1 //===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the clang::ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15 #define LLVM_CLANG_AST_ASTCONTEXT_H
16
17 #include "clang/AST/ASTContextAllocate.h"
18 #include "clang/AST/ASTFwd.h"
19 #include "clang/AST/CanonicalType.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/ComparisonCategories.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclBase.h"
24 #include "clang/AST/DeclarationName.h"
25 #include "clang/AST/ExternalASTSource.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/PrettyPrinter.h"
28 #include "clang/AST/RawCommentList.h"
29 #include "clang/AST/TemplateName.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/AddressSpaces.h"
32 #include "clang/Basic/AttrKinds.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/LangOptions.h"
36 #include "clang/Basic/Linkage.h"
37 #include "clang/Basic/OperatorKinds.h"
38 #include "clang/Basic/PartialDiagnostic.h"
39 #include "clang/Basic/SanitizerBlacklist.h"
40 #include "clang/Basic/SourceLocation.h"
41 #include "clang/Basic/Specifiers.h"
42 #include "clang/Basic/XRayLists.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/ArrayRef.h"
45 #include "llvm/ADT/DenseMap.h"
46 #include "llvm/ADT/DenseSet.h"
47 #include "llvm/ADT/FoldingSet.h"
48 #include "llvm/ADT/IntrusiveRefCntPtr.h"
49 #include "llvm/ADT/MapVector.h"
50 #include "llvm/ADT/None.h"
51 #include "llvm/ADT/Optional.h"
52 #include "llvm/ADT/PointerIntPair.h"
53 #include "llvm/ADT/PointerUnion.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringMap.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/ADT/TinyPtrVector.h"
58 #include "llvm/ADT/Triple.h"
59 #include "llvm/ADT/iterator_range.h"
60 #include "llvm/Support/Allocator.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/TypeSize.h"
64 #include <cassert>
65 #include <cstddef>
66 #include <cstdint>
67 #include <iterator>
68 #include <memory>
69 #include <string>
70 #include <type_traits>
71 #include <utility>
72 #include <vector>
73
74 namespace llvm {
75
76 class APFixedPoint;
77 class FixedPointSemantics;
78 struct fltSemantics;
79 template <typename T, unsigned N> class SmallPtrSet;
80
81 } // namespace llvm
82
83 namespace clang {
84
85 class APValue;
86 class ASTMutationListener;
87 class ASTRecordLayout;
88 class AtomicExpr;
89 class BlockExpr;
90 class BuiltinTemplateDecl;
91 class CharUnits;
92 class ConceptDecl;
93 class CXXABI;
94 class CXXConstructorDecl;
95 class CXXMethodDecl;
96 class CXXRecordDecl;
97 class DiagnosticsEngine;
98 class ParentMapContext;
99 class DynTypedNode;
100 class DynTypedNodeList;
101 class Expr;
102 class GlobalDecl;
103 class MangleContext;
104 class MangleNumberingContext;
105 class MaterializeTemporaryExpr;
106 class MemberSpecializationInfo;
107 class Module;
108 struct MSGuidDeclParts;
109 class ObjCCategoryDecl;
110 class ObjCCategoryImplDecl;
111 class ObjCContainerDecl;
112 class ObjCImplDecl;
113 class ObjCImplementationDecl;
114 class ObjCInterfaceDecl;
115 class ObjCIvarDecl;
116 class ObjCMethodDecl;
117 class ObjCPropertyDecl;
118 class ObjCPropertyImplDecl;
119 class ObjCProtocolDecl;
120 class ObjCTypeParamDecl;
121 class OMPTraitInfo;
122 struct ParsedTargetAttr;
123 class Preprocessor;
124 class Stmt;
125 class StoredDeclsMap;
126 class TargetAttr;
127 class TargetInfo;
128 class TemplateDecl;
129 class TemplateParameterList;
130 class TemplateTemplateParmDecl;
131 class TemplateTypeParmDecl;
132 class UnresolvedSetIterator;
133 class UsingShadowDecl;
134 class VarTemplateDecl;
135 class VTableContextBase;
136 struct BlockVarCopyInit;
137
138 namespace Builtin {
139
140 class Context;
141
142 } // namespace Builtin
143
144 enum BuiltinTemplateKind : int;
145 enum OpenCLTypeKind : uint8_t;
146
147 namespace comments {
148
149 class FullComment;
150
151 } // namespace comments
152
153 namespace interp {
154
155 class Context;
156
157 } // namespace interp
158
159 namespace serialization {
160 template <class> class AbstractTypeReader;
161 } // namespace serialization
162
163 struct TypeInfo {
164 uint64_t Width = 0;
165 unsigned Align = 0;
166 bool AlignIsRequired : 1;
167
TypeInfoTypeInfo168 TypeInfo() : AlignIsRequired(false) {}
TypeInfoTypeInfo169 TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
170 : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
171 };
172
173 struct TypeInfoChars {
174 CharUnits Width;
175 CharUnits Align;
176 bool AlignIsRequired : 1;
177
TypeInfoCharsTypeInfoChars178 TypeInfoChars() : AlignIsRequired(false) {}
TypeInfoCharsTypeInfoChars179 TypeInfoChars(CharUnits Width, CharUnits Align, bool AlignIsRequired)
180 : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
181 };
182
183 /// Holds long-lived AST nodes (such as types and decls) that can be
184 /// referred to throughout the semantic analysis of a file.
185 class ASTContext : public RefCountedBase<ASTContext> {
186 friend class NestedNameSpecifier;
187
188 mutable SmallVector<Type *, 0> Types;
189 mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
190 mutable llvm::FoldingSet<ComplexType> ComplexTypes;
191 mutable llvm::FoldingSet<PointerType> PointerTypes;
192 mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
193 mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
194 mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
195 mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
196 mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
197 mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
198 ConstantArrayTypes;
199 mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
200 mutable std::vector<VariableArrayType*> VariableArrayTypes;
201 mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
202 mutable llvm::FoldingSet<DependentSizedExtVectorType>
203 DependentSizedExtVectorTypes;
204 mutable llvm::FoldingSet<DependentAddressSpaceType>
205 DependentAddressSpaceTypes;
206 mutable llvm::FoldingSet<VectorType> VectorTypes;
207 mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
208 mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
209 mutable llvm::FoldingSet<DependentSizedMatrixType> DependentSizedMatrixTypes;
210 mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
211 mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
212 FunctionProtoTypes;
213 mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
214 mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
215 mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
216 mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
217 mutable llvm::FoldingSet<SubstTemplateTypeParmType>
218 SubstTemplateTypeParmTypes;
219 mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
220 SubstTemplateTypeParmPackTypes;
221 mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
222 TemplateSpecializationTypes;
223 mutable llvm::FoldingSet<ParenType> ParenTypes;
224 mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
225 mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
226 mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
227 ASTContext&>
228 DependentTemplateSpecializationTypes;
229 llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
230 mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
231 mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
232 mutable llvm::FoldingSet<DependentUnaryTransformType>
233 DependentUnaryTransformTypes;
234 mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
235 mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
236 DeducedTemplateSpecializationTypes;
237 mutable llvm::FoldingSet<AtomicType> AtomicTypes;
238 llvm::FoldingSet<AttributedType> AttributedTypes;
239 mutable llvm::FoldingSet<PipeType> PipeTypes;
240 mutable llvm::FoldingSet<ExtIntType> ExtIntTypes;
241 mutable llvm::FoldingSet<DependentExtIntType> DependentExtIntTypes;
242
243 mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
244 mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
245 mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
246 SubstTemplateTemplateParms;
247 mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
248 ASTContext&>
249 SubstTemplateTemplateParmPacks;
250
251 /// The set of nested name specifiers.
252 ///
253 /// This set is managed by the NestedNameSpecifier class.
254 mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
255 mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
256
257 /// A cache mapping from RecordDecls to ASTRecordLayouts.
258 ///
259 /// This is lazily created. This is intentionally not serialized.
260 mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
261 ASTRecordLayouts;
262 mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
263 ObjCLayouts;
264
265 /// A cache from types to size and alignment information.
266 using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
267 mutable TypeInfoMap MemoizedTypeInfo;
268
269 /// A cache from types to unadjusted alignment information. Only ARM and
270 /// AArch64 targets need this information, keeping it separate prevents
271 /// imposing overhead on TypeInfo size.
272 using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
273 mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
274
275 /// A cache mapping from CXXRecordDecls to key functions.
276 llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
277
278 /// Mapping from ObjCContainers to their ObjCImplementations.
279 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
280
281 /// Mapping from ObjCMethod to its duplicate declaration in the same
282 /// interface.
283 llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
284
285 /// Mapping from __block VarDecls to BlockVarCopyInit.
286 llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
287
288 /// Mapping from GUIDs to the corresponding MSGuidDecl.
289 mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
290
291 /// Mapping from APValues to the corresponding TemplateParamObjects.
292 mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
293
294 /// A cache mapping a string value to a StringLiteral object with the same
295 /// value.
296 ///
297 /// This is lazily created. This is intentionally not serialized.
298 mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
299
300 /// Representation of a "canonical" template template parameter that
301 /// is used in canonical template names.
302 class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
303 TemplateTemplateParmDecl *Parm;
304
305 public:
CanonicalTemplateTemplateParm(TemplateTemplateParmDecl * Parm)306 CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
307 : Parm(Parm) {}
308
getParam()309 TemplateTemplateParmDecl *getParam() const { return Parm; }
310
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & C)311 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
312 Profile(ID, C, Parm);
313 }
314
315 static void Profile(llvm::FoldingSetNodeID &ID,
316 const ASTContext &C,
317 TemplateTemplateParmDecl *Parm);
318 };
319 mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
320 const ASTContext&>
321 CanonTemplateTemplateParms;
322
323 TemplateTemplateParmDecl *
324 getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
325
326 /// The typedef for the __int128_t type.
327 mutable TypedefDecl *Int128Decl = nullptr;
328
329 /// The typedef for the __uint128_t type.
330 mutable TypedefDecl *UInt128Decl = nullptr;
331
332 /// The typedef for the target specific predefined
333 /// __builtin_va_list type.
334 mutable TypedefDecl *BuiltinVaListDecl = nullptr;
335
336 /// The typedef for the predefined \c __builtin_ms_va_list type.
337 mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
338
339 /// The typedef for the predefined \c id type.
340 mutable TypedefDecl *ObjCIdDecl = nullptr;
341
342 /// The typedef for the predefined \c SEL type.
343 mutable TypedefDecl *ObjCSelDecl = nullptr;
344
345 /// The typedef for the predefined \c Class type.
346 mutable TypedefDecl *ObjCClassDecl = nullptr;
347
348 /// The typedef for the predefined \c Protocol class in Objective-C.
349 mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
350
351 /// The typedef for the predefined 'BOOL' type.
352 mutable TypedefDecl *BOOLDecl = nullptr;
353
354 // Typedefs which may be provided defining the structure of Objective-C
355 // pseudo-builtins
356 QualType ObjCIdRedefinitionType;
357 QualType ObjCClassRedefinitionType;
358 QualType ObjCSelRedefinitionType;
359
360 /// The identifier 'bool'.
361 mutable IdentifierInfo *BoolName = nullptr;
362
363 /// The identifier 'NSObject'.
364 mutable IdentifierInfo *NSObjectName = nullptr;
365
366 /// The identifier 'NSCopying'.
367 IdentifierInfo *NSCopyingName = nullptr;
368
369 /// The identifier '__make_integer_seq'.
370 mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
371
372 /// The identifier '__type_pack_element'.
373 mutable IdentifierInfo *TypePackElementName = nullptr;
374
375 QualType ObjCConstantStringType;
376 mutable RecordDecl *CFConstantStringTagDecl = nullptr;
377 mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
378
379 mutable QualType ObjCSuperType;
380
381 QualType ObjCNSStringType;
382
383 /// The typedef declaration for the Objective-C "instancetype" type.
384 TypedefDecl *ObjCInstanceTypeDecl = nullptr;
385
386 /// The type for the C FILE type.
387 TypeDecl *FILEDecl = nullptr;
388
389 /// The type for the C jmp_buf type.
390 TypeDecl *jmp_bufDecl = nullptr;
391
392 /// The type for the C sigjmp_buf type.
393 TypeDecl *sigjmp_bufDecl = nullptr;
394
395 /// The type for the C ucontext_t type.
396 TypeDecl *ucontext_tDecl = nullptr;
397
398 /// Type for the Block descriptor for Blocks CodeGen.
399 ///
400 /// Since this is only used for generation of debug info, it is not
401 /// serialized.
402 mutable RecordDecl *BlockDescriptorType = nullptr;
403
404 /// Type for the Block descriptor for Blocks CodeGen.
405 ///
406 /// Since this is only used for generation of debug info, it is not
407 /// serialized.
408 mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
409
410 /// Declaration for the CUDA cudaConfigureCall function.
411 FunctionDecl *cudaConfigureCallDecl = nullptr;
412
413 /// Keeps track of all declaration attributes.
414 ///
415 /// Since so few decls have attrs, we keep them in a hash map instead of
416 /// wasting space in the Decl class.
417 llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
418
419 /// A mapping from non-redeclarable declarations in modules that were
420 /// merged with other declarations to the canonical declaration that they were
421 /// merged into.
422 llvm::DenseMap<Decl*, Decl*> MergedDecls;
423
424 /// A mapping from a defining declaration to a list of modules (other
425 /// than the owning module of the declaration) that contain merged
426 /// definitions of that entity.
427 llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
428
429 /// Initializers for a module, in order. Each Decl will be either
430 /// something that has a semantic effect on startup (such as a variable with
431 /// a non-constant initializer), or an ImportDecl (which recursively triggers
432 /// initialization of another module).
433 struct PerModuleInitializers {
434 llvm::SmallVector<Decl*, 4> Initializers;
435 llvm::SmallVector<uint32_t, 4> LazyInitializers;
436
437 void resolve(ASTContext &Ctx);
438 };
439 llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
440
this_()441 ASTContext &this_() { return *this; }
442
443 public:
444 /// A type synonym for the TemplateOrInstantiation mapping.
445 using TemplateOrSpecializationInfo =
446 llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
447
448 private:
449 friend class ASTDeclReader;
450 friend class ASTReader;
451 friend class ASTWriter;
452 template <class> friend class serialization::AbstractTypeReader;
453 friend class CXXRecordDecl;
454
455 /// A mapping to contain the template or declaration that
456 /// a variable declaration describes or was instantiated from,
457 /// respectively.
458 ///
459 /// For non-templates, this value will be NULL. For variable
460 /// declarations that describe a variable template, this will be a
461 /// pointer to a VarTemplateDecl. For static data members
462 /// of class template specializations, this will be the
463 /// MemberSpecializationInfo referring to the member variable that was
464 /// instantiated or specialized. Thus, the mapping will keep track of
465 /// the static data member templates from which static data members of
466 /// class template specializations were instantiated.
467 ///
468 /// Given the following example:
469 ///
470 /// \code
471 /// template<typename T>
472 /// struct X {
473 /// static T value;
474 /// };
475 ///
476 /// template<typename T>
477 /// T X<T>::value = T(17);
478 ///
479 /// int *x = &X<int>::value;
480 /// \endcode
481 ///
482 /// This mapping will contain an entry that maps from the VarDecl for
483 /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
484 /// class template X) and will be marked TSK_ImplicitInstantiation.
485 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
486 TemplateOrInstantiation;
487
488 /// Keeps track of the declaration from which a using declaration was
489 /// created during instantiation.
490 ///
491 /// The source and target declarations are always a UsingDecl, an
492 /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
493 ///
494 /// For example:
495 /// \code
496 /// template<typename T>
497 /// struct A {
498 /// void f();
499 /// };
500 ///
501 /// template<typename T>
502 /// struct B : A<T> {
503 /// using A<T>::f;
504 /// };
505 ///
506 /// template struct B<int>;
507 /// \endcode
508 ///
509 /// This mapping will contain an entry that maps from the UsingDecl in
510 /// B<int> to the UnresolvedUsingDecl in B<T>.
511 llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
512
513 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
514 InstantiatedFromUsingShadowDecl;
515
516 llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
517
518 /// Mapping that stores the methods overridden by a given C++
519 /// member function.
520 ///
521 /// Since most C++ member functions aren't virtual and therefore
522 /// don't override anything, we store the overridden functions in
523 /// this map on the side rather than within the CXXMethodDecl structure.
524 using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
525 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
526
527 /// Mapping from each declaration context to its corresponding
528 /// mangling numbering context (used for constructs like lambdas which
529 /// need to be consistently numbered for the mangler).
530 llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
531 MangleNumberingContexts;
532 llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
533 ExtraMangleNumberingContexts;
534
535 /// Side-table of mangling numbers for declarations which rarely
536 /// need them (like static local vars).
537 llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
538 llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
539
540 /// Mapping that stores parameterIndex values for ParmVarDecls when
541 /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
542 using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
543 ParameterIndexTable ParamIndices;
544
545 ImportDecl *FirstLocalImport = nullptr;
546 ImportDecl *LastLocalImport = nullptr;
547
548 TranslationUnitDecl *TUDecl;
549 mutable ExternCContextDecl *ExternCContext = nullptr;
550 mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
551 mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
552
553 /// The associated SourceManager object.
554 SourceManager &SourceMgr;
555
556 /// The language options used to create the AST associated with
557 /// this ASTContext object.
558 LangOptions &LangOpts;
559
560 /// Blacklist object that is used by sanitizers to decide which
561 /// entities should not be instrumented.
562 std::unique_ptr<SanitizerBlacklist> SanitizerBL;
563
564 /// Function filtering mechanism to determine whether a given function
565 /// should be imbued with the XRay "always" or "never" attributes.
566 std::unique_ptr<XRayFunctionFilter> XRayFilter;
567
568 /// The allocator used to create AST objects.
569 ///
570 /// AST objects are never destructed; rather, all memory associated with the
571 /// AST objects will be released when the ASTContext itself is destroyed.
572 mutable llvm::BumpPtrAllocator BumpAlloc;
573
574 /// Allocator for partial diagnostics.
575 PartialDiagnostic::DiagStorageAllocator DiagAllocator;
576
577 /// The current C++ ABI.
578 std::unique_ptr<CXXABI> ABI;
579 CXXABI *createCXXABI(const TargetInfo &T);
580
581 /// The logical -> physical address space map.
582 const LangASMap *AddrSpaceMap = nullptr;
583
584 /// Address space map mangling must be used with language specific
585 /// address spaces (e.g. OpenCL/CUDA)
586 bool AddrSpaceMapMangling;
587
588 const TargetInfo *Target = nullptr;
589 const TargetInfo *AuxTarget = nullptr;
590 clang::PrintingPolicy PrintingPolicy;
591 std::unique_ptr<interp::Context> InterpContext;
592 std::unique_ptr<ParentMapContext> ParentMapCtx;
593
594 public:
595 IdentifierTable &Idents;
596 SelectorTable &Selectors;
597 Builtin::Context &BuiltinInfo;
598 mutable DeclarationNameTable DeclarationNames;
599 IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
600 ASTMutationListener *Listener = nullptr;
601
602 /// Returns the clang bytecode interpreter context.
603 interp::Context &getInterpContext();
604
605 /// Returns the dynamic AST node parent map context.
606 ParentMapContext &getParentMapContext();
607
608 // A traversal scope limits the parts of the AST visible to certain analyses.
609 // RecursiveASTVisitor::TraverseAST will only visit reachable nodes, and
610 // getParents() will only observe reachable parent edges.
611 //
612 // The scope is defined by a set of "top-level" declarations.
613 // Initially, it is the entire TU: {getTranslationUnitDecl()}.
614 // Changing the scope clears the parent cache, which is expensive to rebuild.
getTraversalScope()615 std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
616 void setTraversalScope(const std::vector<Decl *> &);
617
618 /// Forwards to get node parents from the ParentMapContext. New callers should
619 /// use ParentMapContext::getParents() directly.
620 template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
621
getPrintingPolicy()622 const clang::PrintingPolicy &getPrintingPolicy() const {
623 return PrintingPolicy;
624 }
625
setPrintingPolicy(const clang::PrintingPolicy & Policy)626 void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
627 PrintingPolicy = Policy;
628 }
629
getSourceManager()630 SourceManager& getSourceManager() { return SourceMgr; }
getSourceManager()631 const SourceManager& getSourceManager() const { return SourceMgr; }
632
getAllocator()633 llvm::BumpPtrAllocator &getAllocator() const {
634 return BumpAlloc;
635 }
636
637 void *Allocate(size_t Size, unsigned Align = 8) const {
638 return BumpAlloc.Allocate(Size, Align);
639 }
640 template <typename T> T *Allocate(size_t Num = 1) const {
641 return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
642 }
Deallocate(void * Ptr)643 void Deallocate(void *Ptr) const {}
644
645 /// Return the total amount of physical memory allocated for representing
646 /// AST nodes and type information.
getASTAllocatedMemory()647 size_t getASTAllocatedMemory() const {
648 return BumpAlloc.getTotalMemory();
649 }
650
651 /// Return the total memory used for various side tables.
652 size_t getSideTableAllocatedMemory() const;
653
getDiagAllocator()654 PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
655 return DiagAllocator;
656 }
657
getTargetInfo()658 const TargetInfo &getTargetInfo() const { return *Target; }
getAuxTargetInfo()659 const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
660
661 /// getIntTypeForBitwidth -
662 /// sets integer QualTy according to specified details:
663 /// bitwidth, signed/unsigned.
664 /// Returns empty type if there is no appropriate target types.
665 QualType getIntTypeForBitwidth(unsigned DestWidth,
666 unsigned Signed) const;
667
668 /// getRealTypeForBitwidth -
669 /// sets floating point QualTy according to specified bitwidth.
670 /// Returns empty type if there is no appropriate target types.
671 QualType getRealTypeForBitwidth(unsigned DestWidth, bool ExplicitIEEE) const;
672
673 bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
674
getLangOpts()675 const LangOptions& getLangOpts() const { return LangOpts; }
676
677 // If this condition is false, typo correction must be performed eagerly
678 // rather than delayed in many places, as it makes use of dependent types.
679 // the condition is false for clang's C-only codepath, as it doesn't support
680 // dependent types yet.
isDependenceAllowed()681 bool isDependenceAllowed() const {
682 return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
683 }
684
getSanitizerBlacklist()685 const SanitizerBlacklist &getSanitizerBlacklist() const {
686 return *SanitizerBL;
687 }
688
getXRayFilter()689 const XRayFunctionFilter &getXRayFilter() const {
690 return *XRayFilter;
691 }
692
693 DiagnosticsEngine &getDiagnostics() const;
694
getFullLoc(SourceLocation Loc)695 FullSourceLoc getFullLoc(SourceLocation Loc) const {
696 return FullSourceLoc(Loc,SourceMgr);
697 }
698
699 /// All comments in this translation unit.
700 RawCommentList Comments;
701
702 /// True if comments are already loaded from ExternalASTSource.
703 mutable bool CommentsLoaded = false;
704
705 /// Mapping from declaration to directly attached comment.
706 ///
707 /// Raw comments are owned by Comments list. This mapping is populated
708 /// lazily.
709 mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
710
711 /// Mapping from canonical declaration to the first redeclaration in chain
712 /// that has a comment attached.
713 ///
714 /// Raw comments are owned by Comments list. This mapping is populated
715 /// lazily.
716 mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
717
718 /// Keeps track of redeclaration chains that don't have any comment attached.
719 /// Mapping from canonical declaration to redeclaration chain that has no
720 /// comments attached to any redeclaration. Specifically it's mapping to
721 /// the last redeclaration we've checked.
722 ///
723 /// Shall not contain declarations that have comments attached to any
724 /// redeclaration in their chain.
725 mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
726
727 /// Mapping from declarations to parsed comments attached to any
728 /// redeclaration.
729 mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
730
731 /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
732 /// and removes the redeclaration chain from the set of commentless chains.
733 ///
734 /// Don't do anything if a comment has already been attached to \p OriginalD
735 /// or its redeclaration chain.
736 void cacheRawCommentForDecl(const Decl &OriginalD,
737 const RawComment &Comment) const;
738
739 /// \returns searches \p CommentsInFile for doc comment for \p D.
740 ///
741 /// \p RepresentativeLocForDecl is used as a location for searching doc
742 /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
743 /// same file where \p RepresentativeLocForDecl is.
744 RawComment *getRawCommentForDeclNoCacheImpl(
745 const Decl *D, const SourceLocation RepresentativeLocForDecl,
746 const std::map<unsigned, RawComment *> &CommentsInFile) const;
747
748 /// Return the documentation comment attached to a given declaration,
749 /// without looking into cache.
750 RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
751
752 public:
753 void addComment(const RawComment &RC);
754
755 /// Return the documentation comment attached to a given declaration.
756 /// Returns nullptr if no comment is attached.
757 ///
758 /// \param OriginalDecl if not nullptr, is set to declaration AST node that
759 /// had the comment, if the comment we found comes from a redeclaration.
760 const RawComment *
761 getRawCommentForAnyRedecl(const Decl *D,
762 const Decl **OriginalDecl = nullptr) const;
763
764 /// Searches existing comments for doc comments that should be attached to \p
765 /// Decls. If any doc comment is found, it is parsed.
766 ///
767 /// Requirement: All \p Decls are in the same file.
768 ///
769 /// If the last comment in the file is already attached we assume
770 /// there are not comments left to be attached to \p Decls.
771 void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
772 const Preprocessor *PP);
773
774 /// Return parsed documentation comment attached to a given declaration.
775 /// Returns nullptr if no comment is attached.
776 ///
777 /// \param PP the Preprocessor used with this TU. Could be nullptr if
778 /// preprocessor is not available.
779 comments::FullComment *getCommentForDecl(const Decl *D,
780 const Preprocessor *PP) const;
781
782 /// Return parsed documentation comment attached to a given declaration.
783 /// Returns nullptr if no comment is attached. Does not look at any
784 /// redeclarations of the declaration.
785 comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
786
787 comments::FullComment *cloneFullComment(comments::FullComment *FC,
788 const Decl *D) const;
789
790 private:
791 mutable comments::CommandTraits CommentCommandTraits;
792
793 /// Iterator that visits import declarations.
794 class import_iterator {
795 ImportDecl *Import = nullptr;
796
797 public:
798 using value_type = ImportDecl *;
799 using reference = ImportDecl *;
800 using pointer = ImportDecl *;
801 using difference_type = int;
802 using iterator_category = std::forward_iterator_tag;
803
804 import_iterator() = default;
import_iterator(ImportDecl * Import)805 explicit import_iterator(ImportDecl *Import) : Import(Import) {}
806
807 reference operator*() const { return Import; }
808 pointer operator->() const { return Import; }
809
810 import_iterator &operator++() {
811 Import = ASTContext::getNextLocalImport(Import);
812 return *this;
813 }
814
815 import_iterator operator++(int) {
816 import_iterator Other(*this);
817 ++(*this);
818 return Other;
819 }
820
821 friend bool operator==(import_iterator X, import_iterator Y) {
822 return X.Import == Y.Import;
823 }
824
825 friend bool operator!=(import_iterator X, import_iterator Y) {
826 return X.Import != Y.Import;
827 }
828 };
829
830 public:
getCommentCommandTraits()831 comments::CommandTraits &getCommentCommandTraits() const {
832 return CommentCommandTraits;
833 }
834
835 /// Retrieve the attributes for the given declaration.
836 AttrVec& getDeclAttrs(const Decl *D);
837
838 /// Erase the attributes corresponding to the given declaration.
839 void eraseDeclAttrs(const Decl *D);
840
841 /// If this variable is an instantiated static data member of a
842 /// class template specialization, returns the templated static data member
843 /// from which it was instantiated.
844 // FIXME: Remove ?
845 MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
846 const VarDecl *Var);
847
848 TemplateOrSpecializationInfo
849 getTemplateOrSpecializationInfo(const VarDecl *Var);
850
851 /// Note that the static data member \p Inst is an instantiation of
852 /// the static data member template \p Tmpl of a class template.
853 void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
854 TemplateSpecializationKind TSK,
855 SourceLocation PointOfInstantiation = SourceLocation());
856
857 void setTemplateOrSpecializationInfo(VarDecl *Inst,
858 TemplateOrSpecializationInfo TSI);
859
860 /// If the given using decl \p Inst is an instantiation of a
861 /// (possibly unresolved) using decl from a template instantiation,
862 /// return it.
863 NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
864
865 /// Remember that the using decl \p Inst is an instantiation
866 /// of the using decl \p Pattern of a class template.
867 void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
868
869 void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
870 UsingShadowDecl *Pattern);
871 UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
872
873 FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
874
875 void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
876
877 // Access to the set of methods overridden by the given C++ method.
878 using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
879 overridden_cxx_method_iterator
880 overridden_methods_begin(const CXXMethodDecl *Method) const;
881
882 overridden_cxx_method_iterator
883 overridden_methods_end(const CXXMethodDecl *Method) const;
884
885 unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
886
887 using overridden_method_range =
888 llvm::iterator_range<overridden_cxx_method_iterator>;
889
890 overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
891
892 /// Note that the given C++ \p Method overrides the given \p
893 /// Overridden method.
894 void addOverriddenMethod(const CXXMethodDecl *Method,
895 const CXXMethodDecl *Overridden);
896
897 /// Return C++ or ObjC overridden methods for the given \p Method.
898 ///
899 /// An ObjC method is considered to override any method in the class's
900 /// base classes, its protocols, or its categories' protocols, that has
901 /// the same selector and is of the same kind (class or instance).
902 /// A method in an implementation is not considered as overriding the same
903 /// method in the interface or its categories.
904 void getOverriddenMethods(
905 const NamedDecl *Method,
906 SmallVectorImpl<const NamedDecl *> &Overridden) const;
907
908 /// Notify the AST context that a new import declaration has been
909 /// parsed or implicitly created within this translation unit.
910 void addedLocalImportDecl(ImportDecl *Import);
911
getNextLocalImport(ImportDecl * Import)912 static ImportDecl *getNextLocalImport(ImportDecl *Import) {
913 return Import->getNextLocalImport();
914 }
915
916 using import_range = llvm::iterator_range<import_iterator>;
917
local_imports()918 import_range local_imports() const {
919 return import_range(import_iterator(FirstLocalImport), import_iterator());
920 }
921
getPrimaryMergedDecl(Decl * D)922 Decl *getPrimaryMergedDecl(Decl *D) {
923 Decl *Result = MergedDecls.lookup(D);
924 return Result ? Result : D;
925 }
setPrimaryMergedDecl(Decl * D,Decl * Primary)926 void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
927 MergedDecls[D] = Primary;
928 }
929
930 /// Note that the definition \p ND has been merged into module \p M,
931 /// and should be visible whenever \p M is visible.
932 void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
933 bool NotifyListeners = true);
934
935 /// Clean up the merged definition list. Call this if you might have
936 /// added duplicates into the list.
937 void deduplicateMergedDefinitonsFor(NamedDecl *ND);
938
939 /// Get the additional modules in which the definition \p Def has
940 /// been merged.
941 ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
942
943 /// Add a declaration to the list of declarations that are initialized
944 /// for a module. This will typically be a global variable (with internal
945 /// linkage) that runs module initializers, such as the iostream initializer,
946 /// or an ImportDecl nominating another module that has initializers.
947 void addModuleInitializer(Module *M, Decl *Init);
948
949 void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
950
951 /// Get the initializations to perform when importing a module, if any.
952 ArrayRef<Decl*> getModuleInitializers(Module *M);
953
getTranslationUnitDecl()954 TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
955
956 ExternCContextDecl *getExternCContextDecl() const;
957 BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
958 BuiltinTemplateDecl *getTypePackElementDecl() const;
959
960 // Builtin Types.
961 CanQualType VoidTy;
962 CanQualType BoolTy;
963 CanQualType CharTy;
964 CanQualType WCharTy; // [C++ 3.9.1p5].
965 CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
966 CanQualType WIntTy; // [C99 7.24.1], integer type unchanged by default promotions.
967 CanQualType Char8Ty; // [C++20 proposal]
968 CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
969 CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
970 CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
971 CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
972 CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
973 CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
974 CanQualType ShortAccumTy, AccumTy,
975 LongAccumTy; // ISO/IEC JTC1 SC22 WG14 N1169 Extension
976 CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
977 CanQualType ShortFractTy, FractTy, LongFractTy;
978 CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
979 CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
980 CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
981 SatUnsignedLongAccumTy;
982 CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
983 CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
984 SatUnsignedLongFractTy;
985 CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
986 CanQualType BFloat16Ty;
987 CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
988 CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
989 CanQualType Float128ComplexTy;
990 CanQualType VoidPtrTy, NullPtrTy;
991 CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
992 CanQualType BuiltinFnTy;
993 CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
994 CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
995 CanQualType ObjCBuiltinBoolTy;
996 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
997 CanQualType SingletonId;
998 #include "clang/Basic/OpenCLImageTypes.def"
999 CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1000 CanQualType OCLQueueTy, OCLReserveIDTy;
1001 CanQualType IncompleteMatrixIdxTy;
1002 CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
1003 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1004 CanQualType Id##Ty;
1005 #include "clang/Basic/OpenCLExtensionTypes.def"
1006 #define SVE_TYPE(Name, Id, SingletonId) \
1007 CanQualType SingletonId;
1008 #include "clang/Basic/AArch64SVEACLETypes.def"
1009 #define PPC_MMA_VECTOR_TYPE(Name, Id, Size) \
1010 CanQualType Id##Ty;
1011 #include "clang/Basic/PPCTypes.def"
1012
1013 // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1014 mutable QualType AutoDeductTy; // Deduction against 'auto'.
1015 mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1016
1017 // Decl used to help define __builtin_va_list for some targets.
1018 // The decl is built when constructing 'BuiltinVaListDecl'.
1019 mutable Decl *VaListTagDecl = nullptr;
1020
1021 // Implicitly-declared type 'struct _GUID'.
1022 mutable TagDecl *MSGuidTagDecl = nullptr;
1023
1024 /// Keep track of CUDA/HIP static device variables referenced by host code.
1025 llvm::DenseSet<const VarDecl *> CUDAStaticDeviceVarReferencedByHost;
1026
1027 ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1028 SelectorTable &sels, Builtin::Context &builtins);
1029 ASTContext(const ASTContext &) = delete;
1030 ASTContext &operator=(const ASTContext &) = delete;
1031 ~ASTContext();
1032
1033 /// Attach an external AST source to the AST context.
1034 ///
1035 /// The external AST source provides the ability to load parts of
1036 /// the abstract syntax tree as needed from some external storage,
1037 /// e.g., a precompiled header.
1038 void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1039
1040 /// Retrieve a pointer to the external AST source associated
1041 /// with this AST context, if any.
getExternalSource()1042 ExternalASTSource *getExternalSource() const {
1043 return ExternalSource.get();
1044 }
1045
1046 /// Attach an AST mutation listener to the AST context.
1047 ///
1048 /// The AST mutation listener provides the ability to track modifications to
1049 /// the abstract syntax tree entities committed after they were initially
1050 /// created.
setASTMutationListener(ASTMutationListener * Listener)1051 void setASTMutationListener(ASTMutationListener *Listener) {
1052 this->Listener = Listener;
1053 }
1054
1055 /// Retrieve a pointer to the AST mutation listener associated
1056 /// with this AST context, if any.
getASTMutationListener()1057 ASTMutationListener *getASTMutationListener() const { return Listener; }
1058
1059 void PrintStats() const;
getTypes()1060 const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1061
1062 BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1063 const IdentifierInfo *II) const;
1064
1065 /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1066 /// declaration.
1067 RecordDecl *buildImplicitRecord(StringRef Name,
1068 RecordDecl::TagKind TK = TTK_Struct) const;
1069
1070 /// Create a new implicit TU-level typedef declaration.
1071 TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1072
1073 /// Retrieve the declaration for the 128-bit signed integer type.
1074 TypedefDecl *getInt128Decl() const;
1075
1076 /// Retrieve the declaration for the 128-bit unsigned integer type.
1077 TypedefDecl *getUInt128Decl() const;
1078
1079 //===--------------------------------------------------------------------===//
1080 // Type Constructors
1081 //===--------------------------------------------------------------------===//
1082
1083 private:
1084 /// Return a type with extended qualifiers.
1085 QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1086
1087 QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1088
1089 QualType getPipeType(QualType T, bool ReadOnly) const;
1090
1091 public:
1092 /// Return the uniqued reference to the type for an address space
1093 /// qualified type with the specified type and address space.
1094 ///
1095 /// The resulting type has a union of the qualifiers from T and the address
1096 /// space. If T already has an address space specifier, it is silently
1097 /// replaced.
1098 QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1099
1100 /// Remove any existing address space on the type and returns the type
1101 /// with qualifiers intact (or that's the idea anyway)
1102 ///
1103 /// The return type should be T with all prior qualifiers minus the address
1104 /// space.
1105 QualType removeAddrSpaceQualType(QualType T) const;
1106
1107 /// Apply Objective-C protocol qualifiers to the given type.
1108 /// \param allowOnPointerType specifies if we can apply protocol
1109 /// qualifiers on ObjCObjectPointerType. It can be set to true when
1110 /// constructing the canonical type of a Objective-C type parameter.
1111 QualType applyObjCProtocolQualifiers(QualType type,
1112 ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1113 bool allowOnPointerType = false) const;
1114
1115 /// Return the uniqued reference to the type for an Objective-C
1116 /// gc-qualified type.
1117 ///
1118 /// The resulting type has a union of the qualifiers from T and the gc
1119 /// attribute.
1120 QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1121
1122 /// Remove the existing address space on the type if it is a pointer size
1123 /// address space and return the type with qualifiers intact.
1124 QualType removePtrSizeAddrSpace(QualType T) const;
1125
1126 /// Return the uniqued reference to the type for a \c restrict
1127 /// qualified type.
1128 ///
1129 /// The resulting type has a union of the qualifiers from \p T and
1130 /// \c restrict.
getRestrictType(QualType T)1131 QualType getRestrictType(QualType T) const {
1132 return T.withFastQualifiers(Qualifiers::Restrict);
1133 }
1134
1135 /// Return the uniqued reference to the type for a \c volatile
1136 /// qualified type.
1137 ///
1138 /// The resulting type has a union of the qualifiers from \p T and
1139 /// \c volatile.
getVolatileType(QualType T)1140 QualType getVolatileType(QualType T) const {
1141 return T.withFastQualifiers(Qualifiers::Volatile);
1142 }
1143
1144 /// Return the uniqued reference to the type for a \c const
1145 /// qualified type.
1146 ///
1147 /// The resulting type has a union of the qualifiers from \p T and \c const.
1148 ///
1149 /// It can be reasonably expected that this will always be equivalent to
1150 /// calling T.withConst().
getConstType(QualType T)1151 QualType getConstType(QualType T) const { return T.withConst(); }
1152
1153 /// Change the ExtInfo on a function type.
1154 const FunctionType *adjustFunctionType(const FunctionType *Fn,
1155 FunctionType::ExtInfo EInfo);
1156
1157 /// Adjust the given function result type.
1158 CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1159
1160 /// Change the result type of a function type once it is deduced.
1161 void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1162
1163 /// Get a function type and produce the equivalent function type with the
1164 /// specified exception specification. Type sugar that can be present on a
1165 /// declaration of a function with an exception specification is permitted
1166 /// and preserved. Other type sugar (for instance, typedefs) is not.
1167 QualType getFunctionTypeWithExceptionSpec(
1168 QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI);
1169
1170 /// Determine whether two function types are the same, ignoring
1171 /// exception specifications in cases where they're part of the type.
1172 bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U);
1173
1174 /// Change the exception specification on a function once it is
1175 /// delay-parsed, instantiated, or computed.
1176 void adjustExceptionSpec(FunctionDecl *FD,
1177 const FunctionProtoType::ExceptionSpecInfo &ESI,
1178 bool AsWritten = false);
1179
1180 /// Get a function type and produce the equivalent function type where
1181 /// pointer size address spaces in the return type and parameter tyeps are
1182 /// replaced with the default address space.
1183 QualType getFunctionTypeWithoutPtrSizes(QualType T);
1184
1185 /// Determine whether two function types are the same, ignoring pointer sizes
1186 /// in the return type and parameter types.
1187 bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1188
1189 /// Return the uniqued reference to the type for a complex
1190 /// number with the specified element type.
1191 QualType getComplexType(QualType T) const;
getComplexType(CanQualType T)1192 CanQualType getComplexType(CanQualType T) const {
1193 return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1194 }
1195
1196 /// Return the uniqued reference to the type for a pointer to
1197 /// the specified type.
1198 QualType getPointerType(QualType T) const;
getPointerType(CanQualType T)1199 CanQualType getPointerType(CanQualType T) const {
1200 return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1201 }
1202
1203 /// Return the uniqued reference to a type adjusted from the original
1204 /// type to a new type.
1205 QualType getAdjustedType(QualType Orig, QualType New) const;
getAdjustedType(CanQualType Orig,CanQualType New)1206 CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1207 return CanQualType::CreateUnsafe(
1208 getAdjustedType((QualType)Orig, (QualType)New));
1209 }
1210
1211 /// Return the uniqued reference to the decayed version of the given
1212 /// type. Can only be called on array and function types which decay to
1213 /// pointer types.
1214 QualType getDecayedType(QualType T) const;
getDecayedType(CanQualType T)1215 CanQualType getDecayedType(CanQualType T) const {
1216 return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1217 }
1218
1219 /// Return the uniqued reference to the atomic type for the specified
1220 /// type.
1221 QualType getAtomicType(QualType T) const;
1222
1223 /// Return the uniqued reference to the type for a block of the
1224 /// specified type.
1225 QualType getBlockPointerType(QualType T) const;
1226
1227 /// Gets the struct used to keep track of the descriptor for pointer to
1228 /// blocks.
1229 QualType getBlockDescriptorType() const;
1230
1231 /// Return a read_only pipe type for the specified type.
1232 QualType getReadPipeType(QualType T) const;
1233
1234 /// Return a write_only pipe type for the specified type.
1235 QualType getWritePipeType(QualType T) const;
1236
1237 /// Return an extended integer type with the specified signedness and bit
1238 /// count.
1239 QualType getExtIntType(bool Unsigned, unsigned NumBits) const;
1240
1241 /// Return a dependent extended integer type with the specified signedness and
1242 /// bit count.
1243 QualType getDependentExtIntType(bool Unsigned, Expr *BitsExpr) const;
1244
1245 /// Gets the struct used to keep track of the extended descriptor for
1246 /// pointer to blocks.
1247 QualType getBlockDescriptorExtendedType() const;
1248
1249 /// Map an AST Type to an OpenCLTypeKind enum value.
1250 OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1251
1252 /// Get address space for OpenCL type.
1253 LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1254
setcudaConfigureCallDecl(FunctionDecl * FD)1255 void setcudaConfigureCallDecl(FunctionDecl *FD) {
1256 cudaConfigureCallDecl = FD;
1257 }
1258
getcudaConfigureCallDecl()1259 FunctionDecl *getcudaConfigureCallDecl() {
1260 return cudaConfigureCallDecl;
1261 }
1262
1263 /// Returns true iff we need copy/dispose helpers for the given type.
1264 bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1265
1266 /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1267 /// is set to false in this case. If HasByrefExtendedLayout returns true,
1268 /// byref variable has extended lifetime.
1269 bool getByrefLifetime(QualType Ty,
1270 Qualifiers::ObjCLifetime &Lifetime,
1271 bool &HasByrefExtendedLayout) const;
1272
1273 /// Return the uniqued reference to the type for an lvalue reference
1274 /// to the specified type.
1275 QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1276 const;
1277
1278 /// Return the uniqued reference to the type for an rvalue reference
1279 /// to the specified type.
1280 QualType getRValueReferenceType(QualType T) const;
1281
1282 /// Return the uniqued reference to the type for a member pointer to
1283 /// the specified type in the specified class.
1284 ///
1285 /// The class \p Cls is a \c Type because it could be a dependent name.
1286 QualType getMemberPointerType(QualType T, const Type *Cls) const;
1287
1288 /// Return a non-unique reference to the type for a variable array of
1289 /// the specified element type.
1290 QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1291 ArrayType::ArraySizeModifier ASM,
1292 unsigned IndexTypeQuals,
1293 SourceRange Brackets) const;
1294
1295 /// Return a non-unique reference to the type for a dependently-sized
1296 /// array of the specified element type.
1297 ///
1298 /// FIXME: We will need these to be uniqued, or at least comparable, at some
1299 /// point.
1300 QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1301 ArrayType::ArraySizeModifier ASM,
1302 unsigned IndexTypeQuals,
1303 SourceRange Brackets) const;
1304
1305 /// Return a unique reference to the type for an incomplete array of
1306 /// the specified element type.
1307 QualType getIncompleteArrayType(QualType EltTy,
1308 ArrayType::ArraySizeModifier ASM,
1309 unsigned IndexTypeQuals) const;
1310
1311 /// Return the unique reference to the type for a constant array of
1312 /// the specified element type.
1313 QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1314 const Expr *SizeExpr,
1315 ArrayType::ArraySizeModifier ASM,
1316 unsigned IndexTypeQuals) const;
1317
1318 /// Return a type for a constant array for a string literal of the
1319 /// specified element type and length.
1320 QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1321
1322 /// Returns a vla type where known sizes are replaced with [*].
1323 QualType getVariableArrayDecayedType(QualType Ty) const;
1324
1325 // Convenience struct to return information about a builtin vector type.
1326 struct BuiltinVectorTypeInfo {
1327 QualType ElementType;
1328 llvm::ElementCount EC;
1329 unsigned NumVectors;
BuiltinVectorTypeInfoBuiltinVectorTypeInfo1330 BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
1331 unsigned NumVectors)
1332 : ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
1333 };
1334
1335 /// Returns the element type, element count and number of vectors
1336 /// (in case of tuple) for a builtin vector type.
1337 BuiltinVectorTypeInfo
1338 getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
1339
1340 /// Return the unique reference to a scalable vector type of the specified
1341 /// element type and scalable number of elements.
1342 ///
1343 /// \pre \p EltTy must be a built-in type.
1344 QualType getScalableVectorType(QualType EltTy, unsigned NumElts) const;
1345
1346 /// Return the unique reference to a vector type of the specified
1347 /// element type and size.
1348 ///
1349 /// \pre \p VectorType must be a built-in type.
1350 QualType getVectorType(QualType VectorType, unsigned NumElts,
1351 VectorType::VectorKind VecKind) const;
1352 /// Return the unique reference to the type for a dependently sized vector of
1353 /// the specified element type.
1354 QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1355 SourceLocation AttrLoc,
1356 VectorType::VectorKind VecKind) const;
1357
1358 /// Return the unique reference to an extended vector type
1359 /// of the specified element type and size.
1360 ///
1361 /// \pre \p VectorType must be a built-in type.
1362 QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1363
1364 /// \pre Return a non-unique reference to the type for a dependently-sized
1365 /// vector of the specified element type.
1366 ///
1367 /// FIXME: We will need these to be uniqued, or at least comparable, at some
1368 /// point.
1369 QualType getDependentSizedExtVectorType(QualType VectorType,
1370 Expr *SizeExpr,
1371 SourceLocation AttrLoc) const;
1372
1373 /// Return the unique reference to the matrix type of the specified element
1374 /// type and size
1375 ///
1376 /// \pre \p ElementType must be a valid matrix element type (see
1377 /// MatrixType::isValidElementType).
1378 QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
1379 unsigned NumColumns) const;
1380
1381 /// Return the unique reference to the matrix type of the specified element
1382 /// type and size
1383 QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
1384 Expr *ColumnExpr,
1385 SourceLocation AttrLoc) const;
1386
1387 QualType getDependentAddressSpaceType(QualType PointeeType,
1388 Expr *AddrSpaceExpr,
1389 SourceLocation AttrLoc) const;
1390
1391 /// Return a K&R style C function type like 'int()'.
1392 QualType getFunctionNoProtoType(QualType ResultTy,
1393 const FunctionType::ExtInfo &Info) const;
1394
getFunctionNoProtoType(QualType ResultTy)1395 QualType getFunctionNoProtoType(QualType ResultTy) const {
1396 return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1397 }
1398
1399 /// Return a normal function type with a typed argument list.
getFunctionType(QualType ResultTy,ArrayRef<QualType> Args,const FunctionProtoType::ExtProtoInfo & EPI)1400 QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1401 const FunctionProtoType::ExtProtoInfo &EPI) const {
1402 return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1403 }
1404
1405 QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1406
1407 private:
1408 /// Return a normal function type with a typed argument list.
1409 QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1410 const FunctionProtoType::ExtProtoInfo &EPI,
1411 bool OnlyWantCanonical) const;
1412
1413 public:
1414 /// Return the unique reference to the type for the specified type
1415 /// declaration.
1416 QualType getTypeDeclType(const TypeDecl *Decl,
1417 const TypeDecl *PrevDecl = nullptr) const {
1418 assert(Decl && "Passed null for Decl param");
1419 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1420
1421 if (PrevDecl) {
1422 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1423 Decl->TypeForDecl = PrevDecl->TypeForDecl;
1424 return QualType(PrevDecl->TypeForDecl, 0);
1425 }
1426
1427 return getTypeDeclTypeSlow(Decl);
1428 }
1429
1430 /// Return the unique reference to the type for the specified
1431 /// typedef-name decl.
1432 QualType getTypedefType(const TypedefNameDecl *Decl,
1433 QualType Canon = QualType()) const;
1434
1435 QualType getRecordType(const RecordDecl *Decl) const;
1436
1437 QualType getEnumType(const EnumDecl *Decl) const;
1438
1439 QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1440
1441 QualType getAttributedType(attr::Kind attrKind,
1442 QualType modifiedType,
1443 QualType equivalentType);
1444
1445 QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1446 QualType Replacement) const;
1447 QualType getSubstTemplateTypeParmPackType(
1448 const TemplateTypeParmType *Replaced,
1449 const TemplateArgument &ArgPack);
1450
1451 QualType
1452 getTemplateTypeParmType(unsigned Depth, unsigned Index,
1453 bool ParameterPack,
1454 TemplateTypeParmDecl *ParmDecl = nullptr) const;
1455
1456 QualType getTemplateSpecializationType(TemplateName T,
1457 ArrayRef<TemplateArgument> Args,
1458 QualType Canon = QualType()) const;
1459
1460 QualType
1461 getCanonicalTemplateSpecializationType(TemplateName T,
1462 ArrayRef<TemplateArgument> Args) const;
1463
1464 QualType getTemplateSpecializationType(TemplateName T,
1465 const TemplateArgumentListInfo &Args,
1466 QualType Canon = QualType()) const;
1467
1468 TypeSourceInfo *
1469 getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1470 const TemplateArgumentListInfo &Args,
1471 QualType Canon = QualType()) const;
1472
1473 QualType getParenType(QualType NamedType) const;
1474
1475 QualType getMacroQualifiedType(QualType UnderlyingTy,
1476 const IdentifierInfo *MacroII) const;
1477
1478 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1479 NestedNameSpecifier *NNS, QualType NamedType,
1480 TagDecl *OwnedTagDecl = nullptr) const;
1481 QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1482 NestedNameSpecifier *NNS,
1483 const IdentifierInfo *Name,
1484 QualType Canon = QualType()) const;
1485
1486 QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1487 NestedNameSpecifier *NNS,
1488 const IdentifierInfo *Name,
1489 const TemplateArgumentListInfo &Args) const;
1490 QualType getDependentTemplateSpecializationType(
1491 ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1492 const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1493
1494 TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1495
1496 /// Get a template argument list with one argument per template parameter
1497 /// in a template parameter list, such as for the injected class name of
1498 /// a class template.
1499 void getInjectedTemplateArgs(const TemplateParameterList *Params,
1500 SmallVectorImpl<TemplateArgument> &Args);
1501
1502 /// Form a pack expansion type with the given pattern.
1503 /// \param NumExpansions The number of expansions for the pack, if known.
1504 /// \param ExpectPackInType If \c false, we should not expect \p Pattern to
1505 /// contain an unexpanded pack. This only makes sense if the pack
1506 /// expansion is used in a context where the arity is inferred from
1507 /// elsewhere, such as if the pattern contains a placeholder type or
1508 /// if this is the canonical type of another pack expansion type.
1509 QualType getPackExpansionType(QualType Pattern,
1510 Optional<unsigned> NumExpansions,
1511 bool ExpectPackInType = true);
1512
1513 QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1514 ObjCInterfaceDecl *PrevDecl = nullptr) const;
1515
1516 /// Legacy interface: cannot provide type arguments or __kindof.
1517 QualType getObjCObjectType(QualType Base,
1518 ObjCProtocolDecl * const *Protocols,
1519 unsigned NumProtocols) const;
1520
1521 QualType getObjCObjectType(QualType Base,
1522 ArrayRef<QualType> typeArgs,
1523 ArrayRef<ObjCProtocolDecl *> protocols,
1524 bool isKindOf) const;
1525
1526 QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1527 ArrayRef<ObjCProtocolDecl *> protocols) const;
1528 void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
1529 ObjCTypeParamDecl *New) const;
1530
1531 bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1532
1533 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1534 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1535 /// of protocols.
1536 bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1537 ObjCInterfaceDecl *IDecl);
1538
1539 /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1540 QualType getObjCObjectPointerType(QualType OIT) const;
1541
1542 /// GCC extension.
1543 QualType getTypeOfExprType(Expr *e) const;
1544 QualType getTypeOfType(QualType t) const;
1545
1546 /// C++11 decltype.
1547 QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1548
1549 /// Unary type transforms
1550 QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1551 UnaryTransformType::UTTKind UKind) const;
1552
1553 /// C++11 deduced auto type.
1554 QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1555 bool IsDependent, bool IsPack = false,
1556 ConceptDecl *TypeConstraintConcept = nullptr,
1557 ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1558
1559 /// C++11 deduction pattern for 'auto' type.
1560 QualType getAutoDeductType() const;
1561
1562 /// C++11 deduction pattern for 'auto &&' type.
1563 QualType getAutoRRefDeductType() const;
1564
1565 /// C++17 deduced class template specialization type.
1566 QualType getDeducedTemplateSpecializationType(TemplateName Template,
1567 QualType DeducedType,
1568 bool IsDependent) const;
1569
1570 /// Return the unique reference to the type for the specified TagDecl
1571 /// (struct/union/class/enum) decl.
1572 QualType getTagDeclType(const TagDecl *Decl) const;
1573
1574 /// Return the unique type for "size_t" (C99 7.17), defined in
1575 /// <stddef.h>.
1576 ///
1577 /// The sizeof operator requires this (C99 6.5.3.4p4).
1578 CanQualType getSizeType() const;
1579
1580 /// Return the unique signed counterpart of
1581 /// the integer type corresponding to size_t.
1582 CanQualType getSignedSizeType() const;
1583
1584 /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1585 /// <stdint.h>.
1586 CanQualType getIntMaxType() const;
1587
1588 /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1589 /// <stdint.h>.
1590 CanQualType getUIntMaxType() const;
1591
1592 /// Return the unique wchar_t type available in C++ (and available as
1593 /// __wchar_t as a Microsoft extension).
getWCharType()1594 QualType getWCharType() const { return WCharTy; }
1595
1596 /// Return the type of wide characters. In C++, this returns the
1597 /// unique wchar_t type. In C99, this returns a type compatible with the type
1598 /// defined in <stddef.h> as defined by the target.
getWideCharType()1599 QualType getWideCharType() const { return WideCharTy; }
1600
1601 /// Return the type of "signed wchar_t".
1602 ///
1603 /// Used when in C++, as a GCC extension.
1604 QualType getSignedWCharType() const;
1605
1606 /// Return the type of "unsigned wchar_t".
1607 ///
1608 /// Used when in C++, as a GCC extension.
1609 QualType getUnsignedWCharType() const;
1610
1611 /// In C99, this returns a type compatible with the type
1612 /// defined in <stddef.h> as defined by the target.
getWIntType()1613 QualType getWIntType() const { return WIntTy; }
1614
1615 /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1616 /// as defined by the target.
1617 QualType getIntPtrType() const;
1618
1619 /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1620 /// as defined by the target.
1621 QualType getUIntPtrType() const;
1622
1623 /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1624 /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1625 QualType getPointerDiffType() const;
1626
1627 /// Return the unique unsigned counterpart of "ptrdiff_t"
1628 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1629 /// in the definition of %tu format specifier.
1630 QualType getUnsignedPointerDiffType() const;
1631
1632 /// Return the unique type for "pid_t" defined in
1633 /// <sys/types.h>. We need this to compute the correct type for vfork().
1634 QualType getProcessIDType() const;
1635
1636 /// Return the C structure type used to represent constant CFStrings.
1637 QualType getCFConstantStringType() const;
1638
1639 /// Returns the C struct type for objc_super
1640 QualType getObjCSuperType() const;
setObjCSuperType(QualType ST)1641 void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1642
1643 /// Get the structure type used to representation CFStrings, or NULL
1644 /// if it hasn't yet been built.
getRawCFConstantStringType()1645 QualType getRawCFConstantStringType() const {
1646 if (CFConstantStringTypeDecl)
1647 return getTypedefType(CFConstantStringTypeDecl);
1648 return QualType();
1649 }
1650 void setCFConstantStringType(QualType T);
1651 TypedefDecl *getCFConstantStringDecl() const;
1652 RecordDecl *getCFConstantStringTagDecl() const;
1653
1654 // This setter/getter represents the ObjC type for an NSConstantString.
1655 void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
getObjCConstantStringInterface()1656 QualType getObjCConstantStringInterface() const {
1657 return ObjCConstantStringType;
1658 }
1659
getObjCNSStringType()1660 QualType getObjCNSStringType() const {
1661 return ObjCNSStringType;
1662 }
1663
setObjCNSStringType(QualType T)1664 void setObjCNSStringType(QualType T) {
1665 ObjCNSStringType = T;
1666 }
1667
1668 /// Retrieve the type that \c id has been defined to, which may be
1669 /// different from the built-in \c id if \c id has been typedef'd.
getObjCIdRedefinitionType()1670 QualType getObjCIdRedefinitionType() const {
1671 if (ObjCIdRedefinitionType.isNull())
1672 return getObjCIdType();
1673 return ObjCIdRedefinitionType;
1674 }
1675
1676 /// Set the user-written type that redefines \c id.
setObjCIdRedefinitionType(QualType RedefType)1677 void setObjCIdRedefinitionType(QualType RedefType) {
1678 ObjCIdRedefinitionType = RedefType;
1679 }
1680
1681 /// Retrieve the type that \c Class has been defined to, which may be
1682 /// different from the built-in \c Class if \c Class has been typedef'd.
getObjCClassRedefinitionType()1683 QualType getObjCClassRedefinitionType() const {
1684 if (ObjCClassRedefinitionType.isNull())
1685 return getObjCClassType();
1686 return ObjCClassRedefinitionType;
1687 }
1688
1689 /// Set the user-written type that redefines 'SEL'.
setObjCClassRedefinitionType(QualType RedefType)1690 void setObjCClassRedefinitionType(QualType RedefType) {
1691 ObjCClassRedefinitionType = RedefType;
1692 }
1693
1694 /// Retrieve the type that 'SEL' has been defined to, which may be
1695 /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
getObjCSelRedefinitionType()1696 QualType getObjCSelRedefinitionType() const {
1697 if (ObjCSelRedefinitionType.isNull())
1698 return getObjCSelType();
1699 return ObjCSelRedefinitionType;
1700 }
1701
1702 /// Set the user-written type that redefines 'SEL'.
setObjCSelRedefinitionType(QualType RedefType)1703 void setObjCSelRedefinitionType(QualType RedefType) {
1704 ObjCSelRedefinitionType = RedefType;
1705 }
1706
1707 /// Retrieve the identifier 'NSObject'.
getNSObjectName()1708 IdentifierInfo *getNSObjectName() const {
1709 if (!NSObjectName) {
1710 NSObjectName = &Idents.get("NSObject");
1711 }
1712
1713 return NSObjectName;
1714 }
1715
1716 /// Retrieve the identifier 'NSCopying'.
getNSCopyingName()1717 IdentifierInfo *getNSCopyingName() {
1718 if (!NSCopyingName) {
1719 NSCopyingName = &Idents.get("NSCopying");
1720 }
1721
1722 return NSCopyingName;
1723 }
1724
1725 CanQualType getNSUIntegerType() const;
1726
1727 CanQualType getNSIntegerType() const;
1728
1729 /// Retrieve the identifier 'bool'.
getBoolName()1730 IdentifierInfo *getBoolName() const {
1731 if (!BoolName)
1732 BoolName = &Idents.get("bool");
1733 return BoolName;
1734 }
1735
getMakeIntegerSeqName()1736 IdentifierInfo *getMakeIntegerSeqName() const {
1737 if (!MakeIntegerSeqName)
1738 MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1739 return MakeIntegerSeqName;
1740 }
1741
getTypePackElementName()1742 IdentifierInfo *getTypePackElementName() const {
1743 if (!TypePackElementName)
1744 TypePackElementName = &Idents.get("__type_pack_element");
1745 return TypePackElementName;
1746 }
1747
1748 /// Retrieve the Objective-C "instancetype" type, if already known;
1749 /// otherwise, returns a NULL type;
getObjCInstanceType()1750 QualType getObjCInstanceType() {
1751 return getTypeDeclType(getObjCInstanceTypeDecl());
1752 }
1753
1754 /// Retrieve the typedef declaration corresponding to the Objective-C
1755 /// "instancetype" type.
1756 TypedefDecl *getObjCInstanceTypeDecl();
1757
1758 /// Set the type for the C FILE type.
setFILEDecl(TypeDecl * FILEDecl)1759 void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1760
1761 /// Retrieve the C FILE type.
getFILEType()1762 QualType getFILEType() const {
1763 if (FILEDecl)
1764 return getTypeDeclType(FILEDecl);
1765 return QualType();
1766 }
1767
1768 /// Set the type for the C jmp_buf type.
setjmp_bufDecl(TypeDecl * jmp_bufDecl)1769 void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1770 this->jmp_bufDecl = jmp_bufDecl;
1771 }
1772
1773 /// Retrieve the C jmp_buf type.
getjmp_bufType()1774 QualType getjmp_bufType() const {
1775 if (jmp_bufDecl)
1776 return getTypeDeclType(jmp_bufDecl);
1777 return QualType();
1778 }
1779
1780 /// Set the type for the C sigjmp_buf type.
setsigjmp_bufDecl(TypeDecl * sigjmp_bufDecl)1781 void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1782 this->sigjmp_bufDecl = sigjmp_bufDecl;
1783 }
1784
1785 /// Retrieve the C sigjmp_buf type.
getsigjmp_bufType()1786 QualType getsigjmp_bufType() const {
1787 if (sigjmp_bufDecl)
1788 return getTypeDeclType(sigjmp_bufDecl);
1789 return QualType();
1790 }
1791
1792 /// Set the type for the C ucontext_t type.
setucontext_tDecl(TypeDecl * ucontext_tDecl)1793 void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1794 this->ucontext_tDecl = ucontext_tDecl;
1795 }
1796
1797 /// Retrieve the C ucontext_t type.
getucontext_tType()1798 QualType getucontext_tType() const {
1799 if (ucontext_tDecl)
1800 return getTypeDeclType(ucontext_tDecl);
1801 return QualType();
1802 }
1803
1804 /// The result type of logical operations, '<', '>', '!=', etc.
getLogicalOperationType()1805 QualType getLogicalOperationType() const {
1806 return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1807 }
1808
1809 /// Emit the Objective-CC type encoding for the given type \p T into
1810 /// \p S.
1811 ///
1812 /// If \p Field is specified then record field names are also encoded.
1813 void getObjCEncodingForType(QualType T, std::string &S,
1814 const FieldDecl *Field=nullptr,
1815 QualType *NotEncodedT=nullptr) const;
1816
1817 /// Emit the Objective-C property type encoding for the given
1818 /// type \p T into \p S.
1819 void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1820
1821 void getLegacyIntegralTypeEncoding(QualType &t) const;
1822
1823 /// Put the string version of the type qualifiers \p QT into \p S.
1824 void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1825 std::string &S) const;
1826
1827 /// Emit the encoded type for the function \p Decl into \p S.
1828 ///
1829 /// This is in the same format as Objective-C method encodings.
1830 ///
1831 /// \returns true if an error occurred (e.g., because one of the parameter
1832 /// types is incomplete), false otherwise.
1833 std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1834
1835 /// Emit the encoded type for the method declaration \p Decl into
1836 /// \p S.
1837 std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1838 bool Extended = false) const;
1839
1840 /// Return the encoded type for this block declaration.
1841 std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1842
1843 /// getObjCEncodingForPropertyDecl - Return the encoded type for
1844 /// this method declaration. If non-NULL, Container must be either
1845 /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1846 /// only be NULL when getting encodings for protocol properties.
1847 std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1848 const Decl *Container) const;
1849
1850 bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1851 ObjCProtocolDecl *rProto) const;
1852
1853 ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
1854 const ObjCPropertyDecl *PD,
1855 const Decl *Container) const;
1856
1857 /// Return the size of type \p T for Objective-C encoding purpose,
1858 /// in characters.
1859 CharUnits getObjCEncodingTypeSize(QualType T) const;
1860
1861 /// Retrieve the typedef corresponding to the predefined \c id type
1862 /// in Objective-C.
1863 TypedefDecl *getObjCIdDecl() const;
1864
1865 /// Represents the Objective-CC \c id type.
1866 ///
1867 /// This is set up lazily, by Sema. \c id is always a (typedef for a)
1868 /// pointer type, a pointer to a struct.
getObjCIdType()1869 QualType getObjCIdType() const {
1870 return getTypeDeclType(getObjCIdDecl());
1871 }
1872
1873 /// Retrieve the typedef corresponding to the predefined 'SEL' type
1874 /// in Objective-C.
1875 TypedefDecl *getObjCSelDecl() const;
1876
1877 /// Retrieve the type that corresponds to the predefined Objective-C
1878 /// 'SEL' type.
getObjCSelType()1879 QualType getObjCSelType() const {
1880 return getTypeDeclType(getObjCSelDecl());
1881 }
1882
1883 /// Retrieve the typedef declaration corresponding to the predefined
1884 /// Objective-C 'Class' type.
1885 TypedefDecl *getObjCClassDecl() const;
1886
1887 /// Represents the Objective-C \c Class type.
1888 ///
1889 /// This is set up lazily, by Sema. \c Class is always a (typedef for a)
1890 /// pointer type, a pointer to a struct.
getObjCClassType()1891 QualType getObjCClassType() const {
1892 return getTypeDeclType(getObjCClassDecl());
1893 }
1894
1895 /// Retrieve the Objective-C class declaration corresponding to
1896 /// the predefined \c Protocol class.
1897 ObjCInterfaceDecl *getObjCProtocolDecl() const;
1898
1899 /// Retrieve declaration of 'BOOL' typedef
getBOOLDecl()1900 TypedefDecl *getBOOLDecl() const {
1901 return BOOLDecl;
1902 }
1903
1904 /// Save declaration of 'BOOL' typedef
setBOOLDecl(TypedefDecl * TD)1905 void setBOOLDecl(TypedefDecl *TD) {
1906 BOOLDecl = TD;
1907 }
1908
1909 /// type of 'BOOL' type.
getBOOLType()1910 QualType getBOOLType() const {
1911 return getTypeDeclType(getBOOLDecl());
1912 }
1913
1914 /// Retrieve the type of the Objective-C \c Protocol class.
getObjCProtoType()1915 QualType getObjCProtoType() const {
1916 return getObjCInterfaceType(getObjCProtocolDecl());
1917 }
1918
1919 /// Retrieve the C type declaration corresponding to the predefined
1920 /// \c __builtin_va_list type.
1921 TypedefDecl *getBuiltinVaListDecl() const;
1922
1923 /// Retrieve the type of the \c __builtin_va_list type.
getBuiltinVaListType()1924 QualType getBuiltinVaListType() const {
1925 return getTypeDeclType(getBuiltinVaListDecl());
1926 }
1927
1928 /// Retrieve the C type declaration corresponding to the predefined
1929 /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1930 /// for some targets.
1931 Decl *getVaListTagDecl() const;
1932
1933 /// Retrieve the C type declaration corresponding to the predefined
1934 /// \c __builtin_ms_va_list type.
1935 TypedefDecl *getBuiltinMSVaListDecl() const;
1936
1937 /// Retrieve the type of the \c __builtin_ms_va_list type.
getBuiltinMSVaListType()1938 QualType getBuiltinMSVaListType() const {
1939 return getTypeDeclType(getBuiltinMSVaListDecl());
1940 }
1941
1942 /// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
getMSGuidTagDecl()1943 TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
1944
1945 /// Retrieve the implicitly-predeclared 'struct _GUID' type.
getMSGuidType()1946 QualType getMSGuidType() const {
1947 assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled");
1948 return getTagDeclType(MSGuidTagDecl);
1949 }
1950
1951 /// Return whether a declaration to a builtin is allowed to be
1952 /// overloaded/redeclared.
1953 bool canBuiltinBeRedeclared(const FunctionDecl *) const;
1954
1955 /// Return a type with additional \c const, \c volatile, or
1956 /// \c restrict qualifiers.
getCVRQualifiedType(QualType T,unsigned CVR)1957 QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1958 return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1959 }
1960
1961 /// Un-split a SplitQualType.
getQualifiedType(SplitQualType split)1962 QualType getQualifiedType(SplitQualType split) const {
1963 return getQualifiedType(split.Ty, split.Quals);
1964 }
1965
1966 /// Return a type with additional qualifiers.
getQualifiedType(QualType T,Qualifiers Qs)1967 QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1968 if (!Qs.hasNonFastQualifiers())
1969 return T.withFastQualifiers(Qs.getFastQualifiers());
1970 QualifierCollector Qc(Qs);
1971 const Type *Ptr = Qc.strip(T);
1972 return getExtQualType(Ptr, Qc);
1973 }
1974
1975 /// Return a type with additional qualifiers.
getQualifiedType(const Type * T,Qualifiers Qs)1976 QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1977 if (!Qs.hasNonFastQualifiers())
1978 return QualType(T, Qs.getFastQualifiers());
1979 return getExtQualType(T, Qs);
1980 }
1981
1982 /// Return a type with the given lifetime qualifier.
1983 ///
1984 /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
getLifetimeQualifiedType(QualType type,Qualifiers::ObjCLifetime lifetime)1985 QualType getLifetimeQualifiedType(QualType type,
1986 Qualifiers::ObjCLifetime lifetime) {
1987 assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1988 assert(lifetime != Qualifiers::OCL_None);
1989
1990 Qualifiers qs;
1991 qs.addObjCLifetime(lifetime);
1992 return getQualifiedType(type, qs);
1993 }
1994
1995 /// getUnqualifiedObjCPointerType - Returns version of
1996 /// Objective-C pointer type with lifetime qualifier removed.
getUnqualifiedObjCPointerType(QualType type)1997 QualType getUnqualifiedObjCPointerType(QualType type) const {
1998 if (!type.getTypePtr()->isObjCObjectPointerType() ||
1999 !type.getQualifiers().hasObjCLifetime())
2000 return type;
2001 Qualifiers Qs = type.getQualifiers();
2002 Qs.removeObjCLifetime();
2003 return getQualifiedType(type.getUnqualifiedType(), Qs);
2004 }
2005
2006 unsigned char getFixedPointScale(QualType Ty) const;
2007 unsigned char getFixedPointIBits(QualType Ty) const;
2008 llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2009 llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
2010 llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
2011
2012 DeclarationNameInfo getNameForTemplate(TemplateName Name,
2013 SourceLocation NameLoc) const;
2014
2015 TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2016 UnresolvedSetIterator End) const;
2017 TemplateName getAssumedTemplateName(DeclarationName Name) const;
2018
2019 TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2020 bool TemplateKeyword,
2021 TemplateDecl *Template) const;
2022
2023 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2024 const IdentifierInfo *Name) const;
2025 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2026 OverloadedOperatorKind Operator) const;
2027 TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
2028 TemplateName replacement) const;
2029 TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
2030 const TemplateArgument &ArgPack) const;
2031
2032 enum GetBuiltinTypeError {
2033 /// No error
2034 GE_None,
2035
2036 /// Missing a type
2037 GE_Missing_type,
2038
2039 /// Missing a type from <stdio.h>
2040 GE_Missing_stdio,
2041
2042 /// Missing a type from <setjmp.h>
2043 GE_Missing_setjmp,
2044
2045 /// Missing a type from <ucontext.h>
2046 GE_Missing_ucontext
2047 };
2048
2049 QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
2050 ASTContext::GetBuiltinTypeError &Error,
2051 bool &RequireICE, bool AllowTypeModifiers) const;
2052
2053 /// Return the type for the specified builtin.
2054 ///
2055 /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2056 /// arguments to the builtin that are required to be integer constant
2057 /// expressions.
2058 QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2059 unsigned *IntegerConstantArgs = nullptr) const;
2060
2061 /// Types and expressions required to build C++2a three-way comparisons
2062 /// using operator<=>, including the values return by builtin <=> operators.
2063 ComparisonCategories CompCategories;
2064
2065 private:
2066 CanQualType getFromTargetType(unsigned Type) const;
2067 TypeInfo getTypeInfoImpl(const Type *T) const;
2068
2069 //===--------------------------------------------------------------------===//
2070 // Type Predicates.
2071 //===--------------------------------------------------------------------===//
2072
2073 public:
2074 /// Return one of the GCNone, Weak or Strong Objective-C garbage
2075 /// collection attributes.
2076 Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2077
2078 /// Return true if the given vector types are of the same unqualified
2079 /// type or if they are equivalent to the same GCC vector type.
2080 ///
2081 /// \note This ignores whether they are target-specific (AltiVec or Neon)
2082 /// types.
2083 bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2084
2085 /// Return true if the given types are an SVE builtin and a VectorType that
2086 /// is a fixed-length representation of the SVE builtin for a specific
2087 /// vector-length.
2088 bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
2089
2090 /// Return true if the given vector types are lax-compatible SVE vector types,
2091 /// false otherwise.
2092 bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
2093
2094 /// Return true if the type has been explicitly qualified with ObjC ownership.
2095 /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2096 /// some cases the compiler treats these differently.
2097 bool hasDirectOwnershipQualifier(QualType Ty) const;
2098
2099 /// Return true if this is an \c NSObject object with its \c NSObject
2100 /// attribute set.
isObjCNSObjectType(QualType Ty)2101 static bool isObjCNSObjectType(QualType Ty) {
2102 return Ty->isObjCNSObjectType();
2103 }
2104
2105 //===--------------------------------------------------------------------===//
2106 // Type Sizing and Analysis
2107 //===--------------------------------------------------------------------===//
2108
2109 /// Return the APFloat 'semantics' for the specified scalar floating
2110 /// point type.
2111 const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2112
2113 /// Get the size and alignment of the specified complete type in bits.
2114 TypeInfo getTypeInfo(const Type *T) const;
getTypeInfo(QualType T)2115 TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2116
2117 /// Get default simd alignment of the specified complete type in bits.
2118 unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2119
2120 /// Return the size of the specified (complete) type \p T, in bits.
getTypeSize(QualType T)2121 uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
getTypeSize(const Type * T)2122 uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2123
2124 /// Return the size of the character type, in bits.
getCharWidth()2125 uint64_t getCharWidth() const {
2126 return getTypeSize(CharTy);
2127 }
2128
2129 /// Convert a size in bits to a size in characters.
2130 CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2131
2132 /// Convert a size in characters to a size in bits.
2133 int64_t toBits(CharUnits CharSize) const;
2134
2135 /// Return the size of the specified (complete) type \p T, in
2136 /// characters.
2137 CharUnits getTypeSizeInChars(QualType T) const;
2138 CharUnits getTypeSizeInChars(const Type *T) const;
2139
getTypeSizeInCharsIfKnown(QualType Ty)2140 Optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2141 if (Ty->isIncompleteType() || Ty->isDependentType())
2142 return None;
2143 return getTypeSizeInChars(Ty);
2144 }
2145
getTypeSizeInCharsIfKnown(const Type * Ty)2146 Optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2147 return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2148 }
2149
2150 /// Return the ABI-specified alignment of a (complete) type \p T, in
2151 /// bits.
getTypeAlign(QualType T)2152 unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
getTypeAlign(const Type * T)2153 unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2154
2155 /// Return the ABI-specified natural alignment of a (complete) type \p T,
2156 /// before alignment adjustments, in bits.
2157 ///
2158 /// This alignment is curently used only by ARM and AArch64 when passing
2159 /// arguments of a composite type.
getTypeUnadjustedAlign(QualType T)2160 unsigned getTypeUnadjustedAlign(QualType T) const {
2161 return getTypeUnadjustedAlign(T.getTypePtr());
2162 }
2163 unsigned getTypeUnadjustedAlign(const Type *T) const;
2164
2165 /// Return the alignment of a type, in bits, or 0 if
2166 /// the type is incomplete and we cannot determine the alignment (for
2167 /// example, from alignment attributes). The returned alignment is the
2168 /// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
2169 /// ABI alignment.
2170 unsigned getTypeAlignIfKnown(QualType T,
2171 bool NeedsPreferredAlignment = false) const;
2172
2173 /// Return the ABI-specified alignment of a (complete) type \p T, in
2174 /// characters.
2175 CharUnits getTypeAlignInChars(QualType T) const;
2176 CharUnits getTypeAlignInChars(const Type *T) const;
2177
2178 /// Return the PreferredAlignment of a (complete) type \p T, in
2179 /// characters.
getPreferredTypeAlignInChars(QualType T)2180 CharUnits getPreferredTypeAlignInChars(QualType T) const {
2181 return toCharUnitsFromBits(getPreferredTypeAlign(T));
2182 }
2183
2184 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2185 /// in characters, before alignment adjustments. This method does not work on
2186 /// incomplete types.
2187 CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2188 CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2189
2190 // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2191 // type is a record, its data size is returned.
2192 TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
2193
2194 TypeInfoChars getTypeInfoInChars(const Type *T) const;
2195 TypeInfoChars getTypeInfoInChars(QualType T) const;
2196
2197 /// Determine if the alignment the type has was required using an
2198 /// alignment attribute.
2199 bool isAlignmentRequired(const Type *T) const;
2200 bool isAlignmentRequired(QualType T) const;
2201
2202 /// Return the "preferred" alignment of the specified type \p T for
2203 /// the current target, in bits.
2204 ///
2205 /// This can be different than the ABI alignment in cases where it is
2206 /// beneficial for performance or backwards compatibility preserving to
2207 /// overalign a data type. (Note: despite the name, the preferred alignment
2208 /// is ABI-impacting, and not an optimization.)
getPreferredTypeAlign(QualType T)2209 unsigned getPreferredTypeAlign(QualType T) const {
2210 return getPreferredTypeAlign(T.getTypePtr());
2211 }
2212 unsigned getPreferredTypeAlign(const Type *T) const;
2213
2214 /// Return the default alignment for __attribute__((aligned)) on
2215 /// this target, to be used if no alignment value is specified.
2216 unsigned getTargetDefaultAlignForAttributeAligned() const;
2217
2218 /// Return the alignment in bits that should be given to a
2219 /// global variable with type \p T.
2220 unsigned getAlignOfGlobalVar(QualType T) const;
2221
2222 /// Return the alignment in characters that should be given to a
2223 /// global variable with type \p T.
2224 CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2225
2226 /// Return a conservative estimate of the alignment of the specified
2227 /// decl \p D.
2228 ///
2229 /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2230 /// alignment.
2231 ///
2232 /// If \p ForAlignof, references are treated like their underlying type
2233 /// and large arrays don't get any special treatment. If not \p ForAlignof
2234 /// it computes the value expected by CodeGen: references are treated like
2235 /// pointers and large arrays get extra alignment.
2236 CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2237
2238 /// Return the alignment (in bytes) of the thrown exception object. This is
2239 /// only meaningful for targets that allocate C++ exceptions in a system
2240 /// runtime, such as those using the Itanium C++ ABI.
2241 CharUnits getExnObjectAlignment() const;
2242
2243 /// Get or compute information about the layout of the specified
2244 /// record (struct/union/class) \p D, which indicates its size and field
2245 /// position information.
2246 const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2247
2248 /// Get or compute information about the layout of the specified
2249 /// Objective-C interface.
2250 const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2251 const;
2252
2253 void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2254 bool Simple = false) const;
2255
2256 /// Get or compute information about the layout of the specified
2257 /// Objective-C implementation.
2258 ///
2259 /// This may differ from the interface if synthesized ivars are present.
2260 const ASTRecordLayout &
2261 getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2262
2263 /// Get our current best idea for the key function of the
2264 /// given record decl, or nullptr if there isn't one.
2265 ///
2266 /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2267 /// ...the first non-pure virtual function that is not inline at the
2268 /// point of class definition.
2269 ///
2270 /// Other ABIs use the same idea. However, the ARM C++ ABI ignores
2271 /// virtual functions that are defined 'inline', which means that
2272 /// the result of this computation can change.
2273 const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2274
2275 /// Observe that the given method cannot be a key function.
2276 /// Checks the key-function cache for the method's class and clears it
2277 /// if matches the given declaration.
2278 ///
2279 /// This is used in ABIs where out-of-line definitions marked
2280 /// inline are not considered to be key functions.
2281 ///
2282 /// \param method should be the declaration from the class definition
2283 void setNonKeyFunction(const CXXMethodDecl *method);
2284
2285 /// Loading virtual member pointers using the virtual inheritance model
2286 /// always results in an adjustment using the vbtable even if the index is
2287 /// zero.
2288 ///
2289 /// This is usually OK because the first slot in the vbtable points
2290 /// backwards to the top of the MDC. However, the MDC might be reusing a
2291 /// vbptr from an nv-base. In this case, the first slot in the vbtable
2292 /// points to the start of the nv-base which introduced the vbptr and *not*
2293 /// the MDC. Modify the NonVirtualBaseAdjustment to account for this.
2294 CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2295
2296 /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2297 uint64_t getFieldOffset(const ValueDecl *FD) const;
2298
2299 /// Get the offset of an ObjCIvarDecl in bits.
2300 uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2301 const ObjCImplementationDecl *ID,
2302 const ObjCIvarDecl *Ivar) const;
2303
2304 /// Find the 'this' offset for the member path in a pointer-to-member
2305 /// APValue.
2306 CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
2307
2308 bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2309
2310 VTableContextBase *getVTableContext();
2311
2312 /// If \p T is null pointer, assume the target in ASTContext.
2313 MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2314
2315 void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2316 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2317
2318 unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2319 void CollectInheritedProtocols(const Decl *CDecl,
2320 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2321
2322 /// Return true if the specified type has unique object representations
2323 /// according to (C++17 [meta.unary.prop]p9)
2324 bool hasUniqueObjectRepresentations(QualType Ty) const;
2325
2326 //===--------------------------------------------------------------------===//
2327 // Type Operators
2328 //===--------------------------------------------------------------------===//
2329
2330 /// Return the canonical (structural) type corresponding to the
2331 /// specified potentially non-canonical type \p T.
2332 ///
2333 /// The non-canonical version of a type may have many "decorated" versions of
2334 /// types. Decorators can include typedefs, 'typeof' operators, etc. The
2335 /// returned type is guaranteed to be free of any of these, allowing two
2336 /// canonical types to be compared for exact equality with a simple pointer
2337 /// comparison.
getCanonicalType(QualType T)2338 CanQualType getCanonicalType(QualType T) const {
2339 return CanQualType::CreateUnsafe(T.getCanonicalType());
2340 }
2341
getCanonicalType(const Type * T)2342 const Type *getCanonicalType(const Type *T) const {
2343 return T->getCanonicalTypeInternal().getTypePtr();
2344 }
2345
2346 /// Return the canonical parameter type corresponding to the specific
2347 /// potentially non-canonical one.
2348 ///
2349 /// Qualifiers are stripped off, functions are turned into function
2350 /// pointers, and arrays decay one level into pointers.
2351 CanQualType getCanonicalParamType(QualType T) const;
2352
2353 /// Determine whether the given types \p T1 and \p T2 are equivalent.
hasSameType(QualType T1,QualType T2)2354 bool hasSameType(QualType T1, QualType T2) const {
2355 return getCanonicalType(T1) == getCanonicalType(T2);
2356 }
hasSameType(const Type * T1,const Type * T2)2357 bool hasSameType(const Type *T1, const Type *T2) const {
2358 return getCanonicalType(T1) == getCanonicalType(T2);
2359 }
2360
2361 /// Return this type as a completely-unqualified array type,
2362 /// capturing the qualifiers in \p Quals.
2363 ///
2364 /// This will remove the minimal amount of sugaring from the types, similar
2365 /// to the behavior of QualType::getUnqualifiedType().
2366 ///
2367 /// \param T is the qualified type, which may be an ArrayType
2368 ///
2369 /// \param Quals will receive the full set of qualifiers that were
2370 /// applied to the array.
2371 ///
2372 /// \returns if this is an array type, the completely unqualified array type
2373 /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2374 QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2375
2376 /// Determine whether the given types are equivalent after
2377 /// cvr-qualifiers have been removed.
hasSameUnqualifiedType(QualType T1,QualType T2)2378 bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2379 return getCanonicalType(T1).getTypePtr() ==
2380 getCanonicalType(T2).getTypePtr();
2381 }
2382
hasSameNullabilityTypeQualifier(QualType SubT,QualType SuperT,bool IsParam)2383 bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2384 bool IsParam) const {
2385 auto SubTnullability = SubT->getNullability(*this);
2386 auto SuperTnullability = SuperT->getNullability(*this);
2387 if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
2388 // Neither has nullability; return true
2389 if (!SubTnullability)
2390 return true;
2391 // Both have nullability qualifier.
2392 if (*SubTnullability == *SuperTnullability ||
2393 *SubTnullability == NullabilityKind::Unspecified ||
2394 *SuperTnullability == NullabilityKind::Unspecified)
2395 return true;
2396
2397 if (IsParam) {
2398 // Ok for the superclass method parameter to be "nonnull" and the subclass
2399 // method parameter to be "nullable"
2400 return (*SuperTnullability == NullabilityKind::NonNull &&
2401 *SubTnullability == NullabilityKind::Nullable);
2402 }
2403 else {
2404 // For the return type, it's okay for the superclass method to specify
2405 // "nullable" and the subclass method specify "nonnull"
2406 return (*SuperTnullability == NullabilityKind::Nullable &&
2407 *SubTnullability == NullabilityKind::NonNull);
2408 }
2409 }
2410 return true;
2411 }
2412
2413 bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2414 const ObjCMethodDecl *MethodImp);
2415
2416 bool UnwrapSimilarTypes(QualType &T1, QualType &T2);
2417 bool UnwrapSimilarArrayTypes(QualType &T1, QualType &T2);
2418
2419 /// Determine if two types are similar, according to the C++ rules. That is,
2420 /// determine if they are the same other than qualifiers on the initial
2421 /// sequence of pointer / pointer-to-member / array (and in Clang, object
2422 /// pointer) types and their element types.
2423 ///
2424 /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2425 /// those qualifiers are also ignored in the 'similarity' check.
2426 bool hasSimilarType(QualType T1, QualType T2);
2427
2428 /// Determine if two types are similar, ignoring only CVR qualifiers.
2429 bool hasCvrSimilarType(QualType T1, QualType T2);
2430
2431 /// Retrieves the "canonical" nested name specifier for a
2432 /// given nested name specifier.
2433 ///
2434 /// The canonical nested name specifier is a nested name specifier
2435 /// that uniquely identifies a type or namespace within the type
2436 /// system. For example, given:
2437 ///
2438 /// \code
2439 /// namespace N {
2440 /// struct S {
2441 /// template<typename T> struct X { typename T* type; };
2442 /// };
2443 /// }
2444 ///
2445 /// template<typename T> struct Y {
2446 /// typename N::S::X<T>::type member;
2447 /// };
2448 /// \endcode
2449 ///
2450 /// Here, the nested-name-specifier for N::S::X<T>:: will be
2451 /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2452 /// by declarations in the type system and the canonical type for
2453 /// the template type parameter 'T' is template-param-0-0.
2454 NestedNameSpecifier *
2455 getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2456
2457 /// Retrieves the default calling convention for the current target.
2458 CallingConv getDefaultCallingConvention(bool IsVariadic,
2459 bool IsCXXMethod,
2460 bool IsBuiltin = false) const;
2461
2462 /// Retrieves the "canonical" template name that refers to a
2463 /// given template.
2464 ///
2465 /// The canonical template name is the simplest expression that can
2466 /// be used to refer to a given template. For most templates, this
2467 /// expression is just the template declaration itself. For example,
2468 /// the template std::vector can be referred to via a variety of
2469 /// names---std::vector, \::std::vector, vector (if vector is in
2470 /// scope), etc.---but all of these names map down to the same
2471 /// TemplateDecl, which is used to form the canonical template name.
2472 ///
2473 /// Dependent template names are more interesting. Here, the
2474 /// template name could be something like T::template apply or
2475 /// std::allocator<T>::template rebind, where the nested name
2476 /// specifier itself is dependent. In this case, the canonical
2477 /// template name uses the shortest form of the dependent
2478 /// nested-name-specifier, which itself contains all canonical
2479 /// types, values, and templates.
2480 TemplateName getCanonicalTemplateName(TemplateName Name) const;
2481
2482 /// Determine whether the given template names refer to the same
2483 /// template.
2484 bool hasSameTemplateName(TemplateName X, TemplateName Y);
2485
2486 /// Retrieve the "canonical" template argument.
2487 ///
2488 /// The canonical template argument is the simplest template argument
2489 /// (which may be a type, value, expression, or declaration) that
2490 /// expresses the value of the argument.
2491 TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2492 const;
2493
2494 /// Type Query functions. If the type is an instance of the specified class,
2495 /// return the Type pointer for the underlying maximally pretty type. This
2496 /// is a member of ASTContext because this may need to do some amount of
2497 /// canonicalization, e.g. to move type qualifiers into the element type.
2498 const ArrayType *getAsArrayType(QualType T) const;
getAsConstantArrayType(QualType T)2499 const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2500 return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2501 }
getAsVariableArrayType(QualType T)2502 const VariableArrayType *getAsVariableArrayType(QualType T) const {
2503 return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2504 }
getAsIncompleteArrayType(QualType T)2505 const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2506 return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2507 }
getAsDependentSizedArrayType(QualType T)2508 const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2509 const {
2510 return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2511 }
2512
2513 /// Return the innermost element type of an array type.
2514 ///
2515 /// For example, will return "int" for int[m][n]
2516 QualType getBaseElementType(const ArrayType *VAT) const;
2517
2518 /// Return the innermost element type of a type (which needn't
2519 /// actually be an array type).
2520 QualType getBaseElementType(QualType QT) const;
2521
2522 /// Return number of constant array elements.
2523 uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2524
2525 /// Perform adjustment on the parameter type of a function.
2526 ///
2527 /// This routine adjusts the given parameter type @p T to the actual
2528 /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2529 /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2530 QualType getAdjustedParameterType(QualType T) const;
2531
2532 /// Retrieve the parameter type as adjusted for use in the signature
2533 /// of a function, decaying array and function types and removing top-level
2534 /// cv-qualifiers.
2535 QualType getSignatureParameterType(QualType T) const;
2536
2537 QualType getExceptionObjectType(QualType T) const;
2538
2539 /// Return the properly qualified result of decaying the specified
2540 /// array type to a pointer.
2541 ///
2542 /// This operation is non-trivial when handling typedefs etc. The canonical
2543 /// type of \p T must be an array type, this returns a pointer to a properly
2544 /// qualified element of the array.
2545 ///
2546 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2547 QualType getArrayDecayedType(QualType T) const;
2548
2549 /// Return the type that \p PromotableType will promote to: C99
2550 /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2551 QualType getPromotedIntegerType(QualType PromotableType) const;
2552
2553 /// Recurses in pointer/array types until it finds an Objective-C
2554 /// retainable type and returns its ownership.
2555 Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2556
2557 /// Whether this is a promotable bitfield reference according
2558 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2559 ///
2560 /// \returns the type this bit-field will promote to, or NULL if no
2561 /// promotion occurs.
2562 QualType isPromotableBitField(Expr *E) const;
2563
2564 /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2565 ///
2566 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
2567 /// \p LHS < \p RHS, return -1.
2568 int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2569
2570 /// Compare the rank of the two specified floating point types,
2571 /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2572 ///
2573 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
2574 /// \p LHS < \p RHS, return -1.
2575 int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2576
2577 /// Compare the rank of two floating point types as above, but compare equal
2578 /// if both types have the same floating-point semantics on the target (i.e.
2579 /// long double and double on AArch64 will return 0).
2580 int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2581
2582 /// Return a real floating point or a complex type (based on
2583 /// \p typeDomain/\p typeSize).
2584 ///
2585 /// \param typeDomain a real floating point or complex type.
2586 /// \param typeSize a real floating point or complex type.
2587 QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
2588 QualType typeDomain) const;
2589
getTargetAddressSpace(QualType T)2590 unsigned getTargetAddressSpace(QualType T) const {
2591 return getTargetAddressSpace(T.getQualifiers());
2592 }
2593
getTargetAddressSpace(Qualifiers Q)2594 unsigned getTargetAddressSpace(Qualifiers Q) const {
2595 return getTargetAddressSpace(Q.getAddressSpace());
2596 }
2597
2598 unsigned getTargetAddressSpace(LangAS AS) const;
2599
2600 LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2601
2602 /// Get target-dependent integer value for null pointer which is used for
2603 /// constant folding.
2604 uint64_t getTargetNullPointerValue(QualType QT) const;
2605
addressSpaceMapManglingFor(LangAS AS)2606 bool addressSpaceMapManglingFor(LangAS AS) const {
2607 return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2608 }
2609
2610 private:
2611 // Helper for integer ordering
2612 unsigned getIntegerRank(const Type *T) const;
2613
2614 public:
2615 //===--------------------------------------------------------------------===//
2616 // Type Compatibility Predicates
2617 //===--------------------------------------------------------------------===//
2618
2619 /// Compatibility predicates used to check assignment expressions.
2620 bool typesAreCompatible(QualType T1, QualType T2,
2621 bool CompareUnqualified = false); // C99 6.2.7p1
2622
2623 bool propertyTypesAreCompatible(QualType, QualType);
2624 bool typesAreBlockPointerCompatible(QualType, QualType);
2625
isObjCIdType(QualType T)2626 bool isObjCIdType(QualType T) const {
2627 return T == getObjCIdType();
2628 }
2629
isObjCClassType(QualType T)2630 bool isObjCClassType(QualType T) const {
2631 return T == getObjCClassType();
2632 }
2633
isObjCSelType(QualType T)2634 bool isObjCSelType(QualType T) const {
2635 return T == getObjCSelType();
2636 }
2637
2638 bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2639 const ObjCObjectPointerType *RHS,
2640 bool ForCompare);
2641
2642 bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2643 const ObjCObjectPointerType *RHS);
2644
2645 // Check the safety of assignment from LHS to RHS
2646 bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2647 const ObjCObjectPointerType *RHSOPT);
2648 bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2649 const ObjCObjectType *RHS);
2650 bool canAssignObjCInterfacesInBlockPointer(
2651 const ObjCObjectPointerType *LHSOPT,
2652 const ObjCObjectPointerType *RHSOPT,
2653 bool BlockReturnType);
2654 bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2655 QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2656 const ObjCObjectPointerType *RHSOPT);
2657 bool canBindObjCObjectType(QualType To, QualType From);
2658
2659 // Functions for calculating composite types
2660 QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2661 bool Unqualified = false, bool BlockReturnType = false);
2662 QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2663 bool Unqualified = false, bool AllowCXX = false);
2664 QualType mergeFunctionParameterTypes(QualType, QualType,
2665 bool OfBlockPointer = false,
2666 bool Unqualified = false);
2667 QualType mergeTransparentUnionType(QualType, QualType,
2668 bool OfBlockPointer=false,
2669 bool Unqualified = false);
2670
2671 QualType mergeObjCGCQualifiers(QualType, QualType);
2672
2673 /// This function merges the ExtParameterInfo lists of two functions. It
2674 /// returns true if the lists are compatible. The merged list is returned in
2675 /// NewParamInfos.
2676 ///
2677 /// \param FirstFnType The type of the first function.
2678 ///
2679 /// \param SecondFnType The type of the second function.
2680 ///
2681 /// \param CanUseFirst This flag is set to true if the first function's
2682 /// ExtParameterInfo list can be used as the composite list of
2683 /// ExtParameterInfo.
2684 ///
2685 /// \param CanUseSecond This flag is set to true if the second function's
2686 /// ExtParameterInfo list can be used as the composite list of
2687 /// ExtParameterInfo.
2688 ///
2689 /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2690 /// empty if none of the flags are set.
2691 ///
2692 bool mergeExtParameterInfo(
2693 const FunctionProtoType *FirstFnType,
2694 const FunctionProtoType *SecondFnType,
2695 bool &CanUseFirst, bool &CanUseSecond,
2696 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2697
2698 void ResetObjCLayout(const ObjCContainerDecl *CD);
2699
2700 //===--------------------------------------------------------------------===//
2701 // Integer Predicates
2702 //===--------------------------------------------------------------------===//
2703
2704 // The width of an integer, as defined in C99 6.2.6.2. This is the number
2705 // of bits in an integer type excluding any padding bits.
2706 unsigned getIntWidth(QualType T) const;
2707
2708 // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2709 // unsigned integer type. This method takes a signed type, and returns the
2710 // corresponding unsigned integer type.
2711 // With the introduction of fixed point types in ISO N1169, this method also
2712 // accepts fixed point types and returns the corresponding unsigned type for
2713 // a given fixed point type.
2714 QualType getCorrespondingUnsignedType(QualType T) const;
2715
2716 // Per ISO N1169, this method accepts fixed point types and returns the
2717 // corresponding saturated type for a given fixed point type.
2718 QualType getCorrespondingSaturatedType(QualType Ty) const;
2719
2720 // This method accepts fixed point types and returns the corresponding signed
2721 // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2722 // fixed point types because there are unsigned integer types like bool and
2723 // char8_t that don't have signed equivalents.
2724 QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2725
2726 //===--------------------------------------------------------------------===//
2727 // Integer Values
2728 //===--------------------------------------------------------------------===//
2729
2730 /// Make an APSInt of the appropriate width and signedness for the
2731 /// given \p Value and integer \p Type.
MakeIntValue(uint64_t Value,QualType Type)2732 llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2733 // If Type is a signed integer type larger than 64 bits, we need to be sure
2734 // to sign extend Res appropriately.
2735 llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2736 Res = Value;
2737 unsigned Width = getIntWidth(Type);
2738 if (Width != Res.getBitWidth())
2739 return Res.extOrTrunc(Width);
2740 return Res;
2741 }
2742
2743 bool isSentinelNullExpr(const Expr *E);
2744
2745 /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2746 /// none exists.
2747 ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2748
2749 /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2750 /// none exists.
2751 ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2752
2753 /// Return true if there is at least one \@implementation in the TU.
AnyObjCImplementation()2754 bool AnyObjCImplementation() {
2755 return !ObjCImpls.empty();
2756 }
2757
2758 /// Set the implementation of ObjCInterfaceDecl.
2759 void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2760 ObjCImplementationDecl *ImplD);
2761
2762 /// Set the implementation of ObjCCategoryDecl.
2763 void setObjCImplementation(ObjCCategoryDecl *CatD,
2764 ObjCCategoryImplDecl *ImplD);
2765
2766 /// Get the duplicate declaration of a ObjCMethod in the same
2767 /// interface, or null if none exists.
2768 const ObjCMethodDecl *
2769 getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2770
2771 void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2772 const ObjCMethodDecl *Redecl);
2773
2774 /// Returns the Objective-C interface that \p ND belongs to if it is
2775 /// an Objective-C method/property/ivar etc. that is part of an interface,
2776 /// otherwise returns null.
2777 const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2778
2779 /// Set the copy initialization expression of a block var decl. \p CanThrow
2780 /// indicates whether the copy expression can throw or not.
2781 void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
2782
2783 /// Get the copy initialization expression of the VarDecl \p VD, or
2784 /// nullptr if none exists.
2785 BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
2786
2787 /// Allocate an uninitialized TypeSourceInfo.
2788 ///
2789 /// The caller should initialize the memory held by TypeSourceInfo using
2790 /// the TypeLoc wrappers.
2791 ///
2792 /// \param T the type that will be the basis for type source info. This type
2793 /// should refer to how the declarator was written in source code, not to
2794 /// what type semantic analysis resolved the declarator to.
2795 ///
2796 /// \param Size the size of the type info to create, or 0 if the size
2797 /// should be calculated based on the type.
2798 TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2799
2800 /// Allocate a TypeSourceInfo where all locations have been
2801 /// initialized to a given location, which defaults to the empty
2802 /// location.
2803 TypeSourceInfo *
2804 getTrivialTypeSourceInfo(QualType T,
2805 SourceLocation Loc = SourceLocation()) const;
2806
2807 /// Add a deallocation callback that will be invoked when the
2808 /// ASTContext is destroyed.
2809 ///
2810 /// \param Callback A callback function that will be invoked on destruction.
2811 ///
2812 /// \param Data Pointer data that will be provided to the callback function
2813 /// when it is called.
2814 void AddDeallocation(void (*Callback)(void *), void *Data) const;
2815
2816 /// If T isn't trivially destructible, calls AddDeallocation to register it
2817 /// for destruction.
addDestruction(T * Ptr)2818 template <typename T> void addDestruction(T *Ptr) const {
2819 if (!std::is_trivially_destructible<T>::value) {
2820 auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2821 AddDeallocation(DestroyPtr, Ptr);
2822 }
2823 }
2824
2825 GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
2826 GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2827
2828 /// Determines if the decl can be CodeGen'ed or deserialized from PCH
2829 /// lazily, only when used; this is only relevant for function or file scoped
2830 /// var definitions.
2831 ///
2832 /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2833 /// it is not used.
2834 bool DeclMustBeEmitted(const Decl *D);
2835
2836 /// Visits all versions of a multiversioned function with the passed
2837 /// predicate.
2838 void forEachMultiversionedFunctionVersion(
2839 const FunctionDecl *FD,
2840 llvm::function_ref<void(FunctionDecl *)> Pred) const;
2841
2842 const CXXConstructorDecl *
2843 getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
2844
2845 void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
2846 CXXConstructorDecl *CD);
2847
2848 void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
2849
2850 TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
2851
2852 void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
2853
2854 DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
2855
2856 void setManglingNumber(const NamedDecl *ND, unsigned Number);
2857 unsigned getManglingNumber(const NamedDecl *ND) const;
2858
2859 void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
2860 unsigned getStaticLocalNumber(const VarDecl *VD) const;
2861
2862 /// Retrieve the context for computing mangling numbers in the given
2863 /// DeclContext.
2864 MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2865 enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
2866 MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
2867 const Decl *D);
2868
2869 std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
2870
2871 /// Used by ParmVarDecl to store on the side the
2872 /// index of the parameter when it exceeds the size of the normal bitfield.
2873 void setParameterIndex(const ParmVarDecl *D, unsigned index);
2874
2875 /// Used by ParmVarDecl to retrieve on the side the
2876 /// index of the parameter when it exceeds the size of the normal bitfield.
2877 unsigned getParameterIndex(const ParmVarDecl *D) const;
2878
2879 /// Return a string representing the human readable name for the specified
2880 /// function declaration or file name. Used by SourceLocExpr and
2881 /// PredefinedExpr to cache evaluated results.
2882 StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
2883
2884 /// Return a declaration for the global GUID object representing the given
2885 /// GUID value.
2886 MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
2887
2888 /// Return the template parameter object of the given type with the given
2889 /// value.
2890 TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
2891 const APValue &V) const;
2892
2893 /// Parses the target attributes passed in, and returns only the ones that are
2894 /// valid feature names.
2895 ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
2896
2897 void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2898 const FunctionDecl *) const;
2899 void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2900 GlobalDecl GD) const;
2901
2902 //===--------------------------------------------------------------------===//
2903 // Statistics
2904 //===--------------------------------------------------------------------===//
2905
2906 /// The number of implicitly-declared default constructors.
2907 unsigned NumImplicitDefaultConstructors = 0;
2908
2909 /// The number of implicitly-declared default constructors for
2910 /// which declarations were built.
2911 unsigned NumImplicitDefaultConstructorsDeclared = 0;
2912
2913 /// The number of implicitly-declared copy constructors.
2914 unsigned NumImplicitCopyConstructors = 0;
2915
2916 /// The number of implicitly-declared copy constructors for
2917 /// which declarations were built.
2918 unsigned NumImplicitCopyConstructorsDeclared = 0;
2919
2920 /// The number of implicitly-declared move constructors.
2921 unsigned NumImplicitMoveConstructors = 0;
2922
2923 /// The number of implicitly-declared move constructors for
2924 /// which declarations were built.
2925 unsigned NumImplicitMoveConstructorsDeclared = 0;
2926
2927 /// The number of implicitly-declared copy assignment operators.
2928 unsigned NumImplicitCopyAssignmentOperators = 0;
2929
2930 /// The number of implicitly-declared copy assignment operators for
2931 /// which declarations were built.
2932 unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
2933
2934 /// The number of implicitly-declared move assignment operators.
2935 unsigned NumImplicitMoveAssignmentOperators = 0;
2936
2937 /// The number of implicitly-declared move assignment operators for
2938 /// which declarations were built.
2939 unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
2940
2941 /// The number of implicitly-declared destructors.
2942 unsigned NumImplicitDestructors = 0;
2943
2944 /// The number of implicitly-declared destructors for which
2945 /// declarations were built.
2946 unsigned NumImplicitDestructorsDeclared = 0;
2947
2948 public:
2949 /// Initialize built-in types.
2950 ///
2951 /// This routine may only be invoked once for a given ASTContext object.
2952 /// It is normally invoked after ASTContext construction.
2953 ///
2954 /// \param Target The target
2955 void InitBuiltinTypes(const TargetInfo &Target,
2956 const TargetInfo *AuxTarget = nullptr);
2957
2958 private:
2959 void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2960
2961 class ObjCEncOptions {
2962 unsigned Bits;
2963
ObjCEncOptions(unsigned Bits)2964 ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
2965
2966 public:
ObjCEncOptions()2967 ObjCEncOptions() : Bits(0) {}
ObjCEncOptions(const ObjCEncOptions & RHS)2968 ObjCEncOptions(const ObjCEncOptions &RHS) : Bits(RHS.Bits) {}
2969
2970 #define OPT_LIST(V) \
2971 V(ExpandPointedToStructures, 0) \
2972 V(ExpandStructures, 1) \
2973 V(IsOutermostType, 2) \
2974 V(EncodingProperty, 3) \
2975 V(IsStructField, 4) \
2976 V(EncodeBlockParameters, 5) \
2977 V(EncodeClassNames, 6) \
2978
2979 #define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
2980 OPT_LIST(V)
2981 #undef V
2982
2983 #define V(N,I) bool N() const { return Bits & 1 << I; }
OPT_LIST(V)2984 OPT_LIST(V)
2985 #undef V
2986
2987 #undef OPT_LIST
2988
2989 LLVM_NODISCARD ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
2990 return Bits & Mask.Bits;
2991 }
2992
forComponentType()2993 LLVM_NODISCARD ObjCEncOptions forComponentType() const {
2994 ObjCEncOptions Mask = ObjCEncOptions()
2995 .setIsOutermostType()
2996 .setIsStructField();
2997 return Bits & ~Mask.Bits;
2998 }
2999 };
3000
3001 // Return the Objective-C type encoding for a given type.
3002 void getObjCEncodingForTypeImpl(QualType t, std::string &S,
3003 ObjCEncOptions Options,
3004 const FieldDecl *Field,
3005 QualType *NotEncodedT = nullptr) const;
3006
3007 // Adds the encoding of the structure's members.
3008 void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
3009 const FieldDecl *Field,
3010 bool includeVBases = true,
3011 QualType *NotEncodedT=nullptr) const;
3012
3013 public:
3014 // Adds the encoding of a method parameter or return type.
3015 void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
3016 QualType T, std::string& S,
3017 bool Extended) const;
3018
3019 /// Returns true if this is an inline-initialized static data member
3020 /// which is treated as a definition for MSVC compatibility.
3021 bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
3022
3023 enum class InlineVariableDefinitionKind {
3024 /// Not an inline variable.
3025 None,
3026
3027 /// Weak definition of inline variable.
3028 Weak,
3029
3030 /// Weak for now, might become strong later in this TU.
3031 WeakUnknown,
3032
3033 /// Strong definition.
3034 Strong
3035 };
3036
3037 /// Determine whether a definition of this inline variable should
3038 /// be treated as a weak or strong definition. For compatibility with
3039 /// C++14 and before, for a constexpr static data member, if there is an
3040 /// out-of-line declaration of the member, we may promote it from weak to
3041 /// strong.
3042 InlineVariableDefinitionKind
3043 getInlineVariableDefinitionKind(const VarDecl *VD) const;
3044
3045 private:
3046 friend class DeclarationNameTable;
3047 friend class DeclContext;
3048
3049 const ASTRecordLayout &
3050 getObjCLayout(const ObjCInterfaceDecl *D,
3051 const ObjCImplementationDecl *Impl) const;
3052
3053 /// A set of deallocations that should be performed when the
3054 /// ASTContext is destroyed.
3055 // FIXME: We really should have a better mechanism in the ASTContext to
3056 // manage running destructors for types which do variable sized allocation
3057 // within the AST. In some places we thread the AST bump pointer allocator
3058 // into the datastructures which avoids this mess during deallocation but is
3059 // wasteful of memory, and here we require a lot of error prone book keeping
3060 // in order to track and run destructors while we're tearing things down.
3061 using DeallocationFunctionsAndArguments =
3062 llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3063 mutable DeallocationFunctionsAndArguments Deallocations;
3064
3065 // FIXME: This currently contains the set of StoredDeclMaps used
3066 // by DeclContext objects. This probably should not be in ASTContext,
3067 // but we include it here so that ASTContext can quickly deallocate them.
3068 llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3069
3070 std::vector<Decl *> TraversalScope;
3071
3072 std::unique_ptr<VTableContextBase> VTContext;
3073
3074 void ReleaseDeclContextMaps();
3075
3076 public:
3077 enum PragmaSectionFlag : unsigned {
3078 PSF_None = 0,
3079 PSF_Read = 0x1,
3080 PSF_Write = 0x2,
3081 PSF_Execute = 0x4,
3082 PSF_Implicit = 0x8,
3083 PSF_ZeroInit = 0x10,
3084 PSF_Invalid = 0x80000000U,
3085 };
3086
3087 struct SectionInfo {
3088 DeclaratorDecl *Decl;
3089 SourceLocation PragmaSectionLocation;
3090 int SectionFlags;
3091
3092 SectionInfo() = default;
SectionInfoSectionInfo3093 SectionInfo(DeclaratorDecl *Decl,
3094 SourceLocation PragmaSectionLocation,
3095 int SectionFlags)
3096 : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3097 SectionFlags(SectionFlags) {}
3098 };
3099
3100 llvm::StringMap<SectionInfo> SectionInfos;
3101
3102 /// Return a new OMPTraitInfo object owned by this context.
3103 OMPTraitInfo &getNewOMPTraitInfo();
3104
3105 /// Whether a C++ static variable may be externalized.
3106 bool mayExternalizeStaticVar(const Decl *D) const;
3107
3108 /// Whether a C++ static variable should be externalized.
3109 bool shouldExternalizeStaticVar(const Decl *D) const;
3110
3111 private:
3112 /// All OMPTraitInfo objects live in this collection, one per
3113 /// `pragma omp [begin] declare variant` directive.
3114 SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
3115 };
3116
3117 /// Insertion operator for diagnostics.
3118 const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
3119 const ASTContext::SectionInfo &Section);
3120
3121 /// Utility function for constructing a nullary selector.
GetNullarySelector(StringRef name,ASTContext & Ctx)3122 inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3123 IdentifierInfo* II = &Ctx.Idents.get(name);
3124 return Ctx.Selectors.getSelector(0, &II);
3125 }
3126
3127 /// Utility function for constructing an unary selector.
GetUnarySelector(StringRef name,ASTContext & Ctx)3128 inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3129 IdentifierInfo* II = &Ctx.Idents.get(name);
3130 return Ctx.Selectors.getSelector(1, &II);
3131 }
3132
3133 } // namespace clang
3134
3135 // operator new and delete aren't allowed inside namespaces.
3136
3137 /// Placement new for using the ASTContext's allocator.
3138 ///
3139 /// This placement form of operator new uses the ASTContext's allocator for
3140 /// obtaining memory.
3141 ///
3142 /// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3143 /// Any changes here need to also be made there.
3144 ///
3145 /// We intentionally avoid using a nothrow specification here so that the calls
3146 /// to this operator will not perform a null check on the result -- the
3147 /// underlying allocator never returns null pointers.
3148 ///
3149 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3150 /// @code
3151 /// // Default alignment (8)
3152 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3153 /// // Specific alignment
3154 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3155 /// @endcode
3156 /// Memory allocated through this placement new operator does not need to be
3157 /// explicitly freed, as ASTContext will free all of this memory when it gets
3158 /// destroyed. Please note that you cannot use delete on the pointer.
3159 ///
3160 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3161 /// @param C The ASTContext that provides the allocator.
3162 /// @param Alignment The alignment of the allocated memory (if the underlying
3163 /// allocator supports it).
3164 /// @return The allocated memory. Could be nullptr.
new(size_t Bytes,const clang::ASTContext & C,size_t Alignment)3165 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3166 size_t Alignment /* = 8 */) {
3167 return C.Allocate(Bytes, Alignment);
3168 }
3169
3170 /// Placement delete companion to the new above.
3171 ///
3172 /// This operator is just a companion to the new above. There is no way of
3173 /// invoking it directly; see the new operator for more details. This operator
3174 /// is called implicitly by the compiler if a placement new expression using
3175 /// the ASTContext throws in the object constructor.
delete(void * Ptr,const clang::ASTContext & C,size_t)3176 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3177 C.Deallocate(Ptr);
3178 }
3179
3180 /// This placement form of operator new[] uses the ASTContext's allocator for
3181 /// obtaining memory.
3182 ///
3183 /// We intentionally avoid using a nothrow specification here so that the calls
3184 /// to this operator will not perform a null check on the result -- the
3185 /// underlying allocator never returns null pointers.
3186 ///
3187 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3188 /// @code
3189 /// // Default alignment (8)
3190 /// char *data = new (Context) char[10];
3191 /// // Specific alignment
3192 /// char *data = new (Context, 4) char[10];
3193 /// @endcode
3194 /// Memory allocated through this placement new[] operator does not need to be
3195 /// explicitly freed, as ASTContext will free all of this memory when it gets
3196 /// destroyed. Please note that you cannot use delete on the pointer.
3197 ///
3198 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3199 /// @param C The ASTContext that provides the allocator.
3200 /// @param Alignment The alignment of the allocated memory (if the underlying
3201 /// allocator supports it).
3202 /// @return The allocated memory. Could be nullptr.
3203 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3204 size_t Alignment /* = 8 */) {
3205 return C.Allocate(Bytes, Alignment);
3206 }
3207
3208 /// Placement delete[] companion to the new[] above.
3209 ///
3210 /// This operator is just a companion to the new[] above. There is no way of
3211 /// invoking it directly; see the new[] operator for more details. This operator
3212 /// is called implicitly by the compiler if a placement new[] expression using
3213 /// the ASTContext throws in the object constructor.
3214 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3215 C.Deallocate(Ptr);
3216 }
3217
3218 /// Create the representation of a LazyGenerationalUpdatePtr.
3219 template <typename Owner, typename T,
3220 void (clang::ExternalASTSource::*Update)(Owner)>
3221 typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
makeValue(const clang::ASTContext & Ctx,T Value)3222 clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3223 const clang::ASTContext &Ctx, T Value) {
3224 // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3225 // include ASTContext.h. We explicitly instantiate it for all relevant types
3226 // in ASTContext.cpp.
3227 if (auto *Source = Ctx.getExternalSource())
3228 return new (Ctx) LazyData(Source, Value);
3229 return Value;
3230 }
3231
3232 #endif // LLVM_CLANG_AST_ASTCONTEXT_H
3233