will never change.
13641 
13642   // If nothing changed, just retain the existing expression.
13643   if (!getDerived().AlwaysRebuild() &&
13644       Base.get() == E->getBase())
13645     return E;
13646 
13647   if (E->isExplicitProperty())
13648     return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
13649                                                    E->getExplicitProperty(),
13650                                                    E->getLocation());
13651 
13652   return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
13653                                                  SemaRef.Context.PseudoObjectTy,
13654                                                  E->getImplicitPropertyGetter(),
13655                                                  E->getImplicitPropertySetter(),
13656                                                  E->getLocation());
13657 }
13658 
13659 template<typename Derived>
13660 ExprResult
TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr * E)13661 TreeTransform<Derived>::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) {
13662   // Transform the base expression.
13663   ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
13664   if (Base.isInvalid())
13665     return ExprError();
13666 
13667   // Transform the key expression.
13668   ExprResult Key = getDerived().TransformExpr(E->getKeyExpr());
13669   if (Key.isInvalid())
13670     return ExprError();
13671 
13672   // If nothing changed, just retain the existing expression.
13673   if (!getDerived().AlwaysRebuild() &&
13674       Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr())
13675     return E;
13676 
13677   return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(),
13678                                                   Base.get(), Key.get(),
13679                                                   E->getAtIndexMethodDecl(),
13680                                                   E->setAtIndexMethodDecl());
13681 }
13682 
13683 template<typename Derived>
13684 ExprResult
TransformObjCIsaExpr(ObjCIsaExpr * E)13685 TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) {
13686   // Transform the base expression.
13687   ExprResult Base = getDerived().TransformExpr(E->getBase());
13688   if (Base.isInvalid())
13689     return ExprError();
13690 
13691   // If nothing changed, just retain the existing expression.
13692   if (!getDerived().AlwaysRebuild() &&
13693       Base.get() == E->getBase())
13694     return E;
13695 
13696   return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(),
13697                                          E->getOpLoc(),
13698                                          E->isArrow());
13699 }
13700 
13701 template<typename Derived>
13702 ExprResult
TransformShuffleVectorExpr(ShuffleVectorExpr * E)13703 TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) {
13704   bool ArgumentChanged = false;
13705   SmallVector<Expr*, 8> SubExprs;
13706   SubExprs.reserve(E->getNumSubExprs());
13707   if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
13708                                   SubExprs, &ArgumentChanged))
13709     return ExprError();
13710 
13711   if (!getDerived().AlwaysRebuild() &&
13712       !ArgumentChanged)
13713     return E;
13714 
13715   return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(),
13716                                                SubExprs,
13717                                                E->getRParenLoc());
13718 }
13719 
13720 template<typename Derived>
13721 ExprResult
TransformConvertVectorExpr(ConvertVectorExpr * E)13722 TreeTransform<Derived>::TransformConvertVectorExpr(ConvertVectorExpr *E) {
13723   ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr());
13724   if (SrcExpr.isInvalid())
13725     return ExprError();
13726 
13727   TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
13728   if (!Type)
13729     return ExprError();
13730 
13731   if (!getDerived().AlwaysRebuild() &&
13732       Type == E->getTypeSourceInfo() &&
13733       SrcExpr.get() == E->getSrcExpr())
13734     return E;
13735 
13736   return getDerived().RebuildConvertVectorExpr(E->getBuiltinLoc(),
13737                                                SrcExpr.get(), Type,
13738                                                E->getRParenLoc());
13739 }
13740 
13741 template<typename Derived>
13742 ExprResult
TransformBlockExpr(BlockExpr * E)13743 TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) {
13744   BlockDecl *oldBlock = E->getBlockDecl();
13745 
13746   SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/nullptr);
13747   BlockScopeInfo *blockScope = SemaRef.getCurBlock();
13748 
13749   blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic());
13750   blockScope->TheDecl->setBlockMissingReturnType(
13751                          oldBlock->blockMissingReturnType());
13752 
13753   SmallVector<ParmVarDecl*, 4> params;
13754   SmallVector<QualType, 4> paramTypes;
13755 
13756   const FunctionProtoType *exprFunctionType = E->getFunctionType();
13757 
13758   // Parameter substitution.
13759   Sema::ExtParameterInfoBuilder extParamInfos;
13760   if (getDerived().TransformFunctionTypeParams(
13761           E->getCaretLocation(), oldBlock->parameters(), nullptr,
13762           exprFunctionType->getExtParameterInfosOrNull(), paramTypes, &params,
13763           extParamInfos)) {
13764     getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
13765     return ExprError();
13766   }
13767 
13768   QualType exprResultType =
13769       getDerived().TransformType(exprFunctionType->getReturnType());
13770 
13771   auto epi = exprFunctionType->getExtProtoInfo();
13772   epi.ExtParameterInfos = extParamInfos.getPointerOrNull(paramTypes.size());
13773 
13774   QualType functionType =
13775     getDerived().RebuildFunctionProtoType(exprResultType, paramTypes, epi);
13776   blockScope->FunctionType = functionType;
13777 
13778   // Set the parameters on the block decl.
13779   if (!params.empty())
13780     blockScope->TheDecl->setParams(params);
13781 
13782   if (!oldBlock->blockMissingReturnType()) {
13783     blockScope->HasImplicitReturnType = false;
13784     blockScope->ReturnType = exprResultType;
13785   }
13786 
13787   // Transform the body
13788   StmtResult body = getDerived().TransformStmt(E->getBody());
13789   if (body.isInvalid()) {
13790     getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
13791     return ExprError();
13792   }
13793 
13794 #ifndef NDEBUG
13795   // In builds with assertions, make sure that we captured everything we
13796   // captured before.
13797   if (!SemaRef.getDiagnostics().hasErrorOccurred()) {
13798     for (const auto &I : oldBlock->captures()) {
13799       VarDecl *oldCapture = I.getVariable();
13800 
13801       // Ignore parameter packs.
13802       if (oldCapture->isParameterPack())
13803         continue;
13804 
13805       VarDecl *newCapture =
13806         cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(),
13807                                                  oldCapture));
13808       assert(blockScope->CaptureMap.count(newCapture));
13809     }
13810     assert(oldBlock->capturesCXXThis() == blockScope->isCXXThisCaptured());
13811   }
13812 #endif
13813 
13814   return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(),
13815                                     /*Scope=*/nullptr);
13816 }
13817 
13818 template<typename Derived>
13819 ExprResult
TransformAsTypeExpr(AsTypeExpr * E)13820 TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) {
13821   llvm_unreachable("Cannot transform asType expressions yet");
13822 }
13823 
13824 template<typename Derived>
13825 ExprResult
TransformAtomicExpr(AtomicExpr * E)13826 TreeTransform<Derived>::TransformAtomicExpr(AtomicExpr *E) {
13827   bool ArgumentChanged = false;
13828   SmallVector<Expr*, 8> SubExprs;
13829   SubExprs.reserve(E->getNumSubExprs());
13830   if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
13831                                   SubExprs, &ArgumentChanged))
13832     return ExprError();
13833 
13834   if (!getDerived().AlwaysRebuild() &&
13835       !ArgumentChanged)
13836     return E;
13837 
13838   return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs,
13839                                         E->getOp(), E->getRParenLoc());
13840 }
13841 
13842 //===----------------------------------------------------------------------===//
13843 // Type reconstruction
13844 //===----------------------------------------------------------------------===//
13845 
13846 template<typename Derived>
RebuildPointerType(QualType PointeeType,SourceLocation Star)13847 QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType,
13848                                                     SourceLocation Star) {
13849   return SemaRef.BuildPointerType(PointeeType, Star,
13850                                   getDerived().getBaseEntity());
13851 }
13852 
13853 template<typename Derived>
RebuildBlockPointerType(QualType PointeeType,SourceLocation Star)13854 QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType,
13855                                                          SourceLocation Star) {
13856   return SemaRef.BuildBlockPointerType(PointeeType, Star,
13857                                        getDerived().getBaseEntity());
13858 }
13859 
13860 template<typename Derived>
13861 QualType
RebuildReferenceType(QualType ReferentType,bool WrittenAsLValue,SourceLocation Sigil)13862 TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType,
13863                                              bool WrittenAsLValue,
13864                                              SourceLocation Sigil) {
13865   return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue,
13866                                     Sigil, getDerived().getBaseEntity());
13867 }
13868 
13869 template<typename Derived>
13870 QualType
RebuildMemberPointerType(QualType PointeeType,QualType ClassType,SourceLocation Sigil)13871 TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType,
13872                                                  QualType ClassType,
13873                                                  SourceLocation Sigil) {
13874   return SemaRef.BuildMemberPointerType(PointeeType, ClassType, Sigil,
13875                                         getDerived().getBaseEntity());
13876 }
13877 
13878 template<typename Derived>
RebuildObjCTypeParamType(const ObjCTypeParamDecl * Decl,SourceLocation ProtocolLAngleLoc,ArrayRef<ObjCProtocolDecl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc)13879 QualType TreeTransform<Derived>::RebuildObjCTypeParamType(
13880            const ObjCTypeParamDecl *Decl,
13881            SourceLocation ProtocolLAngleLoc,
13882            ArrayRef<ObjCProtocolDecl *> Protocols,
13883            ArrayRef<SourceLocation> ProtocolLocs,
13884            SourceLocation ProtocolRAngleLoc) {
13885   return SemaRef.BuildObjCTypeParamType(Decl,
13886                                         ProtocolLAngleLoc, Protocols,
13887                                         ProtocolLocs, ProtocolRAngleLoc,
13888                                         /*FailOnError=*/true);
13889 }
13890 
13891 template<typename Derived>
RebuildObjCObjectType(QualType BaseType,SourceLocation Loc,SourceLocation TypeArgsLAngleLoc,ArrayRef<TypeSourceInfo * > TypeArgs,SourceLocation TypeArgsRAngleLoc,SourceLocation ProtocolLAngleLoc,ArrayRef<ObjCProtocolDecl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc)13892 QualType TreeTransform<Derived>::RebuildObjCObjectType(
13893            QualType BaseType,
13894            SourceLocation Loc,
13895            SourceLocation TypeArgsLAngleLoc,
13896            ArrayRef<TypeSourceInfo *> TypeArgs,
13897            SourceLocation TypeArgsRAngleLoc,
13898            SourceLocation ProtocolLAngleLoc,
13899            ArrayRef<ObjCProtocolDecl *> Protocols,
13900            ArrayRef<SourceLocation> ProtocolLocs,
13901            SourceLocation ProtocolRAngleLoc) {
13902   return SemaRef.BuildObjCObjectType(BaseType, Loc, TypeArgsLAngleLoc,
13903                                      TypeArgs, TypeArgsRAngleLoc,
13904                                      ProtocolLAngleLoc, Protocols, ProtocolLocs,
13905                                      ProtocolRAngleLoc,
13906                                      /*FailOnError=*/true);
13907 }
13908 
13909 template<typename Derived>
RebuildObjCObjectPointerType(QualType PointeeType,SourceLocation Star)13910 QualType TreeTransform<Derived>::RebuildObjCObjectPointerType(
13911            QualType PointeeType,
13912            SourceLocation Star) {
13913   return SemaRef.Context.getObjCObjectPointerType(PointeeType);
13914 }
13915 
13916 template<typename Derived>
13917 QualType
RebuildArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,const llvm::APInt * Size,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)13918 TreeTransform<Derived>::RebuildArrayType(QualType ElementType,
13919                                          ArrayType::ArraySizeModifier SizeMod,
13920                                          const llvm::APInt *Size,
13921                                          Expr *SizeExpr,
13922                                          unsigned IndexTypeQuals,
13923                                          SourceRange BracketsRange) {
13924   if (SizeExpr || !Size)
13925     return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr,
13926                                   IndexTypeQuals, BracketsRange,
13927                                   getDerived().getBaseEntity());
13928 
13929   QualType Types[] = {
13930     SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
13931     SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
13932     SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
13933   };
13934   const unsigned NumTypes = llvm::array_lengthof(Types);
13935   QualType SizeType;
13936   for (unsigned I = 0; I != NumTypes; ++I)
13937     if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) {
13938       SizeType = Types[I];
13939       break;
13940     }
13941 
13942   // Note that we can return a VariableArrayType here in the case where
13943   // the element type was a dependent VariableArrayType.
13944   IntegerLiteral *ArraySize
13945       = IntegerLiteral::Create(SemaRef.Context, *Size, SizeType,
13946                                /*FIXME*/BracketsRange.getBegin());
13947   return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize,
13948                                 IndexTypeQuals, BracketsRange,
13949                                 getDerived().getBaseEntity());
13950 }
13951 
13952 template<typename Derived>
13953 QualType
RebuildConstantArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,const llvm::APInt & Size,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)13954 TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType,
13955                                                  ArrayType::ArraySizeModifier SizeMod,
13956                                                  const llvm::APInt &Size,
13957                                                  Expr *SizeExpr,
13958                                                  unsigned IndexTypeQuals,
13959                                                  SourceRange BracketsRange) {
13960   return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, SizeExpr,
13961                                         IndexTypeQuals, BracketsRange);
13962 }
13963 
13964 template<typename Derived>
13965 QualType
RebuildIncompleteArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,unsigned IndexTypeQuals,SourceRange BracketsRange)13966 TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType,
13967                                           ArrayType::ArraySizeModifier SizeMod,
13968                                                  unsigned IndexTypeQuals,
13969                                                    SourceRange BracketsRange) {
13970   return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, nullptr,
13971                                        IndexTypeQuals, BracketsRange);
13972 }
13973 
13974 template<typename Derived>
13975 QualType
RebuildVariableArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)13976 TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType,
13977                                           ArrayType::ArraySizeModifier SizeMod,
13978                                                  Expr *SizeExpr,
13979                                                  unsigned IndexTypeQuals,
13980                                                  SourceRange BracketsRange) {
13981   return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
13982                                        SizeExpr,
13983                                        IndexTypeQuals, BracketsRange);
13984 }
13985 
13986 template<typename Derived>
13987 QualType
RebuildDependentSizedArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)13988 TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType,
13989                                           ArrayType::ArraySizeModifier SizeMod,
13990                                                        Expr *SizeExpr,
13991                                                        unsigned IndexTypeQuals,
13992                                                    SourceRange BracketsRange) {
13993   return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
13994                                        SizeExpr,
13995                                        IndexTypeQuals, BracketsRange);
13996 }
13997 
13998 template <typename Derived>
RebuildDependentAddressSpaceType(QualType PointeeType,Expr * AddrSpaceExpr,SourceLocation AttributeLoc)13999 QualType TreeTransform<Derived>::RebuildDependentAddressSpaceType(
14000     QualType PointeeType, Expr *AddrSpaceExpr, SourceLocation AttributeLoc) {
14001   return SemaRef.BuildAddressSpaceAttr(PointeeType, AddrSpaceExpr,
14002                                           AttributeLoc);
14003 }
14004 
14005 template <typename Derived>
14006 QualType
RebuildVectorType(QualType ElementType,unsigned NumElements,VectorType::VectorKind VecKind)14007 TreeTransform<Derived>::RebuildVectorType(QualType ElementType,
14008                                           unsigned NumElements,
14009                                           VectorType::VectorKind VecKind) {
14010   // FIXME: semantic checking!
14011   return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind);
14012 }
14013 
14014 template <typename Derived>
RebuildDependentVectorType(QualType ElementType,Expr * SizeExpr,SourceLocation AttributeLoc,VectorType::VectorKind VecKind)14015 QualType TreeTransform<Derived>::RebuildDependentVectorType(
14016     QualType ElementType, Expr *SizeExpr, SourceLocation AttributeLoc,
14017     VectorType::VectorKind VecKind) {
14018   return SemaRef.BuildVectorType(ElementType, SizeExpr, AttributeLoc);
14019 }
14020 
14021 template<typename Derived>
RebuildExtVectorType(QualType ElementType,unsigned NumElements,SourceLocation AttributeLoc)14022 QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType,
14023                                                       unsigned NumElements,
14024                                                  SourceLocation AttributeLoc) {
14025   llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
14026                           NumElements, true);
14027   IntegerLiteral *VectorSize
14028     = IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy,
14029                              AttributeLoc);
14030   return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc);
14031 }
14032 
14033 template<typename Derived>
14034 QualType
RebuildDependentSizedExtVectorType(QualType ElementType,Expr * SizeExpr,SourceLocation AttributeLoc)14035 TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType,
14036                                                            Expr *SizeExpr,
14037                                                   SourceLocation AttributeLoc) {
14038   return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc);
14039 }
14040 
14041 template <typename Derived>
RebuildConstantMatrixType(QualType ElementType,unsigned NumRows,unsigned NumColumns)14042 QualType TreeTransform<Derived>::RebuildConstantMatrixType(
14043     QualType ElementType, unsigned NumRows, unsigned NumColumns) {
14044   return SemaRef.Context.getConstantMatrixType(ElementType, NumRows,
14045                                                NumColumns);
14046 }
14047 
14048 template <typename Derived>
RebuildDependentSizedMatrixType(QualType ElementType,Expr * RowExpr,Expr * ColumnExpr,SourceLocation AttributeLoc)14049 QualType TreeTransform<Derived>::RebuildDependentSizedMatrixType(
14050     QualType ElementType, Expr *RowExpr, Expr *ColumnExpr,
14051     SourceLocation AttributeLoc) {
14052   return SemaRef.BuildMatrixType(ElementType, RowExpr, ColumnExpr,
14053                                  AttributeLoc);
14054 }
14055 
14056 template<typename Derived>
RebuildFunctionProtoType(QualType T,MutableArrayRef<QualType> ParamTypes,const FunctionProtoType::ExtProtoInfo & EPI)14057 QualType TreeTransform<Derived>::RebuildFunctionProtoType(
14058     QualType T,
14059     MutableArrayRef<QualType> ParamTypes,
14060     const FunctionProtoType::ExtProtoInfo &EPI) {
14061   return SemaRef.BuildFunctionType(T, ParamTypes,
14062                                    getDerived().getBaseLocation(),
14063                                    getDerived().getBaseEntity(),
14064                                    EPI);
14065 }
14066 
14067 template<typename Derived>
RebuildFunctionNoProtoType(QualType T)14068 QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) {
14069   return SemaRef.Context.getFunctionNoProtoType(T);
14070 }
14071 
14072 template<typename Derived>
RebuildUnresolvedUsingType(SourceLocation Loc,Decl * D)14073 QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(SourceLocation Loc,
14074                                                             Decl *D) {
14075   assert(D && "no decl found");
14076   if (D->isInvalidDecl()) return QualType();
14077 
14078   // FIXME: Doesn't account for ObjCInterfaceDecl!
14079   TypeDecl *Ty;
14080   if (auto *UPD = dyn_cast<UsingPackDecl>(D)) {
14081     // A valid resolved using typename pack expansion decl can have multiple
14082     // UsingDecls, but they must each have exactly one type, and it must be
14083     // the same type in every case. But we must have at least one expansion!
14084     if (UPD->expansions().empty()) {
14085       getSema().Diag(Loc, diag::err_using_pack_expansion_empty)
14086           << UPD->isCXXClassMember() << UPD;
14087       return QualType();
14088     }
14089 
14090     // We might still have some unresolved types. Try to pick a resolved type
14091     // if we can. The final instantiation will check that the remaining
14092     // unresolved types instantiate to the type we pick.
14093     QualType FallbackT;
14094     QualType T;
14095     for (auto *E : UPD->expansions()) {
14096       QualType ThisT = RebuildUnresolvedUsingType(Loc, E);
14097       if (ThisT.isNull())
14098         continue;
14099       else if (ThisT->getAs<UnresolvedUsingType>())
14100         FallbackT = ThisT;
14101       else if (T.isNull())
14102         T = ThisT;
14103       else
14104         assert(getSema().Context.hasSameType(ThisT, T) &&
14105                "mismatched resolved types in using pack expansion");
14106     }
14107     return T.isNull() ? FallbackT : T;
14108   } else if (auto *Using = dyn_cast<UsingDecl>(D)) {
14109     assert(Using->hasTypename() &&
14110            "UnresolvedUsingTypenameDecl transformed to non-typename using");
14111 
14112     // A valid resolved using typename decl points to exactly one type decl.
14113     assert(++Using->shadow_begin() == Using->shadow_end());
14114     Ty = cast<TypeDecl>((*Using->shadow_begin())->getTargetDecl());
14115   } else {
14116     assert(isa<UnresolvedUsingTypenameDecl>(D) &&
14117            "UnresolvedUsingTypenameDecl transformed to non-using decl");
14118     Ty = cast<UnresolvedUsingTypenameDecl>(D);
14119   }
14120 
14121   return SemaRef.Context.getTypeDeclType(Ty);
14122 }
14123 
14124 template<typename Derived>
RebuildTypeOfExprType(Expr * E,SourceLocation Loc)14125 QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E,
14126                                                        SourceLocation Loc) {
14127   return SemaRef.BuildTypeofExprType(E, Loc);
14128 }
14129 
14130 template<typename Derived>
RebuildTypeOfType(QualType Underlying)14131 QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) {
14132   return SemaRef.Context.getTypeOfType(Underlying);
14133 }
14134 
14135 template<typename Derived>
RebuildDecltypeType(Expr * E,SourceLocation Loc)14136 QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E,
14137                                                      SourceLocation Loc) {
14138   return SemaRef.BuildDecltypeType(E, Loc);
14139 }
14140 
14141 template<typename Derived>
RebuildUnaryTransformType(QualType BaseType,UnaryTransformType::UTTKind UKind,SourceLocation Loc)14142 QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType,
14143                                             UnaryTransformType::UTTKind UKind,
14144                                             SourceLocation Loc) {
14145   return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc);
14146 }
14147 
14148 template<typename Derived>
RebuildTemplateSpecializationType(TemplateName Template,SourceLocation TemplateNameLoc,TemplateArgumentListInfo & TemplateArgs)14149 QualType TreeTransform<Derived>::RebuildTemplateSpecializationType(
14150                                                       TemplateName Template,
14151                                              SourceLocation TemplateNameLoc,
14152                                      TemplateArgumentListInfo &TemplateArgs) {
14153   return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
14154 }
14155 
14156 template<typename Derived>
RebuildAtomicType(QualType ValueType,SourceLocation KWLoc)14157 QualType TreeTransform<Derived>::RebuildAtomicType(QualType ValueType,
14158                                                    SourceLocation KWLoc) {
14159   return SemaRef.BuildAtomicType(ValueType, KWLoc);
14160 }
14161 
14162 template<typename Derived>
RebuildPipeType(QualType ValueType,SourceLocation KWLoc,bool isReadPipe)14163 QualType TreeTransform<Derived>::RebuildPipeType(QualType ValueType,
14164                                                  SourceLocation KWLoc,
14165                                                  bool isReadPipe) {
14166   return isReadPipe ? SemaRef.BuildReadPipeType(ValueType, KWLoc)
14167                     : SemaRef.BuildWritePipeType(ValueType, KWLoc);
14168 }
14169 
14170 template <typename Derived>
RebuildExtIntType(bool IsUnsigned,unsigned NumBits,SourceLocation Loc)14171 QualType TreeTransform<Derived>::RebuildExtIntType(bool IsUnsigned,
14172                                                    unsigned NumBits,
14173                                                    SourceLocation Loc) {
14174   llvm::APInt NumBitsAP(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
14175                         NumBits, true);
14176   IntegerLiteral *Bits = IntegerLiteral::Create(SemaRef.Context, NumBitsAP,
14177                                                 SemaRef.Context.IntTy, Loc);
14178   return SemaRef.BuildExtIntType(IsUnsigned, Bits, Loc);
14179 }
14180 
14181 template <typename Derived>
RebuildDependentExtIntType(bool IsUnsigned,Expr * NumBitsExpr,SourceLocation Loc)14182 QualType TreeTransform<Derived>::RebuildDependentExtIntType(
14183     bool IsUnsigned, Expr *NumBitsExpr, SourceLocation Loc) {
14184   return SemaRef.BuildExtIntType(IsUnsigned, NumBitsExpr, Loc);
14185 }
14186 
14187 template<typename Derived>
14188 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,bool TemplateKW,TemplateDecl * Template)14189 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
14190                                             bool TemplateKW,
14191                                             TemplateDecl *Template) {
14192   return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW,
14193                                                   Template);
14194 }
14195 
14196 template<typename Derived>
14197 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const IdentifierInfo & Name,SourceLocation NameLoc,QualType ObjectType,NamedDecl * FirstQualifierInScope,bool AllowInjectedClassName)14198 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
14199                                             SourceLocation TemplateKWLoc,
14200                                             const IdentifierInfo &Name,
14201                                             SourceLocation NameLoc,
14202                                             QualType ObjectType,
14203                                             NamedDecl *FirstQualifierInScope,
14204                                             bool AllowInjectedClassName) {
14205   UnqualifiedId TemplateName;
14206   TemplateName.setIdentifier(&Name, NameLoc);
14207   Sema::TemplateTy Template;
14208   getSema().ActOnTemplateName(/*Scope=*/nullptr, SS, TemplateKWLoc,
14209                               TemplateName, ParsedType::make(ObjectType),
14210                               /*EnteringContext=*/false, Template,
14211                               AllowInjectedClassName);
14212   return Template.get();
14213 }
14214 
14215 template<typename Derived>
14216 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,OverloadedOperatorKind Operator,SourceLocation NameLoc,QualType ObjectType,bool AllowInjectedClassName)14217 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
14218                                             SourceLocation TemplateKWLoc,
14219                                             OverloadedOperatorKind Operator,
14220                                             SourceLocation NameLoc,
14221                                             QualType ObjectType,
14222                                             bool AllowInjectedClassName) {
14223   UnqualifiedId Name;
14224   // FIXME: Bogus location information.
14225   SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc };
14226   Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations);
14227   Sema::TemplateTy Template;
14228   getSema().ActOnTemplateName(
14229       /*Scope=*/nullptr, SS, TemplateKWLoc, Name, ParsedType::make(ObjectType),
14230       /*EnteringContext=*/false, Template, AllowInjectedClassName);
14231   return Template.get();
14232 }
14233 
14234 template<typename Derived>
14235 ExprResult
RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,SourceLocation OpLoc,Expr * OrigCallee,Expr * First,Expr * Second)14236 TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
14237                                                    SourceLocation OpLoc,
14238                                                    Expr *OrigCallee,
14239                                                    Expr *First,
14240                                                    Expr *Second) {
14241   Expr *Callee = OrigCallee->IgnoreParenCasts();
14242   bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus);
14243 
14244   if (First->getObjectKind() == OK_ObjCProperty) {
14245     BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
14246     if (BinaryOperator::isAssignmentOp(Opc))
14247       return SemaRef.checkPseudoObjectAssignment(/*Scope=*/nullptr, OpLoc, Opc,
14248                                                  First, Second);
14249     ExprResult Result = SemaRef.CheckPlaceholderExpr(First);
14250     if (Result.isInvalid())
14251       return ExprError();
14252     First = Result.get();
14253   }
14254 
14255   if (Second && Second->getObjectKind() == OK_ObjCProperty) {
14256     ExprResult Result = SemaRef.CheckPlaceholderExpr(Second);
14257     if (Result.isInvalid())
14258       return ExprError();
14259     Second = Result.get();
14260   }
14261 
14262   // Determine whether this should be a builtin operation.
14263   if (Op == OO_Subscript) {
14264     if (!First->getType()->isOverloadableType() &&
14265         !Second->getType()->isOverloadableType())
14266       return getSema().CreateBuiltinArraySubscriptExpr(
14267           First, Callee->getBeginLoc(), Second, OpLoc);
14268   } else if (Op == OO_Arrow) {
14269     // -> is never a builtin operation.
14270     return SemaRef.BuildOverloadedArrowExpr(nullptr, First, OpLoc);
14271   } else if (Second == nullptr || isPostIncDec) {
14272     if (!First->getType()->isOverloadableType() ||
14273         (Op == OO_Amp && getSema().isQualifiedMemberAccess(First))) {
14274       // The argument is not of overloadable type, or this is an expression
14275       // of the form &Class::member, so try to create a built-in unary
14276       // operation.
14277       UnaryOperatorKind Opc
14278         = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
14279 
14280       return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First);
14281     }
14282   } else {
14283     if (!First->getType()->isOverloadableType() &&
14284         !Second->getType()->isOverloadableType()) {
14285       // Neither of the arguments is an overloadable type, so try to
14286       // create a built-in binary operation.
14287       BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
14288       ExprResult Result
14289         = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second);
14290       if (Result.isInvalid())
14291         return ExprError();
14292 
14293       return Result;
14294     }
14295   }
14296 
14297   // Compute the transformed set of functions (and function templates) to be
14298   // used during overload resolution.
14299   UnresolvedSet<16> Functions;
14300   bool RequiresADL;
14301 
14302   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) {
14303     Functions.append(ULE->decls_begin(), ULE->decls_end());
14304     // If the overload could not be resolved in the template definition
14305     // (because we had a dependent argument), ADL is performed as part of
14306     // template instantiation.
14307     RequiresADL = ULE->requiresADL();
14308   } else {
14309     // If we've resolved this to a particular non-member function, just call
14310     // that function. If we resolved it to a member function,
14311     // CreateOverloaded* will find that function for us.
14312     NamedDecl *ND = cast<DeclRefExpr>(Callee)->getDecl();
14313     if (!isa<CXXMethodDecl>(ND))
14314       Functions.addDecl(ND);
14315     RequiresADL = false;
14316   }
14317 
14318   // Add any functions found via argument-dependent lookup.
14319   Expr *Args[2] = { First, Second };
14320   unsigned NumArgs = 1 + (Second != nullptr);
14321 
14322   // Create the overloaded operator invocation for unary operators.
14323   if (NumArgs == 1 || isPostIncDec) {
14324     UnaryOperatorKind Opc
14325       = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
14326     return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First,
14327                                            RequiresADL);
14328   }
14329 
14330   if (Op == OO_Subscript) {
14331     SourceLocation LBrace;
14332     SourceLocation RBrace;
14333 
14334     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee)) {
14335         DeclarationNameLoc NameLoc = DRE->getNameInfo().getInfo();
14336         LBrace = SourceLocation::getFromRawEncoding(
14337                     NameLoc.CXXOperatorName.BeginOpNameLoc);
14338         RBrace = SourceLocation::getFromRawEncoding(
14339                     NameLoc.CXXOperatorName.EndOpNameLoc);
14340     } else {
14341       LBrace = Callee->getBeginLoc();
14342       RBrace = OpLoc;
14343     }
14344 
14345     return SemaRef.CreateOverloadedArraySubscriptExpr(LBrace, RBrace,
14346                                                       First, Second);
14347   }
14348 
14349   // Create the overloaded operator invocation for binary operators.
14350   BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
14351   ExprResult Result = SemaRef.CreateOverloadedBinOp(
14352       OpLoc, Opc, Functions, Args[0], Args[1], RequiresADL);
14353   if (Result.isInvalid())
14354     return ExprError();
14355 
14356   return Result;
14357 }
14358 
14359 template<typename Derived>
14360 ExprResult
RebuildCXXPseudoDestructorExpr(Expr * Base,SourceLocation OperatorLoc,bool isArrow,CXXScopeSpec & SS,TypeSourceInfo * ScopeType,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destroyed)14361 TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base,
14362                                                      SourceLocation OperatorLoc,
14363                                                        bool isArrow,
14364                                                        CXXScopeSpec &SS,
14365                                                      TypeSourceInfo *ScopeType,
14366                                                        SourceLocation CCLoc,
14367                                                        SourceLocation TildeLoc,
14368                                         PseudoDestructorTypeStorage Destroyed) {
14369   QualType BaseType = Base->getType();
14370   if (Base->isTypeDependent() || Destroyed.getIdentifier() ||
14371       (!isArrow && !BaseType->getAs<RecordType>()) ||
14372       (isArrow && BaseType->getAs<PointerType>() &&
14373        !BaseType->castAs<PointerType>()->getPointeeType()
14374                                               ->template getAs<RecordType>())){
14375     // This pseudo-destructor expression is still a pseudo-destructor.
14376     return SemaRef.BuildPseudoDestructorExpr(
14377         Base, OperatorLoc, isArrow ? tok::arrow : tok::period, SS, ScopeType,
14378         CCLoc, TildeLoc, Destroyed);
14379   }
14380 
14381   TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo();
14382   DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName(
14383                  SemaRef.Context.getCanonicalType(DestroyedType->getType())));
14384   DeclarationNameInfo NameInfo(Name, Destroyed.getLocation());
14385   NameInfo.setNamedTypeInfo(DestroyedType);
14386 
14387   // The scope type is now known to be a valid nested name specifier
14388   // component. Tack it on to the end of the nested name specifier.
14389   if (ScopeType) {
14390     if (!ScopeType->getType()->getAs<TagType>()) {
14391       getSema().Diag(ScopeType->getTypeLoc().getBeginLoc(),
14392                      diag::err_expected_class_or_namespace)
14393           << ScopeType->getType() << getSema().getLangOpts().CPlusPlus;
14394       return ExprError();
14395     }
14396     SS.Extend(SemaRef.Context, SourceLocation(), ScopeType->getTypeLoc(),
14397               CCLoc);
14398   }
14399 
14400   SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
14401   return getSema().BuildMemberReferenceExpr(Base, BaseType,
14402                                             OperatorLoc, isArrow,
14403                                             SS, TemplateKWLoc,
14404                                             /*FIXME: FirstQualifier*/ nullptr,
14405                                             NameInfo,
14406                                             /*TemplateArgs*/ nullptr,
14407                                             /*S*/nullptr);
14408 }
14409 
14410 template<typename Derived>
14411 StmtResult
TransformCapturedStmt(CapturedStmt * S)14412 TreeTransform<Derived>::TransformCapturedStmt(CapturedStmt *S) {
14413   SourceLocation Loc = S->getBeginLoc();
14414   CapturedDecl *CD = S->getCapturedDecl();
14415   unsigned NumParams = CD->getNumParams();
14416   unsigned ContextParamPos = CD->getContextParamPosition();
14417   SmallVector<Sema::CapturedParamNameType, 4> Params;
14418   for (unsigned I = 0; I < NumParams; ++I) {
14419     if (I != ContextParamPos) {
14420       Params.push_back(
14421              std::make_pair(
14422                   CD->getParam(I)->getName(),
14423                   getDerived().TransformType(CD->getParam(I)->getType())));
14424     } else {
14425       Params.push_back(std::make_pair(StringRef(), QualType()));
14426     }
14427   }
14428   getSema().ActOnCapturedRegionStart(Loc, /*CurScope*/nullptr,
14429                                      S->getCapturedRegionKind(), Params);
14430   StmtResult Body;
14431   {
14432     Sema::CompoundScopeRAII CompoundScope(getSema());
14433     Body = getDerived().TransformStmt(S->getCapturedStmt());
14434   }
14435 
14436   if (Body.isInvalid()) {
14437     getSema().ActOnCapturedRegionError();
14438     return StmtError();
14439   }
14440 
14441   return getSema().ActOnCapturedRegionEnd(Body.get());
14442 }
14443 
14444 } // end namespace clang
14445 
14446 #endif // LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
14447