1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "method_verifier-inl.h"
18
19 #include <ostream>
20
21 #include "android-base/stringprintf.h"
22
23 #include "art_field-inl.h"
24 #include "art_method-inl.h"
25 #include "base/aborting.h"
26 #include "base/enums.h"
27 #include "base/leb128.h"
28 #include "base/indenter.h"
29 #include "base/logging.h" // For VLOG.
30 #include "base/mutex-inl.h"
31 #include "base/sdk_version.h"
32 #include "base/stl_util.h"
33 #include "base/systrace.h"
34 #include "base/time_utils.h"
35 #include "base/utils.h"
36 #include "class_linker.h"
37 #include "class_root-inl.h"
38 #include "compiler_callbacks.h"
39 #include "dex/class_accessor-inl.h"
40 #include "dex/descriptors_names.h"
41 #include "dex/dex_file-inl.h"
42 #include "dex/dex_file_exception_helpers.h"
43 #include "dex/dex_instruction-inl.h"
44 #include "dex/dex_instruction_utils.h"
45 #include "experimental_flags.h"
46 #include "gc/accounting/card_table-inl.h"
47 #include "handle_scope-inl.h"
48 #include "intern_table.h"
49 #include "mirror/class-inl.h"
50 #include "mirror/class.h"
51 #include "mirror/class_loader.h"
52 #include "mirror/dex_cache-inl.h"
53 #include "mirror/method_handle_impl.h"
54 #include "mirror/method_type.h"
55 #include "mirror/object-inl.h"
56 #include "mirror/object_array-inl.h"
57 #include "mirror/var_handle.h"
58 #include "obj_ptr-inl.h"
59 #include "reg_type-inl.h"
60 #include "register_line-inl.h"
61 #include "runtime.h"
62 #include "scoped_newline.h"
63 #include "scoped_thread_state_change-inl.h"
64 #include "stack.h"
65 #include "vdex_file.h"
66 #include "verifier/method_verifier.h"
67 #include "verifier_compiler_binding.h"
68 #include "verifier_deps.h"
69
70 namespace art {
71 namespace verifier {
72
73 using android::base::StringPrintf;
74
75 static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
76
PcToRegisterLineTable(ScopedArenaAllocator & allocator)77 PcToRegisterLineTable::PcToRegisterLineTable(ScopedArenaAllocator& allocator)
78 : register_lines_(allocator.Adapter(kArenaAllocVerifier)) {}
79
Init(RegisterTrackingMode mode,InstructionFlags * flags,uint32_t insns_size,uint16_t registers_size,ScopedArenaAllocator & allocator,RegTypeCache * reg_types)80 void PcToRegisterLineTable::Init(RegisterTrackingMode mode,
81 InstructionFlags* flags,
82 uint32_t insns_size,
83 uint16_t registers_size,
84 ScopedArenaAllocator& allocator,
85 RegTypeCache* reg_types) {
86 DCHECK_GT(insns_size, 0U);
87 register_lines_.resize(insns_size);
88 for (uint32_t i = 0; i < insns_size; i++) {
89 bool interesting = false;
90 switch (mode) {
91 case kTrackRegsAll:
92 interesting = flags[i].IsOpcode();
93 break;
94 case kTrackCompilerInterestPoints:
95 interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
96 break;
97 case kTrackRegsBranches:
98 interesting = flags[i].IsBranchTarget();
99 break;
100 }
101 if (interesting) {
102 register_lines_[i].reset(RegisterLine::Create(registers_size, allocator, reg_types));
103 }
104 }
105 }
106
~PcToRegisterLineTable()107 PcToRegisterLineTable::~PcToRegisterLineTable() {}
108
109 namespace impl {
110 namespace {
111
112 enum class CheckAccess {
113 kNo,
114 kOnResolvedClass,
115 kYes,
116 };
117
118 enum class FieldAccessType {
119 kAccGet,
120 kAccPut
121 };
122
123 // Instruction types that are not marked as throwing (because they normally would not), but for
124 // historical reasons may do so. These instructions cannot be marked kThrow as that would introduce
125 // a general flow that is unwanted.
126 //
127 // Note: Not implemented as Instruction::Flags value as that set is full and we'd need to increase
128 // the struct size (making it a non-power-of-two) for a single element.
129 //
130 // Note: This should eventually be removed.
IsCompatThrow(Instruction::Code opcode)131 constexpr bool IsCompatThrow(Instruction::Code opcode) {
132 return opcode == Instruction::Code::RETURN_OBJECT || opcode == Instruction::Code::MOVE_EXCEPTION;
133 }
134
135 template <bool kVerifierDebug>
136 class MethodVerifier final : public ::art::verifier::MethodVerifier {
137 public:
IsInstanceConstructor() const138 bool IsInstanceConstructor() const {
139 return IsConstructor() && !IsStatic();
140 }
141
ResolveCheckedClass(dex::TypeIndex class_idx)142 const RegType& ResolveCheckedClass(dex::TypeIndex class_idx) override
143 REQUIRES_SHARED(Locks::mutator_lock_) {
144 DCHECK(!HasFailures());
145 const RegType& result = ResolveClass<CheckAccess::kYes>(class_idx);
146 DCHECK(!HasFailures());
147 return result;
148 }
149
150 void FindLocksAtDexPc() REQUIRES_SHARED(Locks::mutator_lock_);
151
152 private:
MethodVerifier(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,VerifierDeps * verifier_deps,const DexFile * dex_file,const dex::CodeItem * code_item,uint32_t method_idx,bool can_load_classes,bool allow_thread_suspension,bool allow_soft_failures,bool aot_mode,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,ArtMethod * method,uint32_t access_flags,bool need_precise_constants,bool verify_to_dump,bool fill_register_lines,uint32_t api_level)153 MethodVerifier(Thread* self,
154 ClassLinker* class_linker,
155 ArenaPool* arena_pool,
156 VerifierDeps* verifier_deps,
157 const DexFile* dex_file,
158 const dex::CodeItem* code_item,
159 uint32_t method_idx,
160 bool can_load_classes,
161 bool allow_thread_suspension,
162 bool allow_soft_failures,
163 bool aot_mode,
164 Handle<mirror::DexCache> dex_cache,
165 Handle<mirror::ClassLoader> class_loader,
166 const dex::ClassDef& class_def,
167 ArtMethod* method,
168 uint32_t access_flags,
169 bool need_precise_constants,
170 bool verify_to_dump,
171 bool fill_register_lines,
172 uint32_t api_level) REQUIRES_SHARED(Locks::mutator_lock_)
173 : art::verifier::MethodVerifier(self,
174 class_linker,
175 arena_pool,
176 verifier_deps,
177 dex_file,
178 class_def,
179 code_item,
180 method_idx,
181 can_load_classes,
182 allow_thread_suspension,
183 allow_soft_failures,
184 aot_mode),
185 method_being_verified_(method),
186 method_access_flags_(access_flags),
187 return_type_(nullptr),
188 dex_cache_(dex_cache),
189 class_loader_(class_loader),
190 declaring_class_(nullptr),
191 interesting_dex_pc_(-1),
192 monitor_enter_dex_pcs_(nullptr),
193 need_precise_constants_(need_precise_constants),
194 verify_to_dump_(verify_to_dump),
195 allow_thread_suspension_(allow_thread_suspension),
196 is_constructor_(false),
197 fill_register_lines_(fill_register_lines),
198 api_level_(api_level == 0 ? std::numeric_limits<uint32_t>::max() : api_level) {
199 }
200
UninstantiableError(const char * descriptor)201 void UninstantiableError(const char* descriptor) {
202 Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
203 << "non-instantiable klass " << descriptor;
204 }
IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass)205 static bool IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass)
206 REQUIRES_SHARED(Locks::mutator_lock_) {
207 return klass->IsInstantiable() || klass->IsPrimitive();
208 }
209
210 // Is the method being verified a constructor? See the comment on the field.
IsConstructor() const211 bool IsConstructor() const {
212 return is_constructor_;
213 }
214
215 // Is the method verified static?
IsStatic() const216 bool IsStatic() const {
217 return (method_access_flags_ & kAccStatic) != 0;
218 }
219
220 // Adds the given string to the beginning of the last failure message.
PrependToLastFailMessage(std::string prepend)221 void PrependToLastFailMessage(std::string prepend) {
222 size_t failure_num = failure_messages_.size();
223 DCHECK_NE(failure_num, 0U);
224 std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
225 prepend += last_fail_message->str();
226 failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
227 delete last_fail_message;
228 }
229
230 // Adds the given string to the end of the last failure message.
AppendToLastFailMessage(const std::string & append)231 void AppendToLastFailMessage(const std::string& append) {
232 size_t failure_num = failure_messages_.size();
233 DCHECK_NE(failure_num, 0U);
234 std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
235 (*last_fail_message) << append;
236 }
237
238 /*
239 * Compute the width of the instruction at each address in the instruction stream, and store it in
240 * insn_flags_. Addresses that are in the middle of an instruction, or that are part of switch
241 * table data, are not touched (so the caller should probably initialize "insn_flags" to zero).
242 *
243 * The "new_instance_count_" and "monitor_enter_count_" fields in vdata are also set.
244 *
245 * Performs some static checks, notably:
246 * - opcode of first instruction begins at index 0
247 * - only documented instructions may appear
248 * - each instruction follows the last
249 * - last byte of last instruction is at (code_length-1)
250 *
251 * Logs an error and returns "false" on failure.
252 */
253 bool ComputeWidthsAndCountOps();
254
255 /*
256 * Set the "in try" flags for all instructions protected by "try" statements. Also sets the
257 * "branch target" flags for exception handlers.
258 *
259 * Call this after widths have been set in "insn_flags".
260 *
261 * Returns "false" if something in the exception table looks fishy, but we're expecting the
262 * exception table to be valid.
263 */
264 bool ScanTryCatchBlocks() REQUIRES_SHARED(Locks::mutator_lock_);
265
266 /*
267 * Perform static verification on all instructions in a method.
268 *
269 * Walks through instructions in a method calling VerifyInstruction on each.
270 */
271 template <bool kAllowRuntimeOnlyInstructions>
272 bool VerifyInstructions();
273
274 /*
275 * Perform static verification on an instruction.
276 *
277 * As a side effect, this sets the "branch target" flags in InsnFlags.
278 *
279 * "(CF)" items are handled during code-flow analysis.
280 *
281 * v3 4.10.1
282 * - target of each jump and branch instruction must be valid
283 * - targets of switch statements must be valid
284 * - operands referencing constant pool entries must be valid
285 * - (CF) operands of getfield, putfield, getstatic, putstatic must be valid
286 * - (CF) operands of method invocation instructions must be valid
287 * - (CF) only invoke-direct can call a method starting with '<'
288 * - (CF) <clinit> must never be called explicitly
289 * - operands of instanceof, checkcast, new (and variants) must be valid
290 * - new-array[-type] limited to 255 dimensions
291 * - can't use "new" on an array class
292 * - (?) limit dimensions in multi-array creation
293 * - local variable load/store register values must be in valid range
294 *
295 * v3 4.11.1.2
296 * - branches must be within the bounds of the code array
297 * - targets of all control-flow instructions are the start of an instruction
298 * - register accesses fall within range of allocated registers
299 * - (N/A) access to constant pool must be of appropriate type
300 * - code does not end in the middle of an instruction
301 * - execution cannot fall off the end of the code
302 * - (earlier) for each exception handler, the "try" area must begin and
303 * end at the start of an instruction (end can be at the end of the code)
304 * - (earlier) for each exception handler, the handler must start at a valid
305 * instruction
306 */
307 template <bool kAllowRuntimeOnlyInstructions>
308 bool VerifyInstruction(const Instruction* inst, uint32_t code_offset);
309
310 /* Ensure that the register index is valid for this code item. */
CheckRegisterIndex(uint32_t idx)311 bool CheckRegisterIndex(uint32_t idx) {
312 if (UNLIKELY(idx >= code_item_accessor_.RegistersSize())) {
313 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
314 << code_item_accessor_.RegistersSize() << ")";
315 return false;
316 }
317 return true;
318 }
319
320 /* Ensure that the wide register index is valid for this code item. */
CheckWideRegisterIndex(uint32_t idx)321 bool CheckWideRegisterIndex(uint32_t idx) {
322 if (UNLIKELY(idx + 1 >= code_item_accessor_.RegistersSize())) {
323 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
324 << "+1 >= " << code_item_accessor_.RegistersSize() << ")";
325 return false;
326 }
327 return true;
328 }
329
330 // Perform static checks on an instruction referencing a CallSite. All we do here is ensure that
331 // the call site index is in the valid range.
CheckCallSiteIndex(uint32_t idx)332 bool CheckCallSiteIndex(uint32_t idx) {
333 uint32_t limit = dex_file_->NumCallSiteIds();
334 if (UNLIKELY(idx >= limit)) {
335 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad call site index " << idx << " (max "
336 << limit << ")";
337 return false;
338 }
339 return true;
340 }
341
342 // Perform static checks on a field Get or set instruction. All we do here is ensure that the
343 // field index is in the valid range.
CheckFieldIndex(uint32_t idx)344 bool CheckFieldIndex(uint32_t idx) {
345 if (UNLIKELY(idx >= dex_file_->GetHeader().field_ids_size_)) {
346 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
347 << dex_file_->GetHeader().field_ids_size_ << ")";
348 return false;
349 }
350 return true;
351 }
352
353 // Perform static checks on a method invocation instruction. All we do here is ensure that the
354 // method index is in the valid range.
CheckMethodIndex(uint32_t idx)355 bool CheckMethodIndex(uint32_t idx) {
356 if (UNLIKELY(idx >= dex_file_->GetHeader().method_ids_size_)) {
357 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
358 << dex_file_->GetHeader().method_ids_size_ << ")";
359 return false;
360 }
361 return true;
362 }
363
364 // Perform static checks on an instruction referencing a constant method handle. All we do here
365 // is ensure that the method index is in the valid range.
CheckMethodHandleIndex(uint32_t idx)366 bool CheckMethodHandleIndex(uint32_t idx) {
367 uint32_t limit = dex_file_->NumMethodHandles();
368 if (UNLIKELY(idx >= limit)) {
369 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method handle index " << idx << " (max "
370 << limit << ")";
371 return false;
372 }
373 return true;
374 }
375
376 // Perform static checks on a "new-instance" instruction. Specifically, make sure the class
377 // reference isn't for an array class.
378 bool CheckNewInstance(dex::TypeIndex idx);
379
380 // Perform static checks on a prototype indexing instruction. All we do here is ensure that the
381 // prototype index is in the valid range.
CheckPrototypeIndex(uint32_t idx)382 bool CheckPrototypeIndex(uint32_t idx) {
383 if (UNLIKELY(idx >= dex_file_->GetHeader().proto_ids_size_)) {
384 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad prototype index " << idx << " (max "
385 << dex_file_->GetHeader().proto_ids_size_ << ")";
386 return false;
387 }
388 return true;
389 }
390
391 /* Ensure that the string index is in the valid range. */
CheckStringIndex(uint32_t idx)392 bool CheckStringIndex(uint32_t idx) {
393 if (UNLIKELY(idx >= dex_file_->GetHeader().string_ids_size_)) {
394 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
395 << dex_file_->GetHeader().string_ids_size_ << ")";
396 return false;
397 }
398 return true;
399 }
400
401 // Perform static checks on an instruction that takes a class constant. Ensure that the class
402 // index is in the valid range.
CheckTypeIndex(dex::TypeIndex idx)403 bool CheckTypeIndex(dex::TypeIndex idx) {
404 if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
405 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
406 << dex_file_->GetHeader().type_ids_size_ << ")";
407 return false;
408 }
409 return true;
410 }
411
412 // Perform static checks on a "new-array" instruction. Specifically, make sure they aren't
413 // creating an array of arrays that causes the number of dimensions to exceed 255.
414 bool CheckNewArray(dex::TypeIndex idx);
415
416 // Verify an array data table. "cur_offset" is the offset of the fill-array-data instruction.
417 bool CheckArrayData(uint32_t cur_offset);
418
419 // Verify that the target of a branch instruction is valid. We don't expect code to jump directly
420 // into an exception handler, but it's valid to do so as long as the target isn't a
421 // "move-exception" instruction. We verify that in a later stage.
422 // The dex format forbids certain instructions from branching to themselves.
423 // Updates "insn_flags_", setting the "branch target" flag.
424 bool CheckBranchTarget(uint32_t cur_offset);
425
426 // Verify a switch table. "cur_offset" is the offset of the switch instruction.
427 // Updates "insn_flags_", setting the "branch target" flag.
428 bool CheckSwitchTargets(uint32_t cur_offset);
429
430 // Check the register indices used in a "vararg" instruction, such as invoke-virtual or
431 // filled-new-array.
432 // - vA holds word count (0-5), args[] have values.
433 // There are some tests we don't do here, e.g. we don't try to verify that invoking a method that
434 // takes a double is done with consecutive registers. This requires parsing the target method
435 // signature, which we will be doing later on during the code flow analysis.
CheckVarArgRegs(uint32_t vA,uint32_t arg[])436 bool CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
437 uint16_t registers_size = code_item_accessor_.RegistersSize();
438 for (uint32_t idx = 0; idx < vA; idx++) {
439 if (UNLIKELY(arg[idx] >= registers_size)) {
440 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
441 << ") in non-range invoke (>= " << registers_size << ")";
442 return false;
443 }
444 }
445
446 return true;
447 }
448
449 // Check the register indices used in a "vararg/range" instruction, such as invoke-virtual/range
450 // or filled-new-array/range.
451 // - vA holds word count, vC holds index of first reg.
CheckVarArgRangeRegs(uint32_t vA,uint32_t vC)452 bool CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
453 uint16_t registers_size = code_item_accessor_.RegistersSize();
454 // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
455 // integer overflow when adding them here.
456 if (UNLIKELY(vA + vC > registers_size)) {
457 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
458 << " in range invoke (> " << registers_size << ")";
459 return false;
460 }
461 return true;
462 }
463
464 // Checks the method matches the expectations required to be signature polymorphic.
465 bool CheckSignaturePolymorphicMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_);
466
467 // Checks the invoked receiver matches the expectations for signature polymorphic methods.
468 bool CheckSignaturePolymorphicReceiver(const Instruction* inst) REQUIRES_SHARED(Locks::mutator_lock_);
469
470 // Extract the relative offset from a branch instruction.
471 // Returns "false" on failure (e.g. this isn't a branch instruction).
472 bool GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
473 bool* selfOkay);
474
475 /* Perform detailed code-flow analysis on a single method. */
476 bool VerifyCodeFlow() REQUIRES_SHARED(Locks::mutator_lock_);
477
478 // Set the register types for the first instruction in the method based on the method signature.
479 // This has the side-effect of validating the signature.
480 bool SetTypesFromSignature() REQUIRES_SHARED(Locks::mutator_lock_);
481
482 /*
483 * Perform code flow on a method.
484 *
485 * The basic strategy is as outlined in v3 4.11.1.2: set the "changed" bit on the first
486 * instruction, process it (setting additional "changed" bits), and repeat until there are no
487 * more.
488 *
489 * v3 4.11.1.1
490 * - (N/A) operand stack is always the same size
491 * - operand stack [registers] contain the correct types of values
492 * - local variables [registers] contain the correct types of values
493 * - methods are invoked with the appropriate arguments
494 * - fields are assigned using values of appropriate types
495 * - opcodes have the correct type values in operand registers
496 * - there is never an uninitialized class instance in a local variable in code protected by an
497 * exception handler (operand stack is okay, because the operand stack is discarded when an
498 * exception is thrown) [can't know what's a local var w/o the debug info -- should fall out of
499 * register typing]
500 *
501 * v3 4.11.1.2
502 * - execution cannot fall off the end of the code
503 *
504 * (We also do many of the items described in the "static checks" sections, because it's easier to
505 * do them here.)
506 *
507 * We need an array of RegType values, one per register, for every instruction. If the method uses
508 * monitor-enter, we need extra data for every register, and a stack for every "interesting"
509 * instruction. In theory this could become quite large -- up to several megabytes for a monster
510 * function.
511 *
512 * NOTE:
513 * The spec forbids backward branches when there's an uninitialized reference in a register. The
514 * idea is to prevent something like this:
515 * loop:
516 * move r1, r0
517 * new-instance r0, MyClass
518 * ...
519 * if-eq rN, loop // once
520 * initialize r0
521 *
522 * This leaves us with two different instances, both allocated by the same instruction, but only
523 * one is initialized. The scheme outlined in v3 4.11.1.4 wouldn't catch this, so they work around
524 * it by preventing backward branches. We achieve identical results without restricting code
525 * reordering by specifying that you can't execute the new-instance instruction if a register
526 * contains an uninitialized instance created by that same instruction.
527 */
528 template <bool kMonitorDexPCs>
529 bool CodeFlowVerifyMethod() REQUIRES_SHARED(Locks::mutator_lock_);
530
531 /*
532 * Perform verification for a single instruction.
533 *
534 * This requires fully decoding the instruction to determine the effect it has on registers.
535 *
536 * Finds zero or more following instructions and sets the "changed" flag if execution at that
537 * point needs to be (re-)evaluated. Register changes are merged into "reg_types_" at the target
538 * addresses. Does not set or clear any other flags in "insn_flags_".
539 */
540 bool CodeFlowVerifyInstruction(uint32_t* start_guess)
541 REQUIRES_SHARED(Locks::mutator_lock_);
542
543 // Perform verification of a new array instruction
544 void VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range)
545 REQUIRES_SHARED(Locks::mutator_lock_);
546
547 // Helper to perform verification on puts of primitive type.
548 void VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
549 const uint32_t vregA) REQUIRES_SHARED(Locks::mutator_lock_);
550
551 // Perform verification of an aget instruction. The destination register's type will be set to
552 // be that of component type of the array unless the array type is unknown, in which case a
553 // bottom type inferred from the type of instruction is used. is_primitive is false for an
554 // aget-object.
555 void VerifyAGet(const Instruction* inst, const RegType& insn_type,
556 bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
557
558 // Perform verification of an aput instruction.
559 void VerifyAPut(const Instruction* inst, const RegType& insn_type,
560 bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
561
562 // Lookup instance field and fail for resolution violations
563 ArtField* GetInstanceField(const RegType& obj_type, int field_idx)
564 REQUIRES_SHARED(Locks::mutator_lock_);
565
566 // Lookup static field and fail for resolution violations
567 ArtField* GetStaticField(int field_idx) REQUIRES_SHARED(Locks::mutator_lock_);
568
569 // Perform verification of an iget/sget/iput/sput instruction.
570 template <FieldAccessType kAccType>
571 void VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
572 bool is_primitive, bool is_static)
573 REQUIRES_SHARED(Locks::mutator_lock_);
574
575 // Resolves a class based on an index and, if C is kYes, performs access checks to ensure
576 // the referrer can access the resolved class.
577 template <CheckAccess C>
578 const RegType& ResolveClass(dex::TypeIndex class_idx)
579 REQUIRES_SHARED(Locks::mutator_lock_);
580
581 /*
582 * For the "move-exception" instruction at "work_insn_idx_", which must be at an exception handler
583 * address, determine the Join of all exceptions that can land here. Fails if no matching
584 * exception handler can be found or if the Join of exception types fails.
585 */
586 const RegType& GetCaughtExceptionType()
587 REQUIRES_SHARED(Locks::mutator_lock_);
588
589 /*
590 * Resolves a method based on an index and performs access checks to ensure
591 * the referrer can access the resolved method.
592 * Does not throw exceptions.
593 */
594 ArtMethod* ResolveMethodAndCheckAccess(uint32_t method_idx, MethodType method_type)
595 REQUIRES_SHARED(Locks::mutator_lock_);
596
597 /*
598 * Verify the arguments to a method. We're executing in "method", making
599 * a call to the method reference in vB.
600 *
601 * If this is a "direct" invoke, we allow calls to <init>. For calls to
602 * <init>, the first argument may be an uninitialized reference. Otherwise,
603 * calls to anything starting with '<' will be rejected, as will any
604 * uninitialized reference arguments.
605 *
606 * For non-static method calls, this will verify that the method call is
607 * appropriate for the "this" argument.
608 *
609 * The method reference is in vBBBB. The "is_range" parameter determines
610 * whether we use 0-4 "args" values or a range of registers defined by
611 * vAA and vCCCC.
612 *
613 * Widening conversions on integers and references are allowed, but
614 * narrowing conversions are not.
615 *
616 * Returns the resolved method on success, null on failure (with *failure
617 * set appropriately).
618 */
619 ArtMethod* VerifyInvocationArgs(const Instruction* inst, MethodType method_type, bool is_range)
620 REQUIRES_SHARED(Locks::mutator_lock_);
621
622 // Similar checks to the above, but on the proto. Will be used when the method cannot be
623 // resolved.
624 void VerifyInvocationArgsUnresolvedMethod(const Instruction* inst, MethodType method_type,
625 bool is_range)
626 REQUIRES_SHARED(Locks::mutator_lock_);
627
628 template <class T>
629 ArtMethod* VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
630 MethodType method_type, bool is_range,
631 ArtMethod* res_method)
632 REQUIRES_SHARED(Locks::mutator_lock_);
633
634 /*
635 * Verify the arguments present for a call site. Returns "true" if all is well, "false" otherwise.
636 */
637 bool CheckCallSite(uint32_t call_site_idx);
638
639 /*
640 * Verify that the target instruction is not "move-exception". It's important that the only way
641 * to execute a move-exception is as the first instruction of an exception handler.
642 * Returns "true" if all is well, "false" if the target instruction is move-exception.
643 */
CheckNotMoveException(const uint16_t * insns,int insn_idx)644 bool CheckNotMoveException(const uint16_t* insns, int insn_idx) {
645 if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
646 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
647 return false;
648 }
649 return true;
650 }
651
652 /*
653 * Verify that the target instruction is not "move-result". It is important that we cannot
654 * branch to move-result instructions, but we have to make this a distinct check instead of
655 * adding it to CheckNotMoveException, because it is legal to continue into "move-result"
656 * instructions - as long as the previous instruction was an invoke, which is checked elsewhere.
657 */
CheckNotMoveResult(const uint16_t * insns,int insn_idx)658 bool CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
659 if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
660 ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
661 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
662 return false;
663 }
664 return true;
665 }
666
667 /*
668 * Verify that the target instruction is not "move-result" or "move-exception". This is to
669 * be used when checking branch and switch instructions, but not instructions that can
670 * continue.
671 */
CheckNotMoveExceptionOrMoveResult(const uint16_t * insns,int insn_idx)672 bool CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
673 return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
674 }
675
676 /*
677 * Control can transfer to "next_insn". Merge the registers from merge_line into the table at
678 * next_insn, and set the changed flag on the target address if any of the registers were changed.
679 * In the case of fall-through, update the merge line on a change as its the working line for the
680 * next instruction.
681 * Returns "false" if an error is encountered.
682 */
683 bool UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line, bool update_merge_line)
684 REQUIRES_SHARED(Locks::mutator_lock_);
685
686 // Return the register type for the method.
687 const RegType& GetMethodReturnType() REQUIRES_SHARED(Locks::mutator_lock_);
688
689 // Get a type representing the declaring class of the method.
GetDeclaringClass()690 const RegType& GetDeclaringClass() REQUIRES_SHARED(Locks::mutator_lock_) {
691 if (declaring_class_ == nullptr) {
692 const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
693 const char* descriptor
694 = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
695 if (method_being_verified_ != nullptr) {
696 ObjPtr<mirror::Class> klass = method_being_verified_->GetDeclaringClass();
697 declaring_class_ = &FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes());
698 } else {
699 declaring_class_ = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
700 }
701 }
702 return *declaring_class_;
703 }
704
CurrentInsnFlags()705 InstructionFlags* CurrentInsnFlags() {
706 return &GetModifiableInstructionFlags(work_insn_idx_);
707 }
708
709 const RegType& DetermineCat1Constant(int32_t value, bool precise)
710 REQUIRES_SHARED(Locks::mutator_lock_);
711
712 // Try to create a register type from the given class. In case a precise type is requested, but
713 // the class is not instantiable, a soft error (of type NO_CLASS) will be enqueued and a
714 // non-precise reference will be returned.
715 // Note: we reuse NO_CLASS as this will throw an exception at runtime, when the failing class is
716 // actually touched.
FromClass(const char * descriptor,ObjPtr<mirror::Class> klass,bool precise)717 const RegType& FromClass(const char* descriptor, ObjPtr<mirror::Class> klass, bool precise)
718 REQUIRES_SHARED(Locks::mutator_lock_) {
719 DCHECK(klass != nullptr);
720 if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
721 Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
722 << "non-instantiable klass " << descriptor;
723 precise = false;
724 }
725 return reg_types_.FromClass(descriptor, klass, precise);
726 }
727
728 ALWAYS_INLINE bool FailOrAbort(bool condition, const char* error_msg, uint32_t work_insn_idx);
729
GetModifiableInstructionFlags(size_t index)730 ALWAYS_INLINE InstructionFlags& GetModifiableInstructionFlags(size_t index) {
731 return insn_flags_[index];
732 }
733
734 // Returns the method index of an invoke instruction.
GetMethodIdxOfInvoke(const Instruction * inst)735 uint16_t GetMethodIdxOfInvoke(const Instruction* inst)
736 REQUIRES_SHARED(Locks::mutator_lock_) {
737 return inst->VRegB();
738 }
739 // Returns the field index of a field access instruction.
GetFieldIdxOfFieldAccess(const Instruction * inst,bool is_static)740 uint16_t GetFieldIdxOfFieldAccess(const Instruction* inst, bool is_static)
741 REQUIRES_SHARED(Locks::mutator_lock_) {
742 if (is_static) {
743 return inst->VRegB_21c();
744 } else {
745 return inst->VRegC_22c();
746 }
747 }
748
749 // Run verification on the method. Returns true if verification completes and false if the input
750 // has an irrecoverable corruption.
751 bool Verify() override REQUIRES_SHARED(Locks::mutator_lock_);
752
753 // Dump the failures encountered by the verifier.
DumpFailures(std::ostream & os)754 std::ostream& DumpFailures(std::ostream& os) {
755 DCHECK_EQ(failures_.size(), failure_messages_.size());
756 for (const auto* stream : failure_messages_) {
757 os << stream->str() << "\n";
758 }
759 return os;
760 }
761
762 // Dump the state of the verifier, namely each instruction, what flags are set on it, register
763 // information
Dump(std::ostream & os)764 void Dump(std::ostream& os) REQUIRES_SHARED(Locks::mutator_lock_) {
765 VariableIndentationOutputStream vios(&os);
766 Dump(&vios);
767 }
768 void Dump(VariableIndentationOutputStream* vios) REQUIRES_SHARED(Locks::mutator_lock_);
769
770 bool HandleMoveException(const Instruction* inst) REQUIRES_SHARED(Locks::mutator_lock_);
771
772 ArtMethod* method_being_verified_; // Its ArtMethod representation if known.
773 const uint32_t method_access_flags_; // Method's access flags.
774 const RegType* return_type_; // Lazily computed return type of the method.
775 // The dex_cache for the declaring class of the method.
776 Handle<mirror::DexCache> dex_cache_ GUARDED_BY(Locks::mutator_lock_);
777 // The class loader for the declaring class of the method.
778 Handle<mirror::ClassLoader> class_loader_ GUARDED_BY(Locks::mutator_lock_);
779 const RegType* declaring_class_; // Lazily computed reg type of the method's declaring class.
780
781 // The dex PC of a FindLocksAtDexPc request, -1 otherwise.
782 uint32_t interesting_dex_pc_;
783 // The container into which FindLocksAtDexPc should write the registers containing held locks,
784 // null if we're not doing FindLocksAtDexPc.
785 std::vector<DexLockInfo>* monitor_enter_dex_pcs_;
786
787
788 // An optimization where instead of generating unique RegTypes for constants we use imprecise
789 // constants that cover a range of constants. This isn't good enough for deoptimization that
790 // avoids loading from registers in the case of a constant as the dex instruction set lost the
791 // notion of whether a value should be in a floating point or general purpose register file.
792 const bool need_precise_constants_;
793
794 // Indicates whether we verify to dump the info. In that case we accept quickened instructions
795 // even though we might detect to be a compiler. Should only be set when running
796 // VerifyMethodAndDump.
797 const bool verify_to_dump_;
798
799 // Whether or not we call AllowThreadSuspension periodically, we want a way to disable this for
800 // thread dumping checkpoints since we may get thread suspension at an inopportune time due to
801 // FindLocksAtDexPC, resulting in deadlocks.
802 const bool allow_thread_suspension_;
803
804 // Whether the method seems to be a constructor. Note that this field exists as we can't trust
805 // the flags in the dex file. Some older code does not mark methods named "<init>" and "<clinit>"
806 // correctly.
807 //
808 // Note: this flag is only valid once Verify() has started.
809 bool is_constructor_;
810
811 // Whether to attempt to fill all register lines for (ex) debugger use.
812 bool fill_register_lines_;
813
814 // API level, for dependent checks. Note: we do not use '0' for unset here, to simplify checks.
815 // Instead, unset level should correspond to max().
816 const uint32_t api_level_;
817
818 friend class ::art::verifier::MethodVerifier;
819
820 DISALLOW_COPY_AND_ASSIGN(MethodVerifier);
821 };
822
823 // Note: returns true on failure.
824 template <bool kVerifierDebug>
FailOrAbort(bool condition,const char * error_msg,uint32_t work_insn_idx)825 inline bool MethodVerifier<kVerifierDebug>::FailOrAbort(bool condition,
826 const char* error_msg,
827 uint32_t work_insn_idx) {
828 if (kIsDebugBuild) {
829 // In a debug build, abort if the error condition is wrong. Only warn if
830 // we are already aborting (as this verification is likely run to print
831 // lock information).
832 if (LIKELY(gAborting == 0)) {
833 DCHECK(condition) << error_msg << work_insn_idx << " "
834 << dex_file_->PrettyMethod(dex_method_idx_);
835 } else {
836 if (!condition) {
837 LOG(ERROR) << error_msg << work_insn_idx;
838 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
839 return true;
840 }
841 }
842 } else {
843 // In a non-debug build, just fail the class.
844 if (!condition) {
845 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
846 return true;
847 }
848 }
849
850 return false;
851 }
852
IsLargeMethod(const CodeItemDataAccessor & accessor)853 static bool IsLargeMethod(const CodeItemDataAccessor& accessor) {
854 if (!accessor.HasCodeItem()) {
855 return false;
856 }
857
858 uint16_t registers_size = accessor.RegistersSize();
859 uint32_t insns_size = accessor.InsnsSizeInCodeUnits();
860
861 return registers_size * insns_size > 4*1024*1024;
862 }
863
864 template <bool kVerifierDebug>
FindLocksAtDexPc()865 void MethodVerifier<kVerifierDebug>::FindLocksAtDexPc() {
866 CHECK(monitor_enter_dex_pcs_ != nullptr);
867 CHECK(code_item_accessor_.HasCodeItem()); // This only makes sense for methods with code.
868
869 // Quick check whether there are any monitor_enter instructions before verifying.
870 for (const DexInstructionPcPair& inst : code_item_accessor_) {
871 if (inst->Opcode() == Instruction::MONITOR_ENTER) {
872 // Strictly speaking, we ought to be able to get away with doing a subset of the full method
873 // verification. In practice, the phase we want relies on data structures set up by all the
874 // earlier passes, so we just run the full method verification and bail out early when we've
875 // got what we wanted.
876 Verify();
877 return;
878 }
879 }
880 }
881
882 template <bool kVerifierDebug>
Verify()883 bool MethodVerifier<kVerifierDebug>::Verify() {
884 // Some older code doesn't correctly mark constructors as such. Test for this case by looking at
885 // the name.
886 const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
887 const char* method_name = dex_file_->StringDataByIdx(method_id.name_idx_);
888 bool instance_constructor_by_name = strcmp("<init>", method_name) == 0;
889 bool static_constructor_by_name = strcmp("<clinit>", method_name) == 0;
890 bool constructor_by_name = instance_constructor_by_name || static_constructor_by_name;
891 // Check that only constructors are tagged, and check for bad code that doesn't tag constructors.
892 if ((method_access_flags_ & kAccConstructor) != 0) {
893 if (!constructor_by_name) {
894 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
895 << "method is marked as constructor, but not named accordingly";
896 return false;
897 }
898 is_constructor_ = true;
899 } else if (constructor_by_name) {
900 LOG(WARNING) << "Method " << dex_file_->PrettyMethod(dex_method_idx_)
901 << " not marked as constructor.";
902 is_constructor_ = true;
903 }
904 // If it's a constructor, check whether IsStatic() matches the name.
905 // This should have been rejected by the dex file verifier. Only do in debug build.
906 if (kIsDebugBuild) {
907 if (IsConstructor()) {
908 if (IsStatic() ^ static_constructor_by_name) {
909 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
910 << "constructor name doesn't match static flag";
911 return false;
912 }
913 }
914 }
915
916 // Methods may only have one of public/protected/private.
917 // This should have been rejected by the dex file verifier. Only do in debug build.
918 if (kIsDebugBuild) {
919 size_t access_mod_count =
920 (((method_access_flags_ & kAccPublic) == 0) ? 0 : 1) +
921 (((method_access_flags_ & kAccProtected) == 0) ? 0 : 1) +
922 (((method_access_flags_ & kAccPrivate) == 0) ? 0 : 1);
923 if (access_mod_count > 1) {
924 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "method has more than one of public/protected/private";
925 return false;
926 }
927 }
928
929 // If there aren't any instructions, make sure that's expected, then exit successfully.
930 if (!code_item_accessor_.HasCodeItem()) {
931 // Only native or abstract methods may not have code.
932 if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
933 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
934 return false;
935 }
936
937 // Test FastNative and CriticalNative annotations. We do this in the
938 // verifier for convenience.
939 if ((method_access_flags_ & kAccNative) != 0) {
940 // Fetch the flags from the annotations: the class linker hasn't processed
941 // them yet.
942 uint32_t native_access_flags = annotations::GetNativeMethodAnnotationAccessFlags(
943 *dex_file_, class_def_, dex_method_idx_);
944 if ((native_access_flags & kAccFastNative) != 0) {
945 if ((method_access_flags_ & kAccSynchronized) != 0) {
946 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "fast native methods cannot be synchronized";
947 return false;
948 }
949 }
950 if ((native_access_flags & kAccCriticalNative) != 0) {
951 if ((method_access_flags_ & kAccSynchronized) != 0) {
952 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "critical native methods cannot be synchronized";
953 return false;
954 }
955 if ((method_access_flags_ & kAccStatic) == 0) {
956 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "critical native methods must be static";
957 return false;
958 }
959 const char* shorty = dex_file_->GetMethodShorty(method_id);
960 for (size_t i = 0, len = strlen(shorty); i < len; ++i) {
961 if (Primitive::GetType(shorty[i]) == Primitive::kPrimNot) {
962 Fail(VERIFY_ERROR_BAD_CLASS_HARD) <<
963 "critical native methods must not have references as arguments or return type";
964 return false;
965 }
966 }
967 }
968 }
969
970 // This should have been rejected by the dex file verifier. Only do in debug build.
971 // Note: the above will also be rejected in the dex file verifier, starting in dex version 37.
972 if (kIsDebugBuild) {
973 if ((method_access_flags_ & kAccAbstract) != 0) {
974 // Abstract methods are not allowed to have the following flags.
975 static constexpr uint32_t kForbidden =
976 kAccPrivate |
977 kAccStatic |
978 kAccFinal |
979 kAccNative |
980 kAccStrict |
981 kAccSynchronized;
982 if ((method_access_flags_ & kForbidden) != 0) {
983 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
984 << "method can't be abstract and private/static/final/native/strict/synchronized";
985 return false;
986 }
987 }
988 if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
989 // Interface methods must be public and abstract (if default methods are disabled).
990 uint32_t kRequired = kAccPublic;
991 if ((method_access_flags_ & kRequired) != kRequired) {
992 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods must be public";
993 return false;
994 }
995 // In addition to the above, interface methods must not be protected.
996 static constexpr uint32_t kForbidden = kAccProtected;
997 if ((method_access_flags_ & kForbidden) != 0) {
998 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods can't be protected";
999 return false;
1000 }
1001 }
1002 // We also don't allow constructors to be abstract or native.
1003 if (IsConstructor()) {
1004 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be abstract or native";
1005 return false;
1006 }
1007 }
1008 return true;
1009 }
1010
1011 // This should have been rejected by the dex file verifier. Only do in debug build.
1012 if (kIsDebugBuild) {
1013 // When there's code, the method must not be native or abstract.
1014 if ((method_access_flags_ & (kAccNative | kAccAbstract)) != 0) {
1015 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "non-zero-length code in abstract or native method";
1016 return false;
1017 }
1018
1019 if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
1020 // Interfaces may always have static initializers for their fields. If we are running with
1021 // default methods enabled we also allow other public, static, non-final methods to have code.
1022 // Otherwise that is the only type of method allowed.
1023 if (!(IsConstructor() && IsStatic())) {
1024 if (IsInstanceConstructor()) {
1025 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have non-static constructor";
1026 return false;
1027 } else if (method_access_flags_ & kAccFinal) {
1028 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have final methods";
1029 return false;
1030 } else {
1031 uint32_t access_flag_options = kAccPublic;
1032 if (dex_file_->SupportsDefaultMethods()) {
1033 access_flag_options |= kAccPrivate;
1034 }
1035 if (!(method_access_flags_ & access_flag_options)) {
1036 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1037 << "interfaces may not have protected or package-private members";
1038 return false;
1039 }
1040 }
1041 }
1042 }
1043
1044 // Instance constructors must not be synchronized.
1045 if (IsInstanceConstructor()) {
1046 static constexpr uint32_t kForbidden = kAccSynchronized;
1047 if ((method_access_flags_ & kForbidden) != 0) {
1048 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be synchronized";
1049 return false;
1050 }
1051 }
1052 }
1053
1054 // Consistency-check of the register counts.
1055 // ins + locals = registers, so make sure that ins <= registers.
1056 if (code_item_accessor_.InsSize() > code_item_accessor_.RegistersSize()) {
1057 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins="
1058 << code_item_accessor_.InsSize()
1059 << " regs=" << code_item_accessor_.RegistersSize();
1060 return false;
1061 }
1062
1063 // Allocate and initialize an array to hold instruction data.
1064 insn_flags_.reset(allocator_.AllocArray<InstructionFlags>(
1065 code_item_accessor_.InsnsSizeInCodeUnits()));
1066 DCHECK(insn_flags_ != nullptr);
1067 std::uninitialized_fill_n(insn_flags_.get(),
1068 code_item_accessor_.InsnsSizeInCodeUnits(),
1069 InstructionFlags());
1070 // Run through the instructions and see if the width checks out.
1071 bool result = ComputeWidthsAndCountOps();
1072 bool allow_runtime_only_instructions = !IsAotMode() || verify_to_dump_;
1073 // Flag instructions guarded by a "try" block and check exception handlers.
1074 result = result && ScanTryCatchBlocks();
1075 // Perform static instruction verification.
1076 result = result && (allow_runtime_only_instructions
1077 ? VerifyInstructions<true>()
1078 : VerifyInstructions<false>());
1079 // Perform code-flow analysis and return.
1080 result = result && VerifyCodeFlow();
1081
1082 return result;
1083 }
1084
1085 template <bool kVerifierDebug>
ComputeWidthsAndCountOps()1086 bool MethodVerifier<kVerifierDebug>::ComputeWidthsAndCountOps() {
1087 // We can't assume the instruction is well formed, handle the case where calculating the size
1088 // goes past the end of the code item.
1089 SafeDexInstructionIterator it(code_item_accessor_.begin(), code_item_accessor_.end());
1090 for ( ; !it.IsErrorState() && it < code_item_accessor_.end(); ++it) {
1091 // In case the instruction goes past the end of the code item, make sure to not process it.
1092 SafeDexInstructionIterator next = it;
1093 ++next;
1094 if (next.IsErrorState()) {
1095 break;
1096 }
1097 GetModifiableInstructionFlags(it.DexPc()).SetIsOpcode();
1098 }
1099
1100 if (it != code_item_accessor_.end()) {
1101 const size_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1102 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
1103 << it.DexPc() << " vs. " << insns_size << ")";
1104 return false;
1105 }
1106 DCHECK(GetInstructionFlags(0).IsOpcode());
1107
1108 return true;
1109 }
1110
1111 template <bool kVerifierDebug>
ScanTryCatchBlocks()1112 bool MethodVerifier<kVerifierDebug>::ScanTryCatchBlocks() {
1113 const uint32_t tries_size = code_item_accessor_.TriesSize();
1114 if (tries_size == 0) {
1115 return true;
1116 }
1117 const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1118 for (const dex::TryItem& try_item : code_item_accessor_.TryItems()) {
1119 const uint32_t start = try_item.start_addr_;
1120 const uint32_t end = start + try_item.insn_count_;
1121 if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
1122 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
1123 << " endAddr=" << end << " (size=" << insns_size << ")";
1124 return false;
1125 }
1126 if (!GetInstructionFlags(start).IsOpcode()) {
1127 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1128 << "'try' block starts inside an instruction (" << start << ")";
1129 return false;
1130 }
1131 DexInstructionIterator end_it(code_item_accessor_.Insns(), end);
1132 for (DexInstructionIterator it(code_item_accessor_.Insns(), start); it < end_it; ++it) {
1133 GetModifiableInstructionFlags(it.DexPc()).SetInTry();
1134 }
1135 }
1136 // Iterate over each of the handlers to verify target addresses.
1137 const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
1138 const uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
1139 ClassLinker* linker = GetClassLinker();
1140 for (uint32_t idx = 0; idx < handlers_size; idx++) {
1141 CatchHandlerIterator iterator(handlers_ptr);
1142 for (; iterator.HasNext(); iterator.Next()) {
1143 uint32_t dex_pc = iterator.GetHandlerAddress();
1144 if (!GetInstructionFlags(dex_pc).IsOpcode()) {
1145 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1146 << "exception handler starts at bad address (" << dex_pc << ")";
1147 return false;
1148 }
1149 if (!CheckNotMoveResult(code_item_accessor_.Insns(), dex_pc)) {
1150 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1151 << "exception handler begins with move-result* (" << dex_pc << ")";
1152 return false;
1153 }
1154 GetModifiableInstructionFlags(dex_pc).SetBranchTarget();
1155 // Ensure exception types are resolved so that they don't need resolution to be delivered,
1156 // unresolved exception types will be ignored by exception delivery
1157 if (iterator.GetHandlerTypeIndex().IsValid()) {
1158 ObjPtr<mirror::Class> exception_type =
1159 linker->ResolveType(iterator.GetHandlerTypeIndex(), dex_cache_, class_loader_);
1160 if (exception_type == nullptr) {
1161 DCHECK(self_->IsExceptionPending());
1162 self_->ClearException();
1163 }
1164 }
1165 }
1166 handlers_ptr = iterator.EndDataPointer();
1167 }
1168 return true;
1169 }
1170
1171 template <bool kVerifierDebug>
1172 template <bool kAllowRuntimeOnlyInstructions>
VerifyInstructions()1173 bool MethodVerifier<kVerifierDebug>::VerifyInstructions() {
1174 // Flag the start of the method as a branch target.
1175 GetModifiableInstructionFlags(0).SetBranchTarget();
1176 for (const DexInstructionPcPair& inst : code_item_accessor_) {
1177 const uint32_t dex_pc = inst.DexPc();
1178 if (!VerifyInstruction<kAllowRuntimeOnlyInstructions>(&inst.Inst(), dex_pc)) {
1179 DCHECK_NE(failures_.size(), 0U);
1180 return false;
1181 }
1182 // Flag some interesting instructions.
1183 if (inst->IsReturn()) {
1184 GetModifiableInstructionFlags(dex_pc).SetReturn();
1185 } else if (inst->Opcode() == Instruction::CHECK_CAST) {
1186 // The dex-to-dex compiler wants type information to elide check-casts.
1187 GetModifiableInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
1188 }
1189 }
1190 return true;
1191 }
1192
1193 template <bool kVerifierDebug>
1194 template <bool kAllowRuntimeOnlyInstructions>
VerifyInstruction(const Instruction * inst,uint32_t code_offset)1195 bool MethodVerifier<kVerifierDebug>::VerifyInstruction(const Instruction* inst,
1196 uint32_t code_offset) {
1197 if (Instruction::kHaveExperimentalInstructions && UNLIKELY(inst->IsExperimental())) {
1198 // Experimental instructions don't yet have verifier support implementation.
1199 // While it is possible to use them by themselves, when we try to use stable instructions
1200 // with a virtual register that was created by an experimental instruction,
1201 // the data flow analysis will fail.
1202 Fail(VERIFY_ERROR_FORCE_INTERPRETER)
1203 << "experimental instruction is not supported by verifier; skipping verification";
1204 flags_.have_pending_experimental_failure_ = true;
1205 return false;
1206 }
1207
1208 bool result = true;
1209 switch (inst->GetVerifyTypeArgumentA()) {
1210 case Instruction::kVerifyRegA:
1211 result = result && CheckRegisterIndex(inst->VRegA());
1212 break;
1213 case Instruction::kVerifyRegAWide:
1214 result = result && CheckWideRegisterIndex(inst->VRegA());
1215 break;
1216 }
1217 switch (inst->GetVerifyTypeArgumentB()) {
1218 case Instruction::kVerifyRegB:
1219 result = result && CheckRegisterIndex(inst->VRegB());
1220 break;
1221 case Instruction::kVerifyRegBField:
1222 result = result && CheckFieldIndex(inst->VRegB());
1223 break;
1224 case Instruction::kVerifyRegBMethod:
1225 result = result && CheckMethodIndex(inst->VRegB());
1226 break;
1227 case Instruction::kVerifyRegBNewInstance:
1228 result = result && CheckNewInstance(dex::TypeIndex(inst->VRegB()));
1229 break;
1230 case Instruction::kVerifyRegBString:
1231 result = result && CheckStringIndex(inst->VRegB());
1232 break;
1233 case Instruction::kVerifyRegBType:
1234 result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegB()));
1235 break;
1236 case Instruction::kVerifyRegBWide:
1237 result = result && CheckWideRegisterIndex(inst->VRegB());
1238 break;
1239 case Instruction::kVerifyRegBCallSite:
1240 result = result && CheckCallSiteIndex(inst->VRegB());
1241 break;
1242 case Instruction::kVerifyRegBMethodHandle:
1243 result = result && CheckMethodHandleIndex(inst->VRegB());
1244 break;
1245 case Instruction::kVerifyRegBPrototype:
1246 result = result && CheckPrototypeIndex(inst->VRegB());
1247 break;
1248 }
1249 switch (inst->GetVerifyTypeArgumentC()) {
1250 case Instruction::kVerifyRegC:
1251 result = result && CheckRegisterIndex(inst->VRegC());
1252 break;
1253 case Instruction::kVerifyRegCField:
1254 result = result && CheckFieldIndex(inst->VRegC());
1255 break;
1256 case Instruction::kVerifyRegCNewArray:
1257 result = result && CheckNewArray(dex::TypeIndex(inst->VRegC()));
1258 break;
1259 case Instruction::kVerifyRegCType:
1260 result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegC()));
1261 break;
1262 case Instruction::kVerifyRegCWide:
1263 result = result && CheckWideRegisterIndex(inst->VRegC());
1264 break;
1265 }
1266 switch (inst->GetVerifyTypeArgumentH()) {
1267 case Instruction::kVerifyRegHPrototype:
1268 result = result && CheckPrototypeIndex(inst->VRegH());
1269 break;
1270 }
1271 switch (inst->GetVerifyExtraFlags()) {
1272 case Instruction::kVerifyArrayData:
1273 result = result && CheckArrayData(code_offset);
1274 break;
1275 case Instruction::kVerifyBranchTarget:
1276 result = result && CheckBranchTarget(code_offset);
1277 break;
1278 case Instruction::kVerifySwitchTargets:
1279 result = result && CheckSwitchTargets(code_offset);
1280 break;
1281 case Instruction::kVerifyVarArgNonZero:
1282 // Fall-through.
1283 case Instruction::kVerifyVarArg: {
1284 // Instructions that can actually return a negative value shouldn't have this flag.
1285 uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
1286 if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
1287 v_a > Instruction::kMaxVarArgRegs) {
1288 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
1289 "non-range invoke";
1290 return false;
1291 }
1292
1293 uint32_t args[Instruction::kMaxVarArgRegs];
1294 inst->GetVarArgs(args);
1295 result = result && CheckVarArgRegs(v_a, args);
1296 break;
1297 }
1298 case Instruction::kVerifyVarArgRangeNonZero:
1299 // Fall-through.
1300 case Instruction::kVerifyVarArgRange:
1301 if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
1302 inst->VRegA() <= 0) {
1303 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
1304 "range invoke";
1305 return false;
1306 }
1307 result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
1308 break;
1309 case Instruction::kVerifyError:
1310 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
1311 result = false;
1312 break;
1313 }
1314 if (!kAllowRuntimeOnlyInstructions && inst->GetVerifyIsRuntimeOnly()) {
1315 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
1316 result = false;
1317 }
1318 return result;
1319 }
1320
1321 template <bool kVerifierDebug>
CheckNewInstance(dex::TypeIndex idx)1322 inline bool MethodVerifier<kVerifierDebug>::CheckNewInstance(dex::TypeIndex idx) {
1323 if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
1324 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
1325 << dex_file_->GetHeader().type_ids_size_ << ")";
1326 return false;
1327 }
1328 // We don't need the actual class, just a pointer to the class name.
1329 const char* descriptor = dex_file_->StringByTypeIdx(idx);
1330 if (UNLIKELY(descriptor[0] != 'L')) {
1331 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
1332 return false;
1333 } else if (UNLIKELY(strcmp(descriptor, "Ljava/lang/Class;") == 0)) {
1334 // An unlikely new instance on Class is not allowed. Fall back to interpreter to ensure an
1335 // exception is thrown when this statement is executed (compiled code would not do that).
1336 Fail(VERIFY_ERROR_INSTANTIATION);
1337 }
1338 return true;
1339 }
1340
1341 template <bool kVerifierDebug>
CheckNewArray(dex::TypeIndex idx)1342 bool MethodVerifier<kVerifierDebug>::CheckNewArray(dex::TypeIndex idx) {
1343 if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
1344 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
1345 << dex_file_->GetHeader().type_ids_size_ << ")";
1346 return false;
1347 }
1348 int bracket_count = 0;
1349 const char* descriptor = dex_file_->StringByTypeIdx(idx);
1350 const char* cp = descriptor;
1351 while (*cp++ == '[') {
1352 bracket_count++;
1353 }
1354 if (UNLIKELY(bracket_count == 0)) {
1355 /* The given class must be an array type. */
1356 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1357 << "can't new-array class '" << descriptor << "' (not an array)";
1358 return false;
1359 } else if (UNLIKELY(bracket_count > 255)) {
1360 /* It is illegal to create an array of more than 255 dimensions. */
1361 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1362 << "can't new-array class '" << descriptor << "' (exceeds limit)";
1363 return false;
1364 }
1365 return true;
1366 }
1367
1368 template <bool kVerifierDebug>
CheckArrayData(uint32_t cur_offset)1369 bool MethodVerifier<kVerifierDebug>::CheckArrayData(uint32_t cur_offset) {
1370 const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
1371 const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1372 const uint16_t* array_data;
1373 int32_t array_data_offset;
1374
1375 DCHECK_LT(cur_offset, insn_count);
1376 /* make sure the start of the array data table is in range */
1377 array_data_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1378 if (UNLIKELY(static_cast<int32_t>(cur_offset) + array_data_offset < 0 ||
1379 cur_offset + array_data_offset + 2 >= insn_count)) {
1380 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1381 << ", data offset " << array_data_offset
1382 << ", count " << insn_count;
1383 return false;
1384 }
1385 /* offset to array data table is a relative branch-style offset */
1386 array_data = insns + array_data_offset;
1387 // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1388 if (UNLIKELY(!IsAligned<4>(array_data))) {
1389 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1390 << ", data offset " << array_data_offset;
1391 return false;
1392 }
1393 // Make sure the array-data is marked as an opcode. This ensures that it was reached when
1394 // traversing the code item linearly. It is an approximation for a by-spec padding value.
1395 if (UNLIKELY(!GetInstructionFlags(cur_offset + array_data_offset).IsOpcode())) {
1396 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array data table at " << cur_offset
1397 << ", data offset " << array_data_offset
1398 << " not correctly visited, probably bad padding.";
1399 return false;
1400 }
1401
1402 uint32_t value_width = array_data[1];
1403 uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1404 uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1405 /* make sure the end of the switch is in range */
1406 if (UNLIKELY(cur_offset + array_data_offset + table_size > insn_count)) {
1407 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1408 << ", data offset " << array_data_offset << ", end "
1409 << cur_offset + array_data_offset + table_size
1410 << ", count " << insn_count;
1411 return false;
1412 }
1413 return true;
1414 }
1415
1416 template <bool kVerifierDebug>
CheckBranchTarget(uint32_t cur_offset)1417 bool MethodVerifier<kVerifierDebug>::CheckBranchTarget(uint32_t cur_offset) {
1418 int32_t offset;
1419 bool isConditional, selfOkay;
1420 if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1421 return false;
1422 }
1423 if (UNLIKELY(!selfOkay && offset == 0)) {
1424 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1425 << reinterpret_cast<void*>(cur_offset);
1426 return false;
1427 }
1428 // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1429 // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1430 if (UNLIKELY(((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset))) {
1431 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1432 << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1433 return false;
1434 }
1435 int32_t abs_offset = cur_offset + offset;
1436 if (UNLIKELY(abs_offset < 0 ||
1437 (uint32_t) abs_offset >= code_item_accessor_.InsnsSizeInCodeUnits() ||
1438 !GetInstructionFlags(abs_offset).IsOpcode())) {
1439 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1440 << reinterpret_cast<void*>(abs_offset) << ") at "
1441 << reinterpret_cast<void*>(cur_offset);
1442 return false;
1443 }
1444 GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
1445 return true;
1446 }
1447
1448 template <bool kVerifierDebug>
GetBranchOffset(uint32_t cur_offset,int32_t * pOffset,bool * pConditional,bool * selfOkay)1449 bool MethodVerifier<kVerifierDebug>::GetBranchOffset(uint32_t cur_offset,
1450 int32_t* pOffset,
1451 bool* pConditional,
1452 bool* selfOkay) {
1453 const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1454 *pConditional = false;
1455 *selfOkay = false;
1456 switch (*insns & 0xff) {
1457 case Instruction::GOTO:
1458 *pOffset = ((int16_t) *insns) >> 8;
1459 break;
1460 case Instruction::GOTO_32:
1461 *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1462 *selfOkay = true;
1463 break;
1464 case Instruction::GOTO_16:
1465 *pOffset = (int16_t) insns[1];
1466 break;
1467 case Instruction::IF_EQ:
1468 case Instruction::IF_NE:
1469 case Instruction::IF_LT:
1470 case Instruction::IF_GE:
1471 case Instruction::IF_GT:
1472 case Instruction::IF_LE:
1473 case Instruction::IF_EQZ:
1474 case Instruction::IF_NEZ:
1475 case Instruction::IF_LTZ:
1476 case Instruction::IF_GEZ:
1477 case Instruction::IF_GTZ:
1478 case Instruction::IF_LEZ:
1479 *pOffset = (int16_t) insns[1];
1480 *pConditional = true;
1481 break;
1482 default:
1483 return false;
1484 }
1485 return true;
1486 }
1487
1488 template <bool kVerifierDebug>
CheckSwitchTargets(uint32_t cur_offset)1489 bool MethodVerifier<kVerifierDebug>::CheckSwitchTargets(uint32_t cur_offset) {
1490 const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
1491 DCHECK_LT(cur_offset, insn_count);
1492 const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1493 /* make sure the start of the switch is in range */
1494 int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1495 if (UNLIKELY(static_cast<int32_t>(cur_offset) + switch_offset < 0 ||
1496 cur_offset + switch_offset + 2 > insn_count)) {
1497 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1498 << ", switch offset " << switch_offset
1499 << ", count " << insn_count;
1500 return false;
1501 }
1502 /* offset to switch table is a relative branch-style offset */
1503 const uint16_t* switch_insns = insns + switch_offset;
1504 // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1505 if (UNLIKELY(!IsAligned<4>(switch_insns))) {
1506 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1507 << ", switch offset " << switch_offset;
1508 return false;
1509 }
1510 // Make sure the switch data is marked as an opcode. This ensures that it was reached when
1511 // traversing the code item linearly. It is an approximation for a by-spec padding value.
1512 if (UNLIKELY(!GetInstructionFlags(cur_offset + switch_offset).IsOpcode())) {
1513 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "switch table at " << cur_offset
1514 << ", switch offset " << switch_offset
1515 << " not correctly visited, probably bad padding.";
1516 return false;
1517 }
1518
1519 bool is_packed_switch = (*insns & 0xff) == Instruction::PACKED_SWITCH;
1520
1521 uint32_t switch_count = switch_insns[1];
1522 int32_t targets_offset;
1523 uint16_t expected_signature;
1524 if (is_packed_switch) {
1525 /* 0=sig, 1=count, 2/3=firstKey */
1526 targets_offset = 4;
1527 expected_signature = Instruction::kPackedSwitchSignature;
1528 } else {
1529 /* 0=sig, 1=count, 2..count*2 = keys */
1530 targets_offset = 2 + 2 * switch_count;
1531 expected_signature = Instruction::kSparseSwitchSignature;
1532 }
1533 uint32_t table_size = targets_offset + switch_count * 2;
1534 if (UNLIKELY(switch_insns[0] != expected_signature)) {
1535 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1536 << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1537 switch_insns[0], expected_signature);
1538 return false;
1539 }
1540 /* make sure the end of the switch is in range */
1541 if (UNLIKELY(cur_offset + switch_offset + table_size > (uint32_t) insn_count)) {
1542 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1543 << ", switch offset " << switch_offset
1544 << ", end " << (cur_offset + switch_offset + table_size)
1545 << ", count " << insn_count;
1546 return false;
1547 }
1548
1549 constexpr int32_t keys_offset = 2;
1550 if (switch_count > 1) {
1551 if (is_packed_switch) {
1552 /* for a packed switch, verify that keys do not overflow int32 */
1553 int32_t first_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1554 int32_t max_first_key =
1555 std::numeric_limits<int32_t>::max() - (static_cast<int32_t>(switch_count) - 1);
1556 if (UNLIKELY(first_key > max_first_key)) {
1557 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: first_key=" << first_key
1558 << ", switch_count=" << switch_count;
1559 return false;
1560 }
1561 } else {
1562 /* for a sparse switch, verify the keys are in ascending order */
1563 int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1564 for (uint32_t targ = 1; targ < switch_count; targ++) {
1565 int32_t key =
1566 static_cast<int32_t>(switch_insns[keys_offset + targ * 2]) |
1567 static_cast<int32_t>(switch_insns[keys_offset + targ * 2 + 1] << 16);
1568 if (UNLIKELY(key <= last_key)) {
1569 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid sparse switch: last key=" << last_key
1570 << ", this=" << key;
1571 return false;
1572 }
1573 last_key = key;
1574 }
1575 }
1576 }
1577 /* verify each switch target */
1578 for (uint32_t targ = 0; targ < switch_count; targ++) {
1579 int32_t offset = static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
1580 static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
1581 int32_t abs_offset = cur_offset + offset;
1582 if (UNLIKELY(abs_offset < 0 ||
1583 abs_offset >= static_cast<int32_t>(insn_count) ||
1584 !GetInstructionFlags(abs_offset).IsOpcode())) {
1585 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1586 << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1587 << reinterpret_cast<void*>(cur_offset)
1588 << "[" << targ << "]";
1589 return false;
1590 }
1591 GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
1592 }
1593 return true;
1594 }
1595
1596 template <bool kVerifierDebug>
VerifyCodeFlow()1597 bool MethodVerifier<kVerifierDebug>::VerifyCodeFlow() {
1598 const uint16_t registers_size = code_item_accessor_.RegistersSize();
1599
1600 /* Create and initialize table holding register status */
1601 RegisterTrackingMode base_mode = IsAotMode()
1602 ? kTrackCompilerInterestPoints
1603 : kTrackRegsBranches;
1604 reg_table_.Init(fill_register_lines_ ? kTrackRegsAll : base_mode,
1605 insn_flags_.get(),
1606 code_item_accessor_.InsnsSizeInCodeUnits(),
1607 registers_size,
1608 allocator_,
1609 GetRegTypeCache());
1610
1611 work_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
1612 saved_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
1613
1614 /* Initialize register types of method arguments. */
1615 if (!SetTypesFromSignature()) {
1616 DCHECK_NE(failures_.size(), 0U);
1617 std::string prepend("Bad signature in ");
1618 prepend += dex_file_->PrettyMethod(dex_method_idx_);
1619 PrependToLastFailMessage(prepend);
1620 return false;
1621 }
1622 // We may have a runtime failure here, clear.
1623 flags_.have_pending_runtime_throw_failure_ = false;
1624
1625 /* Perform code flow verification. */
1626 bool res = LIKELY(monitor_enter_dex_pcs_ == nullptr)
1627 ? CodeFlowVerifyMethod</*kMonitorDexPCs=*/ false>()
1628 : CodeFlowVerifyMethod</*kMonitorDexPCs=*/ true>();
1629 if (UNLIKELY(!res)) {
1630 DCHECK_NE(failures_.size(), 0U);
1631 return false;
1632 }
1633 return true;
1634 }
1635
1636 template <bool kVerifierDebug>
Dump(VariableIndentationOutputStream * vios)1637 void MethodVerifier<kVerifierDebug>::Dump(VariableIndentationOutputStream* vios) {
1638 if (!code_item_accessor_.HasCodeItem()) {
1639 vios->Stream() << "Native method\n";
1640 return;
1641 }
1642 {
1643 vios->Stream() << "Register Types:\n";
1644 ScopedIndentation indent1(vios);
1645 reg_types_.Dump(vios->Stream());
1646 }
1647 vios->Stream() << "Dumping instructions and register lines:\n";
1648 ScopedIndentation indent1(vios);
1649
1650 for (const DexInstructionPcPair& inst : code_item_accessor_) {
1651 const size_t dex_pc = inst.DexPc();
1652
1653 // Might be asked to dump before the table is initialized.
1654 if (reg_table_.IsInitialized()) {
1655 RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1656 if (reg_line != nullptr) {
1657 vios->Stream() << reg_line->Dump(this) << "\n";
1658 }
1659 }
1660
1661 vios->Stream()
1662 << StringPrintf("0x%04zx", dex_pc) << ": " << GetInstructionFlags(dex_pc).ToString() << " ";
1663 const bool kDumpHexOfInstruction = false;
1664 if (kDumpHexOfInstruction) {
1665 vios->Stream() << inst->DumpHex(5) << " ";
1666 }
1667 vios->Stream() << inst->DumpString(dex_file_) << "\n";
1668 }
1669 }
1670
IsPrimitiveDescriptor(char descriptor)1671 static bool IsPrimitiveDescriptor(char descriptor) {
1672 switch (descriptor) {
1673 case 'I':
1674 case 'C':
1675 case 'S':
1676 case 'B':
1677 case 'Z':
1678 case 'F':
1679 case 'D':
1680 case 'J':
1681 return true;
1682 default:
1683 return false;
1684 }
1685 }
1686
1687 template <bool kVerifierDebug>
SetTypesFromSignature()1688 bool MethodVerifier<kVerifierDebug>::SetTypesFromSignature() {
1689 RegisterLine* reg_line = reg_table_.GetLine(0);
1690
1691 // Should have been verified earlier.
1692 DCHECK_GE(code_item_accessor_.RegistersSize(), code_item_accessor_.InsSize());
1693
1694 uint32_t arg_start = code_item_accessor_.RegistersSize() - code_item_accessor_.InsSize();
1695 size_t expected_args = code_item_accessor_.InsSize(); /* long/double count as two */
1696
1697 // Include the "this" pointer.
1698 size_t cur_arg = 0;
1699 if (!IsStatic()) {
1700 if (expected_args == 0) {
1701 // Expect at least a receiver.
1702 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
1703 return false;
1704 }
1705
1706 // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1707 // argument as uninitialized. This restricts field access until the superclass constructor is
1708 // called.
1709 const RegType& declaring_class = GetDeclaringClass();
1710 if (IsConstructor()) {
1711 if (declaring_class.IsJavaLangObject()) {
1712 // "this" is implicitly initialized.
1713 reg_line->SetThisInitialized();
1714 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
1715 } else {
1716 reg_line->SetRegisterType<LockOp::kClear>(
1717 this,
1718 arg_start + cur_arg,
1719 reg_types_.UninitializedThisArgument(declaring_class));
1720 }
1721 } else {
1722 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
1723 }
1724 cur_arg++;
1725 }
1726
1727 const dex::ProtoId& proto_id =
1728 dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1729 DexFileParameterIterator iterator(*dex_file_, proto_id);
1730
1731 for (; iterator.HasNext(); iterator.Next()) {
1732 const char* descriptor = iterator.GetDescriptor();
1733 if (descriptor == nullptr) {
1734 LOG(FATAL) << "Null descriptor";
1735 }
1736 if (cur_arg >= expected_args) {
1737 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1738 << " args, found more (" << descriptor << ")";
1739 return false;
1740 }
1741 switch (descriptor[0]) {
1742 case 'L':
1743 case '[':
1744 // We assume that reference arguments are initialized. The only way it could be otherwise
1745 // (assuming the caller was verified) is if the current method is <init>, but in that case
1746 // it's effectively considered initialized the instant we reach here (in the sense that we
1747 // can return without doing anything or call virtual methods).
1748 {
1749 // Note: don't check access. No error would be thrown for declaring or passing an
1750 // inaccessible class. Only actual accesses to fields or methods will.
1751 const RegType& reg_type = ResolveClass<CheckAccess::kNo>(iterator.GetTypeIdx());
1752 if (!reg_type.IsNonZeroReferenceTypes()) {
1753 DCHECK(HasFailures());
1754 return false;
1755 }
1756 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_type);
1757 }
1758 break;
1759 case 'Z':
1760 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Boolean());
1761 break;
1762 case 'C':
1763 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Char());
1764 break;
1765 case 'B':
1766 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Byte());
1767 break;
1768 case 'I':
1769 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Integer());
1770 break;
1771 case 'S':
1772 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Short());
1773 break;
1774 case 'F':
1775 reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Float());
1776 break;
1777 case 'J':
1778 case 'D': {
1779 if (cur_arg + 1 >= expected_args) {
1780 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1781 << " args, found more (" << descriptor << ")";
1782 return false;
1783 }
1784
1785 const RegType* lo_half;
1786 const RegType* hi_half;
1787 if (descriptor[0] == 'J') {
1788 lo_half = ®_types_.LongLo();
1789 hi_half = ®_types_.LongHi();
1790 } else {
1791 lo_half = ®_types_.DoubleLo();
1792 hi_half = ®_types_.DoubleHi();
1793 }
1794 reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1795 cur_arg++;
1796 break;
1797 }
1798 default:
1799 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1800 << descriptor << "'";
1801 return false;
1802 }
1803 cur_arg++;
1804 }
1805 if (cur_arg != expected_args) {
1806 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1807 << " arguments, found " << cur_arg;
1808 return false;
1809 }
1810 const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1811 // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1812 // format. Only major difference from the method argument format is that 'V' is supported.
1813 bool result;
1814 if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1815 result = descriptor[1] == '\0';
1816 } else if (descriptor[0] == '[') { // single/multi-dimensional array of object/primitive
1817 size_t i = 0;
1818 do {
1819 i++;
1820 } while (descriptor[i] == '['); // process leading [
1821 if (descriptor[i] == 'L') { // object array
1822 do {
1823 i++; // find closing ;
1824 } while (descriptor[i] != ';' && descriptor[i] != '\0');
1825 result = descriptor[i] == ';';
1826 } else { // primitive array
1827 result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1828 }
1829 } else if (descriptor[0] == 'L') {
1830 // could be more thorough here, but shouldn't be required
1831 size_t i = 0;
1832 do {
1833 i++;
1834 } while (descriptor[i] != ';' && descriptor[i] != '\0');
1835 result = descriptor[i] == ';';
1836 } else {
1837 result = false;
1838 }
1839 if (!result) {
1840 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1841 << descriptor << "'";
1842 }
1843 return result;
1844 }
1845
1846 COLD_ATTR
HandleMonitorDexPcsWorkLine(std::vector<::art::verifier::MethodVerifier::DexLockInfo> * monitor_enter_dex_pcs,RegisterLine * work_line)1847 void HandleMonitorDexPcsWorkLine(
1848 std::vector<::art::verifier::MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs,
1849 RegisterLine* work_line) {
1850 monitor_enter_dex_pcs->clear(); // The new work line is more accurate than the previous one.
1851
1852 std::map<uint32_t, ::art::verifier::MethodVerifier::DexLockInfo> depth_to_lock_info;
1853 auto collector = [&](uint32_t dex_reg, uint32_t depth) {
1854 auto insert_pair = depth_to_lock_info.emplace(
1855 depth, ::art::verifier::MethodVerifier::DexLockInfo(depth));
1856 auto it = insert_pair.first;
1857 auto set_insert_pair = it->second.dex_registers.insert(dex_reg);
1858 DCHECK(set_insert_pair.second);
1859 };
1860 work_line->IterateRegToLockDepths(collector);
1861 for (auto& pair : depth_to_lock_info) {
1862 monitor_enter_dex_pcs->push_back(pair.second);
1863 // Map depth to dex PC.
1864 monitor_enter_dex_pcs->back().dex_pc = work_line->GetMonitorEnterDexPc(pair.second.dex_pc);
1865 }
1866 }
1867
1868 template <bool kVerifierDebug>
1869 template <bool kMonitorDexPCs>
CodeFlowVerifyMethod()1870 bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyMethod() {
1871 const uint16_t* insns = code_item_accessor_.Insns();
1872 const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1873
1874 /* Begin by marking the first instruction as "changed". */
1875 GetModifiableInstructionFlags(0).SetChanged();
1876 uint32_t start_guess = 0;
1877
1878 /* Continue until no instructions are marked "changed". */
1879 while (true) {
1880 if (allow_thread_suspension_) {
1881 self_->AllowThreadSuspension();
1882 }
1883 // Find the first marked one. Use "start_guess" as a way to find one quickly.
1884 uint32_t insn_idx = start_guess;
1885 for (; insn_idx < insns_size; insn_idx++) {
1886 if (GetInstructionFlags(insn_idx).IsChanged())
1887 break;
1888 }
1889 if (insn_idx == insns_size) {
1890 if (start_guess != 0) {
1891 /* try again, starting from the top */
1892 start_guess = 0;
1893 continue;
1894 } else {
1895 /* all flags are clear */
1896 break;
1897 }
1898 }
1899 // We carry the working set of registers from instruction to instruction. If this address can
1900 // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1901 // "changed" flags, we need to load the set of registers from the table.
1902 // Because we always prefer to continue on to the next instruction, we should never have a
1903 // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1904 // target.
1905 work_insn_idx_ = insn_idx;
1906 if (GetInstructionFlags(insn_idx).IsBranchTarget()) {
1907 work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1908 } else if (kIsDebugBuild) {
1909 /*
1910 * Consistency check: retrieve the stored register line (assuming
1911 * a full table) and make sure it actually matches.
1912 */
1913 RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1914 if (register_line != nullptr) {
1915 if (work_line_->CompareLine(register_line) != 0) {
1916 Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
1917 LOG(FATAL_WITHOUT_ABORT) << info_messages_.str();
1918 LOG(FATAL) << "work_line diverged in " << dex_file_->PrettyMethod(dex_method_idx_)
1919 << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1920 << " work_line=" << work_line_->Dump(this) << "\n"
1921 << " expected=" << register_line->Dump(this);
1922 }
1923 }
1924 }
1925
1926 // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1927 // We want the state _before_ the instruction, for the case where the dex pc we're
1928 // interested in is itself a monitor-enter instruction (which is a likely place
1929 // for a thread to be suspended).
1930 if (kMonitorDexPCs && UNLIKELY(work_insn_idx_ == interesting_dex_pc_)) {
1931 HandleMonitorDexPcsWorkLine(monitor_enter_dex_pcs_, work_line_.get());
1932 }
1933
1934 if (!CodeFlowVerifyInstruction(&start_guess)) {
1935 std::string prepend(dex_file_->PrettyMethod(dex_method_idx_));
1936 prepend += " failed to verify: ";
1937 PrependToLastFailMessage(prepend);
1938 return false;
1939 }
1940 /* Clear "changed" and mark as visited. */
1941 GetModifiableInstructionFlags(insn_idx).SetVisited();
1942 GetModifiableInstructionFlags(insn_idx).ClearChanged();
1943 }
1944
1945 if (kVerifierDebug) {
1946 /*
1947 * Scan for dead code. There's nothing "evil" about dead code
1948 * (besides the wasted space), but it indicates a flaw somewhere
1949 * down the line, possibly in the verifier.
1950 *
1951 * If we've substituted "always throw" instructions into the stream,
1952 * we are almost certainly going to have some dead code.
1953 */
1954 int dead_start = -1;
1955
1956 for (const DexInstructionPcPair& inst : code_item_accessor_) {
1957 const uint32_t insn_idx = inst.DexPc();
1958 /*
1959 * Switch-statement data doesn't get "visited" by scanner. It
1960 * may or may not be preceded by a padding NOP (for alignment).
1961 */
1962 if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1963 insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1964 insns[insn_idx] == Instruction::kArrayDataSignature ||
1965 (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1966 (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1967 insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1968 insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1969 GetModifiableInstructionFlags(insn_idx).SetVisited();
1970 }
1971
1972 if (!GetInstructionFlags(insn_idx).IsVisited()) {
1973 if (dead_start < 0) {
1974 dead_start = insn_idx;
1975 }
1976 } else if (dead_start >= 0) {
1977 LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1978 << "-" << reinterpret_cast<void*>(insn_idx - 1);
1979 dead_start = -1;
1980 }
1981 }
1982 if (dead_start >= 0) {
1983 LogVerifyInfo()
1984 << "dead code " << reinterpret_cast<void*>(dead_start)
1985 << "-" << reinterpret_cast<void*>(code_item_accessor_.InsnsSizeInCodeUnits() - 1);
1986 }
1987 // To dump the state of the verify after a method, do something like:
1988 // if (dex_file_->PrettyMethod(dex_method_idx_) ==
1989 // "boolean java.lang.String.equals(java.lang.Object)") {
1990 // LOG(INFO) << info_messages_.str();
1991 // }
1992 }
1993 return true;
1994 }
1995
1996 // Setup a register line for the given return instruction.
1997 template <bool kVerifierDebug>
AdjustReturnLine(MethodVerifier<kVerifierDebug> * verifier,const Instruction * ret_inst,RegisterLine * line)1998 static void AdjustReturnLine(MethodVerifier<kVerifierDebug>* verifier,
1999 const Instruction* ret_inst,
2000 RegisterLine* line) {
2001 Instruction::Code opcode = ret_inst->Opcode();
2002
2003 switch (opcode) {
2004 case Instruction::RETURN_VOID:
2005 if (verifier->IsInstanceConstructor()) {
2006 // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
2007 line->CheckConstructorReturn(verifier);
2008 }
2009 line->MarkAllRegistersAsConflicts(verifier);
2010 break;
2011
2012 case Instruction::RETURN:
2013 case Instruction::RETURN_OBJECT:
2014 line->MarkAllRegistersAsConflictsExcept(verifier, ret_inst->VRegA_11x());
2015 break;
2016
2017 case Instruction::RETURN_WIDE:
2018 line->MarkAllRegistersAsConflictsExceptWide(verifier, ret_inst->VRegA_11x());
2019 break;
2020
2021 default:
2022 LOG(FATAL) << "Unknown return opcode " << opcode;
2023 UNREACHABLE();
2024 }
2025 }
2026
2027 template <bool kVerifierDebug>
CodeFlowVerifyInstruction(uint32_t * start_guess)2028 bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyInstruction(uint32_t* start_guess) {
2029 /*
2030 * Once we finish decoding the instruction, we need to figure out where
2031 * we can go from here. There are three possible ways to transfer
2032 * control to another statement:
2033 *
2034 * (1) Continue to the next instruction. Applies to all but
2035 * unconditional branches, method returns, and exception throws.
2036 * (2) Branch to one or more possible locations. Applies to branches
2037 * and switch statements.
2038 * (3) Exception handlers. Applies to any instruction that can
2039 * throw an exception that is handled by an encompassing "try"
2040 * block.
2041 *
2042 * We can also return, in which case there is no successor instruction
2043 * from this point.
2044 *
2045 * The behavior can be determined from the opcode flags.
2046 */
2047 const uint16_t* insns = code_item_accessor_.Insns() + work_insn_idx_;
2048 const Instruction* inst = Instruction::At(insns);
2049 int opcode_flags = Instruction::FlagsOf(inst->Opcode());
2050
2051 int32_t branch_target = 0;
2052 bool just_set_result = false;
2053 if (kVerifierDebug) {
2054 // Generate processing back trace to debug verifier
2055 LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << std::endl
2056 << work_line_->Dump(this);
2057 }
2058
2059 /*
2060 * Make a copy of the previous register state. If the instruction
2061 * can throw an exception, we will copy/merge this into the "catch"
2062 * address rather than work_line, because we don't want the result
2063 * from the "successful" code path (e.g. a check-cast that "improves"
2064 * a type) to be visible to the exception handler.
2065 */
2066 if (((opcode_flags & Instruction::kThrow) != 0 || IsCompatThrow(inst->Opcode())) &&
2067 CurrentInsnFlags()->IsInTry()) {
2068 saved_line_->CopyFromLine(work_line_.get());
2069 } else if (kIsDebugBuild) {
2070 saved_line_->FillWithGarbage();
2071 }
2072 // Per-instruction flag, should not be set here.
2073 DCHECK(!flags_.have_pending_runtime_throw_failure_);
2074 bool exc_handler_unreachable = false;
2075
2076
2077 // We need to ensure the work line is consistent while performing validation. When we spot a
2078 // peephole pattern we compute a new line for either the fallthrough instruction or the
2079 // branch target.
2080 RegisterLineArenaUniquePtr branch_line;
2081 RegisterLineArenaUniquePtr fallthrough_line;
2082
2083 switch (inst->Opcode()) {
2084 case Instruction::NOP:
2085 /*
2086 * A "pure" NOP has no effect on anything. Data tables start with
2087 * a signature that looks like a NOP; if we see one of these in
2088 * the course of executing code then we have a problem.
2089 */
2090 if (inst->VRegA_10x() != 0) {
2091 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
2092 }
2093 break;
2094
2095 case Instruction::MOVE:
2096 work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
2097 break;
2098 case Instruction::MOVE_FROM16:
2099 work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
2100 break;
2101 case Instruction::MOVE_16:
2102 work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
2103 break;
2104 case Instruction::MOVE_WIDE:
2105 work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
2106 break;
2107 case Instruction::MOVE_WIDE_FROM16:
2108 work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
2109 break;
2110 case Instruction::MOVE_WIDE_16:
2111 work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
2112 break;
2113 case Instruction::MOVE_OBJECT:
2114 work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
2115 break;
2116 case Instruction::MOVE_OBJECT_FROM16:
2117 work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
2118 break;
2119 case Instruction::MOVE_OBJECT_16:
2120 work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
2121 break;
2122
2123 /*
2124 * The move-result instructions copy data out of a "pseudo-register"
2125 * with the results from the last method invocation. In practice we
2126 * might want to hold the result in an actual CPU register, so the
2127 * Dalvik spec requires that these only appear immediately after an
2128 * invoke or filled-new-array.
2129 *
2130 * These calls invalidate the "result" register. (This is now
2131 * redundant with the reset done below, but it can make the debug info
2132 * easier to read in some cases.)
2133 */
2134 case Instruction::MOVE_RESULT:
2135 work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
2136 break;
2137 case Instruction::MOVE_RESULT_WIDE:
2138 work_line_->CopyResultRegister2(this, inst->VRegA_11x());
2139 break;
2140 case Instruction::MOVE_RESULT_OBJECT:
2141 work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
2142 break;
2143
2144 case Instruction::MOVE_EXCEPTION:
2145 if (!HandleMoveException(inst)) {
2146 exc_handler_unreachable = true;
2147 }
2148 break;
2149
2150 case Instruction::RETURN_VOID:
2151 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2152 if (!GetMethodReturnType().IsConflict()) {
2153 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
2154 }
2155 }
2156 break;
2157 case Instruction::RETURN:
2158 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2159 /* check the method signature */
2160 const RegType& return_type = GetMethodReturnType();
2161 if (!return_type.IsCategory1Types()) {
2162 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
2163 << return_type;
2164 } else {
2165 // Compilers may generate synthetic functions that write byte values into boolean fields.
2166 // Also, it may use integer values for boolean, byte, short, and character return types.
2167 const uint32_t vregA = inst->VRegA_11x();
2168 const RegType& src_type = work_line_->GetRegisterType(this, vregA);
2169 bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
2170 ((return_type.IsBoolean() || return_type.IsByte() ||
2171 return_type.IsShort() || return_type.IsChar()) &&
2172 src_type.IsInteger()));
2173 /* check the register contents */
2174 bool success =
2175 work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
2176 if (!success) {
2177 AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
2178 }
2179 }
2180 }
2181 break;
2182 case Instruction::RETURN_WIDE:
2183 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2184 /* check the method signature */
2185 const RegType& return_type = GetMethodReturnType();
2186 if (!return_type.IsCategory2Types()) {
2187 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
2188 } else {
2189 /* check the register contents */
2190 const uint32_t vregA = inst->VRegA_11x();
2191 bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
2192 if (!success) {
2193 AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
2194 }
2195 }
2196 }
2197 break;
2198 case Instruction::RETURN_OBJECT:
2199 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2200 const RegType& return_type = GetMethodReturnType();
2201 if (!return_type.IsReferenceTypes()) {
2202 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
2203 } else {
2204 /* return_type is the *expected* return type, not register value */
2205 DCHECK(!return_type.IsZeroOrNull());
2206 DCHECK(!return_type.IsUninitializedReference());
2207 const uint32_t vregA = inst->VRegA_11x();
2208 const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
2209 // Disallow returning undefined, conflict & uninitialized values and verify that the
2210 // reference in vAA is an instance of the "return_type."
2211 if (reg_type.IsUndefined()) {
2212 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning undefined register";
2213 } else if (reg_type.IsConflict()) {
2214 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning register with conflict";
2215 } else if (reg_type.IsUninitializedTypes()) {
2216 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning uninitialized object '"
2217 << reg_type << "'";
2218 } else if (!reg_type.IsReferenceTypes()) {
2219 // We really do expect a reference here.
2220 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object returns a non-reference type "
2221 << reg_type;
2222 } else if (!return_type.IsAssignableFrom(reg_type, this)) {
2223 if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
2224 Fail(api_level_ > 29u
2225 ? VERIFY_ERROR_BAD_CLASS_SOFT : VERIFY_ERROR_UNRESOLVED_TYPE_CHECK)
2226 << " can't resolve returned type '" << return_type << "' or '" << reg_type << "'";
2227 } else {
2228 bool soft_error = false;
2229 // Check whether arrays are involved. They will show a valid class status, even
2230 // if their components are erroneous.
2231 if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
2232 return_type.CanAssignArray(reg_type, reg_types_, class_loader_, this, &soft_error);
2233 if (soft_error) {
2234 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
2235 << reg_type << " vs " << return_type;
2236 }
2237 }
2238
2239 if (!soft_error) {
2240 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
2241 << "', but expected from declaration '" << return_type << "'";
2242 }
2243 }
2244 }
2245 }
2246 }
2247 break;
2248
2249 /* could be boolean, int, float, or a null reference */
2250 case Instruction::CONST_4: {
2251 int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
2252 work_line_->SetRegisterType<LockOp::kClear>(
2253 this, inst->VRegA_11n(), DetermineCat1Constant(val, need_precise_constants_));
2254 break;
2255 }
2256 case Instruction::CONST_16: {
2257 int16_t val = static_cast<int16_t>(inst->VRegB_21s());
2258 work_line_->SetRegisterType<LockOp::kClear>(
2259 this, inst->VRegA_21s(), DetermineCat1Constant(val, need_precise_constants_));
2260 break;
2261 }
2262 case Instruction::CONST: {
2263 int32_t val = inst->VRegB_31i();
2264 work_line_->SetRegisterType<LockOp::kClear>(
2265 this, inst->VRegA_31i(), DetermineCat1Constant(val, need_precise_constants_));
2266 break;
2267 }
2268 case Instruction::CONST_HIGH16: {
2269 int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
2270 work_line_->SetRegisterType<LockOp::kClear>(
2271 this, inst->VRegA_21h(), DetermineCat1Constant(val, need_precise_constants_));
2272 break;
2273 }
2274 /* could be long or double; resolved upon use */
2275 case Instruction::CONST_WIDE_16: {
2276 int64_t val = static_cast<int16_t>(inst->VRegB_21s());
2277 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2278 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2279 work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
2280 break;
2281 }
2282 case Instruction::CONST_WIDE_32: {
2283 int64_t val = static_cast<int32_t>(inst->VRegB_31i());
2284 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2285 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2286 work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
2287 break;
2288 }
2289 case Instruction::CONST_WIDE: {
2290 int64_t val = inst->VRegB_51l();
2291 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2292 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2293 work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
2294 break;
2295 }
2296 case Instruction::CONST_WIDE_HIGH16: {
2297 int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
2298 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2299 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2300 work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
2301 break;
2302 }
2303 case Instruction::CONST_STRING:
2304 work_line_->SetRegisterType<LockOp::kClear>(
2305 this, inst->VRegA_21c(), reg_types_.JavaLangString());
2306 break;
2307 case Instruction::CONST_STRING_JUMBO:
2308 work_line_->SetRegisterType<LockOp::kClear>(
2309 this, inst->VRegA_31c(), reg_types_.JavaLangString());
2310 break;
2311 case Instruction::CONST_CLASS: {
2312 // Get type from instruction if unresolved then we need an access check
2313 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2314 const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
2315 // Register holds class, ie its type is class, on error it will hold Conflict.
2316 work_line_->SetRegisterType<LockOp::kClear>(
2317 this, inst->VRegA_21c(), res_type.IsConflict() ? res_type
2318 : reg_types_.JavaLangClass());
2319 break;
2320 }
2321 case Instruction::CONST_METHOD_HANDLE:
2322 work_line_->SetRegisterType<LockOp::kClear>(
2323 this, inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodHandle());
2324 break;
2325 case Instruction::CONST_METHOD_TYPE:
2326 work_line_->SetRegisterType<LockOp::kClear>(
2327 this, inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodType());
2328 break;
2329 case Instruction::MONITOR_ENTER:
2330 work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
2331 // Check whether the previous instruction is a move-object with vAA as a source, creating
2332 // untracked lock aliasing.
2333 if (0 != work_insn_idx_ && !GetInstructionFlags(work_insn_idx_).IsBranchTarget()) {
2334 uint32_t prev_idx = work_insn_idx_ - 1;
2335 while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
2336 prev_idx--;
2337 }
2338 const Instruction& prev_inst = code_item_accessor_.InstructionAt(prev_idx);
2339 switch (prev_inst.Opcode()) {
2340 case Instruction::MOVE_OBJECT:
2341 case Instruction::MOVE_OBJECT_16:
2342 case Instruction::MOVE_OBJECT_FROM16:
2343 if (prev_inst.VRegB() == inst->VRegA_11x()) {
2344 // Redo the copy. This won't change the register types, but update the lock status
2345 // for the aliased register.
2346 work_line_->CopyRegister1(this,
2347 prev_inst.VRegA(),
2348 prev_inst.VRegB(),
2349 kTypeCategoryRef);
2350 }
2351 break;
2352
2353 // Catch a case of register aliasing when two registers are linked to the same
2354 // java.lang.Class object via two consequent const-class instructions immediately
2355 // preceding monitor-enter called on one of those registers.
2356 case Instruction::CONST_CLASS: {
2357 // Get the second previous instruction.
2358 if (prev_idx == 0 || GetInstructionFlags(prev_idx).IsBranchTarget()) {
2359 break;
2360 }
2361 prev_idx--;
2362 while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
2363 prev_idx--;
2364 }
2365 const Instruction& prev2_inst = code_item_accessor_.InstructionAt(prev_idx);
2366
2367 // Match the pattern "const-class; const-class; monitor-enter;"
2368 if (prev2_inst.Opcode() != Instruction::CONST_CLASS) {
2369 break;
2370 }
2371
2372 // Ensure both const-classes are called for the same type_idx.
2373 if (prev_inst.VRegB_21c() != prev2_inst.VRegB_21c()) {
2374 break;
2375 }
2376
2377 // Update the lock status for the aliased register.
2378 if (prev_inst.VRegA() == inst->VRegA_11x()) {
2379 work_line_->CopyRegister1(this,
2380 prev2_inst.VRegA(),
2381 inst->VRegA_11x(),
2382 kTypeCategoryRef);
2383 } else if (prev2_inst.VRegA() == inst->VRegA_11x()) {
2384 work_line_->CopyRegister1(this,
2385 prev_inst.VRegA(),
2386 inst->VRegA_11x(),
2387 kTypeCategoryRef);
2388 }
2389 break;
2390 }
2391
2392 default: // Other instruction types ignored.
2393 break;
2394 }
2395 }
2396 break;
2397 case Instruction::MONITOR_EXIT:
2398 /*
2399 * monitor-exit instructions are odd. They can throw exceptions,
2400 * but when they do they act as if they succeeded and the PC is
2401 * pointing to the following instruction. (This behavior goes back
2402 * to the need to handle asynchronous exceptions, a now-deprecated
2403 * feature that Dalvik doesn't support.)
2404 *
2405 * In practice we don't need to worry about this. The only
2406 * exceptions that can be thrown from monitor-exit are for a
2407 * null reference and -exit without a matching -enter. If the
2408 * structured locking checks are working, the former would have
2409 * failed on the -enter instruction, and the latter is impossible.
2410 *
2411 * This is fortunate, because issue 3221411 prevents us from
2412 * chasing the "can throw" path when monitor verification is
2413 * enabled. If we can fully verify the locking we can ignore
2414 * some catch blocks (which will show up as "dead" code when
2415 * we skip them here); if we can't, then the code path could be
2416 * "live" so we still need to check it.
2417 */
2418 opcode_flags &= ~Instruction::kThrow;
2419 work_line_->PopMonitor(this, inst->VRegA_11x());
2420 break;
2421 case Instruction::CHECK_CAST:
2422 case Instruction::INSTANCE_OF: {
2423 /*
2424 * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
2425 * could be a "upcast" -- not expected, so we don't try to address it.)
2426 *
2427 * If it fails, an exception is thrown, which we deal with later by ignoring the update to
2428 * dec_insn.vA when branching to a handler.
2429 */
2430 const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
2431 const dex::TypeIndex type_idx((is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c());
2432 const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
2433 if (res_type.IsConflict()) {
2434 // If this is a primitive type, fail HARD.
2435 ObjPtr<mirror::Class> klass = GetClassLinker()->LookupResolvedType(
2436 type_idx, dex_cache_.Get(), class_loader_.Get());
2437 if (klass != nullptr && klass->IsPrimitive()) {
2438 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
2439 << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
2440 << GetDeclaringClass();
2441 break;
2442 }
2443
2444 DCHECK_NE(failures_.size(), 0U);
2445 if (!is_checkcast) {
2446 work_line_->SetRegisterType<LockOp::kClear>(this,
2447 inst->VRegA_22c(),
2448 reg_types_.Boolean());
2449 }
2450 break; // bad class
2451 }
2452 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2453 uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
2454 const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
2455 if (!res_type.IsNonZeroReferenceTypes()) {
2456 if (is_checkcast) {
2457 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
2458 } else {
2459 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
2460 }
2461 } else if (!orig_type.IsReferenceTypes()) {
2462 if (is_checkcast) {
2463 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
2464 } else {
2465 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
2466 }
2467 } else if (orig_type.IsUninitializedTypes()) {
2468 if (is_checkcast) {
2469 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on uninitialized reference in v"
2470 << orig_type_reg;
2471 } else {
2472 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on uninitialized reference in v"
2473 << orig_type_reg;
2474 }
2475 } else {
2476 if (is_checkcast) {
2477 work_line_->SetRegisterType<LockOp::kKeep>(this, inst->VRegA_21c(), res_type);
2478 } else {
2479 work_line_->SetRegisterType<LockOp::kClear>(this,
2480 inst->VRegA_22c(),
2481 reg_types_.Boolean());
2482 }
2483 }
2484 break;
2485 }
2486 case Instruction::ARRAY_LENGTH: {
2487 const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
2488 if (res_type.IsReferenceTypes()) {
2489 if (!res_type.IsArrayTypes() && !res_type.IsZeroOrNull()) {
2490 // ie not an array or null
2491 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2492 } else {
2493 work_line_->SetRegisterType<LockOp::kClear>(this,
2494 inst->VRegA_12x(),
2495 reg_types_.Integer());
2496 }
2497 } else {
2498 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2499 }
2500 break;
2501 }
2502 case Instruction::NEW_INSTANCE: {
2503 const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
2504 if (res_type.IsConflict()) {
2505 DCHECK_NE(failures_.size(), 0U);
2506 break; // bad class
2507 }
2508 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2509 // can't create an instance of an interface or abstract class */
2510 if (!res_type.IsInstantiableTypes()) {
2511 Fail(VERIFY_ERROR_INSTANTIATION)
2512 << "new-instance on primitive, interface or abstract class" << res_type;
2513 // Soft failure so carry on to set register type.
2514 }
2515 const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
2516 // Any registers holding previous allocations from this address that have not yet been
2517 // initialized must be marked invalid.
2518 work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
2519 // add the new uninitialized reference to the register state
2520 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_21c(), uninit_type);
2521 break;
2522 }
2523 case Instruction::NEW_ARRAY:
2524 VerifyNewArray(inst, false, false);
2525 break;
2526 case Instruction::FILLED_NEW_ARRAY:
2527 VerifyNewArray(inst, true, false);
2528 just_set_result = true; // Filled new array sets result register
2529 break;
2530 case Instruction::FILLED_NEW_ARRAY_RANGE:
2531 VerifyNewArray(inst, true, true);
2532 just_set_result = true; // Filled new array range sets result register
2533 break;
2534 case Instruction::CMPL_FLOAT:
2535 case Instruction::CMPG_FLOAT:
2536 if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
2537 break;
2538 }
2539 if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
2540 break;
2541 }
2542 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2543 break;
2544 case Instruction::CMPL_DOUBLE:
2545 case Instruction::CMPG_DOUBLE:
2546 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
2547 reg_types_.DoubleHi())) {
2548 break;
2549 }
2550 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
2551 reg_types_.DoubleHi())) {
2552 break;
2553 }
2554 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2555 break;
2556 case Instruction::CMP_LONG:
2557 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2558 reg_types_.LongHi())) {
2559 break;
2560 }
2561 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2562 reg_types_.LongHi())) {
2563 break;
2564 }
2565 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2566 break;
2567 case Instruction::THROW: {
2568 const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2569 if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type, this)) {
2570 if (res_type.IsUninitializedTypes()) {
2571 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown exception not initialized";
2572 } else if (!res_type.IsReferenceTypes()) {
2573 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown value of non-reference type " << res_type;
2574 } else {
2575 Fail(res_type.IsUnresolvedTypes()
2576 ? VERIFY_ERROR_UNRESOLVED_TYPE_CHECK : VERIFY_ERROR_BAD_CLASS_SOFT)
2577 << "thrown class " << res_type << " not instanceof Throwable";
2578 }
2579 }
2580 break;
2581 }
2582 case Instruction::GOTO:
2583 case Instruction::GOTO_16:
2584 case Instruction::GOTO_32:
2585 /* no effect on or use of registers */
2586 break;
2587
2588 case Instruction::PACKED_SWITCH:
2589 case Instruction::SPARSE_SWITCH:
2590 /* verify that vAA is an integer, or can be converted to one */
2591 work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2592 break;
2593
2594 case Instruction::FILL_ARRAY_DATA: {
2595 /* Similar to the verification done for APUT */
2596 const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2597 /* array_type can be null if the reg type is Zero */
2598 if (!array_type.IsZeroOrNull()) {
2599 if (!array_type.IsArrayTypes()) {
2600 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2601 << array_type;
2602 } else if (array_type.IsUnresolvedTypes()) {
2603 // If it's an unresolved array type, it must be non-primitive.
2604 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data for array of type "
2605 << array_type;
2606 } else {
2607 const RegType& component_type = reg_types_.GetComponentType(array_type,
2608 class_loader_.Get());
2609 DCHECK(!component_type.IsConflict());
2610 if (component_type.IsNonZeroReferenceTypes()) {
2611 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2612 << component_type;
2613 } else {
2614 // Now verify if the element width in the table matches the element width declared in
2615 // the array
2616 const uint16_t* array_data =
2617 insns + (insns[1] | (static_cast<int32_t>(insns[2]) << 16));
2618 if (array_data[0] != Instruction::kArrayDataSignature) {
2619 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2620 } else {
2621 size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2622 // Since we don't compress the data in Dex, expect to see equal width of data stored
2623 // in the table and expected from the array class.
2624 if (array_data[1] != elem_width) {
2625 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2626 << " vs " << elem_width << ")";
2627 }
2628 }
2629 }
2630 }
2631 }
2632 break;
2633 }
2634 case Instruction::IF_EQ:
2635 case Instruction::IF_NE: {
2636 const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2637 const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2638 bool mismatch = false;
2639 if (reg_type1.IsZeroOrNull()) { // zero then integral or reference expected
2640 mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2641 } else if (reg_type1.IsReferenceTypes()) { // both references?
2642 mismatch = !reg_type2.IsReferenceTypes();
2643 } else { // both integral?
2644 mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2645 }
2646 if (mismatch) {
2647 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2648 << reg_type2 << ") must both be references or integral";
2649 }
2650 break;
2651 }
2652 case Instruction::IF_LT:
2653 case Instruction::IF_GE:
2654 case Instruction::IF_GT:
2655 case Instruction::IF_LE: {
2656 const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2657 const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2658 if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2659 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2660 << reg_type2 << ") must be integral";
2661 }
2662 break;
2663 }
2664 case Instruction::IF_EQZ:
2665 case Instruction::IF_NEZ: {
2666 const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2667 if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2668 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2669 << " unexpected as arg to if-eqz/if-nez";
2670 }
2671
2672 // Find previous instruction - its existence is a precondition to peephole optimization.
2673 if (UNLIKELY(0 == work_insn_idx_)) {
2674 break;
2675 }
2676 uint32_t instance_of_idx = work_insn_idx_ - 1;
2677 while (0 != instance_of_idx && !GetInstructionFlags(instance_of_idx).IsOpcode()) {
2678 instance_of_idx--;
2679 }
2680 // Dex index 0 must be an opcode.
2681 DCHECK(GetInstructionFlags(instance_of_idx).IsOpcode());
2682
2683 const Instruction& instance_of_inst = code_item_accessor_.InstructionAt(instance_of_idx);
2684
2685 /* Check for peep-hole pattern of:
2686 * ...;
2687 * instance-of vX, vY, T;
2688 * ifXXX vX, label ;
2689 * ...;
2690 * label:
2691 * ...;
2692 * and sharpen the type of vY to be type T.
2693 * Note, this pattern can't be if:
2694 * - if there are other branches to this branch,
2695 * - when vX == vY.
2696 */
2697 if (!CurrentInsnFlags()->IsBranchTarget() &&
2698 (Instruction::INSTANCE_OF == instance_of_inst.Opcode()) &&
2699 (inst->VRegA_21t() == instance_of_inst.VRegA_22c()) &&
2700 (instance_of_inst.VRegA_22c() != instance_of_inst.VRegB_22c())) {
2701 // Check the type of the instance-of is different than that of registers type, as if they
2702 // are the same there is no work to be done here. Check that the conversion is not to or
2703 // from an unresolved type as type information is imprecise. If the instance-of is to an
2704 // interface then ignore the type information as interfaces can only be treated as Objects
2705 // and we don't want to disallow field and other operations on the object. If the value
2706 // being instance-of checked against is known null (zero) then allow the optimization as
2707 // we didn't have type information. If the merge of the instance-of type with the original
2708 // type is assignable to the original then allow optimization. This check is performed to
2709 // ensure that subsequent merges don't lose type information - such as becoming an
2710 // interface from a class that would lose information relevant to field checks.
2711 //
2712 // Note: do not do an access check. This may mark this with a runtime throw that actually
2713 // happens at the instanceof, not the branch (and branches aren't flagged to throw).
2714 const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst.VRegB_22c());
2715 const RegType& cast_type = ResolveClass<CheckAccess::kNo>(
2716 dex::TypeIndex(instance_of_inst.VRegC_22c()));
2717
2718 if (!orig_type.Equals(cast_type) &&
2719 !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2720 cast_type.HasClass() && // Could be conflict type, make sure it has a class.
2721 !cast_type.GetClass()->IsInterface() &&
2722 (orig_type.IsZeroOrNull() ||
2723 orig_type.IsStrictlyAssignableFrom(
2724 cast_type.Merge(orig_type, ®_types_, this), this))) {
2725 RegisterLine* update_line = RegisterLine::Create(code_item_accessor_.RegistersSize(),
2726 allocator_,
2727 GetRegTypeCache());
2728 if (inst->Opcode() == Instruction::IF_EQZ) {
2729 fallthrough_line.reset(update_line);
2730 } else {
2731 branch_line.reset(update_line);
2732 }
2733 update_line->CopyFromLine(work_line_.get());
2734 update_line->SetRegisterType<LockOp::kKeep>(this,
2735 instance_of_inst.VRegB_22c(),
2736 cast_type);
2737 if (!GetInstructionFlags(instance_of_idx).IsBranchTarget() && 0 != instance_of_idx) {
2738 // See if instance-of was preceded by a move-object operation, common due to the small
2739 // register encoding space of instance-of, and propagate type information to the source
2740 // of the move-object.
2741 // Note: this is only valid if the move source was not clobbered.
2742 uint32_t move_idx = instance_of_idx - 1;
2743 while (0 != move_idx && !GetInstructionFlags(move_idx).IsOpcode()) {
2744 move_idx--;
2745 }
2746 DCHECK(GetInstructionFlags(move_idx).IsOpcode());
2747 auto maybe_update_fn = [&instance_of_inst, update_line, this, &cast_type](
2748 uint16_t move_src,
2749 uint16_t move_trg)
2750 REQUIRES_SHARED(Locks::mutator_lock_) {
2751 if (move_trg == instance_of_inst.VRegB_22c() &&
2752 move_src != instance_of_inst.VRegA_22c()) {
2753 update_line->SetRegisterType<LockOp::kKeep>(this, move_src, cast_type);
2754 }
2755 };
2756 const Instruction& move_inst = code_item_accessor_.InstructionAt(move_idx);
2757 switch (move_inst.Opcode()) {
2758 case Instruction::MOVE_OBJECT:
2759 maybe_update_fn(move_inst.VRegB_12x(), move_inst.VRegA_12x());
2760 break;
2761 case Instruction::MOVE_OBJECT_FROM16:
2762 maybe_update_fn(move_inst.VRegB_22x(), move_inst.VRegA_22x());
2763 break;
2764 case Instruction::MOVE_OBJECT_16:
2765 maybe_update_fn(move_inst.VRegB_32x(), move_inst.VRegA_32x());
2766 break;
2767 default:
2768 break;
2769 }
2770 }
2771 }
2772 }
2773
2774 break;
2775 }
2776 case Instruction::IF_LTZ:
2777 case Instruction::IF_GEZ:
2778 case Instruction::IF_GTZ:
2779 case Instruction::IF_LEZ: {
2780 const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2781 if (!reg_type.IsIntegralTypes()) {
2782 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2783 << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2784 }
2785 break;
2786 }
2787 case Instruction::AGET_BOOLEAN:
2788 VerifyAGet(inst, reg_types_.Boolean(), true);
2789 break;
2790 case Instruction::AGET_BYTE:
2791 VerifyAGet(inst, reg_types_.Byte(), true);
2792 break;
2793 case Instruction::AGET_CHAR:
2794 VerifyAGet(inst, reg_types_.Char(), true);
2795 break;
2796 case Instruction::AGET_SHORT:
2797 VerifyAGet(inst, reg_types_.Short(), true);
2798 break;
2799 case Instruction::AGET:
2800 VerifyAGet(inst, reg_types_.Integer(), true);
2801 break;
2802 case Instruction::AGET_WIDE:
2803 VerifyAGet(inst, reg_types_.LongLo(), true);
2804 break;
2805 case Instruction::AGET_OBJECT:
2806 VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2807 break;
2808
2809 case Instruction::APUT_BOOLEAN:
2810 VerifyAPut(inst, reg_types_.Boolean(), true);
2811 break;
2812 case Instruction::APUT_BYTE:
2813 VerifyAPut(inst, reg_types_.Byte(), true);
2814 break;
2815 case Instruction::APUT_CHAR:
2816 VerifyAPut(inst, reg_types_.Char(), true);
2817 break;
2818 case Instruction::APUT_SHORT:
2819 VerifyAPut(inst, reg_types_.Short(), true);
2820 break;
2821 case Instruction::APUT:
2822 VerifyAPut(inst, reg_types_.Integer(), true);
2823 break;
2824 case Instruction::APUT_WIDE:
2825 VerifyAPut(inst, reg_types_.LongLo(), true);
2826 break;
2827 case Instruction::APUT_OBJECT:
2828 VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2829 break;
2830
2831 case Instruction::IGET_BOOLEAN:
2832 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2833 break;
2834 case Instruction::IGET_BYTE:
2835 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2836 break;
2837 case Instruction::IGET_CHAR:
2838 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2839 break;
2840 case Instruction::IGET_SHORT:
2841 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2842 break;
2843 case Instruction::IGET:
2844 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2845 break;
2846 case Instruction::IGET_WIDE:
2847 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2848 break;
2849 case Instruction::IGET_OBJECT:
2850 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2851 false);
2852 break;
2853
2854 case Instruction::IPUT_BOOLEAN:
2855 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2856 break;
2857 case Instruction::IPUT_BYTE:
2858 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2859 break;
2860 case Instruction::IPUT_CHAR:
2861 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2862 break;
2863 case Instruction::IPUT_SHORT:
2864 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2865 break;
2866 case Instruction::IPUT:
2867 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2868 break;
2869 case Instruction::IPUT_WIDE:
2870 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2871 break;
2872 case Instruction::IPUT_OBJECT:
2873 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2874 false);
2875 break;
2876
2877 case Instruction::SGET_BOOLEAN:
2878 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2879 break;
2880 case Instruction::SGET_BYTE:
2881 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2882 break;
2883 case Instruction::SGET_CHAR:
2884 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2885 break;
2886 case Instruction::SGET_SHORT:
2887 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2888 break;
2889 case Instruction::SGET:
2890 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2891 break;
2892 case Instruction::SGET_WIDE:
2893 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2894 break;
2895 case Instruction::SGET_OBJECT:
2896 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2897 true);
2898 break;
2899
2900 case Instruction::SPUT_BOOLEAN:
2901 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2902 break;
2903 case Instruction::SPUT_BYTE:
2904 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2905 break;
2906 case Instruction::SPUT_CHAR:
2907 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2908 break;
2909 case Instruction::SPUT_SHORT:
2910 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2911 break;
2912 case Instruction::SPUT:
2913 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2914 break;
2915 case Instruction::SPUT_WIDE:
2916 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2917 break;
2918 case Instruction::SPUT_OBJECT:
2919 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2920 true);
2921 break;
2922
2923 case Instruction::INVOKE_VIRTUAL:
2924 case Instruction::INVOKE_VIRTUAL_RANGE:
2925 case Instruction::INVOKE_SUPER:
2926 case Instruction::INVOKE_SUPER_RANGE: {
2927 bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2928 inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2929 bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2930 inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2931 MethodType type = is_super ? METHOD_SUPER : METHOD_VIRTUAL;
2932 ArtMethod* called_method = VerifyInvocationArgs(inst, type, is_range);
2933 const RegType* return_type = nullptr;
2934 if (called_method != nullptr) {
2935 ObjPtr<mirror::Class> return_type_class = can_load_classes_
2936 ? called_method->ResolveReturnType()
2937 : called_method->LookupResolvedReturnType();
2938 if (return_type_class != nullptr) {
2939 return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
2940 return_type_class,
2941 return_type_class->CannotBeAssignedFromOtherTypes());
2942 } else {
2943 DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2944 self_->ClearException();
2945 }
2946 }
2947 if (return_type == nullptr) {
2948 uint32_t method_idx = GetMethodIdxOfInvoke(inst);
2949 const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2950 dex::TypeIndex return_type_idx =
2951 dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2952 const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2953 return_type = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
2954 }
2955 if (!return_type->IsLowHalf()) {
2956 work_line_->SetResultRegisterType(this, *return_type);
2957 } else {
2958 work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(®_types_));
2959 }
2960 just_set_result = true;
2961 break;
2962 }
2963 case Instruction::INVOKE_DIRECT:
2964 case Instruction::INVOKE_DIRECT_RANGE: {
2965 bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2966 ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT, is_range);
2967 const char* return_type_descriptor;
2968 bool is_constructor;
2969 const RegType* return_type = nullptr;
2970 if (called_method == nullptr) {
2971 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2972 const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2973 is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2974 dex::TypeIndex return_type_idx =
2975 dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2976 return_type_descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2977 } else {
2978 is_constructor = called_method->IsConstructor();
2979 return_type_descriptor = called_method->GetReturnTypeDescriptor();
2980 ObjPtr<mirror::Class> return_type_class = can_load_classes_
2981 ? called_method->ResolveReturnType()
2982 : called_method->LookupResolvedReturnType();
2983 if (return_type_class != nullptr) {
2984 return_type = &FromClass(return_type_descriptor,
2985 return_type_class,
2986 return_type_class->CannotBeAssignedFromOtherTypes());
2987 } else {
2988 DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2989 self_->ClearException();
2990 }
2991 }
2992 if (is_constructor) {
2993 /*
2994 * Some additional checks when calling a constructor. We know from the invocation arg check
2995 * that the "this" argument is an instance of called_method->klass. Now we further restrict
2996 * that to require that called_method->klass is the same as this->klass or this->super,
2997 * allowing the latter only if the "this" argument is the same as the "this" argument to
2998 * this method (which implies that we're in a constructor ourselves).
2999 */
3000 const RegType& this_type = work_line_->GetInvocationThis(this, inst);
3001 if (this_type.IsConflict()) // failure.
3002 break;
3003
3004 /* no null refs allowed (?) */
3005 if (this_type.IsZeroOrNull()) {
3006 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
3007 break;
3008 }
3009
3010 /* must be in same class or in superclass */
3011 // const RegType& this_super_klass = this_type.GetSuperClass(®_types_);
3012 // TODO: re-enable constructor type verification
3013 // if (this_super_klass.IsConflict()) {
3014 // Unknown super class, fail so we re-check at runtime.
3015 // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
3016 // break;
3017 // }
3018
3019 /* arg must be an uninitialized reference */
3020 if (!this_type.IsUninitializedTypes()) {
3021 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
3022 << this_type;
3023 break;
3024 }
3025
3026 /*
3027 * Replace the uninitialized reference with an initialized one. We need to do this for all
3028 * registers that have the same object instance in them, not just the "this" register.
3029 */
3030 work_line_->MarkRefsAsInitialized(this, this_type);
3031 }
3032 if (return_type == nullptr) {
3033 return_type = ®_types_.FromDescriptor(class_loader_.Get(),
3034 return_type_descriptor,
3035 false);
3036 }
3037 if (!return_type->IsLowHalf()) {
3038 work_line_->SetResultRegisterType(this, *return_type);
3039 } else {
3040 work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(®_types_));
3041 }
3042 just_set_result = true;
3043 break;
3044 }
3045 case Instruction::INVOKE_STATIC:
3046 case Instruction::INVOKE_STATIC_RANGE: {
3047 bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
3048 ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_STATIC, is_range);
3049 const char* descriptor;
3050 if (called_method == nullptr) {
3051 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3052 const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
3053 dex::TypeIndex return_type_idx =
3054 dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
3055 descriptor = dex_file_->StringByTypeIdx(return_type_idx);
3056 } else {
3057 descriptor = called_method->GetReturnTypeDescriptor();
3058 }
3059 const RegType& return_type = reg_types_.FromDescriptor(class_loader_.Get(),
3060 descriptor,
3061 false);
3062 if (!return_type.IsLowHalf()) {
3063 work_line_->SetResultRegisterType(this, return_type);
3064 } else {
3065 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
3066 }
3067 just_set_result = true;
3068 }
3069 break;
3070 case Instruction::INVOKE_INTERFACE:
3071 case Instruction::INVOKE_INTERFACE_RANGE: {
3072 bool is_range = (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
3073 ArtMethod* abs_method = VerifyInvocationArgs(inst, METHOD_INTERFACE, is_range);
3074 if (abs_method != nullptr) {
3075 ObjPtr<mirror::Class> called_interface = abs_method->GetDeclaringClass();
3076 if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
3077 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
3078 << abs_method->PrettyMethod() << "'";
3079 break;
3080 }
3081 }
3082 /* Get the type of the "this" arg, which should either be a sub-interface of called
3083 * interface or Object (see comments in RegType::JoinClass).
3084 */
3085 const RegType& this_type = work_line_->GetInvocationThis(this, inst);
3086 if (this_type.IsZeroOrNull()) {
3087 /* null pointer always passes (and always fails at runtime) */
3088 } else {
3089 if (this_type.IsUninitializedTypes()) {
3090 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
3091 << this_type;
3092 break;
3093 }
3094 // In the past we have tried to assert that "called_interface" is assignable
3095 // from "this_type.GetClass()", however, as we do an imprecise Join
3096 // (RegType::JoinClass) we don't have full information on what interfaces are
3097 // implemented by "this_type". For example, two classes may implement the same
3098 // interfaces and have a common parent that doesn't implement the interface. The
3099 // join will set "this_type" to the parent class and a test that this implements
3100 // the interface will incorrectly fail.
3101 }
3102 /*
3103 * We don't have an object instance, so we can't find the concrete method. However, all of
3104 * the type information is in the abstract method, so we're good.
3105 */
3106 const char* descriptor;
3107 if (abs_method == nullptr) {
3108 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3109 const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
3110 dex::TypeIndex return_type_idx =
3111 dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
3112 descriptor = dex_file_->StringByTypeIdx(return_type_idx);
3113 } else {
3114 descriptor = abs_method->GetReturnTypeDescriptor();
3115 }
3116 const RegType& return_type = reg_types_.FromDescriptor(class_loader_.Get(),
3117 descriptor,
3118 false);
3119 if (!return_type.IsLowHalf()) {
3120 work_line_->SetResultRegisterType(this, return_type);
3121 } else {
3122 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
3123 }
3124 just_set_result = true;
3125 break;
3126 }
3127 case Instruction::INVOKE_POLYMORPHIC:
3128 case Instruction::INVOKE_POLYMORPHIC_RANGE: {
3129 bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
3130 ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_POLYMORPHIC, is_range);
3131 if (called_method == nullptr) {
3132 // Convert potential soft failures in VerifyInvocationArgs() to hard errors.
3133 if (failure_messages_.size() > 0) {
3134 std::string message = failure_messages_.back()->str();
3135 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << message;
3136 } else {
3137 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-polymorphic verification failure.";
3138 }
3139 break;
3140 }
3141 if (!CheckSignaturePolymorphicMethod(called_method) ||
3142 !CheckSignaturePolymorphicReceiver(inst)) {
3143 DCHECK(HasFailures());
3144 break;
3145 }
3146 const uint16_t vRegH = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc();
3147 const dex::ProtoIndex proto_idx(vRegH);
3148 const char* return_descriptor =
3149 dex_file_->GetReturnTypeDescriptor(dex_file_->GetProtoId(proto_idx));
3150 const RegType& return_type =
3151 reg_types_.FromDescriptor(class_loader_.Get(), return_descriptor, false);
3152 if (!return_type.IsLowHalf()) {
3153 work_line_->SetResultRegisterType(this, return_type);
3154 } else {
3155 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
3156 }
3157 just_set_result = true;
3158 break;
3159 }
3160 case Instruction::INVOKE_CUSTOM:
3161 case Instruction::INVOKE_CUSTOM_RANGE: {
3162 // Verify registers based on method_type in the call site.
3163 bool is_range = (inst->Opcode() == Instruction::INVOKE_CUSTOM_RANGE);
3164
3165 // Step 1. Check the call site that produces the method handle for invocation
3166 const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3167 if (!CheckCallSite(call_site_idx)) {
3168 DCHECK(HasFailures());
3169 break;
3170 }
3171
3172 // Step 2. Check the register arguments correspond to the expected arguments for the
3173 // method handle produced by step 1. The dex file verifier has checked ranges for
3174 // the first three arguments and CheckCallSite has checked the method handle type.
3175 const dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx);
3176 const dex::ProtoId& proto_id = dex_file_->GetProtoId(proto_idx);
3177 DexFileParameterIterator param_it(*dex_file_, proto_id);
3178 // Treat method as static as it has yet to be determined.
3179 VerifyInvocationArgsFromIterator(¶m_it, inst, METHOD_STATIC, is_range, nullptr);
3180 const char* return_descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
3181
3182 // Step 3. Propagate return type information
3183 const RegType& return_type =
3184 reg_types_.FromDescriptor(class_loader_.Get(), return_descriptor, false);
3185 if (!return_type.IsLowHalf()) {
3186 work_line_->SetResultRegisterType(this, return_type);
3187 } else {
3188 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
3189 }
3190 just_set_result = true;
3191 break;
3192 }
3193 case Instruction::NEG_INT:
3194 case Instruction::NOT_INT:
3195 work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
3196 break;
3197 case Instruction::NEG_LONG:
3198 case Instruction::NOT_LONG:
3199 work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3200 reg_types_.LongLo(), reg_types_.LongHi());
3201 break;
3202 case Instruction::NEG_FLOAT:
3203 work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
3204 break;
3205 case Instruction::NEG_DOUBLE:
3206 work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3207 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3208 break;
3209 case Instruction::INT_TO_LONG:
3210 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3211 reg_types_.Integer());
3212 break;
3213 case Instruction::INT_TO_FLOAT:
3214 work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
3215 break;
3216 case Instruction::INT_TO_DOUBLE:
3217 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3218 reg_types_.Integer());
3219 break;
3220 case Instruction::LONG_TO_INT:
3221 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3222 reg_types_.LongLo(), reg_types_.LongHi());
3223 break;
3224 case Instruction::LONG_TO_FLOAT:
3225 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3226 reg_types_.LongLo(), reg_types_.LongHi());
3227 break;
3228 case Instruction::LONG_TO_DOUBLE:
3229 work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3230 reg_types_.LongLo(), reg_types_.LongHi());
3231 break;
3232 case Instruction::FLOAT_TO_INT:
3233 work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
3234 break;
3235 case Instruction::FLOAT_TO_LONG:
3236 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3237 reg_types_.Float());
3238 break;
3239 case Instruction::FLOAT_TO_DOUBLE:
3240 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3241 reg_types_.Float());
3242 break;
3243 case Instruction::DOUBLE_TO_INT:
3244 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3245 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3246 break;
3247 case Instruction::DOUBLE_TO_LONG:
3248 work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3249 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3250 break;
3251 case Instruction::DOUBLE_TO_FLOAT:
3252 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3253 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3254 break;
3255 case Instruction::INT_TO_BYTE:
3256 work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
3257 break;
3258 case Instruction::INT_TO_CHAR:
3259 work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
3260 break;
3261 case Instruction::INT_TO_SHORT:
3262 work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
3263 break;
3264
3265 case Instruction::ADD_INT:
3266 case Instruction::SUB_INT:
3267 case Instruction::MUL_INT:
3268 case Instruction::REM_INT:
3269 case Instruction::DIV_INT:
3270 case Instruction::SHL_INT:
3271 case Instruction::SHR_INT:
3272 case Instruction::USHR_INT:
3273 work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3274 reg_types_.Integer(), false);
3275 break;
3276 case Instruction::AND_INT:
3277 case Instruction::OR_INT:
3278 case Instruction::XOR_INT:
3279 work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3280 reg_types_.Integer(), true);
3281 break;
3282 case Instruction::ADD_LONG:
3283 case Instruction::SUB_LONG:
3284 case Instruction::MUL_LONG:
3285 case Instruction::DIV_LONG:
3286 case Instruction::REM_LONG:
3287 case Instruction::AND_LONG:
3288 case Instruction::OR_LONG:
3289 case Instruction::XOR_LONG:
3290 work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3291 reg_types_.LongLo(), reg_types_.LongHi(),
3292 reg_types_.LongLo(), reg_types_.LongHi());
3293 break;
3294 case Instruction::SHL_LONG:
3295 case Instruction::SHR_LONG:
3296 case Instruction::USHR_LONG:
3297 /* shift distance is Int, making these different from other binary operations */
3298 work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3299 reg_types_.Integer());
3300 break;
3301 case Instruction::ADD_FLOAT:
3302 case Instruction::SUB_FLOAT:
3303 case Instruction::MUL_FLOAT:
3304 case Instruction::DIV_FLOAT:
3305 case Instruction::REM_FLOAT:
3306 work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
3307 reg_types_.Float(), false);
3308 break;
3309 case Instruction::ADD_DOUBLE:
3310 case Instruction::SUB_DOUBLE:
3311 case Instruction::MUL_DOUBLE:
3312 case Instruction::DIV_DOUBLE:
3313 case Instruction::REM_DOUBLE:
3314 work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3315 reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3316 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3317 break;
3318 case Instruction::ADD_INT_2ADDR:
3319 case Instruction::SUB_INT_2ADDR:
3320 case Instruction::MUL_INT_2ADDR:
3321 case Instruction::REM_INT_2ADDR:
3322 case Instruction::SHL_INT_2ADDR:
3323 case Instruction::SHR_INT_2ADDR:
3324 case Instruction::USHR_INT_2ADDR:
3325 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3326 reg_types_.Integer(), false);
3327 break;
3328 case Instruction::AND_INT_2ADDR:
3329 case Instruction::OR_INT_2ADDR:
3330 case Instruction::XOR_INT_2ADDR:
3331 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3332 reg_types_.Integer(), true);
3333 break;
3334 case Instruction::DIV_INT_2ADDR:
3335 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3336 reg_types_.Integer(), false);
3337 break;
3338 case Instruction::ADD_LONG_2ADDR:
3339 case Instruction::SUB_LONG_2ADDR:
3340 case Instruction::MUL_LONG_2ADDR:
3341 case Instruction::DIV_LONG_2ADDR:
3342 case Instruction::REM_LONG_2ADDR:
3343 case Instruction::AND_LONG_2ADDR:
3344 case Instruction::OR_LONG_2ADDR:
3345 case Instruction::XOR_LONG_2ADDR:
3346 work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3347 reg_types_.LongLo(), reg_types_.LongHi(),
3348 reg_types_.LongLo(), reg_types_.LongHi());
3349 break;
3350 case Instruction::SHL_LONG_2ADDR:
3351 case Instruction::SHR_LONG_2ADDR:
3352 case Instruction::USHR_LONG_2ADDR:
3353 work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3354 reg_types_.Integer());
3355 break;
3356 case Instruction::ADD_FLOAT_2ADDR:
3357 case Instruction::SUB_FLOAT_2ADDR:
3358 case Instruction::MUL_FLOAT_2ADDR:
3359 case Instruction::DIV_FLOAT_2ADDR:
3360 case Instruction::REM_FLOAT_2ADDR:
3361 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
3362 reg_types_.Float(), false);
3363 break;
3364 case Instruction::ADD_DOUBLE_2ADDR:
3365 case Instruction::SUB_DOUBLE_2ADDR:
3366 case Instruction::MUL_DOUBLE_2ADDR:
3367 case Instruction::DIV_DOUBLE_2ADDR:
3368 case Instruction::REM_DOUBLE_2ADDR:
3369 work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3370 reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3371 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3372 break;
3373 case Instruction::ADD_INT_LIT16:
3374 case Instruction::RSUB_INT_LIT16:
3375 case Instruction::MUL_INT_LIT16:
3376 case Instruction::DIV_INT_LIT16:
3377 case Instruction::REM_INT_LIT16:
3378 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3379 true);
3380 break;
3381 case Instruction::AND_INT_LIT16:
3382 case Instruction::OR_INT_LIT16:
3383 case Instruction::XOR_INT_LIT16:
3384 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3385 true);
3386 break;
3387 case Instruction::ADD_INT_LIT8:
3388 case Instruction::RSUB_INT_LIT8:
3389 case Instruction::MUL_INT_LIT8:
3390 case Instruction::DIV_INT_LIT8:
3391 case Instruction::REM_INT_LIT8:
3392 case Instruction::SHL_INT_LIT8:
3393 case Instruction::SHR_INT_LIT8:
3394 case Instruction::USHR_INT_LIT8:
3395 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3396 false);
3397 break;
3398 case Instruction::AND_INT_LIT8:
3399 case Instruction::OR_INT_LIT8:
3400 case Instruction::XOR_INT_LIT8:
3401 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3402 false);
3403 break;
3404
3405 /* These should never appear during verification. */
3406 case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
3407 case Instruction::UNUSED_E3 ... Instruction::UNUSED_F9:
3408 case Instruction::UNUSED_73:
3409 case Instruction::UNUSED_79:
3410 case Instruction::UNUSED_7A:
3411 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
3412 break;
3413
3414 /*
3415 * DO NOT add a "default" clause here. Without it the compiler will
3416 * complain if an instruction is missing (which is desirable).
3417 */
3418 } // end - switch (dec_insn.opcode)
3419
3420 if (flags_.have_pending_hard_failure_) {
3421 if (IsAotMode()) {
3422 /* When AOT compiling, check that the last failure is a hard failure */
3423 if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
3424 LOG(ERROR) << "Pending failures:";
3425 for (auto& error : failures_) {
3426 LOG(ERROR) << error;
3427 }
3428 for (auto& error_msg : failure_messages_) {
3429 LOG(ERROR) << error_msg->str();
3430 }
3431 LOG(FATAL) << "Pending hard failure, but last failure not hard.";
3432 }
3433 }
3434 /* immediate failure, reject class */
3435 info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
3436 return false;
3437 } else if (flags_.have_pending_runtime_throw_failure_) {
3438 LogVerifyInfo() << "Elevating opcode flags from " << opcode_flags << " to Throw";
3439 /* checking interpreter will throw, mark following code as unreachable */
3440 opcode_flags = Instruction::kThrow;
3441 // Note: the flag must be reset as it is only global to decouple Fail and is semantically per
3442 // instruction. However, RETURN checking may throw LOCKING errors, so we clear at the
3443 // very end.
3444 }
3445 /*
3446 * If we didn't just set the result register, clear it out. This ensures that you can only use
3447 * "move-result" immediately after the result is set. (We could check this statically, but it's
3448 * not expensive and it makes our debugging output cleaner.)
3449 */
3450 if (!just_set_result) {
3451 work_line_->SetResultTypeToUnknown(GetRegTypeCache());
3452 }
3453
3454 /*
3455 * Handle "branch". Tag the branch target.
3456 *
3457 * NOTE: instructions like Instruction::EQZ provide information about the
3458 * state of the register when the branch is taken or not taken. For example,
3459 * somebody could get a reference field, check it for zero, and if the
3460 * branch is taken immediately store that register in a boolean field
3461 * since the value is known to be zero. We do not currently account for
3462 * that, and will reject the code.
3463 *
3464 * TODO: avoid re-fetching the branch target
3465 */
3466 if ((opcode_flags & Instruction::kBranch) != 0) {
3467 bool isConditional, selfOkay;
3468 if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
3469 /* should never happen after static verification */
3470 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
3471 return false;
3472 }
3473 DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
3474 if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(),
3475 work_insn_idx_ + branch_target)) {
3476 return false;
3477 }
3478 /* update branch target, set "changed" if appropriate */
3479 if (nullptr != branch_line) {
3480 if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
3481 return false;
3482 }
3483 } else {
3484 if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
3485 return false;
3486 }
3487 }
3488 }
3489
3490 /*
3491 * Handle "switch". Tag all possible branch targets.
3492 *
3493 * We've already verified that the table is structurally sound, so we
3494 * just need to walk through and tag the targets.
3495 */
3496 if ((opcode_flags & Instruction::kSwitch) != 0) {
3497 int offset_to_switch = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
3498 const uint16_t* switch_insns = insns + offset_to_switch;
3499 int switch_count = switch_insns[1];
3500 int offset_to_targets, targ;
3501
3502 if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
3503 /* 0 = sig, 1 = count, 2/3 = first key */
3504 offset_to_targets = 4;
3505 } else {
3506 /* 0 = sig, 1 = count, 2..count * 2 = keys */
3507 DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
3508 offset_to_targets = 2 + 2 * switch_count;
3509 }
3510
3511 /* verify each switch target */
3512 for (targ = 0; targ < switch_count; targ++) {
3513 int offset;
3514 uint32_t abs_offset;
3515
3516 /* offsets are 32-bit, and only partly endian-swapped */
3517 offset = switch_insns[offset_to_targets + targ * 2] |
3518 (static_cast<int32_t>(switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
3519 abs_offset = work_insn_idx_ + offset;
3520 DCHECK_LT(abs_offset, code_item_accessor_.InsnsSizeInCodeUnits());
3521 if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(), abs_offset)) {
3522 return false;
3523 }
3524 if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
3525 return false;
3526 }
3527 }
3528 }
3529
3530 /*
3531 * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
3532 * "try" block when they throw, control transfers out of the method.)
3533 */
3534 if ((opcode_flags & Instruction::kThrow) != 0 && GetInstructionFlags(work_insn_idx_).IsInTry()) {
3535 bool has_catch_all_handler = false;
3536 const dex::TryItem* try_item = code_item_accessor_.FindTryItem(work_insn_idx_);
3537 CHECK(try_item != nullptr);
3538 CatchHandlerIterator iterator(code_item_accessor_, *try_item);
3539
3540 // Need the linker to try and resolve the handled class to check if it's Throwable.
3541 ClassLinker* linker = GetClassLinker();
3542
3543 for (; iterator.HasNext(); iterator.Next()) {
3544 dex::TypeIndex handler_type_idx = iterator.GetHandlerTypeIndex();
3545 if (!handler_type_idx.IsValid()) {
3546 has_catch_all_handler = true;
3547 } else {
3548 // It is also a catch-all if it is java.lang.Throwable.
3549 ObjPtr<mirror::Class> klass =
3550 linker->ResolveType(handler_type_idx, dex_cache_, class_loader_);
3551 if (klass != nullptr) {
3552 if (klass == GetClassRoot<mirror::Throwable>()) {
3553 has_catch_all_handler = true;
3554 }
3555 } else {
3556 // Clear exception.
3557 DCHECK(self_->IsExceptionPending());
3558 self_->ClearException();
3559 }
3560 }
3561 /*
3562 * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3563 * "work_regs", because at runtime the exception will be thrown before the instruction
3564 * modifies any registers.
3565 */
3566 if (kVerifierDebug) {
3567 LogVerifyInfo() << "Updating exception handler 0x"
3568 << std::hex << iterator.GetHandlerAddress();
3569 }
3570 if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3571 return false;
3572 }
3573 }
3574
3575 /*
3576 * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3577 * instruction. This does apply to monitor-exit because of async exception handling.
3578 */
3579 if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3580 /*
3581 * The state in work_line reflects the post-execution state. If the current instruction is a
3582 * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3583 * it will do so before grabbing the lock).
3584 */
3585 if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3586 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3587 << "expected to be within a catch-all for an instruction where a monitor is held";
3588 return false;
3589 }
3590 }
3591 }
3592
3593 /* Handle "continue". Tag the next consecutive instruction.
3594 * Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3595 * because it changes work_line_ when performing peephole optimization
3596 * and this change should not be used in those cases.
3597 */
3598 if ((opcode_flags & Instruction::kContinue) != 0 && !exc_handler_unreachable) {
3599 DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
3600 uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3601 if (next_insn_idx >= code_item_accessor_.InsnsSizeInCodeUnits()) {
3602 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3603 return false;
3604 }
3605 // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3606 // next instruction isn't one.
3607 if (!CheckNotMoveException(code_item_accessor_.Insns(), next_insn_idx)) {
3608 return false;
3609 }
3610 if (nullptr != fallthrough_line) {
3611 // Make workline consistent with fallthrough computed from peephole optimization.
3612 work_line_->CopyFromLine(fallthrough_line.get());
3613 }
3614 if (GetInstructionFlags(next_insn_idx).IsReturn()) {
3615 // For returns we only care about the operand to the return, all other registers are dead.
3616 const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn_idx);
3617 AdjustReturnLine(this, ret_inst, work_line_.get());
3618 }
3619 RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3620 if (next_line != nullptr) {
3621 // Merge registers into what we have for the next instruction, and set the "changed" flag if
3622 // needed. If the merge changes the state of the registers then the work line will be
3623 // updated.
3624 if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3625 return false;
3626 }
3627 } else {
3628 /*
3629 * We're not recording register data for the next instruction, so we don't know what the
3630 * prior state was. We have to assume that something has changed and re-evaluate it.
3631 */
3632 GetModifiableInstructionFlags(next_insn_idx).SetChanged();
3633 }
3634 }
3635
3636 /* If we're returning from the method, make sure monitor stack is empty. */
3637 if ((opcode_flags & Instruction::kReturn) != 0) {
3638 work_line_->VerifyMonitorStackEmpty(this);
3639 }
3640
3641 /*
3642 * Update start_guess. Advance to the next instruction of that's
3643 * possible, otherwise use the branch target if one was found. If
3644 * neither of those exists we're in a return or throw; leave start_guess
3645 * alone and let the caller sort it out.
3646 */
3647 if ((opcode_flags & Instruction::kContinue) != 0) {
3648 DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
3649 *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3650 } else if ((opcode_flags & Instruction::kBranch) != 0) {
3651 /* we're still okay if branch_target is zero */
3652 *start_guess = work_insn_idx_ + branch_target;
3653 }
3654
3655 DCHECK_LT(*start_guess, code_item_accessor_.InsnsSizeInCodeUnits());
3656 DCHECK(GetInstructionFlags(*start_guess).IsOpcode());
3657
3658 if (flags_.have_pending_runtime_throw_failure_) {
3659 flags_.have_any_pending_runtime_throw_failure_ = true;
3660 // Reset the pending_runtime_throw flag now.
3661 flags_.have_pending_runtime_throw_failure_ = false;
3662 }
3663
3664 return true;
3665 } // NOLINT(readability/fn_size)
3666
3667 template <bool kVerifierDebug>
3668 template <CheckAccess C>
ResolveClass(dex::TypeIndex class_idx)3669 const RegType& MethodVerifier<kVerifierDebug>::ResolveClass(dex::TypeIndex class_idx) {
3670 ClassLinker* linker = GetClassLinker();
3671 ObjPtr<mirror::Class> klass = can_load_classes_
3672 ? linker->ResolveType(class_idx, dex_cache_, class_loader_)
3673 : linker->LookupResolvedType(class_idx, dex_cache_.Get(), class_loader_.Get());
3674 if (can_load_classes_ && klass == nullptr) {
3675 DCHECK(self_->IsExceptionPending());
3676 self_->ClearException();
3677 }
3678 const RegType* result = nullptr;
3679 if (klass != nullptr) {
3680 bool precise = klass->CannotBeAssignedFromOtherTypes();
3681 if (precise && !IsInstantiableOrPrimitive(klass)) {
3682 const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3683 UninstantiableError(descriptor);
3684 precise = false;
3685 }
3686 result = reg_types_.FindClass(klass, precise);
3687 if (result == nullptr) {
3688 const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3689 result = reg_types_.InsertClass(descriptor, klass, precise);
3690 }
3691 } else {
3692 const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3693 result = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
3694 }
3695 DCHECK(result != nullptr);
3696 if (result->IsConflict()) {
3697 const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3698 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3699 << "' in " << GetDeclaringClass();
3700 return *result;
3701 }
3702
3703 // If requested, check if access is allowed. Unresolved types are included in this check, as the
3704 // interpreter only tests whether access is allowed when a class is not pre-verified and runs in
3705 // the access-checks interpreter. If result is primitive, skip the access check.
3706 //
3707 // Note: we do this for unresolved classes to trigger re-verification at runtime.
3708 if (C != CheckAccess::kNo &&
3709 result->IsNonZeroReferenceTypes() &&
3710 ((C == CheckAccess::kYes && IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP))
3711 || !result->IsUnresolvedTypes())) {
3712 const RegType& referrer = GetDeclaringClass();
3713 if ((IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP) || !referrer.IsUnresolvedTypes()) &&
3714 !referrer.CanAccess(*result)) {
3715 Fail(VERIFY_ERROR_ACCESS_CLASS) << "(possibly) illegal class access: '"
3716 << referrer << "' -> '" << *result << "'";
3717 }
3718 }
3719 return *result;
3720 }
3721
3722 template <bool kVerifierDebug>
HandleMoveException(const Instruction * inst)3723 bool MethodVerifier<kVerifierDebug>::HandleMoveException(const Instruction* inst) {
3724 // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
3725 // where one entrypoint to the catch block is not actually an exception path.
3726 if (work_insn_idx_ == 0) {
3727 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
3728 return true;
3729 }
3730 /*
3731 * This statement can only appear as the first instruction in an exception handler. We verify
3732 * that as part of extracting the exception type from the catch block list.
3733 */
3734 auto caught_exc_type_fn = [&]() REQUIRES_SHARED(Locks::mutator_lock_) ->
3735 std::pair<bool, const RegType*> {
3736 const RegType* common_super = nullptr;
3737 if (code_item_accessor_.TriesSize() != 0) {
3738 const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
3739 uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3740 const RegType* unresolved = nullptr;
3741 for (uint32_t i = 0; i < handlers_size; i++) {
3742 CatchHandlerIterator iterator(handlers_ptr);
3743 for (; iterator.HasNext(); iterator.Next()) {
3744 if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3745 if (!iterator.GetHandlerTypeIndex().IsValid()) {
3746 common_super = ®_types_.JavaLangThrowable(false);
3747 } else {
3748 // Do access checks only on resolved exception classes.
3749 const RegType& exception =
3750 ResolveClass<CheckAccess::kOnResolvedClass>(iterator.GetHandlerTypeIndex());
3751 if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception, this)) {
3752 DCHECK(!exception.IsUninitializedTypes()); // Comes from dex, shouldn't be uninit.
3753 if (exception.IsUnresolvedTypes()) {
3754 if (unresolved == nullptr) {
3755 unresolved = &exception;
3756 } else {
3757 unresolved = &unresolved->SafeMerge(exception, ®_types_, this);
3758 }
3759 } else {
3760 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class "
3761 << exception;
3762 return std::make_pair(true, ®_types_.Conflict());
3763 }
3764 } else if (common_super == nullptr) {
3765 common_super = &exception;
3766 } else if (common_super->Equals(exception)) {
3767 // odd case, but nothing to do
3768 } else {
3769 common_super = &common_super->Merge(exception, ®_types_, this);
3770 if (FailOrAbort(reg_types_.JavaLangThrowable(false).IsAssignableFrom(
3771 *common_super, this),
3772 "java.lang.Throwable is not assignable-from common_super at ",
3773 work_insn_idx_)) {
3774 break;
3775 }
3776 }
3777 }
3778 }
3779 }
3780 handlers_ptr = iterator.EndDataPointer();
3781 }
3782 if (unresolved != nullptr) {
3783 if (!IsAotMode() && common_super == nullptr) {
3784 // This is an unreachable handler.
3785
3786 // We need to post a failure. The compiler currently does not handle unreachable
3787 // code correctly.
3788 Fail(VERIFY_ERROR_SKIP_COMPILER, /*pending_exc=*/ false)
3789 << "Unresolved catch handler, fail for compiler";
3790
3791 return std::make_pair(false, unresolved);
3792 }
3793 // Soft-fail, but do not handle this with a synthetic throw.
3794 Fail(VERIFY_ERROR_UNRESOLVED_TYPE_CHECK, /*pending_exc=*/ false)
3795 << "Unresolved catch handler";
3796 if (common_super != nullptr) {
3797 unresolved = &unresolved->Merge(*common_super, ®_types_, this);
3798 }
3799 return std::make_pair(true, unresolved);
3800 }
3801 }
3802 if (common_super == nullptr) {
3803 /* no catch blocks, or no catches with classes we can find */
3804 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3805 return std::make_pair(true, ®_types_.Conflict());
3806 }
3807 return std::make_pair(true, common_super);
3808 };
3809 auto result = caught_exc_type_fn();
3810 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_11x(), *result.second);
3811 return result.first;
3812 }
3813
3814 template <bool kVerifierDebug>
ResolveMethodAndCheckAccess(uint32_t dex_method_idx,MethodType method_type)3815 ArtMethod* MethodVerifier<kVerifierDebug>::ResolveMethodAndCheckAccess(
3816 uint32_t dex_method_idx, MethodType method_type) {
3817 const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3818 const RegType& klass_type = ResolveClass<CheckAccess::kYes>(method_id.class_idx_);
3819 if (klass_type.IsConflict()) {
3820 std::string append(" in attempt to access method ");
3821 append += dex_file_->GetMethodName(method_id);
3822 AppendToLastFailMessage(append);
3823 return nullptr;
3824 }
3825 if (klass_type.IsUnresolvedTypes()) {
3826 return nullptr; // Can't resolve Class so no more to do here
3827 }
3828 ObjPtr<mirror::Class> klass = klass_type.GetClass();
3829 const RegType& referrer = GetDeclaringClass();
3830 ClassLinker* class_linker = GetClassLinker();
3831
3832 ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
3833 if (res_method == nullptr) {
3834 res_method = class_linker->FindResolvedMethod(
3835 klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
3836 }
3837
3838 bool must_fail = false;
3839 // This is traditional and helps with screwy bytecode. It will tell you that, yes, a method
3840 // exists, but that it's called incorrectly. This significantly helps debugging, as locally it's
3841 // hard to see the differences.
3842 // If we don't have res_method here we must fail. Just use this bool to make sure of that with a
3843 // DCHECK.
3844 if (res_method == nullptr) {
3845 must_fail = true;
3846 // Try to find the method also with the other type for better error reporting below
3847 // but do not store such bogus lookup result in the DexCache or VerifierDeps.
3848 res_method = class_linker->FindIncompatibleMethod(
3849 klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
3850 }
3851
3852 if (res_method == nullptr) {
3853 Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3854 << klass->PrettyDescriptor() << "."
3855 << dex_file_->GetMethodName(method_id) << " "
3856 << dex_file_->GetMethodSignature(method_id);
3857 return nullptr;
3858 }
3859
3860 // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3861 // enforce them here.
3862 if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3863 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3864 << res_method->PrettyMethod();
3865 return nullptr;
3866 }
3867 // Disallow any calls to class initializers.
3868 if (res_method->IsClassInitializer()) {
3869 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3870 << res_method->PrettyMethod();
3871 return nullptr;
3872 }
3873
3874 // Check that interface methods are static or match interface classes.
3875 // We only allow statics if we don't have default methods enabled.
3876 //
3877 // Note: this check must be after the initializer check, as those are required to fail a class,
3878 // while this check implies an IncompatibleClassChangeError.
3879 if (klass->IsInterface()) {
3880 // methods called on interfaces should be invoke-interface, invoke-super, invoke-direct (if
3881 // default methods are supported for the dex file), or invoke-static.
3882 if (method_type != METHOD_INTERFACE &&
3883 method_type != METHOD_STATIC &&
3884 (!dex_file_->SupportsDefaultMethods() ||
3885 method_type != METHOD_DIRECT) &&
3886 method_type != METHOD_SUPER) {
3887 Fail(VERIFY_ERROR_CLASS_CHANGE)
3888 << "non-interface method " << dex_file_->PrettyMethod(dex_method_idx)
3889 << " is in an interface class " << klass->PrettyClass();
3890 return nullptr;
3891 }
3892 } else {
3893 if (method_type == METHOD_INTERFACE) {
3894 Fail(VERIFY_ERROR_CLASS_CHANGE)
3895 << "interface method " << dex_file_->PrettyMethod(dex_method_idx)
3896 << " is in a non-interface class " << klass->PrettyClass();
3897 return nullptr;
3898 }
3899 }
3900
3901 // Check specifically for non-public object methods being provided for interface dispatch. This
3902 // can occur if we failed to find a method with FindInterfaceMethod but later find one with
3903 // FindClassMethod for error message use.
3904 if (method_type == METHOD_INTERFACE &&
3905 res_method->GetDeclaringClass()->IsObjectClass() &&
3906 !res_method->IsPublic()) {
3907 Fail(VERIFY_ERROR_NO_METHOD) << "invoke-interface " << klass->PrettyDescriptor() << "."
3908 << dex_file_->GetMethodName(method_id) << " "
3909 << dex_file_->GetMethodSignature(method_id) << " resolved to "
3910 << "non-public object method " << res_method->PrettyMethod() << " "
3911 << "but non-public Object methods are excluded from interface "
3912 << "method resolution.";
3913 return nullptr;
3914 }
3915 // Check if access is allowed.
3916 if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3917 Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call "
3918 << res_method->PrettyMethod()
3919 << " from " << referrer << ")";
3920 return res_method;
3921 }
3922 // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3923 if (res_method->IsPrivate() && (method_type == METHOD_VIRTUAL || method_type == METHOD_SUPER)) {
3924 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3925 << res_method->PrettyMethod();
3926 return nullptr;
3927 }
3928 // See if the method type implied by the invoke instruction matches the access flags for the
3929 // target method. The flags for METHOD_POLYMORPHIC are based on there being precisely two
3930 // signature polymorphic methods supported by the run-time which are native methods with variable
3931 // arguments.
3932 if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3933 (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3934 ((method_type == METHOD_SUPER ||
3935 method_type == METHOD_VIRTUAL ||
3936 method_type == METHOD_INTERFACE) && res_method->IsDirect()) ||
3937 ((method_type == METHOD_POLYMORPHIC) &&
3938 (!res_method->IsNative() || !res_method->IsVarargs()))) {
3939 Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3940 "type of " << res_method->PrettyMethod();
3941 return nullptr;
3942 }
3943 // Make sure we weren't expecting to fail.
3944 DCHECK(!must_fail) << "invoke type (" << method_type << ")"
3945 << klass->PrettyDescriptor() << "."
3946 << dex_file_->GetMethodName(method_id) << " "
3947 << dex_file_->GetMethodSignature(method_id) << " unexpectedly resolved to "
3948 << res_method->PrettyMethod() << " without error. Initially this method was "
3949 << "not found so we were expecting to fail for some reason.";
3950 return res_method;
3951 }
3952
3953 template <bool kVerifierDebug>
3954 template <class T>
VerifyInvocationArgsFromIterator(T * it,const Instruction * inst,MethodType method_type,bool is_range,ArtMethod * res_method)3955 ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgsFromIterator(
3956 T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
3957 DCHECK_EQ(!is_range, inst->HasVarArgs());
3958
3959 // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3960 // match the call to the signature. Also, we might be calling through an abstract method
3961 // definition (which doesn't have register count values).
3962 const size_t expected_args = inst->VRegA();
3963 /* caught by static verifier */
3964 DCHECK(is_range || expected_args <= 5);
3965
3966 if (expected_args > code_item_accessor_.OutsSize()) {
3967 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3968 << ") exceeds outsSize ("
3969 << code_item_accessor_.OutsSize() << ")";
3970 return nullptr;
3971 }
3972
3973 /*
3974 * Check the "this" argument, which must be an instance of the class that declared the method.
3975 * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3976 * rigorous check here (which is okay since we have to do it at runtime).
3977 */
3978 if (method_type != METHOD_STATIC) {
3979 const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst);
3980 if (actual_arg_type.IsConflict()) { // GetInvocationThis failed.
3981 CHECK(flags_.have_pending_hard_failure_);
3982 return nullptr;
3983 }
3984 bool is_init = false;
3985 if (actual_arg_type.IsUninitializedTypes()) {
3986 if (res_method) {
3987 if (!res_method->IsConstructor()) {
3988 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3989 return nullptr;
3990 }
3991 } else {
3992 // Check whether the name of the called method is "<init>"
3993 const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
3994 if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3995 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3996 return nullptr;
3997 }
3998 }
3999 is_init = true;
4000 }
4001 const RegType& adjusted_type = is_init
4002 ? GetRegTypeCache()->FromUninitialized(actual_arg_type)
4003 : actual_arg_type;
4004 if (method_type != METHOD_INTERFACE && !adjusted_type.IsZeroOrNull()) {
4005 const RegType* res_method_class;
4006 // Miranda methods have the declaring interface as their declaring class, not the abstract
4007 // class. It would be wrong to use this for the type check (interface type checks are
4008 // postponed to runtime).
4009 if (res_method != nullptr && !res_method->IsMiranda()) {
4010 ObjPtr<mirror::Class> klass = res_method->GetDeclaringClass();
4011 std::string temp;
4012 res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
4013 klass->CannotBeAssignedFromOtherTypes());
4014 } else {
4015 const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4016 const dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
4017 res_method_class = ®_types_.FromDescriptor(
4018 class_loader_.Get(),
4019 dex_file_->StringByTypeIdx(class_idx),
4020 false);
4021 }
4022 if (!res_method_class->IsAssignableFrom(adjusted_type, this)) {
4023 Fail(adjusted_type.IsUnresolvedTypes()
4024 ? VERIFY_ERROR_UNRESOLVED_TYPE_CHECK
4025 : VERIFY_ERROR_BAD_CLASS_SOFT)
4026 << "'this' argument '" << actual_arg_type << "' not instance of '"
4027 << *res_method_class << "'";
4028 // Continue on soft failures. We need to find possible hard failures to avoid problems in
4029 // the compiler.
4030 if (flags_.have_pending_hard_failure_) {
4031 return nullptr;
4032 }
4033 }
4034 }
4035 }
4036
4037 uint32_t arg[5];
4038 if (!is_range) {
4039 inst->GetVarArgs(arg);
4040 }
4041 uint32_t sig_registers = (method_type == METHOD_STATIC) ? 0 : 1;
4042 for ( ; it->HasNext(); it->Next()) {
4043 if (sig_registers >= expected_args) {
4044 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
4045 " argument registers, method signature has " << sig_registers + 1 << " or more";
4046 return nullptr;
4047 }
4048
4049 const char* param_descriptor = it->GetDescriptor();
4050
4051 if (param_descriptor == nullptr) {
4052 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
4053 "component";
4054 return nullptr;
4055 }
4056
4057 const RegType& reg_type = reg_types_.FromDescriptor(class_loader_.Get(),
4058 param_descriptor,
4059 false);
4060 uint32_t get_reg = is_range ? inst->VRegC() + static_cast<uint32_t>(sig_registers) :
4061 arg[sig_registers];
4062 if (reg_type.IsIntegralTypes()) {
4063 const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
4064 if (!src_type.IsIntegralTypes()) {
4065 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
4066 << " but expected " << reg_type;
4067 return nullptr;
4068 }
4069 } else {
4070 if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
4071 // Continue on soft failures. We need to find possible hard failures to avoid problems in
4072 // the compiler.
4073 if (flags_.have_pending_hard_failure_) {
4074 return nullptr;
4075 }
4076 } else if (reg_type.IsLongOrDoubleTypes()) {
4077 // Check that registers are consecutive (for non-range invokes). Invokes are the only
4078 // instructions not specifying register pairs by the first component, but require them
4079 // nonetheless. Only check when there's an actual register in the parameters. If there's
4080 // none, this will fail below.
4081 if (!is_range && sig_registers + 1 < expected_args) {
4082 uint32_t second_reg = arg[sig_registers + 1];
4083 if (second_reg != get_reg + 1) {
4084 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, long or double parameter "
4085 "at index " << sig_registers << " is not a pair: " << get_reg << " + "
4086 << second_reg << ".";
4087 return nullptr;
4088 }
4089 }
4090 }
4091 }
4092 sig_registers += reg_type.IsLongOrDoubleTypes() ? 2 : 1;
4093 }
4094 if (expected_args != sig_registers) {
4095 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
4096 " argument registers, method signature has " << sig_registers;
4097 return nullptr;
4098 }
4099 return res_method;
4100 }
4101
4102 template <bool kVerifierDebug>
VerifyInvocationArgsUnresolvedMethod(const Instruction * inst,MethodType method_type,bool is_range)4103 void MethodVerifier<kVerifierDebug>::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
4104 MethodType method_type,
4105 bool is_range) {
4106 // As the method may not have been resolved, make this static check against what we expect.
4107 // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
4108 // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
4109 const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4110 DexFileParameterIterator it(*dex_file_,
4111 dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
4112 VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, nullptr);
4113 }
4114
4115 template <bool kVerifierDebug>
CheckCallSite(uint32_t call_site_idx)4116 bool MethodVerifier<kVerifierDebug>::CheckCallSite(uint32_t call_site_idx) {
4117 if (call_site_idx >= dex_file_->NumCallSiteIds()) {
4118 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Bad call site id #" << call_site_idx
4119 << " >= " << dex_file_->NumCallSiteIds();
4120 return false;
4121 }
4122
4123 CallSiteArrayValueIterator it(*dex_file_, dex_file_->GetCallSiteId(call_site_idx));
4124 // Check essential arguments are provided. The dex file verifier has verified indices of the
4125 // main values (method handle, name, method_type).
4126 static const size_t kRequiredArguments = 3;
4127 if (it.Size() < kRequiredArguments) {
4128 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4129 << " has too few arguments: "
4130 << it.Size() << " < " << kRequiredArguments;
4131 return false;
4132 }
4133
4134 std::pair<const EncodedArrayValueIterator::ValueType, size_t> type_and_max[kRequiredArguments] =
4135 { { EncodedArrayValueIterator::ValueType::kMethodHandle, dex_file_->NumMethodHandles() },
4136 { EncodedArrayValueIterator::ValueType::kString, dex_file_->NumStringIds() },
4137 { EncodedArrayValueIterator::ValueType::kMethodType, dex_file_->NumProtoIds() }
4138 };
4139 uint32_t index[kRequiredArguments];
4140
4141 // Check arguments have expected types and are within permitted ranges.
4142 for (size_t i = 0; i < kRequiredArguments; ++i) {
4143 if (it.GetValueType() != type_and_max[i].first) {
4144 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
4145 << " argument " << i << " has wrong type "
4146 << it.GetValueType() << "!=" << type_and_max[i].first;
4147 return false;
4148 }
4149 index[i] = static_cast<uint32_t>(it.GetJavaValue().i);
4150 if (index[i] >= type_and_max[i].second) {
4151 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
4152 << " argument " << i << " bad index "
4153 << index[i] << " >= " << type_and_max[i].second;
4154 return false;
4155 }
4156 it.Next();
4157 }
4158
4159 // Check method handle kind is valid.
4160 const dex::MethodHandleItem& mh = dex_file_->GetMethodHandle(index[0]);
4161 if (mh.method_handle_type_ != static_cast<uint16_t>(DexFile::MethodHandleType::kInvokeStatic)) {
4162 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4163 << " argument 0 method handle type is not InvokeStatic: "
4164 << mh.method_handle_type_;
4165 return false;
4166 }
4167 return true;
4168 }
4169
4170 class MethodParamListDescriptorIterator {
4171 public:
MethodParamListDescriptorIterator(ArtMethod * res_method)4172 explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
4173 res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
4174 params_size_(params_ == nullptr ? 0 : params_->Size()) {
4175 }
4176
HasNext()4177 bool HasNext() {
4178 return pos_ < params_size_;
4179 }
4180
Next()4181 void Next() {
4182 ++pos_;
4183 }
4184
GetDescriptor()4185 const char* GetDescriptor() REQUIRES_SHARED(Locks::mutator_lock_) {
4186 return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
4187 }
4188
4189 private:
4190 ArtMethod* res_method_;
4191 size_t pos_;
4192 const dex::TypeList* params_;
4193 const size_t params_size_;
4194 };
4195
4196 template <bool kVerifierDebug>
VerifyInvocationArgs(const Instruction * inst,MethodType method_type,bool is_range)4197 ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgs(
4198 const Instruction* inst, MethodType method_type, bool is_range) {
4199 // Resolve the method. This could be an abstract or concrete method depending on what sort of call
4200 // we're making.
4201 const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4202 ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
4203 if (res_method == nullptr) { // error or class is unresolved
4204 // Check what we can statically.
4205 if (!flags_.have_pending_hard_failure_) {
4206 VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
4207 }
4208 return nullptr;
4209 }
4210
4211 // If we're using invoke-super(method), make sure that the executing method's class' superclass
4212 // has a vtable entry for the target method. Or the target is on a interface.
4213 if (method_type == METHOD_SUPER) {
4214 dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
4215 const RegType& reference_type = reg_types_.FromDescriptor(
4216 class_loader_.Get(),
4217 dex_file_->StringByTypeIdx(class_idx),
4218 false);
4219 if (reference_type.IsUnresolvedTypes()) {
4220 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Unable to find referenced class from invoke-super";
4221 return nullptr;
4222 }
4223 if (reference_type.GetClass()->IsInterface()) {
4224 if (!GetDeclaringClass().HasClass()) {
4225 Fail(VERIFY_ERROR_NO_CLASS) << "Unable to resolve the full class of 'this' used in an"
4226 << "interface invoke-super";
4227 return nullptr;
4228 } else if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this)) {
4229 Fail(VERIFY_ERROR_CLASS_CHANGE)
4230 << "invoke-super in " << mirror::Class::PrettyClass(GetDeclaringClass().GetClass())
4231 << " in method "
4232 << dex_file_->PrettyMethod(dex_method_idx_) << " to method "
4233 << dex_file_->PrettyMethod(method_idx) << " references "
4234 << "non-super-interface type " << mirror::Class::PrettyClass(reference_type.GetClass());
4235 return nullptr;
4236 }
4237 } else {
4238 const RegType& super = GetDeclaringClass().GetSuperClass(®_types_);
4239 if (super.IsUnresolvedTypes()) {
4240 Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
4241 << dex_file_->PrettyMethod(dex_method_idx_)
4242 << " to super " << res_method->PrettyMethod();
4243 return nullptr;
4244 }
4245 if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this) ||
4246 (res_method->GetMethodIndex() >= super.GetClass()->GetVTableLength())) {
4247 Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
4248 << dex_file_->PrettyMethod(dex_method_idx_)
4249 << " to super " << super
4250 << "." << res_method->GetName()
4251 << res_method->GetSignature();
4252 return nullptr;
4253 }
4254 }
4255 }
4256
4257 if (UNLIKELY(method_type == METHOD_POLYMORPHIC)) {
4258 // Process the signature of the calling site that is invoking the method handle.
4259 dex::ProtoIndex proto_idx(inst->VRegH());
4260 DexFileParameterIterator it(*dex_file_, dex_file_->GetProtoId(proto_idx));
4261 return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
4262 } else {
4263 // Process the target method's signature.
4264 MethodParamListDescriptorIterator it(res_method);
4265 return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
4266 }
4267 }
4268
4269 template <bool kVerifierDebug>
CheckSignaturePolymorphicMethod(ArtMethod * method)4270 bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicMethod(ArtMethod* method) {
4271 ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
4272 const char* method_name = method->GetName();
4273
4274 const char* expected_return_descriptor;
4275 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
4276 if (klass == GetClassRoot<mirror::MethodHandle>(class_roots)) {
4277 expected_return_descriptor = mirror::MethodHandle::GetReturnTypeDescriptor(method_name);
4278 } else if (klass == GetClassRoot<mirror::VarHandle>(class_roots)) {
4279 expected_return_descriptor = mirror::VarHandle::GetReturnTypeDescriptor(method_name);
4280 } else {
4281 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4282 << "Signature polymorphic method in unsuppported class: " << klass->PrettyDescriptor();
4283 return false;
4284 }
4285
4286 if (expected_return_descriptor == nullptr) {
4287 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4288 << "Signature polymorphic method name invalid: " << method_name;
4289 return false;
4290 }
4291
4292 const dex::TypeList* types = method->GetParameterTypeList();
4293 if (types->Size() != 1) {
4294 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4295 << "Signature polymorphic method has too many arguments " << types->Size() << " != 1";
4296 return false;
4297 }
4298
4299 const dex::TypeIndex argument_type_index = types->GetTypeItem(0).type_idx_;
4300 const char* argument_descriptor = method->GetTypeDescriptorFromTypeIdx(argument_type_index);
4301 if (strcmp(argument_descriptor, "[Ljava/lang/Object;") != 0) {
4302 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4303 << "Signature polymorphic method has unexpected argument type: " << argument_descriptor;
4304 return false;
4305 }
4306
4307 const char* return_descriptor = method->GetReturnTypeDescriptor();
4308 if (strcmp(return_descriptor, expected_return_descriptor) != 0) {
4309 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4310 << "Signature polymorphic method has unexpected return type: " << return_descriptor
4311 << " != " << expected_return_descriptor;
4312 return false;
4313 }
4314
4315 return true;
4316 }
4317
4318 template <bool kVerifierDebug>
CheckSignaturePolymorphicReceiver(const Instruction * inst)4319 bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicReceiver(const Instruction* inst) {
4320 const RegType& this_type = work_line_->GetInvocationThis(this, inst);
4321 if (this_type.IsZeroOrNull()) {
4322 /* null pointer always passes (and always fails at run time) */
4323 return true;
4324 } else if (!this_type.IsNonZeroReferenceTypes()) {
4325 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4326 << "invoke-polymorphic receiver is not a reference: "
4327 << this_type;
4328 return false;
4329 } else if (this_type.IsUninitializedReference()) {
4330 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4331 << "invoke-polymorphic receiver is uninitialized: "
4332 << this_type;
4333 return false;
4334 } else if (!this_type.HasClass()) {
4335 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4336 << "invoke-polymorphic receiver has no class: "
4337 << this_type;
4338 return false;
4339 } else {
4340 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
4341 if (!this_type.GetClass()->IsSubClass(GetClassRoot<mirror::MethodHandle>(class_roots)) &&
4342 !this_type.GetClass()->IsSubClass(GetClassRoot<mirror::VarHandle>(class_roots))) {
4343 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4344 << "invoke-polymorphic receiver is not a subclass of MethodHandle or VarHandle: "
4345 << this_type;
4346 return false;
4347 }
4348 }
4349 return true;
4350 }
4351
4352 template <bool kVerifierDebug>
VerifyNewArray(const Instruction * inst,bool is_filled,bool is_range)4353 void MethodVerifier<kVerifierDebug>::VerifyNewArray(const Instruction* inst,
4354 bool is_filled,
4355 bool is_range) {
4356 dex::TypeIndex type_idx;
4357 if (!is_filled) {
4358 DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
4359 type_idx = dex::TypeIndex(inst->VRegC_22c());
4360 } else if (!is_range) {
4361 DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
4362 type_idx = dex::TypeIndex(inst->VRegB_35c());
4363 } else {
4364 DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
4365 type_idx = dex::TypeIndex(inst->VRegB_3rc());
4366 }
4367 const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
4368 if (res_type.IsConflict()) { // bad class
4369 DCHECK_NE(failures_.size(), 0U);
4370 } else {
4371 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
4372 if (!res_type.IsArrayTypes()) {
4373 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
4374 } else if (!is_filled) {
4375 /* make sure "size" register is valid type */
4376 work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
4377 /* set register type to array class */
4378 const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4379 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_22c(), precise_type);
4380 } else {
4381 DCHECK(!res_type.IsUnresolvedMergedReference());
4382 // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
4383 // the list and fail. It's legal, if silly, for arg_count to be zero.
4384 const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_.Get());
4385 uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
4386 uint32_t arg[5];
4387 if (!is_range) {
4388 inst->GetVarArgs(arg);
4389 }
4390 for (size_t ui = 0; ui < arg_count; ui++) {
4391 uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
4392 if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
4393 work_line_->SetResultRegisterType(this, reg_types_.Conflict());
4394 return;
4395 }
4396 }
4397 // filled-array result goes into "result" register
4398 const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4399 work_line_->SetResultRegisterType(this, precise_type);
4400 }
4401 }
4402 }
4403
4404 template <bool kVerifierDebug>
VerifyAGet(const Instruction * inst,const RegType & insn_type,bool is_primitive)4405 void MethodVerifier<kVerifierDebug>::VerifyAGet(const Instruction* inst,
4406 const RegType& insn_type,
4407 bool is_primitive) {
4408 const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4409 if (!index_type.IsArrayIndexTypes()) {
4410 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4411 } else {
4412 const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4413 if (array_type.IsZeroOrNull()) {
4414 // Null array class; this code path will fail at runtime. Infer a merge-able type from the
4415 // instruction type.
4416 if (!is_primitive) {
4417 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Null());
4418 } else if (insn_type.IsInteger()) {
4419 // Pick a non-zero constant (to distinguish with null) that can fit in any primitive.
4420 // We cannot use 'insn_type' as it could be a float array or an int array.
4421 work_line_->SetRegisterType<LockOp::kClear>(
4422 this, inst->VRegA_23x(), DetermineCat1Constant(1, need_precise_constants_));
4423 } else if (insn_type.IsCategory1Types()) {
4424 // Category 1
4425 // The 'insn_type' is exactly the type we need.
4426 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), insn_type);
4427 } else {
4428 // Category 2
4429 work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
4430 reg_types_.FromCat2ConstLo(0, false),
4431 reg_types_.FromCat2ConstHi(0, false));
4432 }
4433 } else if (!array_type.IsArrayTypes()) {
4434 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
4435 } else if (array_type.IsUnresolvedMergedReference()) {
4436 // Unresolved array types must be reference array types.
4437 if (is_primitive) {
4438 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4439 << " source for category 1 aget";
4440 } else {
4441 Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aget for " << array_type
4442 << " because of missing class";
4443 // Approximate with java.lang.Object[].
4444 work_line_->SetRegisterType<LockOp::kClear>(this,
4445 inst->VRegA_23x(),
4446 reg_types_.JavaLangObject(false));
4447 }
4448 } else {
4449 /* verify the class */
4450 const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_.Get());
4451 if (!component_type.IsReferenceTypes() && !is_primitive) {
4452 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4453 << " source for aget-object";
4454 } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
4455 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4456 << " source for category 1 aget";
4457 } else if (is_primitive && !insn_type.Equals(component_type) &&
4458 !((insn_type.IsInteger() && component_type.IsFloat()) ||
4459 (insn_type.IsLong() && component_type.IsDouble()))) {
4460 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
4461 << " incompatible with aget of type " << insn_type;
4462 } else {
4463 // Use knowledge of the field type which is stronger than the type inferred from the
4464 // instruction, which can't differentiate object types and ints from floats, longs from
4465 // doubles.
4466 if (!component_type.IsLowHalf()) {
4467 work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), component_type);
4468 } else {
4469 work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
4470 component_type.HighHalf(®_types_));
4471 }
4472 }
4473 }
4474 }
4475 }
4476
4477 template <bool kVerifierDebug>
VerifyPrimitivePut(const RegType & target_type,const RegType & insn_type,const uint32_t vregA)4478 void MethodVerifier<kVerifierDebug>::VerifyPrimitivePut(const RegType& target_type,
4479 const RegType& insn_type,
4480 const uint32_t vregA) {
4481 // Primitive assignability rules are weaker than regular assignability rules.
4482 bool instruction_compatible;
4483 bool value_compatible;
4484 const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4485 if (target_type.IsIntegralTypes()) {
4486 instruction_compatible = target_type.Equals(insn_type);
4487 value_compatible = value_type.IsIntegralTypes();
4488 } else if (target_type.IsFloat()) {
4489 instruction_compatible = insn_type.IsInteger(); // no put-float, so expect put-int
4490 value_compatible = value_type.IsFloatTypes();
4491 } else if (target_type.IsLong()) {
4492 instruction_compatible = insn_type.IsLong();
4493 // Additional register check: this is not checked statically (as part of VerifyInstructions),
4494 // as target_type depends on the resolved type of the field.
4495 if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4496 const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4497 value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
4498 } else {
4499 value_compatible = false;
4500 }
4501 } else if (target_type.IsDouble()) {
4502 instruction_compatible = insn_type.IsLong(); // no put-double, so expect put-long
4503 // Additional register check: this is not checked statically (as part of VerifyInstructions),
4504 // as target_type depends on the resolved type of the field.
4505 if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4506 const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4507 value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
4508 } else {
4509 value_compatible = false;
4510 }
4511 } else {
4512 instruction_compatible = false; // reference with primitive store
4513 value_compatible = false; // unused
4514 }
4515 if (!instruction_compatible) {
4516 // This is a global failure rather than a class change failure as the instructions and
4517 // the descriptors for the type should have been consistent within the same file at
4518 // compile time.
4519 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4520 << "' but expected type '" << target_type << "'";
4521 return;
4522 }
4523 if (!value_compatible) {
4524 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4525 << " of type " << value_type << " but expected " << target_type << " for put";
4526 return;
4527 }
4528 }
4529
4530 template <bool kVerifierDebug>
VerifyAPut(const Instruction * inst,const RegType & insn_type,bool is_primitive)4531 void MethodVerifier<kVerifierDebug>::VerifyAPut(const Instruction* inst,
4532 const RegType& insn_type,
4533 bool is_primitive) {
4534 const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4535 if (!index_type.IsArrayIndexTypes()) {
4536 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4537 } else {
4538 const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4539 if (array_type.IsZeroOrNull()) {
4540 // Null array type; this code path will fail at runtime.
4541 // Still check that the given value matches the instruction's type.
4542 // Note: this is, as usual, complicated by the fact the the instruction isn't fully typed
4543 // and fits multiple register types.
4544 const RegType* modified_reg_type = &insn_type;
4545 if ((modified_reg_type == ®_types_.Integer()) ||
4546 (modified_reg_type == ®_types_.LongLo())) {
4547 // May be integer or float | long or double. Overwrite insn_type accordingly.
4548 const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x());
4549 if (modified_reg_type == ®_types_.Integer()) {
4550 if (&value_type == ®_types_.Float()) {
4551 modified_reg_type = &value_type;
4552 }
4553 } else {
4554 if (&value_type == ®_types_.DoubleLo()) {
4555 modified_reg_type = &value_type;
4556 }
4557 }
4558 }
4559 work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type);
4560 } else if (!array_type.IsArrayTypes()) {
4561 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
4562 } else if (array_type.IsUnresolvedMergedReference()) {
4563 // Unresolved array types must be reference array types.
4564 if (is_primitive) {
4565 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4566 << "' but unresolved type '" << array_type << "'";
4567 } else {
4568 Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aput for " << array_type
4569 << " because of missing class";
4570 }
4571 } else {
4572 const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_.Get());
4573 const uint32_t vregA = inst->VRegA_23x();
4574 if (is_primitive) {
4575 VerifyPrimitivePut(component_type, insn_type, vregA);
4576 } else {
4577 if (!component_type.IsReferenceTypes()) {
4578 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4579 << " source for aput-object";
4580 } else {
4581 // The instruction agrees with the type of array, confirm the value to be stored does too
4582 // Note: we use the instruction type (rather than the component type) for aput-object as
4583 // incompatible classes will be caught at runtime as an array store exception
4584 work_line_->VerifyRegisterType(this, vregA, insn_type);
4585 }
4586 }
4587 }
4588 }
4589 }
4590
4591 template <bool kVerifierDebug>
GetStaticField(int field_idx)4592 ArtField* MethodVerifier<kVerifierDebug>::GetStaticField(int field_idx) {
4593 const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4594 // Check access to class
4595 const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
4596 if (klass_type.IsConflict()) { // bad class
4597 AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
4598 field_idx, dex_file_->GetFieldName(field_id),
4599 dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4600 return nullptr;
4601 }
4602 if (klass_type.IsUnresolvedTypes()) {
4603 // Accessibility checks depend on resolved fields.
4604 DCHECK(klass_type.Equals(GetDeclaringClass()) ||
4605 !failures_.empty() ||
4606 IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
4607
4608 return nullptr; // Can't resolve Class so no more to do here, will do checking at runtime.
4609 }
4610 ClassLinker* class_linker = GetClassLinker();
4611 ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
4612
4613 if (field == nullptr) {
4614 VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
4615 << dex_file_->GetFieldName(field_id) << ") in "
4616 << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4617 DCHECK(self_->IsExceptionPending());
4618 self_->ClearException();
4619 return nullptr;
4620 } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4621 field->GetAccessFlags())) {
4622 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << field->PrettyField()
4623 << " from " << GetDeclaringClass();
4624 return nullptr;
4625 } else if (!field->IsStatic()) {
4626 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField() << " to be static";
4627 return nullptr;
4628 }
4629 return field;
4630 }
4631
4632 template <bool kVerifierDebug>
GetInstanceField(const RegType & obj_type,int field_idx)4633 ArtField* MethodVerifier<kVerifierDebug>::GetInstanceField(const RegType& obj_type, int field_idx) {
4634 if (!obj_type.IsZeroOrNull() && !obj_type.IsReferenceTypes()) {
4635 // Trying to read a field from something that isn't a reference.
4636 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
4637 << "non-reference type " << obj_type;
4638 return nullptr;
4639 }
4640 const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4641 // Check access to class.
4642 const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
4643 if (klass_type.IsConflict()) {
4644 AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
4645 field_idx, dex_file_->GetFieldName(field_id),
4646 dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4647 return nullptr;
4648 }
4649 if (klass_type.IsUnresolvedTypes()) {
4650 // Accessibility checks depend on resolved fields.
4651 DCHECK(klass_type.Equals(GetDeclaringClass()) ||
4652 !failures_.empty() ||
4653 IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
4654
4655 return nullptr; // Can't resolve Class so no more to do here
4656 }
4657 ClassLinker* class_linker = GetClassLinker();
4658 ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
4659
4660 if (field == nullptr) {
4661 VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
4662 << dex_file_->GetFieldName(field_id) << ") in "
4663 << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4664 DCHECK(self_->IsExceptionPending());
4665 self_->ClearException();
4666 return nullptr;
4667 } else if (obj_type.IsZeroOrNull()) {
4668 // Cannot infer and check type, however, access will cause null pointer exception.
4669 // Fall through into a few last soft failure checks below.
4670 } else {
4671 std::string temp;
4672 ObjPtr<mirror::Class> klass = field->GetDeclaringClass();
4673 const RegType& field_klass =
4674 FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
4675 if (obj_type.IsUninitializedTypes()) {
4676 // Field accesses through uninitialized references are only allowable for constructors where
4677 // the field is declared in this class.
4678 // Note: this IsConstructor check is technically redundant, as UninitializedThis should only
4679 // appear in constructors.
4680 if (!obj_type.IsUninitializedThisReference() ||
4681 !IsConstructor() ||
4682 !field_klass.Equals(GetDeclaringClass())) {
4683 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << field->PrettyField()
4684 << " of a not fully initialized object within the context"
4685 << " of " << dex_file_->PrettyMethod(dex_method_idx_);
4686 return nullptr;
4687 }
4688 } else if (!field_klass.IsAssignableFrom(obj_type, this)) {
4689 // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
4690 // of C1. For resolution to occur the declared class of the field must be compatible with
4691 // obj_type, we've discovered this wasn't so, so report the field didn't exist.
4692 VerifyError type;
4693 bool is_aot = IsAotMode();
4694 if (is_aot && (field_klass.IsUnresolvedTypes() || obj_type.IsUnresolvedTypes())) {
4695 // Compiler & unresolved types involved, retry at runtime.
4696 type = VerifyError::VERIFY_ERROR_UNRESOLVED_TYPE_CHECK;
4697 } else {
4698 // Classes known (resolved; and thus assignability check is precise), or we are at runtime
4699 // and still missing classes. This is a hard failure.
4700 type = VerifyError::VERIFY_ERROR_BAD_CLASS_HARD;
4701 }
4702 Fail(type) << "cannot access instance field " << field->PrettyField()
4703 << " from object of type " << obj_type;
4704 return nullptr;
4705 }
4706 }
4707
4708 // Few last soft failure checks.
4709 if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4710 field->GetAccessFlags())) {
4711 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << field->PrettyField()
4712 << " from " << GetDeclaringClass();
4713 return nullptr;
4714 } else if (field->IsStatic()) {
4715 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField()
4716 << " to not be static";
4717 return nullptr;
4718 }
4719
4720 return field;
4721 }
4722
4723 template <bool kVerifierDebug>
4724 template <FieldAccessType kAccType>
VerifyISFieldAccess(const Instruction * inst,const RegType & insn_type,bool is_primitive,bool is_static)4725 void MethodVerifier<kVerifierDebug>::VerifyISFieldAccess(const Instruction* inst,
4726 const RegType& insn_type,
4727 bool is_primitive,
4728 bool is_static) {
4729 uint32_t field_idx = GetFieldIdxOfFieldAccess(inst, is_static);
4730 ArtField* field;
4731 if (is_static) {
4732 field = GetStaticField(field_idx);
4733 } else {
4734 const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
4735
4736 // One is not allowed to access fields on uninitialized references, except to write to
4737 // fields in the constructor (before calling another constructor).
4738 // GetInstanceField does an assignability check which will fail for uninitialized types.
4739 // We thus modify the type if the uninitialized reference is a "this" reference (this also
4740 // checks at the same time that we're verifying a constructor).
4741 bool should_adjust = (kAccType == FieldAccessType::kAccPut) &&
4742 object_type.IsUninitializedThisReference();
4743 const RegType& adjusted_type = should_adjust
4744 ? GetRegTypeCache()->FromUninitialized(object_type)
4745 : object_type;
4746 field = GetInstanceField(adjusted_type, field_idx);
4747 if (UNLIKELY(flags_.have_pending_hard_failure_)) {
4748 return;
4749 }
4750 if (should_adjust) {
4751 if (field == nullptr) {
4752 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Might be accessing a superclass instance field prior "
4753 << "to the superclass being initialized in "
4754 << dex_file_->PrettyMethod(dex_method_idx_);
4755 } else if (field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4756 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access superclass instance field "
4757 << field->PrettyField() << " of a not fully initialized "
4758 << "object within the context of "
4759 << dex_file_->PrettyMethod(dex_method_idx_);
4760 return;
4761 }
4762 }
4763 }
4764 const RegType* field_type = nullptr;
4765 if (field != nullptr) {
4766 if (kAccType == FieldAccessType::kAccPut) {
4767 if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4768 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << field->PrettyField()
4769 << " from other class " << GetDeclaringClass();
4770 // Keep hunting for possible hard fails.
4771 }
4772 }
4773
4774 ObjPtr<mirror::Class> field_type_class =
4775 can_load_classes_ ? field->ResolveType() : field->LookupResolvedType();
4776 if (field_type_class != nullptr) {
4777 field_type = &FromClass(field->GetTypeDescriptor(),
4778 field_type_class,
4779 field_type_class->CannotBeAssignedFromOtherTypes());
4780 } else {
4781 DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4782 self_->ClearException();
4783 }
4784 } else if (IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP)) {
4785 // If we don't have the field (it seems we failed resolution) and this is a PUT, we need to
4786 // redo verification at runtime as the field may be final, unless the field id shows it's in
4787 // the same class.
4788 //
4789 // For simplicity, it is OK to not distinguish compile-time vs runtime, and post this an
4790 // ACCESS_FIELD failure at runtime. This has the same effect as NO_FIELD - punting the class
4791 // to the access-checks interpreter.
4792 //
4793 // Note: see b/34966607. This and above may be changed in the future.
4794 if (kAccType == FieldAccessType::kAccPut) {
4795 const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4796 const char* field_class_descriptor = dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4797 const RegType* field_class_type = ®_types_.FromDescriptor(class_loader_.Get(),
4798 field_class_descriptor,
4799 false);
4800 if (!field_class_type->Equals(GetDeclaringClass())) {
4801 Fail(VERIFY_ERROR_ACCESS_FIELD) << "could not check field put for final field modify of "
4802 << field_class_descriptor
4803 << "."
4804 << dex_file_->GetFieldName(field_id)
4805 << " from other class "
4806 << GetDeclaringClass();
4807 }
4808 }
4809 }
4810 if (field_type == nullptr) {
4811 const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4812 const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
4813 field_type = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
4814 }
4815 DCHECK(field_type != nullptr);
4816 const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
4817 static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4818 "Unexpected third access type");
4819 if (kAccType == FieldAccessType::kAccPut) {
4820 // sput or iput.
4821 if (is_primitive) {
4822 VerifyPrimitivePut(*field_type, insn_type, vregA);
4823 } else {
4824 if (!insn_type.IsAssignableFrom(*field_type, this)) {
4825 // If the field type is not a reference, this is a global failure rather than
4826 // a class change failure as the instructions and the descriptors for the type
4827 // should have been consistent within the same file at compile time.
4828 VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4829 : VERIFY_ERROR_BAD_CLASS_HARD;
4830 Fail(error) << "expected field " << ArtField::PrettyField(field)
4831 << " to be compatible with type '" << insn_type
4832 << "' but found type '" << *field_type
4833 << "' in put-object";
4834 return;
4835 }
4836 work_line_->VerifyRegisterType(this, vregA, *field_type);
4837 }
4838 } else if (kAccType == FieldAccessType::kAccGet) {
4839 // sget or iget.
4840 if (is_primitive) {
4841 if (field_type->Equals(insn_type) ||
4842 (field_type->IsFloat() && insn_type.IsInteger()) ||
4843 (field_type->IsDouble() && insn_type.IsLong())) {
4844 // expected that read is of the correct primitive type or that int reads are reading
4845 // floats or long reads are reading doubles
4846 } else {
4847 // This is a global failure rather than a class change failure as the instructions and
4848 // the descriptors for the type should have been consistent within the same file at
4849 // compile time
4850 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
4851 << " to be of type '" << insn_type
4852 << "' but found type '" << *field_type << "' in get";
4853 return;
4854 }
4855 } else {
4856 if (!insn_type.IsAssignableFrom(*field_type, this)) {
4857 // If the field type is not a reference, this is a global failure rather than
4858 // a class change failure as the instructions and the descriptors for the type
4859 // should have been consistent within the same file at compile time.
4860 VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4861 : VERIFY_ERROR_BAD_CLASS_HARD;
4862 Fail(error) << "expected field " << ArtField::PrettyField(field)
4863 << " to be compatible with type '" << insn_type
4864 << "' but found type '" << *field_type
4865 << "' in get-object";
4866 if (error != VERIFY_ERROR_BAD_CLASS_HARD) {
4867 work_line_->SetRegisterType<LockOp::kClear>(this, vregA, reg_types_.Conflict());
4868 }
4869 return;
4870 }
4871 }
4872 if (!field_type->IsLowHalf()) {
4873 work_line_->SetRegisterType<LockOp::kClear>(this, vregA, *field_type);
4874 } else {
4875 work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(®_types_));
4876 }
4877 } else {
4878 LOG(FATAL) << "Unexpected case.";
4879 }
4880 }
4881
4882 template <bool kVerifierDebug>
UpdateRegisters(uint32_t next_insn,RegisterLine * merge_line,bool update_merge_line)4883 bool MethodVerifier<kVerifierDebug>::UpdateRegisters(uint32_t next_insn,
4884 RegisterLine* merge_line,
4885 bool update_merge_line) {
4886 bool changed = true;
4887 RegisterLine* target_line = reg_table_.GetLine(next_insn);
4888 if (!GetInstructionFlags(next_insn).IsVisitedOrChanged()) {
4889 /*
4890 * We haven't processed this instruction before, and we haven't touched the registers here, so
4891 * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4892 * only way a register can transition out of "unknown", so this is not just an optimization.)
4893 */
4894 target_line->CopyFromLine(merge_line);
4895 if (GetInstructionFlags(next_insn).IsReturn()) {
4896 // Verify that the monitor stack is empty on return.
4897 merge_line->VerifyMonitorStackEmpty(this);
4898
4899 // For returns we only care about the operand to the return, all other registers are dead.
4900 // Initialize them as conflicts so they don't add to GC and deoptimization information.
4901 const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn);
4902 AdjustReturnLine(this, ret_inst, target_line);
4903 // Directly bail if a hard failure was found.
4904 if (flags_.have_pending_hard_failure_) {
4905 return false;
4906 }
4907 }
4908 } else {
4909 RegisterLineArenaUniquePtr copy;
4910 if (kVerifierDebug) {
4911 copy.reset(RegisterLine::Create(target_line->NumRegs(), allocator_, GetRegTypeCache()));
4912 copy->CopyFromLine(target_line);
4913 }
4914 changed = target_line->MergeRegisters(this, merge_line);
4915 if (flags_.have_pending_hard_failure_) {
4916 return false;
4917 }
4918 if (kVerifierDebug && changed) {
4919 LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4920 << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4921 << copy->Dump(this) << " MERGE\n"
4922 << merge_line->Dump(this) << " ==\n"
4923 << target_line->Dump(this);
4924 }
4925 if (update_merge_line && changed) {
4926 merge_line->CopyFromLine(target_line);
4927 }
4928 }
4929 if (changed) {
4930 GetModifiableInstructionFlags(next_insn).SetChanged();
4931 }
4932 return true;
4933 }
4934
4935 template <bool kVerifierDebug>
GetMethodReturnType()4936 const RegType& MethodVerifier<kVerifierDebug>::GetMethodReturnType() {
4937 if (return_type_ == nullptr) {
4938 if (method_being_verified_ != nullptr) {
4939 ObjPtr<mirror::Class> return_type_class = can_load_classes_
4940 ? method_being_verified_->ResolveReturnType()
4941 : method_being_verified_->LookupResolvedReturnType();
4942 if (return_type_class != nullptr) {
4943 return_type_ = &FromClass(method_being_verified_->GetReturnTypeDescriptor(),
4944 return_type_class,
4945 return_type_class->CannotBeAssignedFromOtherTypes());
4946 } else {
4947 DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4948 self_->ClearException();
4949 }
4950 }
4951 if (return_type_ == nullptr) {
4952 const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4953 const dex::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4954 dex::TypeIndex return_type_idx = proto_id.return_type_idx_;
4955 const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4956 return_type_ = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
4957 }
4958 }
4959 return *return_type_;
4960 }
4961
4962 template <bool kVerifierDebug>
DetermineCat1Constant(int32_t value,bool precise)4963 const RegType& MethodVerifier<kVerifierDebug>::DetermineCat1Constant(int32_t value, bool precise) {
4964 if (precise) {
4965 // Precise constant type.
4966 return reg_types_.FromCat1Const(value, true);
4967 } else {
4968 // Imprecise constant type.
4969 if (value < -32768) {
4970 return reg_types_.IntConstant();
4971 } else if (value < -128) {
4972 return reg_types_.ShortConstant();
4973 } else if (value < 0) {
4974 return reg_types_.ByteConstant();
4975 } else if (value == 0) {
4976 return reg_types_.Zero();
4977 } else if (value == 1) {
4978 return reg_types_.One();
4979 } else if (value < 128) {
4980 return reg_types_.PosByteConstant();
4981 } else if (value < 32768) {
4982 return reg_types_.PosShortConstant();
4983 } else if (value < 65536) {
4984 return reg_types_.CharConstant();
4985 } else {
4986 return reg_types_.IntConstant();
4987 }
4988 }
4989 }
4990
4991 } // namespace
4992 } // namespace impl
4993
MethodVerifier(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,VerifierDeps * verifier_deps,const DexFile * dex_file,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t dex_method_idx,bool can_load_classes,bool allow_thread_suspension,bool allow_soft_failures,bool aot_mode)4994 MethodVerifier::MethodVerifier(Thread* self,
4995 ClassLinker* class_linker,
4996 ArenaPool* arena_pool,
4997 VerifierDeps* verifier_deps,
4998 const DexFile* dex_file,
4999 const dex::ClassDef& class_def,
5000 const dex::CodeItem* code_item,
5001 uint32_t dex_method_idx,
5002 bool can_load_classes,
5003 bool allow_thread_suspension,
5004 bool allow_soft_failures,
5005 bool aot_mode)
5006 : self_(self),
5007 arena_stack_(arena_pool),
5008 allocator_(&arena_stack_),
5009 reg_types_(class_linker, can_load_classes, allocator_, allow_thread_suspension),
5010 reg_table_(allocator_),
5011 work_insn_idx_(dex::kDexNoIndex),
5012 dex_method_idx_(dex_method_idx),
5013 dex_file_(dex_file),
5014 class_def_(class_def),
5015 code_item_accessor_(*dex_file, code_item),
5016 // TODO: make it designated initialization when we compile as C++20.
5017 flags_({false, false, false, false, aot_mode}),
5018 encountered_failure_types_(0),
5019 can_load_classes_(can_load_classes),
5020 allow_soft_failures_(allow_soft_failures),
5021 class_linker_(class_linker),
5022 verifier_deps_(verifier_deps),
5023 link_(nullptr) {
5024 self->PushVerifier(this);
5025 }
5026
~MethodVerifier()5027 MethodVerifier::~MethodVerifier() {
5028 Thread::Current()->PopVerifier(this);
5029 STLDeleteElements(&failure_messages_);
5030 }
5031
VerifyMethod(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,VerifierDeps * verifier_deps,uint32_t method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,ArtMethod * method,uint32_t method_access_flags,CompilerCallbacks * callbacks,VerifierCallback * verifier_callback,bool allow_soft_failures,HardFailLogMode log_level,bool need_precise_constants,uint32_t api_level,bool aot_mode,std::string * hard_failure_msg)5032 MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
5033 ClassLinker* class_linker,
5034 ArenaPool* arena_pool,
5035 VerifierDeps* verifier_deps,
5036 uint32_t method_idx,
5037 const DexFile* dex_file,
5038 Handle<mirror::DexCache> dex_cache,
5039 Handle<mirror::ClassLoader> class_loader,
5040 const dex::ClassDef& class_def,
5041 const dex::CodeItem* code_item,
5042 ArtMethod* method,
5043 uint32_t method_access_flags,
5044 CompilerCallbacks* callbacks,
5045 VerifierCallback* verifier_callback,
5046 bool allow_soft_failures,
5047 HardFailLogMode log_level,
5048 bool need_precise_constants,
5049 uint32_t api_level,
5050 bool aot_mode,
5051 std::string* hard_failure_msg) {
5052 if (VLOG_IS_ON(verifier_debug)) {
5053 return VerifyMethod<true>(self,
5054 class_linker,
5055 arena_pool,
5056 verifier_deps,
5057 method_idx,
5058 dex_file,
5059 dex_cache,
5060 class_loader,
5061 class_def,
5062 code_item,
5063 method,
5064 method_access_flags,
5065 callbacks,
5066 verifier_callback,
5067 allow_soft_failures,
5068 log_level,
5069 need_precise_constants,
5070 api_level,
5071 aot_mode,
5072 hard_failure_msg);
5073 } else {
5074 return VerifyMethod<false>(self,
5075 class_linker,
5076 arena_pool,
5077 verifier_deps,
5078 method_idx,
5079 dex_file,
5080 dex_cache,
5081 class_loader,
5082 class_def,
5083 code_item,
5084 method,
5085 method_access_flags,
5086 callbacks,
5087 verifier_callback,
5088 allow_soft_failures,
5089 log_level,
5090 need_precise_constants,
5091 api_level,
5092 aot_mode,
5093 hard_failure_msg);
5094 }
5095 }
5096
5097 // Return whether the runtime knows how to execute a method without needing to
5098 // re-verify it at runtime (and therefore save on first use of the class).
5099 // The AOT/JIT compiled code is not affected.
CanRuntimeHandleVerificationFailure(uint32_t encountered_failure_types)5100 static inline bool CanRuntimeHandleVerificationFailure(uint32_t encountered_failure_types) {
5101 constexpr uint32_t unresolved_mask =
5102 verifier::VerifyError::VERIFY_ERROR_UNRESOLVED_TYPE_CHECK |
5103 verifier::VerifyError::VERIFY_ERROR_NO_CLASS |
5104 verifier::VerifyError::VERIFY_ERROR_CLASS_CHANGE |
5105 verifier::VerifyError::VERIFY_ERROR_INSTANTIATION |
5106 verifier::VerifyError::VERIFY_ERROR_ACCESS_CLASS |
5107 verifier::VerifyError::VERIFY_ERROR_ACCESS_FIELD |
5108 verifier::VerifyError::VERIFY_ERROR_NO_METHOD |
5109 verifier::VerifyError::VERIFY_ERROR_ACCESS_METHOD;
5110 return (encountered_failure_types & (~unresolved_mask)) == 0;
5111 }
5112
5113 template <bool kVerifierDebug>
VerifyMethod(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,VerifierDeps * verifier_deps,uint32_t method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,ArtMethod * method,uint32_t method_access_flags,CompilerCallbacks * callbacks,VerifierCallback * verifier_callback,bool allow_soft_failures,HardFailLogMode log_level,bool need_precise_constants,uint32_t api_level,bool aot_mode,std::string * hard_failure_msg)5114 MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
5115 ClassLinker* class_linker,
5116 ArenaPool* arena_pool,
5117 VerifierDeps* verifier_deps,
5118 uint32_t method_idx,
5119 const DexFile* dex_file,
5120 Handle<mirror::DexCache> dex_cache,
5121 Handle<mirror::ClassLoader> class_loader,
5122 const dex::ClassDef& class_def,
5123 const dex::CodeItem* code_item,
5124 ArtMethod* method,
5125 uint32_t method_access_flags,
5126 CompilerCallbacks* callbacks,
5127 VerifierCallback* verifier_callback,
5128 bool allow_soft_failures,
5129 HardFailLogMode log_level,
5130 bool need_precise_constants,
5131 uint32_t api_level,
5132 bool aot_mode,
5133 std::string* hard_failure_msg) {
5134 MethodVerifier::FailureData result;
5135 uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
5136
5137 impl::MethodVerifier<kVerifierDebug> verifier(self,
5138 class_linker,
5139 arena_pool,
5140 verifier_deps,
5141 dex_file,
5142 code_item,
5143 method_idx,
5144 /* can_load_classes= */ true,
5145 /* allow_thread_suspension= */ true,
5146 allow_soft_failures,
5147 aot_mode,
5148 dex_cache,
5149 class_loader,
5150 class_def,
5151 method,
5152 method_access_flags,
5153 need_precise_constants,
5154 /* verify to dump */ false,
5155 /* fill_register_lines= */ false,
5156 api_level);
5157 if (verifier.Verify()) {
5158 // Verification completed, however failures may be pending that didn't cause the verification
5159 // to hard fail.
5160 CHECK(!verifier.flags_.have_pending_hard_failure_);
5161
5162 if (code_item != nullptr && callbacks != nullptr) {
5163 // Let the interested party know that the method was verified.
5164 callbacks->MethodVerified(&verifier);
5165 }
5166
5167 bool set_dont_compile = false;
5168 bool must_count_locks = false;
5169 if (verifier.failures_.size() != 0) {
5170 if (VLOG_IS_ON(verifier)) {
5171 verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
5172 << dex_file->PrettyMethod(method_idx) << "\n");
5173 }
5174 if (kVerifierDebug) {
5175 LOG(INFO) << verifier.info_messages_.str();
5176 verifier.Dump(LOG_STREAM(INFO));
5177 }
5178 if (CanRuntimeHandleVerificationFailure(verifier.encountered_failure_types_)) {
5179 if (verifier.encountered_failure_types_ & VERIFY_ERROR_UNRESOLVED_TYPE_CHECK) {
5180 result.kind = FailureKind::kTypeChecksFailure;
5181 } else {
5182 result.kind = FailureKind::kAccessChecksFailure;
5183 }
5184 } else {
5185 result.kind = FailureKind::kSoftFailure;
5186 }
5187 if (!CanCompilerHandleVerificationFailure(verifier.encountered_failure_types_)) {
5188 set_dont_compile = true;
5189 }
5190 if ((verifier.encountered_failure_types_ & VerifyError::VERIFY_ERROR_LOCKING) != 0) {
5191 must_count_locks = true;
5192 }
5193 }
5194
5195 if (method != nullptr) {
5196 verifier_callback->SetDontCompile(method, set_dont_compile);
5197 verifier_callback->SetMustCountLocks(method, must_count_locks);
5198 }
5199 } else {
5200 // Bad method data.
5201 CHECK_NE(verifier.failures_.size(), 0U);
5202
5203 if (UNLIKELY(verifier.flags_.have_pending_experimental_failure_)) {
5204 // Failed due to being forced into interpreter. This is ok because
5205 // we just want to skip verification.
5206 result.kind = FailureKind::kSoftFailure;
5207 } else {
5208 CHECK(verifier.flags_.have_pending_hard_failure_);
5209 if (VLOG_IS_ON(verifier)) {
5210 log_level = std::max(HardFailLogMode::kLogVerbose, log_level);
5211 }
5212 if (log_level >= HardFailLogMode::kLogVerbose) {
5213 LogSeverity severity;
5214 switch (log_level) {
5215 case HardFailLogMode::kLogVerbose:
5216 severity = LogSeverity::VERBOSE;
5217 break;
5218 case HardFailLogMode::kLogWarning:
5219 severity = LogSeverity::WARNING;
5220 break;
5221 case HardFailLogMode::kLogInternalFatal:
5222 severity = LogSeverity::FATAL_WITHOUT_ABORT;
5223 break;
5224 default:
5225 LOG(FATAL) << "Unsupported log-level " << static_cast<uint32_t>(log_level);
5226 UNREACHABLE();
5227 }
5228 verifier.DumpFailures(LOG_STREAM(severity) << "Verification error in "
5229 << dex_file->PrettyMethod(method_idx)
5230 << "\n");
5231 }
5232 if (hard_failure_msg != nullptr) {
5233 CHECK(!verifier.failure_messages_.empty());
5234 *hard_failure_msg =
5235 verifier.failure_messages_[verifier.failure_messages_.size() - 1]->str();
5236 }
5237 result.kind = FailureKind::kHardFailure;
5238
5239 if (callbacks != nullptr) {
5240 // Let the interested party know that we failed the class.
5241 ClassReference ref(dex_file, dex_file->GetIndexForClassDef(class_def));
5242 callbacks->ClassRejected(ref);
5243 }
5244 }
5245 if (kVerifierDebug || VLOG_IS_ON(verifier)) {
5246 LOG(ERROR) << verifier.info_messages_.str();
5247 verifier.Dump(LOG_STREAM(ERROR));
5248 }
5249 // Under verifier-debug, dump the complete log into the error message.
5250 if (kVerifierDebug && hard_failure_msg != nullptr) {
5251 hard_failure_msg->append("\n");
5252 hard_failure_msg->append(verifier.info_messages_.str());
5253 hard_failure_msg->append("\n");
5254 std::ostringstream oss;
5255 verifier.Dump(oss);
5256 hard_failure_msg->append(oss.str());
5257 }
5258 }
5259 if (kTimeVerifyMethod) {
5260 uint64_t duration_ns = NanoTime() - start_ns;
5261 if (duration_ns > MsToNs(Runtime::Current()->GetVerifierLoggingThresholdMs())) {
5262 double bytecodes_per_second =
5263 verifier.code_item_accessor_.InsnsSizeInCodeUnits() / (duration_ns * 1e-9);
5264 LOG(WARNING) << "Verification of " << dex_file->PrettyMethod(method_idx)
5265 << " took " << PrettyDuration(duration_ns)
5266 << (impl::IsLargeMethod(verifier.CodeItem()) ? " (large method)" : "")
5267 << " (" << StringPrintf("%.2f", bytecodes_per_second) << " bytecodes/s)"
5268 << " (" << verifier.allocator_.ApproximatePeakBytes()
5269 << "B approximate peak alloc)";
5270 }
5271 }
5272 result.types = verifier.encountered_failure_types_;
5273 return result;
5274 }
5275
CalculateVerificationInfo(Thread * self,ArtMethod * method,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)5276 MethodVerifier* MethodVerifier::CalculateVerificationInfo(
5277 Thread* self,
5278 ArtMethod* method,
5279 Handle<mirror::DexCache> dex_cache,
5280 Handle<mirror::ClassLoader> class_loader) {
5281 std::unique_ptr<impl::MethodVerifier<false>> verifier(
5282 new impl::MethodVerifier<false>(self,
5283 Runtime::Current()->GetClassLinker(),
5284 Runtime::Current()->GetArenaPool(),
5285 /* verifier_deps= */ nullptr,
5286 method->GetDexFile(),
5287 method->GetCodeItem(),
5288 method->GetDexMethodIndex(),
5289 /* can_load_classes= */ false,
5290 /* allow_thread_suspension= */ false,
5291 /* allow_soft_failures= */ true,
5292 Runtime::Current()->IsAotCompiler(),
5293 dex_cache,
5294 class_loader,
5295 *method->GetDeclaringClass()->GetClassDef(),
5296 method,
5297 method->GetAccessFlags(),
5298 /* need_precise_constants= */ true,
5299 /* verify_to_dump= */ false,
5300 /* fill_register_lines= */ true,
5301 // Just use the verifier at the current skd-version.
5302 // This might affect what soft-verifier errors are reported.
5303 // Callers can then filter out relevant errors if needed.
5304 Runtime::Current()->GetTargetSdkVersion()));
5305 verifier->Verify();
5306 if (VLOG_IS_ON(verifier)) {
5307 verifier->DumpFailures(VLOG_STREAM(verifier));
5308 VLOG(verifier) << verifier->info_messages_.str();
5309 verifier->Dump(VLOG_STREAM(verifier));
5310 }
5311 if (verifier->flags_.have_pending_hard_failure_) {
5312 return nullptr;
5313 } else {
5314 return verifier.release();
5315 }
5316 }
5317
VerifyMethodAndDump(Thread * self,VariableIndentationOutputStream * vios,uint32_t dex_method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,ArtMethod * method,uint32_t method_access_flags,uint32_t api_level)5318 MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self,
5319 VariableIndentationOutputStream* vios,
5320 uint32_t dex_method_idx,
5321 const DexFile* dex_file,
5322 Handle<mirror::DexCache> dex_cache,
5323 Handle<mirror::ClassLoader> class_loader,
5324 const dex::ClassDef& class_def,
5325 const dex::CodeItem* code_item,
5326 ArtMethod* method,
5327 uint32_t method_access_flags,
5328 uint32_t api_level) {
5329 impl::MethodVerifier<false>* verifier = new impl::MethodVerifier<false>(
5330 self,
5331 Runtime::Current()->GetClassLinker(),
5332 Runtime::Current()->GetArenaPool(),
5333 /* verifier_deps= */ nullptr,
5334 dex_file,
5335 code_item,
5336 dex_method_idx,
5337 /* can_load_classes= */ true,
5338 /* allow_thread_suspension= */ true,
5339 /* allow_soft_failures= */ true,
5340 Runtime::Current()->IsAotCompiler(),
5341 dex_cache,
5342 class_loader,
5343 class_def,
5344 method,
5345 method_access_flags,
5346 /* need_precise_constants= */ true,
5347 /* verify_to_dump= */ true,
5348 /* fill_register_lines= */ false,
5349 api_level);
5350 verifier->Verify();
5351 verifier->DumpFailures(vios->Stream());
5352 vios->Stream() << verifier->info_messages_.str();
5353 // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
5354 // and querying any info is dangerous/can abort.
5355 if (verifier->flags_.have_pending_hard_failure_) {
5356 delete verifier;
5357 return nullptr;
5358 } else {
5359 verifier->Dump(vios);
5360 return verifier;
5361 }
5362 }
5363
FindLocksAtDexPc(ArtMethod * m,uint32_t dex_pc,std::vector<MethodVerifier::DexLockInfo> * monitor_enter_dex_pcs,uint32_t api_level)5364 void MethodVerifier::FindLocksAtDexPc(
5365 ArtMethod* m,
5366 uint32_t dex_pc,
5367 std::vector<MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs,
5368 uint32_t api_level) {
5369 StackHandleScope<2> hs(Thread::Current());
5370 Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
5371 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
5372 impl::MethodVerifier<false> verifier(hs.Self(),
5373 Runtime::Current()->GetClassLinker(),
5374 Runtime::Current()->GetArenaPool(),
5375 /* verifier_deps= */ nullptr,
5376 m->GetDexFile(),
5377 m->GetCodeItem(),
5378 m->GetDexMethodIndex(),
5379 /* can_load_classes= */ false,
5380 /* allow_thread_suspension= */ false,
5381 /* allow_soft_failures= */ true,
5382 Runtime::Current()->IsAotCompiler(),
5383 dex_cache,
5384 class_loader,
5385 m->GetClassDef(),
5386 m,
5387 m->GetAccessFlags(),
5388 /* need_precise_constants= */ false,
5389 /* verify_to_dump= */ false,
5390 /* fill_register_lines= */ false,
5391 api_level);
5392 verifier.interesting_dex_pc_ = dex_pc;
5393 verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
5394 verifier.FindLocksAtDexPc();
5395 }
5396
CreateVerifier(Thread * self,VerifierDeps * verifier_deps,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t method_idx,ArtMethod * method,uint32_t access_flags,bool can_load_classes,bool allow_soft_failures,bool need_precise_constants,bool verify_to_dump,bool allow_thread_suspension,uint32_t api_level)5397 MethodVerifier* MethodVerifier::CreateVerifier(Thread* self,
5398 VerifierDeps* verifier_deps,
5399 const DexFile* dex_file,
5400 Handle<mirror::DexCache> dex_cache,
5401 Handle<mirror::ClassLoader> class_loader,
5402 const dex::ClassDef& class_def,
5403 const dex::CodeItem* code_item,
5404 uint32_t method_idx,
5405 ArtMethod* method,
5406 uint32_t access_flags,
5407 bool can_load_classes,
5408 bool allow_soft_failures,
5409 bool need_precise_constants,
5410 bool verify_to_dump,
5411 bool allow_thread_suspension,
5412 uint32_t api_level) {
5413 return new impl::MethodVerifier<false>(self,
5414 Runtime::Current()->GetClassLinker(),
5415 Runtime::Current()->GetArenaPool(),
5416 verifier_deps,
5417 dex_file,
5418 code_item,
5419 method_idx,
5420 can_load_classes,
5421 allow_thread_suspension,
5422 allow_soft_failures,
5423 Runtime::Current()->IsAotCompiler(),
5424 dex_cache,
5425 class_loader,
5426 class_def,
5427 method,
5428 access_flags,
5429 need_precise_constants,
5430 verify_to_dump,
5431 /* fill_register_lines= */ false,
5432 api_level);
5433 }
5434
Init(ClassLinker * class_linker)5435 void MethodVerifier::Init(ClassLinker* class_linker) {
5436 art::verifier::RegTypeCache::Init(class_linker);
5437 }
5438
Shutdown()5439 void MethodVerifier::Shutdown() {
5440 verifier::RegTypeCache::ShutDown();
5441 }
5442
VisitStaticRoots(RootVisitor * visitor)5443 void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
5444 RegTypeCache::VisitStaticRoots(visitor);
5445 }
5446
VisitRoots(RootVisitor * visitor,const RootInfo & root_info)5447 void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
5448 reg_types_.VisitRoots(visitor, root_info);
5449 }
5450
Fail(VerifyError error,bool pending_exc)5451 std::ostream& MethodVerifier::Fail(VerifyError error, bool pending_exc) {
5452 // Mark the error type as encountered.
5453 encountered_failure_types_ |= static_cast<uint32_t>(error);
5454
5455 if (pending_exc) {
5456 switch (error) {
5457 case VERIFY_ERROR_NO_CLASS:
5458 case VERIFY_ERROR_UNRESOLVED_TYPE_CHECK:
5459 case VERIFY_ERROR_NO_METHOD:
5460 case VERIFY_ERROR_ACCESS_CLASS:
5461 case VERIFY_ERROR_ACCESS_FIELD:
5462 case VERIFY_ERROR_ACCESS_METHOD:
5463 case VERIFY_ERROR_INSTANTIATION:
5464 case VERIFY_ERROR_CLASS_CHANGE:
5465 if (!IsAotMode()) {
5466 // If we fail again at runtime, mark that this instruction would throw.
5467 flags_.have_pending_runtime_throw_failure_ = true;
5468 }
5469 // How to handle runtime failures for instructions that are not flagged kThrow.
5470 //
5471 // The verifier may fail before we touch any instruction, for the signature of a method. So
5472 // add a check.
5473 if (work_insn_idx_ < dex::kDexNoIndex) {
5474 const Instruction& inst = code_item_accessor_.InstructionAt(work_insn_idx_);
5475 Instruction::Code opcode = inst.Opcode();
5476 if ((Instruction::FlagsOf(opcode) & Instruction::kThrow) == 0 &&
5477 !impl::IsCompatThrow(opcode) &&
5478 GetInstructionFlags(work_insn_idx_).IsInTry()) {
5479 if (Runtime::Current()->IsVerifierMissingKThrowFatal()) {
5480 LOG(FATAL) << "Unexpected throw: " << std::hex << work_insn_idx_ << " " << opcode;
5481 UNREACHABLE();
5482 }
5483 // We need to save the work_line if the instruction wasn't throwing before. Otherwise
5484 // we'll try to merge garbage.
5485 // Note: this assumes that Fail is called before we do any work_line modifications.
5486 saved_line_->CopyFromLine(work_line_.get());
5487 }
5488 }
5489 break;
5490
5491 case VERIFY_ERROR_FORCE_INTERPRETER:
5492 // This will be reported to the runtime as a soft failure.
5493 break;
5494
5495 case VERIFY_ERROR_LOCKING:
5496 if (!IsAotMode()) {
5497 // If we fail again at runtime, mark that this instruction would throw.
5498 flags_.have_pending_runtime_throw_failure_ = true;
5499 }
5500 // This will be reported to the runtime as a soft failure.
5501 break;
5502
5503 // Indication that verification should be retried at runtime.
5504 case VERIFY_ERROR_BAD_CLASS_SOFT:
5505 if (!allow_soft_failures_) {
5506 flags_.have_pending_hard_failure_ = true;
5507 }
5508 break;
5509
5510 // Hard verification failures at compile time will still fail at runtime, so the class is
5511 // marked as rejected to prevent it from being compiled.
5512 case VERIFY_ERROR_BAD_CLASS_HARD: {
5513 flags_.have_pending_hard_failure_ = true;
5514 break;
5515 }
5516
5517 case VERIFY_ERROR_SKIP_COMPILER:
5518 // Nothing to do, just remember the failure type.
5519 break;
5520 }
5521 } else if (kIsDebugBuild) {
5522 CHECK_NE(error, VERIFY_ERROR_BAD_CLASS_SOFT);
5523 CHECK_NE(error, VERIFY_ERROR_BAD_CLASS_HARD);
5524 }
5525
5526 failures_.push_back(error);
5527 std::string location(StringPrintf("%s: [0x%X] ", dex_file_->PrettyMethod(dex_method_idx_).c_str(),
5528 work_insn_idx_));
5529 std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
5530 failure_messages_.push_back(failure_message);
5531 return *failure_message;
5532 }
5533
LogVerifyInfo()5534 ScopedNewLine MethodVerifier::LogVerifyInfo() {
5535 ScopedNewLine ret{info_messages_};
5536 ret << "VFY: " << dex_file_->PrettyMethod(dex_method_idx_)
5537 << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
5538 return ret;
5539 }
5540
FailureKindMax(FailureKind fk1,FailureKind fk2)5541 static FailureKind FailureKindMax(FailureKind fk1, FailureKind fk2) {
5542 static_assert(FailureKind::kNoFailure < FailureKind::kSoftFailure
5543 && FailureKind::kSoftFailure < FailureKind::kHardFailure,
5544 "Unexpected FailureKind order");
5545 return std::max(fk1, fk2);
5546 }
5547
Merge(const MethodVerifier::FailureData & fd)5548 void MethodVerifier::FailureData::Merge(const MethodVerifier::FailureData& fd) {
5549 kind = FailureKindMax(kind, fd.kind);
5550 types |= fd.types;
5551 }
5552
5553 } // namespace verifier
5554 } // namespace art
5555