1 /*
2 * Copyright 2014 Google Inc. All rights reserved.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <algorithm>
18 #include <cmath>
19 #include <list>
20 #include <string>
21 #include <utility>
22
23 #include "flatbuffers/idl.h"
24 #include "flatbuffers/util.h"
25
26 namespace flatbuffers {
27
28 // Reflects the version at the compiling time of binary(lib/dll/so).
FLATBUFFERS_VERSION()29 const char *FLATBUFFERS_VERSION() {
30 // clang-format off
31 return
32 FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MAJOR) "."
33 FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MINOR) "."
34 FLATBUFFERS_STRING(FLATBUFFERS_VERSION_REVISION);
35 // clang-format on
36 }
37
38 const double kPi = 3.14159265358979323846;
39
40 // clang-format off
41 const char *const kTypeNames[] = {
42 #define FLATBUFFERS_TD(ENUM, IDLTYPE, ...) \
43 IDLTYPE,
44 FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
45 #undef FLATBUFFERS_TD
46 nullptr
47 };
48
49 const char kTypeSizes[] = {
50 #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \
51 sizeof(CTYPE),
52 FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
53 #undef FLATBUFFERS_TD
54 };
55 // clang-format on
56
57 // The enums in the reflection schema should match the ones we use internally.
58 // Compare the last element to check if these go out of sync.
59 static_assert(BASE_TYPE_UNION == static_cast<BaseType>(reflection::Union),
60 "enums don't match");
61
62 // Any parsing calls have to be wrapped in this macro, which automates
63 // handling of recursive error checking a bit. It will check the received
64 // CheckedError object, and return straight away on error.
65 #define ECHECK(call) \
66 { \
67 auto ce = (call); \
68 if (ce.Check()) return ce; \
69 }
70
71 // These two functions are called hundreds of times below, so define a short
72 // form:
73 #define NEXT() ECHECK(Next())
74 #define EXPECT(tok) ECHECK(Expect(tok))
75
ValidateUTF8(const std::string & str)76 static bool ValidateUTF8(const std::string &str) {
77 const char *s = &str[0];
78 const char *const sEnd = s + str.length();
79 while (s < sEnd) {
80 if (FromUTF8(&s) < 0) { return false; }
81 }
82 return true;
83 }
84
85 // Convert an underscore_based_indentifier in to camelCase.
86 // Also uppercases the first character if first is true.
MakeCamel(const std::string & in,bool first)87 std::string MakeCamel(const std::string &in, bool first) {
88 std::string s;
89 for (size_t i = 0; i < in.length(); i++) {
90 if (!i && first)
91 s += static_cast<char>(toupper(in[0]));
92 else if (in[i] == '_' && i + 1 < in.length())
93 s += static_cast<char>(toupper(in[++i]));
94 else
95 s += in[i];
96 }
97 return s;
98 }
99
100 // Convert an underscore_based_identifier in to screaming snake case.
MakeScreamingCamel(const std::string & in)101 std::string MakeScreamingCamel(const std::string &in) {
102 std::string s;
103 for (size_t i = 0; i < in.length(); i++) {
104 if (in[i] != '_')
105 s += static_cast<char>(toupper(in[i]));
106 else
107 s += in[i];
108 }
109 return s;
110 }
111
DeserializeDoc(std::vector<std::string> & doc,const Vector<Offset<String>> * documentation)112 void DeserializeDoc(std::vector<std::string> &doc,
113 const Vector<Offset<String>> *documentation) {
114 if (documentation == nullptr) return;
115 for (uoffset_t index = 0; index < documentation->size(); index++)
116 doc.push_back(documentation->Get(index)->str());
117 }
118
Message(const std::string & msg)119 void Parser::Message(const std::string &msg) {
120 if (!error_.empty()) error_ += "\n"; // log all warnings and errors
121 error_ += file_being_parsed_.length() ? AbsolutePath(file_being_parsed_) : "";
122 // clang-format off
123
124 #ifdef _WIN32 // MSVC alike
125 error_ +=
126 "(" + NumToString(line_) + ", " + NumToString(CursorPosition()) + ")";
127 #else // gcc alike
128 if (file_being_parsed_.length()) error_ += ":";
129 error_ += NumToString(line_) + ": " + NumToString(CursorPosition());
130 #endif
131 // clang-format on
132 error_ += ": " + msg;
133 }
134
Warning(const std::string & msg)135 void Parser::Warning(const std::string &msg) { Message("warning: " + msg); }
136
Error(const std::string & msg)137 CheckedError Parser::Error(const std::string &msg) {
138 Message("error: " + msg);
139 return CheckedError(true);
140 }
141
NoError()142 inline CheckedError NoError() { return CheckedError(false); }
143
RecurseError()144 CheckedError Parser::RecurseError() {
145 return Error("maximum parsing recursion of " +
146 NumToString(FLATBUFFERS_MAX_PARSING_DEPTH) + " reached");
147 }
148
Recurse(F f)149 template<typename F> CheckedError Parser::Recurse(F f) {
150 if (recurse_protection_counter >= (FLATBUFFERS_MAX_PARSING_DEPTH))
151 return RecurseError();
152 recurse_protection_counter++;
153 auto ce = f();
154 recurse_protection_counter--;
155 return ce;
156 }
157
TypeToIntervalString()158 template<typename T> std::string TypeToIntervalString() {
159 return "[" + NumToString((flatbuffers::numeric_limits<T>::lowest)()) + "; " +
160 NumToString((flatbuffers::numeric_limits<T>::max)()) + "]";
161 }
162
163 // atot: template version of atoi/atof: convert a string to an instance of T.
164 template<typename T>
atot(const char * s,Parser & parser,T * val)165 inline CheckedError atot(const char *s, Parser &parser, T *val) {
166 auto done = StringToNumber(s, val);
167 if (done) return NoError();
168 if (0 == *val)
169 return parser.Error("invalid number: \"" + std::string(s) + "\"");
170 else
171 return parser.Error("invalid number: \"" + std::string(s) + "\"" +
172 ", constant does not fit " + TypeToIntervalString<T>());
173 }
174 template<>
atot(const char * s,Parser & parser,Offset<void> * val)175 inline CheckedError atot<Offset<void>>(const char *s, Parser &parser,
176 Offset<void> *val) {
177 (void)parser;
178 *val = Offset<void>(atoi(s));
179 return NoError();
180 }
181
GetFullyQualifiedName(const std::string & name,size_t max_components) const182 std::string Namespace::GetFullyQualifiedName(const std::string &name,
183 size_t max_components) const {
184 // Early exit if we don't have a defined namespace.
185 if (components.empty() || !max_components) { return name; }
186 std::string stream_str;
187 for (size_t i = 0; i < std::min(components.size(), max_components); i++) {
188 if (i) { stream_str += '.'; }
189 stream_str += std::string(components[i]);
190 }
191 if (name.length()) {
192 stream_str += '.';
193 stream_str += name;
194 }
195 return stream_str;
196 }
197
198 // Declare tokens we'll use. Single character tokens are represented by their
199 // ascii character code (e.g. '{'), others above 256.
200 // clang-format off
201 #define FLATBUFFERS_GEN_TOKENS(TD) \
202 TD(Eof, 256, "end of file") \
203 TD(StringConstant, 257, "string constant") \
204 TD(IntegerConstant, 258, "integer constant") \
205 TD(FloatConstant, 259, "float constant") \
206 TD(Identifier, 260, "identifier")
207 #ifdef __GNUC__
208 __extension__ // Stop GCC complaining about trailing comma with -Wpendantic.
209 #endif
210 enum {
211 #define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) kToken ## NAME = VALUE,
212 FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN)
213 #undef FLATBUFFERS_TOKEN
214 };
215
TokenToString(int t)216 static std::string TokenToString(int t) {
217 static const char * const tokens[] = {
218 #define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) STRING,
219 FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN)
220 #undef FLATBUFFERS_TOKEN
221 #define FLATBUFFERS_TD(ENUM, IDLTYPE, ...) \
222 IDLTYPE,
223 FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
224 #undef FLATBUFFERS_TD
225 };
226 if (t < 256) { // A single ascii char token.
227 std::string s;
228 s.append(1, static_cast<char>(t));
229 return s;
230 } else { // Other tokens.
231 return tokens[t - 256];
232 }
233 }
234 // clang-format on
235
TokenToStringId(int t) const236 std::string Parser::TokenToStringId(int t) const {
237 return t == kTokenIdentifier ? attribute_ : TokenToString(t);
238 }
239
240 // Parses exactly nibbles worth of hex digits into a number, or error.
ParseHexNum(int nibbles,uint64_t * val)241 CheckedError Parser::ParseHexNum(int nibbles, uint64_t *val) {
242 FLATBUFFERS_ASSERT(nibbles > 0);
243 for (int i = 0; i < nibbles; i++)
244 if (!is_xdigit(cursor_[i]))
245 return Error("escape code must be followed by " + NumToString(nibbles) +
246 " hex digits");
247 std::string target(cursor_, cursor_ + nibbles);
248 *val = StringToUInt(target.c_str(), 16);
249 cursor_ += nibbles;
250 return NoError();
251 }
252
SkipByteOrderMark()253 CheckedError Parser::SkipByteOrderMark() {
254 if (static_cast<unsigned char>(*cursor_) != 0xef) return NoError();
255 cursor_++;
256 if (static_cast<unsigned char>(*cursor_) != 0xbb)
257 return Error("invalid utf-8 byte order mark");
258 cursor_++;
259 if (static_cast<unsigned char>(*cursor_) != 0xbf)
260 return Error("invalid utf-8 byte order mark");
261 cursor_++;
262 return NoError();
263 }
264
IsIdentifierStart(char c)265 static inline bool IsIdentifierStart(char c) {
266 return is_alpha(c) || (c == '_');
267 }
268
Next()269 CheckedError Parser::Next() {
270 doc_comment_.clear();
271 bool seen_newline = cursor_ == source_;
272 attribute_.clear();
273 attr_is_trivial_ascii_string_ = true;
274 for (;;) {
275 char c = *cursor_++;
276 token_ = c;
277 switch (c) {
278 case '\0':
279 cursor_--;
280 token_ = kTokenEof;
281 return NoError();
282 case ' ':
283 case '\r':
284 case '\t': break;
285 case '\n':
286 MarkNewLine();
287 seen_newline = true;
288 break;
289 case '{':
290 case '}':
291 case '(':
292 case ')':
293 case '[':
294 case ']':
295 case ',':
296 case ':':
297 case ';':
298 case '=': return NoError();
299 case '\"':
300 case '\'': {
301 int unicode_high_surrogate = -1;
302
303 while (*cursor_ != c) {
304 if (*cursor_ < ' ' && static_cast<signed char>(*cursor_) >= 0)
305 return Error("illegal character in string constant");
306 if (*cursor_ == '\\') {
307 attr_is_trivial_ascii_string_ = false; // has escape sequence
308 cursor_++;
309 if (unicode_high_surrogate != -1 && *cursor_ != 'u') {
310 return Error(
311 "illegal Unicode sequence (unpaired high surrogate)");
312 }
313 switch (*cursor_) {
314 case 'n':
315 attribute_ += '\n';
316 cursor_++;
317 break;
318 case 't':
319 attribute_ += '\t';
320 cursor_++;
321 break;
322 case 'r':
323 attribute_ += '\r';
324 cursor_++;
325 break;
326 case 'b':
327 attribute_ += '\b';
328 cursor_++;
329 break;
330 case 'f':
331 attribute_ += '\f';
332 cursor_++;
333 break;
334 case '\"':
335 attribute_ += '\"';
336 cursor_++;
337 break;
338 case '\'':
339 attribute_ += '\'';
340 cursor_++;
341 break;
342 case '\\':
343 attribute_ += '\\';
344 cursor_++;
345 break;
346 case '/':
347 attribute_ += '/';
348 cursor_++;
349 break;
350 case 'x': { // Not in the JSON standard
351 cursor_++;
352 uint64_t val;
353 ECHECK(ParseHexNum(2, &val));
354 attribute_ += static_cast<char>(val);
355 break;
356 }
357 case 'u': {
358 cursor_++;
359 uint64_t val;
360 ECHECK(ParseHexNum(4, &val));
361 if (val >= 0xD800 && val <= 0xDBFF) {
362 if (unicode_high_surrogate != -1) {
363 return Error(
364 "illegal Unicode sequence (multiple high surrogates)");
365 } else {
366 unicode_high_surrogate = static_cast<int>(val);
367 }
368 } else if (val >= 0xDC00 && val <= 0xDFFF) {
369 if (unicode_high_surrogate == -1) {
370 return Error(
371 "illegal Unicode sequence (unpaired low surrogate)");
372 } else {
373 int code_point = 0x10000 +
374 ((unicode_high_surrogate & 0x03FF) << 10) +
375 (val & 0x03FF);
376 ToUTF8(code_point, &attribute_);
377 unicode_high_surrogate = -1;
378 }
379 } else {
380 if (unicode_high_surrogate != -1) {
381 return Error(
382 "illegal Unicode sequence (unpaired high surrogate)");
383 }
384 ToUTF8(static_cast<int>(val), &attribute_);
385 }
386 break;
387 }
388 default: return Error("unknown escape code in string constant");
389 }
390 } else { // printable chars + UTF-8 bytes
391 if (unicode_high_surrogate != -1) {
392 return Error(
393 "illegal Unicode sequence (unpaired high surrogate)");
394 }
395 // reset if non-printable
396 attr_is_trivial_ascii_string_ &=
397 check_ascii_range(*cursor_, ' ', '~');
398
399 attribute_ += *cursor_++;
400 }
401 }
402 if (unicode_high_surrogate != -1) {
403 return Error("illegal Unicode sequence (unpaired high surrogate)");
404 }
405 cursor_++;
406 if (!attr_is_trivial_ascii_string_ && !opts.allow_non_utf8 &&
407 !ValidateUTF8(attribute_)) {
408 return Error("illegal UTF-8 sequence");
409 }
410 token_ = kTokenStringConstant;
411 return NoError();
412 }
413 case '/':
414 if (*cursor_ == '/') {
415 const char *start = ++cursor_;
416 while (*cursor_ && *cursor_ != '\n' && *cursor_ != '\r') cursor_++;
417 if (*start == '/') { // documentation comment
418 if (!seen_newline)
419 return Error(
420 "a documentation comment should be on a line on its own");
421 doc_comment_.push_back(std::string(start + 1, cursor_));
422 }
423 break;
424 } else if (*cursor_ == '*') {
425 cursor_++;
426 // TODO: make nested.
427 while (*cursor_ != '*' || cursor_[1] != '/') {
428 if (*cursor_ == '\n') MarkNewLine();
429 if (!*cursor_) return Error("end of file in comment");
430 cursor_++;
431 }
432 cursor_ += 2;
433 break;
434 }
435 FLATBUFFERS_FALLTHROUGH(); // else fall thru
436 default:
437 const auto has_sign = (c == '+') || (c == '-');
438 // '-'/'+' and following identifier - can be a predefined constant like:
439 // NAN, INF, PI, etc.
440 if (IsIdentifierStart(c) || (has_sign && IsIdentifierStart(*cursor_))) {
441 // Collect all chars of an identifier:
442 const char *start = cursor_ - 1;
443 while (IsIdentifierStart(*cursor_) || is_digit(*cursor_)) cursor_++;
444 attribute_.append(start, cursor_);
445 token_ = has_sign ? kTokenStringConstant : kTokenIdentifier;
446 return NoError();
447 }
448
449 auto dot_lvl =
450 (c == '.') ? 0 : 1; // dot_lvl==0 <=> exactly one '.' seen
451 if (!dot_lvl && !is_digit(*cursor_)) return NoError(); // enum?
452 // Parser accepts hexadecimal-floating-literal (see C++ 5.13.4).
453 if (is_digit(c) || has_sign || !dot_lvl) {
454 const auto start = cursor_ - 1;
455 auto start_digits = !is_digit(c) ? cursor_ : cursor_ - 1;
456 if (!is_digit(c) && is_digit(*cursor_)) {
457 start_digits = cursor_; // see digit in cursor_ position
458 c = *cursor_++;
459 }
460 // hex-float can't begind with '.'
461 auto use_hex = dot_lvl && (c == '0') && is_alpha_char(*cursor_, 'X');
462 if (use_hex) start_digits = ++cursor_; // '0x' is the prefix, skip it
463 // Read an integer number or mantisa of float-point number.
464 do {
465 if (use_hex) {
466 while (is_xdigit(*cursor_)) cursor_++;
467 } else {
468 while (is_digit(*cursor_)) cursor_++;
469 }
470 } while ((*cursor_ == '.') && (++cursor_) && (--dot_lvl >= 0));
471 // Exponent of float-point number.
472 if ((dot_lvl >= 0) && (cursor_ > start_digits)) {
473 // The exponent suffix of hexadecimal float number is mandatory.
474 if (use_hex && !dot_lvl) start_digits = cursor_;
475 if ((use_hex && is_alpha_char(*cursor_, 'P')) ||
476 is_alpha_char(*cursor_, 'E')) {
477 dot_lvl = 0; // Emulate dot to signal about float-point number.
478 cursor_++;
479 if (*cursor_ == '+' || *cursor_ == '-') cursor_++;
480 start_digits = cursor_; // the exponent-part has to have digits
481 // Exponent is decimal integer number
482 while (is_digit(*cursor_)) cursor_++;
483 if (*cursor_ == '.') {
484 cursor_++; // If see a dot treat it as part of invalid number.
485 dot_lvl = -1; // Fall thru to Error().
486 }
487 }
488 }
489 // Finalize.
490 if ((dot_lvl >= 0) && (cursor_ > start_digits)) {
491 attribute_.append(start, cursor_);
492 token_ = dot_lvl ? kTokenIntegerConstant : kTokenFloatConstant;
493 return NoError();
494 } else {
495 return Error("invalid number: " + std::string(start, cursor_));
496 }
497 }
498 std::string ch;
499 ch = c;
500 if (false == check_ascii_range(c, ' ', '~'))
501 ch = "code: " + NumToString(c);
502 return Error("illegal character: " + ch);
503 }
504 }
505 }
506
507 // Check if a given token is next.
Is(int t) const508 bool Parser::Is(int t) const { return t == token_; }
509
IsIdent(const char * id) const510 bool Parser::IsIdent(const char *id) const {
511 return token_ == kTokenIdentifier && attribute_ == id;
512 }
513
514 // Expect a given token to be next, consume it, or error if not present.
Expect(int t)515 CheckedError Parser::Expect(int t) {
516 if (t != token_) {
517 return Error("expecting: " + TokenToString(t) +
518 " instead got: " + TokenToStringId(token_));
519 }
520 NEXT();
521 return NoError();
522 }
523
ParseNamespacing(std::string * id,std::string * last)524 CheckedError Parser::ParseNamespacing(std::string *id, std::string *last) {
525 while (Is('.')) {
526 NEXT();
527 *id += ".";
528 *id += attribute_;
529 if (last) *last = attribute_;
530 EXPECT(kTokenIdentifier);
531 }
532 return NoError();
533 }
534
LookupEnum(const std::string & id)535 EnumDef *Parser::LookupEnum(const std::string &id) {
536 // Search thru parent namespaces.
537 for (int components = static_cast<int>(current_namespace_->components.size());
538 components >= 0; components--) {
539 auto ed = enums_.Lookup(
540 current_namespace_->GetFullyQualifiedName(id, components));
541 if (ed) return ed;
542 }
543 return nullptr;
544 }
545
LookupStruct(const std::string & id) const546 StructDef *Parser::LookupStruct(const std::string &id) const {
547 auto sd = structs_.Lookup(id);
548 if (sd) sd->refcount++;
549 return sd;
550 }
551
ParseTypeIdent(Type & type)552 CheckedError Parser::ParseTypeIdent(Type &type) {
553 std::string id = attribute_;
554 EXPECT(kTokenIdentifier);
555 ECHECK(ParseNamespacing(&id, nullptr));
556 auto enum_def = LookupEnum(id);
557 if (enum_def) {
558 type = enum_def->underlying_type;
559 if (enum_def->is_union) type.base_type = BASE_TYPE_UNION;
560 } else {
561 type.base_type = BASE_TYPE_STRUCT;
562 type.struct_def = LookupCreateStruct(id);
563 }
564 return NoError();
565 }
566
567 // Parse any IDL type.
ParseType(Type & type)568 CheckedError Parser::ParseType(Type &type) {
569 if (token_ == kTokenIdentifier) {
570 if (IsIdent("bool")) {
571 type.base_type = BASE_TYPE_BOOL;
572 NEXT();
573 } else if (IsIdent("byte") || IsIdent("int8")) {
574 type.base_type = BASE_TYPE_CHAR;
575 NEXT();
576 } else if (IsIdent("ubyte") || IsIdent("uint8")) {
577 type.base_type = BASE_TYPE_UCHAR;
578 NEXT();
579 } else if (IsIdent("short") || IsIdent("int16")) {
580 type.base_type = BASE_TYPE_SHORT;
581 NEXT();
582 } else if (IsIdent("ushort") || IsIdent("uint16")) {
583 type.base_type = BASE_TYPE_USHORT;
584 NEXT();
585 } else if (IsIdent("int") || IsIdent("int32")) {
586 type.base_type = BASE_TYPE_INT;
587 NEXT();
588 } else if (IsIdent("uint") || IsIdent("uint32")) {
589 type.base_type = BASE_TYPE_UINT;
590 NEXT();
591 } else if (IsIdent("long") || IsIdent("int64")) {
592 type.base_type = BASE_TYPE_LONG;
593 NEXT();
594 } else if (IsIdent("ulong") || IsIdent("uint64")) {
595 type.base_type = BASE_TYPE_ULONG;
596 NEXT();
597 } else if (IsIdent("float") || IsIdent("float32")) {
598 type.base_type = BASE_TYPE_FLOAT;
599 NEXT();
600 } else if (IsIdent("double") || IsIdent("float64")) {
601 type.base_type = BASE_TYPE_DOUBLE;
602 NEXT();
603 } else if (IsIdent("string")) {
604 type.base_type = BASE_TYPE_STRING;
605 NEXT();
606 } else {
607 ECHECK(ParseTypeIdent(type));
608 }
609 } else if (token_ == '[') {
610 NEXT();
611 Type subtype;
612 ECHECK(Recurse([&]() { return ParseType(subtype); }));
613 if (IsSeries(subtype)) {
614 // We could support this, but it will complicate things, and it's
615 // easier to work around with a struct around the inner vector.
616 return Error("nested vector types not supported (wrap in table first)");
617 }
618 if (token_ == ':') {
619 NEXT();
620 if (token_ != kTokenIntegerConstant) {
621 return Error("length of fixed-length array must be an integer value");
622 }
623 uint16_t fixed_length = 0;
624 bool check = StringToNumber(attribute_.c_str(), &fixed_length);
625 if (!check || fixed_length < 1) {
626 return Error(
627 "length of fixed-length array must be positive and fit to "
628 "uint16_t type");
629 }
630 type = Type(BASE_TYPE_ARRAY, subtype.struct_def, subtype.enum_def,
631 fixed_length);
632 NEXT();
633 } else {
634 type = Type(BASE_TYPE_VECTOR, subtype.struct_def, subtype.enum_def);
635 }
636 type.element = subtype.base_type;
637 EXPECT(']');
638 } else {
639 return Error("illegal type syntax");
640 }
641 return NoError();
642 }
643
AddField(StructDef & struct_def,const std::string & name,const Type & type,FieldDef ** dest)644 CheckedError Parser::AddField(StructDef &struct_def, const std::string &name,
645 const Type &type, FieldDef **dest) {
646 auto &field = *new FieldDef();
647 field.value.offset =
648 FieldIndexToOffset(static_cast<voffset_t>(struct_def.fields.vec.size()));
649 field.name = name;
650 field.file = struct_def.file;
651 field.value.type = type;
652 if (struct_def.fixed) { // statically compute the field offset
653 auto size = InlineSize(type);
654 auto alignment = InlineAlignment(type);
655 // structs_ need to have a predictable format, so we need to align to
656 // the largest scalar
657 struct_def.minalign = std::max(struct_def.minalign, alignment);
658 struct_def.PadLastField(alignment);
659 field.value.offset = static_cast<voffset_t>(struct_def.bytesize);
660 struct_def.bytesize += size;
661 }
662 if (struct_def.fields.Add(name, &field))
663 return Error("field already exists: " + name);
664 *dest = &field;
665 return NoError();
666 }
667
ParseField(StructDef & struct_def)668 CheckedError Parser::ParseField(StructDef &struct_def) {
669 std::string name = attribute_;
670
671 if (LookupCreateStruct(name, false, false))
672 return Error("field name can not be the same as table/struct name");
673
674 std::vector<std::string> dc = doc_comment_;
675 EXPECT(kTokenIdentifier);
676 EXPECT(':');
677 Type type;
678 ECHECK(ParseType(type));
679
680 if (struct_def.fixed && !IsScalar(type.base_type) && !IsStruct(type) &&
681 !IsArray(type))
682 return Error("structs_ may contain only scalar or struct fields");
683
684 if (!struct_def.fixed && IsArray(type))
685 return Error("fixed-length array in table must be wrapped in struct");
686
687 if (IsArray(type) && !SupportsAdvancedArrayFeatures()) {
688 return Error(
689 "Arrays are not yet supported in all "
690 "the specified programming languages.");
691 }
692
693 FieldDef *typefield = nullptr;
694 if (type.base_type == BASE_TYPE_UNION) {
695 // For union fields, add a second auto-generated field to hold the type,
696 // with a special suffix.
697 ECHECK(AddField(struct_def, name + UnionTypeFieldSuffix(),
698 type.enum_def->underlying_type, &typefield));
699 } else if (type.base_type == BASE_TYPE_VECTOR &&
700 type.element == BASE_TYPE_UNION) {
701 // Only cpp, js and ts supports the union vector feature so far.
702 if (!SupportsAdvancedUnionFeatures()) {
703 return Error(
704 "Vectors of unions are not yet supported in all "
705 "the specified programming languages.");
706 }
707 // For vector of union fields, add a second auto-generated vector field to
708 // hold the types, with a special suffix.
709 Type union_vector(BASE_TYPE_VECTOR, nullptr, type.enum_def);
710 union_vector.element = BASE_TYPE_UTYPE;
711 ECHECK(AddField(struct_def, name + UnionTypeFieldSuffix(), union_vector,
712 &typefield));
713 }
714
715 FieldDef *field;
716 ECHECK(AddField(struct_def, name, type, &field));
717
718 if (token_ == '=') {
719 NEXT();
720 ECHECK(ParseSingleValue(&field->name, field->value, true));
721 if (!IsScalar(type.base_type) ||
722 (struct_def.fixed && field->value.constant != "0"))
723 return Error(
724 "default values currently only supported for scalars in tables");
725 }
726 // Append .0 if the value has not it (skip hex and scientific floats).
727 // This suffix needed for generated C++ code.
728 if (IsFloat(type.base_type)) {
729 auto &text = field->value.constant;
730 FLATBUFFERS_ASSERT(false == text.empty());
731 auto s = text.c_str();
732 while (*s == ' ') s++;
733 if (*s == '-' || *s == '+') s++;
734 // 1) A float constants (nan, inf, pi, etc) is a kind of identifier.
735 // 2) A float number needn't ".0" at the end if it has exponent.
736 if ((false == IsIdentifierStart(*s)) &&
737 (std::string::npos == field->value.constant.find_first_of(".eEpP"))) {
738 field->value.constant += ".0";
739 }
740 }
741 if (type.enum_def) {
742 // The type.base_type can only be scalar, union, array or vector.
743 // Table, struct or string can't have enum_def.
744 // Default value of union and vector in NONE, NULL translated to "0".
745 FLATBUFFERS_ASSERT(IsInteger(type.base_type) ||
746 (type.base_type == BASE_TYPE_UNION) ||
747 (type.base_type == BASE_TYPE_VECTOR) ||
748 (type.base_type == BASE_TYPE_ARRAY));
749 if (type.base_type == BASE_TYPE_VECTOR) {
750 // Vector can't use initialization list.
751 FLATBUFFERS_ASSERT(field->value.constant == "0");
752 } else {
753 // All unions should have the NONE ("0") enum value.
754 auto in_enum = type.enum_def->attributes.Lookup("bit_flags") ||
755 type.enum_def->FindByValue(field->value.constant);
756 if (false == in_enum)
757 return Error("default value of " + field->value.constant +
758 " for field " + name + " is not part of enum " +
759 type.enum_def->name);
760 }
761 }
762
763 field->doc_comment = dc;
764 ECHECK(ParseMetaData(&field->attributes));
765 field->deprecated = field->attributes.Lookup("deprecated") != nullptr;
766 auto hash_name = field->attributes.Lookup("hash");
767 if (hash_name) {
768 switch ((type.base_type == BASE_TYPE_VECTOR) ? type.element
769 : type.base_type) {
770 case BASE_TYPE_SHORT:
771 case BASE_TYPE_USHORT: {
772 if (FindHashFunction16(hash_name->constant.c_str()) == nullptr)
773 return Error("Unknown hashing algorithm for 16 bit types: " +
774 hash_name->constant);
775 break;
776 }
777 case BASE_TYPE_INT:
778 case BASE_TYPE_UINT: {
779 if (FindHashFunction32(hash_name->constant.c_str()) == nullptr)
780 return Error("Unknown hashing algorithm for 32 bit types: " +
781 hash_name->constant);
782 break;
783 }
784 case BASE_TYPE_LONG:
785 case BASE_TYPE_ULONG: {
786 if (FindHashFunction64(hash_name->constant.c_str()) == nullptr)
787 return Error("Unknown hashing algorithm for 64 bit types: " +
788 hash_name->constant);
789 break;
790 }
791 default:
792 return Error(
793 "only short, ushort, int, uint, long and ulong data types support "
794 "hashing.");
795 }
796 }
797 auto cpp_type = field->attributes.Lookup("cpp_type");
798 if (cpp_type) {
799 if (!hash_name)
800 return Error("cpp_type can only be used with a hashed field");
801 /// forcing cpp_ptr_type to 'naked' if unset
802 auto cpp_ptr_type = field->attributes.Lookup("cpp_ptr_type");
803 if (!cpp_ptr_type) {
804 auto val = new Value();
805 val->type = cpp_type->type;
806 val->constant = "naked";
807 field->attributes.Add("cpp_ptr_type", val);
808 }
809 }
810 if (field->deprecated && struct_def.fixed)
811 return Error("can't deprecate fields in a struct");
812 field->required = field->attributes.Lookup("required") != nullptr;
813 if (field->required && (struct_def.fixed || IsScalar(type.base_type)))
814 return Error("only non-scalar fields in tables may be 'required'");
815 field->key = field->attributes.Lookup("key") != nullptr;
816 if (field->key) {
817 if (struct_def.has_key) return Error("only one field may be set as 'key'");
818 struct_def.has_key = true;
819 if (!IsScalar(type.base_type)) {
820 field->required = true;
821 if (type.base_type != BASE_TYPE_STRING)
822 return Error("'key' field must be string or scalar type");
823 }
824 }
825 field->shared = field->attributes.Lookup("shared") != nullptr;
826 if (field->shared && field->value.type.base_type != BASE_TYPE_STRING)
827 return Error("shared can only be defined on strings");
828
829 auto field_native_custom_alloc =
830 field->attributes.Lookup("native_custom_alloc");
831 if (field_native_custom_alloc)
832 return Error(
833 "native_custom_alloc can only be used with a table or struct "
834 "definition");
835
836 field->native_inline = field->attributes.Lookup("native_inline") != nullptr;
837 if (field->native_inline && !IsStruct(field->value.type))
838 return Error("native_inline can only be defined on structs");
839
840 auto nested = field->attributes.Lookup("nested_flatbuffer");
841 if (nested) {
842 if (nested->type.base_type != BASE_TYPE_STRING)
843 return Error(
844 "nested_flatbuffer attribute must be a string (the root type)");
845 if (type.base_type != BASE_TYPE_VECTOR || type.element != BASE_TYPE_UCHAR)
846 return Error(
847 "nested_flatbuffer attribute may only apply to a vector of ubyte");
848 // This will cause an error if the root type of the nested flatbuffer
849 // wasn't defined elsewhere.
850 field->nested_flatbuffer = LookupCreateStruct(nested->constant);
851 }
852
853 if (field->attributes.Lookup("flexbuffer")) {
854 field->flexbuffer = true;
855 uses_flexbuffers_ = true;
856 if (type.base_type != BASE_TYPE_VECTOR || type.element != BASE_TYPE_UCHAR)
857 return Error("flexbuffer attribute may only apply to a vector of ubyte");
858 }
859
860 if (typefield) {
861 if (!IsScalar(typefield->value.type.base_type)) {
862 // this is a union vector field
863 typefield->required = field->required;
864 }
865 // If this field is a union, and it has a manually assigned id,
866 // the automatically added type field should have an id as well (of N - 1).
867 auto attr = field->attributes.Lookup("id");
868 if (attr) {
869 auto id = atoi(attr->constant.c_str());
870 auto val = new Value();
871 val->type = attr->type;
872 val->constant = NumToString(id - 1);
873 typefield->attributes.Add("id", val);
874 }
875 }
876
877 EXPECT(';');
878 return NoError();
879 }
880
ParseString(Value & val)881 CheckedError Parser::ParseString(Value &val) {
882 auto s = attribute_;
883 EXPECT(kTokenStringConstant);
884 val.constant = NumToString(builder_.CreateString(s).o);
885 return NoError();
886 }
887
ParseComma()888 CheckedError Parser::ParseComma() {
889 if (!opts.protobuf_ascii_alike) EXPECT(',');
890 return NoError();
891 }
892
ParseAnyValue(Value & val,FieldDef * field,size_t parent_fieldn,const StructDef * parent_struct_def,uoffset_t count,bool inside_vector)893 CheckedError Parser::ParseAnyValue(Value &val, FieldDef *field,
894 size_t parent_fieldn,
895 const StructDef *parent_struct_def,
896 uoffset_t count, bool inside_vector) {
897 switch (val.type.base_type) {
898 case BASE_TYPE_UNION: {
899 FLATBUFFERS_ASSERT(field);
900 std::string constant;
901 Vector<uint8_t> *vector_of_union_types = nullptr;
902 // Find corresponding type field we may have already parsed.
903 for (auto elem = field_stack_.rbegin() + count;
904 elem != field_stack_.rbegin() + parent_fieldn + count; ++elem) {
905 auto &type = elem->second->value.type;
906 if (type.enum_def == val.type.enum_def) {
907 if (inside_vector) {
908 if (type.base_type == BASE_TYPE_VECTOR &&
909 type.element == BASE_TYPE_UTYPE) {
910 // Vector of union type field.
911 uoffset_t offset;
912 ECHECK(atot(elem->first.constant.c_str(), *this, &offset));
913 vector_of_union_types = reinterpret_cast<Vector<uint8_t> *>(
914 builder_.GetCurrentBufferPointer() + builder_.GetSize() -
915 offset);
916 break;
917 }
918 } else {
919 if (type.base_type == BASE_TYPE_UTYPE) {
920 // Union type field.
921 constant = elem->first.constant;
922 break;
923 }
924 }
925 }
926 }
927 if (constant.empty() && !inside_vector) {
928 // We haven't seen the type field yet. Sadly a lot of JSON writers
929 // output these in alphabetical order, meaning it comes after this
930 // value. So we scan past the value to find it, then come back here.
931 // We currently don't do this for vectors of unions because the
932 // scanning/serialization logic would get very complicated.
933 auto type_name = field->name + UnionTypeFieldSuffix();
934 FLATBUFFERS_ASSERT(parent_struct_def);
935 auto type_field = parent_struct_def->fields.Lookup(type_name);
936 FLATBUFFERS_ASSERT(type_field); // Guaranteed by ParseField().
937 // Remember where we are in the source file, so we can come back here.
938 auto backup = *static_cast<ParserState *>(this);
939 ECHECK(SkipAnyJsonValue()); // The table.
940 ECHECK(ParseComma());
941 auto next_name = attribute_;
942 if (Is(kTokenStringConstant)) {
943 NEXT();
944 } else {
945 EXPECT(kTokenIdentifier);
946 }
947 if (next_name == type_name) {
948 EXPECT(':');
949 Value type_val = type_field->value;
950 ECHECK(ParseAnyValue(type_val, type_field, 0, nullptr, 0));
951 constant = type_val.constant;
952 // Got the information we needed, now rewind:
953 *static_cast<ParserState *>(this) = backup;
954 }
955 }
956 if (constant.empty() && !vector_of_union_types) {
957 return Error("missing type field for this union value: " + field->name);
958 }
959 uint8_t enum_idx;
960 if (vector_of_union_types) {
961 enum_idx = vector_of_union_types->Get(count);
962 } else {
963 ECHECK(atot(constant.c_str(), *this, &enum_idx));
964 }
965 auto enum_val = val.type.enum_def->ReverseLookup(enum_idx, true);
966 if (!enum_val) return Error("illegal type id for: " + field->name);
967 if (enum_val->union_type.base_type == BASE_TYPE_STRUCT) {
968 ECHECK(ParseTable(*enum_val->union_type.struct_def, &val.constant,
969 nullptr));
970 if (enum_val->union_type.struct_def->fixed) {
971 // All BASE_TYPE_UNION values are offsets, so turn this into one.
972 SerializeStruct(*enum_val->union_type.struct_def, val);
973 builder_.ClearOffsets();
974 val.constant = NumToString(builder_.GetSize());
975 }
976 } else if (enum_val->union_type.base_type == BASE_TYPE_STRING) {
977 ECHECK(ParseString(val));
978 } else {
979 FLATBUFFERS_ASSERT(false);
980 }
981 break;
982 }
983 case BASE_TYPE_STRUCT:
984 ECHECK(ParseTable(*val.type.struct_def, &val.constant, nullptr));
985 break;
986 case BASE_TYPE_STRING: {
987 ECHECK(ParseString(val));
988 break;
989 }
990 case BASE_TYPE_VECTOR: {
991 uoffset_t off;
992 ECHECK(ParseVector(val.type.VectorType(), &off, field, parent_fieldn));
993 val.constant = NumToString(off);
994 break;
995 }
996 case BASE_TYPE_ARRAY: {
997 ECHECK(ParseArray(val));
998 break;
999 }
1000 case BASE_TYPE_INT:
1001 case BASE_TYPE_UINT:
1002 case BASE_TYPE_LONG:
1003 case BASE_TYPE_ULONG: {
1004 if (field && field->attributes.Lookup("hash") &&
1005 (token_ == kTokenIdentifier || token_ == kTokenStringConstant)) {
1006 ECHECK(ParseHash(val, field));
1007 } else {
1008 ECHECK(ParseSingleValue(field ? &field->name : nullptr, val, false));
1009 }
1010 break;
1011 }
1012 default:
1013 ECHECK(ParseSingleValue(field ? &field->name : nullptr, val, false));
1014 break;
1015 }
1016 return NoError();
1017 }
1018
SerializeStruct(const StructDef & struct_def,const Value & val)1019 void Parser::SerializeStruct(const StructDef &struct_def, const Value &val) {
1020 SerializeStruct(builder_, struct_def, val);
1021 }
1022
SerializeStruct(FlatBufferBuilder & builder,const StructDef & struct_def,const Value & val)1023 void Parser::SerializeStruct(FlatBufferBuilder &builder,
1024 const StructDef &struct_def, const Value &val) {
1025 FLATBUFFERS_ASSERT(val.constant.length() == struct_def.bytesize);
1026 builder.Align(struct_def.minalign);
1027 builder.PushBytes(reinterpret_cast<const uint8_t *>(val.constant.c_str()),
1028 struct_def.bytesize);
1029 builder.AddStructOffset(val.offset, builder.GetSize());
1030 }
1031
1032 template<typename F>
ParseTableDelimiters(size_t & fieldn,const StructDef * struct_def,F body)1033 CheckedError Parser::ParseTableDelimiters(size_t &fieldn,
1034 const StructDef *struct_def, F body) {
1035 // We allow tables both as JSON object{ .. } with field names
1036 // or vector[..] with all fields in order
1037 char terminator = '}';
1038 bool is_nested_vector = struct_def && Is('[');
1039 if (is_nested_vector) {
1040 NEXT();
1041 terminator = ']';
1042 } else {
1043 EXPECT('{');
1044 }
1045 for (;;) {
1046 if ((!opts.strict_json || !fieldn) && Is(terminator)) break;
1047 std::string name;
1048 if (is_nested_vector) {
1049 if (fieldn >= struct_def->fields.vec.size()) {
1050 return Error("too many unnamed fields in nested array");
1051 }
1052 name = struct_def->fields.vec[fieldn]->name;
1053 } else {
1054 name = attribute_;
1055 if (Is(kTokenStringConstant)) {
1056 NEXT();
1057 } else {
1058 EXPECT(opts.strict_json ? kTokenStringConstant : kTokenIdentifier);
1059 }
1060 if (!opts.protobuf_ascii_alike || !(Is('{') || Is('['))) EXPECT(':');
1061 }
1062 ECHECK(body(name, fieldn, struct_def));
1063 if (Is(terminator)) break;
1064 ECHECK(ParseComma());
1065 }
1066 NEXT();
1067 if (is_nested_vector && fieldn != struct_def->fields.vec.size()) {
1068 return Error("wrong number of unnamed fields in table vector");
1069 }
1070 return NoError();
1071 }
1072
ParseTable(const StructDef & struct_def,std::string * value,uoffset_t * ovalue)1073 CheckedError Parser::ParseTable(const StructDef &struct_def, std::string *value,
1074 uoffset_t *ovalue) {
1075 size_t fieldn_outer = 0;
1076 auto err = ParseTableDelimiters(
1077 fieldn_outer, &struct_def,
1078 [&](const std::string &name, size_t &fieldn,
1079 const StructDef *struct_def_inner) -> CheckedError {
1080 if (name == "$schema") {
1081 ECHECK(Expect(kTokenStringConstant));
1082 return NoError();
1083 }
1084 auto field = struct_def_inner->fields.Lookup(name);
1085 if (!field) {
1086 if (!opts.skip_unexpected_fields_in_json) {
1087 return Error("unknown field: " + name);
1088 } else {
1089 ECHECK(SkipAnyJsonValue());
1090 }
1091 } else {
1092 if (IsIdent("null") && !IsScalar(field->value.type.base_type)) {
1093 ECHECK(Next()); // Ignore this field.
1094 } else {
1095 Value val = field->value;
1096 if (field->flexbuffer) {
1097 flexbuffers::Builder builder(1024,
1098 flexbuffers::BUILDER_FLAG_SHARE_ALL);
1099 ECHECK(ParseFlexBufferValue(&builder));
1100 builder.Finish();
1101 // Force alignment for nested flexbuffer
1102 builder_.ForceVectorAlignment(builder.GetSize(), sizeof(uint8_t),
1103 sizeof(largest_scalar_t));
1104 auto off = builder_.CreateVector(builder.GetBuffer());
1105 val.constant = NumToString(off.o);
1106 } else if (field->nested_flatbuffer) {
1107 ECHECK(
1108 ParseNestedFlatbuffer(val, field, fieldn, struct_def_inner));
1109 } else {
1110 ECHECK(Recurse([&]() {
1111 return ParseAnyValue(val, field, fieldn, struct_def_inner, 0);
1112 }));
1113 }
1114 // Hardcoded insertion-sort with error-check.
1115 // If fields are specified in order, then this loop exits
1116 // immediately.
1117 auto elem = field_stack_.rbegin();
1118 for (; elem != field_stack_.rbegin() + fieldn; ++elem) {
1119 auto existing_field = elem->second;
1120 if (existing_field == field)
1121 return Error("field set more than once: " + field->name);
1122 if (existing_field->value.offset < field->value.offset) break;
1123 }
1124 // Note: elem points to before the insertion point, thus .base()
1125 // points to the correct spot.
1126 field_stack_.insert(elem.base(), std::make_pair(val, field));
1127 fieldn++;
1128 }
1129 }
1130 return NoError();
1131 });
1132 ECHECK(err);
1133
1134 // Check if all required fields are parsed.
1135 for (auto field_it = struct_def.fields.vec.begin();
1136 field_it != struct_def.fields.vec.end(); ++field_it) {
1137 auto required_field = *field_it;
1138 if (!required_field->required) { continue; }
1139 bool found = false;
1140 for (auto pf_it = field_stack_.end() - fieldn_outer;
1141 pf_it != field_stack_.end(); ++pf_it) {
1142 auto parsed_field = pf_it->second;
1143 if (parsed_field == required_field) {
1144 found = true;
1145 break;
1146 }
1147 }
1148 if (!found) {
1149 return Error("required field is missing: " + required_field->name +
1150 " in " + struct_def.name);
1151 }
1152 }
1153
1154 if (struct_def.fixed && fieldn_outer != struct_def.fields.vec.size())
1155 return Error("struct: wrong number of initializers: " + struct_def.name);
1156
1157 auto start = struct_def.fixed ? builder_.StartStruct(struct_def.minalign)
1158 : builder_.StartTable();
1159
1160 for (size_t size = struct_def.sortbysize ? sizeof(largest_scalar_t) : 1; size;
1161 size /= 2) {
1162 // Go through elements in reverse, since we're building the data backwards.
1163 for (auto it = field_stack_.rbegin();
1164 it != field_stack_.rbegin() + fieldn_outer; ++it) {
1165 auto &field_value = it->first;
1166 auto field = it->second;
1167 if (!struct_def.sortbysize ||
1168 size == SizeOf(field_value.type.base_type)) {
1169 switch (field_value.type.base_type) {
1170 // clang-format off
1171 #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \
1172 case BASE_TYPE_ ## ENUM: \
1173 builder_.Pad(field->padding); \
1174 if (struct_def.fixed) { \
1175 CTYPE val; \
1176 ECHECK(atot(field_value.constant.c_str(), *this, &val)); \
1177 builder_.PushElement(val); \
1178 } else { \
1179 CTYPE val, valdef; \
1180 ECHECK(atot(field_value.constant.c_str(), *this, &val)); \
1181 ECHECK(atot(field->value.constant.c_str(), *this, &valdef)); \
1182 builder_.AddElement(field_value.offset, val, valdef); \
1183 } \
1184 break;
1185 FLATBUFFERS_GEN_TYPES_SCALAR(FLATBUFFERS_TD)
1186 #undef FLATBUFFERS_TD
1187 #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \
1188 case BASE_TYPE_ ## ENUM: \
1189 builder_.Pad(field->padding); \
1190 if (IsStruct(field->value.type)) { \
1191 SerializeStruct(*field->value.type.struct_def, field_value); \
1192 } else { \
1193 CTYPE val; \
1194 ECHECK(atot(field_value.constant.c_str(), *this, &val)); \
1195 builder_.AddOffset(field_value.offset, val); \
1196 } \
1197 break;
1198 FLATBUFFERS_GEN_TYPES_POINTER(FLATBUFFERS_TD)
1199 #undef FLATBUFFERS_TD
1200 case BASE_TYPE_ARRAY:
1201 builder_.Pad(field->padding);
1202 builder_.PushBytes(
1203 reinterpret_cast<const uint8_t*>(field_value.constant.c_str()),
1204 InlineSize(field_value.type));
1205 break;
1206 // clang-format on
1207 }
1208 }
1209 }
1210 }
1211 for (size_t i = 0; i < fieldn_outer; i++) field_stack_.pop_back();
1212
1213 if (struct_def.fixed) {
1214 builder_.ClearOffsets();
1215 builder_.EndStruct();
1216 FLATBUFFERS_ASSERT(value);
1217 // Temporarily store this struct in the value string, since it is to
1218 // be serialized in-place elsewhere.
1219 value->assign(
1220 reinterpret_cast<const char *>(builder_.GetCurrentBufferPointer()),
1221 struct_def.bytesize);
1222 builder_.PopBytes(struct_def.bytesize);
1223 FLATBUFFERS_ASSERT(!ovalue);
1224 } else {
1225 auto val = builder_.EndTable(start);
1226 if (ovalue) *ovalue = val;
1227 if (value) *value = NumToString(val);
1228 }
1229 return NoError();
1230 }
1231
1232 template<typename F>
ParseVectorDelimiters(uoffset_t & count,F body)1233 CheckedError Parser::ParseVectorDelimiters(uoffset_t &count, F body) {
1234 EXPECT('[');
1235 for (;;) {
1236 if ((!opts.strict_json || !count) && Is(']')) break;
1237 ECHECK(body(count));
1238 count++;
1239 if (Is(']')) break;
1240 ECHECK(ParseComma());
1241 }
1242 NEXT();
1243 return NoError();
1244 }
1245
CompareType(const uint8_t * a,const uint8_t * b,BaseType ftype)1246 static bool CompareType(const uint8_t *a, const uint8_t *b, BaseType ftype) {
1247 switch (ftype) {
1248 #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \
1249 case BASE_TYPE_##ENUM: return ReadScalar<CTYPE>(a) < ReadScalar<CTYPE>(b);
1250 FLATBUFFERS_GEN_TYPES_SCALAR(FLATBUFFERS_TD)
1251 #undef FLATBUFFERS_TD
1252 case BASE_TYPE_STRING:
1253 // Indirect offset pointer to string pointer.
1254 a += ReadScalar<uoffset_t>(a);
1255 b += ReadScalar<uoffset_t>(b);
1256 return *reinterpret_cast<const String *>(a) <
1257 *reinterpret_cast<const String *>(b);
1258 default: return false;
1259 }
1260 }
1261
1262 // See below for why we need our own sort :(
1263 template<typename T, typename F, typename S>
SimpleQsort(T * begin,T * end,size_t width,F comparator,S swapper)1264 void SimpleQsort(T *begin, T *end, size_t width, F comparator, S swapper) {
1265 if (end - begin <= static_cast<ptrdiff_t>(width)) return;
1266 auto l = begin + width;
1267 auto r = end;
1268 while (l < r) {
1269 if (comparator(begin, l)) {
1270 r -= width;
1271 swapper(l, r);
1272 } else {
1273 l++;
1274 }
1275 }
1276 l -= width;
1277 swapper(begin, l);
1278 SimpleQsort(begin, l, width, comparator, swapper);
1279 SimpleQsort(r, end, width, comparator, swapper);
1280 }
1281
ParseVector(const Type & type,uoffset_t * ovalue,FieldDef * field,size_t fieldn)1282 CheckedError Parser::ParseVector(const Type &type, uoffset_t *ovalue,
1283 FieldDef *field, size_t fieldn) {
1284 uoffset_t count = 0;
1285 auto err = ParseVectorDelimiters(count, [&](uoffset_t &) -> CheckedError {
1286 Value val;
1287 val.type = type;
1288 ECHECK(Recurse([&]() {
1289 return ParseAnyValue(val, field, fieldn, nullptr, count, true);
1290 }));
1291 field_stack_.push_back(std::make_pair(val, nullptr));
1292 return NoError();
1293 });
1294 ECHECK(err);
1295
1296 const auto *force_align = field->attributes.Lookup("force_align");
1297 const size_t align =
1298 force_align ? static_cast<size_t>(atoi(force_align->constant.c_str()))
1299 : 1;
1300 const size_t len = count * InlineSize(type) / InlineAlignment(type);
1301 const size_t elemsize = InlineAlignment(type);
1302 if (align > 1) { builder_.ForceVectorAlignment(len, elemsize, align); }
1303
1304 builder_.StartVector(len, elemsize);
1305 for (uoffset_t i = 0; i < count; i++) {
1306 // start at the back, since we're building the data backwards.
1307 auto &val = field_stack_.back().first;
1308 switch (val.type.base_type) {
1309 // clang-format off
1310 #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE,...) \
1311 case BASE_TYPE_ ## ENUM: \
1312 if (IsStruct(val.type)) SerializeStruct(*val.type.struct_def, val); \
1313 else { \
1314 CTYPE elem; \
1315 ECHECK(atot(val.constant.c_str(), *this, &elem)); \
1316 builder_.PushElement(elem); \
1317 } \
1318 break;
1319 FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
1320 #undef FLATBUFFERS_TD
1321 // clang-format on
1322 }
1323 field_stack_.pop_back();
1324 }
1325
1326 builder_.ClearOffsets();
1327 *ovalue = builder_.EndVector(count);
1328
1329 if (type.base_type == BASE_TYPE_STRUCT && type.struct_def->has_key) {
1330 // We should sort this vector. Find the key first.
1331 const FieldDef *key = nullptr;
1332 for (auto it = type.struct_def->fields.vec.begin();
1333 it != type.struct_def->fields.vec.end(); ++it) {
1334 if ((*it)->key) {
1335 key = (*it);
1336 break;
1337 }
1338 }
1339 FLATBUFFERS_ASSERT(key);
1340 // Now sort it.
1341 // We can't use std::sort because for structs the size is not known at
1342 // compile time, and for tables our iterators dereference offsets, so can't
1343 // be used to swap elements.
1344 // And we can't use C qsort either, since that would force use to use
1345 // globals, making parsing thread-unsafe.
1346 // So for now, we use SimpleQsort above.
1347 // TODO: replace with something better, preferably not recursive.
1348 static voffset_t offset = key->value.offset;
1349 static BaseType ftype = key->value.type.base_type;
1350
1351 if (type.struct_def->fixed) {
1352 auto v =
1353 reinterpret_cast<VectorOfAny *>(builder_.GetCurrentBufferPointer());
1354 SimpleQsort<uint8_t>(
1355 v->Data(), v->Data() + v->size() * type.struct_def->bytesize,
1356 type.struct_def->bytesize,
1357 [](const uint8_t *a, const uint8_t *b) -> bool {
1358 return CompareType(a + offset, b + offset, ftype);
1359 },
1360 [&](uint8_t *a, uint8_t *b) {
1361 // FIXME: faster?
1362 for (size_t i = 0; i < type.struct_def->bytesize; i++) {
1363 std::swap(a[i], b[i]);
1364 }
1365 });
1366 } else {
1367 auto v = reinterpret_cast<Vector<Offset<Table>> *>(
1368 builder_.GetCurrentBufferPointer());
1369 // Here also can't use std::sort. We do have an iterator type for it,
1370 // but it is non-standard as it will dereference the offsets, and thus
1371 // can't be used to swap elements.
1372 SimpleQsort<Offset<Table>>(
1373 v->data(), v->data() + v->size(), 1,
1374 [](const Offset<Table> *_a, const Offset<Table> *_b) -> bool {
1375 // Indirect offset pointer to table pointer.
1376 auto a = reinterpret_cast<const uint8_t *>(_a) +
1377 ReadScalar<uoffset_t>(_a);
1378 auto b = reinterpret_cast<const uint8_t *>(_b) +
1379 ReadScalar<uoffset_t>(_b);
1380 // Fetch field address from table.
1381 a = reinterpret_cast<const Table *>(a)->GetAddressOf(offset);
1382 b = reinterpret_cast<const Table *>(b)->GetAddressOf(offset);
1383 return CompareType(a, b, ftype);
1384 },
1385 [&](Offset<Table> *a, Offset<Table> *b) {
1386 // These are serialized offsets, so are relative where they are
1387 // stored in memory, so compute the distance between these pointers:
1388 ptrdiff_t diff = (b - a) * sizeof(Offset<Table>);
1389 FLATBUFFERS_ASSERT(diff >= 0); // Guaranteed by SimpleQsort.
1390 auto udiff = static_cast<uoffset_t>(diff);
1391 a->o = EndianScalar(ReadScalar<uoffset_t>(a) - udiff);
1392 b->o = EndianScalar(ReadScalar<uoffset_t>(b) + udiff);
1393 std::swap(*a, *b);
1394 });
1395 }
1396 }
1397 return NoError();
1398 }
1399
ParseArray(Value & array)1400 CheckedError Parser::ParseArray(Value &array) {
1401 std::vector<Value> stack;
1402 FlatBufferBuilder builder;
1403 const auto &type = array.type.VectorType();
1404 auto length = array.type.fixed_length;
1405 uoffset_t count = 0;
1406 auto err = ParseVectorDelimiters(count, [&](uoffset_t &) -> CheckedError {
1407 vector_emplace_back(&stack, Value());
1408 auto &val = stack.back();
1409 val.type = type;
1410 if (IsStruct(type)) {
1411 ECHECK(ParseTable(*val.type.struct_def, &val.constant, nullptr));
1412 } else {
1413 ECHECK(ParseSingleValue(nullptr, val, false));
1414 }
1415 return NoError();
1416 });
1417 ECHECK(err);
1418 if (length != count) return Error("Fixed-length array size is incorrect.");
1419
1420 for (auto it = stack.rbegin(); it != stack.rend(); ++it) {
1421 auto &val = *it;
1422 // clang-format off
1423 switch (val.type.base_type) {
1424 #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \
1425 case BASE_TYPE_ ## ENUM: \
1426 if (IsStruct(val.type)) { \
1427 SerializeStruct(builder, *val.type.struct_def, val); \
1428 } else { \
1429 CTYPE elem; \
1430 ECHECK(atot(val.constant.c_str(), *this, &elem)); \
1431 builder.PushElement(elem); \
1432 } \
1433 break;
1434 FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
1435 #undef FLATBUFFERS_TD
1436 default: FLATBUFFERS_ASSERT(0);
1437 }
1438 // clang-format on
1439 }
1440
1441 array.constant.assign(
1442 reinterpret_cast<const char *>(builder.GetCurrentBufferPointer()),
1443 InlineSize(array.type));
1444 return NoError();
1445 }
1446
ParseNestedFlatbuffer(Value & val,FieldDef * field,size_t fieldn,const StructDef * parent_struct_def)1447 CheckedError Parser::ParseNestedFlatbuffer(Value &val, FieldDef *field,
1448 size_t fieldn,
1449 const StructDef *parent_struct_def) {
1450 if (token_ == '[') { // backwards compat for 'legacy' ubyte buffers
1451 ECHECK(ParseAnyValue(val, field, fieldn, parent_struct_def, 0));
1452 } else {
1453 auto cursor_at_value_begin = cursor_;
1454 ECHECK(SkipAnyJsonValue());
1455 std::string substring(cursor_at_value_begin - 1, cursor_ - 1);
1456
1457 // Create and initialize new parser
1458 Parser nested_parser;
1459 FLATBUFFERS_ASSERT(field->nested_flatbuffer);
1460 nested_parser.root_struct_def_ = field->nested_flatbuffer;
1461 nested_parser.enums_ = enums_;
1462 nested_parser.opts = opts;
1463 nested_parser.uses_flexbuffers_ = uses_flexbuffers_;
1464
1465 // Parse JSON substring into new flatbuffer builder using nested_parser
1466 bool ok = nested_parser.Parse(substring.c_str(), nullptr, nullptr);
1467
1468 // Clean nested_parser to avoid deleting the elements in
1469 // the SymbolTables on destruction
1470 nested_parser.enums_.dict.clear();
1471 nested_parser.enums_.vec.clear();
1472
1473 if (!ok) { ECHECK(Error(nested_parser.error_)); }
1474 // Force alignment for nested flatbuffer
1475 builder_.ForceVectorAlignment(
1476 nested_parser.builder_.GetSize(), sizeof(uint8_t),
1477 nested_parser.builder_.GetBufferMinAlignment());
1478
1479 auto off = builder_.CreateVector(nested_parser.builder_.GetBufferPointer(),
1480 nested_parser.builder_.GetSize());
1481 val.constant = NumToString(off.o);
1482 }
1483 return NoError();
1484 }
1485
ParseMetaData(SymbolTable<Value> * attributes)1486 CheckedError Parser::ParseMetaData(SymbolTable<Value> *attributes) {
1487 if (Is('(')) {
1488 NEXT();
1489 for (;;) {
1490 auto name = attribute_;
1491 if (false == (Is(kTokenIdentifier) || Is(kTokenStringConstant)))
1492 return Error("attribute name must be either identifier or string: " +
1493 name);
1494 if (known_attributes_.find(name) == known_attributes_.end())
1495 return Error("user define attributes must be declared before use: " +
1496 name);
1497 NEXT();
1498 auto e = new Value();
1499 attributes->Add(name, e);
1500 if (Is(':')) {
1501 NEXT();
1502 ECHECK(ParseSingleValue(&name, *e, true));
1503 }
1504 if (Is(')')) {
1505 NEXT();
1506 break;
1507 }
1508 EXPECT(',');
1509 }
1510 }
1511 return NoError();
1512 }
1513
TryTypedValue(const std::string * name,int dtoken,bool check,Value & e,BaseType req,bool * destmatch)1514 CheckedError Parser::TryTypedValue(const std::string *name, int dtoken,
1515 bool check, Value &e, BaseType req,
1516 bool *destmatch) {
1517 bool match = dtoken == token_;
1518 if (match) {
1519 FLATBUFFERS_ASSERT(*destmatch == false);
1520 *destmatch = true;
1521 e.constant = attribute_;
1522 // Check token match
1523 if (!check) {
1524 if (e.type.base_type == BASE_TYPE_NONE) {
1525 e.type.base_type = req;
1526 } else {
1527 return Error(
1528 std::string("type mismatch: expecting: ") +
1529 kTypeNames[e.type.base_type] + ", found: " + kTypeNames[req] +
1530 ", name: " + (name ? *name : "") + ", value: " + e.constant);
1531 }
1532 }
1533 // The exponent suffix of hexadecimal float-point number is mandatory.
1534 // A hex-integer constant is forbidden as an initializer of float number.
1535 if ((kTokenFloatConstant != dtoken) && IsFloat(e.type.base_type)) {
1536 const auto &s = e.constant;
1537 const auto k = s.find_first_of("0123456789.");
1538 if ((std::string::npos != k) && (s.length() > (k + 1)) &&
1539 (s[k] == '0' && is_alpha_char(s[k + 1], 'X')) &&
1540 (std::string::npos == s.find_first_of("pP", k + 2))) {
1541 return Error(
1542 "invalid number, the exponent suffix of hexadecimal "
1543 "floating-point literals is mandatory: \"" +
1544 s + "\"");
1545 }
1546 }
1547
1548 NEXT();
1549 }
1550 return NoError();
1551 }
1552
ParseEnumFromString(const Type & type,std::string * result)1553 CheckedError Parser::ParseEnumFromString(const Type &type,
1554 std::string *result) {
1555 const auto base_type =
1556 type.enum_def ? type.enum_def->underlying_type.base_type : type.base_type;
1557 if (!IsInteger(base_type)) return Error("not a valid value for this field");
1558 uint64_t u64 = 0;
1559 for (size_t pos = 0; pos != std::string::npos;) {
1560 const auto delim = attribute_.find_first_of(' ', pos);
1561 const auto last = (std::string::npos == delim);
1562 auto word = attribute_.substr(pos, !last ? delim - pos : std::string::npos);
1563 pos = !last ? delim + 1 : std::string::npos;
1564 const EnumVal *ev = nullptr;
1565 if (type.enum_def) {
1566 ev = type.enum_def->Lookup(word);
1567 } else {
1568 auto dot = word.find_first_of('.');
1569 if (std::string::npos == dot)
1570 return Error("enum values need to be qualified by an enum type");
1571 auto enum_def_str = word.substr(0, dot);
1572 const auto enum_def = LookupEnum(enum_def_str);
1573 if (!enum_def) return Error("unknown enum: " + enum_def_str);
1574 auto enum_val_str = word.substr(dot + 1);
1575 ev = enum_def->Lookup(enum_val_str);
1576 }
1577 if (!ev) return Error("unknown enum value: " + word);
1578 u64 |= ev->GetAsUInt64();
1579 }
1580 *result = IsUnsigned(base_type) ? NumToString(u64)
1581 : NumToString(static_cast<int64_t>(u64));
1582 return NoError();
1583 }
1584
ParseHash(Value & e,FieldDef * field)1585 CheckedError Parser::ParseHash(Value &e, FieldDef *field) {
1586 FLATBUFFERS_ASSERT(field);
1587 Value *hash_name = field->attributes.Lookup("hash");
1588 switch (e.type.base_type) {
1589 case BASE_TYPE_SHORT: {
1590 auto hash = FindHashFunction16(hash_name->constant.c_str());
1591 int16_t hashed_value = static_cast<int16_t>(hash(attribute_.c_str()));
1592 e.constant = NumToString(hashed_value);
1593 break;
1594 }
1595 case BASE_TYPE_USHORT: {
1596 auto hash = FindHashFunction16(hash_name->constant.c_str());
1597 uint16_t hashed_value = hash(attribute_.c_str());
1598 e.constant = NumToString(hashed_value);
1599 break;
1600 }
1601 case BASE_TYPE_INT: {
1602 auto hash = FindHashFunction32(hash_name->constant.c_str());
1603 int32_t hashed_value = static_cast<int32_t>(hash(attribute_.c_str()));
1604 e.constant = NumToString(hashed_value);
1605 break;
1606 }
1607 case BASE_TYPE_UINT: {
1608 auto hash = FindHashFunction32(hash_name->constant.c_str());
1609 uint32_t hashed_value = hash(attribute_.c_str());
1610 e.constant = NumToString(hashed_value);
1611 break;
1612 }
1613 case BASE_TYPE_LONG: {
1614 auto hash = FindHashFunction64(hash_name->constant.c_str());
1615 int64_t hashed_value = static_cast<int64_t>(hash(attribute_.c_str()));
1616 e.constant = NumToString(hashed_value);
1617 break;
1618 }
1619 case BASE_TYPE_ULONG: {
1620 auto hash = FindHashFunction64(hash_name->constant.c_str());
1621 uint64_t hashed_value = hash(attribute_.c_str());
1622 e.constant = NumToString(hashed_value);
1623 break;
1624 }
1625 default: FLATBUFFERS_ASSERT(0);
1626 }
1627 NEXT();
1628 return NoError();
1629 }
1630
TokenError()1631 CheckedError Parser::TokenError() {
1632 return Error("cannot parse value starting with: " + TokenToStringId(token_));
1633 }
1634
1635 // Re-pack helper (ParseSingleValue) to normalize defaults of scalars.
SingleValueRepack(Value & e,T val)1636 template<typename T> inline void SingleValueRepack(Value &e, T val) {
1637 // Remove leading zeros.
1638 if (IsInteger(e.type.base_type)) { e.constant = NumToString(val); }
1639 }
1640 #if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
1641 // Normilaze defaults NaN to unsigned quiet-NaN(0).
SingleValueRepack(Value & e,float val)1642 static inline void SingleValueRepack(Value &e, float val) {
1643 if (val != val) e.constant = "nan";
1644 }
SingleValueRepack(Value & e,double val)1645 static inline void SingleValueRepack(Value &e, double val) {
1646 if (val != val) e.constant = "nan";
1647 }
1648 #endif
1649
ParseSingleValue(const std::string * name,Value & e,bool check_now)1650 CheckedError Parser::ParseSingleValue(const std::string *name, Value &e,
1651 bool check_now) {
1652 // First see if this could be a conversion function:
1653 if (token_ == kTokenIdentifier && *cursor_ == '(') {
1654 // todo: Extract processing of conversion functions to ParseFunction.
1655 const auto functionname = attribute_;
1656 if (!IsFloat(e.type.base_type)) {
1657 return Error(functionname + ": type of argument mismatch, expecting: " +
1658 kTypeNames[BASE_TYPE_DOUBLE] +
1659 ", found: " + kTypeNames[e.type.base_type] +
1660 ", name: " + (name ? *name : "") + ", value: " + e.constant);
1661 }
1662 NEXT();
1663 EXPECT('(');
1664 ECHECK(Recurse([&]() { return ParseSingleValue(name, e, false); }));
1665 EXPECT(')');
1666 // calculate with double precision
1667 double x, y = 0.0;
1668 ECHECK(atot(e.constant.c_str(), *this, &x));
1669 auto func_match = false;
1670 // clang-format off
1671 #define FLATBUFFERS_FN_DOUBLE(name, op) \
1672 if (!func_match && functionname == name) { y = op; func_match = true; }
1673 FLATBUFFERS_FN_DOUBLE("deg", x / kPi * 180);
1674 FLATBUFFERS_FN_DOUBLE("rad", x * kPi / 180);
1675 FLATBUFFERS_FN_DOUBLE("sin", sin(x));
1676 FLATBUFFERS_FN_DOUBLE("cos", cos(x));
1677 FLATBUFFERS_FN_DOUBLE("tan", tan(x));
1678 FLATBUFFERS_FN_DOUBLE("asin", asin(x));
1679 FLATBUFFERS_FN_DOUBLE("acos", acos(x));
1680 FLATBUFFERS_FN_DOUBLE("atan", atan(x));
1681 // TODO(wvo): add more useful conversion functions here.
1682 #undef FLATBUFFERS_FN_DOUBLE
1683 // clang-format on
1684 if (true != func_match) {
1685 return Error(std::string("Unknown conversion function: ") + functionname +
1686 ", field name: " + (name ? *name : "") +
1687 ", value: " + e.constant);
1688 }
1689 e.constant = NumToString(y);
1690 return NoError();
1691 }
1692
1693 auto match = false;
1694 const auto in_type = e.type.base_type;
1695 // clang-format off
1696 #define IF_ECHECK_(force, dtoken, check, req) \
1697 if (!match && ((check) || IsConstTrue(force))) \
1698 ECHECK(TryTypedValue(name, dtoken, check, e, req, &match))
1699 #define TRY_ECHECK(dtoken, check, req) IF_ECHECK_(false, dtoken, check, req)
1700 #define FORCE_ECHECK(dtoken, check, req) IF_ECHECK_(true, dtoken, check, req)
1701 // clang-format on
1702
1703 if (token_ == kTokenStringConstant || token_ == kTokenIdentifier) {
1704 const auto kTokenStringOrIdent = token_;
1705 // The string type is a most probable type, check it first.
1706 TRY_ECHECK(kTokenStringConstant, in_type == BASE_TYPE_STRING,
1707 BASE_TYPE_STRING);
1708
1709 // avoid escaped and non-ascii in the string
1710 if (!match && (token_ == kTokenStringConstant) && IsScalar(in_type) &&
1711 !attr_is_trivial_ascii_string_) {
1712 return Error(
1713 std::string("type mismatch or invalid value, an initializer of "
1714 "non-string field must be trivial ASCII string: type: ") +
1715 kTypeNames[in_type] + ", name: " + (name ? *name : "") +
1716 ", value: " + attribute_);
1717 }
1718
1719 // A boolean as true/false. Boolean as Integer check below.
1720 if (!match && IsBool(in_type)) {
1721 auto is_true = attribute_ == "true";
1722 if (is_true || attribute_ == "false") {
1723 attribute_ = is_true ? "1" : "0";
1724 // accepts both kTokenStringConstant and kTokenIdentifier
1725 TRY_ECHECK(kTokenStringOrIdent, IsBool(in_type), BASE_TYPE_BOOL);
1726 }
1727 }
1728 // Check if this could be a string/identifier enum value.
1729 // Enum can have only true integer base type.
1730 if (!match && IsInteger(in_type) && !IsBool(in_type) &&
1731 IsIdentifierStart(*attribute_.c_str())) {
1732 ECHECK(ParseEnumFromString(e.type, &e.constant));
1733 NEXT();
1734 match = true;
1735 }
1736 // Parse a float/integer number from the string.
1737 if (!match) check_now = true; // Re-pack if parsed from string literal.
1738 if (!match && (token_ == kTokenStringConstant) && IsScalar(in_type)) {
1739 // remove trailing whitespaces from attribute_
1740 auto last = attribute_.find_last_not_of(' ');
1741 if (std::string::npos != last) // has non-whitespace
1742 attribute_.resize(last + 1);
1743 }
1744 // Float numbers or nan, inf, pi, etc.
1745 TRY_ECHECK(kTokenStringOrIdent, IsFloat(in_type), BASE_TYPE_FLOAT);
1746 // An integer constant in string.
1747 TRY_ECHECK(kTokenStringOrIdent, IsInteger(in_type), BASE_TYPE_INT);
1748 // Unknown tokens will be interpreted as string type.
1749 // An attribute value may be a scalar or string constant.
1750 FORCE_ECHECK(kTokenStringConstant, in_type == BASE_TYPE_STRING,
1751 BASE_TYPE_STRING);
1752 } else {
1753 // Try a float number.
1754 TRY_ECHECK(kTokenFloatConstant, IsFloat(in_type), BASE_TYPE_FLOAT);
1755 // Integer token can init any scalar (integer of float).
1756 FORCE_ECHECK(kTokenIntegerConstant, IsScalar(in_type), BASE_TYPE_INT);
1757 }
1758 #undef FORCE_ECHECK
1759 #undef TRY_ECHECK
1760 #undef IF_ECHECK_
1761
1762 if (!match) {
1763 std::string msg;
1764 msg += "Cannot assign token starting with '" + TokenToStringId(token_) +
1765 "' to value of <" + std::string(kTypeNames[in_type]) + "> type.";
1766 return Error(msg);
1767 }
1768 const auto match_type = e.type.base_type; // may differ from in_type
1769 // The check_now flag must be true when parse a fbs-schema.
1770 // This flag forces to check default scalar values or metadata of field.
1771 // For JSON parser the flag should be false.
1772 // If it is set for JSON each value will be checked twice (see ParseTable).
1773 if (check_now && IsScalar(match_type)) {
1774 // clang-format off
1775 switch (match_type) {
1776 #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \
1777 case BASE_TYPE_ ## ENUM: {\
1778 CTYPE val; \
1779 ECHECK(atot(e.constant.c_str(), *this, &val)); \
1780 SingleValueRepack(e, val); \
1781 break; }
1782 FLATBUFFERS_GEN_TYPES_SCALAR(FLATBUFFERS_TD)
1783 #undef FLATBUFFERS_TD
1784 default: break;
1785 }
1786 // clang-format on
1787 }
1788 return NoError();
1789 }
1790
LookupCreateStruct(const std::string & name,bool create_if_new,bool definition)1791 StructDef *Parser::LookupCreateStruct(const std::string &name,
1792 bool create_if_new, bool definition) {
1793 std::string qualified_name = current_namespace_->GetFullyQualifiedName(name);
1794 // See if it exists pre-declared by an unqualified use.
1795 auto struct_def = LookupStruct(name);
1796 if (struct_def && struct_def->predecl) {
1797 if (definition) {
1798 // Make sure it has the current namespace, and is registered under its
1799 // qualified name.
1800 struct_def->defined_namespace = current_namespace_;
1801 structs_.Move(name, qualified_name);
1802 }
1803 return struct_def;
1804 }
1805 // See if it exists pre-declared by an qualified use.
1806 struct_def = LookupStruct(qualified_name);
1807 if (struct_def && struct_def->predecl) {
1808 if (definition) {
1809 // Make sure it has the current namespace.
1810 struct_def->defined_namespace = current_namespace_;
1811 }
1812 return struct_def;
1813 }
1814 if (!definition) {
1815 // Search thru parent namespaces.
1816 for (size_t components = current_namespace_->components.size();
1817 components && !struct_def; components--) {
1818 struct_def = LookupStruct(
1819 current_namespace_->GetFullyQualifiedName(name, components - 1));
1820 }
1821 }
1822 if (!struct_def && create_if_new) {
1823 struct_def = new StructDef();
1824 if (definition) {
1825 structs_.Add(qualified_name, struct_def);
1826 struct_def->name = name;
1827 struct_def->defined_namespace = current_namespace_;
1828 } else {
1829 // Not a definition.
1830 // Rather than failing, we create a "pre declared" StructDef, due to
1831 // circular references, and check for errors at the end of parsing.
1832 // It is defined in the current namespace, as the best guess what the
1833 // final namespace will be.
1834 structs_.Add(name, struct_def);
1835 struct_def->name = name;
1836 struct_def->defined_namespace = current_namespace_;
1837 struct_def->original_location.reset(
1838 new std::string(file_being_parsed_ + ":" + NumToString(line_)));
1839 }
1840 }
1841 return struct_def;
1842 }
1843
MinValue() const1844 const EnumVal *EnumDef::MinValue() const {
1845 return vals.vec.empty() ? nullptr : vals.vec.front();
1846 }
MaxValue() const1847 const EnumVal *EnumDef::MaxValue() const {
1848 return vals.vec.empty() ? nullptr : vals.vec.back();
1849 }
1850
EnumDistanceImpl(T e1,T e2)1851 template<typename T> static uint64_t EnumDistanceImpl(T e1, T e2) {
1852 if (e1 < e2) { std::swap(e1, e2); } // use std for scalars
1853 // Signed overflow may occur, use unsigned calculation.
1854 // The unsigned overflow is well-defined by C++ standard (modulo 2^n).
1855 return static_cast<uint64_t>(e1) - static_cast<uint64_t>(e2);
1856 }
1857
Distance(const EnumVal * v1,const EnumVal * v2) const1858 uint64_t EnumDef::Distance(const EnumVal *v1, const EnumVal *v2) const {
1859 return IsUInt64() ? EnumDistanceImpl(v1->GetAsUInt64(), v2->GetAsUInt64())
1860 : EnumDistanceImpl(v1->GetAsInt64(), v2->GetAsInt64());
1861 }
1862
AllFlags() const1863 std::string EnumDef::AllFlags() const {
1864 FLATBUFFERS_ASSERT(attributes.Lookup("bit_flags"));
1865 uint64_t u64 = 0;
1866 for (auto it = Vals().begin(); it != Vals().end(); ++it) {
1867 u64 |= (*it)->GetAsUInt64();
1868 }
1869 return IsUInt64() ? NumToString(u64) : NumToString(static_cast<int64_t>(u64));
1870 }
1871
ReverseLookup(int64_t enum_idx,bool skip_union_default) const1872 EnumVal *EnumDef::ReverseLookup(int64_t enum_idx,
1873 bool skip_union_default) const {
1874 auto skip_first = static_cast<int>(is_union && skip_union_default);
1875 for (auto it = Vals().begin() + skip_first; it != Vals().end(); ++it) {
1876 if ((*it)->GetAsInt64() == enum_idx) { return *it; }
1877 }
1878 return nullptr;
1879 }
1880
FindByValue(const std::string & constant) const1881 EnumVal *EnumDef::FindByValue(const std::string &constant) const {
1882 int64_t i64;
1883 auto done = false;
1884 if (IsUInt64()) {
1885 uint64_t u64; // avoid reinterpret_cast of pointers
1886 done = StringToNumber(constant.c_str(), &u64);
1887 i64 = static_cast<int64_t>(u64);
1888 } else {
1889 done = StringToNumber(constant.c_str(), &i64);
1890 }
1891 FLATBUFFERS_ASSERT(done);
1892 if (!done) return nullptr;
1893 return ReverseLookup(i64, false);
1894 }
1895
SortByValue()1896 void EnumDef::SortByValue() {
1897 auto &v = vals.vec;
1898 if (IsUInt64())
1899 std::sort(v.begin(), v.end(), [](const EnumVal *e1, const EnumVal *e2) {
1900 return e1->GetAsUInt64() < e2->GetAsUInt64();
1901 });
1902 else
1903 std::sort(v.begin(), v.end(), [](const EnumVal *e1, const EnumVal *e2) {
1904 return e1->GetAsInt64() < e2->GetAsInt64();
1905 });
1906 }
1907
RemoveDuplicates()1908 void EnumDef::RemoveDuplicates() {
1909 // This method depends form SymbolTable implementation!
1910 // 1) vals.vec - owner (raw pointer)
1911 // 2) vals.dict - access map
1912 auto first = vals.vec.begin();
1913 auto last = vals.vec.end();
1914 if (first == last) return;
1915 auto result = first;
1916 while (++first != last) {
1917 if ((*result)->value != (*first)->value) {
1918 *(++result) = *first;
1919 } else {
1920 auto ev = *first;
1921 for (auto it = vals.dict.begin(); it != vals.dict.end(); ++it) {
1922 if (it->second == ev) it->second = *result; // reassign
1923 }
1924 delete ev; // delete enum value
1925 *first = nullptr;
1926 }
1927 }
1928 vals.vec.erase(++result, last);
1929 }
1930
ChangeEnumValue(EnumVal * ev,T new_value)1931 template<typename T> void EnumDef::ChangeEnumValue(EnumVal *ev, T new_value) {
1932 ev->value = static_cast<int64_t>(new_value);
1933 }
1934
1935 namespace EnumHelper {
1936 template<BaseType E> struct EnumValType { typedef int64_t type; };
1937 template<> struct EnumValType<BASE_TYPE_ULONG> { typedef uint64_t type; };
1938 } // namespace EnumHelper
1939
1940 struct EnumValBuilder {
CreateEnumeratorflatbuffers::EnumValBuilder1941 EnumVal *CreateEnumerator(const std::string &ev_name) {
1942 FLATBUFFERS_ASSERT(!temp);
1943 auto first = enum_def.vals.vec.empty();
1944 user_value = first;
1945 temp = new EnumVal(ev_name, first ? 0 : enum_def.vals.vec.back()->value);
1946 return temp;
1947 }
1948
CreateEnumeratorflatbuffers::EnumValBuilder1949 EnumVal *CreateEnumerator(const std::string &ev_name, int64_t val) {
1950 FLATBUFFERS_ASSERT(!temp);
1951 user_value = true;
1952 temp = new EnumVal(ev_name, val);
1953 return temp;
1954 }
1955
AcceptEnumeratorflatbuffers::EnumValBuilder1956 FLATBUFFERS_CHECKED_ERROR AcceptEnumerator(const std::string &name) {
1957 FLATBUFFERS_ASSERT(temp);
1958 ECHECK(ValidateValue(&temp->value, false == user_value));
1959 FLATBUFFERS_ASSERT((temp->union_type.enum_def == nullptr) ||
1960 (temp->union_type.enum_def == &enum_def));
1961 auto not_unique = enum_def.vals.Add(name, temp);
1962 temp = nullptr;
1963 if (not_unique) return parser.Error("enum value already exists: " + name);
1964 return NoError();
1965 }
1966
AcceptEnumeratorflatbuffers::EnumValBuilder1967 FLATBUFFERS_CHECKED_ERROR AcceptEnumerator() {
1968 return AcceptEnumerator(temp->name);
1969 }
1970
AssignEnumeratorValueflatbuffers::EnumValBuilder1971 FLATBUFFERS_CHECKED_ERROR AssignEnumeratorValue(const std::string &value) {
1972 user_value = true;
1973 auto fit = false;
1974 auto ascending = false;
1975 if (enum_def.IsUInt64()) {
1976 uint64_t u64;
1977 fit = StringToNumber(value.c_str(), &u64);
1978 ascending = u64 > temp->GetAsUInt64();
1979 temp->value = static_cast<int64_t>(u64); // well-defined since C++20.
1980 } else {
1981 int64_t i64;
1982 fit = StringToNumber(value.c_str(), &i64);
1983 ascending = i64 > temp->GetAsInt64();
1984 temp->value = i64;
1985 }
1986 if (!fit) return parser.Error("enum value does not fit, \"" + value + "\"");
1987 if (!ascending && strict_ascending && !enum_def.vals.vec.empty())
1988 return parser.Error("enum values must be specified in ascending order");
1989 return NoError();
1990 }
1991
1992 template<BaseType E, typename CTYPE>
ValidateImplflatbuffers::EnumValBuilder1993 inline FLATBUFFERS_CHECKED_ERROR ValidateImpl(int64_t *ev, int m) {
1994 typedef typename EnumHelper::EnumValType<E>::type T; // int64_t or uint64_t
1995 static_assert(sizeof(T) == sizeof(int64_t), "invalid EnumValType");
1996 const auto v = static_cast<T>(*ev);
1997 auto up = static_cast<T>((flatbuffers::numeric_limits<CTYPE>::max)());
1998 auto dn = static_cast<T>((flatbuffers::numeric_limits<CTYPE>::lowest)());
1999 if (v < dn || v > (up - m)) {
2000 return parser.Error("enum value does not fit, \"" + NumToString(v) +
2001 (m ? " + 1\"" : "\"") + " out of " +
2002 TypeToIntervalString<CTYPE>());
2003 }
2004 *ev = static_cast<int64_t>(v + m); // well-defined since C++20.
2005 return NoError();
2006 }
2007
ValidateValueflatbuffers::EnumValBuilder2008 FLATBUFFERS_CHECKED_ERROR ValidateValue(int64_t *ev, bool next) {
2009 // clang-format off
2010 switch (enum_def.underlying_type.base_type) {
2011 #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, ...) \
2012 case BASE_TYPE_##ENUM: { \
2013 if (!IsInteger(BASE_TYPE_##ENUM)) break; \
2014 return ValidateImpl<BASE_TYPE_##ENUM, CTYPE>(ev, next ? 1 : 0); \
2015 }
2016 FLATBUFFERS_GEN_TYPES_SCALAR(FLATBUFFERS_TD)
2017 #undef FLATBUFFERS_TD
2018 default: break;
2019 }
2020 // clang-format on
2021 return parser.Error("fatal: invalid enum underlying type");
2022 }
2023
EnumValBuilderflatbuffers::EnumValBuilder2024 EnumValBuilder(Parser &_parser, EnumDef &_enum_def, bool strict_order = true)
2025 : parser(_parser),
2026 enum_def(_enum_def),
2027 temp(nullptr),
2028 strict_ascending(strict_order),
2029 user_value(false) {}
2030
~EnumValBuilderflatbuffers::EnumValBuilder2031 ~EnumValBuilder() { delete temp; }
2032
2033 Parser &parser;
2034 EnumDef &enum_def;
2035 EnumVal *temp;
2036 const bool strict_ascending;
2037 bool user_value;
2038 };
2039
ParseEnum(const bool is_union,EnumDef ** dest)2040 CheckedError Parser::ParseEnum(const bool is_union, EnumDef **dest) {
2041 std::vector<std::string> enum_comment = doc_comment_;
2042 NEXT();
2043 std::string enum_name = attribute_;
2044 EXPECT(kTokenIdentifier);
2045 EnumDef *enum_def;
2046 ECHECK(StartEnum(enum_name, is_union, &enum_def));
2047 enum_def->doc_comment = enum_comment;
2048 if (!is_union && !opts.proto_mode) {
2049 // Give specialized error message, since this type spec used to
2050 // be optional in the first FlatBuffers release.
2051 if (!Is(':')) {
2052 return Error(
2053 "must specify the underlying integer type for this"
2054 " enum (e.g. \': short\', which was the default).");
2055 } else {
2056 NEXT();
2057 }
2058 // Specify the integer type underlying this enum.
2059 ECHECK(ParseType(enum_def->underlying_type));
2060 if (!IsInteger(enum_def->underlying_type.base_type) ||
2061 IsBool(enum_def->underlying_type.base_type))
2062 return Error("underlying enum type must be integral");
2063 // Make this type refer back to the enum it was derived from.
2064 enum_def->underlying_type.enum_def = enum_def;
2065 }
2066 ECHECK(ParseMetaData(&enum_def->attributes));
2067 const auto underlying_type = enum_def->underlying_type.base_type;
2068 if (enum_def->attributes.Lookup("bit_flags") &&
2069 !IsUnsigned(underlying_type)) {
2070 // todo: Convert to the Error in the future?
2071 Warning("underlying type of bit_flags enum must be unsigned");
2072 }
2073 // Protobuf allows them to be specified in any order, so sort afterwards.
2074 const auto strict_ascending = (false == opts.proto_mode);
2075 EnumValBuilder evb(*this, *enum_def, strict_ascending);
2076 EXPECT('{');
2077 // A lot of code generatos expect that an enum is not-empty.
2078 if ((is_union || Is('}')) && !opts.proto_mode) {
2079 evb.CreateEnumerator("NONE");
2080 ECHECK(evb.AcceptEnumerator());
2081 }
2082 std::set<std::pair<BaseType, StructDef *>> union_types;
2083 while (!Is('}')) {
2084 if (opts.proto_mode && attribute_ == "option") {
2085 ECHECK(ParseProtoOption());
2086 } else {
2087 auto &ev = *evb.CreateEnumerator(attribute_);
2088 auto full_name = ev.name;
2089 ev.doc_comment = doc_comment_;
2090 EXPECT(kTokenIdentifier);
2091 if (is_union) {
2092 ECHECK(ParseNamespacing(&full_name, &ev.name));
2093 if (opts.union_value_namespacing) {
2094 // Since we can't namespace the actual enum identifiers, turn
2095 // namespace parts into part of the identifier.
2096 ev.name = full_name;
2097 std::replace(ev.name.begin(), ev.name.end(), '.', '_');
2098 }
2099 if (Is(':')) {
2100 NEXT();
2101 ECHECK(ParseType(ev.union_type));
2102 if (ev.union_type.base_type != BASE_TYPE_STRUCT &&
2103 ev.union_type.base_type != BASE_TYPE_STRING)
2104 return Error("union value type may only be table/struct/string");
2105 } else {
2106 ev.union_type = Type(BASE_TYPE_STRUCT, LookupCreateStruct(full_name));
2107 }
2108 if (!enum_def->uses_multiple_type_instances) {
2109 auto ins = union_types.insert(std::make_pair(
2110 ev.union_type.base_type, ev.union_type.struct_def));
2111 enum_def->uses_multiple_type_instances = (false == ins.second);
2112 }
2113 }
2114
2115 if (Is('=')) {
2116 NEXT();
2117 ECHECK(evb.AssignEnumeratorValue(attribute_));
2118 EXPECT(kTokenIntegerConstant);
2119 } else if (false == strict_ascending) {
2120 // The opts.proto_mode flag is active.
2121 return Error("Protobuf mode doesn't allow implicit enum values.");
2122 }
2123
2124 ECHECK(evb.AcceptEnumerator());
2125
2126 if (opts.proto_mode && Is('[')) {
2127 NEXT();
2128 // ignore attributes on enums.
2129 while (token_ != ']') NEXT();
2130 NEXT();
2131 }
2132 }
2133 if (!Is(opts.proto_mode ? ';' : ',')) break;
2134 NEXT();
2135 }
2136 EXPECT('}');
2137
2138 // At this point, the enum can be empty if input is invalid proto-file.
2139 if (!enum_def->size())
2140 return Error("incomplete enum declaration, values not found");
2141
2142 if (enum_def->attributes.Lookup("bit_flags")) {
2143 const auto base_width = static_cast<uint64_t>(8 * SizeOf(underlying_type));
2144 for (auto it = enum_def->Vals().begin(); it != enum_def->Vals().end();
2145 ++it) {
2146 auto ev = *it;
2147 const auto u = ev->GetAsUInt64();
2148 // Stop manipulations with the sign.
2149 if (!IsUnsigned(underlying_type) && u == (base_width - 1))
2150 return Error("underlying type of bit_flags enum must be unsigned");
2151 if (u >= base_width)
2152 return Error("bit flag out of range of underlying integral type");
2153 enum_def->ChangeEnumValue(ev, 1ULL << u);
2154 }
2155 }
2156
2157 if (false == strict_ascending)
2158 enum_def->SortByValue(); // Must be sorted to use MinValue/MaxValue.
2159
2160 if (dest) *dest = enum_def;
2161 types_.Add(current_namespace_->GetFullyQualifiedName(enum_def->name),
2162 new Type(BASE_TYPE_UNION, nullptr, enum_def));
2163 return NoError();
2164 }
2165
StartStruct(const std::string & name,StructDef ** dest)2166 CheckedError Parser::StartStruct(const std::string &name, StructDef **dest) {
2167 auto &struct_def = *LookupCreateStruct(name, true, true);
2168 if (!struct_def.predecl) return Error("datatype already exists: " + name);
2169 struct_def.predecl = false;
2170 struct_def.name = name;
2171 struct_def.file = file_being_parsed_;
2172 // Move this struct to the back of the vector just in case it was predeclared,
2173 // to preserve declaration order.
2174 *std::remove(structs_.vec.begin(), structs_.vec.end(), &struct_def) =
2175 &struct_def;
2176 *dest = &struct_def;
2177 return NoError();
2178 }
2179
CheckClash(std::vector<FieldDef * > & fields,StructDef * struct_def,const char * suffix,BaseType basetype)2180 CheckedError Parser::CheckClash(std::vector<FieldDef *> &fields,
2181 StructDef *struct_def, const char *suffix,
2182 BaseType basetype) {
2183 auto len = strlen(suffix);
2184 for (auto it = fields.begin(); it != fields.end(); ++it) {
2185 auto &fname = (*it)->name;
2186 if (fname.length() > len &&
2187 fname.compare(fname.length() - len, len, suffix) == 0 &&
2188 (*it)->value.type.base_type != BASE_TYPE_UTYPE) {
2189 auto field =
2190 struct_def->fields.Lookup(fname.substr(0, fname.length() - len));
2191 if (field && field->value.type.base_type == basetype)
2192 return Error("Field " + fname +
2193 " would clash with generated functions for field " +
2194 field->name);
2195 }
2196 }
2197 return NoError();
2198 }
2199
SupportsAdvancedUnionFeatures() const2200 bool Parser::SupportsAdvancedUnionFeatures() const {
2201 return opts.lang_to_generate != 0 &&
2202 (opts.lang_to_generate &
2203 ~(IDLOptions::kCpp | IDLOptions::kJs | IDLOptions::kTs |
2204 IDLOptions::kPhp | IDLOptions::kJava | IDLOptions::kCSharp |
2205 IDLOptions::kKotlin | IDLOptions::kBinary | IDLOptions::kSwift)) ==
2206 0;
2207 }
2208
SupportsAdvancedArrayFeatures() const2209 bool Parser::SupportsAdvancedArrayFeatures() const {
2210 return (opts.lang_to_generate &
2211 ~(IDLOptions::kCpp | IDLOptions::kPython | IDLOptions::kJava |
2212 IDLOptions::kCSharp | IDLOptions::kJsonSchema | IDLOptions::kJson |
2213 IDLOptions::kBinary)) == 0;
2214 }
2215
UniqueNamespace(Namespace * ns)2216 Namespace *Parser::UniqueNamespace(Namespace *ns) {
2217 for (auto it = namespaces_.begin(); it != namespaces_.end(); ++it) {
2218 if (ns->components == (*it)->components) {
2219 delete ns;
2220 return *it;
2221 }
2222 }
2223 namespaces_.push_back(ns);
2224 return ns;
2225 }
2226
UnqualifiedName(const std::string & full_qualified_name)2227 std::string Parser::UnqualifiedName(const std::string &full_qualified_name) {
2228 Namespace *ns = new Namespace();
2229
2230 std::size_t current, previous = 0;
2231 current = full_qualified_name.find('.');
2232 while (current != std::string::npos) {
2233 ns->components.push_back(
2234 full_qualified_name.substr(previous, current - previous));
2235 previous = current + 1;
2236 current = full_qualified_name.find('.', previous);
2237 }
2238 current_namespace_ = UniqueNamespace(ns);
2239 return full_qualified_name.substr(previous, current - previous);
2240 }
2241
compareFieldDefs(const FieldDef * a,const FieldDef * b)2242 static bool compareFieldDefs(const FieldDef *a, const FieldDef *b) {
2243 auto a_id = atoi(a->attributes.Lookup("id")->constant.c_str());
2244 auto b_id = atoi(b->attributes.Lookup("id")->constant.c_str());
2245 return a_id < b_id;
2246 }
2247
ParseDecl()2248 CheckedError Parser::ParseDecl() {
2249 std::vector<std::string> dc = doc_comment_;
2250 bool fixed = IsIdent("struct");
2251 if (!fixed && !IsIdent("table")) return Error("declaration expected");
2252 NEXT();
2253 std::string name = attribute_;
2254 EXPECT(kTokenIdentifier);
2255 StructDef *struct_def;
2256 ECHECK(StartStruct(name, &struct_def));
2257 struct_def->doc_comment = dc;
2258 struct_def->fixed = fixed;
2259 ECHECK(ParseMetaData(&struct_def->attributes));
2260 struct_def->sortbysize =
2261 struct_def->attributes.Lookup("original_order") == nullptr && !fixed;
2262 EXPECT('{');
2263 while (token_ != '}') ECHECK(ParseField(*struct_def));
2264 auto force_align = struct_def->attributes.Lookup("force_align");
2265 if (fixed) {
2266 if (force_align) {
2267 auto align = static_cast<size_t>(atoi(force_align->constant.c_str()));
2268 if (force_align->type.base_type != BASE_TYPE_INT ||
2269 align < struct_def->minalign || align > FLATBUFFERS_MAX_ALIGNMENT ||
2270 align & (align - 1))
2271 return Error(
2272 "force_align must be a power of two integer ranging from the"
2273 "struct\'s natural alignment to " +
2274 NumToString(FLATBUFFERS_MAX_ALIGNMENT));
2275 struct_def->minalign = align;
2276 }
2277 if (!struct_def->bytesize) return Error("size 0 structs not allowed");
2278 }
2279 struct_def->PadLastField(struct_def->minalign);
2280 // Check if this is a table that has manual id assignments
2281 auto &fields = struct_def->fields.vec;
2282 if (!fixed && fields.size()) {
2283 size_t num_id_fields = 0;
2284 for (auto it = fields.begin(); it != fields.end(); ++it) {
2285 if ((*it)->attributes.Lookup("id")) num_id_fields++;
2286 }
2287 // If any fields have ids..
2288 if (num_id_fields) {
2289 // Then all fields must have them.
2290 if (num_id_fields != fields.size())
2291 return Error(
2292 "either all fields or no fields must have an 'id' attribute");
2293 // Simply sort by id, then the fields are the same as if no ids had
2294 // been specified.
2295 std::sort(fields.begin(), fields.end(), compareFieldDefs);
2296 // Verify we have a contiguous set, and reassign vtable offsets.
2297 for (int i = 0; i < static_cast<int>(fields.size()); i++) {
2298 if (i != atoi(fields[i]->attributes.Lookup("id")->constant.c_str()))
2299 return Error("field id\'s must be consecutive from 0, id " +
2300 NumToString(i) + " missing or set twice");
2301 fields[i]->value.offset = FieldIndexToOffset(static_cast<voffset_t>(i));
2302 }
2303 }
2304 }
2305
2306 ECHECK(
2307 CheckClash(fields, struct_def, UnionTypeFieldSuffix(), BASE_TYPE_UNION));
2308 ECHECK(CheckClash(fields, struct_def, "Type", BASE_TYPE_UNION));
2309 ECHECK(CheckClash(fields, struct_def, "_length", BASE_TYPE_VECTOR));
2310 ECHECK(CheckClash(fields, struct_def, "Length", BASE_TYPE_VECTOR));
2311 ECHECK(CheckClash(fields, struct_def, "_byte_vector", BASE_TYPE_STRING));
2312 ECHECK(CheckClash(fields, struct_def, "ByteVector", BASE_TYPE_STRING));
2313 EXPECT('}');
2314 types_.Add(current_namespace_->GetFullyQualifiedName(struct_def->name),
2315 new Type(BASE_TYPE_STRUCT, struct_def, nullptr));
2316 return NoError();
2317 }
2318
ParseService()2319 CheckedError Parser::ParseService() {
2320 std::vector<std::string> service_comment = doc_comment_;
2321 NEXT();
2322 auto service_name = attribute_;
2323 EXPECT(kTokenIdentifier);
2324 auto &service_def = *new ServiceDef();
2325 service_def.name = service_name;
2326 service_def.file = file_being_parsed_;
2327 service_def.doc_comment = service_comment;
2328 service_def.defined_namespace = current_namespace_;
2329 if (services_.Add(current_namespace_->GetFullyQualifiedName(service_name),
2330 &service_def))
2331 return Error("service already exists: " + service_name);
2332 ECHECK(ParseMetaData(&service_def.attributes));
2333 EXPECT('{');
2334 do {
2335 std::vector<std::string> doc_comment = doc_comment_;
2336 auto rpc_name = attribute_;
2337 EXPECT(kTokenIdentifier);
2338 EXPECT('(');
2339 Type reqtype, resptype;
2340 ECHECK(ParseTypeIdent(reqtype));
2341 EXPECT(')');
2342 EXPECT(':');
2343 ECHECK(ParseTypeIdent(resptype));
2344 if (reqtype.base_type != BASE_TYPE_STRUCT || reqtype.struct_def->fixed ||
2345 resptype.base_type != BASE_TYPE_STRUCT || resptype.struct_def->fixed)
2346 return Error("rpc request and response types must be tables");
2347 auto &rpc = *new RPCCall();
2348 rpc.name = rpc_name;
2349 rpc.request = reqtype.struct_def;
2350 rpc.response = resptype.struct_def;
2351 rpc.doc_comment = doc_comment;
2352 if (service_def.calls.Add(rpc_name, &rpc))
2353 return Error("rpc already exists: " + rpc_name);
2354 ECHECK(ParseMetaData(&rpc.attributes));
2355 EXPECT(';');
2356 } while (token_ != '}');
2357 NEXT();
2358 return NoError();
2359 }
2360
SetRootType(const char * name)2361 bool Parser::SetRootType(const char *name) {
2362 root_struct_def_ = LookupStruct(name);
2363 if (!root_struct_def_)
2364 root_struct_def_ =
2365 LookupStruct(current_namespace_->GetFullyQualifiedName(name));
2366 return root_struct_def_ != nullptr;
2367 }
2368
MarkGenerated()2369 void Parser::MarkGenerated() {
2370 // This function marks all existing definitions as having already
2371 // been generated, which signals no code for included files should be
2372 // generated.
2373 for (auto it = enums_.vec.begin(); it != enums_.vec.end(); ++it) {
2374 (*it)->generated = true;
2375 }
2376 for (auto it = structs_.vec.begin(); it != structs_.vec.end(); ++it) {
2377 if (!(*it)->predecl) { (*it)->generated = true; }
2378 }
2379 for (auto it = services_.vec.begin(); it != services_.vec.end(); ++it) {
2380 (*it)->generated = true;
2381 }
2382 }
2383
ParseNamespace()2384 CheckedError Parser::ParseNamespace() {
2385 NEXT();
2386 auto ns = new Namespace();
2387 namespaces_.push_back(ns); // Store it here to not leak upon error.
2388 if (token_ != ';') {
2389 for (;;) {
2390 ns->components.push_back(attribute_);
2391 EXPECT(kTokenIdentifier);
2392 if (Is('.')) NEXT() else break;
2393 }
2394 }
2395 namespaces_.pop_back();
2396 current_namespace_ = UniqueNamespace(ns);
2397 EXPECT(';');
2398 return NoError();
2399 }
2400
2401 // Best effort parsing of .proto declarations, with the aim to turn them
2402 // in the closest corresponding FlatBuffer equivalent.
2403 // We parse everything as identifiers instead of keywords, since we don't
2404 // want protobuf keywords to become invalid identifiers in FlatBuffers.
ParseProtoDecl()2405 CheckedError Parser::ParseProtoDecl() {
2406 bool isextend = IsIdent("extend");
2407 if (IsIdent("package")) {
2408 // These are identical in syntax to FlatBuffer's namespace decl.
2409 ECHECK(ParseNamespace());
2410 } else if (IsIdent("message") || isextend) {
2411 std::vector<std::string> struct_comment = doc_comment_;
2412 NEXT();
2413 StructDef *struct_def = nullptr;
2414 Namespace *parent_namespace = nullptr;
2415 if (isextend) {
2416 if (Is('.')) NEXT(); // qualified names may start with a . ?
2417 auto id = attribute_;
2418 EXPECT(kTokenIdentifier);
2419 ECHECK(ParseNamespacing(&id, nullptr));
2420 struct_def = LookupCreateStruct(id, false);
2421 if (!struct_def)
2422 return Error("cannot extend unknown message type: " + id);
2423 } else {
2424 std::string name = attribute_;
2425 EXPECT(kTokenIdentifier);
2426 ECHECK(StartStruct(name, &struct_def));
2427 // Since message definitions can be nested, we create a new namespace.
2428 auto ns = new Namespace();
2429 // Copy of current namespace.
2430 *ns = *current_namespace_;
2431 // But with current message name.
2432 ns->components.push_back(name);
2433 ns->from_table++;
2434 parent_namespace = current_namespace_;
2435 current_namespace_ = UniqueNamespace(ns);
2436 }
2437 struct_def->doc_comment = struct_comment;
2438 ECHECK(ParseProtoFields(struct_def, isextend, false));
2439 if (!isextend) { current_namespace_ = parent_namespace; }
2440 if (Is(';')) NEXT();
2441 } else if (IsIdent("enum")) {
2442 // These are almost the same, just with different terminator:
2443 EnumDef *enum_def;
2444 ECHECK(ParseEnum(false, &enum_def));
2445 if (Is(';')) NEXT();
2446 // Temp: remove any duplicates, as .fbs files can't handle them.
2447 enum_def->RemoveDuplicates();
2448 } else if (IsIdent("syntax")) { // Skip these.
2449 NEXT();
2450 EXPECT('=');
2451 EXPECT(kTokenStringConstant);
2452 EXPECT(';');
2453 } else if (IsIdent("option")) { // Skip these.
2454 ECHECK(ParseProtoOption());
2455 EXPECT(';');
2456 } else if (IsIdent("service")) { // Skip these.
2457 NEXT();
2458 EXPECT(kTokenIdentifier);
2459 ECHECK(ParseProtoCurliesOrIdent());
2460 } else {
2461 return Error("don\'t know how to parse .proto declaration starting with " +
2462 TokenToStringId(token_));
2463 }
2464 return NoError();
2465 }
2466
StartEnum(const std::string & enum_name,bool is_union,EnumDef ** dest)2467 CheckedError Parser::StartEnum(const std::string &enum_name, bool is_union,
2468 EnumDef **dest) {
2469 auto &enum_def = *new EnumDef();
2470 enum_def.name = enum_name;
2471 enum_def.file = file_being_parsed_;
2472 enum_def.doc_comment = doc_comment_;
2473 enum_def.is_union = is_union;
2474 enum_def.defined_namespace = current_namespace_;
2475 if (enums_.Add(current_namespace_->GetFullyQualifiedName(enum_name),
2476 &enum_def))
2477 return Error("enum already exists: " + enum_name);
2478 enum_def.underlying_type.base_type =
2479 is_union ? BASE_TYPE_UTYPE : BASE_TYPE_INT;
2480 enum_def.underlying_type.enum_def = &enum_def;
2481 if (dest) *dest = &enum_def;
2482 return NoError();
2483 }
2484
ParseProtoFields(StructDef * struct_def,bool isextend,bool inside_oneof)2485 CheckedError Parser::ParseProtoFields(StructDef *struct_def, bool isextend,
2486 bool inside_oneof) {
2487 EXPECT('{');
2488 while (token_ != '}') {
2489 if (IsIdent("message") || IsIdent("extend") || IsIdent("enum")) {
2490 // Nested declarations.
2491 ECHECK(ParseProtoDecl());
2492 } else if (IsIdent("extensions")) { // Skip these.
2493 NEXT();
2494 EXPECT(kTokenIntegerConstant);
2495 if (Is(kTokenIdentifier)) {
2496 NEXT(); // to
2497 NEXT(); // num
2498 }
2499 EXPECT(';');
2500 } else if (IsIdent("option")) { // Skip these.
2501 ECHECK(ParseProtoOption());
2502 EXPECT(';');
2503 } else if (IsIdent("reserved")) { // Skip these.
2504 NEXT();
2505 while (!Is(';')) { NEXT(); } // A variety of formats, just skip.
2506 NEXT();
2507 } else {
2508 std::vector<std::string> field_comment = doc_comment_;
2509 // Parse the qualifier.
2510 bool required = false;
2511 bool repeated = false;
2512 bool oneof = false;
2513 if (!inside_oneof) {
2514 if (IsIdent("optional")) {
2515 // This is the default.
2516 NEXT();
2517 } else if (IsIdent("required")) {
2518 required = true;
2519 NEXT();
2520 } else if (IsIdent("repeated")) {
2521 repeated = true;
2522 NEXT();
2523 } else if (IsIdent("oneof")) {
2524 oneof = true;
2525 NEXT();
2526 } else {
2527 // can't error, proto3 allows decls without any of the above.
2528 }
2529 }
2530 StructDef *anonymous_struct = nullptr;
2531 EnumDef *oneof_union = nullptr;
2532 Type type;
2533 if (IsIdent("group") || oneof) {
2534 if (!oneof) NEXT();
2535 if (oneof && opts.proto_oneof_union) {
2536 auto name = MakeCamel(attribute_, true) + "Union";
2537 ECHECK(StartEnum(name, true, &oneof_union));
2538 type = Type(BASE_TYPE_UNION, nullptr, oneof_union);
2539 } else {
2540 auto name = "Anonymous" + NumToString(anonymous_counter++);
2541 ECHECK(StartStruct(name, &anonymous_struct));
2542 type = Type(BASE_TYPE_STRUCT, anonymous_struct);
2543 }
2544 } else {
2545 ECHECK(ParseTypeFromProtoType(&type));
2546 }
2547 // Repeated elements get mapped to a vector.
2548 if (repeated) {
2549 type.element = type.base_type;
2550 type.base_type = BASE_TYPE_VECTOR;
2551 if (type.element == BASE_TYPE_VECTOR) {
2552 // We have a vector or vectors, which FlatBuffers doesn't support.
2553 // For now make it a vector of string (since the source is likely
2554 // "repeated bytes").
2555 // TODO(wvo): A better solution would be to wrap this in a table.
2556 type.element = BASE_TYPE_STRING;
2557 }
2558 }
2559 std::string name = attribute_;
2560 EXPECT(kTokenIdentifier);
2561 if (!oneof) {
2562 // Parse the field id. Since we're just translating schemas, not
2563 // any kind of binary compatibility, we can safely ignore these, and
2564 // assign our own.
2565 EXPECT('=');
2566 EXPECT(kTokenIntegerConstant);
2567 }
2568 FieldDef *field = nullptr;
2569 if (isextend) {
2570 // We allow a field to be re-defined when extending.
2571 // TODO: are there situations where that is problematic?
2572 field = struct_def->fields.Lookup(name);
2573 }
2574 if (!field) ECHECK(AddField(*struct_def, name, type, &field));
2575 field->doc_comment = field_comment;
2576 if (!IsScalar(type.base_type)) field->required = required;
2577 // See if there's a default specified.
2578 if (Is('[')) {
2579 NEXT();
2580 for (;;) {
2581 auto key = attribute_;
2582 ECHECK(ParseProtoKey());
2583 EXPECT('=');
2584 auto val = attribute_;
2585 ECHECK(ParseProtoCurliesOrIdent());
2586 if (key == "default") {
2587 // Temp: skip non-numeric defaults (enums).
2588 auto numeric = strpbrk(val.c_str(), "0123456789-+.");
2589 if (IsScalar(type.base_type) && numeric == val.c_str())
2590 field->value.constant = val;
2591 } else if (key == "deprecated") {
2592 field->deprecated = val == "true";
2593 }
2594 if (!Is(',')) break;
2595 NEXT();
2596 }
2597 EXPECT(']');
2598 }
2599 if (anonymous_struct) {
2600 ECHECK(ParseProtoFields(anonymous_struct, false, oneof));
2601 if (Is(';')) NEXT();
2602 } else if (oneof_union) {
2603 // Parse into a temporary StructDef, then transfer fields into an
2604 // EnumDef describing the oneof as a union.
2605 StructDef oneof_struct;
2606 ECHECK(ParseProtoFields(&oneof_struct, false, oneof));
2607 if (Is(';')) NEXT();
2608 for (auto field_it = oneof_struct.fields.vec.begin();
2609 field_it != oneof_struct.fields.vec.end(); ++field_it) {
2610 const auto &oneof_field = **field_it;
2611 const auto &oneof_type = oneof_field.value.type;
2612 if (oneof_type.base_type != BASE_TYPE_STRUCT ||
2613 !oneof_type.struct_def || oneof_type.struct_def->fixed)
2614 return Error("oneof '" + name +
2615 "' cannot be mapped to a union because member '" +
2616 oneof_field.name + "' is not a table type.");
2617 EnumValBuilder evb(*this, *oneof_union);
2618 auto ev = evb.CreateEnumerator(oneof_type.struct_def->name);
2619 ev->union_type = oneof_type;
2620 ev->doc_comment = oneof_field.doc_comment;
2621 ECHECK(evb.AcceptEnumerator(oneof_field.name));
2622 }
2623 } else {
2624 EXPECT(';');
2625 }
2626 }
2627 }
2628 NEXT();
2629 return NoError();
2630 }
2631
ParseProtoKey()2632 CheckedError Parser::ParseProtoKey() {
2633 if (token_ == '(') {
2634 NEXT();
2635 // Skip "(a.b)" style custom attributes.
2636 while (token_ == '.' || token_ == kTokenIdentifier) NEXT();
2637 EXPECT(')');
2638 while (Is('.')) {
2639 NEXT();
2640 EXPECT(kTokenIdentifier);
2641 }
2642 } else {
2643 EXPECT(kTokenIdentifier);
2644 }
2645 return NoError();
2646 }
2647
ParseProtoCurliesOrIdent()2648 CheckedError Parser::ParseProtoCurliesOrIdent() {
2649 if (Is('{')) {
2650 NEXT();
2651 for (int nesting = 1; nesting;) {
2652 if (token_ == '{')
2653 nesting++;
2654 else if (token_ == '}')
2655 nesting--;
2656 NEXT();
2657 }
2658 } else {
2659 NEXT(); // Any single token.
2660 }
2661 return NoError();
2662 }
2663
ParseProtoOption()2664 CheckedError Parser::ParseProtoOption() {
2665 NEXT();
2666 ECHECK(ParseProtoKey());
2667 EXPECT('=');
2668 ECHECK(ParseProtoCurliesOrIdent());
2669 return NoError();
2670 }
2671
2672 // Parse a protobuf type, and map it to the corresponding FlatBuffer one.
ParseTypeFromProtoType(Type * type)2673 CheckedError Parser::ParseTypeFromProtoType(Type *type) {
2674 struct type_lookup {
2675 const char *proto_type;
2676 BaseType fb_type, element;
2677 };
2678 static type_lookup lookup[] = {
2679 { "float", BASE_TYPE_FLOAT, BASE_TYPE_NONE },
2680 { "double", BASE_TYPE_DOUBLE, BASE_TYPE_NONE },
2681 { "int32", BASE_TYPE_INT, BASE_TYPE_NONE },
2682 { "int64", BASE_TYPE_LONG, BASE_TYPE_NONE },
2683 { "uint32", BASE_TYPE_UINT, BASE_TYPE_NONE },
2684 { "uint64", BASE_TYPE_ULONG, BASE_TYPE_NONE },
2685 { "sint32", BASE_TYPE_INT, BASE_TYPE_NONE },
2686 { "sint64", BASE_TYPE_LONG, BASE_TYPE_NONE },
2687 { "fixed32", BASE_TYPE_UINT, BASE_TYPE_NONE },
2688 { "fixed64", BASE_TYPE_ULONG, BASE_TYPE_NONE },
2689 { "sfixed32", BASE_TYPE_INT, BASE_TYPE_NONE },
2690 { "sfixed64", BASE_TYPE_LONG, BASE_TYPE_NONE },
2691 { "bool", BASE_TYPE_BOOL, BASE_TYPE_NONE },
2692 { "string", BASE_TYPE_STRING, BASE_TYPE_NONE },
2693 { "bytes", BASE_TYPE_VECTOR, BASE_TYPE_UCHAR },
2694 { nullptr, BASE_TYPE_NONE, BASE_TYPE_NONE }
2695 };
2696 for (auto tl = lookup; tl->proto_type; tl++) {
2697 if (attribute_ == tl->proto_type) {
2698 type->base_type = tl->fb_type;
2699 type->element = tl->element;
2700 NEXT();
2701 return NoError();
2702 }
2703 }
2704 if (Is('.')) NEXT(); // qualified names may start with a . ?
2705 ECHECK(ParseTypeIdent(*type));
2706 return NoError();
2707 }
2708
SkipAnyJsonValue()2709 CheckedError Parser::SkipAnyJsonValue() {
2710 switch (token_) {
2711 case '{': {
2712 size_t fieldn_outer = 0;
2713 return ParseTableDelimiters(
2714 fieldn_outer, nullptr,
2715 [&](const std::string &, size_t &fieldn,
2716 const StructDef *) -> CheckedError {
2717 ECHECK(Recurse([&]() { return SkipAnyJsonValue(); }));
2718 fieldn++;
2719 return NoError();
2720 });
2721 }
2722 case '[': {
2723 uoffset_t count = 0;
2724 return ParseVectorDelimiters(count, [&](uoffset_t &) -> CheckedError {
2725 return Recurse([&]() { return SkipAnyJsonValue(); });
2726 });
2727 }
2728 case kTokenStringConstant:
2729 case kTokenIntegerConstant:
2730 case kTokenFloatConstant: NEXT(); break;
2731 default:
2732 if (IsIdent("true") || IsIdent("false") || IsIdent("null")) {
2733 NEXT();
2734 } else
2735 return TokenError();
2736 }
2737 return NoError();
2738 }
2739
ParseFlexBufferValue(flexbuffers::Builder * builder)2740 CheckedError Parser::ParseFlexBufferValue(flexbuffers::Builder *builder) {
2741 switch (token_) {
2742 case '{': {
2743 auto start = builder->StartMap();
2744 size_t fieldn_outer = 0;
2745 auto err =
2746 ParseTableDelimiters(fieldn_outer, nullptr,
2747 [&](const std::string &name, size_t &fieldn,
2748 const StructDef *) -> CheckedError {
2749 builder->Key(name);
2750 ECHECK(ParseFlexBufferValue(builder));
2751 fieldn++;
2752 return NoError();
2753 });
2754 ECHECK(err);
2755 builder->EndMap(start);
2756 break;
2757 }
2758 case '[': {
2759 auto start = builder->StartVector();
2760 uoffset_t count = 0;
2761 ECHECK(ParseVectorDelimiters(count, [&](uoffset_t &) -> CheckedError {
2762 return ParseFlexBufferValue(builder);
2763 }));
2764 builder->EndVector(start, false, false);
2765 break;
2766 }
2767 case kTokenStringConstant:
2768 builder->String(attribute_);
2769 EXPECT(kTokenStringConstant);
2770 break;
2771 case kTokenIntegerConstant:
2772 builder->Int(StringToInt(attribute_.c_str()));
2773 EXPECT(kTokenIntegerConstant);
2774 break;
2775 case kTokenFloatConstant: {
2776 double d;
2777 StringToNumber(attribute_.c_str(), &d);
2778 builder->Double(d);
2779 EXPECT(kTokenFloatConstant);
2780 break;
2781 }
2782 default:
2783 if (IsIdent("true")) {
2784 builder->Bool(true);
2785 NEXT();
2786 } else if (IsIdent("false")) {
2787 builder->Bool(false);
2788 NEXT();
2789 } else if (IsIdent("null")) {
2790 builder->Null();
2791 NEXT();
2792 } else
2793 return TokenError();
2794 }
2795 return NoError();
2796 }
2797
ParseFlexBuffer(const char * source,const char * source_filename,flexbuffers::Builder * builder)2798 bool Parser::ParseFlexBuffer(const char *source, const char *source_filename,
2799 flexbuffers::Builder *builder) {
2800 auto ok = !StartParseFile(source, source_filename).Check() &&
2801 !ParseFlexBufferValue(builder).Check();
2802 if (ok) builder->Finish();
2803 return ok;
2804 }
2805
Parse(const char * source,const char ** include_paths,const char * source_filename)2806 bool Parser::Parse(const char *source, const char **include_paths,
2807 const char *source_filename) {
2808 FLATBUFFERS_ASSERT(0 == recurse_protection_counter);
2809 bool r;
2810
2811 if (opts.use_flexbuffers) {
2812 r = ParseFlexBuffer(source, source_filename, &flex_builder_);
2813 } else {
2814 r = !ParseRoot(source, include_paths, source_filename).Check();
2815 }
2816 FLATBUFFERS_ASSERT(0 == recurse_protection_counter);
2817 return r;
2818 }
2819
StartParseFile(const char * source,const char * source_filename)2820 CheckedError Parser::StartParseFile(const char *source,
2821 const char *source_filename) {
2822 file_being_parsed_ = source_filename ? source_filename : "";
2823 source_ = source;
2824 ResetState(source_);
2825 error_.clear();
2826 ECHECK(SkipByteOrderMark());
2827 NEXT();
2828 if (Is(kTokenEof)) return Error("input file is empty");
2829 return NoError();
2830 }
2831
ParseRoot(const char * source,const char ** include_paths,const char * source_filename)2832 CheckedError Parser::ParseRoot(const char *source, const char **include_paths,
2833 const char *source_filename) {
2834 ECHECK(DoParse(source, include_paths, source_filename, nullptr));
2835
2836 // Check that all types were defined.
2837 for (auto it = structs_.vec.begin(); it != structs_.vec.end();) {
2838 auto &struct_def = **it;
2839 if (struct_def.predecl) {
2840 if (opts.proto_mode) {
2841 // Protos allow enums to be used before declaration, so check if that
2842 // is the case here.
2843 EnumDef *enum_def = nullptr;
2844 for (size_t components =
2845 struct_def.defined_namespace->components.size() + 1;
2846 components && !enum_def; components--) {
2847 auto qualified_name =
2848 struct_def.defined_namespace->GetFullyQualifiedName(
2849 struct_def.name, components - 1);
2850 enum_def = LookupEnum(qualified_name);
2851 }
2852 if (enum_def) {
2853 // This is pretty slow, but a simple solution for now.
2854 auto initial_count = struct_def.refcount;
2855 for (auto struct_it = structs_.vec.begin();
2856 struct_it != structs_.vec.end(); ++struct_it) {
2857 auto &sd = **struct_it;
2858 for (auto field_it = sd.fields.vec.begin();
2859 field_it != sd.fields.vec.end(); ++field_it) {
2860 auto &field = **field_it;
2861 if (field.value.type.struct_def == &struct_def) {
2862 field.value.type.struct_def = nullptr;
2863 field.value.type.enum_def = enum_def;
2864 auto &bt = field.value.type.base_type == BASE_TYPE_VECTOR
2865 ? field.value.type.element
2866 : field.value.type.base_type;
2867 FLATBUFFERS_ASSERT(bt == BASE_TYPE_STRUCT);
2868 bt = enum_def->underlying_type.base_type;
2869 struct_def.refcount--;
2870 enum_def->refcount++;
2871 }
2872 }
2873 }
2874 if (struct_def.refcount)
2875 return Error("internal: " + NumToString(struct_def.refcount) + "/" +
2876 NumToString(initial_count) +
2877 " use(s) of pre-declaration enum not accounted for: " +
2878 enum_def->name);
2879 structs_.dict.erase(structs_.dict.find(struct_def.name));
2880 it = structs_.vec.erase(it);
2881 delete &struct_def;
2882 continue; // Skip error.
2883 }
2884 }
2885 auto err = "type referenced but not defined (check namespace): " +
2886 struct_def.name;
2887 if (struct_def.original_location)
2888 err += ", originally at: " + *struct_def.original_location;
2889 return Error(err);
2890 }
2891 ++it;
2892 }
2893
2894 // This check has to happen here and not earlier, because only now do we
2895 // know for sure what the type of these are.
2896 for (auto it = enums_.vec.begin(); it != enums_.vec.end(); ++it) {
2897 auto &enum_def = **it;
2898 if (enum_def.is_union) {
2899 for (auto val_it = enum_def.Vals().begin();
2900 val_it != enum_def.Vals().end(); ++val_it) {
2901 auto &val = **val_it;
2902 if (!SupportsAdvancedUnionFeatures() && val.union_type.struct_def &&
2903 val.union_type.struct_def->fixed)
2904 return Error(
2905 "only tables can be union elements in the generated language: " +
2906 val.name);
2907 }
2908 }
2909 }
2910 return NoError();
2911 }
2912
DoParse(const char * source,const char ** include_paths,const char * source_filename,const char * include_filename)2913 CheckedError Parser::DoParse(const char *source, const char **include_paths,
2914 const char *source_filename,
2915 const char *include_filename) {
2916 if (source_filename) {
2917 if (included_files_.find(source_filename) == included_files_.end()) {
2918 included_files_[source_filename] =
2919 include_filename ? include_filename : "";
2920 files_included_per_file_[source_filename] = std::set<std::string>();
2921 } else {
2922 return NoError();
2923 }
2924 }
2925 if (!include_paths) {
2926 static const char *current_directory[] = { "", nullptr };
2927 include_paths = current_directory;
2928 }
2929 field_stack_.clear();
2930 builder_.Clear();
2931 // Start with a blank namespace just in case this file doesn't have one.
2932 current_namespace_ = empty_namespace_;
2933
2934 ECHECK(StartParseFile(source, source_filename));
2935
2936 // Includes must come before type declarations:
2937 for (;;) {
2938 // Parse pre-include proto statements if any:
2939 if (opts.proto_mode && (attribute_ == "option" || attribute_ == "syntax" ||
2940 attribute_ == "package")) {
2941 ECHECK(ParseProtoDecl());
2942 } else if (IsIdent("native_include")) {
2943 NEXT();
2944 vector_emplace_back(&native_included_files_, attribute_);
2945 EXPECT(kTokenStringConstant);
2946 EXPECT(';');
2947 } else if (IsIdent("include") || (opts.proto_mode && IsIdent("import"))) {
2948 NEXT();
2949 if (opts.proto_mode && attribute_ == "public") NEXT();
2950 auto name = flatbuffers::PosixPath(attribute_.c_str());
2951 EXPECT(kTokenStringConstant);
2952 // Look for the file in include_paths.
2953 std::string filepath;
2954 for (auto paths = include_paths; paths && *paths; paths++) {
2955 filepath = flatbuffers::ConCatPathFileName(*paths, name);
2956 if (FileExists(filepath.c_str())) break;
2957 }
2958 if (filepath.empty())
2959 return Error("unable to locate include file: " + name);
2960 if (source_filename)
2961 files_included_per_file_[source_filename].insert(filepath);
2962 if (included_files_.find(filepath) == included_files_.end()) {
2963 // We found an include file that we have not parsed yet.
2964 // Load it and parse it.
2965 std::string contents;
2966 if (!LoadFile(filepath.c_str(), true, &contents))
2967 return Error("unable to load include file: " + name);
2968 ECHECK(DoParse(contents.c_str(), include_paths, filepath.c_str(),
2969 name.c_str()));
2970 // We generally do not want to output code for any included files:
2971 if (!opts.generate_all) MarkGenerated();
2972 // Reset these just in case the included file had them, and the
2973 // parent doesn't.
2974 root_struct_def_ = nullptr;
2975 file_identifier_.clear();
2976 file_extension_.clear();
2977 // This is the easiest way to continue this file after an include:
2978 // instead of saving and restoring all the state, we simply start the
2979 // file anew. This will cause it to encounter the same include
2980 // statement again, but this time it will skip it, because it was
2981 // entered into included_files_.
2982 // This is recursive, but only go as deep as the number of include
2983 // statements.
2984 if (source_filename) { included_files_.erase(source_filename); }
2985 return DoParse(source, include_paths, source_filename,
2986 include_filename);
2987 }
2988 EXPECT(';');
2989 } else {
2990 break;
2991 }
2992 }
2993 // Now parse all other kinds of declarations:
2994 while (token_ != kTokenEof) {
2995 if (opts.proto_mode) {
2996 ECHECK(ParseProtoDecl());
2997 } else if (IsIdent("namespace")) {
2998 ECHECK(ParseNamespace());
2999 } else if (token_ == '{') {
3000 if (!root_struct_def_)
3001 return Error("no root type set to parse json with");
3002 if (builder_.GetSize()) {
3003 return Error("cannot have more than one json object in a file");
3004 }
3005 uoffset_t toff;
3006 ECHECK(ParseTable(*root_struct_def_, nullptr, &toff));
3007 if (opts.size_prefixed) {
3008 builder_.FinishSizePrefixed(
3009 Offset<Table>(toff),
3010 file_identifier_.length() ? file_identifier_.c_str() : nullptr);
3011 } else {
3012 builder_.Finish(Offset<Table>(toff), file_identifier_.length()
3013 ? file_identifier_.c_str()
3014 : nullptr);
3015 }
3016 // Check that JSON file doesn't contain more objects or IDL directives.
3017 // Comments after JSON are allowed.
3018 EXPECT(kTokenEof);
3019 } else if (IsIdent("enum")) {
3020 ECHECK(ParseEnum(false, nullptr));
3021 } else if (IsIdent("union")) {
3022 ECHECK(ParseEnum(true, nullptr));
3023 } else if (IsIdent("root_type")) {
3024 NEXT();
3025 auto root_type = attribute_;
3026 EXPECT(kTokenIdentifier);
3027 ECHECK(ParseNamespacing(&root_type, nullptr));
3028 if (opts.root_type.empty()) {
3029 if (!SetRootType(root_type.c_str()))
3030 return Error("unknown root type: " + root_type);
3031 if (root_struct_def_->fixed) return Error("root type must be a table");
3032 }
3033 EXPECT(';');
3034 } else if (IsIdent("file_identifier")) {
3035 NEXT();
3036 file_identifier_ = attribute_;
3037 EXPECT(kTokenStringConstant);
3038 if (file_identifier_.length() != FlatBufferBuilder::kFileIdentifierLength)
3039 return Error("file_identifier must be exactly " +
3040 NumToString(FlatBufferBuilder::kFileIdentifierLength) +
3041 " characters");
3042 EXPECT(';');
3043 } else if (IsIdent("file_extension")) {
3044 NEXT();
3045 file_extension_ = attribute_;
3046 EXPECT(kTokenStringConstant);
3047 EXPECT(';');
3048 } else if (IsIdent("include")) {
3049 return Error("includes must come before declarations");
3050 } else if (IsIdent("attribute")) {
3051 NEXT();
3052 auto name = attribute_;
3053 if (Is(kTokenIdentifier)) {
3054 NEXT();
3055 } else {
3056 EXPECT(kTokenStringConstant);
3057 }
3058 EXPECT(';');
3059 known_attributes_[name] = false;
3060 } else if (IsIdent("rpc_service")) {
3061 ECHECK(ParseService());
3062 } else {
3063 ECHECK(ParseDecl());
3064 }
3065 }
3066 return NoError();
3067 }
3068
GetIncludedFilesRecursive(const std::string & file_name) const3069 std::set<std::string> Parser::GetIncludedFilesRecursive(
3070 const std::string &file_name) const {
3071 std::set<std::string> included_files;
3072 std::list<std::string> to_process;
3073
3074 if (file_name.empty()) return included_files;
3075 to_process.push_back(file_name);
3076
3077 while (!to_process.empty()) {
3078 std::string current = to_process.front();
3079 to_process.pop_front();
3080 included_files.insert(current);
3081
3082 // Workaround the lack of const accessor in C++98 maps.
3083 auto &new_files =
3084 (*const_cast<std::map<std::string, std::set<std::string>> *>(
3085 &files_included_per_file_))[current];
3086 for (auto it = new_files.begin(); it != new_files.end(); ++it) {
3087 if (included_files.find(*it) == included_files.end())
3088 to_process.push_back(*it);
3089 }
3090 }
3091
3092 return included_files;
3093 }
3094
3095 // Schema serialization functionality:
3096
compareName(const T * a,const T * b)3097 template<typename T> bool compareName(const T *a, const T *b) {
3098 return a->defined_namespace->GetFullyQualifiedName(a->name) <
3099 b->defined_namespace->GetFullyQualifiedName(b->name);
3100 }
3101
AssignIndices(const std::vector<T * > & defvec)3102 template<typename T> void AssignIndices(const std::vector<T *> &defvec) {
3103 // Pre-sort these vectors, such that we can set the correct indices for them.
3104 auto vec = defvec;
3105 std::sort(vec.begin(), vec.end(), compareName<T>);
3106 for (int i = 0; i < static_cast<int>(vec.size()); i++) vec[i]->index = i;
3107 }
3108
Serialize()3109 void Parser::Serialize() {
3110 builder_.Clear();
3111 AssignIndices(structs_.vec);
3112 AssignIndices(enums_.vec);
3113 std::vector<Offset<reflection::Object>> object_offsets;
3114 for (auto it = structs_.vec.begin(); it != structs_.vec.end(); ++it) {
3115 auto offset = (*it)->Serialize(&builder_, *this);
3116 object_offsets.push_back(offset);
3117 (*it)->serialized_location = offset.o;
3118 }
3119 std::vector<Offset<reflection::Enum>> enum_offsets;
3120 for (auto it = enums_.vec.begin(); it != enums_.vec.end(); ++it) {
3121 auto offset = (*it)->Serialize(&builder_, *this);
3122 enum_offsets.push_back(offset);
3123 (*it)->serialized_location = offset.o;
3124 }
3125 std::vector<Offset<reflection::Service>> service_offsets;
3126 for (auto it = services_.vec.begin(); it != services_.vec.end(); ++it) {
3127 auto offset = (*it)->Serialize(&builder_, *this);
3128 service_offsets.push_back(offset);
3129 (*it)->serialized_location = offset.o;
3130 }
3131 auto objs__ = builder_.CreateVectorOfSortedTables(&object_offsets);
3132 auto enum__ = builder_.CreateVectorOfSortedTables(&enum_offsets);
3133 auto fiid__ = builder_.CreateString(file_identifier_);
3134 auto fext__ = builder_.CreateString(file_extension_);
3135 auto serv__ = builder_.CreateVectorOfSortedTables(&service_offsets);
3136 auto schema_offset = reflection::CreateSchema(
3137 builder_, objs__, enum__, fiid__, fext__,
3138 (root_struct_def_ ? root_struct_def_->serialized_location : 0), serv__);
3139 if (opts.size_prefixed) {
3140 builder_.FinishSizePrefixed(schema_offset, reflection::SchemaIdentifier());
3141 } else {
3142 builder_.Finish(schema_offset, reflection::SchemaIdentifier());
3143 }
3144 }
3145
GetNamespace(const std::string & qualified_name,std::vector<Namespace * > & namespaces,std::map<std::string,Namespace * > & namespaces_index)3146 static Namespace *GetNamespace(
3147 const std::string &qualified_name, std::vector<Namespace *> &namespaces,
3148 std::map<std::string, Namespace *> &namespaces_index) {
3149 size_t dot = qualified_name.find_last_of('.');
3150 std::string namespace_name = (dot != std::string::npos)
3151 ? std::string(qualified_name.c_str(), dot)
3152 : "";
3153 Namespace *&ns = namespaces_index[namespace_name];
3154
3155 if (!ns) {
3156 ns = new Namespace();
3157 namespaces.push_back(ns);
3158
3159 size_t pos = 0;
3160
3161 for (;;) {
3162 dot = qualified_name.find('.', pos);
3163 if (dot == std::string::npos) { break; }
3164 ns->components.push_back(qualified_name.substr(pos, dot - pos));
3165 pos = dot + 1;
3166 }
3167 }
3168
3169 return ns;
3170 }
3171
Serialize(FlatBufferBuilder * builder,const Parser & parser) const3172 Offset<reflection::Object> StructDef::Serialize(FlatBufferBuilder *builder,
3173 const Parser &parser) const {
3174 std::vector<Offset<reflection::Field>> field_offsets;
3175 for (auto it = fields.vec.begin(); it != fields.vec.end(); ++it) {
3176 field_offsets.push_back((*it)->Serialize(
3177 builder, static_cast<uint16_t>(it - fields.vec.begin()), parser));
3178 }
3179 auto qualified_name = defined_namespace->GetFullyQualifiedName(name);
3180 auto name__ = builder->CreateString(qualified_name);
3181 auto flds__ = builder->CreateVectorOfSortedTables(&field_offsets);
3182 auto attr__ = SerializeAttributes(builder, parser);
3183 auto docs__ = parser.opts.binary_schema_comments
3184 ? builder->CreateVectorOfStrings(doc_comment)
3185 : 0;
3186 return reflection::CreateObject(*builder, name__, flds__, fixed,
3187 static_cast<int>(minalign),
3188 static_cast<int>(bytesize), attr__, docs__);
3189 }
3190
Deserialize(Parser & parser,const reflection::Object * object)3191 bool StructDef::Deserialize(Parser &parser, const reflection::Object *object) {
3192 if (!DeserializeAttributes(parser, object->attributes())) return false;
3193 DeserializeDoc(doc_comment, object->documentation());
3194 name = parser.UnqualifiedName(object->name()->str());
3195 predecl = false;
3196 sortbysize = attributes.Lookup("original_order") == nullptr && !fixed;
3197 const auto &of = *(object->fields());
3198 auto indexes = std::vector<uoffset_t>(of.size());
3199 for (uoffset_t i = 0; i < of.size(); i++) indexes[of.Get(i)->id()] = i;
3200 size_t tmp_struct_size = 0;
3201 for (size_t i = 0; i < indexes.size(); i++) {
3202 auto field = of.Get(indexes[i]);
3203 auto field_def = new FieldDef();
3204 if (!field_def->Deserialize(parser, field) ||
3205 fields.Add(field_def->name, field_def)) {
3206 delete field_def;
3207 return false;
3208 }
3209 if (fixed) {
3210 // Recompute padding since that's currently not serialized.
3211 auto size = InlineSize(field_def->value.type);
3212 auto next_field =
3213 i + 1 < indexes.size() ? of.Get(indexes[i + 1]) : nullptr;
3214 tmp_struct_size += size;
3215 field_def->padding =
3216 next_field ? (next_field->offset() - field_def->value.offset) - size
3217 : PaddingBytes(tmp_struct_size, minalign);
3218 tmp_struct_size += field_def->padding;
3219 }
3220 }
3221 FLATBUFFERS_ASSERT(static_cast<int>(tmp_struct_size) == object->bytesize());
3222 return true;
3223 }
3224
Serialize(FlatBufferBuilder * builder,uint16_t id,const Parser & parser) const3225 Offset<reflection::Field> FieldDef::Serialize(FlatBufferBuilder *builder,
3226 uint16_t id,
3227 const Parser &parser) const {
3228 auto name__ = builder->CreateString(name);
3229 auto type__ = value.type.Serialize(builder);
3230 auto attr__ = SerializeAttributes(builder, parser);
3231 auto docs__ = parser.opts.binary_schema_comments
3232 ? builder->CreateVectorOfStrings(doc_comment)
3233 : 0;
3234 double d;
3235 StringToNumber(value.constant.c_str(), &d);
3236 return reflection::CreateField(
3237 *builder, name__, type__, id, value.offset,
3238 // Is uint64>max(int64) tested?
3239 IsInteger(value.type.base_type) ? StringToInt(value.constant.c_str()) : 0,
3240 // result may be platform-dependent if underlying is float (not double)
3241 IsFloat(value.type.base_type) ? d : 0.0, deprecated, required, key,
3242 attr__, docs__);
3243 // TODO: value.constant is almost always "0", we could save quite a bit of
3244 // space by sharing it. Same for common values of value.type.
3245 }
3246
Deserialize(Parser & parser,const reflection::Field * field)3247 bool FieldDef::Deserialize(Parser &parser, const reflection::Field *field) {
3248 name = field->name()->str();
3249 defined_namespace = parser.current_namespace_;
3250 if (!value.type.Deserialize(parser, field->type())) return false;
3251 value.offset = field->offset();
3252 if (IsInteger(value.type.base_type)) {
3253 value.constant = NumToString(field->default_integer());
3254 } else if (IsFloat(value.type.base_type)) {
3255 value.constant = FloatToString(field->default_real(), 16);
3256 size_t last_zero = value.constant.find_last_not_of('0');
3257 if (last_zero != std::string::npos && last_zero != 0) {
3258 value.constant.erase(last_zero, std::string::npos);
3259 }
3260 }
3261 deprecated = field->deprecated();
3262 required = field->required();
3263 key = field->key();
3264 if (!DeserializeAttributes(parser, field->attributes())) return false;
3265 // TODO: this should probably be handled by a separate attribute
3266 if (attributes.Lookup("flexbuffer")) {
3267 flexbuffer = true;
3268 parser.uses_flexbuffers_ = true;
3269 if (value.type.base_type != BASE_TYPE_VECTOR ||
3270 value.type.element != BASE_TYPE_UCHAR)
3271 return false;
3272 }
3273 if (auto nested = attributes.Lookup("nested_flatbuffer")) {
3274 auto nested_qualified_name =
3275 parser.current_namespace_->GetFullyQualifiedName(nested->constant);
3276 nested_flatbuffer = parser.LookupStruct(nested_qualified_name);
3277 if (!nested_flatbuffer) return false;
3278 }
3279 DeserializeDoc(doc_comment, field->documentation());
3280 return true;
3281 }
3282
Serialize(FlatBufferBuilder * builder,const Parser & parser) const3283 Offset<reflection::RPCCall> RPCCall::Serialize(FlatBufferBuilder *builder,
3284 const Parser &parser) const {
3285 auto name__ = builder->CreateString(name);
3286 auto attr__ = SerializeAttributes(builder, parser);
3287 auto docs__ = parser.opts.binary_schema_comments
3288 ? builder->CreateVectorOfStrings(doc_comment)
3289 : 0;
3290 return reflection::CreateRPCCall(
3291 *builder, name__, request->serialized_location,
3292 response->serialized_location, attr__, docs__);
3293 }
3294
Deserialize(Parser & parser,const reflection::RPCCall * call)3295 bool RPCCall::Deserialize(Parser &parser, const reflection::RPCCall *call) {
3296 name = call->name()->str();
3297 if (!DeserializeAttributes(parser, call->attributes())) return false;
3298 DeserializeDoc(doc_comment, call->documentation());
3299 request = parser.structs_.Lookup(call->request()->name()->str());
3300 response = parser.structs_.Lookup(call->response()->name()->str());
3301 if (!request || !response) { return false; }
3302 return true;
3303 }
3304
Serialize(FlatBufferBuilder * builder,const Parser & parser) const3305 Offset<reflection::Service> ServiceDef::Serialize(FlatBufferBuilder *builder,
3306 const Parser &parser) const {
3307 std::vector<Offset<reflection::RPCCall>> servicecall_offsets;
3308 for (auto it = calls.vec.begin(); it != calls.vec.end(); ++it) {
3309 servicecall_offsets.push_back((*it)->Serialize(builder, parser));
3310 }
3311 auto qualified_name = defined_namespace->GetFullyQualifiedName(name);
3312 auto name__ = builder->CreateString(qualified_name);
3313 auto call__ = builder->CreateVector(servicecall_offsets);
3314 auto attr__ = SerializeAttributes(builder, parser);
3315 auto docs__ = parser.opts.binary_schema_comments
3316 ? builder->CreateVectorOfStrings(doc_comment)
3317 : 0;
3318 return reflection::CreateService(*builder, name__, call__, attr__, docs__);
3319 }
3320
Deserialize(Parser & parser,const reflection::Service * service)3321 bool ServiceDef::Deserialize(Parser &parser,
3322 const reflection::Service *service) {
3323 name = parser.UnqualifiedName(service->name()->str());
3324 if (service->calls()) {
3325 for (uoffset_t i = 0; i < service->calls()->size(); ++i) {
3326 auto call = new RPCCall();
3327 if (!call->Deserialize(parser, service->calls()->Get(i)) ||
3328 calls.Add(call->name, call)) {
3329 delete call;
3330 return false;
3331 }
3332 }
3333 }
3334 if (!DeserializeAttributes(parser, service->attributes())) return false;
3335 DeserializeDoc(doc_comment, service->documentation());
3336 return true;
3337 }
3338
Serialize(FlatBufferBuilder * builder,const Parser & parser) const3339 Offset<reflection::Enum> EnumDef::Serialize(FlatBufferBuilder *builder,
3340 const Parser &parser) const {
3341 std::vector<Offset<reflection::EnumVal>> enumval_offsets;
3342 for (auto it = vals.vec.begin(); it != vals.vec.end(); ++it) {
3343 enumval_offsets.push_back((*it)->Serialize(builder, parser));
3344 }
3345 auto qualified_name = defined_namespace->GetFullyQualifiedName(name);
3346 auto name__ = builder->CreateString(qualified_name);
3347 auto vals__ = builder->CreateVector(enumval_offsets);
3348 auto type__ = underlying_type.Serialize(builder);
3349 auto attr__ = SerializeAttributes(builder, parser);
3350 auto docs__ = parser.opts.binary_schema_comments
3351 ? builder->CreateVectorOfStrings(doc_comment)
3352 : 0;
3353 return reflection::CreateEnum(*builder, name__, vals__, is_union, type__,
3354 attr__, docs__);
3355 }
3356
Deserialize(Parser & parser,const reflection::Enum * _enum)3357 bool EnumDef::Deserialize(Parser &parser, const reflection::Enum *_enum) {
3358 name = parser.UnqualifiedName(_enum->name()->str());
3359 for (uoffset_t i = 0; i < _enum->values()->size(); ++i) {
3360 auto val = new EnumVal();
3361 if (!val->Deserialize(parser, _enum->values()->Get(i)) ||
3362 vals.Add(val->name, val)) {
3363 delete val;
3364 return false;
3365 }
3366 }
3367 is_union = _enum->is_union();
3368 if (!underlying_type.Deserialize(parser, _enum->underlying_type())) {
3369 return false;
3370 }
3371 if (!DeserializeAttributes(parser, _enum->attributes())) return false;
3372 DeserializeDoc(doc_comment, _enum->documentation());
3373 return true;
3374 }
3375
Serialize(FlatBufferBuilder * builder,const Parser & parser) const3376 Offset<reflection::EnumVal> EnumVal::Serialize(FlatBufferBuilder *builder,
3377 const Parser &parser) const {
3378 auto name__ = builder->CreateString(name);
3379 auto type__ = union_type.Serialize(builder);
3380 auto docs__ = parser.opts.binary_schema_comments
3381 ? builder->CreateVectorOfStrings(doc_comment)
3382 : 0;
3383 return reflection::CreateEnumVal(
3384 *builder, name__, value,
3385 union_type.struct_def ? union_type.struct_def->serialized_location : 0,
3386 type__, docs__);
3387 }
3388
Deserialize(const Parser & parser,const reflection::EnumVal * val)3389 bool EnumVal::Deserialize(const Parser &parser,
3390 const reflection::EnumVal *val) {
3391 name = val->name()->str();
3392 value = val->value();
3393 if (!union_type.Deserialize(parser, val->union_type())) return false;
3394 DeserializeDoc(doc_comment, val->documentation());
3395 return true;
3396 }
3397
Serialize(FlatBufferBuilder * builder) const3398 Offset<reflection::Type> Type::Serialize(FlatBufferBuilder *builder) const {
3399 return reflection::CreateType(
3400 *builder, static_cast<reflection::BaseType>(base_type),
3401 static_cast<reflection::BaseType>(element),
3402 struct_def ? struct_def->index : (enum_def ? enum_def->index : -1),
3403 fixed_length);
3404 }
3405
Deserialize(const Parser & parser,const reflection::Type * type)3406 bool Type::Deserialize(const Parser &parser, const reflection::Type *type) {
3407 if (type == nullptr) return true;
3408 base_type = static_cast<BaseType>(type->base_type());
3409 element = static_cast<BaseType>(type->element());
3410 fixed_length = type->fixed_length();
3411 if (type->index() >= 0) {
3412 bool is_series = type->base_type() == reflection::Vector ||
3413 type->base_type() == reflection::Array;
3414 if (type->base_type() == reflection::Obj ||
3415 (is_series && type->element() == reflection::Obj)) {
3416 if (static_cast<size_t>(type->index()) < parser.structs_.vec.size()) {
3417 struct_def = parser.structs_.vec[type->index()];
3418 struct_def->refcount++;
3419 } else {
3420 return false;
3421 }
3422 } else {
3423 if (static_cast<size_t>(type->index()) < parser.enums_.vec.size()) {
3424 enum_def = parser.enums_.vec[type->index()];
3425 } else {
3426 return false;
3427 }
3428 }
3429 }
3430 return true;
3431 }
3432
3433 flatbuffers::Offset<
3434 flatbuffers::Vector<flatbuffers::Offset<reflection::KeyValue>>>
SerializeAttributes(FlatBufferBuilder * builder,const Parser & parser) const3435 Definition::SerializeAttributes(FlatBufferBuilder *builder,
3436 const Parser &parser) const {
3437 std::vector<flatbuffers::Offset<reflection::KeyValue>> attrs;
3438 for (auto kv = attributes.dict.begin(); kv != attributes.dict.end(); ++kv) {
3439 auto it = parser.known_attributes_.find(kv->first);
3440 FLATBUFFERS_ASSERT(it != parser.known_attributes_.end());
3441 if (parser.opts.binary_schema_builtins || !it->second) {
3442 auto key = builder->CreateString(kv->first);
3443 auto val = builder->CreateString(kv->second->constant);
3444 attrs.push_back(reflection::CreateKeyValue(*builder, key, val));
3445 }
3446 }
3447 if (attrs.size()) {
3448 return builder->CreateVectorOfSortedTables(&attrs);
3449 } else {
3450 return 0;
3451 }
3452 }
3453
DeserializeAttributes(Parser & parser,const Vector<Offset<reflection::KeyValue>> * attrs)3454 bool Definition::DeserializeAttributes(
3455 Parser &parser, const Vector<Offset<reflection::KeyValue>> *attrs) {
3456 if (attrs == nullptr) return true;
3457 for (uoffset_t i = 0; i < attrs->size(); ++i) {
3458 auto kv = attrs->Get(i);
3459 auto value = new Value();
3460 if (kv->value()) { value->constant = kv->value()->str(); }
3461 if (attributes.Add(kv->key()->str(), value)) {
3462 delete value;
3463 return false;
3464 }
3465 parser.known_attributes_[kv->key()->str()];
3466 }
3467 return true;
3468 }
3469
3470 /************************************************************************/
3471 /* DESERIALIZATION */
3472 /************************************************************************/
Deserialize(const uint8_t * buf,const size_t size)3473 bool Parser::Deserialize(const uint8_t *buf, const size_t size) {
3474 flatbuffers::Verifier verifier(reinterpret_cast<const uint8_t *>(buf), size);
3475 bool size_prefixed = false;
3476 if (!reflection::SchemaBufferHasIdentifier(buf)) {
3477 if (!flatbuffers::BufferHasIdentifier(buf, reflection::SchemaIdentifier(),
3478 true))
3479 return false;
3480 else
3481 size_prefixed = true;
3482 }
3483 auto verify_fn = size_prefixed ? &reflection::VerifySizePrefixedSchemaBuffer
3484 : &reflection::VerifySchemaBuffer;
3485 if (!verify_fn(verifier)) { return false; }
3486 auto schema = size_prefixed ? reflection::GetSizePrefixedSchema(buf)
3487 : reflection::GetSchema(buf);
3488 return Deserialize(schema);
3489 }
3490
Deserialize(const reflection::Schema * schema)3491 bool Parser::Deserialize(const reflection::Schema *schema) {
3492 file_identifier_ = schema->file_ident() ? schema->file_ident()->str() : "";
3493 file_extension_ = schema->file_ext() ? schema->file_ext()->str() : "";
3494 std::map<std::string, Namespace *> namespaces_index;
3495
3496 // Create defs without deserializing so references from fields to structs and
3497 // enums can be resolved.
3498 for (auto it = schema->objects()->begin(); it != schema->objects()->end();
3499 ++it) {
3500 auto struct_def = new StructDef();
3501 struct_def->bytesize = it->bytesize();
3502 struct_def->fixed = it->is_struct();
3503 struct_def->minalign = it->minalign();
3504 if (structs_.Add(it->name()->str(), struct_def)) {
3505 delete struct_def;
3506 return false;
3507 }
3508 auto type = new Type(BASE_TYPE_STRUCT, struct_def, nullptr);
3509 if (types_.Add(it->name()->str(), type)) {
3510 delete type;
3511 return false;
3512 }
3513 }
3514 for (auto it = schema->enums()->begin(); it != schema->enums()->end(); ++it) {
3515 auto enum_def = new EnumDef();
3516 if (enums_.Add(it->name()->str(), enum_def)) {
3517 delete enum_def;
3518 return false;
3519 }
3520 auto type = new Type(BASE_TYPE_UNION, nullptr, enum_def);
3521 if (types_.Add(it->name()->str(), type)) {
3522 delete type;
3523 return false;
3524 }
3525 }
3526
3527 // Now fields can refer to structs and enums by index.
3528 for (auto it = schema->objects()->begin(); it != schema->objects()->end();
3529 ++it) {
3530 std::string qualified_name = it->name()->str();
3531 auto struct_def = structs_.Lookup(qualified_name);
3532 struct_def->defined_namespace =
3533 GetNamespace(qualified_name, namespaces_, namespaces_index);
3534 if (!struct_def->Deserialize(*this, *it)) { return false; }
3535 if (schema->root_table() == *it) { root_struct_def_ = struct_def; }
3536 }
3537 for (auto it = schema->enums()->begin(); it != schema->enums()->end(); ++it) {
3538 std::string qualified_name = it->name()->str();
3539 auto enum_def = enums_.Lookup(qualified_name);
3540 enum_def->defined_namespace =
3541 GetNamespace(qualified_name, namespaces_, namespaces_index);
3542 if (!enum_def->Deserialize(*this, *it)) { return false; }
3543 }
3544
3545 if (schema->services()) {
3546 for (auto it = schema->services()->begin(); it != schema->services()->end();
3547 ++it) {
3548 std::string qualified_name = it->name()->str();
3549 auto service_def = new ServiceDef();
3550 service_def->defined_namespace =
3551 GetNamespace(qualified_name, namespaces_, namespaces_index);
3552 if (!service_def->Deserialize(*this, *it) ||
3553 services_.Add(qualified_name, service_def)) {
3554 delete service_def;
3555 return false;
3556 }
3557 }
3558 }
3559
3560 return true;
3561 }
3562
ConformTo(const Parser & base)3563 std::string Parser::ConformTo(const Parser &base) {
3564 for (auto sit = structs_.vec.begin(); sit != structs_.vec.end(); ++sit) {
3565 auto &struct_def = **sit;
3566 auto qualified_name =
3567 struct_def.defined_namespace->GetFullyQualifiedName(struct_def.name);
3568 auto struct_def_base = base.LookupStruct(qualified_name);
3569 if (!struct_def_base) continue;
3570 for (auto fit = struct_def.fields.vec.begin();
3571 fit != struct_def.fields.vec.end(); ++fit) {
3572 auto &field = **fit;
3573 auto field_base = struct_def_base->fields.Lookup(field.name);
3574 if (field_base) {
3575 if (field.value.offset != field_base->value.offset)
3576 return "offsets differ for field: " + field.name;
3577 if (field.value.constant != field_base->value.constant)
3578 return "defaults differ for field: " + field.name;
3579 if (!EqualByName(field.value.type, field_base->value.type))
3580 return "types differ for field: " + field.name;
3581 } else {
3582 // Doesn't have to exist, deleting fields is fine.
3583 // But we should check if there is a field that has the same offset
3584 // but is incompatible (in the case of field renaming).
3585 for (auto fbit = struct_def_base->fields.vec.begin();
3586 fbit != struct_def_base->fields.vec.end(); ++fbit) {
3587 field_base = *fbit;
3588 if (field.value.offset == field_base->value.offset) {
3589 if (!EqualByName(field.value.type, field_base->value.type))
3590 return "field renamed to different type: " + field.name;
3591 break;
3592 }
3593 }
3594 }
3595 }
3596 }
3597 for (auto eit = enums_.vec.begin(); eit != enums_.vec.end(); ++eit) {
3598 auto &enum_def = **eit;
3599 auto qualified_name =
3600 enum_def.defined_namespace->GetFullyQualifiedName(enum_def.name);
3601 auto enum_def_base = base.enums_.Lookup(qualified_name);
3602 if (!enum_def_base) continue;
3603 for (auto evit = enum_def.Vals().begin(); evit != enum_def.Vals().end();
3604 ++evit) {
3605 auto &enum_val = **evit;
3606 auto enum_val_base = enum_def_base->Lookup(enum_val.name);
3607 if (enum_val_base) {
3608 if (enum_val != *enum_val_base)
3609 return "values differ for enum: " + enum_val.name;
3610 }
3611 }
3612 }
3613 return "";
3614 }
3615
3616 } // namespace flatbuffers
3617