• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread_list.h"
18 
19 #include <dirent.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22 
23 #include <sstream>
24 #include <vector>
25 
26 #include "android-base/stringprintf.h"
27 #include "backtrace/BacktraceMap.h"
28 #include "nativehelper/scoped_local_ref.h"
29 #include "nativehelper/scoped_utf_chars.h"
30 
31 #include "base/aborting.h"
32 #include "base/histogram-inl.h"
33 #include "base/mutex-inl.h"
34 #include "base/systrace.h"
35 #include "base/time_utils.h"
36 #include "base/timing_logger.h"
37 #include "debugger.h"
38 #include "gc/collector/concurrent_copying.h"
39 #include "gc/gc_pause_listener.h"
40 #include "gc/heap.h"
41 #include "gc/reference_processor.h"
42 #include "gc_root.h"
43 #include "jni/jni_internal.h"
44 #include "lock_word.h"
45 #include "monitor.h"
46 #include "native_stack_dump.h"
47 #include "scoped_thread_state_change-inl.h"
48 #include "thread.h"
49 #include "trace.h"
50 #include "well_known_classes.h"
51 
52 #if ART_USE_FUTEXES
53 #include "linux/futex.h"
54 #include "sys/syscall.h"
55 #ifndef SYS_futex
56 #define SYS_futex __NR_futex
57 #endif
58 #endif  // ART_USE_FUTEXES
59 
60 namespace art {
61 
62 using android::base::StringPrintf;
63 
64 static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5);
65 // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time.
66 static constexpr useconds_t kThreadSuspendInitialSleepUs = 0;
67 static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000;
68 static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000;
69 
70 // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for
71 // some history.
72 static constexpr bool kDumpUnattachedThreadNativeStackForSigQuit = true;
73 
ThreadList(uint64_t thread_suspend_timeout_ns)74 ThreadList::ThreadList(uint64_t thread_suspend_timeout_ns)
75     : suspend_all_count_(0),
76       unregistering_count_(0),
77       suspend_all_historam_("suspend all histogram", 16, 64),
78       long_suspend_(false),
79       shut_down_(false),
80       thread_suspend_timeout_ns_(thread_suspend_timeout_ns),
81       empty_checkpoint_barrier_(new Barrier(0)) {
82   CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U)));
83 }
84 
~ThreadList()85 ThreadList::~ThreadList() {
86   CHECK(shut_down_);
87 }
88 
ShutDown()89 void ThreadList::ShutDown() {
90   ScopedTrace trace(__PRETTY_FUNCTION__);
91   // Detach the current thread if necessary. If we failed to start, there might not be any threads.
92   // We need to detach the current thread here in case there's another thread waiting to join with
93   // us.
94   bool contains = false;
95   Thread* self = Thread::Current();
96   {
97     MutexLock mu(self, *Locks::thread_list_lock_);
98     contains = Contains(self);
99   }
100   if (contains) {
101     Runtime::Current()->DetachCurrentThread();
102   }
103   WaitForOtherNonDaemonThreadsToExit();
104   // Disable GC and wait for GC to complete in case there are still daemon threads doing
105   // allocations.
106   gc::Heap* const heap = Runtime::Current()->GetHeap();
107   heap->DisableGCForShutdown();
108   // In case a GC is in progress, wait for it to finish.
109   heap->WaitForGcToComplete(gc::kGcCauseBackground, Thread::Current());
110   // TODO: there's an unaddressed race here where a thread may attach during shutdown, see
111   //       Thread::Init.
112   SuspendAllDaemonThreadsForShutdown();
113 
114   shut_down_ = true;
115 }
116 
Contains(Thread * thread)117 bool ThreadList::Contains(Thread* thread) {
118   return find(list_.begin(), list_.end(), thread) != list_.end();
119 }
120 
GetLockOwner()121 pid_t ThreadList::GetLockOwner() {
122   return Locks::thread_list_lock_->GetExclusiveOwnerTid();
123 }
124 
DumpNativeStacks(std::ostream & os)125 void ThreadList::DumpNativeStacks(std::ostream& os) {
126   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
127   std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid()));
128   for (const auto& thread : list_) {
129     os << "DUMPING THREAD " << thread->GetTid() << "\n";
130     DumpNativeStack(os, thread->GetTid(), map.get(), "\t");
131     os << "\n";
132   }
133 }
134 
DumpForSigQuit(std::ostream & os)135 void ThreadList::DumpForSigQuit(std::ostream& os) {
136   {
137     ScopedObjectAccess soa(Thread::Current());
138     // Only print if we have samples.
139     if (suspend_all_historam_.SampleSize() > 0) {
140       Histogram<uint64_t>::CumulativeData data;
141       suspend_all_historam_.CreateHistogram(&data);
142       suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data);  // Dump time to suspend.
143     }
144   }
145   bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit();
146   Dump(os, dump_native_stack);
147   DumpUnattachedThreads(os, dump_native_stack && kDumpUnattachedThreadNativeStackForSigQuit);
148 }
149 
DumpUnattachedThread(std::ostream & os,pid_t tid,bool dump_native_stack)150 static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack)
151     NO_THREAD_SAFETY_ANALYSIS {
152   // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should
153   // refactor DumpState to avoid skipping analysis.
154   Thread::DumpState(os, nullptr, tid);
155   if (dump_native_stack) {
156     DumpNativeStack(os, tid, nullptr, "  native: ");
157   }
158   os << std::endl;
159 }
160 
DumpUnattachedThreads(std::ostream & os,bool dump_native_stack)161 void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) {
162   DIR* d = opendir("/proc/self/task");
163   if (!d) {
164     return;
165   }
166 
167   Thread* self = Thread::Current();
168   dirent* e;
169   while ((e = readdir(d)) != nullptr) {
170     char* end;
171     pid_t tid = strtol(e->d_name, &end, 10);
172     if (!*end) {
173       Thread* thread;
174       {
175         MutexLock mu(self, *Locks::thread_list_lock_);
176         thread = FindThreadByTid(tid);
177       }
178       if (thread == nullptr) {
179         DumpUnattachedThread(os, tid, dump_native_stack);
180       }
181     }
182   }
183   closedir(d);
184 }
185 
186 // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be
187 // overloaded with ANR dumps.
188 static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000;
189 
190 // A closure used by Thread::Dump.
191 class DumpCheckpoint final : public Closure {
192  public:
DumpCheckpoint(std::ostream * os,bool dump_native_stack)193   DumpCheckpoint(std::ostream* os, bool dump_native_stack)
194       : os_(os),
195         // Avoid verifying count in case a thread doesn't end up passing through the barrier.
196         // This avoids a SIGABRT that would otherwise happen in the destructor.
197         barrier_(0, /*verify_count_on_shutdown=*/false),
198         backtrace_map_(dump_native_stack ? BacktraceMap::Create(getpid()) : nullptr),
199         dump_native_stack_(dump_native_stack) {
200     if (backtrace_map_ != nullptr) {
201       backtrace_map_->SetSuffixesToIgnore(std::vector<std::string> { "oat", "odex" });
202     }
203   }
204 
Run(Thread * thread)205   void Run(Thread* thread) override {
206     // Note thread and self may not be equal if thread was already suspended at the point of the
207     // request.
208     Thread* self = Thread::Current();
209     CHECK(self != nullptr);
210     std::ostringstream local_os;
211     {
212       ScopedObjectAccess soa(self);
213       thread->Dump(local_os, dump_native_stack_, backtrace_map_.get());
214     }
215     {
216       // Use the logging lock to ensure serialization when writing to the common ostream.
217       MutexLock mu(self, *Locks::logging_lock_);
218       *os_ << local_os.str() << std::endl;
219     }
220     barrier_.Pass(self);
221   }
222 
WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint)223   void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
224     Thread* self = Thread::Current();
225     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
226     bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout);
227     if (timed_out) {
228       // Avoid a recursive abort.
229       LOG((kIsDebugBuild && (gAborting == 0)) ? ::android::base::FATAL : ::android::base::ERROR)
230           << "Unexpected time out during dump checkpoint.";
231     }
232   }
233 
234  private:
235   // The common stream that will accumulate all the dumps.
236   std::ostream* const os_;
237   // The barrier to be passed through and for the requestor to wait upon.
238   Barrier barrier_;
239   // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately.
240   std::unique_ptr<BacktraceMap> backtrace_map_;
241   // Whether we should dump the native stack.
242   const bool dump_native_stack_;
243 };
244 
Dump(std::ostream & os,bool dump_native_stack)245 void ThreadList::Dump(std::ostream& os, bool dump_native_stack) {
246   Thread* self = Thread::Current();
247   {
248     MutexLock mu(self, *Locks::thread_list_lock_);
249     os << "DALVIK THREADS (" << list_.size() << "):\n";
250   }
251   if (self != nullptr) {
252     DumpCheckpoint checkpoint(&os, dump_native_stack);
253     size_t threads_running_checkpoint;
254     {
255       // Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time.
256       ScopedObjectAccess soa(self);
257       threads_running_checkpoint = RunCheckpoint(&checkpoint);
258     }
259     if (threads_running_checkpoint != 0) {
260       checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
261     }
262   } else {
263     DumpUnattachedThreads(os, dump_native_stack);
264   }
265 }
266 
AssertThreadsAreSuspended(Thread * self,Thread * ignore1,Thread * ignore2)267 void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) {
268   MutexLock mu(self, *Locks::thread_list_lock_);
269   MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
270   for (const auto& thread : list_) {
271     if (thread != ignore1 && thread != ignore2) {
272       CHECK(thread->IsSuspended())
273             << "\nUnsuspended thread: <<" << *thread << "\n"
274             << "self: <<" << *Thread::Current();
275     }
276   }
277 }
278 
279 #if HAVE_TIMED_RWLOCK
280 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForThreadSuspendAllTimeout()281 NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() {
282   // Increment gAborting before doing the thread list dump since we don't want any failures from
283   // AssertThreadSuspensionIsAllowable in cases where thread suspension is not allowed.
284   // See b/69044468.
285   ++gAborting;
286   Runtime* runtime = Runtime::Current();
287   std::ostringstream ss;
288   ss << "Thread suspend timeout\n";
289   Locks::mutator_lock_->Dump(ss);
290   ss << "\n";
291   runtime->GetThreadList()->Dump(ss);
292   --gAborting;
293   LOG(FATAL) << ss.str();
294   exit(0);
295 }
296 #endif
297 
298 // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an
299 // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then
300 // we use sched_yield instead of calling usleep.
301 // Although there is the possibility, here and elsewhere, that usleep could return -1 and
302 // errno = EINTR, there should be no problem if interrupted, so we do not check.
ThreadSuspendSleep(useconds_t delay_us)303 static void ThreadSuspendSleep(useconds_t delay_us) {
304   if (delay_us == 0) {
305     sched_yield();
306   } else {
307     usleep(delay_us);
308   }
309 }
310 
RunCheckpoint(Closure * checkpoint_function,Closure * callback)311 size_t ThreadList::RunCheckpoint(Closure* checkpoint_function, Closure* callback) {
312   Thread* self = Thread::Current();
313   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
314   Locks::thread_list_lock_->AssertNotHeld(self);
315   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
316 
317   std::vector<Thread*> suspended_count_modified_threads;
318   size_t count = 0;
319   {
320     // Call a checkpoint function for each thread, threads which are suspended get their checkpoint
321     // manually called.
322     MutexLock mu(self, *Locks::thread_list_lock_);
323     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
324     count = list_.size();
325     for (const auto& thread : list_) {
326       if (thread != self) {
327         bool requested_suspend = false;
328         while (true) {
329           if (thread->RequestCheckpoint(checkpoint_function)) {
330             // This thread will run its checkpoint some time in the near future.
331             if (requested_suspend) {
332               // The suspend request is now unnecessary.
333               bool updated =
334                   thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
335               DCHECK(updated);
336               requested_suspend = false;
337             }
338             break;
339           } else {
340             // The thread is probably suspended, try to make sure that it stays suspended.
341             if (thread->GetState() == kRunnable) {
342               // Spurious fail, try again.
343               continue;
344             }
345             if (!requested_suspend) {
346               bool updated =
347                   thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
348               DCHECK(updated);
349               requested_suspend = true;
350               if (thread->IsSuspended()) {
351                 break;
352               }
353               // The thread raced us to become Runnable. Try to RequestCheckpoint() again.
354             } else {
355               // The thread previously raced our suspend request to become Runnable but
356               // since it is suspended again, it must honor that suspend request now.
357               DCHECK(thread->IsSuspended());
358               break;
359             }
360           }
361         }
362         if (requested_suspend) {
363           suspended_count_modified_threads.push_back(thread);
364         }
365       }
366     }
367     // Run the callback to be called inside this critical section.
368     if (callback != nullptr) {
369       callback->Run(self);
370     }
371   }
372 
373   // Run the checkpoint on ourself while we wait for threads to suspend.
374   checkpoint_function->Run(self);
375 
376   // Run the checkpoint on the suspended threads.
377   for (const auto& thread : suspended_count_modified_threads) {
378     // We know for sure that the thread is suspended at this point.
379     DCHECK(thread->IsSuspended());
380     checkpoint_function->Run(thread);
381     {
382       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
383       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
384       DCHECK(updated);
385     }
386   }
387 
388   {
389     // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their
390     // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
391     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
392     Thread::resume_cond_->Broadcast(self);
393   }
394 
395   return count;
396 }
397 
RunEmptyCheckpoint()398 void ThreadList::RunEmptyCheckpoint() {
399   Thread* self = Thread::Current();
400   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
401   Locks::thread_list_lock_->AssertNotHeld(self);
402   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
403   std::vector<uint32_t> runnable_thread_ids;
404   size_t count = 0;
405   Barrier* barrier = empty_checkpoint_barrier_.get();
406   barrier->Init(self, 0);
407   {
408     MutexLock mu(self, *Locks::thread_list_lock_);
409     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
410     for (Thread* thread : list_) {
411       if (thread != self) {
412         while (true) {
413           if (thread->RequestEmptyCheckpoint()) {
414             // This thread will run an empty checkpoint (decrement the empty checkpoint barrier)
415             // some time in the near future.
416             ++count;
417             if (kIsDebugBuild) {
418               runnable_thread_ids.push_back(thread->GetThreadId());
419             }
420             break;
421           }
422           if (thread->GetState() != kRunnable) {
423             // It's seen suspended, we are done because it must not be in the middle of a mutator
424             // heap access.
425             break;
426           }
427         }
428       }
429     }
430   }
431 
432   // Wake up the threads blocking for weak ref access so that they will respond to the empty
433   // checkpoint request. Otherwise we will hang as they are blocking in the kRunnable state.
434   Runtime::Current()->GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
435   Runtime::Current()->BroadcastForNewSystemWeaks(/*broadcast_for_checkpoint=*/true);
436   {
437     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
438     uint64_t total_wait_time = 0;
439     bool first_iter = true;
440     while (true) {
441       // Wake up the runnable threads blocked on the mutexes that another thread, which is blocked
442       // on a weak ref access, holds (indirectly blocking for weak ref access through another thread
443       // and a mutex.) This needs to be done periodically because the thread may be preempted
444       // between the CheckEmptyCheckpointFromMutex call and the subsequent futex wait in
445       // Mutex::ExclusiveLock, etc. when the wakeup via WakeupToRespondToEmptyCheckpoint
446       // arrives. This could cause a *very rare* deadlock, if not repeated. Most of the cases are
447       // handled in the first iteration.
448       for (BaseMutex* mutex : Locks::expected_mutexes_on_weak_ref_access_) {
449         mutex->WakeupToRespondToEmptyCheckpoint();
450       }
451       static constexpr uint64_t kEmptyCheckpointPeriodicTimeoutMs = 100;  // 100ms
452       static constexpr uint64_t kEmptyCheckpointTotalTimeoutMs = 600 * 1000;  // 10 minutes.
453       size_t barrier_count = first_iter ? count : 0;
454       first_iter = false;  // Don't add to the barrier count from the second iteration on.
455       bool timed_out = barrier->Increment(self, barrier_count, kEmptyCheckpointPeriodicTimeoutMs);
456       if (!timed_out) {
457         break;  // Success
458       }
459       // This is a very rare case.
460       total_wait_time += kEmptyCheckpointPeriodicTimeoutMs;
461       if (kIsDebugBuild && total_wait_time > kEmptyCheckpointTotalTimeoutMs) {
462         std::ostringstream ss;
463         ss << "Empty checkpoint timeout\n";
464         ss << "Barrier count " << barrier->GetCount(self) << "\n";
465         ss << "Runnable thread IDs";
466         for (uint32_t tid : runnable_thread_ids) {
467           ss << " " << tid;
468         }
469         ss << "\n";
470         Locks::mutator_lock_->Dump(ss);
471         ss << "\n";
472         LOG(FATAL_WITHOUT_ABORT) << ss.str();
473         // Some threads in 'runnable_thread_ids' are probably stuck. Try to dump their stacks.
474         // Avoid using ThreadList::Dump() initially because it is likely to get stuck as well.
475         {
476           ScopedObjectAccess soa(self);
477           MutexLock mu1(self, *Locks::thread_list_lock_);
478           for (Thread* thread : GetList()) {
479             uint32_t tid = thread->GetThreadId();
480             bool is_in_runnable_thread_ids =
481                 std::find(runnable_thread_ids.begin(), runnable_thread_ids.end(), tid) !=
482                 runnable_thread_ids.end();
483             if (is_in_runnable_thread_ids &&
484                 thread->ReadFlag(kEmptyCheckpointRequest)) {
485               // Found a runnable thread that hasn't responded to the empty checkpoint request.
486               // Assume it's stuck and safe to dump its stack.
487               thread->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT),
488                            /*dump_native_stack=*/ true,
489                            /*backtrace_map=*/ nullptr,
490                            /*force_dump_stack=*/ true);
491             }
492           }
493         }
494         LOG(FATAL_WITHOUT_ABORT)
495             << "Dumped runnable threads that haven't responded to empty checkpoint.";
496         // Now use ThreadList::Dump() to dump more threads, noting it may get stuck.
497         Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
498         LOG(FATAL) << "Dumped all threads.";
499       }
500     }
501   }
502 }
503 
504 // A checkpoint/suspend-all hybrid to switch thread roots from
505 // from-space to to-space refs. Used to synchronize threads at a point
506 // to mark the initiation of marking while maintaining the to-space
507 // invariant.
FlipThreadRoots(Closure * thread_flip_visitor,Closure * flip_callback,gc::collector::GarbageCollector * collector,gc::GcPauseListener * pause_listener)508 size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor,
509                                    Closure* flip_callback,
510                                    gc::collector::GarbageCollector* collector,
511                                    gc::GcPauseListener* pause_listener) {
512   TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings());
513   Thread* self = Thread::Current();
514   Locks::mutator_lock_->AssertNotHeld(self);
515   Locks::thread_list_lock_->AssertNotHeld(self);
516   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
517   CHECK_NE(self->GetState(), kRunnable);
518 
519   collector->GetHeap()->ThreadFlipBegin(self);  // Sync with JNI critical calls.
520 
521   // ThreadFlipBegin happens before we suspend all the threads, so it does not count towards the
522   // pause.
523   const uint64_t suspend_start_time = NanoTime();
524   SuspendAllInternal(self, self, nullptr);
525   if (pause_listener != nullptr) {
526     pause_listener->StartPause();
527   }
528 
529   // Run the flip callback for the collector.
530   Locks::mutator_lock_->ExclusiveLock(self);
531   suspend_all_historam_.AdjustAndAddValue(NanoTime() - suspend_start_time);
532   flip_callback->Run(self);
533   Locks::mutator_lock_->ExclusiveUnlock(self);
534   collector->RegisterPause(NanoTime() - suspend_start_time);
535   if (pause_listener != nullptr) {
536     pause_listener->EndPause();
537   }
538 
539   // Resume runnable threads.
540   size_t runnable_thread_count = 0;
541   std::vector<Thread*> other_threads;
542   {
543     TimingLogger::ScopedTiming split2("ResumeRunnableThreads", collector->GetTimings());
544     MutexLock mu(self, *Locks::thread_list_lock_);
545     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
546     --suspend_all_count_;
547     for (const auto& thread : list_) {
548       // Set the flip function for all threads because Thread::DumpState/DumpJavaStack() (invoked by
549       // a checkpoint) may cause the flip function to be run for a runnable/suspended thread before
550       // a runnable thread runs it for itself or we run it for a suspended thread below.
551       thread->SetFlipFunction(thread_flip_visitor);
552       if (thread == self) {
553         continue;
554       }
555       // Resume early the threads that were runnable but are suspended just for this thread flip or
556       // about to transition from non-runnable (eg. kNative at the SOA entry in a JNI function) to
557       // runnable (both cases waiting inside Thread::TransitionFromSuspendedToRunnable), or waiting
558       // for the thread flip to end at the JNI critical section entry (kWaitingForGcThreadFlip),
559       ThreadState state = thread->GetState();
560       if ((state == kWaitingForGcThreadFlip || thread->IsTransitioningToRunnable()) &&
561           thread->GetSuspendCount() == 1) {
562         // The thread will resume right after the broadcast.
563         bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
564         DCHECK(updated);
565         ++runnable_thread_count;
566       } else {
567         other_threads.push_back(thread);
568       }
569     }
570     Thread::resume_cond_->Broadcast(self);
571   }
572 
573   collector->GetHeap()->ThreadFlipEnd(self);
574 
575   // Run the closure on the other threads and let them resume.
576   {
577     TimingLogger::ScopedTiming split3("FlipOtherThreads", collector->GetTimings());
578     ReaderMutexLock mu(self, *Locks::mutator_lock_);
579     for (const auto& thread : other_threads) {
580       Closure* flip_func = thread->GetFlipFunction();
581       if (flip_func != nullptr) {
582         flip_func->Run(thread);
583       }
584     }
585     // Run it for self.
586     Closure* flip_func = self->GetFlipFunction();
587     if (flip_func != nullptr) {
588       flip_func->Run(self);
589     }
590   }
591 
592   // Resume other threads.
593   {
594     TimingLogger::ScopedTiming split4("ResumeOtherThreads", collector->GetTimings());
595     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
596     for (const auto& thread : other_threads) {
597       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
598       DCHECK(updated);
599     }
600     Thread::resume_cond_->Broadcast(self);
601   }
602 
603   return runnable_thread_count + other_threads.size() + 1;  // +1 for self.
604 }
605 
SuspendAll(const char * cause,bool long_suspend)606 void ThreadList::SuspendAll(const char* cause, bool long_suspend) {
607   Thread* self = Thread::Current();
608 
609   if (self != nullptr) {
610     VLOG(threads) << *self << " SuspendAll for " << cause << " starting...";
611   } else {
612     VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting...";
613   }
614   {
615     ScopedTrace trace("Suspending mutator threads");
616     const uint64_t start_time = NanoTime();
617 
618     SuspendAllInternal(self, self);
619     // All threads are known to have suspended (but a thread may still own the mutator lock)
620     // Make sure this thread grabs exclusive access to the mutator lock and its protected data.
621 #if HAVE_TIMED_RWLOCK
622     while (true) {
623       if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self,
624                                                          NsToMs(thread_suspend_timeout_ns_),
625                                                          0)) {
626         break;
627       } else if (!long_suspend_) {
628         // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this
629         // could result in a thread suspend timeout.
630         // Timeout if we wait more than thread_suspend_timeout_ns_ nanoseconds.
631         UnsafeLogFatalForThreadSuspendAllTimeout();
632       }
633     }
634 #else
635     Locks::mutator_lock_->ExclusiveLock(self);
636 #endif
637 
638     long_suspend_ = long_suspend;
639 
640     const uint64_t end_time = NanoTime();
641     const uint64_t suspend_time = end_time - start_time;
642     suspend_all_historam_.AdjustAndAddValue(suspend_time);
643     if (suspend_time > kLongThreadSuspendThreshold) {
644       LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time);
645     }
646 
647     if (kDebugLocking) {
648       // Debug check that all threads are suspended.
649       AssertThreadsAreSuspended(self, self);
650     }
651   }
652   ATraceBegin((std::string("Mutator threads suspended for ") + cause).c_str());
653 
654   if (self != nullptr) {
655     VLOG(threads) << *self << " SuspendAll complete";
656   } else {
657     VLOG(threads) << "Thread[null] SuspendAll complete";
658   }
659 }
660 
661 // Ensures all threads running Java suspend and that those not running Java don't start.
SuspendAllInternal(Thread * self,Thread * ignore1,Thread * ignore2,SuspendReason reason)662 void ThreadList::SuspendAllInternal(Thread* self,
663                                     Thread* ignore1,
664                                     Thread* ignore2,
665                                     SuspendReason reason) {
666   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
667   Locks::thread_list_lock_->AssertNotHeld(self);
668   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
669   if (kDebugLocking && self != nullptr) {
670     CHECK_NE(self->GetState(), kRunnable);
671   }
672 
673   // First request that all threads suspend, then wait for them to suspend before
674   // returning. This suspension scheme also relies on other behaviour:
675   // 1. Threads cannot be deleted while they are suspended or have a suspend-
676   //    request flag set - (see Unregister() below).
677   // 2. When threads are created, they are created in a suspended state (actually
678   //    kNative) and will never begin executing Java code without first checking
679   //    the suspend-request flag.
680 
681   // The atomic counter for number of threads that need to pass the barrier.
682   AtomicInteger pending_threads;
683   uint32_t num_ignored = 0;
684   if (ignore1 != nullptr) {
685     ++num_ignored;
686   }
687   if (ignore2 != nullptr && ignore1 != ignore2) {
688     ++num_ignored;
689   }
690   {
691     MutexLock mu(self, *Locks::thread_list_lock_);
692     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
693     // Update global suspend all state for attaching threads.
694     ++suspend_all_count_;
695     pending_threads.store(list_.size() - num_ignored, std::memory_order_relaxed);
696     // Increment everybody's suspend count (except those that should be ignored).
697     for (const auto& thread : list_) {
698       if (thread == ignore1 || thread == ignore2) {
699         continue;
700       }
701       VLOG(threads) << "requesting thread suspend: " << *thread;
702       bool updated = thread->ModifySuspendCount(self, +1, &pending_threads, reason);
703       DCHECK(updated);
704 
705       // Must install the pending_threads counter first, then check thread->IsSuspend() and clear
706       // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended()
707       // that can lead a thread to miss a call to PassActiveSuspendBarriers().
708       if (thread->IsSuspended()) {
709         // Only clear the counter for the current thread.
710         thread->ClearSuspendBarrier(&pending_threads);
711         pending_threads.fetch_sub(1, std::memory_order_seq_cst);
712       }
713     }
714   }
715 
716   // Wait for the barrier to be passed by all runnable threads. This wait
717   // is done with a timeout so that we can detect problems.
718 #if ART_USE_FUTEXES
719   timespec wait_timeout;
720   InitTimeSpec(false, CLOCK_MONOTONIC, NsToMs(thread_suspend_timeout_ns_), 0, &wait_timeout);
721 #endif
722   const uint64_t start_time = NanoTime();
723   while (true) {
724     int32_t cur_val = pending_threads.load(std::memory_order_relaxed);
725     if (LIKELY(cur_val > 0)) {
726 #if ART_USE_FUTEXES
727       if (futex(pending_threads.Address(), FUTEX_WAIT_PRIVATE, cur_val, &wait_timeout, nullptr, 0)
728           != 0) {
729         if ((errno == EAGAIN) || (errno == EINTR)) {
730           // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
731           continue;
732         }
733         if (errno == ETIMEDOUT) {
734           const uint64_t wait_time = NanoTime() - start_time;
735           MutexLock mu(self, *Locks::thread_list_lock_);
736           MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
737           std::ostringstream oss;
738           for (const auto& thread : list_) {
739             if (thread == ignore1 || thread == ignore2) {
740               continue;
741             }
742             if (!thread->IsSuspended()) {
743               oss << std::endl << "Thread not suspended: " << *thread;
744             }
745           }
746           LOG(kIsDebugBuild ? ::android::base::FATAL : ::android::base::ERROR)
747               << "Timed out waiting for threads to suspend, waited for "
748               << PrettyDuration(wait_time)
749               << oss.str();
750         } else {
751           PLOG(FATAL) << "futex wait failed for SuspendAllInternal()";
752         }
753       }  // else re-check pending_threads in the next iteration (this may be a spurious wake-up).
754 #else
755       // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set.
756       UNUSED(start_time);
757 #endif
758     } else {
759       CHECK_EQ(cur_val, 0);
760       break;
761     }
762   }
763 }
764 
ResumeAll()765 void ThreadList::ResumeAll() {
766   Thread* self = Thread::Current();
767 
768   if (self != nullptr) {
769     VLOG(threads) << *self << " ResumeAll starting";
770   } else {
771     VLOG(threads) << "Thread[null] ResumeAll starting";
772   }
773 
774   ATraceEnd();
775 
776   ScopedTrace trace("Resuming mutator threads");
777 
778   if (kDebugLocking) {
779     // Debug check that all threads are suspended.
780     AssertThreadsAreSuspended(self, self);
781   }
782 
783   long_suspend_ = false;
784 
785   Locks::mutator_lock_->ExclusiveUnlock(self);
786   {
787     MutexLock mu(self, *Locks::thread_list_lock_);
788     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
789     // Update global suspend all state for attaching threads.
790     --suspend_all_count_;
791     // Decrement the suspend counts for all threads.
792     for (const auto& thread : list_) {
793       if (thread == self) {
794         continue;
795       }
796       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
797       DCHECK(updated);
798     }
799 
800     // Broadcast a notification to all suspended threads, some or all of
801     // which may choose to wake up.  No need to wait for them.
802     if (self != nullptr) {
803       VLOG(threads) << *self << " ResumeAll waking others";
804     } else {
805       VLOG(threads) << "Thread[null] ResumeAll waking others";
806     }
807     Thread::resume_cond_->Broadcast(self);
808   }
809 
810   if (self != nullptr) {
811     VLOG(threads) << *self << " ResumeAll complete";
812   } else {
813     VLOG(threads) << "Thread[null] ResumeAll complete";
814   }
815 }
816 
Resume(Thread * thread,SuspendReason reason)817 bool ThreadList::Resume(Thread* thread, SuspendReason reason) {
818   // This assumes there was an ATraceBegin when we suspended the thread.
819   ATraceEnd();
820 
821   Thread* self = Thread::Current();
822   DCHECK_NE(thread, self);
823   VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") starting..." << reason;
824 
825   {
826     // To check Contains.
827     MutexLock mu(self, *Locks::thread_list_lock_);
828     // To check IsSuspended.
829     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
830     if (UNLIKELY(!thread->IsSuspended())) {
831       LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
832           << ") thread not suspended";
833       return false;
834     }
835     if (!Contains(thread)) {
836       // We only expect threads within the thread-list to have been suspended otherwise we can't
837       // stop such threads from delete-ing themselves.
838       LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
839           << ") thread not within thread list";
840       return false;
841     }
842     if (UNLIKELY(!thread->ModifySuspendCount(self, -1, nullptr, reason))) {
843       LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
844                  << ") could not modify suspend count.";
845       return false;
846     }
847   }
848 
849   {
850     VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") waking others";
851     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
852     Thread::resume_cond_->Broadcast(self);
853   }
854 
855   VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") complete";
856   return true;
857 }
858 
ThreadSuspendByPeerWarning(Thread * self,LogSeverity severity,const char * message,jobject peer)859 static void ThreadSuspendByPeerWarning(Thread* self,
860                                        LogSeverity severity,
861                                        const char* message,
862                                        jobject peer) {
863   JNIEnvExt* env = self->GetJniEnv();
864   ScopedLocalRef<jstring>
865       scoped_name_string(env, static_cast<jstring>(env->GetObjectField(
866           peer, WellKnownClasses::java_lang_Thread_name)));
867   ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
868   if (scoped_name_chars.c_str() == nullptr) {
869       LOG(severity) << message << ": " << peer;
870       env->ExceptionClear();
871   } else {
872       LOG(severity) << message << ": " << peer << ":" << scoped_name_chars.c_str();
873   }
874 }
875 
SuspendThreadByPeer(jobject peer,bool request_suspension,SuspendReason reason,bool * timed_out)876 Thread* ThreadList::SuspendThreadByPeer(jobject peer,
877                                         bool request_suspension,
878                                         SuspendReason reason,
879                                         bool* timed_out) {
880   const uint64_t start_time = NanoTime();
881   useconds_t sleep_us = kThreadSuspendInitialSleepUs;
882   *timed_out = false;
883   Thread* const self = Thread::Current();
884   Thread* suspended_thread = nullptr;
885   VLOG(threads) << "SuspendThreadByPeer starting";
886   while (true) {
887     Thread* thread;
888     {
889       // Note: this will transition to runnable and potentially suspend. We ensure only one thread
890       // is requesting another suspend, to avoid deadlock, by requiring this function be called
891       // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
892       // than request thread suspension, to avoid potential cycles in threads requesting each other
893       // suspend.
894       ScopedObjectAccess soa(self);
895       MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
896       thread = Thread::FromManagedThread(soa, peer);
897       if (thread == nullptr) {
898         if (suspended_thread != nullptr) {
899           MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
900           // If we incremented the suspend count but the thread reset its peer, we need to
901           // re-decrement it since it is shutting down and may deadlock the runtime in
902           // ThreadList::WaitForOtherNonDaemonThreadsToExit.
903           bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
904                                                               -1,
905                                                               nullptr,
906                                                               reason);
907           DCHECK(updated);
908         }
909         ThreadSuspendByPeerWarning(self,
910                                    ::android::base::WARNING,
911                                     "No such thread for suspend",
912                                     peer);
913         return nullptr;
914       }
915       if (!Contains(thread)) {
916         CHECK(suspended_thread == nullptr);
917         VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: "
918             << reinterpret_cast<void*>(thread);
919         return nullptr;
920       }
921       VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread;
922       {
923         MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
924         if (request_suspension) {
925           if (self->GetSuspendCount() > 0) {
926             // We hold the suspend count lock but another thread is trying to suspend us. Its not
927             // safe to try to suspend another thread in case we get a cycle. Start the loop again
928             // which will allow this thread to be suspended.
929             continue;
930           }
931           CHECK(suspended_thread == nullptr);
932           suspended_thread = thread;
933           bool updated = suspended_thread->ModifySuspendCount(self, +1, nullptr, reason);
934           DCHECK(updated);
935           request_suspension = false;
936         } else {
937           // If the caller isn't requesting suspension, a suspension should have already occurred.
938           CHECK_GT(thread->GetSuspendCount(), 0);
939         }
940         // IsSuspended on the current thread will fail as the current thread is changed into
941         // Runnable above. As the suspend count is now raised if this is the current thread
942         // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
943         // to just explicitly handle the current thread in the callers to this code.
944         CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
945         // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
946         // count, or else we've waited and it has self suspended) or is the current thread, we're
947         // done.
948         if (thread->IsSuspended()) {
949           VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread;
950           if (ATraceEnabled()) {
951             std::string name;
952             thread->GetThreadName(name);
953             ATraceBegin(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(),
954                                       peer).c_str());
955           }
956           return thread;
957         }
958         const uint64_t total_delay = NanoTime() - start_time;
959         if (total_delay >= thread_suspend_timeout_ns_) {
960           ThreadSuspendByPeerWarning(self,
961                                      ::android::base::FATAL,
962                                      "Thread suspension timed out",
963                                      peer);
964           if (suspended_thread != nullptr) {
965             CHECK_EQ(suspended_thread, thread);
966             bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
967                                                                 -1,
968                                                                 nullptr,
969                                                                 reason);
970             DCHECK(updated);
971           }
972           *timed_out = true;
973           return nullptr;
974         } else if (sleep_us == 0 &&
975             total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
976           // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
977           // excessive CPU usage.
978           sleep_us = kThreadSuspendMaxYieldUs / 2;
979         }
980       }
981       // Release locks and come out of runnable state.
982     }
983     VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend";
984     ThreadSuspendSleep(sleep_us);
985     // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at
986     // all if possible. This shouldn't be an issue since time to suspend should always be small.
987     sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
988   }
989 }
990 
ThreadSuspendByThreadIdWarning(LogSeverity severity,const char * message,uint32_t thread_id)991 static void ThreadSuspendByThreadIdWarning(LogSeverity severity,
992                                            const char* message,
993                                            uint32_t thread_id) {
994   LOG(severity) << StringPrintf("%s: %d", message, thread_id);
995 }
996 
SuspendThreadByThreadId(uint32_t thread_id,SuspendReason reason,bool * timed_out)997 Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id,
998                                             SuspendReason reason,
999                                             bool* timed_out) {
1000   const uint64_t start_time = NanoTime();
1001   useconds_t sleep_us = kThreadSuspendInitialSleepUs;
1002   *timed_out = false;
1003   Thread* suspended_thread = nullptr;
1004   Thread* const self = Thread::Current();
1005   CHECK_NE(thread_id, kInvalidThreadId);
1006   VLOG(threads) << "SuspendThreadByThreadId starting";
1007   while (true) {
1008     {
1009       // Note: this will transition to runnable and potentially suspend. We ensure only one thread
1010       // is requesting another suspend, to avoid deadlock, by requiring this function be called
1011       // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
1012       // than request thread suspension, to avoid potential cycles in threads requesting each other
1013       // suspend.
1014       ScopedObjectAccess soa(self);
1015       MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
1016       Thread* thread = nullptr;
1017       for (const auto& it : list_) {
1018         if (it->GetThreadId() == thread_id) {
1019           thread = it;
1020           break;
1021         }
1022       }
1023       if (thread == nullptr) {
1024         CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread
1025             << " no longer in thread list";
1026         // There's a race in inflating a lock and the owner giving up ownership and then dying.
1027         ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1028                                        "No such thread id for suspend",
1029                                        thread_id);
1030         return nullptr;
1031       }
1032       VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread;
1033       DCHECK(Contains(thread));
1034       {
1035         MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1036         if (suspended_thread == nullptr) {
1037           if (self->GetSuspendCount() > 0) {
1038             // We hold the suspend count lock but another thread is trying to suspend us. Its not
1039             // safe to try to suspend another thread in case we get a cycle. Start the loop again
1040             // which will allow this thread to be suspended.
1041             continue;
1042           }
1043           bool updated = thread->ModifySuspendCount(self, +1, nullptr, reason);
1044           DCHECK(updated);
1045           suspended_thread = thread;
1046         } else {
1047           CHECK_EQ(suspended_thread, thread);
1048           // If the caller isn't requesting suspension, a suspension should have already occurred.
1049           CHECK_GT(thread->GetSuspendCount(), 0);
1050         }
1051         // IsSuspended on the current thread will fail as the current thread is changed into
1052         // Runnable above. As the suspend count is now raised if this is the current thread
1053         // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
1054         // to just explicitly handle the current thread in the callers to this code.
1055         CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
1056         // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
1057         // count, or else we've waited and it has self suspended) or is the current thread, we're
1058         // done.
1059         if (thread->IsSuspended()) {
1060           if (ATraceEnabled()) {
1061             std::string name;
1062             thread->GetThreadName(name);
1063             ATraceBegin(StringPrintf("SuspendThreadByThreadId suspended %s id=%d",
1064                                       name.c_str(), thread_id).c_str());
1065           }
1066           VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread;
1067           return thread;
1068         }
1069         const uint64_t total_delay = NanoTime() - start_time;
1070         if (total_delay >= thread_suspend_timeout_ns_) {
1071           ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1072                                          "Thread suspension timed out",
1073                                          thread_id);
1074           if (suspended_thread != nullptr) {
1075             bool updated = thread->ModifySuspendCount(soa.Self(), -1, nullptr, reason);
1076             DCHECK(updated);
1077           }
1078           *timed_out = true;
1079           return nullptr;
1080         } else if (sleep_us == 0 &&
1081             total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
1082           // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
1083           // excessive CPU usage.
1084           sleep_us = kThreadSuspendMaxYieldUs / 2;
1085         }
1086       }
1087       // Release locks and come out of runnable state.
1088     }
1089     VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend";
1090     ThreadSuspendSleep(sleep_us);
1091     sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
1092   }
1093 }
1094 
FindThreadByThreadId(uint32_t thread_id)1095 Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) {
1096   for (const auto& thread : list_) {
1097     if (thread->GetThreadId() == thread_id) {
1098       return thread;
1099     }
1100   }
1101   return nullptr;
1102 }
1103 
FindThreadByTid(int tid)1104 Thread* ThreadList::FindThreadByTid(int tid) {
1105   for (const auto& thread : list_) {
1106     if (thread->GetTid() == tid) {
1107       return thread;
1108     }
1109   }
1110   return nullptr;
1111 }
1112 
WaitForOtherNonDaemonThreadsToExit(bool check_no_birth)1113 void ThreadList::WaitForOtherNonDaemonThreadsToExit(bool check_no_birth) {
1114   ScopedTrace trace(__PRETTY_FUNCTION__);
1115   Thread* self = Thread::Current();
1116   Locks::mutator_lock_->AssertNotHeld(self);
1117   while (true) {
1118     Locks::runtime_shutdown_lock_->Lock(self);
1119     if (check_no_birth) {
1120       // No more threads can be born after we start to shutdown.
1121       CHECK(Runtime::Current()->IsShuttingDownLocked());
1122       CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U);
1123     } else {
1124       if (Runtime::Current()->NumberOfThreadsBeingBorn() != 0U) {
1125         // Awkward. Shutdown_cond_ is private, but the only live thread may not be registered yet.
1126         // Fortunately, this is used mostly for testing, and not performance-critical.
1127         Locks::runtime_shutdown_lock_->Unlock(self);
1128         usleep(1000);
1129         continue;
1130       }
1131     }
1132     MutexLock mu(self, *Locks::thread_list_lock_);
1133     Locks::runtime_shutdown_lock_->Unlock(self);
1134     // Also wait for any threads that are unregistering to finish. This is required so that no
1135     // threads access the thread list after it is deleted. TODO: This may not work for user daemon
1136     // threads since they could unregister at the wrong time.
1137     bool done = unregistering_count_ == 0;
1138     if (done) {
1139       for (const auto& thread : list_) {
1140         if (thread != self && !thread->IsDaemon()) {
1141           done = false;
1142           break;
1143         }
1144       }
1145     }
1146     if (done) {
1147       break;
1148     }
1149     // Wait for another thread to exit before re-checking.
1150     Locks::thread_exit_cond_->Wait(self);
1151   }
1152 }
1153 
SuspendAllDaemonThreadsForShutdown()1154 void ThreadList::SuspendAllDaemonThreadsForShutdown() {
1155   ScopedTrace trace(__PRETTY_FUNCTION__);
1156   Thread* self = Thread::Current();
1157   size_t daemons_left = 0;
1158   {
1159     // Tell all the daemons it's time to suspend.
1160     MutexLock mu(self, *Locks::thread_list_lock_);
1161     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1162     for (const auto& thread : list_) {
1163       // This is only run after all non-daemon threads have exited, so the remainder should all be
1164       // daemons.
1165       CHECK(thread->IsDaemon()) << *thread;
1166       if (thread != self) {
1167         bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1168         DCHECK(updated);
1169         ++daemons_left;
1170       }
1171       // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be
1172       // the sleep forever one.
1173       thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions();
1174     }
1175   }
1176   if (daemons_left == 0) {
1177     // No threads left; safe to shut down.
1178     return;
1179   }
1180   // There is not a clean way to shut down if we have daemons left. We have no mechanism for
1181   // killing them and reclaiming thread stacks. We also have no mechanism for waiting until they
1182   // have truly finished touching the memory we are about to deallocate. We do the best we can with
1183   // timeouts.
1184   //
1185   // If we have any daemons left, wait until they are (a) suspended and (b) they are not stuck
1186   // in a place where they are about to access runtime state and are not in a runnable state.
1187   // We attempt to do the latter by just waiting long enough for things to
1188   // quiesce. Examples: Monitor code or waking up from a condition variable.
1189   //
1190   // Give the threads a chance to suspend, complaining if they're slow. (a)
1191   bool have_complained = false;
1192   static constexpr size_t kTimeoutMicroseconds = 2000 * 1000;
1193   static constexpr size_t kSleepMicroseconds = 1000;
1194   bool all_suspended = false;
1195   for (size_t i = 0; !all_suspended && i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) {
1196     bool found_running = false;
1197     {
1198       MutexLock mu(self, *Locks::thread_list_lock_);
1199       for (const auto& thread : list_) {
1200         if (thread != self && thread->GetState() == kRunnable) {
1201           if (!have_complained) {
1202             LOG(WARNING) << "daemon thread not yet suspended: " << *thread;
1203             have_complained = true;
1204           }
1205           found_running = true;
1206         }
1207       }
1208     }
1209     if (found_running) {
1210       // Sleep briefly before checking again. Max total sleep time is kTimeoutMicroseconds.
1211       usleep(kSleepMicroseconds);
1212     } else {
1213       all_suspended = true;
1214     }
1215   }
1216   if (!all_suspended) {
1217     // We can get here if a daemon thread executed a fastnative native call, so that it
1218     // remained in runnable state, and then made a JNI call after we called
1219     // SetFunctionsToRuntimeShutdownFunctions(), causing it to permanently stay in a harmless
1220     // but runnable state. See b/147804269 .
1221     LOG(WARNING) << "timed out suspending all daemon threads";
1222   }
1223   // Assume all threads are either suspended or somehow wedged.
1224   // Wait again for all the now "suspended" threads to actually quiesce. (b)
1225   static constexpr size_t kDaemonSleepTime = 400'000;
1226   usleep(kDaemonSleepTime);
1227   std::list<Thread*> list_copy;
1228   {
1229     MutexLock mu(self, *Locks::thread_list_lock_);
1230     // Half-way through the wait, set the "runtime deleted" flag, causing any newly awoken
1231     // threads to immediately go back to sleep without touching memory. This prevents us from
1232     // touching deallocated memory, but it also prevents mutexes from getting released. Thus we
1233     // only do this once we're reasonably sure that no system mutexes are still held.
1234     for (const auto& thread : list_) {
1235       DCHECK(thread == self || !all_suspended || thread->GetState() != kRunnable);
1236       // In the !all_suspended case, the target is probably sleeping.
1237       thread->GetJniEnv()->SetRuntimeDeleted();
1238       // Possibly contended Mutex acquisitions are unsafe after this.
1239       // Releasing thread_list_lock_ is OK, since it can't block.
1240     }
1241   }
1242   // Finally wait for any threads woken before we set the "runtime deleted" flags to finish
1243   // touching memory.
1244   usleep(kDaemonSleepTime);
1245 #if defined(__has_feature)
1246 #if __has_feature(address_sanitizer) || __has_feature(hwaddress_sanitizer)
1247   // Sleep a bit longer with -fsanitize=address, since everything is slower.
1248   usleep(2 * kDaemonSleepTime);
1249 #endif
1250 #endif
1251   // At this point no threads should be touching our data structures anymore.
1252 }
1253 
Register(Thread * self)1254 void ThreadList::Register(Thread* self) {
1255   DCHECK_EQ(self, Thread::Current());
1256   CHECK(!shut_down_);
1257 
1258   if (VLOG_IS_ON(threads)) {
1259     std::ostringstream oss;
1260     self->ShortDump(oss);  // We don't hold the mutator_lock_ yet and so cannot call Dump.
1261     LOG(INFO) << "ThreadList::Register() " << *self  << "\n" << oss.str();
1262   }
1263 
1264   // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing
1265   // SuspendAll requests.
1266   MutexLock mu(self, *Locks::thread_list_lock_);
1267   MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1268   // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While
1269   // this isn't particularly efficient the suspend counts are most commonly 0 or 1.
1270   for (int delta = suspend_all_count_; delta > 0; delta--) {
1271     bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1272     DCHECK(updated);
1273   }
1274   CHECK(!Contains(self));
1275   list_.push_back(self);
1276   if (kUseReadBarrier) {
1277     gc::collector::ConcurrentCopying* const cc =
1278         Runtime::Current()->GetHeap()->ConcurrentCopyingCollector();
1279     // Initialize according to the state of the CC collector.
1280     self->SetIsGcMarkingAndUpdateEntrypoints(cc->IsMarking());
1281     if (cc->IsUsingReadBarrierEntrypoints()) {
1282       self->SetReadBarrierEntrypoints();
1283     }
1284     self->SetWeakRefAccessEnabled(cc->IsWeakRefAccessEnabled());
1285   }
1286   self->NotifyInTheadList();
1287 }
1288 
Unregister(Thread * self)1289 void ThreadList::Unregister(Thread* self) {
1290   DCHECK_EQ(self, Thread::Current());
1291   CHECK_NE(self->GetState(), kRunnable);
1292   Locks::mutator_lock_->AssertNotHeld(self);
1293 
1294   VLOG(threads) << "ThreadList::Unregister() " << *self;
1295 
1296   {
1297     MutexLock mu(self, *Locks::thread_list_lock_);
1298     ++unregistering_count_;
1299   }
1300 
1301   // Any time-consuming destruction, plus anything that can call back into managed code or
1302   // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what
1303   // causes the threads to join. It is important to do this after incrementing unregistering_count_
1304   // since we want the runtime to wait for the daemon threads to exit before deleting the thread
1305   // list.
1306   self->Destroy();
1307 
1308   // If tracing, remember thread id and name before thread exits.
1309   Trace::StoreExitingThreadInfo(self);
1310 
1311   uint32_t thin_lock_id = self->GetThreadId();
1312   while (true) {
1313     // Remove and delete the Thread* while holding the thread_list_lock_ and
1314     // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended.
1315     // Note: deliberately not using MutexLock that could hold a stale self pointer.
1316     {
1317       MutexLock mu(self, *Locks::thread_list_lock_);
1318       if (!Contains(self)) {
1319         std::string thread_name;
1320         self->GetThreadName(thread_name);
1321         std::ostringstream os;
1322         DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
1323         LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str();
1324         break;
1325       } else {
1326         MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1327         if (!self->IsSuspended()) {
1328           list_.remove(self);
1329           break;
1330         }
1331       }
1332     }
1333     // In the case where we are not suspended yet, sleep to leave other threads time to execute.
1334     // This is important if there are realtime threads. b/111277984
1335     usleep(1);
1336     // We failed to remove the thread due to a suspend request, loop and try again.
1337   }
1338   delete self;
1339 
1340   // Release the thread ID after the thread is finished and deleted to avoid cases where we can
1341   // temporarily have multiple threads with the same thread id. When this occurs, it causes
1342   // problems in FindThreadByThreadId / SuspendThreadByThreadId.
1343   ReleaseThreadId(nullptr, thin_lock_id);
1344 
1345   // Clear the TLS data, so that the underlying native thread is recognizably detached.
1346   // (It may wish to reattach later.)
1347 #ifdef __BIONIC__
1348   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr;
1349 #else
1350   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self");
1351   Thread::self_tls_ = nullptr;
1352 #endif
1353 
1354   // Signal that a thread just detached.
1355   MutexLock mu(nullptr, *Locks::thread_list_lock_);
1356   --unregistering_count_;
1357   Locks::thread_exit_cond_->Broadcast(nullptr);
1358 }
1359 
ForEach(void (* callback)(Thread *,void *),void * context)1360 void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) {
1361   for (const auto& thread : list_) {
1362     callback(thread, context);
1363   }
1364 }
1365 
VisitRootsForSuspendedThreads(RootVisitor * visitor)1366 void ThreadList::VisitRootsForSuspendedThreads(RootVisitor* visitor) {
1367   Thread* const self = Thread::Current();
1368   std::vector<Thread*> threads_to_visit;
1369 
1370   // Tell threads to suspend and copy them into list.
1371   {
1372     MutexLock mu(self, *Locks::thread_list_lock_);
1373     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1374     for (Thread* thread : list_) {
1375       bool suspended = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1376       DCHECK(suspended);
1377       if (thread == self || thread->IsSuspended()) {
1378         threads_to_visit.push_back(thread);
1379       } else {
1380         bool resumed = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1381         DCHECK(resumed);
1382       }
1383     }
1384   }
1385 
1386   // Visit roots without holding thread_list_lock_ and thread_suspend_count_lock_ to prevent lock
1387   // order violations.
1388   for (Thread* thread : threads_to_visit) {
1389     thread->VisitRoots(visitor, kVisitRootFlagAllRoots);
1390   }
1391 
1392   // Restore suspend counts.
1393   {
1394     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1395     for (Thread* thread : threads_to_visit) {
1396       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1397       DCHECK(updated);
1398     }
1399   }
1400 }
1401 
VisitRoots(RootVisitor * visitor,VisitRootFlags flags) const1402 void ThreadList::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) const {
1403   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1404   for (const auto& thread : list_) {
1405     thread->VisitRoots(visitor, flags);
1406   }
1407 }
1408 
SweepInterpreterCaches(IsMarkedVisitor * visitor) const1409 void ThreadList::SweepInterpreterCaches(IsMarkedVisitor* visitor) const {
1410   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1411   for (const auto& thread : list_) {
1412     thread->SweepInterpreterCache(visitor);
1413   }
1414 }
1415 
VisitReflectiveTargets(ReflectiveValueVisitor * visitor) const1416 void ThreadList::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) const {
1417   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1418   for (const auto& thread : list_) {
1419     thread->VisitReflectiveTargets(visitor);
1420   }
1421 }
1422 
AllocThreadId(Thread * self)1423 uint32_t ThreadList::AllocThreadId(Thread* self) {
1424   MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1425   for (size_t i = 0; i < allocated_ids_.size(); ++i) {
1426     if (!allocated_ids_[i]) {
1427       allocated_ids_.set(i);
1428       return i + 1;  // Zero is reserved to mean "invalid".
1429     }
1430   }
1431   LOG(FATAL) << "Out of internal thread ids";
1432   UNREACHABLE();
1433 }
1434 
ReleaseThreadId(Thread * self,uint32_t id)1435 void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) {
1436   MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1437   --id;  // Zero is reserved to mean "invalid".
1438   DCHECK(allocated_ids_[id]) << id;
1439   allocated_ids_.reset(id);
1440 }
1441 
ScopedSuspendAll(const char * cause,bool long_suspend)1442 ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) {
1443   Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend);
1444 }
1445 
~ScopedSuspendAll()1446 ScopedSuspendAll::~ScopedSuspendAll() {
1447   Runtime::Current()->GetThreadList()->ResumeAll();
1448 }
1449 
1450 }  // namespace art
1451