1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits a target specifier matcher for converting parsed
11 // assembly operands in the MCInst structures. It also emits a matcher for
12 // custom operand parsing.
13 //
14 // Converting assembly operands into MCInst structures
15 // ---------------------------------------------------
16 //
17 // The input to the target specific matcher is a list of literal tokens and
18 // operands. The target specific parser should generally eliminate any syntax
19 // which is not relevant for matching; for example, comma tokens should have
20 // already been consumed and eliminated by the parser. Most instructions will
21 // end up with a single literal token (the instruction name) and some number of
22 // operands.
23 //
24 // Some example inputs, for X86:
25 // 'addl' (immediate ...) (register ...)
26 // 'add' (immediate ...) (memory ...)
27 // 'call' '*' %epc
28 //
29 // The assembly matcher is responsible for converting this input into a precise
30 // machine instruction (i.e., an instruction with a well defined encoding). This
31 // mapping has several properties which complicate matching:
32 //
33 // - It may be ambiguous; many architectures can legally encode particular
34 // variants of an instruction in different ways (for example, using a smaller
35 // encoding for small immediates). Such ambiguities should never be
36 // arbitrarily resolved by the assembler, the assembler is always responsible
37 // for choosing the "best" available instruction.
38 //
39 // - It may depend on the subtarget or the assembler context. Instructions
40 // which are invalid for the current mode, but otherwise unambiguous (e.g.,
41 // an SSE instruction in a file being assembled for i486) should be accepted
42 // and rejected by the assembler front end. However, if the proper encoding
43 // for an instruction is dependent on the assembler context then the matcher
44 // is responsible for selecting the correct machine instruction for the
45 // current mode.
46 //
47 // The core matching algorithm attempts to exploit the regularity in most
48 // instruction sets to quickly determine the set of possibly matching
49 // instructions, and the simplify the generated code. Additionally, this helps
50 // to ensure that the ambiguities are intentionally resolved by the user.
51 //
52 // The matching is divided into two distinct phases:
53 //
54 // 1. Classification: Each operand is mapped to the unique set which (a)
55 // contains it, and (b) is the largest such subset for which a single
56 // instruction could match all members.
57 //
58 // For register classes, we can generate these subgroups automatically. For
59 // arbitrary operands, we expect the user to define the classes and their
60 // relations to one another (for example, 8-bit signed immediates as a
61 // subset of 32-bit immediates).
62 //
63 // By partitioning the operands in this way, we guarantee that for any
64 // tuple of classes, any single instruction must match either all or none
65 // of the sets of operands which could classify to that tuple.
66 //
67 // In addition, the subset relation amongst classes induces a partial order
68 // on such tuples, which we use to resolve ambiguities.
69 //
70 // 2. The input can now be treated as a tuple of classes (static tokens are
71 // simple singleton sets). Each such tuple should generally map to a single
72 // instruction (we currently ignore cases where this isn't true, whee!!!),
73 // which we can emit a simple matcher for.
74 //
75 // Custom Operand Parsing
76 // ----------------------
77 //
78 // Some targets need a custom way to parse operands, some specific instructions
79 // can contain arguments that can represent processor flags and other kinds of
80 // identifiers that need to be mapped to specific values in the final encoded
81 // instructions. The target specific custom operand parsing works in the
82 // following way:
83 //
84 // 1. A operand match table is built, each entry contains a mnemonic, an
85 // operand class, a mask for all operand positions for that same
86 // class/mnemonic and target features to be checked while trying to match.
87 //
88 // 2. The operand matcher will try every possible entry with the same
89 // mnemonic and will check if the target feature for this mnemonic also
90 // matches. After that, if the operand to be matched has its index
91 // present in the mask, a successful match occurs. Otherwise, fallback
92 // to the regular operand parsing.
93 //
94 // 3. For a match success, each operand class that has a 'ParserMethod'
95 // becomes part of a switch from where the custom method is called.
96 //
97 //===----------------------------------------------------------------------===//
98
99 #include "CodeGenTarget.h"
100 #include "llvm/ADT/PointerUnion.h"
101 #include "llvm/ADT/STLExtras.h"
102 #include "llvm/ADT/SmallPtrSet.h"
103 #include "llvm/ADT/SmallVector.h"
104 #include "llvm/ADT/StringExtras.h"
105 #include "llvm/Support/CommandLine.h"
106 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/ErrorHandling.h"
108 #include "llvm/TableGen/Error.h"
109 #include "llvm/TableGen/Record.h"
110 #include "llvm/TableGen/StringMatcher.h"
111 #include "llvm/TableGen/StringToOffsetTable.h"
112 #include "llvm/TableGen/TableGenBackend.h"
113 #include <cassert>
114 #include <cctype>
115 #include <forward_list>
116 #include <map>
117 #include <set>
118
119 using namespace llvm;
120
121 #define DEBUG_TYPE "asm-matcher-emitter"
122
123 static cl::opt<std::string>
124 MatchPrefix("match-prefix", cl::init(""),
125 cl::desc("Only match instructions with the given prefix"));
126
127 namespace {
128 class AsmMatcherInfo;
129 struct SubtargetFeatureInfo;
130
131 // Register sets are used as keys in some second-order sets TableGen creates
132 // when generating its data structures. This means that the order of two
133 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
134 // can even affect compiler output (at least seen in diagnostics produced when
135 // all matches fail). So we use a type that sorts them consistently.
136 typedef std::set<Record*, LessRecordByID> RegisterSet;
137
138 class AsmMatcherEmitter {
139 RecordKeeper &Records;
140 public:
AsmMatcherEmitter(RecordKeeper & R)141 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
142
143 void run(raw_ostream &o);
144 };
145
146 /// ClassInfo - Helper class for storing the information about a particular
147 /// class of operands which can be matched.
148 struct ClassInfo {
149 enum ClassInfoKind {
150 /// Invalid kind, for use as a sentinel value.
151 Invalid = 0,
152
153 /// The class for a particular token.
154 Token,
155
156 /// The (first) register class, subsequent register classes are
157 /// RegisterClass0+1, and so on.
158 RegisterClass0,
159
160 /// The (first) user defined class, subsequent user defined classes are
161 /// UserClass0+1, and so on.
162 UserClass0 = 1<<16
163 };
164
165 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
166 /// N) for the Nth user defined class.
167 unsigned Kind;
168
169 /// SuperClasses - The super classes of this class. Note that for simplicities
170 /// sake user operands only record their immediate super class, while register
171 /// operands include all superclasses.
172 std::vector<ClassInfo*> SuperClasses;
173
174 /// Name - The full class name, suitable for use in an enum.
175 std::string Name;
176
177 /// ClassName - The unadorned generic name for this class (e.g., Token).
178 std::string ClassName;
179
180 /// ValueName - The name of the value this class represents; for a token this
181 /// is the literal token string, for an operand it is the TableGen class (or
182 /// empty if this is a derived class).
183 std::string ValueName;
184
185 /// PredicateMethod - The name of the operand method to test whether the
186 /// operand matches this class; this is not valid for Token or register kinds.
187 std::string PredicateMethod;
188
189 /// RenderMethod - The name of the operand method to add this operand to an
190 /// MCInst; this is not valid for Token or register kinds.
191 std::string RenderMethod;
192
193 /// ParserMethod - The name of the operand method to do a target specific
194 /// parsing on the operand.
195 std::string ParserMethod;
196
197 /// For register classes: the records for all the registers in this class.
198 RegisterSet Registers;
199
200 /// For custom match classes: the diagnostic kind for when the predicate fails.
201 std::string DiagnosticType;
202
203 /// Is this operand optional and not always required.
204 bool IsOptional;
205
206 /// DefaultMethod - The name of the method that returns the default operand
207 /// for optional operand
208 std::string DefaultMethod;
209
210 public:
211 /// isRegisterClass() - Check if this is a register class.
isRegisterClass__anon90d40e630111::ClassInfo212 bool isRegisterClass() const {
213 return Kind >= RegisterClass0 && Kind < UserClass0;
214 }
215
216 /// isUserClass() - Check if this is a user defined class.
isUserClass__anon90d40e630111::ClassInfo217 bool isUserClass() const {
218 return Kind >= UserClass0;
219 }
220
221 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
222 /// are related if they are in the same class hierarchy.
isRelatedTo__anon90d40e630111::ClassInfo223 bool isRelatedTo(const ClassInfo &RHS) const {
224 // Tokens are only related to tokens.
225 if (Kind == Token || RHS.Kind == Token)
226 return Kind == Token && RHS.Kind == Token;
227
228 // Registers classes are only related to registers classes, and only if
229 // their intersection is non-empty.
230 if (isRegisterClass() || RHS.isRegisterClass()) {
231 if (!isRegisterClass() || !RHS.isRegisterClass())
232 return false;
233
234 RegisterSet Tmp;
235 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
236 std::set_intersection(Registers.begin(), Registers.end(),
237 RHS.Registers.begin(), RHS.Registers.end(),
238 II, LessRecordByID());
239
240 return !Tmp.empty();
241 }
242
243 // Otherwise we have two users operands; they are related if they are in the
244 // same class hierarchy.
245 //
246 // FIXME: This is an oversimplification, they should only be related if they
247 // intersect, however we don't have that information.
248 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
249 const ClassInfo *Root = this;
250 while (!Root->SuperClasses.empty())
251 Root = Root->SuperClasses.front();
252
253 const ClassInfo *RHSRoot = &RHS;
254 while (!RHSRoot->SuperClasses.empty())
255 RHSRoot = RHSRoot->SuperClasses.front();
256
257 return Root == RHSRoot;
258 }
259
260 /// isSubsetOf - Test whether this class is a subset of \p RHS.
isSubsetOf__anon90d40e630111::ClassInfo261 bool isSubsetOf(const ClassInfo &RHS) const {
262 // This is a subset of RHS if it is the same class...
263 if (this == &RHS)
264 return true;
265
266 // ... or if any of its super classes are a subset of RHS.
267 for (const ClassInfo *CI : SuperClasses)
268 if (CI->isSubsetOf(RHS))
269 return true;
270
271 return false;
272 }
273
getTreeDepth__anon90d40e630111::ClassInfo274 int getTreeDepth() const {
275 int Depth = 0;
276 const ClassInfo *Root = this;
277 while (!Root->SuperClasses.empty()) {
278 Depth++;
279 Root = Root->SuperClasses.front();
280 }
281 return Depth;
282 }
283
findRoot__anon90d40e630111::ClassInfo284 const ClassInfo *findRoot() const {
285 const ClassInfo *Root = this;
286 while (!Root->SuperClasses.empty())
287 Root = Root->SuperClasses.front();
288 return Root;
289 }
290
291 /// Compare two classes. This does not produce a total ordering, but does
292 /// guarantee that subclasses are sorted before their parents, and that the
293 /// ordering is transitive.
operator <__anon90d40e630111::ClassInfo294 bool operator<(const ClassInfo &RHS) const {
295 if (this == &RHS)
296 return false;
297
298 // First, enforce the ordering between the three different types of class.
299 // Tokens sort before registers, which sort before user classes.
300 if (Kind == Token) {
301 if (RHS.Kind != Token)
302 return true;
303 assert(RHS.Kind == Token);
304 } else if (isRegisterClass()) {
305 if (RHS.Kind == Token)
306 return false;
307 else if (RHS.isUserClass())
308 return true;
309 assert(RHS.isRegisterClass());
310 } else if (isUserClass()) {
311 if (!RHS.isUserClass())
312 return false;
313 assert(RHS.isUserClass());
314 } else {
315 llvm_unreachable("Unknown ClassInfoKind");
316 }
317
318 if (Kind == Token || isUserClass()) {
319 // Related tokens and user classes get sorted by depth in the inheritence
320 // tree (so that subclasses are before their parents).
321 if (isRelatedTo(RHS)) {
322 if (getTreeDepth() > RHS.getTreeDepth())
323 return true;
324 if (getTreeDepth() < RHS.getTreeDepth())
325 return false;
326 } else {
327 // Unrelated tokens and user classes are ordered by the name of their
328 // root nodes, so that there is a consistent ordering between
329 // unconnected trees.
330 return findRoot()->ValueName < RHS.findRoot()->ValueName;
331 }
332 } else if (isRegisterClass()) {
333 // For register sets, sort by number of registers. This guarantees that
334 // a set will always sort before all of it's strict supersets.
335 if (Registers.size() != RHS.Registers.size())
336 return Registers.size() < RHS.Registers.size();
337 } else {
338 llvm_unreachable("Unknown ClassInfoKind");
339 }
340
341 // FIXME: We should be able to just return false here, as we only need a
342 // partial order (we use stable sorts, so this is deterministic) and the
343 // name of a class shouldn't be significant. However, some of the backends
344 // accidentally rely on this behaviour, so it will have to stay like this
345 // until they are fixed.
346 return ValueName < RHS.ValueName;
347 }
348 };
349
350 class AsmVariantInfo {
351 public:
352 std::string RegisterPrefix;
353 std::string TokenizingCharacters;
354 std::string SeparatorCharacters;
355 std::string BreakCharacters;
356 int AsmVariantNo;
357 };
358
359 /// MatchableInfo - Helper class for storing the necessary information for an
360 /// instruction or alias which is capable of being matched.
361 struct MatchableInfo {
362 struct AsmOperand {
363 /// Token - This is the token that the operand came from.
364 StringRef Token;
365
366 /// The unique class instance this operand should match.
367 ClassInfo *Class;
368
369 /// The operand name this is, if anything.
370 StringRef SrcOpName;
371
372 /// The suboperand index within SrcOpName, or -1 for the entire operand.
373 int SubOpIdx;
374
375 /// Whether the token is "isolated", i.e., it is preceded and followed
376 /// by separators.
377 bool IsIsolatedToken;
378
379 /// Register record if this token is singleton register.
380 Record *SingletonReg;
381
AsmOperand__anon90d40e630111::MatchableInfo::AsmOperand382 explicit AsmOperand(bool IsIsolatedToken, StringRef T)
383 : Token(T), Class(nullptr), SubOpIdx(-1),
384 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
385 };
386
387 /// ResOperand - This represents a single operand in the result instruction
388 /// generated by the match. In cases (like addressing modes) where a single
389 /// assembler operand expands to multiple MCOperands, this represents the
390 /// single assembler operand, not the MCOperand.
391 struct ResOperand {
392 enum {
393 /// RenderAsmOperand - This represents an operand result that is
394 /// generated by calling the render method on the assembly operand. The
395 /// corresponding AsmOperand is specified by AsmOperandNum.
396 RenderAsmOperand,
397
398 /// TiedOperand - This represents a result operand that is a duplicate of
399 /// a previous result operand.
400 TiedOperand,
401
402 /// ImmOperand - This represents an immediate value that is dumped into
403 /// the operand.
404 ImmOperand,
405
406 /// RegOperand - This represents a fixed register that is dumped in.
407 RegOperand
408 } Kind;
409
410 union {
411 /// This is the operand # in the AsmOperands list that this should be
412 /// copied from.
413 unsigned AsmOperandNum;
414
415 /// TiedOperandNum - This is the (earlier) result operand that should be
416 /// copied from.
417 unsigned TiedOperandNum;
418
419 /// ImmVal - This is the immediate value added to the instruction.
420 int64_t ImmVal;
421
422 /// Register - This is the register record.
423 Record *Register;
424 };
425
426 /// MINumOperands - The number of MCInst operands populated by this
427 /// operand.
428 unsigned MINumOperands;
429
getRenderedOp__anon90d40e630111::MatchableInfo::ResOperand430 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
431 ResOperand X;
432 X.Kind = RenderAsmOperand;
433 X.AsmOperandNum = AsmOpNum;
434 X.MINumOperands = NumOperands;
435 return X;
436 }
437
getTiedOp__anon90d40e630111::MatchableInfo::ResOperand438 static ResOperand getTiedOp(unsigned TiedOperandNum) {
439 ResOperand X;
440 X.Kind = TiedOperand;
441 X.TiedOperandNum = TiedOperandNum;
442 X.MINumOperands = 1;
443 return X;
444 }
445
getImmOp__anon90d40e630111::MatchableInfo::ResOperand446 static ResOperand getImmOp(int64_t Val) {
447 ResOperand X;
448 X.Kind = ImmOperand;
449 X.ImmVal = Val;
450 X.MINumOperands = 1;
451 return X;
452 }
453
getRegOp__anon90d40e630111::MatchableInfo::ResOperand454 static ResOperand getRegOp(Record *Reg) {
455 ResOperand X;
456 X.Kind = RegOperand;
457 X.Register = Reg;
458 X.MINumOperands = 1;
459 return X;
460 }
461 };
462
463 /// AsmVariantID - Target's assembly syntax variant no.
464 int AsmVariantID;
465
466 /// AsmString - The assembly string for this instruction (with variants
467 /// removed), e.g. "movsx $src, $dst".
468 std::string AsmString;
469
470 /// TheDef - This is the definition of the instruction or InstAlias that this
471 /// matchable came from.
472 Record *const TheDef;
473
474 /// DefRec - This is the definition that it came from.
475 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
476
getResultInst__anon90d40e630111::MatchableInfo477 const CodeGenInstruction *getResultInst() const {
478 if (DefRec.is<const CodeGenInstruction*>())
479 return DefRec.get<const CodeGenInstruction*>();
480 return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
481 }
482
483 /// ResOperands - This is the operand list that should be built for the result
484 /// MCInst.
485 SmallVector<ResOperand, 8> ResOperands;
486
487 /// Mnemonic - This is the first token of the matched instruction, its
488 /// mnemonic.
489 StringRef Mnemonic;
490
491 /// AsmOperands - The textual operands that this instruction matches,
492 /// annotated with a class and where in the OperandList they were defined.
493 /// This directly corresponds to the tokenized AsmString after the mnemonic is
494 /// removed.
495 SmallVector<AsmOperand, 8> AsmOperands;
496
497 /// Predicates - The required subtarget features to match this instruction.
498 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
499
500 /// ConversionFnKind - The enum value which is passed to the generated
501 /// convertToMCInst to convert parsed operands into an MCInst for this
502 /// function.
503 std::string ConversionFnKind;
504
505 /// If this instruction is deprecated in some form.
506 bool HasDeprecation;
507
508 /// If this is an alias, this is use to determine whether or not to using
509 /// the conversion function defined by the instruction's AsmMatchConverter
510 /// or to use the function generated by the alias.
511 bool UseInstAsmMatchConverter;
512
MatchableInfo__anon90d40e630111::MatchableInfo513 MatchableInfo(const CodeGenInstruction &CGI)
514 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
515 UseInstAsmMatchConverter(true) {
516 }
517
MatchableInfo__anon90d40e630111::MatchableInfo518 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
519 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
520 DefRec(Alias.release()),
521 UseInstAsmMatchConverter(
522 TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
523 }
524
525 // Could remove this and the dtor if PointerUnion supported unique_ptr
526 // elements with a dynamic failure/assertion (like the one below) in the case
527 // where it was copied while being in an owning state.
MatchableInfo__anon90d40e630111::MatchableInfo528 MatchableInfo(const MatchableInfo &RHS)
529 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
530 TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
531 Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
532 RequiredFeatures(RHS.RequiredFeatures),
533 ConversionFnKind(RHS.ConversionFnKind),
534 HasDeprecation(RHS.HasDeprecation),
535 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
536 assert(!DefRec.is<const CodeGenInstAlias *>());
537 }
538
~MatchableInfo__anon90d40e630111::MatchableInfo539 ~MatchableInfo() {
540 delete DefRec.dyn_cast<const CodeGenInstAlias*>();
541 }
542
543 // Two-operand aliases clone from the main matchable, but mark the second
544 // operand as a tied operand of the first for purposes of the assembler.
545 void formTwoOperandAlias(StringRef Constraint);
546
547 void initialize(const AsmMatcherInfo &Info,
548 SmallPtrSetImpl<Record*> &SingletonRegisters,
549 AsmVariantInfo const &Variant,
550 bool HasMnemonicFirst);
551
552 /// validate - Return true if this matchable is a valid thing to match against
553 /// and perform a bunch of validity checking.
554 bool validate(StringRef CommentDelimiter, bool Hack) const;
555
556 /// findAsmOperand - Find the AsmOperand with the specified name and
557 /// suboperand index.
findAsmOperand__anon90d40e630111::MatchableInfo558 int findAsmOperand(StringRef N, int SubOpIdx) const {
559 auto I = std::find_if(AsmOperands.begin(), AsmOperands.end(),
560 [&](const AsmOperand &Op) {
561 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
562 });
563 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
564 }
565
566 /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
567 /// This does not check the suboperand index.
findAsmOperandNamed__anon90d40e630111::MatchableInfo568 int findAsmOperandNamed(StringRef N) const {
569 auto I = std::find_if(AsmOperands.begin(), AsmOperands.end(),
570 [&](const AsmOperand &Op) {
571 return Op.SrcOpName == N;
572 });
573 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
574 }
575
576 void buildInstructionResultOperands();
577 void buildAliasResultOperands();
578
579 /// operator< - Compare two matchables.
operator <__anon90d40e630111::MatchableInfo580 bool operator<(const MatchableInfo &RHS) const {
581 // The primary comparator is the instruction mnemonic.
582 if (int Cmp = Mnemonic.compare(RHS.Mnemonic))
583 return Cmp == -1;
584
585 if (AsmOperands.size() != RHS.AsmOperands.size())
586 return AsmOperands.size() < RHS.AsmOperands.size();
587
588 // Compare lexicographically by operand. The matcher validates that other
589 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
590 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
591 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
592 return true;
593 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
594 return false;
595 }
596
597 // Give matches that require more features higher precedence. This is useful
598 // because we cannot define AssemblerPredicates with the negation of
599 // processor features. For example, ARM v6 "nop" may be either a HINT or
600 // MOV. With v6, we want to match HINT. The assembler has no way to
601 // predicate MOV under "NoV6", but HINT will always match first because it
602 // requires V6 while MOV does not.
603 if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
604 return RequiredFeatures.size() > RHS.RequiredFeatures.size();
605
606 return false;
607 }
608
609 /// couldMatchAmbiguouslyWith - Check whether this matchable could
610 /// ambiguously match the same set of operands as \p RHS (without being a
611 /// strictly superior match).
couldMatchAmbiguouslyWith__anon90d40e630111::MatchableInfo612 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
613 // The primary comparator is the instruction mnemonic.
614 if (Mnemonic != RHS.Mnemonic)
615 return false;
616
617 // The number of operands is unambiguous.
618 if (AsmOperands.size() != RHS.AsmOperands.size())
619 return false;
620
621 // Otherwise, make sure the ordering of the two instructions is unambiguous
622 // by checking that either (a) a token or operand kind discriminates them,
623 // or (b) the ordering among equivalent kinds is consistent.
624
625 // Tokens and operand kinds are unambiguous (assuming a correct target
626 // specific parser).
627 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
628 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
629 AsmOperands[i].Class->Kind == ClassInfo::Token)
630 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
631 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
632 return false;
633
634 // Otherwise, this operand could commute if all operands are equivalent, or
635 // there is a pair of operands that compare less than and a pair that
636 // compare greater than.
637 bool HasLT = false, HasGT = false;
638 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
639 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
640 HasLT = true;
641 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
642 HasGT = true;
643 }
644
645 return HasLT == HasGT;
646 }
647
648 void dump() const;
649
650 private:
651 void tokenizeAsmString(AsmMatcherInfo const &Info,
652 AsmVariantInfo const &Variant);
653 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
654 };
655
656 /// SubtargetFeatureInfo - Helper class for storing information on a subtarget
657 /// feature which participates in instruction matching.
658 struct SubtargetFeatureInfo {
659 /// \brief The predicate record for this feature.
660 Record *TheDef;
661
662 /// \brief An unique index assigned to represent this feature.
663 uint64_t Index;
664
SubtargetFeatureInfo__anon90d40e630111::SubtargetFeatureInfo665 SubtargetFeatureInfo(Record *D, uint64_t Idx) : TheDef(D), Index(Idx) {}
666
667 /// \brief The name of the enumerated constant identifying this feature.
getEnumName__anon90d40e630111::SubtargetFeatureInfo668 std::string getEnumName() const {
669 return "Feature_" + TheDef->getName();
670 }
671
dump__anon90d40e630111::SubtargetFeatureInfo672 void dump() const {
673 errs() << getEnumName() << " " << Index << "\n";
674 TheDef->dump();
675 }
676 };
677
678 struct OperandMatchEntry {
679 unsigned OperandMask;
680 const MatchableInfo* MI;
681 ClassInfo *CI;
682
create__anon90d40e630111::OperandMatchEntry683 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
684 unsigned opMask) {
685 OperandMatchEntry X;
686 X.OperandMask = opMask;
687 X.CI = ci;
688 X.MI = mi;
689 return X;
690 }
691 };
692
693 class AsmMatcherInfo {
694 public:
695 /// Tracked Records
696 RecordKeeper &Records;
697
698 /// The tablegen AsmParser record.
699 Record *AsmParser;
700
701 /// Target - The target information.
702 CodeGenTarget &Target;
703
704 /// The classes which are needed for matching.
705 std::forward_list<ClassInfo> Classes;
706
707 /// The information on the matchables to match.
708 std::vector<std::unique_ptr<MatchableInfo>> Matchables;
709
710 /// Info for custom matching operands by user defined methods.
711 std::vector<OperandMatchEntry> OperandMatchInfo;
712
713 /// Map of Register records to their class information.
714 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
715 RegisterClassesTy RegisterClasses;
716
717 /// Map of Predicate records to their subtarget information.
718 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
719
720 /// Map of AsmOperandClass records to their class information.
721 std::map<Record*, ClassInfo*> AsmOperandClasses;
722
723 private:
724 /// Map of token to class information which has already been constructed.
725 std::map<std::string, ClassInfo*> TokenClasses;
726
727 /// Map of RegisterClass records to their class information.
728 std::map<Record*, ClassInfo*> RegisterClassClasses;
729
730 private:
731 /// getTokenClass - Lookup or create the class for the given token.
732 ClassInfo *getTokenClass(StringRef Token);
733
734 /// getOperandClass - Lookup or create the class for the given operand.
735 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
736 int SubOpIdx);
737 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
738
739 /// buildRegisterClasses - Build the ClassInfo* instances for register
740 /// classes.
741 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
742
743 /// buildOperandClasses - Build the ClassInfo* instances for user defined
744 /// operand classes.
745 void buildOperandClasses();
746
747 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
748 unsigned AsmOpIdx);
749 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
750 MatchableInfo::AsmOperand &Op);
751
752 public:
753 AsmMatcherInfo(Record *AsmParser,
754 CodeGenTarget &Target,
755 RecordKeeper &Records);
756
757 /// buildInfo - Construct the various tables used during matching.
758 void buildInfo();
759
760 /// buildOperandMatchInfo - Build the necessary information to handle user
761 /// defined operand parsing methods.
762 void buildOperandMatchInfo();
763
764 /// getSubtargetFeature - Lookup or create the subtarget feature info for the
765 /// given operand.
getSubtargetFeature(Record * Def) const766 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
767 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
768 const auto &I = SubtargetFeatures.find(Def);
769 return I == SubtargetFeatures.end() ? nullptr : &I->second;
770 }
771
getRecords() const772 RecordKeeper &getRecords() const {
773 return Records;
774 }
775
hasOptionalOperands() const776 bool hasOptionalOperands() const {
777 return std::find_if(Classes.begin(), Classes.end(),
778 [](const ClassInfo& Class){ return Class.IsOptional; })
779 != Classes.end();
780 }
781 };
782
783 } // end anonymous namespace
784
dump() const785 void MatchableInfo::dump() const {
786 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
787
788 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
789 const AsmOperand &Op = AsmOperands[i];
790 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
791 errs() << '\"' << Op.Token << "\"\n";
792 }
793 }
794
795 static std::pair<StringRef, StringRef>
parseTwoOperandConstraint(StringRef S,ArrayRef<SMLoc> Loc)796 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
797 // Split via the '='.
798 std::pair<StringRef, StringRef> Ops = S.split('=');
799 if (Ops.second == "")
800 PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
801 // Trim whitespace and the leading '$' on the operand names.
802 size_t start = Ops.first.find_first_of('$');
803 if (start == std::string::npos)
804 PrintFatalError(Loc, "expected '$' prefix on asm operand name");
805 Ops.first = Ops.first.slice(start + 1, std::string::npos);
806 size_t end = Ops.first.find_last_of(" \t");
807 Ops.first = Ops.first.slice(0, end);
808 // Now the second operand.
809 start = Ops.second.find_first_of('$');
810 if (start == std::string::npos)
811 PrintFatalError(Loc, "expected '$' prefix on asm operand name");
812 Ops.second = Ops.second.slice(start + 1, std::string::npos);
813 end = Ops.second.find_last_of(" \t");
814 Ops.first = Ops.first.slice(0, end);
815 return Ops;
816 }
817
formTwoOperandAlias(StringRef Constraint)818 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
819 // Figure out which operands are aliased and mark them as tied.
820 std::pair<StringRef, StringRef> Ops =
821 parseTwoOperandConstraint(Constraint, TheDef->getLoc());
822
823 // Find the AsmOperands that refer to the operands we're aliasing.
824 int SrcAsmOperand = findAsmOperandNamed(Ops.first);
825 int DstAsmOperand = findAsmOperandNamed(Ops.second);
826 if (SrcAsmOperand == -1)
827 PrintFatalError(TheDef->getLoc(),
828 "unknown source two-operand alias operand '" + Ops.first +
829 "'.");
830 if (DstAsmOperand == -1)
831 PrintFatalError(TheDef->getLoc(),
832 "unknown destination two-operand alias operand '" +
833 Ops.second + "'.");
834
835 // Find the ResOperand that refers to the operand we're aliasing away
836 // and update it to refer to the combined operand instead.
837 for (ResOperand &Op : ResOperands) {
838 if (Op.Kind == ResOperand::RenderAsmOperand &&
839 Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
840 Op.AsmOperandNum = DstAsmOperand;
841 break;
842 }
843 }
844 // Remove the AsmOperand for the alias operand.
845 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
846 // Adjust the ResOperand references to any AsmOperands that followed
847 // the one we just deleted.
848 for (ResOperand &Op : ResOperands) {
849 switch(Op.Kind) {
850 default:
851 // Nothing to do for operands that don't reference AsmOperands.
852 break;
853 case ResOperand::RenderAsmOperand:
854 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
855 --Op.AsmOperandNum;
856 break;
857 case ResOperand::TiedOperand:
858 if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
859 --Op.TiedOperandNum;
860 break;
861 }
862 }
863 }
864
865 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
866 /// if present, from specified token.
867 static void
extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand & Op,const AsmMatcherInfo & Info,StringRef RegisterPrefix)868 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
869 const AsmMatcherInfo &Info,
870 StringRef RegisterPrefix) {
871 StringRef Tok = Op.Token;
872
873 // If this token is not an isolated token, i.e., it isn't separated from
874 // other tokens (e.g. with whitespace), don't interpret it as a register name.
875 if (!Op.IsIsolatedToken)
876 return;
877
878 if (RegisterPrefix.empty()) {
879 std::string LoweredTok = Tok.lower();
880 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
881 Op.SingletonReg = Reg->TheDef;
882 return;
883 }
884
885 if (!Tok.startswith(RegisterPrefix))
886 return;
887
888 StringRef RegName = Tok.substr(RegisterPrefix.size());
889 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
890 Op.SingletonReg = Reg->TheDef;
891
892 // If there is no register prefix (i.e. "%" in "%eax"), then this may
893 // be some random non-register token, just ignore it.
894 }
895
initialize(const AsmMatcherInfo & Info,SmallPtrSetImpl<Record * > & SingletonRegisters,AsmVariantInfo const & Variant,bool HasMnemonicFirst)896 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
897 SmallPtrSetImpl<Record*> &SingletonRegisters,
898 AsmVariantInfo const &Variant,
899 bool HasMnemonicFirst) {
900 AsmVariantID = Variant.AsmVariantNo;
901 AsmString =
902 CodeGenInstruction::FlattenAsmStringVariants(AsmString,
903 Variant.AsmVariantNo);
904
905 tokenizeAsmString(Info, Variant);
906
907 // The first token of the instruction is the mnemonic, which must be a
908 // simple string, not a $foo variable or a singleton register.
909 if (AsmOperands.empty())
910 PrintFatalError(TheDef->getLoc(),
911 "Instruction '" + TheDef->getName() + "' has no tokens");
912
913 assert(!AsmOperands[0].Token.empty());
914 if (HasMnemonicFirst) {
915 Mnemonic = AsmOperands[0].Token;
916 if (Mnemonic[0] == '$')
917 PrintFatalError(TheDef->getLoc(),
918 "Invalid instruction mnemonic '" + Mnemonic + "'!");
919
920 // Remove the first operand, it is tracked in the mnemonic field.
921 AsmOperands.erase(AsmOperands.begin());
922 } else if (AsmOperands[0].Token[0] != '$')
923 Mnemonic = AsmOperands[0].Token;
924
925 // Compute the require features.
926 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
927 if (const SubtargetFeatureInfo *Feature =
928 Info.getSubtargetFeature(Predicate))
929 RequiredFeatures.push_back(Feature);
930
931 // Collect singleton registers, if used.
932 for (MatchableInfo::AsmOperand &Op : AsmOperands) {
933 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
934 if (Record *Reg = Op.SingletonReg)
935 SingletonRegisters.insert(Reg);
936 }
937
938 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
939 if (!DepMask)
940 DepMask = TheDef->getValue("ComplexDeprecationPredicate");
941
942 HasDeprecation =
943 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
944 }
945
946 /// Append an AsmOperand for the given substring of AsmString.
addAsmOperand(StringRef Token,bool IsIsolatedToken)947 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
948 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
949 }
950
951 /// tokenizeAsmString - Tokenize a simplified assembly string.
tokenizeAsmString(const AsmMatcherInfo & Info,AsmVariantInfo const & Variant)952 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
953 AsmVariantInfo const &Variant) {
954 StringRef String = AsmString;
955 size_t Prev = 0;
956 bool InTok = false;
957 bool IsIsolatedToken = true;
958 for (size_t i = 0, e = String.size(); i != e; ++i) {
959 char Char = String[i];
960 if (Variant.BreakCharacters.find(Char) != std::string::npos) {
961 if (InTok) {
962 addAsmOperand(String.slice(Prev, i), false);
963 Prev = i;
964 IsIsolatedToken = false;
965 }
966 InTok = true;
967 continue;
968 }
969 if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
970 if (InTok) {
971 addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
972 InTok = false;
973 IsIsolatedToken = false;
974 }
975 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
976 Prev = i + 1;
977 IsIsolatedToken = true;
978 continue;
979 }
980 if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
981 if (InTok) {
982 addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
983 InTok = false;
984 }
985 Prev = i + 1;
986 IsIsolatedToken = true;
987 continue;
988 }
989
990 switch (Char) {
991 case '\\':
992 if (InTok) {
993 addAsmOperand(String.slice(Prev, i), false);
994 InTok = false;
995 IsIsolatedToken = false;
996 }
997 ++i;
998 assert(i != String.size() && "Invalid quoted character");
999 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1000 Prev = i + 1;
1001 IsIsolatedToken = false;
1002 break;
1003
1004 case '$': {
1005 if (InTok) {
1006 addAsmOperand(String.slice(Prev, i), false);
1007 InTok = false;
1008 IsIsolatedToken = false;
1009 }
1010
1011 // If this isn't "${", start new identifier looking like "$xxx"
1012 if (i + 1 == String.size() || String[i + 1] != '{') {
1013 Prev = i;
1014 break;
1015 }
1016
1017 size_t EndPos = String.find('}', i);
1018 assert(EndPos != StringRef::npos &&
1019 "Missing brace in operand reference!");
1020 addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
1021 Prev = EndPos + 1;
1022 i = EndPos;
1023 IsIsolatedToken = false;
1024 break;
1025 }
1026
1027 default:
1028 InTok = true;
1029 break;
1030 }
1031 }
1032 if (InTok && Prev != String.size())
1033 addAsmOperand(String.substr(Prev), IsIsolatedToken);
1034 }
1035
validate(StringRef CommentDelimiter,bool Hack) const1036 bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
1037 // Reject matchables with no .s string.
1038 if (AsmString.empty())
1039 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1040
1041 // Reject any matchables with a newline in them, they should be marked
1042 // isCodeGenOnly if they are pseudo instructions.
1043 if (AsmString.find('\n') != std::string::npos)
1044 PrintFatalError(TheDef->getLoc(),
1045 "multiline instruction is not valid for the asmparser, "
1046 "mark it isCodeGenOnly");
1047
1048 // Remove comments from the asm string. We know that the asmstring only
1049 // has one line.
1050 if (!CommentDelimiter.empty() &&
1051 StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
1052 PrintFatalError(TheDef->getLoc(),
1053 "asmstring for instruction has comment character in it, "
1054 "mark it isCodeGenOnly");
1055
1056 // Reject matchables with operand modifiers, these aren't something we can
1057 // handle, the target should be refactored to use operands instead of
1058 // modifiers.
1059 //
1060 // Also, check for instructions which reference the operand multiple times;
1061 // this implies a constraint we would not honor.
1062 std::set<std::string> OperandNames;
1063 for (const AsmOperand &Op : AsmOperands) {
1064 StringRef Tok = Op.Token;
1065 if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
1066 PrintFatalError(TheDef->getLoc(),
1067 "matchable with operand modifier '" + Tok +
1068 "' not supported by asm matcher. Mark isCodeGenOnly!");
1069
1070 // Verify that any operand is only mentioned once.
1071 // We reject aliases and ignore instructions for now.
1072 if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
1073 if (!Hack)
1074 PrintFatalError(TheDef->getLoc(),
1075 "ERROR: matchable with tied operand '" + Tok +
1076 "' can never be matched!");
1077 // FIXME: Should reject these. The ARM backend hits this with $lane in a
1078 // bunch of instructions. It is unclear what the right answer is.
1079 DEBUG({
1080 errs() << "warning: '" << TheDef->getName() << "': "
1081 << "ignoring instruction with tied operand '"
1082 << Tok << "'\n";
1083 });
1084 return false;
1085 }
1086 }
1087
1088 return true;
1089 }
1090
getEnumNameForToken(StringRef Str)1091 static std::string getEnumNameForToken(StringRef Str) {
1092 std::string Res;
1093
1094 for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
1095 switch (*it) {
1096 case '*': Res += "_STAR_"; break;
1097 case '%': Res += "_PCT_"; break;
1098 case ':': Res += "_COLON_"; break;
1099 case '!': Res += "_EXCLAIM_"; break;
1100 case '.': Res += "_DOT_"; break;
1101 case '<': Res += "_LT_"; break;
1102 case '>': Res += "_GT_"; break;
1103 case '-': Res += "_MINUS_"; break;
1104 default:
1105 if ((*it >= 'A' && *it <= 'Z') ||
1106 (*it >= 'a' && *it <= 'z') ||
1107 (*it >= '0' && *it <= '9'))
1108 Res += *it;
1109 else
1110 Res += "_" + utostr((unsigned) *it) + "_";
1111 }
1112 }
1113
1114 return Res;
1115 }
1116
getTokenClass(StringRef Token)1117 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1118 ClassInfo *&Entry = TokenClasses[Token];
1119
1120 if (!Entry) {
1121 Classes.emplace_front();
1122 Entry = &Classes.front();
1123 Entry->Kind = ClassInfo::Token;
1124 Entry->ClassName = "Token";
1125 Entry->Name = "MCK_" + getEnumNameForToken(Token);
1126 Entry->ValueName = Token;
1127 Entry->PredicateMethod = "<invalid>";
1128 Entry->RenderMethod = "<invalid>";
1129 Entry->ParserMethod = "";
1130 Entry->DiagnosticType = "";
1131 Entry->IsOptional = false;
1132 Entry->DefaultMethod = "<invalid>";
1133 }
1134
1135 return Entry;
1136 }
1137
1138 ClassInfo *
getOperandClass(const CGIOperandList::OperandInfo & OI,int SubOpIdx)1139 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1140 int SubOpIdx) {
1141 Record *Rec = OI.Rec;
1142 if (SubOpIdx != -1)
1143 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1144 return getOperandClass(Rec, SubOpIdx);
1145 }
1146
1147 ClassInfo *
getOperandClass(Record * Rec,int SubOpIdx)1148 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1149 if (Rec->isSubClassOf("RegisterOperand")) {
1150 // RegisterOperand may have an associated ParserMatchClass. If it does,
1151 // use it, else just fall back to the underlying register class.
1152 const RecordVal *R = Rec->getValue("ParserMatchClass");
1153 if (!R || !R->getValue())
1154 PrintFatalError("Record `" + Rec->getName() +
1155 "' does not have a ParserMatchClass!\n");
1156
1157 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1158 Record *MatchClass = DI->getDef();
1159 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1160 return CI;
1161 }
1162
1163 // No custom match class. Just use the register class.
1164 Record *ClassRec = Rec->getValueAsDef("RegClass");
1165 if (!ClassRec)
1166 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1167 "' has no associated register class!\n");
1168 if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1169 return CI;
1170 PrintFatalError(Rec->getLoc(), "register class has no class info!");
1171 }
1172
1173 if (Rec->isSubClassOf("RegisterClass")) {
1174 if (ClassInfo *CI = RegisterClassClasses[Rec])
1175 return CI;
1176 PrintFatalError(Rec->getLoc(), "register class has no class info!");
1177 }
1178
1179 if (!Rec->isSubClassOf("Operand"))
1180 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1181 "' does not derive from class Operand!\n");
1182 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1183 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1184 return CI;
1185
1186 PrintFatalError(Rec->getLoc(), "operand has no match class!");
1187 }
1188
1189 struct LessRegisterSet {
operator ()LessRegisterSet1190 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1191 // std::set<T> defines its own compariso "operator<", but it
1192 // performs a lexicographical comparison by T's innate comparison
1193 // for some reason. We don't want non-deterministic pointer
1194 // comparisons so use this instead.
1195 return std::lexicographical_compare(LHS.begin(), LHS.end(),
1196 RHS.begin(), RHS.end(),
1197 LessRecordByID());
1198 }
1199 };
1200
1201 void AsmMatcherInfo::
buildRegisterClasses(SmallPtrSetImpl<Record * > & SingletonRegisters)1202 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1203 const auto &Registers = Target.getRegBank().getRegisters();
1204 auto &RegClassList = Target.getRegBank().getRegClasses();
1205
1206 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1207
1208 // The register sets used for matching.
1209 RegisterSetSet RegisterSets;
1210
1211 // Gather the defined sets.
1212 for (const CodeGenRegisterClass &RC : RegClassList)
1213 RegisterSets.insert(
1214 RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1215
1216 // Add any required singleton sets.
1217 for (Record *Rec : SingletonRegisters) {
1218 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1219 }
1220
1221 // Introduce derived sets where necessary (when a register does not determine
1222 // a unique register set class), and build the mapping of registers to the set
1223 // they should classify to.
1224 std::map<Record*, RegisterSet> RegisterMap;
1225 for (const CodeGenRegister &CGR : Registers) {
1226 // Compute the intersection of all sets containing this register.
1227 RegisterSet ContainingSet;
1228
1229 for (const RegisterSet &RS : RegisterSets) {
1230 if (!RS.count(CGR.TheDef))
1231 continue;
1232
1233 if (ContainingSet.empty()) {
1234 ContainingSet = RS;
1235 continue;
1236 }
1237
1238 RegisterSet Tmp;
1239 std::swap(Tmp, ContainingSet);
1240 std::insert_iterator<RegisterSet> II(ContainingSet,
1241 ContainingSet.begin());
1242 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1243 LessRecordByID());
1244 }
1245
1246 if (!ContainingSet.empty()) {
1247 RegisterSets.insert(ContainingSet);
1248 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1249 }
1250 }
1251
1252 // Construct the register classes.
1253 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1254 unsigned Index = 0;
1255 for (const RegisterSet &RS : RegisterSets) {
1256 Classes.emplace_front();
1257 ClassInfo *CI = &Classes.front();
1258 CI->Kind = ClassInfo::RegisterClass0 + Index;
1259 CI->ClassName = "Reg" + utostr(Index);
1260 CI->Name = "MCK_Reg" + utostr(Index);
1261 CI->ValueName = "";
1262 CI->PredicateMethod = ""; // unused
1263 CI->RenderMethod = "addRegOperands";
1264 CI->Registers = RS;
1265 // FIXME: diagnostic type.
1266 CI->DiagnosticType = "";
1267 CI->IsOptional = false;
1268 CI->DefaultMethod = ""; // unused
1269 RegisterSetClasses.insert(std::make_pair(RS, CI));
1270 ++Index;
1271 }
1272
1273 // Find the superclasses; we could compute only the subgroup lattice edges,
1274 // but there isn't really a point.
1275 for (const RegisterSet &RS : RegisterSets) {
1276 ClassInfo *CI = RegisterSetClasses[RS];
1277 for (const RegisterSet &RS2 : RegisterSets)
1278 if (RS != RS2 &&
1279 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1280 LessRecordByID()))
1281 CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1282 }
1283
1284 // Name the register classes which correspond to a user defined RegisterClass.
1285 for (const CodeGenRegisterClass &RC : RegClassList) {
1286 // Def will be NULL for non-user defined register classes.
1287 Record *Def = RC.getDef();
1288 if (!Def)
1289 continue;
1290 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1291 RC.getOrder().end())];
1292 if (CI->ValueName.empty()) {
1293 CI->ClassName = RC.getName();
1294 CI->Name = "MCK_" + RC.getName();
1295 CI->ValueName = RC.getName();
1296 } else
1297 CI->ValueName = CI->ValueName + "," + RC.getName();
1298
1299 RegisterClassClasses.insert(std::make_pair(Def, CI));
1300 }
1301
1302 // Populate the map for individual registers.
1303 for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
1304 ie = RegisterMap.end(); it != ie; ++it)
1305 RegisterClasses[it->first] = RegisterSetClasses[it->second];
1306
1307 // Name the register classes which correspond to singleton registers.
1308 for (Record *Rec : SingletonRegisters) {
1309 ClassInfo *CI = RegisterClasses[Rec];
1310 assert(CI && "Missing singleton register class info!");
1311
1312 if (CI->ValueName.empty()) {
1313 CI->ClassName = Rec->getName();
1314 CI->Name = "MCK_" + Rec->getName();
1315 CI->ValueName = Rec->getName();
1316 } else
1317 CI->ValueName = CI->ValueName + "," + Rec->getName();
1318 }
1319 }
1320
buildOperandClasses()1321 void AsmMatcherInfo::buildOperandClasses() {
1322 std::vector<Record*> AsmOperands =
1323 Records.getAllDerivedDefinitions("AsmOperandClass");
1324
1325 // Pre-populate AsmOperandClasses map.
1326 for (Record *Rec : AsmOperands) {
1327 Classes.emplace_front();
1328 AsmOperandClasses[Rec] = &Classes.front();
1329 }
1330
1331 unsigned Index = 0;
1332 for (Record *Rec : AsmOperands) {
1333 ClassInfo *CI = AsmOperandClasses[Rec];
1334 CI->Kind = ClassInfo::UserClass0 + Index;
1335
1336 ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1337 for (Init *I : Supers->getValues()) {
1338 DefInit *DI = dyn_cast<DefInit>(I);
1339 if (!DI) {
1340 PrintError(Rec->getLoc(), "Invalid super class reference!");
1341 continue;
1342 }
1343
1344 ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1345 if (!SC)
1346 PrintError(Rec->getLoc(), "Invalid super class reference!");
1347 else
1348 CI->SuperClasses.push_back(SC);
1349 }
1350 CI->ClassName = Rec->getValueAsString("Name");
1351 CI->Name = "MCK_" + CI->ClassName;
1352 CI->ValueName = Rec->getName();
1353
1354 // Get or construct the predicate method name.
1355 Init *PMName = Rec->getValueInit("PredicateMethod");
1356 if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1357 CI->PredicateMethod = SI->getValue();
1358 } else {
1359 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1360 CI->PredicateMethod = "is" + CI->ClassName;
1361 }
1362
1363 // Get or construct the render method name.
1364 Init *RMName = Rec->getValueInit("RenderMethod");
1365 if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1366 CI->RenderMethod = SI->getValue();
1367 } else {
1368 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1369 CI->RenderMethod = "add" + CI->ClassName + "Operands";
1370 }
1371
1372 // Get the parse method name or leave it as empty.
1373 Init *PRMName = Rec->getValueInit("ParserMethod");
1374 if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1375 CI->ParserMethod = SI->getValue();
1376
1377 // Get the diagnostic type or leave it as empty.
1378 // Get the parse method name or leave it as empty.
1379 Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1380 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1381 CI->DiagnosticType = SI->getValue();
1382
1383 Init *IsOptional = Rec->getValueInit("IsOptional");
1384 if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
1385 CI->IsOptional = BI->getValue();
1386
1387 // Get or construct the default method name.
1388 Init *DMName = Rec->getValueInit("DefaultMethod");
1389 if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
1390 CI->DefaultMethod = SI->getValue();
1391 } else {
1392 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1393 CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1394 }
1395
1396 ++Index;
1397 }
1398 }
1399
AsmMatcherInfo(Record * asmParser,CodeGenTarget & target,RecordKeeper & records)1400 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1401 CodeGenTarget &target,
1402 RecordKeeper &records)
1403 : Records(records), AsmParser(asmParser), Target(target) {
1404 }
1405
1406 /// buildOperandMatchInfo - Build the necessary information to handle user
1407 /// defined operand parsing methods.
buildOperandMatchInfo()1408 void AsmMatcherInfo::buildOperandMatchInfo() {
1409
1410 /// Map containing a mask with all operands indices that can be found for
1411 /// that class inside a instruction.
1412 typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
1413 OpClassMaskTy OpClassMask;
1414
1415 for (const auto &MI : Matchables) {
1416 OpClassMask.clear();
1417
1418 // Keep track of all operands of this instructions which belong to the
1419 // same class.
1420 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1421 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1422 if (Op.Class->ParserMethod.empty())
1423 continue;
1424 unsigned &OperandMask = OpClassMask[Op.Class];
1425 OperandMask |= (1 << i);
1426 }
1427
1428 // Generate operand match info for each mnemonic/operand class pair.
1429 for (const auto &OCM : OpClassMask) {
1430 unsigned OpMask = OCM.second;
1431 ClassInfo *CI = OCM.first;
1432 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1433 OpMask));
1434 }
1435 }
1436 }
1437
buildInfo()1438 void AsmMatcherInfo::buildInfo() {
1439 // Build information about all of the AssemblerPredicates.
1440 std::vector<Record*> AllPredicates =
1441 Records.getAllDerivedDefinitions("Predicate");
1442 for (Record *Pred : AllPredicates) {
1443 // Ignore predicates that are not intended for the assembler.
1444 if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1445 continue;
1446
1447 if (Pred->getName().empty())
1448 PrintFatalError(Pred->getLoc(), "Predicate has no name!");
1449
1450 SubtargetFeatures.insert(std::make_pair(
1451 Pred, SubtargetFeatureInfo(Pred, SubtargetFeatures.size())));
1452 DEBUG(SubtargetFeatures.find(Pred)->second.dump());
1453 assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
1454 }
1455
1456 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1457
1458 // Parse the instructions; we need to do this first so that we can gather the
1459 // singleton register classes.
1460 SmallPtrSet<Record*, 16> SingletonRegisters;
1461 unsigned VariantCount = Target.getAsmParserVariantCount();
1462 for (unsigned VC = 0; VC != VariantCount; ++VC) {
1463 Record *AsmVariant = Target.getAsmParserVariant(VC);
1464 std::string CommentDelimiter =
1465 AsmVariant->getValueAsString("CommentDelimiter");
1466 AsmVariantInfo Variant;
1467 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1468 Variant.TokenizingCharacters =
1469 AsmVariant->getValueAsString("TokenizingCharacters");
1470 Variant.SeparatorCharacters =
1471 AsmVariant->getValueAsString("SeparatorCharacters");
1472 Variant.BreakCharacters =
1473 AsmVariant->getValueAsString("BreakCharacters");
1474 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1475
1476 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1477
1478 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1479 // filter the set of instructions we consider.
1480 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1481 continue;
1482
1483 // Ignore "codegen only" instructions.
1484 if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1485 continue;
1486
1487 auto II = llvm::make_unique<MatchableInfo>(*CGI);
1488
1489 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1490
1491 // Ignore instructions which shouldn't be matched and diagnose invalid
1492 // instruction definitions with an error.
1493 if (!II->validate(CommentDelimiter, true))
1494 continue;
1495
1496 Matchables.push_back(std::move(II));
1497 }
1498
1499 // Parse all of the InstAlias definitions and stick them in the list of
1500 // matchables.
1501 std::vector<Record*> AllInstAliases =
1502 Records.getAllDerivedDefinitions("InstAlias");
1503 for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1504 auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
1505 Variant.AsmVariantNo,
1506 Target);
1507
1508 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1509 // filter the set of instruction aliases we consider, based on the target
1510 // instruction.
1511 if (!StringRef(Alias->ResultInst->TheDef->getName())
1512 .startswith( MatchPrefix))
1513 continue;
1514
1515 auto II = llvm::make_unique<MatchableInfo>(std::move(Alias));
1516
1517 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1518
1519 // Validate the alias definitions.
1520 II->validate(CommentDelimiter, false);
1521
1522 Matchables.push_back(std::move(II));
1523 }
1524 }
1525
1526 // Build info for the register classes.
1527 buildRegisterClasses(SingletonRegisters);
1528
1529 // Build info for the user defined assembly operand classes.
1530 buildOperandClasses();
1531
1532 // Build the information about matchables, now that we have fully formed
1533 // classes.
1534 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1535 for (auto &II : Matchables) {
1536 // Parse the tokens after the mnemonic.
1537 // Note: buildInstructionOperandReference may insert new AsmOperands, so
1538 // don't precompute the loop bound.
1539 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1540 MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1541 StringRef Token = Op.Token;
1542
1543 // Check for singleton registers.
1544 if (Record *RegRecord = Op.SingletonReg) {
1545 Op.Class = RegisterClasses[RegRecord];
1546 assert(Op.Class && Op.Class->Registers.size() == 1 &&
1547 "Unexpected class for singleton register");
1548 continue;
1549 }
1550
1551 // Check for simple tokens.
1552 if (Token[0] != '$') {
1553 Op.Class = getTokenClass(Token);
1554 continue;
1555 }
1556
1557 if (Token.size() > 1 && isdigit(Token[1])) {
1558 Op.Class = getTokenClass(Token);
1559 continue;
1560 }
1561
1562 // Otherwise this is an operand reference.
1563 StringRef OperandName;
1564 if (Token[1] == '{')
1565 OperandName = Token.substr(2, Token.size() - 3);
1566 else
1567 OperandName = Token.substr(1);
1568
1569 if (II->DefRec.is<const CodeGenInstruction*>())
1570 buildInstructionOperandReference(II.get(), OperandName, i);
1571 else
1572 buildAliasOperandReference(II.get(), OperandName, Op);
1573 }
1574
1575 if (II->DefRec.is<const CodeGenInstruction*>()) {
1576 II->buildInstructionResultOperands();
1577 // If the instruction has a two-operand alias, build up the
1578 // matchable here. We'll add them in bulk at the end to avoid
1579 // confusing this loop.
1580 std::string Constraint =
1581 II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1582 if (Constraint != "") {
1583 // Start by making a copy of the original matchable.
1584 auto AliasII = llvm::make_unique<MatchableInfo>(*II);
1585
1586 // Adjust it to be a two-operand alias.
1587 AliasII->formTwoOperandAlias(Constraint);
1588
1589 // Add the alias to the matchables list.
1590 NewMatchables.push_back(std::move(AliasII));
1591 }
1592 } else
1593 II->buildAliasResultOperands();
1594 }
1595 if (!NewMatchables.empty())
1596 Matchables.insert(Matchables.end(),
1597 std::make_move_iterator(NewMatchables.begin()),
1598 std::make_move_iterator(NewMatchables.end()));
1599
1600 // Process token alias definitions and set up the associated superclass
1601 // information.
1602 std::vector<Record*> AllTokenAliases =
1603 Records.getAllDerivedDefinitions("TokenAlias");
1604 for (Record *Rec : AllTokenAliases) {
1605 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1606 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1607 if (FromClass == ToClass)
1608 PrintFatalError(Rec->getLoc(),
1609 "error: Destination value identical to source value.");
1610 FromClass->SuperClasses.push_back(ToClass);
1611 }
1612
1613 // Reorder classes so that classes precede super classes.
1614 Classes.sort();
1615
1616 #ifndef NDEBUG
1617 // Verify that the table is now sorted
1618 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1619 for (auto J = I; J != E; ++J) {
1620 assert(!(*J < *I));
1621 assert(I == J || !J->isSubsetOf(*I));
1622 }
1623 }
1624 #endif // NDEBUG
1625 }
1626
1627 /// buildInstructionOperandReference - The specified operand is a reference to a
1628 /// named operand such as $src. Resolve the Class and OperandInfo pointers.
1629 void AsmMatcherInfo::
buildInstructionOperandReference(MatchableInfo * II,StringRef OperandName,unsigned AsmOpIdx)1630 buildInstructionOperandReference(MatchableInfo *II,
1631 StringRef OperandName,
1632 unsigned AsmOpIdx) {
1633 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1634 const CGIOperandList &Operands = CGI.Operands;
1635 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1636
1637 // Map this token to an operand.
1638 unsigned Idx;
1639 if (!Operands.hasOperandNamed(OperandName, Idx))
1640 PrintFatalError(II->TheDef->getLoc(),
1641 "error: unable to find operand: '" + OperandName + "'");
1642
1643 // If the instruction operand has multiple suboperands, but the parser
1644 // match class for the asm operand is still the default "ImmAsmOperand",
1645 // then handle each suboperand separately.
1646 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1647 Record *Rec = Operands[Idx].Rec;
1648 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1649 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1650 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1651 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1652 StringRef Token = Op->Token; // save this in case Op gets moved
1653 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1654 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1655 NewAsmOp.SubOpIdx = SI;
1656 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1657 }
1658 // Replace Op with first suboperand.
1659 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1660 Op->SubOpIdx = 0;
1661 }
1662 }
1663
1664 // Set up the operand class.
1665 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1666
1667 // If the named operand is tied, canonicalize it to the untied operand.
1668 // For example, something like:
1669 // (outs GPR:$dst), (ins GPR:$src)
1670 // with an asmstring of
1671 // "inc $src"
1672 // we want to canonicalize to:
1673 // "inc $dst"
1674 // so that we know how to provide the $dst operand when filling in the result.
1675 int OITied = -1;
1676 if (Operands[Idx].MINumOperands == 1)
1677 OITied = Operands[Idx].getTiedRegister();
1678 if (OITied != -1) {
1679 // The tied operand index is an MIOperand index, find the operand that
1680 // contains it.
1681 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1682 OperandName = Operands[Idx.first].Name;
1683 Op->SubOpIdx = Idx.second;
1684 }
1685
1686 Op->SrcOpName = OperandName;
1687 }
1688
1689 /// buildAliasOperandReference - When parsing an operand reference out of the
1690 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1691 /// operand reference is by looking it up in the result pattern definition.
buildAliasOperandReference(MatchableInfo * II,StringRef OperandName,MatchableInfo::AsmOperand & Op)1692 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1693 StringRef OperandName,
1694 MatchableInfo::AsmOperand &Op) {
1695 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1696
1697 // Set up the operand class.
1698 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1699 if (CGA.ResultOperands[i].isRecord() &&
1700 CGA.ResultOperands[i].getName() == OperandName) {
1701 // It's safe to go with the first one we find, because CodeGenInstAlias
1702 // validates that all operands with the same name have the same record.
1703 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1704 // Use the match class from the Alias definition, not the
1705 // destination instruction, as we may have an immediate that's
1706 // being munged by the match class.
1707 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1708 Op.SubOpIdx);
1709 Op.SrcOpName = OperandName;
1710 return;
1711 }
1712
1713 PrintFatalError(II->TheDef->getLoc(),
1714 "error: unable to find operand: '" + OperandName + "'");
1715 }
1716
buildInstructionResultOperands()1717 void MatchableInfo::buildInstructionResultOperands() {
1718 const CodeGenInstruction *ResultInst = getResultInst();
1719
1720 // Loop over all operands of the result instruction, determining how to
1721 // populate them.
1722 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1723 // If this is a tied operand, just copy from the previously handled operand.
1724 int TiedOp = -1;
1725 if (OpInfo.MINumOperands == 1)
1726 TiedOp = OpInfo.getTiedRegister();
1727 if (TiedOp != -1) {
1728 ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1729 continue;
1730 }
1731
1732 // Find out what operand from the asmparser this MCInst operand comes from.
1733 int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1734 if (OpInfo.Name.empty() || SrcOperand == -1) {
1735 // This may happen for operands that are tied to a suboperand of a
1736 // complex operand. Simply use a dummy value here; nobody should
1737 // use this operand slot.
1738 // FIXME: The long term goal is for the MCOperand list to not contain
1739 // tied operands at all.
1740 ResOperands.push_back(ResOperand::getImmOp(0));
1741 continue;
1742 }
1743
1744 // Check if the one AsmOperand populates the entire operand.
1745 unsigned NumOperands = OpInfo.MINumOperands;
1746 if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1747 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1748 continue;
1749 }
1750
1751 // Add a separate ResOperand for each suboperand.
1752 for (unsigned AI = 0; AI < NumOperands; ++AI) {
1753 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1754 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1755 "unexpected AsmOperands for suboperands");
1756 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1757 }
1758 }
1759 }
1760
buildAliasResultOperands()1761 void MatchableInfo::buildAliasResultOperands() {
1762 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1763 const CodeGenInstruction *ResultInst = getResultInst();
1764
1765 // Loop over all operands of the result instruction, determining how to
1766 // populate them.
1767 unsigned AliasOpNo = 0;
1768 unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1769 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1770 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1771
1772 // If this is a tied operand, just copy from the previously handled operand.
1773 int TiedOp = -1;
1774 if (OpInfo->MINumOperands == 1)
1775 TiedOp = OpInfo->getTiedRegister();
1776 if (TiedOp != -1) {
1777 ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1778 continue;
1779 }
1780
1781 // Handle all the suboperands for this operand.
1782 const std::string &OpName = OpInfo->Name;
1783 for ( ; AliasOpNo < LastOpNo &&
1784 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1785 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1786
1787 // Find out what operand from the asmparser that this MCInst operand
1788 // comes from.
1789 switch (CGA.ResultOperands[AliasOpNo].Kind) {
1790 case CodeGenInstAlias::ResultOperand::K_Record: {
1791 StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1792 int SrcOperand = findAsmOperand(Name, SubIdx);
1793 if (SrcOperand == -1)
1794 PrintFatalError(TheDef->getLoc(), "Instruction '" +
1795 TheDef->getName() + "' has operand '" + OpName +
1796 "' that doesn't appear in asm string!");
1797 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1798 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1799 NumOperands));
1800 break;
1801 }
1802 case CodeGenInstAlias::ResultOperand::K_Imm: {
1803 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1804 ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1805 break;
1806 }
1807 case CodeGenInstAlias::ResultOperand::K_Reg: {
1808 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1809 ResOperands.push_back(ResOperand::getRegOp(Reg));
1810 break;
1811 }
1812 }
1813 }
1814 }
1815 }
1816
getConverterOperandID(const std::string & Name,SmallSetVector<std::string,16> & Table,bool & IsNew)1817 static unsigned getConverterOperandID(const std::string &Name,
1818 SmallSetVector<std::string, 16> &Table,
1819 bool &IsNew) {
1820 IsNew = Table.insert(Name);
1821
1822 unsigned ID = IsNew ? Table.size() - 1 :
1823 std::find(Table.begin(), Table.end(), Name) - Table.begin();
1824
1825 assert(ID < Table.size());
1826
1827 return ID;
1828 }
1829
emitConvertFuncs(CodeGenTarget & Target,StringRef ClassName,std::vector<std::unique_ptr<MatchableInfo>> & Infos,bool HasMnemonicFirst,bool HasOptionalOperands,raw_ostream & OS)1830 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1831 std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1832 bool HasMnemonicFirst, bool HasOptionalOperands,
1833 raw_ostream &OS) {
1834 SmallSetVector<std::string, 16> OperandConversionKinds;
1835 SmallSetVector<std::string, 16> InstructionConversionKinds;
1836 std::vector<std::vector<uint8_t> > ConversionTable;
1837 size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1838
1839 // TargetOperandClass - This is the target's operand class, like X86Operand.
1840 std::string TargetOperandClass = Target.getName() + "Operand";
1841
1842 // Write the convert function to a separate stream, so we can drop it after
1843 // the enum. We'll build up the conversion handlers for the individual
1844 // operand types opportunistically as we encounter them.
1845 std::string ConvertFnBody;
1846 raw_string_ostream CvtOS(ConvertFnBody);
1847 // Start the unified conversion function.
1848 if (HasOptionalOperands) {
1849 CvtOS << "void " << Target.getName() << ClassName << "::\n"
1850 << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1851 << "unsigned Opcode,\n"
1852 << " const OperandVector &Operands,\n"
1853 << " const SmallBitVector &OptionalOperandsMask) {\n";
1854 } else {
1855 CvtOS << "void " << Target.getName() << ClassName << "::\n"
1856 << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1857 << "unsigned Opcode,\n"
1858 << " const OperandVector &Operands) {\n";
1859 }
1860 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
1861 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n";
1862 if (HasOptionalOperands) {
1863 CvtOS << " unsigned NumDefaults = 0;\n";
1864 }
1865 CvtOS << " unsigned OpIdx;\n";
1866 CvtOS << " Inst.setOpcode(Opcode);\n";
1867 CvtOS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n";
1868 if (HasOptionalOperands) {
1869 CvtOS << " OpIdx = *(p + 1) - NumDefaults;\n";
1870 } else {
1871 CvtOS << " OpIdx = *(p + 1);\n";
1872 }
1873 CvtOS << " switch (*p) {\n";
1874 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n";
1875 CvtOS << " case CVT_Reg:\n";
1876 CvtOS << " static_cast<" << TargetOperandClass
1877 << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
1878 CvtOS << " break;\n";
1879 CvtOS << " case CVT_Tied:\n";
1880 CvtOS << " Inst.addOperand(Inst.getOperand(OpIdx));\n";
1881 CvtOS << " break;\n";
1882
1883 std::string OperandFnBody;
1884 raw_string_ostream OpOS(OperandFnBody);
1885 // Start the operand number lookup function.
1886 OpOS << "void " << Target.getName() << ClassName << "::\n"
1887 << "convertToMapAndConstraints(unsigned Kind,\n";
1888 OpOS.indent(27);
1889 OpOS << "const OperandVector &Operands) {\n"
1890 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1891 << " unsigned NumMCOperands = 0;\n"
1892 << " const uint8_t *Converter = ConversionTable[Kind];\n"
1893 << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1894 << " switch (*p) {\n"
1895 << " default: llvm_unreachable(\"invalid conversion entry!\");\n"
1896 << " case CVT_Reg:\n"
1897 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1898 << " Operands[*(p + 1)]->setConstraint(\"r\");\n"
1899 << " ++NumMCOperands;\n"
1900 << " break;\n"
1901 << " case CVT_Tied:\n"
1902 << " ++NumMCOperands;\n"
1903 << " break;\n";
1904
1905 // Pre-populate the operand conversion kinds with the standard always
1906 // available entries.
1907 OperandConversionKinds.insert("CVT_Done");
1908 OperandConversionKinds.insert("CVT_Reg");
1909 OperandConversionKinds.insert("CVT_Tied");
1910 enum { CVT_Done, CVT_Reg, CVT_Tied };
1911
1912 for (auto &II : Infos) {
1913 // Check if we have a custom match function.
1914 std::string AsmMatchConverter =
1915 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1916 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
1917 std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1918 II->ConversionFnKind = Signature;
1919
1920 // Check if we have already generated this signature.
1921 if (!InstructionConversionKinds.insert(Signature))
1922 continue;
1923
1924 // Remember this converter for the kind enum.
1925 unsigned KindID = OperandConversionKinds.size();
1926 OperandConversionKinds.insert("CVT_" +
1927 getEnumNameForToken(AsmMatchConverter));
1928
1929 // Add the converter row for this instruction.
1930 ConversionTable.emplace_back();
1931 ConversionTable.back().push_back(KindID);
1932 ConversionTable.back().push_back(CVT_Done);
1933
1934 // Add the handler to the conversion driver function.
1935 CvtOS << " case CVT_"
1936 << getEnumNameForToken(AsmMatchConverter) << ":\n"
1937 << " " << AsmMatchConverter << "(Inst, Operands);\n"
1938 << " break;\n";
1939
1940 // FIXME: Handle the operand number lookup for custom match functions.
1941 continue;
1942 }
1943
1944 // Build the conversion function signature.
1945 std::string Signature = "Convert";
1946
1947 std::vector<uint8_t> ConversionRow;
1948
1949 // Compute the convert enum and the case body.
1950 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
1951
1952 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
1953 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
1954
1955 // Generate code to populate each result operand.
1956 switch (OpInfo.Kind) {
1957 case MatchableInfo::ResOperand::RenderAsmOperand: {
1958 // This comes from something we parsed.
1959 const MatchableInfo::AsmOperand &Op =
1960 II->AsmOperands[OpInfo.AsmOperandNum];
1961
1962 // Registers are always converted the same, don't duplicate the
1963 // conversion function based on them.
1964 Signature += "__";
1965 std::string Class;
1966 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
1967 Signature += Class;
1968 Signature += utostr(OpInfo.MINumOperands);
1969 Signature += "_" + itostr(OpInfo.AsmOperandNum);
1970
1971 // Add the conversion kind, if necessary, and get the associated ID
1972 // the index of its entry in the vector).
1973 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
1974 Op.Class->RenderMethod);
1975 if (Op.Class->IsOptional) {
1976 // For optional operands we must also care about DefaultMethod
1977 assert(HasOptionalOperands);
1978 Name += "_" + Op.Class->DefaultMethod;
1979 }
1980 Name = getEnumNameForToken(Name);
1981
1982 bool IsNewConverter = false;
1983 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1984 IsNewConverter);
1985
1986 // Add the operand entry to the instruction kind conversion row.
1987 ConversionRow.push_back(ID);
1988 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
1989
1990 if (!IsNewConverter)
1991 break;
1992
1993 // This is a new operand kind. Add a handler for it to the
1994 // converter driver.
1995 CvtOS << " case " << Name << ":\n";
1996 if (Op.Class->IsOptional) {
1997 // If optional operand is not present in actual instruction then we
1998 // should call its DefaultMethod before RenderMethod
1999 assert(HasOptionalOperands);
2000 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2001 << " " << Op.Class->DefaultMethod << "()"
2002 << "->" << Op.Class->RenderMethod << "(Inst, "
2003 << OpInfo.MINumOperands << ");\n"
2004 << " ++NumDefaults;\n"
2005 << " } else {\n"
2006 << " static_cast<" << TargetOperandClass
2007 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2008 << "(Inst, " << OpInfo.MINumOperands << ");\n"
2009 << " }\n";
2010 } else {
2011 CvtOS << " static_cast<" << TargetOperandClass
2012 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2013 << "(Inst, " << OpInfo.MINumOperands << ");\n";
2014 }
2015 CvtOS << " break;\n";
2016
2017 // Add a handler for the operand number lookup.
2018 OpOS << " case " << Name << ":\n"
2019 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2020
2021 if (Op.Class->isRegisterClass())
2022 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n";
2023 else
2024 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n";
2025 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2026 << " break;\n";
2027 break;
2028 }
2029 case MatchableInfo::ResOperand::TiedOperand: {
2030 // If this operand is tied to a previous one, just copy the MCInst
2031 // operand from the earlier one.We can only tie single MCOperand values.
2032 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2033 unsigned TiedOp = OpInfo.TiedOperandNum;
2034 assert(i > TiedOp && "Tied operand precedes its target!");
2035 Signature += "__Tie" + utostr(TiedOp);
2036 ConversionRow.push_back(CVT_Tied);
2037 ConversionRow.push_back(TiedOp);
2038 break;
2039 }
2040 case MatchableInfo::ResOperand::ImmOperand: {
2041 int64_t Val = OpInfo.ImmVal;
2042 std::string Ty = "imm_" + itostr(Val);
2043 Ty = getEnumNameForToken(Ty);
2044 Signature += "__" + Ty;
2045
2046 std::string Name = "CVT_" + Ty;
2047 bool IsNewConverter = false;
2048 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2049 IsNewConverter);
2050 // Add the operand entry to the instruction kind conversion row.
2051 ConversionRow.push_back(ID);
2052 ConversionRow.push_back(0);
2053
2054 if (!IsNewConverter)
2055 break;
2056
2057 CvtOS << " case " << Name << ":\n"
2058 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2059 << " break;\n";
2060
2061 OpOS << " case " << Name << ":\n"
2062 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2063 << " Operands[*(p + 1)]->setConstraint(\"\");\n"
2064 << " ++NumMCOperands;\n"
2065 << " break;\n";
2066 break;
2067 }
2068 case MatchableInfo::ResOperand::RegOperand: {
2069 std::string Reg, Name;
2070 if (!OpInfo.Register) {
2071 Name = "reg0";
2072 Reg = "0";
2073 } else {
2074 Reg = getQualifiedName(OpInfo.Register);
2075 Name = "reg" + OpInfo.Register->getName();
2076 }
2077 Signature += "__" + Name;
2078 Name = "CVT_" + Name;
2079 bool IsNewConverter = false;
2080 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2081 IsNewConverter);
2082 // Add the operand entry to the instruction kind conversion row.
2083 ConversionRow.push_back(ID);
2084 ConversionRow.push_back(0);
2085
2086 if (!IsNewConverter)
2087 break;
2088 CvtOS << " case " << Name << ":\n"
2089 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2090 << " break;\n";
2091
2092 OpOS << " case " << Name << ":\n"
2093 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2094 << " Operands[*(p + 1)]->setConstraint(\"m\");\n"
2095 << " ++NumMCOperands;\n"
2096 << " break;\n";
2097 }
2098 }
2099 }
2100
2101 // If there were no operands, add to the signature to that effect
2102 if (Signature == "Convert")
2103 Signature += "_NoOperands";
2104
2105 II->ConversionFnKind = Signature;
2106
2107 // Save the signature. If we already have it, don't add a new row
2108 // to the table.
2109 if (!InstructionConversionKinds.insert(Signature))
2110 continue;
2111
2112 // Add the row to the table.
2113 ConversionTable.push_back(std::move(ConversionRow));
2114 }
2115
2116 // Finish up the converter driver function.
2117 CvtOS << " }\n }\n}\n\n";
2118
2119 // Finish up the operand number lookup function.
2120 OpOS << " }\n }\n}\n\n";
2121
2122 OS << "namespace {\n";
2123
2124 // Output the operand conversion kind enum.
2125 OS << "enum OperatorConversionKind {\n";
2126 for (const std::string &Converter : OperandConversionKinds)
2127 OS << " " << Converter << ",\n";
2128 OS << " CVT_NUM_CONVERTERS\n";
2129 OS << "};\n\n";
2130
2131 // Output the instruction conversion kind enum.
2132 OS << "enum InstructionConversionKind {\n";
2133 for (const std::string &Signature : InstructionConversionKinds)
2134 OS << " " << Signature << ",\n";
2135 OS << " CVT_NUM_SIGNATURES\n";
2136 OS << "};\n\n";
2137
2138 OS << "} // end anonymous namespace\n\n";
2139
2140 // Output the conversion table.
2141 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2142 << MaxRowLength << "] = {\n";
2143
2144 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2145 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2146 OS << " // " << InstructionConversionKinds[Row] << "\n";
2147 OS << " { ";
2148 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
2149 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
2150 << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2151 OS << "CVT_Done },\n";
2152 }
2153
2154 OS << "};\n\n";
2155
2156 // Spit out the conversion driver function.
2157 OS << CvtOS.str();
2158
2159 // Spit out the operand number lookup function.
2160 OS << OpOS.str();
2161 }
2162
2163 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
emitMatchClassEnumeration(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2164 static void emitMatchClassEnumeration(CodeGenTarget &Target,
2165 std::forward_list<ClassInfo> &Infos,
2166 raw_ostream &OS) {
2167 OS << "namespace {\n\n";
2168
2169 OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2170 << "/// instruction matching.\n";
2171 OS << "enum MatchClassKind {\n";
2172 OS << " InvalidMatchClass = 0,\n";
2173 OS << " OptionalMatchClass = 1,\n";
2174 for (const auto &CI : Infos) {
2175 OS << " " << CI.Name << ", // ";
2176 if (CI.Kind == ClassInfo::Token) {
2177 OS << "'" << CI.ValueName << "'\n";
2178 } else if (CI.isRegisterClass()) {
2179 if (!CI.ValueName.empty())
2180 OS << "register class '" << CI.ValueName << "'\n";
2181 else
2182 OS << "derived register class\n";
2183 } else {
2184 OS << "user defined class '" << CI.ValueName << "'\n";
2185 }
2186 }
2187 OS << " NumMatchClassKinds\n";
2188 OS << "};\n\n";
2189
2190 OS << "}\n\n";
2191 }
2192
2193 /// emitValidateOperandClass - Emit the function to validate an operand class.
emitValidateOperandClass(AsmMatcherInfo & Info,raw_ostream & OS)2194 static void emitValidateOperandClass(AsmMatcherInfo &Info,
2195 raw_ostream &OS) {
2196 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2197 << "MatchClassKind Kind) {\n";
2198 OS << " " << Info.Target.getName() << "Operand &Operand = ("
2199 << Info.Target.getName() << "Operand&)GOp;\n";
2200
2201 // The InvalidMatchClass is not to match any operand.
2202 OS << " if (Kind == InvalidMatchClass)\n";
2203 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2204
2205 // Check for Token operands first.
2206 // FIXME: Use a more specific diagnostic type.
2207 OS << " if (Operand.isToken())\n";
2208 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2209 << " MCTargetAsmParser::Match_Success :\n"
2210 << " MCTargetAsmParser::Match_InvalidOperand;\n\n";
2211
2212 // Check the user classes. We don't care what order since we're only
2213 // actually matching against one of them.
2214 OS << " switch (Kind) {\n"
2215 " default: break;\n";
2216 for (const auto &CI : Info.Classes) {
2217 if (!CI.isUserClass())
2218 continue;
2219
2220 OS << " // '" << CI.ClassName << "' class\n";
2221 OS << " case " << CI.Name << ":\n";
2222 OS << " if (Operand." << CI.PredicateMethod << "())\n";
2223 OS << " return MCTargetAsmParser::Match_Success;\n";
2224 if (!CI.DiagnosticType.empty())
2225 OS << " return " << Info.Target.getName() << "AsmParser::Match_"
2226 << CI.DiagnosticType << ";\n";
2227 else
2228 OS << " break;\n";
2229 }
2230 OS << " } // end switch (Kind)\n\n";
2231
2232 // Check for register operands, including sub-classes.
2233 OS << " if (Operand.isReg()) {\n";
2234 OS << " MatchClassKind OpKind;\n";
2235 OS << " switch (Operand.getReg()) {\n";
2236 OS << " default: OpKind = InvalidMatchClass; break;\n";
2237 for (const auto &RC : Info.RegisterClasses)
2238 OS << " case " << Info.Target.getName() << "::"
2239 << RC.first->getName() << ": OpKind = " << RC.second->Name
2240 << "; break;\n";
2241 OS << " }\n";
2242 OS << " return isSubclass(OpKind, Kind) ? "
2243 << "MCTargetAsmParser::Match_Success :\n "
2244 << " MCTargetAsmParser::Match_InvalidOperand;\n }\n\n";
2245
2246 // Generic fallthrough match failure case for operands that don't have
2247 // specialized diagnostic types.
2248 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2249 OS << "}\n\n";
2250 }
2251
2252 /// emitIsSubclass - Emit the subclass predicate function.
emitIsSubclass(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2253 static void emitIsSubclass(CodeGenTarget &Target,
2254 std::forward_list<ClassInfo> &Infos,
2255 raw_ostream &OS) {
2256 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2257 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2258 OS << " if (A == B)\n";
2259 OS << " return true;\n\n";
2260
2261 bool EmittedSwitch = false;
2262 for (const auto &A : Infos) {
2263 std::vector<StringRef> SuperClasses;
2264 if (A.IsOptional)
2265 SuperClasses.push_back("OptionalMatchClass");
2266 for (const auto &B : Infos) {
2267 if (&A != &B && A.isSubsetOf(B))
2268 SuperClasses.push_back(B.Name);
2269 }
2270
2271 if (SuperClasses.empty())
2272 continue;
2273
2274 // If this is the first SuperClass, emit the switch header.
2275 if (!EmittedSwitch) {
2276 OS << " switch (A) {\n";
2277 OS << " default:\n";
2278 OS << " return false;\n";
2279 EmittedSwitch = true;
2280 }
2281
2282 OS << "\n case " << A.Name << ":\n";
2283
2284 if (SuperClasses.size() == 1) {
2285 OS << " return B == " << SuperClasses.back() << ";\n";
2286 continue;
2287 }
2288
2289 if (!SuperClasses.empty()) {
2290 OS << " switch (B) {\n";
2291 OS << " default: return false;\n";
2292 for (StringRef SC : SuperClasses)
2293 OS << " case " << SC << ": return true;\n";
2294 OS << " }\n";
2295 } else {
2296 // No case statement to emit
2297 OS << " return false;\n";
2298 }
2299 }
2300
2301 // If there were case statements emitted into the string stream write the
2302 // default.
2303 if (EmittedSwitch)
2304 OS << " }\n";
2305 else
2306 OS << " return false;\n";
2307
2308 OS << "}\n\n";
2309 }
2310
2311 /// emitMatchTokenString - Emit the function to match a token string to the
2312 /// appropriate match class value.
emitMatchTokenString(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2313 static void emitMatchTokenString(CodeGenTarget &Target,
2314 std::forward_list<ClassInfo> &Infos,
2315 raw_ostream &OS) {
2316 // Construct the match list.
2317 std::vector<StringMatcher::StringPair> Matches;
2318 for (const auto &CI : Infos) {
2319 if (CI.Kind == ClassInfo::Token)
2320 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2321 }
2322
2323 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2324
2325 StringMatcher("Name", Matches, OS).Emit();
2326
2327 OS << " return InvalidMatchClass;\n";
2328 OS << "}\n\n";
2329 }
2330
2331 /// emitMatchRegisterName - Emit the function to match a string to the target
2332 /// specific register enum.
emitMatchRegisterName(CodeGenTarget & Target,Record * AsmParser,raw_ostream & OS)2333 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2334 raw_ostream &OS) {
2335 // Construct the match list.
2336 std::vector<StringMatcher::StringPair> Matches;
2337 const auto &Regs = Target.getRegBank().getRegisters();
2338 for (const CodeGenRegister &Reg : Regs) {
2339 if (Reg.TheDef->getValueAsString("AsmName").empty())
2340 continue;
2341
2342 Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"),
2343 "return " + utostr(Reg.EnumValue) + ";");
2344 }
2345
2346 OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2347
2348 StringMatcher("Name", Matches, OS).Emit();
2349
2350 OS << " return 0;\n";
2351 OS << "}\n\n";
2352 }
2353
2354 /// Emit the function to match a string to the target
2355 /// specific register enum.
emitMatchRegisterAltName(CodeGenTarget & Target,Record * AsmParser,raw_ostream & OS)2356 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2357 raw_ostream &OS) {
2358 // Construct the match list.
2359 std::vector<StringMatcher::StringPair> Matches;
2360 const auto &Regs = Target.getRegBank().getRegisters();
2361 for (const CodeGenRegister &Reg : Regs) {
2362
2363 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2364
2365 for (auto AltName : AltNames) {
2366 AltName = StringRef(AltName).trim();
2367
2368 // don't handle empty alternative names
2369 if (AltName.empty())
2370 continue;
2371
2372 Matches.emplace_back(AltName,
2373 "return " + utostr(Reg.EnumValue) + ";");
2374 }
2375 }
2376
2377 OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
2378
2379 StringMatcher("Name", Matches, OS).Emit();
2380
2381 OS << " return 0;\n";
2382 OS << "}\n\n";
2383 }
2384
getMinimalTypeForRange(uint64_t Range)2385 static const char *getMinimalTypeForRange(uint64_t Range) {
2386 assert(Range <= 0xFFFFFFFFFFFFFFFFULL && "Enum too large");
2387 if (Range > 0xFFFFFFFFULL)
2388 return "uint64_t";
2389 if (Range > 0xFFFF)
2390 return "uint32_t";
2391 if (Range > 0xFF)
2392 return "uint16_t";
2393 return "uint8_t";
2394 }
2395
getMinimalRequiredFeaturesType(const AsmMatcherInfo & Info)2396 static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) {
2397 uint64_t MaxIndex = Info.SubtargetFeatures.size();
2398 if (MaxIndex > 0)
2399 MaxIndex--;
2400 return getMinimalTypeForRange(1ULL << MaxIndex);
2401 }
2402
2403 /// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
2404 /// definitions.
emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo & Info,raw_ostream & OS)2405 static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
2406 raw_ostream &OS) {
2407 OS << "// Flags for subtarget features that participate in "
2408 << "instruction matching.\n";
2409 OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info)
2410 << " {\n";
2411 for (const auto &SF : Info.SubtargetFeatures) {
2412 const SubtargetFeatureInfo &SFI = SF.second;
2413 OS << " " << SFI.getEnumName() << " = (1ULL << " << SFI.Index << "),\n";
2414 }
2415 OS << " Feature_None = 0\n";
2416 OS << "};\n\n";
2417 }
2418
2419 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
emitOperandDiagnosticTypes(AsmMatcherInfo & Info,raw_ostream & OS)2420 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2421 // Get the set of diagnostic types from all of the operand classes.
2422 std::set<StringRef> Types;
2423 for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2424 if (!OpClassEntry.second->DiagnosticType.empty())
2425 Types.insert(OpClassEntry.second->DiagnosticType);
2426 }
2427
2428 if (Types.empty()) return;
2429
2430 // Now emit the enum entries.
2431 for (StringRef Type : Types)
2432 OS << " Match_" << Type << ",\n";
2433 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n";
2434 }
2435
2436 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2437 /// user-level name for a subtarget feature.
emitGetSubtargetFeatureName(AsmMatcherInfo & Info,raw_ostream & OS)2438 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2439 OS << "// User-level names for subtarget features that participate in\n"
2440 << "// instruction matching.\n"
2441 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2442 if (!Info.SubtargetFeatures.empty()) {
2443 OS << " switch(Val) {\n";
2444 for (const auto &SF : Info.SubtargetFeatures) {
2445 const SubtargetFeatureInfo &SFI = SF.second;
2446 // FIXME: Totally just a placeholder name to get the algorithm working.
2447 OS << " case " << SFI.getEnumName() << ": return \""
2448 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2449 }
2450 OS << " default: return \"(unknown)\";\n";
2451 OS << " }\n";
2452 } else {
2453 // Nothing to emit, so skip the switch
2454 OS << " return \"(unknown)\";\n";
2455 }
2456 OS << "}\n\n";
2457 }
2458
2459 /// emitComputeAvailableFeatures - Emit the function to compute the list of
2460 /// available features given a subtarget.
emitComputeAvailableFeatures(AsmMatcherInfo & Info,raw_ostream & OS)2461 static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
2462 raw_ostream &OS) {
2463 std::string ClassName =
2464 Info.AsmParser->getValueAsString("AsmParserClassName");
2465
2466 OS << "uint64_t " << Info.Target.getName() << ClassName << "::\n"
2467 << "ComputeAvailableFeatures(const FeatureBitset& FB) const {\n";
2468 OS << " uint64_t Features = 0;\n";
2469 for (const auto &SF : Info.SubtargetFeatures) {
2470 const SubtargetFeatureInfo &SFI = SF.second;
2471
2472 OS << " if (";
2473 std::string CondStorage =
2474 SFI.TheDef->getValueAsString("AssemblerCondString");
2475 StringRef Conds = CondStorage;
2476 std::pair<StringRef,StringRef> Comma = Conds.split(',');
2477 bool First = true;
2478 do {
2479 if (!First)
2480 OS << " && ";
2481
2482 bool Neg = false;
2483 StringRef Cond = Comma.first;
2484 if (Cond[0] == '!') {
2485 Neg = true;
2486 Cond = Cond.substr(1);
2487 }
2488
2489 OS << "(";
2490 if (Neg)
2491 OS << "!";
2492 OS << "FB[" << Info.Target.getName() << "::" << Cond << "])";
2493
2494 if (Comma.second.empty())
2495 break;
2496
2497 First = false;
2498 Comma = Comma.second.split(',');
2499 } while (true);
2500
2501 OS << ")\n";
2502 OS << " Features |= " << SFI.getEnumName() << ";\n";
2503 }
2504 OS << " return Features;\n";
2505 OS << "}\n\n";
2506 }
2507
GetAliasRequiredFeatures(Record * R,const AsmMatcherInfo & Info)2508 static std::string GetAliasRequiredFeatures(Record *R,
2509 const AsmMatcherInfo &Info) {
2510 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2511 std::string Result;
2512 unsigned NumFeatures = 0;
2513 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2514 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2515
2516 if (!F)
2517 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2518 "' is not marked as an AssemblerPredicate!");
2519
2520 if (NumFeatures)
2521 Result += '|';
2522
2523 Result += F->getEnumName();
2524 ++NumFeatures;
2525 }
2526
2527 if (NumFeatures > 1)
2528 Result = '(' + Result + ')';
2529 return Result;
2530 }
2531
emitMnemonicAliasVariant(raw_ostream & OS,const AsmMatcherInfo & Info,std::vector<Record * > & Aliases,unsigned Indent=0,StringRef AsmParserVariantName=StringRef ())2532 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2533 std::vector<Record*> &Aliases,
2534 unsigned Indent = 0,
2535 StringRef AsmParserVariantName = StringRef()){
2536 // Keep track of all the aliases from a mnemonic. Use an std::map so that the
2537 // iteration order of the map is stable.
2538 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2539
2540 for (Record *R : Aliases) {
2541 // FIXME: Allow AssemblerVariantName to be a comma separated list.
2542 std::string AsmVariantName = R->getValueAsString("AsmVariantName");
2543 if (AsmVariantName != AsmParserVariantName)
2544 continue;
2545 AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2546 }
2547 if (AliasesFromMnemonic.empty())
2548 return;
2549
2550 // Process each alias a "from" mnemonic at a time, building the code executed
2551 // by the string remapper.
2552 std::vector<StringMatcher::StringPair> Cases;
2553 for (const auto &AliasEntry : AliasesFromMnemonic) {
2554 const std::vector<Record*> &ToVec = AliasEntry.second;
2555
2556 // Loop through each alias and emit code that handles each case. If there
2557 // are two instructions without predicates, emit an error. If there is one,
2558 // emit it last.
2559 std::string MatchCode;
2560 int AliasWithNoPredicate = -1;
2561
2562 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2563 Record *R = ToVec[i];
2564 std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2565
2566 // If this unconditionally matches, remember it for later and diagnose
2567 // duplicates.
2568 if (FeatureMask.empty()) {
2569 if (AliasWithNoPredicate != -1) {
2570 // We can't have two aliases from the same mnemonic with no predicate.
2571 PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2572 "two MnemonicAliases with the same 'from' mnemonic!");
2573 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2574 }
2575
2576 AliasWithNoPredicate = i;
2577 continue;
2578 }
2579 if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2580 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2581
2582 if (!MatchCode.empty())
2583 MatchCode += "else ";
2584 MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2585 MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
2586 }
2587
2588 if (AliasWithNoPredicate != -1) {
2589 Record *R = ToVec[AliasWithNoPredicate];
2590 if (!MatchCode.empty())
2591 MatchCode += "else\n ";
2592 MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
2593 }
2594
2595 MatchCode += "return;";
2596
2597 Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
2598 }
2599 StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2600 }
2601
2602 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2603 /// emit a function for them and return true, otherwise return false.
emitMnemonicAliases(raw_ostream & OS,const AsmMatcherInfo & Info,CodeGenTarget & Target)2604 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2605 CodeGenTarget &Target) {
2606 // Ignore aliases when match-prefix is set.
2607 if (!MatchPrefix.empty())
2608 return false;
2609
2610 std::vector<Record*> Aliases =
2611 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2612 if (Aliases.empty()) return false;
2613
2614 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2615 "uint64_t Features, unsigned VariantID) {\n";
2616 OS << " switch (VariantID) {\n";
2617 unsigned VariantCount = Target.getAsmParserVariantCount();
2618 for (unsigned VC = 0; VC != VariantCount; ++VC) {
2619 Record *AsmVariant = Target.getAsmParserVariant(VC);
2620 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2621 std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
2622 OS << " case " << AsmParserVariantNo << ":\n";
2623 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2624 AsmParserVariantName);
2625 OS << " break;\n";
2626 }
2627 OS << " }\n";
2628
2629 // Emit aliases that apply to all variants.
2630 emitMnemonicAliasVariant(OS, Info, Aliases);
2631
2632 OS << "}\n\n";
2633
2634 return true;
2635 }
2636
emitCustomOperandParsing(raw_ostream & OS,CodeGenTarget & Target,const AsmMatcherInfo & Info,StringRef ClassName,StringToOffsetTable & StringTable,unsigned MaxMnemonicIndex,bool HasMnemonicFirst)2637 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2638 const AsmMatcherInfo &Info, StringRef ClassName,
2639 StringToOffsetTable &StringTable,
2640 unsigned MaxMnemonicIndex, bool HasMnemonicFirst) {
2641 unsigned MaxMask = 0;
2642 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2643 MaxMask |= OMI.OperandMask;
2644 }
2645
2646 // Emit the static custom operand parsing table;
2647 OS << "namespace {\n";
2648 OS << " struct OperandMatchEntry {\n";
2649 OS << " " << getMinimalRequiredFeaturesType(Info)
2650 << " RequiredFeatures;\n";
2651 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
2652 << " Mnemonic;\n";
2653 OS << " " << getMinimalTypeForRange(std::distance(
2654 Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2655 OS << " " << getMinimalTypeForRange(MaxMask)
2656 << " OperandMask;\n\n";
2657 OS << " StringRef getMnemonic() const {\n";
2658 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
2659 OS << " MnemonicTable[Mnemonic]);\n";
2660 OS << " }\n";
2661 OS << " };\n\n";
2662
2663 OS << " // Predicate for searching for an opcode.\n";
2664 OS << " struct LessOpcodeOperand {\n";
2665 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2666 OS << " return LHS.getMnemonic() < RHS;\n";
2667 OS << " }\n";
2668 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2669 OS << " return LHS < RHS.getMnemonic();\n";
2670 OS << " }\n";
2671 OS << " bool operator()(const OperandMatchEntry &LHS,";
2672 OS << " const OperandMatchEntry &RHS) {\n";
2673 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
2674 OS << " }\n";
2675 OS << " };\n";
2676
2677 OS << "} // end anonymous namespace.\n\n";
2678
2679 OS << "static const OperandMatchEntry OperandMatchTable["
2680 << Info.OperandMatchInfo.size() << "] = {\n";
2681
2682 OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2683 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2684 const MatchableInfo &II = *OMI.MI;
2685
2686 OS << " { ";
2687
2688 // Write the required features mask.
2689 if (!II.RequiredFeatures.empty()) {
2690 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2691 if (i) OS << "|";
2692 OS << II.RequiredFeatures[i]->getEnumName();
2693 }
2694 } else
2695 OS << "0";
2696
2697 // Store a pascal-style length byte in the mnemonic.
2698 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2699 OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2700 << " /* " << II.Mnemonic << " */, ";
2701
2702 OS << OMI.CI->Name;
2703
2704 OS << ", " << OMI.OperandMask;
2705 OS << " /* ";
2706 bool printComma = false;
2707 for (int i = 0, e = 31; i !=e; ++i)
2708 if (OMI.OperandMask & (1 << i)) {
2709 if (printComma)
2710 OS << ", ";
2711 OS << i;
2712 printComma = true;
2713 }
2714 OS << " */";
2715
2716 OS << " },\n";
2717 }
2718 OS << "};\n\n";
2719
2720 // Emit the operand class switch to call the correct custom parser for
2721 // the found operand class.
2722 OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2723 << Target.getName() << ClassName << "::\n"
2724 << "tryCustomParseOperand(OperandVector"
2725 << " &Operands,\n unsigned MCK) {\n\n"
2726 << " switch(MCK) {\n";
2727
2728 for (const auto &CI : Info.Classes) {
2729 if (CI.ParserMethod.empty())
2730 continue;
2731 OS << " case " << CI.Name << ":\n"
2732 << " return " << CI.ParserMethod << "(Operands);\n";
2733 }
2734
2735 OS << " default:\n";
2736 OS << " return MatchOperand_NoMatch;\n";
2737 OS << " }\n";
2738 OS << " return MatchOperand_NoMatch;\n";
2739 OS << "}\n\n";
2740
2741 // Emit the static custom operand parser. This code is very similar with
2742 // the other matcher. Also use MatchResultTy here just in case we go for
2743 // a better error handling.
2744 OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2745 << Target.getName() << ClassName << "::\n"
2746 << "MatchOperandParserImpl(OperandVector"
2747 << " &Operands,\n StringRef Mnemonic) {\n";
2748
2749 // Emit code to get the available features.
2750 OS << " // Get the current feature set.\n";
2751 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
2752
2753 OS << " // Get the next operand index.\n";
2754 OS << " unsigned NextOpNum = Operands.size()"
2755 << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2756
2757 // Emit code to search the table.
2758 OS << " // Search the table.\n";
2759 if (HasMnemonicFirst) {
2760 OS << " auto MnemonicRange =\n";
2761 OS << " std::equal_range(std::begin(OperandMatchTable), "
2762 "std::end(OperandMatchTable),\n";
2763 OS << " Mnemonic, LessOpcodeOperand());\n\n";
2764 } else {
2765 OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
2766 " std::end(OperandMatchTable));\n";
2767 OS << " if (!Mnemonic.empty())\n";
2768 OS << " MnemonicRange =\n";
2769 OS << " std::equal_range(std::begin(OperandMatchTable), "
2770 "std::end(OperandMatchTable),\n";
2771 OS << " Mnemonic, LessOpcodeOperand());\n\n";
2772 }
2773
2774 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
2775 OS << " return MatchOperand_NoMatch;\n\n";
2776
2777 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2778 << " *ie = MnemonicRange.second; it != ie; ++it) {\n";
2779
2780 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
2781 OS << " assert(Mnemonic == it->getMnemonic());\n\n";
2782
2783 // Emit check that the required features are available.
2784 OS << " // check if the available features match\n";
2785 OS << " if ((AvailableFeatures & it->RequiredFeatures) "
2786 << "!= it->RequiredFeatures) {\n";
2787 OS << " continue;\n";
2788 OS << " }\n\n";
2789
2790 // Emit check to ensure the operand number matches.
2791 OS << " // check if the operand in question has a custom parser.\n";
2792 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
2793 OS << " continue;\n\n";
2794
2795 // Emit call to the custom parser method
2796 OS << " // call custom parse method to handle the operand\n";
2797 OS << " OperandMatchResultTy Result = ";
2798 OS << "tryCustomParseOperand(Operands, it->Class);\n";
2799 OS << " if (Result != MatchOperand_NoMatch)\n";
2800 OS << " return Result;\n";
2801 OS << " }\n\n";
2802
2803 OS << " // Okay, we had no match.\n";
2804 OS << " return MatchOperand_NoMatch;\n";
2805 OS << "}\n\n";
2806 }
2807
run(raw_ostream & OS)2808 void AsmMatcherEmitter::run(raw_ostream &OS) {
2809 CodeGenTarget Target(Records);
2810 Record *AsmParser = Target.getAsmParser();
2811 std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2812
2813 // Compute the information on the instructions to match.
2814 AsmMatcherInfo Info(AsmParser, Target, Records);
2815 Info.buildInfo();
2816
2817 // Sort the instruction table using the partial order on classes. We use
2818 // stable_sort to ensure that ambiguous instructions are still
2819 // deterministically ordered.
2820 std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2821 [](const std::unique_ptr<MatchableInfo> &a,
2822 const std::unique_ptr<MatchableInfo> &b){
2823 return *a < *b;});
2824
2825 #ifndef NDEBUG
2826 // Verify that the table is now sorted
2827 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
2828 ++I) {
2829 for (auto J = I; J != E; ++J) {
2830 assert(!(**J < **I));
2831 }
2832 }
2833 #endif // NDEBUG
2834
2835 DEBUG_WITH_TYPE("instruction_info", {
2836 for (const auto &MI : Info.Matchables)
2837 MI->dump();
2838 });
2839
2840 // Check for ambiguous matchables.
2841 DEBUG_WITH_TYPE("ambiguous_instrs", {
2842 unsigned NumAmbiguous = 0;
2843 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
2844 ++I) {
2845 for (auto J = std::next(I); J != E; ++J) {
2846 const MatchableInfo &A = **I;
2847 const MatchableInfo &B = **J;
2848
2849 if (A.couldMatchAmbiguouslyWith(B)) {
2850 errs() << "warning: ambiguous matchables:\n";
2851 A.dump();
2852 errs() << "\nis incomparable with:\n";
2853 B.dump();
2854 errs() << "\n\n";
2855 ++NumAmbiguous;
2856 }
2857 }
2858 }
2859 if (NumAmbiguous)
2860 errs() << "warning: " << NumAmbiguous
2861 << " ambiguous matchables!\n";
2862 });
2863
2864 // Compute the information on the custom operand parsing.
2865 Info.buildOperandMatchInfo();
2866
2867 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
2868 bool HasOptionalOperands = Info.hasOptionalOperands();
2869
2870 // Write the output.
2871
2872 // Information for the class declaration.
2873 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2874 OS << "#undef GET_ASSEMBLER_HEADER\n";
2875 OS << " // This should be included into the middle of the declaration of\n";
2876 OS << " // your subclasses implementation of MCTargetAsmParser.\n";
2877 OS << " uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n";
2878 if (HasOptionalOperands) {
2879 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
2880 << "unsigned Opcode,\n"
2881 << " const OperandVector &Operands,\n"
2882 << " const SmallBitVector &OptionalOperandsMask);\n";
2883 } else {
2884 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
2885 << "unsigned Opcode,\n"
2886 << " const OperandVector &Operands);\n";
2887 }
2888 OS << " void convertToMapAndConstraints(unsigned Kind,\n ";
2889 OS << " const OperandVector &Operands) override;\n";
2890 if (HasMnemonicFirst)
2891 OS << " bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID);\n";
2892 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
2893 << " MCInst &Inst,\n"
2894 << " uint64_t &ErrorInfo,"
2895 << " bool matchingInlineAsm,\n"
2896 << " unsigned VariantID = 0);\n";
2897
2898 if (!Info.OperandMatchInfo.empty()) {
2899 OS << "\n enum OperandMatchResultTy {\n";
2900 OS << " MatchOperand_Success, // operand matched successfully\n";
2901 OS << " MatchOperand_NoMatch, // operand did not match\n";
2902 OS << " MatchOperand_ParseFail // operand matched but had errors\n";
2903 OS << " };\n";
2904 OS << " OperandMatchResultTy MatchOperandParserImpl(\n";
2905 OS << " OperandVector &Operands,\n";
2906 OS << " StringRef Mnemonic);\n";
2907
2908 OS << " OperandMatchResultTy tryCustomParseOperand(\n";
2909 OS << " OperandVector &Operands,\n";
2910 OS << " unsigned MCK);\n\n";
2911 }
2912
2913 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2914
2915 // Emit the operand match diagnostic enum names.
2916 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
2917 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2918 emitOperandDiagnosticTypes(Info, OS);
2919 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2920
2921 OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2922 OS << "#undef GET_REGISTER_MATCHER\n\n";
2923
2924 // Emit the subtarget feature enumeration.
2925 emitSubtargetFeatureFlagEnumeration(Info, OS);
2926
2927 // Emit the function to match a register name to number.
2928 // This should be omitted for Mips target
2929 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
2930 emitMatchRegisterName(Target, AsmParser, OS);
2931
2932 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
2933 emitMatchRegisterAltName(Target, AsmParser, OS);
2934
2935 OS << "#endif // GET_REGISTER_MATCHER\n\n";
2936
2937 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
2938 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
2939
2940 // Generate the helper function to get the names for subtarget features.
2941 emitGetSubtargetFeatureName(Info, OS);
2942
2943 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
2944
2945 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2946 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2947
2948 // Generate the function that remaps for mnemonic aliases.
2949 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
2950
2951 // Generate the convertToMCInst function to convert operands into an MCInst.
2952 // Also, generate the convertToMapAndConstraints function for MS-style inline
2953 // assembly. The latter doesn't actually generate a MCInst.
2954 emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst,
2955 HasOptionalOperands, OS);
2956
2957 // Emit the enumeration for classes which participate in matching.
2958 emitMatchClassEnumeration(Target, Info.Classes, OS);
2959
2960 // Emit the routine to match token strings to their match class.
2961 emitMatchTokenString(Target, Info.Classes, OS);
2962
2963 // Emit the subclass predicate routine.
2964 emitIsSubclass(Target, Info.Classes, OS);
2965
2966 // Emit the routine to validate an operand against a match class.
2967 emitValidateOperandClass(Info, OS);
2968
2969 // Emit the available features compute function.
2970 emitComputeAvailableFeatures(Info, OS);
2971
2972 StringToOffsetTable StringTable;
2973
2974 size_t MaxNumOperands = 0;
2975 unsigned MaxMnemonicIndex = 0;
2976 bool HasDeprecation = false;
2977 for (const auto &MI : Info.Matchables) {
2978 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
2979 HasDeprecation |= MI->HasDeprecation;
2980
2981 // Store a pascal-style length byte in the mnemonic.
2982 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
2983 MaxMnemonicIndex = std::max(MaxMnemonicIndex,
2984 StringTable.GetOrAddStringOffset(LenMnemonic, false));
2985 }
2986
2987 OS << "static const char *const MnemonicTable =\n";
2988 StringTable.EmitString(OS);
2989 OS << ";\n\n";
2990
2991 // Emit the static match table; unused classes get initalized to 0 which is
2992 // guaranteed to be InvalidMatchClass.
2993 //
2994 // FIXME: We can reduce the size of this table very easily. First, we change
2995 // it so that store the kinds in separate bit-fields for each index, which
2996 // only needs to be the max width used for classes at that index (we also need
2997 // to reject based on this during classification). If we then make sure to
2998 // order the match kinds appropriately (putting mnemonics last), then we
2999 // should only end up using a few bits for each class, especially the ones
3000 // following the mnemonic.
3001 OS << "namespace {\n";
3002 OS << " struct MatchEntry {\n";
3003 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
3004 << " Mnemonic;\n";
3005 OS << " uint16_t Opcode;\n";
3006 OS << " " << getMinimalTypeForRange(Info.Matchables.size())
3007 << " ConvertFn;\n";
3008 OS << " " << getMinimalRequiredFeaturesType(Info)
3009 << " RequiredFeatures;\n";
3010 OS << " " << getMinimalTypeForRange(
3011 std::distance(Info.Classes.begin(), Info.Classes.end()))
3012 << " Classes[" << MaxNumOperands << "];\n";
3013 OS << " StringRef getMnemonic() const {\n";
3014 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
3015 OS << " MnemonicTable[Mnemonic]);\n";
3016 OS << " }\n";
3017 OS << " };\n\n";
3018
3019 OS << " // Predicate for searching for an opcode.\n";
3020 OS << " struct LessOpcode {\n";
3021 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3022 OS << " return LHS.getMnemonic() < RHS;\n";
3023 OS << " }\n";
3024 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3025 OS << " return LHS < RHS.getMnemonic();\n";
3026 OS << " }\n";
3027 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3028 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
3029 OS << " }\n";
3030 OS << " };\n";
3031
3032 OS << "} // end anonymous namespace.\n\n";
3033
3034 unsigned VariantCount = Target.getAsmParserVariantCount();
3035 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3036 Record *AsmVariant = Target.getAsmParserVariant(VC);
3037 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3038
3039 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3040
3041 for (const auto &MI : Info.Matchables) {
3042 if (MI->AsmVariantID != AsmVariantNo)
3043 continue;
3044
3045 // Store a pascal-style length byte in the mnemonic.
3046 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
3047 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
3048 << " /* " << MI->Mnemonic << " */, "
3049 << Target.getName() << "::"
3050 << MI->getResultInst()->TheDef->getName() << ", "
3051 << MI->ConversionFnKind << ", ";
3052
3053 // Write the required features mask.
3054 if (!MI->RequiredFeatures.empty()) {
3055 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
3056 if (i) OS << "|";
3057 OS << MI->RequiredFeatures[i]->getEnumName();
3058 }
3059 } else
3060 OS << "0";
3061
3062 OS << ", { ";
3063 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
3064 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
3065
3066 if (i) OS << ", ";
3067 OS << Op.Class->Name;
3068 }
3069 OS << " }, },\n";
3070 }
3071
3072 OS << "};\n\n";
3073 }
3074
3075 // A method to determine if a mnemonic is in the list.
3076 if (HasMnemonicFirst) {
3077 OS << "bool " << Target.getName() << ClassName << "::\n"
3078 << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
3079 OS << " // Find the appropriate table for this asm variant.\n";
3080 OS << " const MatchEntry *Start, *End;\n";
3081 OS << " switch (VariantID) {\n";
3082 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3083 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3084 Record *AsmVariant = Target.getAsmParserVariant(VC);
3085 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3086 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3087 << "); End = std::end(MatchTable" << VC << "); break;\n";
3088 }
3089 OS << " }\n";
3090 OS << " // Search the table.\n";
3091 OS << " auto MnemonicRange = ";
3092 OS << "std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
3093 OS << " return MnemonicRange.first != MnemonicRange.second;\n";
3094 OS << "}\n\n";
3095 }
3096
3097 // Finally, build the match function.
3098 OS << "unsigned " << Target.getName() << ClassName << "::\n"
3099 << "MatchInstructionImpl(const OperandVector &Operands,\n";
3100 OS << " MCInst &Inst, uint64_t &ErrorInfo,\n"
3101 << " bool matchingInlineAsm, unsigned VariantID) {\n";
3102
3103 OS << " // Eliminate obvious mismatches.\n";
3104 OS << " if (Operands.size() > "
3105 << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
3106 OS << " ErrorInfo = "
3107 << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3108 OS << " return Match_InvalidOperand;\n";
3109 OS << " }\n\n";
3110
3111 // Emit code to get the available features.
3112 OS << " // Get the current feature set.\n";
3113 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
3114
3115 OS << " // Get the instruction mnemonic, which is the first token.\n";
3116 if (HasMnemonicFirst) {
3117 OS << " StringRef Mnemonic = ((" << Target.getName()
3118 << "Operand&)*Operands[0]).getToken();\n\n";
3119 } else {
3120 OS << " StringRef Mnemonic;\n";
3121 OS << " if (Operands[0]->isToken())\n";
3122 OS << " Mnemonic = ((" << Target.getName()
3123 << "Operand&)*Operands[0]).getToken();\n\n";
3124 }
3125
3126 if (HasMnemonicAliases) {
3127 OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
3128 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3129 }
3130
3131 // Emit code to compute the class list for this operand vector.
3132 OS << " // Some state to try to produce better error messages.\n";
3133 OS << " bool HadMatchOtherThanFeatures = false;\n";
3134 OS << " bool HadMatchOtherThanPredicate = false;\n";
3135 OS << " unsigned RetCode = Match_InvalidOperand;\n";
3136 OS << " uint64_t MissingFeatures = ~0ULL;\n";
3137 if (HasOptionalOperands) {
3138 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3139 }
3140 OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
3141 OS << " // wrong for all instances of the instruction.\n";
3142 OS << " ErrorInfo = ~0ULL;\n";
3143
3144 // Emit code to search the table.
3145 OS << " // Find the appropriate table for this asm variant.\n";
3146 OS << " const MatchEntry *Start, *End;\n";
3147 OS << " switch (VariantID) {\n";
3148 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3149 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3150 Record *AsmVariant = Target.getAsmParserVariant(VC);
3151 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3152 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3153 << "); End = std::end(MatchTable" << VC << "); break;\n";
3154 }
3155 OS << " }\n";
3156
3157 OS << " // Search the table.\n";
3158 if (HasMnemonicFirst) {
3159 OS << " auto MnemonicRange = "
3160 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3161 } else {
3162 OS << " auto MnemonicRange = std::make_pair(Start, End);\n";
3163 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3164 OS << " if (!Mnemonic.empty())\n";
3165 OS << " MnemonicRange = "
3166 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3167 }
3168
3169 OS << " // Return a more specific error code if no mnemonics match.\n";
3170 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
3171 OS << " return Match_MnemonicFail;\n\n";
3172
3173 OS << " for (const MatchEntry *it = MnemonicRange.first, "
3174 << "*ie = MnemonicRange.second;\n";
3175 OS << " it != ie; ++it) {\n";
3176
3177 if (HasMnemonicFirst) {
3178 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
3179 OS << " assert(Mnemonic == it->getMnemonic());\n";
3180 }
3181
3182 // Emit check that the subclasses match.
3183 OS << " bool OperandsValid = true;\n";
3184 if (HasOptionalOperands) {
3185 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3186 }
3187 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3188 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3189 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3190 OS << " auto Formal = "
3191 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3192 OS << " if (ActualIdx >= Operands.size()) {\n";
3193 OS << " OperandsValid = (Formal == " <<"InvalidMatchClass) || "
3194 "isSubclass(Formal, OptionalMatchClass);\n";
3195 OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n";
3196 if (HasOptionalOperands) {
3197 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3198 << ");\n";
3199 }
3200 OS << " break;\n";
3201 OS << " }\n";
3202 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3203 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n";
3204 OS << " if (Diag == Match_Success) {\n";
3205 OS << " ++ActualIdx;\n";
3206 OS << " continue;\n";
3207 OS << " }\n";
3208 OS << " // If the generic handler indicates an invalid operand\n";
3209 OS << " // failure, check for a special case.\n";
3210 OS << " if (Diag == Match_InvalidOperand) {\n";
3211 OS << " Diag = validateTargetOperandClass(Actual, Formal);\n";
3212 OS << " if (Diag == Match_Success) {\n";
3213 OS << " ++ActualIdx;\n";
3214 OS << " continue;\n";
3215 OS << " }\n";
3216 OS << " }\n";
3217 OS << " // If current formal operand wasn't matched and it is optional\n"
3218 << " // then try to match next formal operand\n";
3219 OS << " if (Diag == Match_InvalidOperand "
3220 << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3221 if (HasOptionalOperands) {
3222 OS << " OptionalOperandsMask.set(FormalIdx);\n";
3223 }
3224 OS << " continue;\n";
3225 OS << " }\n";
3226 OS << " // If this operand is broken for all of the instances of this\n";
3227 OS << " // mnemonic, keep track of it so we can report loc info.\n";
3228 OS << " // If we already had a match that only failed due to a\n";
3229 OS << " // target predicate, that diagnostic is preferred.\n";
3230 OS << " if (!HadMatchOtherThanPredicate &&\n";
3231 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
3232 OS << " ErrorInfo = ActualIdx;\n";
3233 OS << " // InvalidOperand is the default. Prefer specificity.\n";
3234 OS << " if (Diag != Match_InvalidOperand)\n";
3235 OS << " RetCode = Diag;\n";
3236 OS << " }\n";
3237 OS << " // Otherwise, just reject this instance of the mnemonic.\n";
3238 OS << " OperandsValid = false;\n";
3239 OS << " break;\n";
3240 OS << " }\n\n";
3241
3242 OS << " if (!OperandsValid) continue;\n";
3243
3244 // Emit check that the required features are available.
3245 OS << " if ((AvailableFeatures & it->RequiredFeatures) "
3246 << "!= it->RequiredFeatures) {\n";
3247 OS << " HadMatchOtherThanFeatures = true;\n";
3248 OS << " uint64_t NewMissingFeatures = it->RequiredFeatures & "
3249 "~AvailableFeatures;\n";
3250 OS << " if (countPopulation(NewMissingFeatures) <=\n"
3251 " countPopulation(MissingFeatures))\n";
3252 OS << " MissingFeatures = NewMissingFeatures;\n";
3253 OS << " continue;\n";
3254 OS << " }\n";
3255 OS << "\n";
3256 OS << " Inst.clear();\n\n";
3257 OS << " if (matchingInlineAsm) {\n";
3258 OS << " Inst.setOpcode(it->Opcode);\n";
3259 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3260 OS << " return Match_Success;\n";
3261 OS << " }\n\n";
3262 OS << " // We have selected a definite instruction, convert the parsed\n"
3263 << " // operands into the appropriate MCInst.\n";
3264 if (HasOptionalOperands) {
3265 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3266 << " OptionalOperandsMask);\n";
3267 } else {
3268 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3269 }
3270 OS << "\n";
3271
3272 // Verify the instruction with the target-specific match predicate function.
3273 OS << " // We have a potential match. Check the target predicate to\n"
3274 << " // handle any context sensitive constraints.\n"
3275 << " unsigned MatchResult;\n"
3276 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3277 << " Match_Success) {\n"
3278 << " Inst.clear();\n"
3279 << " RetCode = MatchResult;\n"
3280 << " HadMatchOtherThanPredicate = true;\n"
3281 << " continue;\n"
3282 << " }\n\n";
3283
3284 // Call the post-processing function, if used.
3285 std::string InsnCleanupFn =
3286 AsmParser->getValueAsString("AsmParserInstCleanup");
3287 if (!InsnCleanupFn.empty())
3288 OS << " " << InsnCleanupFn << "(Inst);\n";
3289
3290 if (HasDeprecation) {
3291 OS << " std::string Info;\n";
3292 OS << " if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
3293 OS << " SMLoc Loc = ((" << Target.getName()
3294 << "Operand&)*Operands[0]).getStartLoc();\n";
3295 OS << " getParser().Warning(Loc, Info, None);\n";
3296 OS << " }\n";
3297 }
3298
3299 OS << " return Match_Success;\n";
3300 OS << " }\n\n";
3301
3302 OS << " // Okay, we had no match. Try to return a useful error code.\n";
3303 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3304 OS << " return RetCode;\n\n";
3305 OS << " // Missing feature matches return which features were missing\n";
3306 OS << " ErrorInfo = MissingFeatures;\n";
3307 OS << " return Match_MissingFeature;\n";
3308 OS << "}\n\n";
3309
3310 if (!Info.OperandMatchInfo.empty())
3311 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3312 MaxMnemonicIndex, HasMnemonicFirst);
3313
3314 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3315 }
3316
3317 namespace llvm {
3318
EmitAsmMatcher(RecordKeeper & RK,raw_ostream & OS)3319 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3320 emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3321 AsmMatcherEmitter(RK).run(OS);
3322 }
3323
3324 } // end namespace llvm
3325