1 //===--- CGRecordLayout.h - LLVM Record Layout Information ------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_CLANG_LIB_CODEGEN_CGRECORDLAYOUT_H 10 #define LLVM_CLANG_LIB_CODEGEN_CGRECORDLAYOUT_H 11 12 #include "clang/AST/CharUnits.h" 13 #include "clang/AST/DeclCXX.h" 14 #include "clang/Basic/LLVM.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/IR/DerivedTypes.h" 17 18 namespace llvm { 19 class StructType; 20 } 21 22 namespace clang { 23 namespace CodeGen { 24 25 /// Structure with information about how a bitfield should be accessed. 26 /// 27 /// Often we layout a sequence of bitfields as a contiguous sequence of bits. 28 /// When the AST record layout does this, we represent it in the LLVM IR's type 29 /// as either a sequence of i8 members or a byte array to reserve the number of 30 /// bytes touched without forcing any particular alignment beyond the basic 31 /// character alignment. 32 /// 33 /// Then accessing a particular bitfield involves converting this byte array 34 /// into a single integer of that size (i24 or i40 -- may not be power-of-two 35 /// size), loading it, and shifting and masking to extract the particular 36 /// subsequence of bits which make up that particular bitfield. This structure 37 /// encodes the information used to construct the extraction code sequences. 38 /// The CGRecordLayout also has a field index which encodes which byte-sequence 39 /// this bitfield falls within. Let's assume the following C struct: 40 /// 41 /// struct S { 42 /// char a, b, c; 43 /// unsigned bits : 3; 44 /// unsigned more_bits : 4; 45 /// unsigned still_more_bits : 7; 46 /// }; 47 /// 48 /// This will end up as the following LLVM type. The first array is the 49 /// bitfield, and the second is the padding out to a 4-byte alignment. 50 /// 51 /// %t = type { i8, i8, i8, i8, i8, [3 x i8] } 52 /// 53 /// When generating code to access more_bits, we'll generate something 54 /// essentially like this: 55 /// 56 /// define i32 @foo(%t* %base) { 57 /// %0 = gep %t* %base, i32 0, i32 3 58 /// %2 = load i8* %1 59 /// %3 = lshr i8 %2, 3 60 /// %4 = and i8 %3, 15 61 /// %5 = zext i8 %4 to i32 62 /// ret i32 %i 63 /// } 64 /// 65 struct CGBitFieldInfo { 66 /// The offset within a contiguous run of bitfields that are represented as 67 /// a single "field" within the LLVM struct type. This offset is in bits. 68 unsigned Offset : 16; 69 70 /// The total size of the bit-field, in bits. 71 unsigned Size : 15; 72 73 /// Whether the bit-field is signed. 74 unsigned IsSigned : 1; 75 76 /// The storage size in bits which should be used when accessing this 77 /// bitfield. 78 unsigned StorageSize; 79 80 /// The offset of the bitfield storage from the start of the struct. 81 CharUnits StorageOffset; 82 83 /// The offset within a contiguous run of bitfields that are represented as a 84 /// single "field" within the LLVM struct type, taking into account the AAPCS 85 /// rules for volatile bitfields. This offset is in bits. 86 unsigned VolatileOffset : 16; 87 88 /// The storage size in bits which should be used when accessing this 89 /// bitfield. 90 unsigned VolatileStorageSize; 91 92 /// The offset of the bitfield storage from the start of the struct. 93 CharUnits VolatileStorageOffset; 94 CGBitFieldInfoCGBitFieldInfo95 CGBitFieldInfo() 96 : Offset(), Size(), IsSigned(), StorageSize(), StorageOffset(), 97 VolatileOffset(), VolatileStorageSize(), VolatileStorageOffset() {} 98 CGBitFieldInfoCGBitFieldInfo99 CGBitFieldInfo(unsigned Offset, unsigned Size, bool IsSigned, 100 unsigned StorageSize, CharUnits StorageOffset) 101 : Offset(Offset), Size(Size), IsSigned(IsSigned), 102 StorageSize(StorageSize), StorageOffset(StorageOffset) {} 103 104 void print(raw_ostream &OS) const; 105 void dump() const; 106 107 /// Given a bit-field decl, build an appropriate helper object for 108 /// accessing that field (which is expected to have the given offset and 109 /// size). 110 static CGBitFieldInfo MakeInfo(class CodeGenTypes &Types, 111 const FieldDecl *FD, 112 uint64_t Offset, uint64_t Size, 113 uint64_t StorageSize, 114 CharUnits StorageOffset); 115 }; 116 117 /// CGRecordLayout - This class handles struct and union layout info while 118 /// lowering AST types to LLVM types. 119 /// 120 /// These layout objects are only created on demand as IR generation requires. 121 class CGRecordLayout { 122 friend class CodeGenTypes; 123 124 CGRecordLayout(const CGRecordLayout &) = delete; 125 void operator=(const CGRecordLayout &) = delete; 126 127 private: 128 /// The LLVM type corresponding to this record layout; used when 129 /// laying it out as a complete object. 130 llvm::StructType *CompleteObjectType; 131 132 /// The LLVM type for the non-virtual part of this record layout; 133 /// used when laying it out as a base subobject. 134 llvm::StructType *BaseSubobjectType; 135 136 /// Map from (non-bit-field) struct field to the corresponding llvm struct 137 /// type field no. This info is populated by record builder. 138 llvm::DenseMap<const FieldDecl *, unsigned> FieldInfo; 139 140 /// Map from (bit-field) struct field to the corresponding llvm struct type 141 /// field no. This info is populated by record builder. 142 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; 143 144 // FIXME: Maybe we could use a CXXBaseSpecifier as the key and use a single 145 // map for both virtual and non-virtual bases. 146 llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; 147 148 /// Map from virtual bases to their field index in the complete object. 149 llvm::DenseMap<const CXXRecordDecl *, unsigned> CompleteObjectVirtualBases; 150 151 /// False if any direct or indirect subobject of this class, when 152 /// considered as a complete object, requires a non-zero bitpattern 153 /// when zero-initialized. 154 bool IsZeroInitializable : 1; 155 156 /// False if any direct or indirect subobject of this class, when 157 /// considered as a base subobject, requires a non-zero bitpattern 158 /// when zero-initialized. 159 bool IsZeroInitializableAsBase : 1; 160 161 public: CGRecordLayout(llvm::StructType * CompleteObjectType,llvm::StructType * BaseSubobjectType,bool IsZeroInitializable,bool IsZeroInitializableAsBase)162 CGRecordLayout(llvm::StructType *CompleteObjectType, 163 llvm::StructType *BaseSubobjectType, 164 bool IsZeroInitializable, 165 bool IsZeroInitializableAsBase) 166 : CompleteObjectType(CompleteObjectType), 167 BaseSubobjectType(BaseSubobjectType), 168 IsZeroInitializable(IsZeroInitializable), 169 IsZeroInitializableAsBase(IsZeroInitializableAsBase) {} 170 171 /// Return the "complete object" LLVM type associated with 172 /// this record. getLLVMType()173 llvm::StructType *getLLVMType() const { 174 return CompleteObjectType; 175 } 176 177 /// Return the "base subobject" LLVM type associated with 178 /// this record. getBaseSubobjectLLVMType()179 llvm::StructType *getBaseSubobjectLLVMType() const { 180 return BaseSubobjectType; 181 } 182 183 /// Check whether this struct can be C++ zero-initialized 184 /// with a zeroinitializer. isZeroInitializable()185 bool isZeroInitializable() const { 186 return IsZeroInitializable; 187 } 188 189 /// Check whether this struct can be C++ zero-initialized 190 /// with a zeroinitializer when considered as a base subobject. isZeroInitializableAsBase()191 bool isZeroInitializableAsBase() const { 192 return IsZeroInitializableAsBase; 193 } 194 195 /// Return llvm::StructType element number that corresponds to the 196 /// field FD. getLLVMFieldNo(const FieldDecl * FD)197 unsigned getLLVMFieldNo(const FieldDecl *FD) const { 198 FD = FD->getCanonicalDecl(); 199 assert(FieldInfo.count(FD) && "Invalid field for record!"); 200 return FieldInfo.lookup(FD); 201 } 202 getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl * RD)203 unsigned getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl *RD) const { 204 assert(NonVirtualBases.count(RD) && "Invalid non-virtual base!"); 205 return NonVirtualBases.lookup(RD); 206 } 207 208 /// Return the LLVM field index corresponding to the given 209 /// virtual base. Only valid when operating on the complete object. getVirtualBaseIndex(const CXXRecordDecl * base)210 unsigned getVirtualBaseIndex(const CXXRecordDecl *base) const { 211 assert(CompleteObjectVirtualBases.count(base) && "Invalid virtual base!"); 212 return CompleteObjectVirtualBases.lookup(base); 213 } 214 215 /// Return the BitFieldInfo that corresponds to the field FD. getBitFieldInfo(const FieldDecl * FD)216 const CGBitFieldInfo &getBitFieldInfo(const FieldDecl *FD) const { 217 FD = FD->getCanonicalDecl(); 218 assert(FD->isBitField() && "Invalid call for non-bit-field decl!"); 219 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo>::const_iterator 220 it = BitFields.find(FD); 221 assert(it != BitFields.end() && "Unable to find bitfield info"); 222 return it->second; 223 } 224 225 void print(raw_ostream &OS) const; 226 void dump() const; 227 }; 228 229 } // end namespace CodeGen 230 } // end namespace clang 231 232 #endif 233