1 //===-- IteratorModeling.cpp --------------------------------------*- C++ -*--//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Defines a modeling-checker for modeling STL iterator-like iterators.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // In the code, iterator can be represented as a:
14 // * type-I: typedef-ed pointer. Operations over such iterator, such as
15 // comparisons or increments, are modeled straightforwardly by the
16 // analyzer.
17 // * type-II: structure with its method bodies available. Operations over such
18 // iterator are inlined by the analyzer, and results of modeling
19 // these operations are exposing implementation details of the
20 // iterators, which is not necessarily helping.
21 // * type-III: completely opaque structure. Operations over such iterator are
22 // modeled conservatively, producing conjured symbols everywhere.
23 //
24 // To handle all these types in a common way we introduce a structure called
25 // IteratorPosition which is an abstraction of the position the iterator
26 // represents using symbolic expressions. The checker handles all the
27 // operations on this structure.
28 //
29 // Additionally, depending on the circumstances, operators of types II and III
30 // can be represented as:
31 // * type-IIa, type-IIIa: conjured structure symbols - when returned by value
32 // from conservatively evaluated methods such as
33 // `.begin()`.
34 // * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
35 // variables or temporaries, when the iterator object is
36 // currently treated as an lvalue.
37 // * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
38 // iterator object is treated as an rvalue taken of a
39 // particular lvalue, eg. a copy of "type-a" iterator
40 // object, or an iterator that existed before the
41 // analysis has started.
42 //
43 // To handle any of these three different representations stored in an SVal we
44 // use setter and getters functions which separate the three cases. To store
45 // them we use a pointer union of symbol and memory region.
46 //
47 // The checker works the following way: We record the begin and the
48 // past-end iterator for all containers whenever their `.begin()` and `.end()`
49 // are called. Since the Constraint Manager cannot handle such SVals we need
50 // to take over its role. We post-check equality and non-equality comparisons
51 // and record that the two sides are equal if we are in the 'equal' branch
52 // (true-branch for `==` and false-branch for `!=`).
53 //
54 // In case of type-I or type-II iterators we get a concrete integer as a result
55 // of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
56 // this latter case we record the symbol and reload it in evalAssume() and do
57 // the propagation there. We also handle (maybe double) negated comparisons
58 // which are represented in the form of (x == 0 or x != 0) where x is the
59 // comparison itself.
60 //
61 // Since `SimpleConstraintManager` cannot handle complex symbolic expressions
62 // we only use expressions of the format S, S+n or S-n for iterator positions
63 // where S is a conjured symbol and n is an unsigned concrete integer. When
64 // making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
65 // a constraint which we later retrieve when doing an actual comparison.
66
67 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
68 #include "clang/AST/DeclTemplate.h"
69 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
70 #include "clang/StaticAnalyzer/Core/Checker.h"
71 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
72 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
73 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
74
75 #include "Iterator.h"
76
77 #include <utility>
78
79 using namespace clang;
80 using namespace ento;
81 using namespace iterator;
82
83 namespace {
84
85 class IteratorModeling
86 : public Checker<check::PostCall, check::PostStmt<UnaryOperator>,
87 check::PostStmt<BinaryOperator>,
88 check::PostStmt<MaterializeTemporaryExpr>,
89 check::Bind, check::LiveSymbols, check::DeadSymbols> {
90
91 using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *,
92 SVal, SVal, SVal) const;
93
94 void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call,
95 OverloadedOperatorKind Op) const;
96 void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call,
97 const Expr *OrigExpr,
98 const AdvanceFn *Handler) const;
99
100 void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal,
101 const SVal &LVal, const SVal &RVal,
102 OverloadedOperatorKind Op) const;
103 void processComparison(CheckerContext &C, ProgramStateRef State,
104 SymbolRef Sym1, SymbolRef Sym2, const SVal &RetVal,
105 OverloadedOperatorKind Op) const;
106 void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
107 bool Postfix) const;
108 void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
109 bool Postfix) const;
110 void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
111 OverloadedOperatorKind Op, const SVal &RetVal,
112 const SVal &Iterator, const SVal &Amount) const;
113 void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator,
114 OverloadedOperatorKind OK, SVal Offset) const;
115 void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
116 SVal Amount) const;
117 void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
118 SVal Amount) const;
119 void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
120 SVal Amount) const;
121 void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal,
122 const MemRegion *Cont) const;
123 bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const;
124 void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
125 const char *Sep) const override;
126
127 // std::advance, std::prev & std::next
128 CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = {
129 // template<class InputIt, class Distance>
130 // void advance(InputIt& it, Distance n);
131 {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance},
132
133 // template<class BidirIt>
134 // BidirIt prev(
135 // BidirIt it,
136 // typename std::iterator_traits<BidirIt>::difference_type n = 1);
137 {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev},
138
139 // template<class ForwardIt>
140 // ForwardIt next(
141 // ForwardIt it,
142 // typename std::iterator_traits<ForwardIt>::difference_type n = 1);
143 {{{"std", "next"}, 2}, &IteratorModeling::handleNext},
144 };
145
146 public:
147 IteratorModeling() = default;
148
149 void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
150 void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const;
151 void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const;
152 void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const;
153 void checkPostStmt(const CXXConstructExpr *CCE, CheckerContext &C) const;
154 void checkPostStmt(const DeclStmt *DS, CheckerContext &C) const;
155 void checkPostStmt(const MaterializeTemporaryExpr *MTE,
156 CheckerContext &C) const;
157 void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
158 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
159 };
160
161 bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
162 bool isSimpleComparisonOperator(BinaryOperatorKind OK);
163 ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val);
164 ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
165 SymbolRef Sym2, bool Equal);
166 bool isBoundThroughLazyCompoundVal(const Environment &Env,
167 const MemRegion *Reg);
168 const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call);
169
170 } // namespace
171
checkPostCall(const CallEvent & Call,CheckerContext & C) const172 void IteratorModeling::checkPostCall(const CallEvent &Call,
173 CheckerContext &C) const {
174 // Record new iterator positions and iterator position changes
175 const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
176 if (!Func)
177 return;
178
179 if (Func->isOverloadedOperator()) {
180 const auto Op = Func->getOverloadedOperator();
181 handleOverloadedOperator(C, Call, Op);
182 return;
183 }
184
185 const auto *OrigExpr = Call.getOriginExpr();
186 if (!OrigExpr)
187 return;
188
189 const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call);
190 if (Handler) {
191 handleAdvanceLikeFunction(C, Call, OrigExpr, Handler);
192 return;
193 }
194
195 if (!isIteratorType(Call.getResultType()))
196 return;
197
198 auto State = C.getState();
199
200 // Already bound to container?
201 if (getIteratorPosition(State, Call.getReturnValue()))
202 return;
203
204 // Copy-like and move constructors
205 if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
206 if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
207 State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
208 if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
209 State = removeIteratorPosition(State, Call.getArgSVal(0));
210 }
211 C.addTransition(State);
212 return;
213 }
214 }
215
216 // Assumption: if return value is an iterator which is not yet bound to a
217 // container, then look for the first iterator argument of the
218 // same type as the return value and bind the return value to
219 // the same container. This approach works for STL algorithms.
220 // FIXME: Add a more conservative mode
221 for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
222 if (isIteratorType(Call.getArgExpr(i)->getType()) &&
223 Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType(
224 C.getASTContext()).getTypePtr() ==
225 Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) {
226 if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
227 assignToContainer(C, OrigExpr, Call.getReturnValue(),
228 Pos->getContainer());
229 return;
230 }
231 }
232 }
233 }
234
checkBind(SVal Loc,SVal Val,const Stmt * S,CheckerContext & C) const235 void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S,
236 CheckerContext &C) const {
237 auto State = C.getState();
238 const auto *Pos = getIteratorPosition(State, Val);
239 if (Pos) {
240 State = setIteratorPosition(State, Loc, *Pos);
241 C.addTransition(State);
242 } else {
243 const auto *OldPos = getIteratorPosition(State, Loc);
244 if (OldPos) {
245 State = removeIteratorPosition(State, Loc);
246 C.addTransition(State);
247 }
248 }
249 }
250
checkPostStmt(const UnaryOperator * UO,CheckerContext & C) const251 void IteratorModeling::checkPostStmt(const UnaryOperator *UO,
252 CheckerContext &C) const {
253 UnaryOperatorKind OK = UO->getOpcode();
254 if (!isIncrementOperator(OK) && !isDecrementOperator(OK))
255 return;
256
257 auto &SVB = C.getSValBuilder();
258 handlePtrIncrOrDecr(C, UO->getSubExpr(),
259 isIncrementOperator(OK) ? OO_Plus : OO_Minus,
260 SVB.makeArrayIndex(1));
261 }
262
checkPostStmt(const BinaryOperator * BO,CheckerContext & C) const263 void IteratorModeling::checkPostStmt(const BinaryOperator *BO,
264 CheckerContext &C) const {
265 const ProgramStateRef State = C.getState();
266 const BinaryOperatorKind OK = BO->getOpcode();
267 const Expr *const LHS = BO->getLHS();
268 const Expr *const RHS = BO->getRHS();
269 const SVal LVal = State->getSVal(LHS, C.getLocationContext());
270 const SVal RVal = State->getSVal(RHS, C.getLocationContext());
271
272 if (isSimpleComparisonOperator(BO->getOpcode())) {
273 SVal Result = State->getSVal(BO, C.getLocationContext());
274 handleComparison(C, BO, Result, LVal, RVal,
275 BinaryOperator::getOverloadedOperator(OK));
276 } else if (isRandomIncrOrDecrOperator(OK)) {
277 // In case of operator+ the iterator can be either on the LHS (eg.: it + 1),
278 // or on the RHS (eg.: 1 + it). Both cases are modeled.
279 const bool IsIterOnLHS = BO->getLHS()->getType()->isPointerType();
280 const Expr *const &IterExpr = IsIterOnLHS ? LHS : RHS;
281 const Expr *const &AmountExpr = IsIterOnLHS ? RHS : LHS;
282
283 // The non-iterator side must have an integral or enumeration type.
284 if (!AmountExpr->getType()->isIntegralOrEnumerationType())
285 return;
286 const SVal &AmountVal = IsIterOnLHS ? RVal : LVal;
287 handlePtrIncrOrDecr(C, IterExpr, BinaryOperator::getOverloadedOperator(OK),
288 AmountVal);
289 }
290 }
291
checkPostStmt(const MaterializeTemporaryExpr * MTE,CheckerContext & C) const292 void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE,
293 CheckerContext &C) const {
294 /* Transfer iterator state to temporary objects */
295 auto State = C.getState();
296 const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr()));
297 if (!Pos)
298 return;
299 State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
300 C.addTransition(State);
301 }
302
checkLiveSymbols(ProgramStateRef State,SymbolReaper & SR) const303 void IteratorModeling::checkLiveSymbols(ProgramStateRef State,
304 SymbolReaper &SR) const {
305 // Keep symbolic expressions of iterator positions alive
306 auto RegionMap = State->get<IteratorRegionMap>();
307 for (const auto &Reg : RegionMap) {
308 const auto Offset = Reg.second.getOffset();
309 for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
310 if (isa<SymbolData>(*i))
311 SR.markLive(*i);
312 }
313
314 auto SymbolMap = State->get<IteratorSymbolMap>();
315 for (const auto &Sym : SymbolMap) {
316 const auto Offset = Sym.second.getOffset();
317 for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
318 if (isa<SymbolData>(*i))
319 SR.markLive(*i);
320 }
321
322 }
323
checkDeadSymbols(SymbolReaper & SR,CheckerContext & C) const324 void IteratorModeling::checkDeadSymbols(SymbolReaper &SR,
325 CheckerContext &C) const {
326 // Cleanup
327 auto State = C.getState();
328
329 auto RegionMap = State->get<IteratorRegionMap>();
330 for (const auto &Reg : RegionMap) {
331 if (!SR.isLiveRegion(Reg.first)) {
332 // The region behind the `LazyCompoundVal` is often cleaned up before
333 // the `LazyCompoundVal` itself. If there are iterator positions keyed
334 // by these regions their cleanup must be deferred.
335 if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) {
336 State = State->remove<IteratorRegionMap>(Reg.first);
337 }
338 }
339 }
340
341 auto SymbolMap = State->get<IteratorSymbolMap>();
342 for (const auto &Sym : SymbolMap) {
343 if (!SR.isLive(Sym.first)) {
344 State = State->remove<IteratorSymbolMap>(Sym.first);
345 }
346 }
347
348 C.addTransition(State);
349 }
350
351 void
handleOverloadedOperator(CheckerContext & C,const CallEvent & Call,OverloadedOperatorKind Op) const352 IteratorModeling::handleOverloadedOperator(CheckerContext &C,
353 const CallEvent &Call,
354 OverloadedOperatorKind Op) const {
355 if (isSimpleComparisonOperator(Op)) {
356 const auto *OrigExpr = Call.getOriginExpr();
357 if (!OrigExpr)
358 return;
359
360 if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
361 handleComparison(C, OrigExpr, Call.getReturnValue(),
362 InstCall->getCXXThisVal(), Call.getArgSVal(0), Op);
363 return;
364 }
365
366 handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0),
367 Call.getArgSVal(1), Op);
368 return;
369 } else if (isRandomIncrOrDecrOperator(Op)) {
370 const auto *OrigExpr = Call.getOriginExpr();
371 if (!OrigExpr)
372 return;
373
374 if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
375 if (Call.getNumArgs() >= 1 &&
376 Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) {
377 handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
378 InstCall->getCXXThisVal(), Call.getArgSVal(0));
379 return;
380 }
381 } else if (Call.getNumArgs() >= 2) {
382 const Expr *FirstArg = Call.getArgExpr(0);
383 const Expr *SecondArg = Call.getArgExpr(1);
384 const QualType FirstType = FirstArg->getType();
385 const QualType SecondType = SecondArg->getType();
386
387 if (FirstType->isIntegralOrEnumerationType() ||
388 SecondType->isIntegralOrEnumerationType()) {
389 // In case of operator+ the iterator can be either on the LHS (eg.:
390 // it + 1), or on the RHS (eg.: 1 + it). Both cases are modeled.
391 const bool IsIterFirst = FirstType->isStructureOrClassType();
392 const SVal FirstArg = Call.getArgSVal(0);
393 const SVal SecondArg = Call.getArgSVal(1);
394 const SVal &Iterator = IsIterFirst ? FirstArg : SecondArg;
395 const SVal &Amount = IsIterFirst ? SecondArg : FirstArg;
396
397 handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
398 Iterator, Amount);
399 return;
400 }
401 }
402 } else if (isIncrementOperator(Op)) {
403 if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
404 handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
405 Call.getNumArgs());
406 return;
407 }
408
409 handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
410 Call.getNumArgs());
411 return;
412 } else if (isDecrementOperator(Op)) {
413 if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
414 handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
415 Call.getNumArgs());
416 return;
417 }
418
419 handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
420 Call.getNumArgs());
421 return;
422 }
423 }
424
425 void
handleAdvanceLikeFunction(CheckerContext & C,const CallEvent & Call,const Expr * OrigExpr,const AdvanceFn * Handler) const426 IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C,
427 const CallEvent &Call,
428 const Expr *OrigExpr,
429 const AdvanceFn *Handler) const {
430 if (!C.wasInlined) {
431 (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
432 Call.getArgSVal(0), Call.getArgSVal(1));
433 return;
434 }
435
436 // If std::advance() was inlined, but a non-standard function it calls inside
437 // was not, then we have to model it explicitly
438 const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier();
439 if (IdInfo) {
440 if (IdInfo->getName() == "advance") {
441 if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) {
442 (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
443 Call.getArgSVal(0), Call.getArgSVal(1));
444 }
445 }
446 }
447 }
448
handleComparison(CheckerContext & C,const Expr * CE,SVal RetVal,const SVal & LVal,const SVal & RVal,OverloadedOperatorKind Op) const449 void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE,
450 SVal RetVal, const SVal &LVal,
451 const SVal &RVal,
452 OverloadedOperatorKind Op) const {
453 // Record the operands and the operator of the comparison for the next
454 // evalAssume, if the result is a symbolic expression. If it is a concrete
455 // value (only one branch is possible), then transfer the state between
456 // the operands according to the operator and the result
457 auto State = C.getState();
458 const auto *LPos = getIteratorPosition(State, LVal);
459 const auto *RPos = getIteratorPosition(State, RVal);
460 const MemRegion *Cont = nullptr;
461 if (LPos) {
462 Cont = LPos->getContainer();
463 } else if (RPos) {
464 Cont = RPos->getContainer();
465 }
466 if (!Cont)
467 return;
468
469 // At least one of the iterators has recorded positions. If one of them does
470 // not then create a new symbol for the offset.
471 SymbolRef Sym;
472 if (!LPos || !RPos) {
473 auto &SymMgr = C.getSymbolManager();
474 Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
475 C.getASTContext().LongTy, C.blockCount());
476 State = assumeNoOverflow(State, Sym, 4);
477 }
478
479 if (!LPos) {
480 State = setIteratorPosition(State, LVal,
481 IteratorPosition::getPosition(Cont, Sym));
482 LPos = getIteratorPosition(State, LVal);
483 } else if (!RPos) {
484 State = setIteratorPosition(State, RVal,
485 IteratorPosition::getPosition(Cont, Sym));
486 RPos = getIteratorPosition(State, RVal);
487 }
488
489 // If the value for which we just tried to set a new iterator position is
490 // an `SVal`for which no iterator position can be set then the setting was
491 // unsuccessful. We cannot handle the comparison in this case.
492 if (!LPos || !RPos)
493 return;
494
495 // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol
496 // instead.
497 if (RetVal.isUnknown()) {
498 auto &SymMgr = C.getSymbolManager();
499 auto *LCtx = C.getLocationContext();
500 RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol(
501 CE, LCtx, C.getASTContext().BoolTy, C.blockCount()));
502 State = State->BindExpr(CE, LCtx, RetVal);
503 }
504
505 processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op);
506 }
507
processComparison(CheckerContext & C,ProgramStateRef State,SymbolRef Sym1,SymbolRef Sym2,const SVal & RetVal,OverloadedOperatorKind Op) const508 void IteratorModeling::processComparison(CheckerContext &C,
509 ProgramStateRef State, SymbolRef Sym1,
510 SymbolRef Sym2, const SVal &RetVal,
511 OverloadedOperatorKind Op) const {
512 if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
513 if ((State = relateSymbols(State, Sym1, Sym2,
514 (Op == OO_EqualEqual) ==
515 (TruthVal->getValue() != 0)))) {
516 C.addTransition(State);
517 } else {
518 C.generateSink(State, C.getPredecessor());
519 }
520 return;
521 }
522
523 const auto ConditionVal = RetVal.getAs<DefinedSVal>();
524 if (!ConditionVal)
525 return;
526
527 if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) {
528 StateTrue = StateTrue->assume(*ConditionVal, true);
529 C.addTransition(StateTrue);
530 }
531
532 if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) {
533 StateFalse = StateFalse->assume(*ConditionVal, false);
534 C.addTransition(StateFalse);
535 }
536 }
537
handleIncrement(CheckerContext & C,const SVal & RetVal,const SVal & Iter,bool Postfix) const538 void IteratorModeling::handleIncrement(CheckerContext &C, const SVal &RetVal,
539 const SVal &Iter, bool Postfix) const {
540 // Increment the symbolic expressions which represents the position of the
541 // iterator
542 auto State = C.getState();
543 auto &BVF = C.getSymbolManager().getBasicVals();
544
545 const auto *Pos = getIteratorPosition(State, Iter);
546 if (!Pos)
547 return;
548
549 auto NewState =
550 advancePosition(State, Iter, OO_Plus,
551 nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
552 assert(NewState &&
553 "Advancing position by concrete int should always be successful");
554
555 const auto *NewPos = getIteratorPosition(NewState, Iter);
556 assert(NewPos &&
557 "Iterator should have position after successful advancement");
558
559 State = setIteratorPosition(State, Iter, *NewPos);
560 State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
561 C.addTransition(State);
562 }
563
handleDecrement(CheckerContext & C,const SVal & RetVal,const SVal & Iter,bool Postfix) const564 void IteratorModeling::handleDecrement(CheckerContext &C, const SVal &RetVal,
565 const SVal &Iter, bool Postfix) const {
566 // Decrement the symbolic expressions which represents the position of the
567 // iterator
568 auto State = C.getState();
569 auto &BVF = C.getSymbolManager().getBasicVals();
570
571 const auto *Pos = getIteratorPosition(State, Iter);
572 if (!Pos)
573 return;
574
575 auto NewState =
576 advancePosition(State, Iter, OO_Minus,
577 nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
578 assert(NewState &&
579 "Advancing position by concrete int should always be successful");
580
581 const auto *NewPos = getIteratorPosition(NewState, Iter);
582 assert(NewPos &&
583 "Iterator should have position after successful advancement");
584
585 State = setIteratorPosition(State, Iter, *NewPos);
586 State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
587 C.addTransition(State);
588 }
589
handleRandomIncrOrDecr(CheckerContext & C,const Expr * CE,OverloadedOperatorKind Op,const SVal & RetVal,const SVal & Iterator,const SVal & Amount) const590 void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
591 OverloadedOperatorKind Op,
592 const SVal &RetVal,
593 const SVal &Iterator,
594 const SVal &Amount) const {
595 // Increment or decrement the symbolic expressions which represents the
596 // position of the iterator
597 auto State = C.getState();
598
599 const auto *Pos = getIteratorPosition(State, Iterator);
600 if (!Pos)
601 return;
602
603 const auto *Value = &Amount;
604 SVal Val;
605 if (auto LocAmount = Amount.getAs<Loc>()) {
606 Val = State->getRawSVal(*LocAmount);
607 Value = &Val;
608 }
609
610 const auto &TgtVal =
611 (Op == OO_PlusEqual || Op == OO_MinusEqual) ? Iterator : RetVal;
612
613 // `AdvancedState` is a state where the position of `LHS` is advanced. We
614 // only need this state to retrieve the new position, but we do not want
615 // to change the position of `LHS` (in every case).
616 auto AdvancedState = advancePosition(State, Iterator, Op, *Value);
617 if (AdvancedState) {
618 const auto *NewPos = getIteratorPosition(AdvancedState, Iterator);
619 assert(NewPos &&
620 "Iterator should have position after successful advancement");
621
622 State = setIteratorPosition(State, TgtVal, *NewPos);
623 C.addTransition(State);
624 } else {
625 assignToContainer(C, CE, TgtVal, Pos->getContainer());
626 }
627 }
628
handlePtrIncrOrDecr(CheckerContext & C,const Expr * Iterator,OverloadedOperatorKind OK,SVal Offset) const629 void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C,
630 const Expr *Iterator,
631 OverloadedOperatorKind OK,
632 SVal Offset) const {
633 if (!Offset.getAs<DefinedSVal>())
634 return;
635
636 QualType PtrType = Iterator->getType();
637 if (!PtrType->isPointerType())
638 return;
639 QualType ElementType = PtrType->getPointeeType();
640
641 ProgramStateRef State = C.getState();
642 SVal OldVal = State->getSVal(Iterator, C.getLocationContext());
643
644 const IteratorPosition *OldPos = getIteratorPosition(State, OldVal);
645 if (!OldPos)
646 return;
647
648 SVal NewVal;
649 if (OK == OO_Plus || OK == OO_PlusEqual) {
650 NewVal = State->getLValue(ElementType, Offset, OldVal);
651 } else {
652 auto &SVB = C.getSValBuilder();
653 SVal NegatedOffset = SVB.evalMinus(Offset.castAs<NonLoc>());
654 NewVal = State->getLValue(ElementType, NegatedOffset, OldVal);
655 }
656
657 // `AdvancedState` is a state where the position of `Old` is advanced. We
658 // only need this state to retrieve the new position, but we do not want
659 // ever to change the position of `OldVal`.
660 auto AdvancedState = advancePosition(State, OldVal, OK, Offset);
661 if (AdvancedState) {
662 const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal);
663 assert(NewPos &&
664 "Iterator should have position after successful advancement");
665
666 ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos);
667 C.addTransition(NewState);
668 } else {
669 assignToContainer(C, Iterator, NewVal, OldPos->getContainer());
670 }
671 }
672
handleAdvance(CheckerContext & C,const Expr * CE,SVal RetVal,SVal Iter,SVal Amount) const673 void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE,
674 SVal RetVal, SVal Iter,
675 SVal Amount) const {
676 handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount);
677 }
678
handlePrev(CheckerContext & C,const Expr * CE,SVal RetVal,SVal Iter,SVal Amount) const679 void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE,
680 SVal RetVal, SVal Iter, SVal Amount) const {
681 handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount);
682 }
683
handleNext(CheckerContext & C,const Expr * CE,SVal RetVal,SVal Iter,SVal Amount) const684 void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE,
685 SVal RetVal, SVal Iter, SVal Amount) const {
686 handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount);
687 }
688
assignToContainer(CheckerContext & C,const Expr * CE,const SVal & RetVal,const MemRegion * Cont) const689 void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE,
690 const SVal &RetVal,
691 const MemRegion *Cont) const {
692 Cont = Cont->getMostDerivedObjectRegion();
693
694 auto State = C.getState();
695 const auto *LCtx = C.getLocationContext();
696 State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount());
697
698 C.addTransition(State);
699 }
700
noChangeInAdvance(CheckerContext & C,SVal Iter,const Expr * CE) const701 bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter,
702 const Expr *CE) const {
703 // Compare the iterator position before and after the call. (To be called
704 // from `checkPostCall()`.)
705 const auto StateAfter = C.getState();
706
707 const auto *PosAfter = getIteratorPosition(StateAfter, Iter);
708 // If we have no position after the call of `std::advance`, then we are not
709 // interested. (Modeling of an inlined `std::advance()` should not remove the
710 // position in any case.)
711 if (!PosAfter)
712 return false;
713
714 const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE);
715 assert(N && "Any call should have a `CallEnter` node.");
716
717 const auto StateBefore = N->getState();
718 const auto *PosBefore = getIteratorPosition(StateBefore, Iter);
719 // FIXME: `std::advance()` should not create a new iterator position but
720 // change existing ones. However, in case of iterators implemented as
721 // pointers the handling of parameters in `std::advance()`-like
722 // functions is still incomplete which may result in cases where
723 // the new position is assigned to the wrong pointer. This causes
724 // crash if we use an assertion here.
725 if (!PosBefore)
726 return false;
727
728 return PosBefore->getOffset() == PosAfter->getOffset();
729 }
730
printState(raw_ostream & Out,ProgramStateRef State,const char * NL,const char * Sep) const731 void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State,
732 const char *NL, const char *Sep) const {
733 auto SymbolMap = State->get<IteratorSymbolMap>();
734 auto RegionMap = State->get<IteratorRegionMap>();
735 // Use a counter to add newlines before every line except the first one.
736 unsigned Count = 0;
737
738 if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) {
739 Out << Sep << "Iterator Positions :" << NL;
740 for (const auto &Sym : SymbolMap) {
741 if (Count++)
742 Out << NL;
743
744 Sym.first->dumpToStream(Out);
745 Out << " : ";
746 const auto Pos = Sym.second;
747 Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
748 Pos.getContainer()->dumpToStream(Out);
749 Out<<" ; Offset == ";
750 Pos.getOffset()->dumpToStream(Out);
751 }
752
753 for (const auto &Reg : RegionMap) {
754 if (Count++)
755 Out << NL;
756
757 Reg.first->dumpToStream(Out);
758 Out << " : ";
759 const auto Pos = Reg.second;
760 Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
761 Pos.getContainer()->dumpToStream(Out);
762 Out<<" ; Offset == ";
763 Pos.getOffset()->dumpToStream(Out);
764 }
765 }
766 }
767
768 namespace {
769
isSimpleComparisonOperator(OverloadedOperatorKind OK)770 bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
771 return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
772 }
773
isSimpleComparisonOperator(BinaryOperatorKind OK)774 bool isSimpleComparisonOperator(BinaryOperatorKind OK) {
775 return OK == BO_EQ || OK == BO_NE;
776 }
777
removeIteratorPosition(ProgramStateRef State,const SVal & Val)778 ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) {
779 if (auto Reg = Val.getAsRegion()) {
780 Reg = Reg->getMostDerivedObjectRegion();
781 return State->remove<IteratorRegionMap>(Reg);
782 } else if (const auto Sym = Val.getAsSymbol()) {
783 return State->remove<IteratorSymbolMap>(Sym);
784 } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
785 return State->remove<IteratorRegionMap>(LCVal->getRegion());
786 }
787 return nullptr;
788 }
789
relateSymbols(ProgramStateRef State,SymbolRef Sym1,SymbolRef Sym2,bool Equal)790 ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
791 SymbolRef Sym2, bool Equal) {
792 auto &SVB = State->getStateManager().getSValBuilder();
793
794 // FIXME: This code should be reworked as follows:
795 // 1. Subtract the operands using evalBinOp().
796 // 2. Assume that the result doesn't overflow.
797 // 3. Compare the result to 0.
798 // 4. Assume the result of the comparison.
799 const auto comparison =
800 SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1),
801 nonloc::SymbolVal(Sym2), SVB.getConditionType());
802
803 assert(comparison.getAs<DefinedSVal>() &&
804 "Symbol comparison must be a `DefinedSVal`");
805
806 auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
807 if (!NewState)
808 return nullptr;
809
810 if (const auto CompSym = comparison.getAsSymbol()) {
811 assert(isa<SymIntExpr>(CompSym) &&
812 "Symbol comparison must be a `SymIntExpr`");
813 assert(BinaryOperator::isComparisonOp(
814 cast<SymIntExpr>(CompSym)->getOpcode()) &&
815 "Symbol comparison must be a comparison");
816 return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
817 }
818
819 return NewState;
820 }
821
isBoundThroughLazyCompoundVal(const Environment & Env,const MemRegion * Reg)822 bool isBoundThroughLazyCompoundVal(const Environment &Env,
823 const MemRegion *Reg) {
824 for (const auto &Binding : Env) {
825 if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) {
826 if (LCVal->getRegion() == Reg)
827 return true;
828 }
829 }
830
831 return false;
832 }
833
findCallEnter(const ExplodedNode * Node,const Expr * Call)834 const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) {
835 while (Node) {
836 ProgramPoint PP = Node->getLocation();
837 if (auto Enter = PP.getAs<CallEnter>()) {
838 if (Enter->getCallExpr() == Call)
839 break;
840 }
841
842 Node = Node->getFirstPred();
843 }
844
845 return Node;
846 }
847
848 } // namespace
849
registerIteratorModeling(CheckerManager & mgr)850 void ento::registerIteratorModeling(CheckerManager &mgr) {
851 mgr.registerChecker<IteratorModeling>();
852 }
853
shouldRegisterIteratorModeling(const CheckerManager & mgr)854 bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) {
855 return true;
856 }
857