• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/AST/UnresolvedSet.h"
39 #include "clang/Basic/AddressSpaces.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetBuiltins.h"
53 #include "clang/Basic/TargetCXXABI.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/TypeTraits.h"
56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57 #include "clang/Sema/Initialization.h"
58 #include "clang/Sema/Lookup.h"
59 #include "clang/Sema/Ownership.h"
60 #include "clang/Sema/Scope.h"
61 #include "clang/Sema/ScopeInfo.h"
62 #include "clang/Sema/Sema.h"
63 #include "clang/Sema/SemaInternal.h"
64 #include "llvm/ADT/APFloat.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/STLExtras.h"
73 #include "llvm/ADT/SmallBitVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/StringSwitch.h"
79 #include "llvm/ADT/Triple.h"
80 #include "llvm/Support/AtomicOrdering.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/ConvertUTF.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/Format.h"
86 #include "llvm/Support/Locale.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/SaveAndRestore.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include <algorithm>
91 #include <bitset>
92 #include <cassert>
93 #include <cstddef>
94 #include <cstdint>
95 #include <functional>
96 #include <limits>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 
101 using namespace clang;
102 using namespace sema;
103 
getLocationOfStringLiteralByte(const StringLiteral * SL,unsigned ByteNo) const104 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
105                                                     unsigned ByteNo) const {
106   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
107                                Context.getTargetInfo());
108 }
109 
110 /// Checks that a call expression's argument count is the desired number.
111 /// This is useful when doing custom type-checking.  Returns true on error.
checkArgCount(Sema & S,CallExpr * call,unsigned desiredArgCount)112 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
113   unsigned argCount = call->getNumArgs();
114   if (argCount == desiredArgCount) return false;
115 
116   if (argCount < desiredArgCount)
117     return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
118            << 0 /*function call*/ << desiredArgCount << argCount
119            << call->getSourceRange();
120 
121   // Highlight all the excess arguments.
122   SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
123                     call->getArg(argCount - 1)->getEndLoc());
124 
125   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
126     << 0 /*function call*/ << desiredArgCount << argCount
127     << call->getArg(1)->getSourceRange();
128 }
129 
130 /// Check that the first argument to __builtin_annotation is an integer
131 /// and the second argument is a non-wide string literal.
SemaBuiltinAnnotation(Sema & S,CallExpr * TheCall)132 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
133   if (checkArgCount(S, TheCall, 2))
134     return true;
135 
136   // First argument should be an integer.
137   Expr *ValArg = TheCall->getArg(0);
138   QualType Ty = ValArg->getType();
139   if (!Ty->isIntegerType()) {
140     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
141         << ValArg->getSourceRange();
142     return true;
143   }
144 
145   // Second argument should be a constant string.
146   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
147   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
148   if (!Literal || !Literal->isAscii()) {
149     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
150         << StrArg->getSourceRange();
151     return true;
152   }
153 
154   TheCall->setType(Ty);
155   return false;
156 }
157 
SemaBuiltinMSVCAnnotation(Sema & S,CallExpr * TheCall)158 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
159   // We need at least one argument.
160   if (TheCall->getNumArgs() < 1) {
161     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
162         << 0 << 1 << TheCall->getNumArgs()
163         << TheCall->getCallee()->getSourceRange();
164     return true;
165   }
166 
167   // All arguments should be wide string literals.
168   for (Expr *Arg : TheCall->arguments()) {
169     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
170     if (!Literal || !Literal->isWide()) {
171       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
172           << Arg->getSourceRange();
173       return true;
174     }
175   }
176 
177   return false;
178 }
179 
180 /// Check that the argument to __builtin_addressof is a glvalue, and set the
181 /// result type to the corresponding pointer type.
SemaBuiltinAddressof(Sema & S,CallExpr * TheCall)182 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
183   if (checkArgCount(S, TheCall, 1))
184     return true;
185 
186   ExprResult Arg(TheCall->getArg(0));
187   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
188   if (ResultType.isNull())
189     return true;
190 
191   TheCall->setArg(0, Arg.get());
192   TheCall->setType(ResultType);
193   return false;
194 }
195 
196 /// Check the number of arguments and set the result type to
197 /// the argument type.
SemaBuiltinPreserveAI(Sema & S,CallExpr * TheCall)198 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
199   if (checkArgCount(S, TheCall, 1))
200     return true;
201 
202   TheCall->setType(TheCall->getArg(0)->getType());
203   return false;
204 }
205 
206 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
207 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
208 /// type (but not a function pointer) and that the alignment is a power-of-two.
SemaBuiltinAlignment(Sema & S,CallExpr * TheCall,unsigned ID)209 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
210   if (checkArgCount(S, TheCall, 2))
211     return true;
212 
213   clang::Expr *Source = TheCall->getArg(0);
214   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
215 
216   auto IsValidIntegerType = [](QualType Ty) {
217     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
218   };
219   QualType SrcTy = Source->getType();
220   // We should also be able to use it with arrays (but not functions!).
221   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
222     SrcTy = S.Context.getDecayedType(SrcTy);
223   }
224   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
225       SrcTy->isFunctionPointerType()) {
226     // FIXME: this is not quite the right error message since we don't allow
227     // floating point types, or member pointers.
228     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
229         << SrcTy;
230     return true;
231   }
232 
233   clang::Expr *AlignOp = TheCall->getArg(1);
234   if (!IsValidIntegerType(AlignOp->getType())) {
235     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
236         << AlignOp->getType();
237     return true;
238   }
239   Expr::EvalResult AlignResult;
240   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
241   // We can't check validity of alignment if it is value dependent.
242   if (!AlignOp->isValueDependent() &&
243       AlignOp->EvaluateAsInt(AlignResult, S.Context,
244                              Expr::SE_AllowSideEffects)) {
245     llvm::APSInt AlignValue = AlignResult.Val.getInt();
246     llvm::APSInt MaxValue(
247         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
248     if (AlignValue < 1) {
249       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
250       return true;
251     }
252     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
253       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
254           << MaxValue.toString(10);
255       return true;
256     }
257     if (!AlignValue.isPowerOf2()) {
258       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
259       return true;
260     }
261     if (AlignValue == 1) {
262       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
263           << IsBooleanAlignBuiltin;
264     }
265   }
266 
267   ExprResult SrcArg = S.PerformCopyInitialization(
268       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
269       SourceLocation(), Source);
270   if (SrcArg.isInvalid())
271     return true;
272   TheCall->setArg(0, SrcArg.get());
273   ExprResult AlignArg =
274       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
275                                       S.Context, AlignOp->getType(), false),
276                                   SourceLocation(), AlignOp);
277   if (AlignArg.isInvalid())
278     return true;
279   TheCall->setArg(1, AlignArg.get());
280   // For align_up/align_down, the return type is the same as the (potentially
281   // decayed) argument type including qualifiers. For is_aligned(), the result
282   // is always bool.
283   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
284   return false;
285 }
286 
SemaBuiltinOverflow(Sema & S,CallExpr * TheCall,unsigned BuiltinID)287 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
288                                 unsigned BuiltinID) {
289   if (checkArgCount(S, TheCall, 3))
290     return true;
291 
292   // First two arguments should be integers.
293   for (unsigned I = 0; I < 2; ++I) {
294     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
295     if (Arg.isInvalid()) return true;
296     TheCall->setArg(I, Arg.get());
297 
298     QualType Ty = Arg.get()->getType();
299     if (!Ty->isIntegerType()) {
300       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
301           << Ty << Arg.get()->getSourceRange();
302       return true;
303     }
304   }
305 
306   // Third argument should be a pointer to a non-const integer.
307   // IRGen correctly handles volatile, restrict, and address spaces, and
308   // the other qualifiers aren't possible.
309   {
310     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
311     if (Arg.isInvalid()) return true;
312     TheCall->setArg(2, Arg.get());
313 
314     QualType Ty = Arg.get()->getType();
315     const auto *PtrTy = Ty->getAs<PointerType>();
316     if (!PtrTy ||
317         !PtrTy->getPointeeType()->isIntegerType() ||
318         PtrTy->getPointeeType().isConstQualified()) {
319       S.Diag(Arg.get()->getBeginLoc(),
320              diag::err_overflow_builtin_must_be_ptr_int)
321         << Ty << Arg.get()->getSourceRange();
322       return true;
323     }
324   }
325 
326   // Disallow signed ExtIntType args larger than 128 bits to mul function until
327   // we improve backend support.
328   if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
329     for (unsigned I = 0; I < 3; ++I) {
330       const auto Arg = TheCall->getArg(I);
331       // Third argument will be a pointer.
332       auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
333       if (Ty->isExtIntType() && Ty->isSignedIntegerType() &&
334           S.getASTContext().getIntWidth(Ty) > 128)
335         return S.Diag(Arg->getBeginLoc(),
336                       diag::err_overflow_builtin_ext_int_max_size)
337                << 128;
338     }
339   }
340 
341   return false;
342 }
343 
SemaBuiltinCallWithStaticChain(Sema & S,CallExpr * BuiltinCall)344 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
345   if (checkArgCount(S, BuiltinCall, 2))
346     return true;
347 
348   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
349   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
350   Expr *Call = BuiltinCall->getArg(0);
351   Expr *Chain = BuiltinCall->getArg(1);
352 
353   if (Call->getStmtClass() != Stmt::CallExprClass) {
354     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
355         << Call->getSourceRange();
356     return true;
357   }
358 
359   auto CE = cast<CallExpr>(Call);
360   if (CE->getCallee()->getType()->isBlockPointerType()) {
361     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
362         << Call->getSourceRange();
363     return true;
364   }
365 
366   const Decl *TargetDecl = CE->getCalleeDecl();
367   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
368     if (FD->getBuiltinID()) {
369       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
370           << Call->getSourceRange();
371       return true;
372     }
373 
374   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
375     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
376         << Call->getSourceRange();
377     return true;
378   }
379 
380   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
381   if (ChainResult.isInvalid())
382     return true;
383   if (!ChainResult.get()->getType()->isPointerType()) {
384     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
385         << Chain->getSourceRange();
386     return true;
387   }
388 
389   QualType ReturnTy = CE->getCallReturnType(S.Context);
390   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
391   QualType BuiltinTy = S.Context.getFunctionType(
392       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
393   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
394 
395   Builtin =
396       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
397 
398   BuiltinCall->setType(CE->getType());
399   BuiltinCall->setValueKind(CE->getValueKind());
400   BuiltinCall->setObjectKind(CE->getObjectKind());
401   BuiltinCall->setCallee(Builtin);
402   BuiltinCall->setArg(1, ChainResult.get());
403 
404   return false;
405 }
406 
407 namespace {
408 
409 class EstimateSizeFormatHandler
410     : public analyze_format_string::FormatStringHandler {
411   size_t Size;
412 
413 public:
EstimateSizeFormatHandler(StringRef Format)414   EstimateSizeFormatHandler(StringRef Format)
415       : Size(std::min(Format.find(0), Format.size()) +
416              1 /* null byte always written by sprintf */) {}
417 
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char *,unsigned SpecifierLen)418   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
419                              const char *, unsigned SpecifierLen) override {
420 
421     const size_t FieldWidth = computeFieldWidth(FS);
422     const size_t Precision = computePrecision(FS);
423 
424     // The actual format.
425     switch (FS.getConversionSpecifier().getKind()) {
426     // Just a char.
427     case analyze_format_string::ConversionSpecifier::cArg:
428     case analyze_format_string::ConversionSpecifier::CArg:
429       Size += std::max(FieldWidth, (size_t)1);
430       break;
431     // Just an integer.
432     case analyze_format_string::ConversionSpecifier::dArg:
433     case analyze_format_string::ConversionSpecifier::DArg:
434     case analyze_format_string::ConversionSpecifier::iArg:
435     case analyze_format_string::ConversionSpecifier::oArg:
436     case analyze_format_string::ConversionSpecifier::OArg:
437     case analyze_format_string::ConversionSpecifier::uArg:
438     case analyze_format_string::ConversionSpecifier::UArg:
439     case analyze_format_string::ConversionSpecifier::xArg:
440     case analyze_format_string::ConversionSpecifier::XArg:
441       Size += std::max(FieldWidth, Precision);
442       break;
443 
444     // %g style conversion switches between %f or %e style dynamically.
445     // %f always takes less space, so default to it.
446     case analyze_format_string::ConversionSpecifier::gArg:
447     case analyze_format_string::ConversionSpecifier::GArg:
448 
449     // Floating point number in the form '[+]ddd.ddd'.
450     case analyze_format_string::ConversionSpecifier::fArg:
451     case analyze_format_string::ConversionSpecifier::FArg:
452       Size += std::max(FieldWidth, 1 /* integer part */ +
453                                        (Precision ? 1 + Precision
454                                                   : 0) /* period + decimal */);
455       break;
456 
457     // Floating point number in the form '[-]d.ddde[+-]dd'.
458     case analyze_format_string::ConversionSpecifier::eArg:
459     case analyze_format_string::ConversionSpecifier::EArg:
460       Size +=
461           std::max(FieldWidth,
462                    1 /* integer part */ +
463                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
464                        1 /* e or E letter */ + 2 /* exponent */);
465       break;
466 
467     // Floating point number in the form '[-]0xh.hhhhp±dd'.
468     case analyze_format_string::ConversionSpecifier::aArg:
469     case analyze_format_string::ConversionSpecifier::AArg:
470       Size +=
471           std::max(FieldWidth,
472                    2 /* 0x */ + 1 /* integer part */ +
473                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
474                        1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
475       break;
476 
477     // Just a string.
478     case analyze_format_string::ConversionSpecifier::sArg:
479     case analyze_format_string::ConversionSpecifier::SArg:
480       Size += FieldWidth;
481       break;
482 
483     // Just a pointer in the form '0xddd'.
484     case analyze_format_string::ConversionSpecifier::pArg:
485       Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
486       break;
487 
488     // A plain percent.
489     case analyze_format_string::ConversionSpecifier::PercentArg:
490       Size += 1;
491       break;
492 
493     default:
494       break;
495     }
496 
497     Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
498 
499     if (FS.hasAlternativeForm()) {
500       switch (FS.getConversionSpecifier().getKind()) {
501       default:
502         break;
503       // Force a leading '0'.
504       case analyze_format_string::ConversionSpecifier::oArg:
505         Size += 1;
506         break;
507       // Force a leading '0x'.
508       case analyze_format_string::ConversionSpecifier::xArg:
509       case analyze_format_string::ConversionSpecifier::XArg:
510         Size += 2;
511         break;
512       // Force a period '.' before decimal, even if precision is 0.
513       case analyze_format_string::ConversionSpecifier::aArg:
514       case analyze_format_string::ConversionSpecifier::AArg:
515       case analyze_format_string::ConversionSpecifier::eArg:
516       case analyze_format_string::ConversionSpecifier::EArg:
517       case analyze_format_string::ConversionSpecifier::fArg:
518       case analyze_format_string::ConversionSpecifier::FArg:
519       case analyze_format_string::ConversionSpecifier::gArg:
520       case analyze_format_string::ConversionSpecifier::GArg:
521         Size += (Precision ? 0 : 1);
522         break;
523       }
524     }
525     assert(SpecifierLen <= Size && "no underflow");
526     Size -= SpecifierLen;
527     return true;
528   }
529 
getSizeLowerBound() const530   size_t getSizeLowerBound() const { return Size; }
531 
532 private:
computeFieldWidth(const analyze_printf::PrintfSpecifier & FS)533   static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
534     const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
535     size_t FieldWidth = 0;
536     if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
537       FieldWidth = FW.getConstantAmount();
538     return FieldWidth;
539   }
540 
computePrecision(const analyze_printf::PrintfSpecifier & FS)541   static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
542     const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
543     size_t Precision = 0;
544 
545     // See man 3 printf for default precision value based on the specifier.
546     switch (FW.getHowSpecified()) {
547     case analyze_format_string::OptionalAmount::NotSpecified:
548       switch (FS.getConversionSpecifier().getKind()) {
549       default:
550         break;
551       case analyze_format_string::ConversionSpecifier::dArg: // %d
552       case analyze_format_string::ConversionSpecifier::DArg: // %D
553       case analyze_format_string::ConversionSpecifier::iArg: // %i
554         Precision = 1;
555         break;
556       case analyze_format_string::ConversionSpecifier::oArg: // %d
557       case analyze_format_string::ConversionSpecifier::OArg: // %D
558       case analyze_format_string::ConversionSpecifier::uArg: // %d
559       case analyze_format_string::ConversionSpecifier::UArg: // %D
560       case analyze_format_string::ConversionSpecifier::xArg: // %d
561       case analyze_format_string::ConversionSpecifier::XArg: // %D
562         Precision = 1;
563         break;
564       case analyze_format_string::ConversionSpecifier::fArg: // %f
565       case analyze_format_string::ConversionSpecifier::FArg: // %F
566       case analyze_format_string::ConversionSpecifier::eArg: // %e
567       case analyze_format_string::ConversionSpecifier::EArg: // %E
568       case analyze_format_string::ConversionSpecifier::gArg: // %g
569       case analyze_format_string::ConversionSpecifier::GArg: // %G
570         Precision = 6;
571         break;
572       case analyze_format_string::ConversionSpecifier::pArg: // %d
573         Precision = 1;
574         break;
575       }
576       break;
577     case analyze_format_string::OptionalAmount::Constant:
578       Precision = FW.getConstantAmount();
579       break;
580     default:
581       break;
582     }
583     return Precision;
584   }
585 };
586 
587 } // namespace
588 
589 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a
590 /// __builtin_*_chk function, then use the object size argument specified in the
591 /// source. Otherwise, infer the object size using __builtin_object_size.
checkFortifiedBuiltinMemoryFunction(FunctionDecl * FD,CallExpr * TheCall)592 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
593                                                CallExpr *TheCall) {
594   // FIXME: There are some more useful checks we could be doing here:
595   //  - Evaluate strlen of strcpy arguments, use as object size.
596 
597   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
598       isConstantEvaluated())
599     return;
600 
601   unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
602   if (!BuiltinID)
603     return;
604 
605   const TargetInfo &TI = getASTContext().getTargetInfo();
606   unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
607 
608   unsigned DiagID = 0;
609   bool IsChkVariant = false;
610   Optional<llvm::APSInt> UsedSize;
611   unsigned SizeIndex, ObjectIndex;
612   switch (BuiltinID) {
613   default:
614     return;
615   case Builtin::BIsprintf:
616   case Builtin::BI__builtin___sprintf_chk: {
617     size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
618     auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
619 
620     if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
621 
622       if (!Format->isAscii() && !Format->isUTF8())
623         return;
624 
625       StringRef FormatStrRef = Format->getString();
626       EstimateSizeFormatHandler H(FormatStrRef);
627       const char *FormatBytes = FormatStrRef.data();
628       const ConstantArrayType *T =
629           Context.getAsConstantArrayType(Format->getType());
630       assert(T && "String literal not of constant array type!");
631       size_t TypeSize = T->getSize().getZExtValue();
632 
633       // In case there's a null byte somewhere.
634       size_t StrLen =
635           std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
636       if (!analyze_format_string::ParsePrintfString(
637               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
638               Context.getTargetInfo(), false)) {
639         DiagID = diag::warn_fortify_source_format_overflow;
640         UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
641                        .extOrTrunc(SizeTypeWidth);
642         if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
643           IsChkVariant = true;
644           ObjectIndex = 2;
645         } else {
646           IsChkVariant = false;
647           ObjectIndex = 0;
648         }
649         break;
650       }
651     }
652     return;
653   }
654   case Builtin::BI__builtin___memcpy_chk:
655   case Builtin::BI__builtin___memmove_chk:
656   case Builtin::BI__builtin___memset_chk:
657   case Builtin::BI__builtin___strlcat_chk:
658   case Builtin::BI__builtin___strlcpy_chk:
659   case Builtin::BI__builtin___strncat_chk:
660   case Builtin::BI__builtin___strncpy_chk:
661   case Builtin::BI__builtin___stpncpy_chk:
662   case Builtin::BI__builtin___memccpy_chk:
663   case Builtin::BI__builtin___mempcpy_chk: {
664     DiagID = diag::warn_builtin_chk_overflow;
665     IsChkVariant = true;
666     SizeIndex = TheCall->getNumArgs() - 2;
667     ObjectIndex = TheCall->getNumArgs() - 1;
668     break;
669   }
670 
671   case Builtin::BI__builtin___snprintf_chk:
672   case Builtin::BI__builtin___vsnprintf_chk: {
673     DiagID = diag::warn_builtin_chk_overflow;
674     IsChkVariant = true;
675     SizeIndex = 1;
676     ObjectIndex = 3;
677     break;
678   }
679 
680   case Builtin::BIstrncat:
681   case Builtin::BI__builtin_strncat:
682   case Builtin::BIstrncpy:
683   case Builtin::BI__builtin_strncpy:
684   case Builtin::BIstpncpy:
685   case Builtin::BI__builtin_stpncpy: {
686     // Whether these functions overflow depends on the runtime strlen of the
687     // string, not just the buffer size, so emitting the "always overflow"
688     // diagnostic isn't quite right. We should still diagnose passing a buffer
689     // size larger than the destination buffer though; this is a runtime abort
690     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
691     DiagID = diag::warn_fortify_source_size_mismatch;
692     SizeIndex = TheCall->getNumArgs() - 1;
693     ObjectIndex = 0;
694     break;
695   }
696 
697   case Builtin::BImemcpy:
698   case Builtin::BI__builtin_memcpy:
699   case Builtin::BImemmove:
700   case Builtin::BI__builtin_memmove:
701   case Builtin::BImemset:
702   case Builtin::BI__builtin_memset:
703   case Builtin::BImempcpy:
704   case Builtin::BI__builtin_mempcpy: {
705     DiagID = diag::warn_fortify_source_overflow;
706     SizeIndex = TheCall->getNumArgs() - 1;
707     ObjectIndex = 0;
708     break;
709   }
710   case Builtin::BIsnprintf:
711   case Builtin::BI__builtin_snprintf:
712   case Builtin::BIvsnprintf:
713   case Builtin::BI__builtin_vsnprintf: {
714     DiagID = diag::warn_fortify_source_size_mismatch;
715     SizeIndex = 1;
716     ObjectIndex = 0;
717     break;
718   }
719   }
720 
721   llvm::APSInt ObjectSize;
722   // For __builtin___*_chk, the object size is explicitly provided by the caller
723   // (usually using __builtin_object_size). Use that value to check this call.
724   if (IsChkVariant) {
725     Expr::EvalResult Result;
726     Expr *SizeArg = TheCall->getArg(ObjectIndex);
727     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
728       return;
729     ObjectSize = Result.Val.getInt();
730 
731   // Otherwise, try to evaluate an imaginary call to __builtin_object_size.
732   } else {
733     // If the parameter has a pass_object_size attribute, then we should use its
734     // (potentially) more strict checking mode. Otherwise, conservatively assume
735     // type 0.
736     int BOSType = 0;
737     if (const auto *POS =
738             FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>())
739       BOSType = POS->getType();
740 
741     Expr *ObjArg = TheCall->getArg(ObjectIndex);
742     uint64_t Result;
743     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
744       return;
745     // Get the object size in the target's size_t width.
746     ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
747   }
748 
749   // Evaluate the number of bytes of the object that this call will use.
750   if (!UsedSize) {
751     Expr::EvalResult Result;
752     Expr *UsedSizeArg = TheCall->getArg(SizeIndex);
753     if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext()))
754       return;
755     UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth);
756   }
757 
758   if (UsedSize.getValue().ule(ObjectSize))
759     return;
760 
761   StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
762   // Skim off the details of whichever builtin was called to produce a better
763   // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
764   if (IsChkVariant) {
765     FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
766     FunctionName = FunctionName.drop_back(std::strlen("_chk"));
767   } else if (FunctionName.startswith("__builtin_")) {
768     FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
769   }
770 
771   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
772                       PDiag(DiagID)
773                           << FunctionName << ObjectSize.toString(/*Radix=*/10)
774                           << UsedSize.getValue().toString(/*Radix=*/10));
775 }
776 
SemaBuiltinSEHScopeCheck(Sema & SemaRef,CallExpr * TheCall,Scope::ScopeFlags NeededScopeFlags,unsigned DiagID)777 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
778                                      Scope::ScopeFlags NeededScopeFlags,
779                                      unsigned DiagID) {
780   // Scopes aren't available during instantiation. Fortunately, builtin
781   // functions cannot be template args so they cannot be formed through template
782   // instantiation. Therefore checking once during the parse is sufficient.
783   if (SemaRef.inTemplateInstantiation())
784     return false;
785 
786   Scope *S = SemaRef.getCurScope();
787   while (S && !S->isSEHExceptScope())
788     S = S->getParent();
789   if (!S || !(S->getFlags() & NeededScopeFlags)) {
790     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
791     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
792         << DRE->getDecl()->getIdentifier();
793     return true;
794   }
795 
796   return false;
797 }
798 
isBlockPointer(Expr * Arg)799 static inline bool isBlockPointer(Expr *Arg) {
800   return Arg->getType()->isBlockPointerType();
801 }
802 
803 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
804 /// void*, which is a requirement of device side enqueue.
checkOpenCLBlockArgs(Sema & S,Expr * BlockArg)805 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
806   const BlockPointerType *BPT =
807       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
808   ArrayRef<QualType> Params =
809       BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
810   unsigned ArgCounter = 0;
811   bool IllegalParams = false;
812   // Iterate through the block parameters until either one is found that is not
813   // a local void*, or the block is valid.
814   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
815        I != E; ++I, ++ArgCounter) {
816     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
817         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
818             LangAS::opencl_local) {
819       // Get the location of the error. If a block literal has been passed
820       // (BlockExpr) then we can point straight to the offending argument,
821       // else we just point to the variable reference.
822       SourceLocation ErrorLoc;
823       if (isa<BlockExpr>(BlockArg)) {
824         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
825         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
826       } else if (isa<DeclRefExpr>(BlockArg)) {
827         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
828       }
829       S.Diag(ErrorLoc,
830              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
831       IllegalParams = true;
832     }
833   }
834 
835   return IllegalParams;
836 }
837 
checkOpenCLSubgroupExt(Sema & S,CallExpr * Call)838 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
839   if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) {
840     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
841         << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
842     return true;
843   }
844   return false;
845 }
846 
SemaOpenCLBuiltinNDRangeAndBlock(Sema & S,CallExpr * TheCall)847 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
848   if (checkArgCount(S, TheCall, 2))
849     return true;
850 
851   if (checkOpenCLSubgroupExt(S, TheCall))
852     return true;
853 
854   // First argument is an ndrange_t type.
855   Expr *NDRangeArg = TheCall->getArg(0);
856   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
857     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
858         << TheCall->getDirectCallee() << "'ndrange_t'";
859     return true;
860   }
861 
862   Expr *BlockArg = TheCall->getArg(1);
863   if (!isBlockPointer(BlockArg)) {
864     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
865         << TheCall->getDirectCallee() << "block";
866     return true;
867   }
868   return checkOpenCLBlockArgs(S, BlockArg);
869 }
870 
871 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
872 /// get_kernel_work_group_size
873 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
SemaOpenCLBuiltinKernelWorkGroupSize(Sema & S,CallExpr * TheCall)874 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
875   if (checkArgCount(S, TheCall, 1))
876     return true;
877 
878   Expr *BlockArg = TheCall->getArg(0);
879   if (!isBlockPointer(BlockArg)) {
880     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
881         << TheCall->getDirectCallee() << "block";
882     return true;
883   }
884   return checkOpenCLBlockArgs(S, BlockArg);
885 }
886 
887 /// Diagnose integer type and any valid implicit conversion to it.
888 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
889                                       const QualType &IntType);
890 
checkOpenCLEnqueueLocalSizeArgs(Sema & S,CallExpr * TheCall,unsigned Start,unsigned End)891 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
892                                             unsigned Start, unsigned End) {
893   bool IllegalParams = false;
894   for (unsigned I = Start; I <= End; ++I)
895     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
896                                               S.Context.getSizeType());
897   return IllegalParams;
898 }
899 
900 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
901 /// 'local void*' parameter of passed block.
checkOpenCLEnqueueVariadicArgs(Sema & S,CallExpr * TheCall,Expr * BlockArg,unsigned NumNonVarArgs)902 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
903                                            Expr *BlockArg,
904                                            unsigned NumNonVarArgs) {
905   const BlockPointerType *BPT =
906       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
907   unsigned NumBlockParams =
908       BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
909   unsigned TotalNumArgs = TheCall->getNumArgs();
910 
911   // For each argument passed to the block, a corresponding uint needs to
912   // be passed to describe the size of the local memory.
913   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
914     S.Diag(TheCall->getBeginLoc(),
915            diag::err_opencl_enqueue_kernel_local_size_args);
916     return true;
917   }
918 
919   // Check that the sizes of the local memory are specified by integers.
920   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
921                                          TotalNumArgs - 1);
922 }
923 
924 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
925 /// overload formats specified in Table 6.13.17.1.
926 /// int enqueue_kernel(queue_t queue,
927 ///                    kernel_enqueue_flags_t flags,
928 ///                    const ndrange_t ndrange,
929 ///                    void (^block)(void))
930 /// int enqueue_kernel(queue_t queue,
931 ///                    kernel_enqueue_flags_t flags,
932 ///                    const ndrange_t ndrange,
933 ///                    uint num_events_in_wait_list,
934 ///                    clk_event_t *event_wait_list,
935 ///                    clk_event_t *event_ret,
936 ///                    void (^block)(void))
937 /// int enqueue_kernel(queue_t queue,
938 ///                    kernel_enqueue_flags_t flags,
939 ///                    const ndrange_t ndrange,
940 ///                    void (^block)(local void*, ...),
941 ///                    uint size0, ...)
942 /// int enqueue_kernel(queue_t queue,
943 ///                    kernel_enqueue_flags_t flags,
944 ///                    const ndrange_t ndrange,
945 ///                    uint num_events_in_wait_list,
946 ///                    clk_event_t *event_wait_list,
947 ///                    clk_event_t *event_ret,
948 ///                    void (^block)(local void*, ...),
949 ///                    uint size0, ...)
SemaOpenCLBuiltinEnqueueKernel(Sema & S,CallExpr * TheCall)950 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
951   unsigned NumArgs = TheCall->getNumArgs();
952 
953   if (NumArgs < 4) {
954     S.Diag(TheCall->getBeginLoc(),
955            diag::err_typecheck_call_too_few_args_at_least)
956         << 0 << 4 << NumArgs;
957     return true;
958   }
959 
960   Expr *Arg0 = TheCall->getArg(0);
961   Expr *Arg1 = TheCall->getArg(1);
962   Expr *Arg2 = TheCall->getArg(2);
963   Expr *Arg3 = TheCall->getArg(3);
964 
965   // First argument always needs to be a queue_t type.
966   if (!Arg0->getType()->isQueueT()) {
967     S.Diag(TheCall->getArg(0)->getBeginLoc(),
968            diag::err_opencl_builtin_expected_type)
969         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
970     return true;
971   }
972 
973   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
974   if (!Arg1->getType()->isIntegerType()) {
975     S.Diag(TheCall->getArg(1)->getBeginLoc(),
976            diag::err_opencl_builtin_expected_type)
977         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
978     return true;
979   }
980 
981   // Third argument is always an ndrange_t type.
982   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
983     S.Diag(TheCall->getArg(2)->getBeginLoc(),
984            diag::err_opencl_builtin_expected_type)
985         << TheCall->getDirectCallee() << "'ndrange_t'";
986     return true;
987   }
988 
989   // With four arguments, there is only one form that the function could be
990   // called in: no events and no variable arguments.
991   if (NumArgs == 4) {
992     // check that the last argument is the right block type.
993     if (!isBlockPointer(Arg3)) {
994       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
995           << TheCall->getDirectCallee() << "block";
996       return true;
997     }
998     // we have a block type, check the prototype
999     const BlockPointerType *BPT =
1000         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1001     if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1002       S.Diag(Arg3->getBeginLoc(),
1003              diag::err_opencl_enqueue_kernel_blocks_no_args);
1004       return true;
1005     }
1006     return false;
1007   }
1008   // we can have block + varargs.
1009   if (isBlockPointer(Arg3))
1010     return (checkOpenCLBlockArgs(S, Arg3) ||
1011             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1012   // last two cases with either exactly 7 args or 7 args and varargs.
1013   if (NumArgs >= 7) {
1014     // check common block argument.
1015     Expr *Arg6 = TheCall->getArg(6);
1016     if (!isBlockPointer(Arg6)) {
1017       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1018           << TheCall->getDirectCallee() << "block";
1019       return true;
1020     }
1021     if (checkOpenCLBlockArgs(S, Arg6))
1022       return true;
1023 
1024     // Forth argument has to be any integer type.
1025     if (!Arg3->getType()->isIntegerType()) {
1026       S.Diag(TheCall->getArg(3)->getBeginLoc(),
1027              diag::err_opencl_builtin_expected_type)
1028           << TheCall->getDirectCallee() << "integer";
1029       return true;
1030     }
1031     // check remaining common arguments.
1032     Expr *Arg4 = TheCall->getArg(4);
1033     Expr *Arg5 = TheCall->getArg(5);
1034 
1035     // Fifth argument is always passed as a pointer to clk_event_t.
1036     if (!Arg4->isNullPointerConstant(S.Context,
1037                                      Expr::NPC_ValueDependentIsNotNull) &&
1038         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1039       S.Diag(TheCall->getArg(4)->getBeginLoc(),
1040              diag::err_opencl_builtin_expected_type)
1041           << TheCall->getDirectCallee()
1042           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1043       return true;
1044     }
1045 
1046     // Sixth argument is always passed as a pointer to clk_event_t.
1047     if (!Arg5->isNullPointerConstant(S.Context,
1048                                      Expr::NPC_ValueDependentIsNotNull) &&
1049         !(Arg5->getType()->isPointerType() &&
1050           Arg5->getType()->getPointeeType()->isClkEventT())) {
1051       S.Diag(TheCall->getArg(5)->getBeginLoc(),
1052              diag::err_opencl_builtin_expected_type)
1053           << TheCall->getDirectCallee()
1054           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1055       return true;
1056     }
1057 
1058     if (NumArgs == 7)
1059       return false;
1060 
1061     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1062   }
1063 
1064   // None of the specific case has been detected, give generic error
1065   S.Diag(TheCall->getBeginLoc(),
1066          diag::err_opencl_enqueue_kernel_incorrect_args);
1067   return true;
1068 }
1069 
1070 /// Returns OpenCL access qual.
getOpenCLArgAccess(const Decl * D)1071 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1072     return D->getAttr<OpenCLAccessAttr>();
1073 }
1074 
1075 /// Returns true if pipe element type is different from the pointer.
checkOpenCLPipeArg(Sema & S,CallExpr * Call)1076 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1077   const Expr *Arg0 = Call->getArg(0);
1078   // First argument type should always be pipe.
1079   if (!Arg0->getType()->isPipeType()) {
1080     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1081         << Call->getDirectCallee() << Arg0->getSourceRange();
1082     return true;
1083   }
1084   OpenCLAccessAttr *AccessQual =
1085       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1086   // Validates the access qualifier is compatible with the call.
1087   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1088   // read_only and write_only, and assumed to be read_only if no qualifier is
1089   // specified.
1090   switch (Call->getDirectCallee()->getBuiltinID()) {
1091   case Builtin::BIread_pipe:
1092   case Builtin::BIreserve_read_pipe:
1093   case Builtin::BIcommit_read_pipe:
1094   case Builtin::BIwork_group_reserve_read_pipe:
1095   case Builtin::BIsub_group_reserve_read_pipe:
1096   case Builtin::BIwork_group_commit_read_pipe:
1097   case Builtin::BIsub_group_commit_read_pipe:
1098     if (!(!AccessQual || AccessQual->isReadOnly())) {
1099       S.Diag(Arg0->getBeginLoc(),
1100              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1101           << "read_only" << Arg0->getSourceRange();
1102       return true;
1103     }
1104     break;
1105   case Builtin::BIwrite_pipe:
1106   case Builtin::BIreserve_write_pipe:
1107   case Builtin::BIcommit_write_pipe:
1108   case Builtin::BIwork_group_reserve_write_pipe:
1109   case Builtin::BIsub_group_reserve_write_pipe:
1110   case Builtin::BIwork_group_commit_write_pipe:
1111   case Builtin::BIsub_group_commit_write_pipe:
1112     if (!(AccessQual && AccessQual->isWriteOnly())) {
1113       S.Diag(Arg0->getBeginLoc(),
1114              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1115           << "write_only" << Arg0->getSourceRange();
1116       return true;
1117     }
1118     break;
1119   default:
1120     break;
1121   }
1122   return false;
1123 }
1124 
1125 /// Returns true if pipe element type is different from the pointer.
checkOpenCLPipePacketType(Sema & S,CallExpr * Call,unsigned Idx)1126 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1127   const Expr *Arg0 = Call->getArg(0);
1128   const Expr *ArgIdx = Call->getArg(Idx);
1129   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1130   const QualType EltTy = PipeTy->getElementType();
1131   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1132   // The Idx argument should be a pointer and the type of the pointer and
1133   // the type of pipe element should also be the same.
1134   if (!ArgTy ||
1135       !S.Context.hasSameType(
1136           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1137     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1138         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1139         << ArgIdx->getType() << ArgIdx->getSourceRange();
1140     return true;
1141   }
1142   return false;
1143 }
1144 
1145 // Performs semantic analysis for the read/write_pipe call.
1146 // \param S Reference to the semantic analyzer.
1147 // \param Call A pointer to the builtin call.
1148 // \return True if a semantic error has been found, false otherwise.
SemaBuiltinRWPipe(Sema & S,CallExpr * Call)1149 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1150   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1151   // functions have two forms.
1152   switch (Call->getNumArgs()) {
1153   case 2:
1154     if (checkOpenCLPipeArg(S, Call))
1155       return true;
1156     // The call with 2 arguments should be
1157     // read/write_pipe(pipe T, T*).
1158     // Check packet type T.
1159     if (checkOpenCLPipePacketType(S, Call, 1))
1160       return true;
1161     break;
1162 
1163   case 4: {
1164     if (checkOpenCLPipeArg(S, Call))
1165       return true;
1166     // The call with 4 arguments should be
1167     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1168     // Check reserve_id_t.
1169     if (!Call->getArg(1)->getType()->isReserveIDT()) {
1170       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1171           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1172           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1173       return true;
1174     }
1175 
1176     // Check the index.
1177     const Expr *Arg2 = Call->getArg(2);
1178     if (!Arg2->getType()->isIntegerType() &&
1179         !Arg2->getType()->isUnsignedIntegerType()) {
1180       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1181           << Call->getDirectCallee() << S.Context.UnsignedIntTy
1182           << Arg2->getType() << Arg2->getSourceRange();
1183       return true;
1184     }
1185 
1186     // Check packet type T.
1187     if (checkOpenCLPipePacketType(S, Call, 3))
1188       return true;
1189   } break;
1190   default:
1191     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1192         << Call->getDirectCallee() << Call->getSourceRange();
1193     return true;
1194   }
1195 
1196   return false;
1197 }
1198 
1199 // Performs a semantic analysis on the {work_group_/sub_group_
1200 //        /_}reserve_{read/write}_pipe
1201 // \param S Reference to the semantic analyzer.
1202 // \param Call The call to the builtin function to be analyzed.
1203 // \return True if a semantic error was found, false otherwise.
SemaBuiltinReserveRWPipe(Sema & S,CallExpr * Call)1204 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1205   if (checkArgCount(S, Call, 2))
1206     return true;
1207 
1208   if (checkOpenCLPipeArg(S, Call))
1209     return true;
1210 
1211   // Check the reserve size.
1212   if (!Call->getArg(1)->getType()->isIntegerType() &&
1213       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1214     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1215         << Call->getDirectCallee() << S.Context.UnsignedIntTy
1216         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1217     return true;
1218   }
1219 
1220   // Since return type of reserve_read/write_pipe built-in function is
1221   // reserve_id_t, which is not defined in the builtin def file , we used int
1222   // as return type and need to override the return type of these functions.
1223   Call->setType(S.Context.OCLReserveIDTy);
1224 
1225   return false;
1226 }
1227 
1228 // Performs a semantic analysis on {work_group_/sub_group_
1229 //        /_}commit_{read/write}_pipe
1230 // \param S Reference to the semantic analyzer.
1231 // \param Call The call to the builtin function to be analyzed.
1232 // \return True if a semantic error was found, false otherwise.
SemaBuiltinCommitRWPipe(Sema & S,CallExpr * Call)1233 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1234   if (checkArgCount(S, Call, 2))
1235     return true;
1236 
1237   if (checkOpenCLPipeArg(S, Call))
1238     return true;
1239 
1240   // Check reserve_id_t.
1241   if (!Call->getArg(1)->getType()->isReserveIDT()) {
1242     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1243         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1244         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1245     return true;
1246   }
1247 
1248   return false;
1249 }
1250 
1251 // Performs a semantic analysis on the call to built-in Pipe
1252 //        Query Functions.
1253 // \param S Reference to the semantic analyzer.
1254 // \param Call The call to the builtin function to be analyzed.
1255 // \return True if a semantic error was found, false otherwise.
SemaBuiltinPipePackets(Sema & S,CallExpr * Call)1256 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1257   if (checkArgCount(S, Call, 1))
1258     return true;
1259 
1260   if (!Call->getArg(0)->getType()->isPipeType()) {
1261     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1262         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1263     return true;
1264   }
1265 
1266   return false;
1267 }
1268 
1269 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1270 // Performs semantic analysis for the to_global/local/private call.
1271 // \param S Reference to the semantic analyzer.
1272 // \param BuiltinID ID of the builtin function.
1273 // \param Call A pointer to the builtin call.
1274 // \return True if a semantic error has been found, false otherwise.
SemaOpenCLBuiltinToAddr(Sema & S,unsigned BuiltinID,CallExpr * Call)1275 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1276                                     CallExpr *Call) {
1277   if (checkArgCount(S, Call, 1))
1278     return true;
1279 
1280   auto RT = Call->getArg(0)->getType();
1281   if (!RT->isPointerType() || RT->getPointeeType()
1282       .getAddressSpace() == LangAS::opencl_constant) {
1283     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1284         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1285     return true;
1286   }
1287 
1288   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1289     S.Diag(Call->getArg(0)->getBeginLoc(),
1290            diag::warn_opencl_generic_address_space_arg)
1291         << Call->getDirectCallee()->getNameInfo().getAsString()
1292         << Call->getArg(0)->getSourceRange();
1293   }
1294 
1295   RT = RT->getPointeeType();
1296   auto Qual = RT.getQualifiers();
1297   switch (BuiltinID) {
1298   case Builtin::BIto_global:
1299     Qual.setAddressSpace(LangAS::opencl_global);
1300     break;
1301   case Builtin::BIto_local:
1302     Qual.setAddressSpace(LangAS::opencl_local);
1303     break;
1304   case Builtin::BIto_private:
1305     Qual.setAddressSpace(LangAS::opencl_private);
1306     break;
1307   default:
1308     llvm_unreachable("Invalid builtin function");
1309   }
1310   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1311       RT.getUnqualifiedType(), Qual)));
1312 
1313   return false;
1314 }
1315 
SemaBuiltinLaunder(Sema & S,CallExpr * TheCall)1316 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1317   if (checkArgCount(S, TheCall, 1))
1318     return ExprError();
1319 
1320   // Compute __builtin_launder's parameter type from the argument.
1321   // The parameter type is:
1322   //  * The type of the argument if it's not an array or function type,
1323   //  Otherwise,
1324   //  * The decayed argument type.
1325   QualType ParamTy = [&]() {
1326     QualType ArgTy = TheCall->getArg(0)->getType();
1327     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1328       return S.Context.getPointerType(Ty->getElementType());
1329     if (ArgTy->isFunctionType()) {
1330       return S.Context.getPointerType(ArgTy);
1331     }
1332     return ArgTy;
1333   }();
1334 
1335   TheCall->setType(ParamTy);
1336 
1337   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1338     if (!ParamTy->isPointerType())
1339       return 0;
1340     if (ParamTy->isFunctionPointerType())
1341       return 1;
1342     if (ParamTy->isVoidPointerType())
1343       return 2;
1344     return llvm::Optional<unsigned>{};
1345   }();
1346   if (DiagSelect.hasValue()) {
1347     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1348         << DiagSelect.getValue() << TheCall->getSourceRange();
1349     return ExprError();
1350   }
1351 
1352   // We either have an incomplete class type, or we have a class template
1353   // whose instantiation has not been forced. Example:
1354   //
1355   //   template <class T> struct Foo { T value; };
1356   //   Foo<int> *p = nullptr;
1357   //   auto *d = __builtin_launder(p);
1358   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1359                             diag::err_incomplete_type))
1360     return ExprError();
1361 
1362   assert(ParamTy->getPointeeType()->isObjectType() &&
1363          "Unhandled non-object pointer case");
1364 
1365   InitializedEntity Entity =
1366       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1367   ExprResult Arg =
1368       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1369   if (Arg.isInvalid())
1370     return ExprError();
1371   TheCall->setArg(0, Arg.get());
1372 
1373   return TheCall;
1374 }
1375 
1376 // Emit an error and return true if the current architecture is not in the list
1377 // of supported architectures.
1378 static bool
CheckBuiltinTargetSupport(Sema & S,unsigned BuiltinID,CallExpr * TheCall,ArrayRef<llvm::Triple::ArchType> SupportedArchs)1379 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1380                           ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1381   llvm::Triple::ArchType CurArch =
1382       S.getASTContext().getTargetInfo().getTriple().getArch();
1383   if (llvm::is_contained(SupportedArchs, CurArch))
1384     return false;
1385   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1386       << TheCall->getSourceRange();
1387   return true;
1388 }
1389 
1390 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1391                                  SourceLocation CallSiteLoc);
1392 
CheckTSBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)1393 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1394                                       CallExpr *TheCall) {
1395   switch (TI.getTriple().getArch()) {
1396   default:
1397     // Some builtins don't require additional checking, so just consider these
1398     // acceptable.
1399     return false;
1400   case llvm::Triple::arm:
1401   case llvm::Triple::armeb:
1402   case llvm::Triple::thumb:
1403   case llvm::Triple::thumbeb:
1404     return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1405   case llvm::Triple::aarch64:
1406   case llvm::Triple::aarch64_32:
1407   case llvm::Triple::aarch64_be:
1408     return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1409   case llvm::Triple::bpfeb:
1410   case llvm::Triple::bpfel:
1411     return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1412   case llvm::Triple::hexagon:
1413     return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1414   case llvm::Triple::mips:
1415   case llvm::Triple::mipsel:
1416   case llvm::Triple::mips64:
1417   case llvm::Triple::mips64el:
1418     return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1419   case llvm::Triple::systemz:
1420     return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1421   case llvm::Triple::x86:
1422   case llvm::Triple::x86_64:
1423     return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1424   case llvm::Triple::ppc:
1425   case llvm::Triple::ppc64:
1426   case llvm::Triple::ppc64le:
1427     return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1428   case llvm::Triple::amdgcn:
1429     return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1430   }
1431 }
1432 
1433 ExprResult
CheckBuiltinFunctionCall(FunctionDecl * FDecl,unsigned BuiltinID,CallExpr * TheCall)1434 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1435                                CallExpr *TheCall) {
1436   ExprResult TheCallResult(TheCall);
1437 
1438   // Find out if any arguments are required to be integer constant expressions.
1439   unsigned ICEArguments = 0;
1440   ASTContext::GetBuiltinTypeError Error;
1441   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1442   if (Error != ASTContext::GE_None)
1443     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1444 
1445   // If any arguments are required to be ICE's, check and diagnose.
1446   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1447     // Skip arguments not required to be ICE's.
1448     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1449 
1450     llvm::APSInt Result;
1451     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1452       return true;
1453     ICEArguments &= ~(1 << ArgNo);
1454   }
1455 
1456   switch (BuiltinID) {
1457   case Builtin::BI__builtin___CFStringMakeConstantString:
1458     assert(TheCall->getNumArgs() == 1 &&
1459            "Wrong # arguments to builtin CFStringMakeConstantString");
1460     if (CheckObjCString(TheCall->getArg(0)))
1461       return ExprError();
1462     break;
1463   case Builtin::BI__builtin_ms_va_start:
1464   case Builtin::BI__builtin_stdarg_start:
1465   case Builtin::BI__builtin_va_start:
1466     if (SemaBuiltinVAStart(BuiltinID, TheCall))
1467       return ExprError();
1468     break;
1469   case Builtin::BI__va_start: {
1470     switch (Context.getTargetInfo().getTriple().getArch()) {
1471     case llvm::Triple::aarch64:
1472     case llvm::Triple::arm:
1473     case llvm::Triple::thumb:
1474       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1475         return ExprError();
1476       break;
1477     default:
1478       if (SemaBuiltinVAStart(BuiltinID, TheCall))
1479         return ExprError();
1480       break;
1481     }
1482     break;
1483   }
1484 
1485   // The acquire, release, and no fence variants are ARM and AArch64 only.
1486   case Builtin::BI_interlockedbittestandset_acq:
1487   case Builtin::BI_interlockedbittestandset_rel:
1488   case Builtin::BI_interlockedbittestandset_nf:
1489   case Builtin::BI_interlockedbittestandreset_acq:
1490   case Builtin::BI_interlockedbittestandreset_rel:
1491   case Builtin::BI_interlockedbittestandreset_nf:
1492     if (CheckBuiltinTargetSupport(
1493             *this, BuiltinID, TheCall,
1494             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1495       return ExprError();
1496     break;
1497 
1498   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1499   case Builtin::BI_bittest64:
1500   case Builtin::BI_bittestandcomplement64:
1501   case Builtin::BI_bittestandreset64:
1502   case Builtin::BI_bittestandset64:
1503   case Builtin::BI_interlockedbittestandreset64:
1504   case Builtin::BI_interlockedbittestandset64:
1505     if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1506                                   {llvm::Triple::x86_64, llvm::Triple::arm,
1507                                    llvm::Triple::thumb, llvm::Triple::aarch64}))
1508       return ExprError();
1509     break;
1510 
1511   case Builtin::BI__builtin_isgreater:
1512   case Builtin::BI__builtin_isgreaterequal:
1513   case Builtin::BI__builtin_isless:
1514   case Builtin::BI__builtin_islessequal:
1515   case Builtin::BI__builtin_islessgreater:
1516   case Builtin::BI__builtin_isunordered:
1517     if (SemaBuiltinUnorderedCompare(TheCall))
1518       return ExprError();
1519     break;
1520   case Builtin::BI__builtin_fpclassify:
1521     if (SemaBuiltinFPClassification(TheCall, 6))
1522       return ExprError();
1523     break;
1524   case Builtin::BI__builtin_isfinite:
1525   case Builtin::BI__builtin_isinf:
1526   case Builtin::BI__builtin_isinf_sign:
1527   case Builtin::BI__builtin_isnan:
1528   case Builtin::BI__builtin_isnormal:
1529   case Builtin::BI__builtin_signbit:
1530   case Builtin::BI__builtin_signbitf:
1531   case Builtin::BI__builtin_signbitl:
1532     if (SemaBuiltinFPClassification(TheCall, 1))
1533       return ExprError();
1534     break;
1535   case Builtin::BI__builtin_shufflevector:
1536     return SemaBuiltinShuffleVector(TheCall);
1537     // TheCall will be freed by the smart pointer here, but that's fine, since
1538     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1539   case Builtin::BI__builtin_prefetch:
1540     if (SemaBuiltinPrefetch(TheCall))
1541       return ExprError();
1542     break;
1543   case Builtin::BI__builtin_alloca_with_align:
1544     if (SemaBuiltinAllocaWithAlign(TheCall))
1545       return ExprError();
1546     LLVM_FALLTHROUGH;
1547   case Builtin::BI__builtin_alloca:
1548     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1549         << TheCall->getDirectCallee();
1550     break;
1551   case Builtin::BI__assume:
1552   case Builtin::BI__builtin_assume:
1553     if (SemaBuiltinAssume(TheCall))
1554       return ExprError();
1555     break;
1556   case Builtin::BI__builtin_assume_aligned:
1557     if (SemaBuiltinAssumeAligned(TheCall))
1558       return ExprError();
1559     break;
1560   case Builtin::BI__builtin_dynamic_object_size:
1561   case Builtin::BI__builtin_object_size:
1562     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1563       return ExprError();
1564     break;
1565   case Builtin::BI__builtin_longjmp:
1566     if (SemaBuiltinLongjmp(TheCall))
1567       return ExprError();
1568     break;
1569   case Builtin::BI__builtin_setjmp:
1570     if (SemaBuiltinSetjmp(TheCall))
1571       return ExprError();
1572     break;
1573   case Builtin::BI__builtin_classify_type:
1574     if (checkArgCount(*this, TheCall, 1)) return true;
1575     TheCall->setType(Context.IntTy);
1576     break;
1577   case Builtin::BI__builtin_complex:
1578     if (SemaBuiltinComplex(TheCall))
1579       return ExprError();
1580     break;
1581   case Builtin::BI__builtin_constant_p: {
1582     if (checkArgCount(*this, TheCall, 1)) return true;
1583     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1584     if (Arg.isInvalid()) return true;
1585     TheCall->setArg(0, Arg.get());
1586     TheCall->setType(Context.IntTy);
1587     break;
1588   }
1589   case Builtin::BI__builtin_launder:
1590     return SemaBuiltinLaunder(*this, TheCall);
1591   case Builtin::BI__sync_fetch_and_add:
1592   case Builtin::BI__sync_fetch_and_add_1:
1593   case Builtin::BI__sync_fetch_and_add_2:
1594   case Builtin::BI__sync_fetch_and_add_4:
1595   case Builtin::BI__sync_fetch_and_add_8:
1596   case Builtin::BI__sync_fetch_and_add_16:
1597   case Builtin::BI__sync_fetch_and_sub:
1598   case Builtin::BI__sync_fetch_and_sub_1:
1599   case Builtin::BI__sync_fetch_and_sub_2:
1600   case Builtin::BI__sync_fetch_and_sub_4:
1601   case Builtin::BI__sync_fetch_and_sub_8:
1602   case Builtin::BI__sync_fetch_and_sub_16:
1603   case Builtin::BI__sync_fetch_and_or:
1604   case Builtin::BI__sync_fetch_and_or_1:
1605   case Builtin::BI__sync_fetch_and_or_2:
1606   case Builtin::BI__sync_fetch_and_or_4:
1607   case Builtin::BI__sync_fetch_and_or_8:
1608   case Builtin::BI__sync_fetch_and_or_16:
1609   case Builtin::BI__sync_fetch_and_and:
1610   case Builtin::BI__sync_fetch_and_and_1:
1611   case Builtin::BI__sync_fetch_and_and_2:
1612   case Builtin::BI__sync_fetch_and_and_4:
1613   case Builtin::BI__sync_fetch_and_and_8:
1614   case Builtin::BI__sync_fetch_and_and_16:
1615   case Builtin::BI__sync_fetch_and_xor:
1616   case Builtin::BI__sync_fetch_and_xor_1:
1617   case Builtin::BI__sync_fetch_and_xor_2:
1618   case Builtin::BI__sync_fetch_and_xor_4:
1619   case Builtin::BI__sync_fetch_and_xor_8:
1620   case Builtin::BI__sync_fetch_and_xor_16:
1621   case Builtin::BI__sync_fetch_and_nand:
1622   case Builtin::BI__sync_fetch_and_nand_1:
1623   case Builtin::BI__sync_fetch_and_nand_2:
1624   case Builtin::BI__sync_fetch_and_nand_4:
1625   case Builtin::BI__sync_fetch_and_nand_8:
1626   case Builtin::BI__sync_fetch_and_nand_16:
1627   case Builtin::BI__sync_add_and_fetch:
1628   case Builtin::BI__sync_add_and_fetch_1:
1629   case Builtin::BI__sync_add_and_fetch_2:
1630   case Builtin::BI__sync_add_and_fetch_4:
1631   case Builtin::BI__sync_add_and_fetch_8:
1632   case Builtin::BI__sync_add_and_fetch_16:
1633   case Builtin::BI__sync_sub_and_fetch:
1634   case Builtin::BI__sync_sub_and_fetch_1:
1635   case Builtin::BI__sync_sub_and_fetch_2:
1636   case Builtin::BI__sync_sub_and_fetch_4:
1637   case Builtin::BI__sync_sub_and_fetch_8:
1638   case Builtin::BI__sync_sub_and_fetch_16:
1639   case Builtin::BI__sync_and_and_fetch:
1640   case Builtin::BI__sync_and_and_fetch_1:
1641   case Builtin::BI__sync_and_and_fetch_2:
1642   case Builtin::BI__sync_and_and_fetch_4:
1643   case Builtin::BI__sync_and_and_fetch_8:
1644   case Builtin::BI__sync_and_and_fetch_16:
1645   case Builtin::BI__sync_or_and_fetch:
1646   case Builtin::BI__sync_or_and_fetch_1:
1647   case Builtin::BI__sync_or_and_fetch_2:
1648   case Builtin::BI__sync_or_and_fetch_4:
1649   case Builtin::BI__sync_or_and_fetch_8:
1650   case Builtin::BI__sync_or_and_fetch_16:
1651   case Builtin::BI__sync_xor_and_fetch:
1652   case Builtin::BI__sync_xor_and_fetch_1:
1653   case Builtin::BI__sync_xor_and_fetch_2:
1654   case Builtin::BI__sync_xor_and_fetch_4:
1655   case Builtin::BI__sync_xor_and_fetch_8:
1656   case Builtin::BI__sync_xor_and_fetch_16:
1657   case Builtin::BI__sync_nand_and_fetch:
1658   case Builtin::BI__sync_nand_and_fetch_1:
1659   case Builtin::BI__sync_nand_and_fetch_2:
1660   case Builtin::BI__sync_nand_and_fetch_4:
1661   case Builtin::BI__sync_nand_and_fetch_8:
1662   case Builtin::BI__sync_nand_and_fetch_16:
1663   case Builtin::BI__sync_val_compare_and_swap:
1664   case Builtin::BI__sync_val_compare_and_swap_1:
1665   case Builtin::BI__sync_val_compare_and_swap_2:
1666   case Builtin::BI__sync_val_compare_and_swap_4:
1667   case Builtin::BI__sync_val_compare_and_swap_8:
1668   case Builtin::BI__sync_val_compare_and_swap_16:
1669   case Builtin::BI__sync_bool_compare_and_swap:
1670   case Builtin::BI__sync_bool_compare_and_swap_1:
1671   case Builtin::BI__sync_bool_compare_and_swap_2:
1672   case Builtin::BI__sync_bool_compare_and_swap_4:
1673   case Builtin::BI__sync_bool_compare_and_swap_8:
1674   case Builtin::BI__sync_bool_compare_and_swap_16:
1675   case Builtin::BI__sync_lock_test_and_set:
1676   case Builtin::BI__sync_lock_test_and_set_1:
1677   case Builtin::BI__sync_lock_test_and_set_2:
1678   case Builtin::BI__sync_lock_test_and_set_4:
1679   case Builtin::BI__sync_lock_test_and_set_8:
1680   case Builtin::BI__sync_lock_test_and_set_16:
1681   case Builtin::BI__sync_lock_release:
1682   case Builtin::BI__sync_lock_release_1:
1683   case Builtin::BI__sync_lock_release_2:
1684   case Builtin::BI__sync_lock_release_4:
1685   case Builtin::BI__sync_lock_release_8:
1686   case Builtin::BI__sync_lock_release_16:
1687   case Builtin::BI__sync_swap:
1688   case Builtin::BI__sync_swap_1:
1689   case Builtin::BI__sync_swap_2:
1690   case Builtin::BI__sync_swap_4:
1691   case Builtin::BI__sync_swap_8:
1692   case Builtin::BI__sync_swap_16:
1693     return SemaBuiltinAtomicOverloaded(TheCallResult);
1694   case Builtin::BI__sync_synchronize:
1695     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1696         << TheCall->getCallee()->getSourceRange();
1697     break;
1698   case Builtin::BI__builtin_nontemporal_load:
1699   case Builtin::BI__builtin_nontemporal_store:
1700     return SemaBuiltinNontemporalOverloaded(TheCallResult);
1701   case Builtin::BI__builtin_memcpy_inline: {
1702     clang::Expr *SizeOp = TheCall->getArg(2);
1703     // We warn about copying to or from `nullptr` pointers when `size` is
1704     // greater than 0. When `size` is value dependent we cannot evaluate its
1705     // value so we bail out.
1706     if (SizeOp->isValueDependent())
1707       break;
1708     if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) {
1709       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
1710       CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
1711     }
1712     break;
1713   }
1714 #define BUILTIN(ID, TYPE, ATTRS)
1715 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1716   case Builtin::BI##ID: \
1717     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1718 #include "clang/Basic/Builtins.def"
1719   case Builtin::BI__annotation:
1720     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1721       return ExprError();
1722     break;
1723   case Builtin::BI__builtin_annotation:
1724     if (SemaBuiltinAnnotation(*this, TheCall))
1725       return ExprError();
1726     break;
1727   case Builtin::BI__builtin_addressof:
1728     if (SemaBuiltinAddressof(*this, TheCall))
1729       return ExprError();
1730     break;
1731   case Builtin::BI__builtin_is_aligned:
1732   case Builtin::BI__builtin_align_up:
1733   case Builtin::BI__builtin_align_down:
1734     if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1735       return ExprError();
1736     break;
1737   case Builtin::BI__builtin_add_overflow:
1738   case Builtin::BI__builtin_sub_overflow:
1739   case Builtin::BI__builtin_mul_overflow:
1740     if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
1741       return ExprError();
1742     break;
1743   case Builtin::BI__builtin_operator_new:
1744   case Builtin::BI__builtin_operator_delete: {
1745     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1746     ExprResult Res =
1747         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1748     if (Res.isInvalid())
1749       CorrectDelayedTyposInExpr(TheCallResult.get());
1750     return Res;
1751   }
1752   case Builtin::BI__builtin_dump_struct: {
1753     // We first want to ensure we are called with 2 arguments
1754     if (checkArgCount(*this, TheCall, 2))
1755       return ExprError();
1756     // Ensure that the first argument is of type 'struct XX *'
1757     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1758     const QualType PtrArgType = PtrArg->getType();
1759     if (!PtrArgType->isPointerType() ||
1760         !PtrArgType->getPointeeType()->isRecordType()) {
1761       Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1762           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1763           << "structure pointer";
1764       return ExprError();
1765     }
1766 
1767     // Ensure that the second argument is of type 'FunctionType'
1768     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1769     const QualType FnPtrArgType = FnPtrArg->getType();
1770     if (!FnPtrArgType->isPointerType()) {
1771       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1772           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1773           << FnPtrArgType << "'int (*)(const char *, ...)'";
1774       return ExprError();
1775     }
1776 
1777     const auto *FuncType =
1778         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1779 
1780     if (!FuncType) {
1781       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1782           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1783           << FnPtrArgType << "'int (*)(const char *, ...)'";
1784       return ExprError();
1785     }
1786 
1787     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1788       if (!FT->getNumParams()) {
1789         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1790             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1791             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1792         return ExprError();
1793       }
1794       QualType PT = FT->getParamType(0);
1795       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1796           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1797           !PT->getPointeeType().isConstQualified()) {
1798         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1799             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1800             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1801         return ExprError();
1802       }
1803     }
1804 
1805     TheCall->setType(Context.IntTy);
1806     break;
1807   }
1808   case Builtin::BI__builtin_expect_with_probability: {
1809     // We first want to ensure we are called with 3 arguments
1810     if (checkArgCount(*this, TheCall, 3))
1811       return ExprError();
1812     // then check probability is constant float in range [0.0, 1.0]
1813     const Expr *ProbArg = TheCall->getArg(2);
1814     SmallVector<PartialDiagnosticAt, 8> Notes;
1815     Expr::EvalResult Eval;
1816     Eval.Diag = &Notes;
1817     if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
1818         !Eval.Val.isFloat()) {
1819       Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
1820           << ProbArg->getSourceRange();
1821       for (const PartialDiagnosticAt &PDiag : Notes)
1822         Diag(PDiag.first, PDiag.second);
1823       return ExprError();
1824     }
1825     llvm::APFloat Probability = Eval.Val.getFloat();
1826     bool LoseInfo = false;
1827     Probability.convert(llvm::APFloat::IEEEdouble(),
1828                         llvm::RoundingMode::Dynamic, &LoseInfo);
1829     if (!(Probability >= llvm::APFloat(0.0) &&
1830           Probability <= llvm::APFloat(1.0))) {
1831       Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
1832           << ProbArg->getSourceRange();
1833       return ExprError();
1834     }
1835     break;
1836   }
1837   case Builtin::BI__builtin_preserve_access_index:
1838     if (SemaBuiltinPreserveAI(*this, TheCall))
1839       return ExprError();
1840     break;
1841   case Builtin::BI__builtin_call_with_static_chain:
1842     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1843       return ExprError();
1844     break;
1845   case Builtin::BI__exception_code:
1846   case Builtin::BI_exception_code:
1847     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1848                                  diag::err_seh___except_block))
1849       return ExprError();
1850     break;
1851   case Builtin::BI__exception_info:
1852   case Builtin::BI_exception_info:
1853     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1854                                  diag::err_seh___except_filter))
1855       return ExprError();
1856     break;
1857   case Builtin::BI__GetExceptionInfo:
1858     if (checkArgCount(*this, TheCall, 1))
1859       return ExprError();
1860 
1861     if (CheckCXXThrowOperand(
1862             TheCall->getBeginLoc(),
1863             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1864             TheCall))
1865       return ExprError();
1866 
1867     TheCall->setType(Context.VoidPtrTy);
1868     break;
1869   // OpenCL v2.0, s6.13.16 - Pipe functions
1870   case Builtin::BIread_pipe:
1871   case Builtin::BIwrite_pipe:
1872     // Since those two functions are declared with var args, we need a semantic
1873     // check for the argument.
1874     if (SemaBuiltinRWPipe(*this, TheCall))
1875       return ExprError();
1876     break;
1877   case Builtin::BIreserve_read_pipe:
1878   case Builtin::BIreserve_write_pipe:
1879   case Builtin::BIwork_group_reserve_read_pipe:
1880   case Builtin::BIwork_group_reserve_write_pipe:
1881     if (SemaBuiltinReserveRWPipe(*this, TheCall))
1882       return ExprError();
1883     break;
1884   case Builtin::BIsub_group_reserve_read_pipe:
1885   case Builtin::BIsub_group_reserve_write_pipe:
1886     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1887         SemaBuiltinReserveRWPipe(*this, TheCall))
1888       return ExprError();
1889     break;
1890   case Builtin::BIcommit_read_pipe:
1891   case Builtin::BIcommit_write_pipe:
1892   case Builtin::BIwork_group_commit_read_pipe:
1893   case Builtin::BIwork_group_commit_write_pipe:
1894     if (SemaBuiltinCommitRWPipe(*this, TheCall))
1895       return ExprError();
1896     break;
1897   case Builtin::BIsub_group_commit_read_pipe:
1898   case Builtin::BIsub_group_commit_write_pipe:
1899     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1900         SemaBuiltinCommitRWPipe(*this, TheCall))
1901       return ExprError();
1902     break;
1903   case Builtin::BIget_pipe_num_packets:
1904   case Builtin::BIget_pipe_max_packets:
1905     if (SemaBuiltinPipePackets(*this, TheCall))
1906       return ExprError();
1907     break;
1908   case Builtin::BIto_global:
1909   case Builtin::BIto_local:
1910   case Builtin::BIto_private:
1911     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1912       return ExprError();
1913     break;
1914   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1915   case Builtin::BIenqueue_kernel:
1916     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1917       return ExprError();
1918     break;
1919   case Builtin::BIget_kernel_work_group_size:
1920   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1921     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1922       return ExprError();
1923     break;
1924   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1925   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1926     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1927       return ExprError();
1928     break;
1929   case Builtin::BI__builtin_os_log_format:
1930     Cleanup.setExprNeedsCleanups(true);
1931     LLVM_FALLTHROUGH;
1932   case Builtin::BI__builtin_os_log_format_buffer_size:
1933     if (SemaBuiltinOSLogFormat(TheCall))
1934       return ExprError();
1935     break;
1936   case Builtin::BI__builtin_frame_address:
1937   case Builtin::BI__builtin_return_address: {
1938     if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
1939       return ExprError();
1940 
1941     // -Wframe-address warning if non-zero passed to builtin
1942     // return/frame address.
1943     Expr::EvalResult Result;
1944     if (TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
1945         Result.Val.getInt() != 0)
1946       Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
1947           << ((BuiltinID == Builtin::BI__builtin_return_address)
1948                   ? "__builtin_return_address"
1949                   : "__builtin_frame_address")
1950           << TheCall->getSourceRange();
1951     break;
1952   }
1953 
1954   case Builtin::BI__builtin_matrix_transpose:
1955     return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
1956 
1957   case Builtin::BI__builtin_matrix_column_major_load:
1958     return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
1959 
1960   case Builtin::BI__builtin_matrix_column_major_store:
1961     return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
1962   }
1963 
1964   // Since the target specific builtins for each arch overlap, only check those
1965   // of the arch we are compiling for.
1966   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
1967     if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
1968       assert(Context.getAuxTargetInfo() &&
1969              "Aux Target Builtin, but not an aux target?");
1970 
1971       if (CheckTSBuiltinFunctionCall(
1972               *Context.getAuxTargetInfo(),
1973               Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
1974         return ExprError();
1975     } else {
1976       if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
1977                                      TheCall))
1978         return ExprError();
1979     }
1980   }
1981 
1982   return TheCallResult;
1983 }
1984 
1985 // Get the valid immediate range for the specified NEON type code.
RFT(unsigned t,bool shift=false,bool ForceQuad=false)1986 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
1987   NeonTypeFlags Type(t);
1988   int IsQuad = ForceQuad ? true : Type.isQuad();
1989   switch (Type.getEltType()) {
1990   case NeonTypeFlags::Int8:
1991   case NeonTypeFlags::Poly8:
1992     return shift ? 7 : (8 << IsQuad) - 1;
1993   case NeonTypeFlags::Int16:
1994   case NeonTypeFlags::Poly16:
1995     return shift ? 15 : (4 << IsQuad) - 1;
1996   case NeonTypeFlags::Int32:
1997     return shift ? 31 : (2 << IsQuad) - 1;
1998   case NeonTypeFlags::Int64:
1999   case NeonTypeFlags::Poly64:
2000     return shift ? 63 : (1 << IsQuad) - 1;
2001   case NeonTypeFlags::Poly128:
2002     return shift ? 127 : (1 << IsQuad) - 1;
2003   case NeonTypeFlags::Float16:
2004     assert(!shift && "cannot shift float types!");
2005     return (4 << IsQuad) - 1;
2006   case NeonTypeFlags::Float32:
2007     assert(!shift && "cannot shift float types!");
2008     return (2 << IsQuad) - 1;
2009   case NeonTypeFlags::Float64:
2010     assert(!shift && "cannot shift float types!");
2011     return (1 << IsQuad) - 1;
2012   case NeonTypeFlags::BFloat16:
2013     assert(!shift && "cannot shift float types!");
2014     return (4 << IsQuad) - 1;
2015   }
2016   llvm_unreachable("Invalid NeonTypeFlag!");
2017 }
2018 
2019 /// getNeonEltType - Return the QualType corresponding to the elements of
2020 /// the vector type specified by the NeonTypeFlags.  This is used to check
2021 /// the pointer arguments for Neon load/store intrinsics.
getNeonEltType(NeonTypeFlags Flags,ASTContext & Context,bool IsPolyUnsigned,bool IsInt64Long)2022 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2023                                bool IsPolyUnsigned, bool IsInt64Long) {
2024   switch (Flags.getEltType()) {
2025   case NeonTypeFlags::Int8:
2026     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2027   case NeonTypeFlags::Int16:
2028     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2029   case NeonTypeFlags::Int32:
2030     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2031   case NeonTypeFlags::Int64:
2032     if (IsInt64Long)
2033       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2034     else
2035       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2036                                 : Context.LongLongTy;
2037   case NeonTypeFlags::Poly8:
2038     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2039   case NeonTypeFlags::Poly16:
2040     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2041   case NeonTypeFlags::Poly64:
2042     if (IsInt64Long)
2043       return Context.UnsignedLongTy;
2044     else
2045       return Context.UnsignedLongLongTy;
2046   case NeonTypeFlags::Poly128:
2047     break;
2048   case NeonTypeFlags::Float16:
2049     return Context.HalfTy;
2050   case NeonTypeFlags::Float32:
2051     return Context.FloatTy;
2052   case NeonTypeFlags::Float64:
2053     return Context.DoubleTy;
2054   case NeonTypeFlags::BFloat16:
2055     return Context.BFloat16Ty;
2056   }
2057   llvm_unreachable("Invalid NeonTypeFlag!");
2058 }
2059 
CheckSVEBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)2060 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2061   // Range check SVE intrinsics that take immediate values.
2062   SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2063 
2064   switch (BuiltinID) {
2065   default:
2066     return false;
2067 #define GET_SVE_IMMEDIATE_CHECK
2068 #include "clang/Basic/arm_sve_sema_rangechecks.inc"
2069 #undef GET_SVE_IMMEDIATE_CHECK
2070   }
2071 
2072   // Perform all the immediate checks for this builtin call.
2073   bool HasError = false;
2074   for (auto &I : ImmChecks) {
2075     int ArgNum, CheckTy, ElementSizeInBits;
2076     std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2077 
2078     typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2079 
2080     // Function that checks whether the operand (ArgNum) is an immediate
2081     // that is one of the predefined values.
2082     auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2083                                    int ErrDiag) -> bool {
2084       // We can't check the value of a dependent argument.
2085       Expr *Arg = TheCall->getArg(ArgNum);
2086       if (Arg->isTypeDependent() || Arg->isValueDependent())
2087         return false;
2088 
2089       // Check constant-ness first.
2090       llvm::APSInt Imm;
2091       if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2092         return true;
2093 
2094       if (!CheckImm(Imm.getSExtValue()))
2095         return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2096       return false;
2097     };
2098 
2099     switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2100     case SVETypeFlags::ImmCheck0_31:
2101       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2102         HasError = true;
2103       break;
2104     case SVETypeFlags::ImmCheck0_13:
2105       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2106         HasError = true;
2107       break;
2108     case SVETypeFlags::ImmCheck1_16:
2109       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2110         HasError = true;
2111       break;
2112     case SVETypeFlags::ImmCheck0_7:
2113       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2114         HasError = true;
2115       break;
2116     case SVETypeFlags::ImmCheckExtract:
2117       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2118                                       (2048 / ElementSizeInBits) - 1))
2119         HasError = true;
2120       break;
2121     case SVETypeFlags::ImmCheckShiftRight:
2122       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2123         HasError = true;
2124       break;
2125     case SVETypeFlags::ImmCheckShiftRightNarrow:
2126       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2127                                       ElementSizeInBits / 2))
2128         HasError = true;
2129       break;
2130     case SVETypeFlags::ImmCheckShiftLeft:
2131       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2132                                       ElementSizeInBits - 1))
2133         HasError = true;
2134       break;
2135     case SVETypeFlags::ImmCheckLaneIndex:
2136       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2137                                       (128 / (1 * ElementSizeInBits)) - 1))
2138         HasError = true;
2139       break;
2140     case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2141       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2142                                       (128 / (2 * ElementSizeInBits)) - 1))
2143         HasError = true;
2144       break;
2145     case SVETypeFlags::ImmCheckLaneIndexDot:
2146       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2147                                       (128 / (4 * ElementSizeInBits)) - 1))
2148         HasError = true;
2149       break;
2150     case SVETypeFlags::ImmCheckComplexRot90_270:
2151       if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2152                               diag::err_rotation_argument_to_cadd))
2153         HasError = true;
2154       break;
2155     case SVETypeFlags::ImmCheckComplexRotAll90:
2156       if (CheckImmediateInSet(
2157               [](int64_t V) {
2158                 return V == 0 || V == 90 || V == 180 || V == 270;
2159               },
2160               diag::err_rotation_argument_to_cmla))
2161         HasError = true;
2162       break;
2163     case SVETypeFlags::ImmCheck0_1:
2164       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2165         HasError = true;
2166       break;
2167     case SVETypeFlags::ImmCheck0_2:
2168       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2169         HasError = true;
2170       break;
2171     case SVETypeFlags::ImmCheck0_3:
2172       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2173         HasError = true;
2174       break;
2175     }
2176   }
2177 
2178   return HasError;
2179 }
2180 
CheckNeonBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2181 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2182                                         unsigned BuiltinID, CallExpr *TheCall) {
2183   llvm::APSInt Result;
2184   uint64_t mask = 0;
2185   unsigned TV = 0;
2186   int PtrArgNum = -1;
2187   bool HasConstPtr = false;
2188   switch (BuiltinID) {
2189 #define GET_NEON_OVERLOAD_CHECK
2190 #include "clang/Basic/arm_neon.inc"
2191 #include "clang/Basic/arm_fp16.inc"
2192 #undef GET_NEON_OVERLOAD_CHECK
2193   }
2194 
2195   // For NEON intrinsics which are overloaded on vector element type, validate
2196   // the immediate which specifies which variant to emit.
2197   unsigned ImmArg = TheCall->getNumArgs()-1;
2198   if (mask) {
2199     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2200       return true;
2201 
2202     TV = Result.getLimitedValue(64);
2203     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2204       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2205              << TheCall->getArg(ImmArg)->getSourceRange();
2206   }
2207 
2208   if (PtrArgNum >= 0) {
2209     // Check that pointer arguments have the specified type.
2210     Expr *Arg = TheCall->getArg(PtrArgNum);
2211     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2212       Arg = ICE->getSubExpr();
2213     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2214     QualType RHSTy = RHS.get()->getType();
2215 
2216     llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2217     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2218                           Arch == llvm::Triple::aarch64_32 ||
2219                           Arch == llvm::Triple::aarch64_be;
2220     bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2221     QualType EltTy =
2222         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2223     if (HasConstPtr)
2224       EltTy = EltTy.withConst();
2225     QualType LHSTy = Context.getPointerType(EltTy);
2226     AssignConvertType ConvTy;
2227     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2228     if (RHS.isInvalid())
2229       return true;
2230     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2231                                  RHS.get(), AA_Assigning))
2232       return true;
2233   }
2234 
2235   // For NEON intrinsics which take an immediate value as part of the
2236   // instruction, range check them here.
2237   unsigned i = 0, l = 0, u = 0;
2238   switch (BuiltinID) {
2239   default:
2240     return false;
2241   #define GET_NEON_IMMEDIATE_CHECK
2242   #include "clang/Basic/arm_neon.inc"
2243   #include "clang/Basic/arm_fp16.inc"
2244   #undef GET_NEON_IMMEDIATE_CHECK
2245   }
2246 
2247   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2248 }
2249 
CheckMVEBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)2250 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2251   switch (BuiltinID) {
2252   default:
2253     return false;
2254   #include "clang/Basic/arm_mve_builtin_sema.inc"
2255   }
2256 }
2257 
CheckCDEBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2258 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2259                                        CallExpr *TheCall) {
2260   bool Err = false;
2261   switch (BuiltinID) {
2262   default:
2263     return false;
2264 #include "clang/Basic/arm_cde_builtin_sema.inc"
2265   }
2266 
2267   if (Err)
2268     return true;
2269 
2270   return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2271 }
2272 
CheckARMCoprocessorImmediate(const TargetInfo & TI,const Expr * CoprocArg,bool WantCDE)2273 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2274                                         const Expr *CoprocArg, bool WantCDE) {
2275   if (isConstantEvaluated())
2276     return false;
2277 
2278   // We can't check the value of a dependent argument.
2279   if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2280     return false;
2281 
2282   llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2283   int64_t CoprocNo = CoprocNoAP.getExtValue();
2284   assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
2285 
2286   uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2287   bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2288 
2289   if (IsCDECoproc != WantCDE)
2290     return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2291            << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2292 
2293   return false;
2294 }
2295 
CheckARMBuiltinExclusiveCall(unsigned BuiltinID,CallExpr * TheCall,unsigned MaxWidth)2296 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2297                                         unsigned MaxWidth) {
2298   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
2299           BuiltinID == ARM::BI__builtin_arm_ldaex ||
2300           BuiltinID == ARM::BI__builtin_arm_strex ||
2301           BuiltinID == ARM::BI__builtin_arm_stlex ||
2302           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2303           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2304           BuiltinID == AArch64::BI__builtin_arm_strex ||
2305           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
2306          "unexpected ARM builtin");
2307   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2308                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
2309                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2310                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
2311 
2312   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2313 
2314   // Ensure that we have the proper number of arguments.
2315   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
2316     return true;
2317 
2318   // Inspect the pointer argument of the atomic builtin.  This should always be
2319   // a pointer type, whose element is an integral scalar or pointer type.
2320   // Because it is a pointer type, we don't have to worry about any implicit
2321   // casts here.
2322   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
2323   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
2324   if (PointerArgRes.isInvalid())
2325     return true;
2326   PointerArg = PointerArgRes.get();
2327 
2328   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2329   if (!pointerType) {
2330     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
2331         << PointerArg->getType() << PointerArg->getSourceRange();
2332     return true;
2333   }
2334 
2335   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
2336   // task is to insert the appropriate casts into the AST. First work out just
2337   // what the appropriate type is.
2338   QualType ValType = pointerType->getPointeeType();
2339   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
2340   if (IsLdrex)
2341     AddrType.addConst();
2342 
2343   // Issue a warning if the cast is dodgy.
2344   CastKind CastNeeded = CK_NoOp;
2345   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
2346     CastNeeded = CK_BitCast;
2347     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
2348         << PointerArg->getType() << Context.getPointerType(AddrType)
2349         << AA_Passing << PointerArg->getSourceRange();
2350   }
2351 
2352   // Finally, do the cast and replace the argument with the corrected version.
2353   AddrType = Context.getPointerType(AddrType);
2354   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
2355   if (PointerArgRes.isInvalid())
2356     return true;
2357   PointerArg = PointerArgRes.get();
2358 
2359   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
2360 
2361   // In general, we allow ints, floats and pointers to be loaded and stored.
2362   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2363       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
2364     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
2365         << PointerArg->getType() << PointerArg->getSourceRange();
2366     return true;
2367   }
2368 
2369   // But ARM doesn't have instructions to deal with 128-bit versions.
2370   if (Context.getTypeSize(ValType) > MaxWidth) {
2371     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
2372     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
2373         << PointerArg->getType() << PointerArg->getSourceRange();
2374     return true;
2375   }
2376 
2377   switch (ValType.getObjCLifetime()) {
2378   case Qualifiers::OCL_None:
2379   case Qualifiers::OCL_ExplicitNone:
2380     // okay
2381     break;
2382 
2383   case Qualifiers::OCL_Weak:
2384   case Qualifiers::OCL_Strong:
2385   case Qualifiers::OCL_Autoreleasing:
2386     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
2387         << ValType << PointerArg->getSourceRange();
2388     return true;
2389   }
2390 
2391   if (IsLdrex) {
2392     TheCall->setType(ValType);
2393     return false;
2394   }
2395 
2396   // Initialize the argument to be stored.
2397   ExprResult ValArg = TheCall->getArg(0);
2398   InitializedEntity Entity = InitializedEntity::InitializeParameter(
2399       Context, ValType, /*consume*/ false);
2400   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2401   if (ValArg.isInvalid())
2402     return true;
2403   TheCall->setArg(0, ValArg.get());
2404 
2405   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
2406   // but the custom checker bypasses all default analysis.
2407   TheCall->setType(Context.IntTy);
2408   return false;
2409 }
2410 
CheckARMBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2411 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2412                                        CallExpr *TheCall) {
2413   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
2414       BuiltinID == ARM::BI__builtin_arm_ldaex ||
2415       BuiltinID == ARM::BI__builtin_arm_strex ||
2416       BuiltinID == ARM::BI__builtin_arm_stlex) {
2417     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
2418   }
2419 
2420   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
2421     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2422       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
2423   }
2424 
2425   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2426       BuiltinID == ARM::BI__builtin_arm_wsr64)
2427     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
2428 
2429   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
2430       BuiltinID == ARM::BI__builtin_arm_rsrp ||
2431       BuiltinID == ARM::BI__builtin_arm_wsr ||
2432       BuiltinID == ARM::BI__builtin_arm_wsrp)
2433     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2434 
2435   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2436     return true;
2437   if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
2438     return true;
2439   if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
2440     return true;
2441 
2442   // For intrinsics which take an immediate value as part of the instruction,
2443   // range check them here.
2444   // FIXME: VFP Intrinsics should error if VFP not present.
2445   switch (BuiltinID) {
2446   default: return false;
2447   case ARM::BI__builtin_arm_ssat:
2448     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
2449   case ARM::BI__builtin_arm_usat:
2450     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
2451   case ARM::BI__builtin_arm_ssat16:
2452     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
2453   case ARM::BI__builtin_arm_usat16:
2454     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2455   case ARM::BI__builtin_arm_vcvtr_f:
2456   case ARM::BI__builtin_arm_vcvtr_d:
2457     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
2458   case ARM::BI__builtin_arm_dmb:
2459   case ARM::BI__builtin_arm_dsb:
2460   case ARM::BI__builtin_arm_isb:
2461   case ARM::BI__builtin_arm_dbg:
2462     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
2463   case ARM::BI__builtin_arm_cdp:
2464   case ARM::BI__builtin_arm_cdp2:
2465   case ARM::BI__builtin_arm_mcr:
2466   case ARM::BI__builtin_arm_mcr2:
2467   case ARM::BI__builtin_arm_mrc:
2468   case ARM::BI__builtin_arm_mrc2:
2469   case ARM::BI__builtin_arm_mcrr:
2470   case ARM::BI__builtin_arm_mcrr2:
2471   case ARM::BI__builtin_arm_mrrc:
2472   case ARM::BI__builtin_arm_mrrc2:
2473   case ARM::BI__builtin_arm_ldc:
2474   case ARM::BI__builtin_arm_ldcl:
2475   case ARM::BI__builtin_arm_ldc2:
2476   case ARM::BI__builtin_arm_ldc2l:
2477   case ARM::BI__builtin_arm_stc:
2478   case ARM::BI__builtin_arm_stcl:
2479   case ARM::BI__builtin_arm_stc2:
2480   case ARM::BI__builtin_arm_stc2l:
2481     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
2482            CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
2483                                         /*WantCDE*/ false);
2484   }
2485 }
2486 
CheckAArch64BuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2487 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
2488                                            unsigned BuiltinID,
2489                                            CallExpr *TheCall) {
2490   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2491       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2492       BuiltinID == AArch64::BI__builtin_arm_strex ||
2493       BuiltinID == AArch64::BI__builtin_arm_stlex) {
2494     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
2495   }
2496 
2497   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
2498     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2499       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
2500       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2501       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2502   }
2503 
2504   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2505       BuiltinID == AArch64::BI__builtin_arm_wsr64)
2506     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2507 
2508   // Memory Tagging Extensions (MTE) Intrinsics
2509   if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2510       BuiltinID == AArch64::BI__builtin_arm_addg ||
2511       BuiltinID == AArch64::BI__builtin_arm_gmi ||
2512       BuiltinID == AArch64::BI__builtin_arm_ldg ||
2513       BuiltinID == AArch64::BI__builtin_arm_stg ||
2514       BuiltinID == AArch64::BI__builtin_arm_subp) {
2515     return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2516   }
2517 
2518   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2519       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2520       BuiltinID == AArch64::BI__builtin_arm_wsr ||
2521       BuiltinID == AArch64::BI__builtin_arm_wsrp)
2522     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2523 
2524   // Only check the valid encoding range. Any constant in this range would be
2525   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2526   // an exception for incorrect registers. This matches MSVC behavior.
2527   if (BuiltinID == AArch64::BI_ReadStatusReg ||
2528       BuiltinID == AArch64::BI_WriteStatusReg)
2529     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2530 
2531   if (BuiltinID == AArch64::BI__getReg)
2532     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2533 
2534   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2535     return true;
2536 
2537   if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
2538     return true;
2539 
2540   // For intrinsics which take an immediate value as part of the instruction,
2541   // range check them here.
2542   unsigned i = 0, l = 0, u = 0;
2543   switch (BuiltinID) {
2544   default: return false;
2545   case AArch64::BI__builtin_arm_dmb:
2546   case AArch64::BI__builtin_arm_dsb:
2547   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2548   case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2549   }
2550 
2551   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2552 }
2553 
isValidBPFPreserveFieldInfoArg(Expr * Arg)2554 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
2555   if (Arg->getType()->getAsPlaceholderType())
2556     return false;
2557 
2558   // The first argument needs to be a record field access.
2559   // If it is an array element access, we delay decision
2560   // to BPF backend to check whether the access is a
2561   // field access or not.
2562   return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
2563           dyn_cast<MemberExpr>(Arg->IgnoreParens()) ||
2564           dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()));
2565 }
2566 
isEltOfVectorTy(ASTContext & Context,CallExpr * Call,Sema & S,QualType VectorTy,QualType EltTy)2567 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S,
2568                             QualType VectorTy, QualType EltTy) {
2569   QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType();
2570   if (!Context.hasSameType(VectorEltTy, EltTy)) {
2571     S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types)
2572         << Call->getSourceRange() << VectorEltTy << EltTy;
2573     return false;
2574   }
2575   return true;
2576 }
2577 
isValidBPFPreserveTypeInfoArg(Expr * Arg)2578 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
2579   QualType ArgType = Arg->getType();
2580   if (ArgType->getAsPlaceholderType())
2581     return false;
2582 
2583   // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
2584   // format:
2585   //   1. __builtin_preserve_type_info(*(<type> *)0, flag);
2586   //   2. <type> var;
2587   //      __builtin_preserve_type_info(var, flag);
2588   if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) &&
2589       !dyn_cast<UnaryOperator>(Arg->IgnoreParens()))
2590     return false;
2591 
2592   // Typedef type.
2593   if (ArgType->getAs<TypedefType>())
2594     return true;
2595 
2596   // Record type or Enum type.
2597   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2598   if (const auto *RT = Ty->getAs<RecordType>()) {
2599     if (!RT->getDecl()->getDeclName().isEmpty())
2600       return true;
2601   } else if (const auto *ET = Ty->getAs<EnumType>()) {
2602     if (!ET->getDecl()->getDeclName().isEmpty())
2603       return true;
2604   }
2605 
2606   return false;
2607 }
2608 
isValidBPFPreserveEnumValueArg(Expr * Arg)2609 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
2610   QualType ArgType = Arg->getType();
2611   if (ArgType->getAsPlaceholderType())
2612     return false;
2613 
2614   // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
2615   // format:
2616   //   __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
2617   //                                 flag);
2618   const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
2619   if (!UO)
2620     return false;
2621 
2622   const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
2623   if (!CE || CE->getCastKind() != CK_IntegralToPointer)
2624     return false;
2625 
2626   // The integer must be from an EnumConstantDecl.
2627   const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
2628   if (!DR)
2629     return false;
2630 
2631   const EnumConstantDecl *Enumerator =
2632       dyn_cast<EnumConstantDecl>(DR->getDecl());
2633   if (!Enumerator)
2634     return false;
2635 
2636   // The type must be EnumType.
2637   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2638   const auto *ET = Ty->getAs<EnumType>();
2639   if (!ET)
2640     return false;
2641 
2642   // The enum value must be supported.
2643   for (auto *EDI : ET->getDecl()->enumerators()) {
2644     if (EDI == Enumerator)
2645       return true;
2646   }
2647 
2648   return false;
2649 }
2650 
CheckBPFBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)2651 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2652                                        CallExpr *TheCall) {
2653   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
2654           BuiltinID == BPF::BI__builtin_btf_type_id ||
2655           BuiltinID == BPF::BI__builtin_preserve_type_info ||
2656           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
2657          "unexpected BPF builtin");
2658 
2659   if (checkArgCount(*this, TheCall, 2))
2660     return true;
2661 
2662   // The second argument needs to be a constant int
2663   Expr *Arg = TheCall->getArg(1);
2664   Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
2665   diag::kind kind;
2666   if (!Value) {
2667     if (BuiltinID == BPF::BI__builtin_preserve_field_info)
2668       kind = diag::err_preserve_field_info_not_const;
2669     else if (BuiltinID == BPF::BI__builtin_btf_type_id)
2670       kind = diag::err_btf_type_id_not_const;
2671     else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
2672       kind = diag::err_preserve_type_info_not_const;
2673     else
2674       kind = diag::err_preserve_enum_value_not_const;
2675     Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
2676     return true;
2677   }
2678 
2679   // The first argument
2680   Arg = TheCall->getArg(0);
2681   bool InvalidArg = false;
2682   bool ReturnUnsignedInt = true;
2683   if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
2684     if (!isValidBPFPreserveFieldInfoArg(Arg)) {
2685       InvalidArg = true;
2686       kind = diag::err_preserve_field_info_not_field;
2687     }
2688   } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
2689     if (!isValidBPFPreserveTypeInfoArg(Arg)) {
2690       InvalidArg = true;
2691       kind = diag::err_preserve_type_info_invalid;
2692     }
2693   } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
2694     if (!isValidBPFPreserveEnumValueArg(Arg)) {
2695       InvalidArg = true;
2696       kind = diag::err_preserve_enum_value_invalid;
2697     }
2698     ReturnUnsignedInt = false;
2699   } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
2700     ReturnUnsignedInt = false;
2701   }
2702 
2703   if (InvalidArg) {
2704     Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
2705     return true;
2706   }
2707 
2708   if (ReturnUnsignedInt)
2709     TheCall->setType(Context.UnsignedIntTy);
2710   else
2711     TheCall->setType(Context.UnsignedLongTy);
2712   return false;
2713 }
2714 
CheckHexagonBuiltinArgument(unsigned BuiltinID,CallExpr * TheCall)2715 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2716   struct ArgInfo {
2717     uint8_t OpNum;
2718     bool IsSigned;
2719     uint8_t BitWidth;
2720     uint8_t Align;
2721   };
2722   struct BuiltinInfo {
2723     unsigned BuiltinID;
2724     ArgInfo Infos[2];
2725   };
2726 
2727   static BuiltinInfo Infos[] = {
2728     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
2729     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
2730     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
2731     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  1 }} },
2732     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
2733     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
2734     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
2735     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
2736     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
2737     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
2738     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
2739 
2740     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
2741     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
2742     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
2743     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
2744     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
2745     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
2746     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
2747     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
2748     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
2749     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
2750     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
2751 
2752     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
2753     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
2754     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
2755     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
2756     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
2757     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
2758     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
2759     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
2760     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
2761     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
2762     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
2763     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
2764     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
2765     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
2766     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
2767     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
2768     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
2769     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
2770     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
2771     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
2772     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
2773     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
2774     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
2775     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
2776     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
2777     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
2778     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
2779     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
2780     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
2781     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
2782     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
2783     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
2784     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
2785     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
2786     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
2787     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
2788     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
2789     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
2790     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
2791     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
2792     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
2793     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
2794     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
2795     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
2796     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
2797     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
2798     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
2799     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
2800     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
2801     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
2802     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
2803     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2804                                                       {{ 1, false, 6,  0 }} },
2805     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
2806     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
2807     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
2808     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
2809     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
2810     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
2811     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
2812                                                       {{ 1, false, 5,  0 }} },
2813     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
2814     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
2815     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
2816     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
2817     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
2818     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
2819                                                        { 2, false, 5,  0 }} },
2820     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
2821                                                        { 2, false, 6,  0 }} },
2822     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
2823                                                        { 3, false, 5,  0 }} },
2824     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
2825                                                        { 3, false, 6,  0 }} },
2826     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
2827     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
2828     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
2829     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
2830     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
2831     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
2832     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
2833     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
2834     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
2835     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
2836     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
2837     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
2838     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
2839     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
2840     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
2841     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
2842                                                       {{ 2, false, 4,  0 },
2843                                                        { 3, false, 5,  0 }} },
2844     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
2845                                                       {{ 2, false, 4,  0 },
2846                                                        { 3, false, 5,  0 }} },
2847     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
2848                                                       {{ 2, false, 4,  0 },
2849                                                        { 3, false, 5,  0 }} },
2850     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
2851                                                       {{ 2, false, 4,  0 },
2852                                                        { 3, false, 5,  0 }} },
2853     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
2854     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
2855     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
2856     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
2857     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
2858     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
2859     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
2860     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
2861     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
2862     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
2863     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
2864                                                        { 2, false, 5,  0 }} },
2865     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
2866                                                        { 2, false, 6,  0 }} },
2867     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
2868     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
2869     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
2870     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
2871     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
2872     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
2873     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
2874     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
2875     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
2876                                                       {{ 1, false, 4,  0 }} },
2877     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
2878     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
2879                                                       {{ 1, false, 4,  0 }} },
2880     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
2881     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
2882     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
2883     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
2884     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
2885     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
2886     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
2887     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
2888     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
2889     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
2890     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
2891     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
2892     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
2893     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
2894     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
2895     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
2896     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
2897     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
2898     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
2899     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
2900                                                       {{ 3, false, 1,  0 }} },
2901     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
2902     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
2903     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
2904     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
2905                                                       {{ 3, false, 1,  0 }} },
2906     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
2907     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
2908     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
2909     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
2910                                                       {{ 3, false, 1,  0 }} },
2911   };
2912 
2913   // Use a dynamically initialized static to sort the table exactly once on
2914   // first run.
2915   static const bool SortOnce =
2916       (llvm::sort(Infos,
2917                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
2918                    return LHS.BuiltinID < RHS.BuiltinID;
2919                  }),
2920        true);
2921   (void)SortOnce;
2922 
2923   const BuiltinInfo *F = llvm::partition_point(
2924       Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
2925   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
2926     return false;
2927 
2928   bool Error = false;
2929 
2930   for (const ArgInfo &A : F->Infos) {
2931     // Ignore empty ArgInfo elements.
2932     if (A.BitWidth == 0)
2933       continue;
2934 
2935     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
2936     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
2937     if (!A.Align) {
2938       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
2939     } else {
2940       unsigned M = 1 << A.Align;
2941       Min *= M;
2942       Max *= M;
2943       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
2944                SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
2945     }
2946   }
2947   return Error;
2948 }
2949 
CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)2950 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
2951                                            CallExpr *TheCall) {
2952   return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
2953 }
2954 
CheckMipsBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2955 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
2956                                         unsigned BuiltinID, CallExpr *TheCall) {
2957   return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
2958          CheckMipsBuiltinArgument(BuiltinID, TheCall);
2959 }
2960 
CheckMipsBuiltinCpu(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2961 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
2962                                CallExpr *TheCall) {
2963 
2964   if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
2965       BuiltinID <= Mips::BI__builtin_mips_lwx) {
2966     if (!TI.hasFeature("dsp"))
2967       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
2968   }
2969 
2970   if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
2971       BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
2972     if (!TI.hasFeature("dspr2"))
2973       return Diag(TheCall->getBeginLoc(),
2974                   diag::err_mips_builtin_requires_dspr2);
2975   }
2976 
2977   if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
2978       BuiltinID <= Mips::BI__builtin_msa_xori_b) {
2979     if (!TI.hasFeature("msa"))
2980       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
2981   }
2982 
2983   return false;
2984 }
2985 
2986 // CheckMipsBuiltinArgument - Checks the constant value passed to the
2987 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
2988 // ordering for DSP is unspecified. MSA is ordered by the data format used
2989 // by the underlying instruction i.e., df/m, df/n and then by size.
2990 //
2991 // FIXME: The size tests here should instead be tablegen'd along with the
2992 //        definitions from include/clang/Basic/BuiltinsMips.def.
2993 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
2994 //        be too.
CheckMipsBuiltinArgument(unsigned BuiltinID,CallExpr * TheCall)2995 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2996   unsigned i = 0, l = 0, u = 0, m = 0;
2997   switch (BuiltinID) {
2998   default: return false;
2999   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3000   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3001   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3002   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3003   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3004   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3005   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3006   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3007   // df/m field.
3008   // These intrinsics take an unsigned 3 bit immediate.
3009   case Mips::BI__builtin_msa_bclri_b:
3010   case Mips::BI__builtin_msa_bnegi_b:
3011   case Mips::BI__builtin_msa_bseti_b:
3012   case Mips::BI__builtin_msa_sat_s_b:
3013   case Mips::BI__builtin_msa_sat_u_b:
3014   case Mips::BI__builtin_msa_slli_b:
3015   case Mips::BI__builtin_msa_srai_b:
3016   case Mips::BI__builtin_msa_srari_b:
3017   case Mips::BI__builtin_msa_srli_b:
3018   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3019   case Mips::BI__builtin_msa_binsli_b:
3020   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3021   // These intrinsics take an unsigned 4 bit immediate.
3022   case Mips::BI__builtin_msa_bclri_h:
3023   case Mips::BI__builtin_msa_bnegi_h:
3024   case Mips::BI__builtin_msa_bseti_h:
3025   case Mips::BI__builtin_msa_sat_s_h:
3026   case Mips::BI__builtin_msa_sat_u_h:
3027   case Mips::BI__builtin_msa_slli_h:
3028   case Mips::BI__builtin_msa_srai_h:
3029   case Mips::BI__builtin_msa_srari_h:
3030   case Mips::BI__builtin_msa_srli_h:
3031   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3032   case Mips::BI__builtin_msa_binsli_h:
3033   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3034   // These intrinsics take an unsigned 5 bit immediate.
3035   // The first block of intrinsics actually have an unsigned 5 bit field,
3036   // not a df/n field.
3037   case Mips::BI__builtin_msa_cfcmsa:
3038   case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3039   case Mips::BI__builtin_msa_clei_u_b:
3040   case Mips::BI__builtin_msa_clei_u_h:
3041   case Mips::BI__builtin_msa_clei_u_w:
3042   case Mips::BI__builtin_msa_clei_u_d:
3043   case Mips::BI__builtin_msa_clti_u_b:
3044   case Mips::BI__builtin_msa_clti_u_h:
3045   case Mips::BI__builtin_msa_clti_u_w:
3046   case Mips::BI__builtin_msa_clti_u_d:
3047   case Mips::BI__builtin_msa_maxi_u_b:
3048   case Mips::BI__builtin_msa_maxi_u_h:
3049   case Mips::BI__builtin_msa_maxi_u_w:
3050   case Mips::BI__builtin_msa_maxi_u_d:
3051   case Mips::BI__builtin_msa_mini_u_b:
3052   case Mips::BI__builtin_msa_mini_u_h:
3053   case Mips::BI__builtin_msa_mini_u_w:
3054   case Mips::BI__builtin_msa_mini_u_d:
3055   case Mips::BI__builtin_msa_addvi_b:
3056   case Mips::BI__builtin_msa_addvi_h:
3057   case Mips::BI__builtin_msa_addvi_w:
3058   case Mips::BI__builtin_msa_addvi_d:
3059   case Mips::BI__builtin_msa_bclri_w:
3060   case Mips::BI__builtin_msa_bnegi_w:
3061   case Mips::BI__builtin_msa_bseti_w:
3062   case Mips::BI__builtin_msa_sat_s_w:
3063   case Mips::BI__builtin_msa_sat_u_w:
3064   case Mips::BI__builtin_msa_slli_w:
3065   case Mips::BI__builtin_msa_srai_w:
3066   case Mips::BI__builtin_msa_srari_w:
3067   case Mips::BI__builtin_msa_srli_w:
3068   case Mips::BI__builtin_msa_srlri_w:
3069   case Mips::BI__builtin_msa_subvi_b:
3070   case Mips::BI__builtin_msa_subvi_h:
3071   case Mips::BI__builtin_msa_subvi_w:
3072   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3073   case Mips::BI__builtin_msa_binsli_w:
3074   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3075   // These intrinsics take an unsigned 6 bit immediate.
3076   case Mips::BI__builtin_msa_bclri_d:
3077   case Mips::BI__builtin_msa_bnegi_d:
3078   case Mips::BI__builtin_msa_bseti_d:
3079   case Mips::BI__builtin_msa_sat_s_d:
3080   case Mips::BI__builtin_msa_sat_u_d:
3081   case Mips::BI__builtin_msa_slli_d:
3082   case Mips::BI__builtin_msa_srai_d:
3083   case Mips::BI__builtin_msa_srari_d:
3084   case Mips::BI__builtin_msa_srli_d:
3085   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3086   case Mips::BI__builtin_msa_binsli_d:
3087   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3088   // These intrinsics take a signed 5 bit immediate.
3089   case Mips::BI__builtin_msa_ceqi_b:
3090   case Mips::BI__builtin_msa_ceqi_h:
3091   case Mips::BI__builtin_msa_ceqi_w:
3092   case Mips::BI__builtin_msa_ceqi_d:
3093   case Mips::BI__builtin_msa_clti_s_b:
3094   case Mips::BI__builtin_msa_clti_s_h:
3095   case Mips::BI__builtin_msa_clti_s_w:
3096   case Mips::BI__builtin_msa_clti_s_d:
3097   case Mips::BI__builtin_msa_clei_s_b:
3098   case Mips::BI__builtin_msa_clei_s_h:
3099   case Mips::BI__builtin_msa_clei_s_w:
3100   case Mips::BI__builtin_msa_clei_s_d:
3101   case Mips::BI__builtin_msa_maxi_s_b:
3102   case Mips::BI__builtin_msa_maxi_s_h:
3103   case Mips::BI__builtin_msa_maxi_s_w:
3104   case Mips::BI__builtin_msa_maxi_s_d:
3105   case Mips::BI__builtin_msa_mini_s_b:
3106   case Mips::BI__builtin_msa_mini_s_h:
3107   case Mips::BI__builtin_msa_mini_s_w:
3108   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3109   // These intrinsics take an unsigned 8 bit immediate.
3110   case Mips::BI__builtin_msa_andi_b:
3111   case Mips::BI__builtin_msa_nori_b:
3112   case Mips::BI__builtin_msa_ori_b:
3113   case Mips::BI__builtin_msa_shf_b:
3114   case Mips::BI__builtin_msa_shf_h:
3115   case Mips::BI__builtin_msa_shf_w:
3116   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3117   case Mips::BI__builtin_msa_bseli_b:
3118   case Mips::BI__builtin_msa_bmnzi_b:
3119   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3120   // df/n format
3121   // These intrinsics take an unsigned 4 bit immediate.
3122   case Mips::BI__builtin_msa_copy_s_b:
3123   case Mips::BI__builtin_msa_copy_u_b:
3124   case Mips::BI__builtin_msa_insve_b:
3125   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3126   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3127   // These intrinsics take an unsigned 3 bit immediate.
3128   case Mips::BI__builtin_msa_copy_s_h:
3129   case Mips::BI__builtin_msa_copy_u_h:
3130   case Mips::BI__builtin_msa_insve_h:
3131   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3132   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3133   // These intrinsics take an unsigned 2 bit immediate.
3134   case Mips::BI__builtin_msa_copy_s_w:
3135   case Mips::BI__builtin_msa_copy_u_w:
3136   case Mips::BI__builtin_msa_insve_w:
3137   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3138   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3139   // These intrinsics take an unsigned 1 bit immediate.
3140   case Mips::BI__builtin_msa_copy_s_d:
3141   case Mips::BI__builtin_msa_copy_u_d:
3142   case Mips::BI__builtin_msa_insve_d:
3143   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3144   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3145   // Memory offsets and immediate loads.
3146   // These intrinsics take a signed 10 bit immediate.
3147   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3148   case Mips::BI__builtin_msa_ldi_h:
3149   case Mips::BI__builtin_msa_ldi_w:
3150   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3151   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3152   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3153   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3154   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3155   case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3156   case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3157   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3158   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3159   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3160   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3161   case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3162   case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3163   }
3164 
3165   if (!m)
3166     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3167 
3168   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3169          SemaBuiltinConstantArgMultiple(TheCall, i, m);
3170 }
3171 
3172 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3173 /// advancing the pointer over the consumed characters. The decoded type is
3174 /// returned. If the decoded type represents a constant integer with a
3175 /// constraint on its value then Mask is set to that value. The type descriptors
3176 /// used in Str are specific to PPC MMA builtins and are documented in the file
3177 /// defining the PPC builtins.
DecodePPCMMATypeFromStr(ASTContext & Context,const char * & Str,unsigned & Mask)3178 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3179                                         unsigned &Mask) {
3180   bool RequireICE = false;
3181   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3182   switch (*Str++) {
3183   case 'V':
3184     return Context.getVectorType(Context.UnsignedCharTy, 16,
3185                                  VectorType::VectorKind::AltiVecVector);
3186   case 'i': {
3187     char *End;
3188     unsigned size = strtoul(Str, &End, 10);
3189     assert(End != Str && "Missing constant parameter constraint");
3190     Str = End;
3191     Mask = size;
3192     return Context.IntTy;
3193   }
3194   case 'W': {
3195     char *End;
3196     unsigned size = strtoul(Str, &End, 10);
3197     assert(End != Str && "Missing PowerPC MMA type size");
3198     Str = End;
3199     QualType Type;
3200     switch (size) {
3201   #define PPC_MMA_VECTOR_TYPE(typeName, Id, size) \
3202     case size: Type = Context.Id##Ty; break;
3203   #include "clang/Basic/PPCTypes.def"
3204     default: llvm_unreachable("Invalid PowerPC MMA vector type");
3205     }
3206     bool CheckVectorArgs = false;
3207     while (!CheckVectorArgs) {
3208       switch (*Str++) {
3209       case '*':
3210         Type = Context.getPointerType(Type);
3211         break;
3212       case 'C':
3213         Type = Type.withConst();
3214         break;
3215       default:
3216         CheckVectorArgs = true;
3217         --Str;
3218         break;
3219       }
3220     }
3221     return Type;
3222   }
3223   default:
3224     return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3225   }
3226 }
3227 
CheckPPCBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)3228 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3229                                        CallExpr *TheCall) {
3230   unsigned i = 0, l = 0, u = 0;
3231   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
3232                       BuiltinID == PPC::BI__builtin_divdeu ||
3233                       BuiltinID == PPC::BI__builtin_bpermd;
3234   bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3235   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
3236                        BuiltinID == PPC::BI__builtin_divweu ||
3237                        BuiltinID == PPC::BI__builtin_divde ||
3238                        BuiltinID == PPC::BI__builtin_divdeu;
3239 
3240   if (Is64BitBltin && !IsTarget64Bit)
3241     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3242            << TheCall->getSourceRange();
3243 
3244   if ((IsBltinExtDiv && !TI.hasFeature("extdiv")) ||
3245       (BuiltinID == PPC::BI__builtin_bpermd && !TI.hasFeature("bpermd")))
3246     return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3247            << TheCall->getSourceRange();
3248 
3249   auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool {
3250     if (!TI.hasFeature("vsx"))
3251       return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3252              << TheCall->getSourceRange();
3253     return false;
3254   };
3255 
3256   switch (BuiltinID) {
3257   default: return false;
3258   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3259   case PPC::BI__builtin_altivec_crypto_vshasigmad:
3260     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3261            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3262   case PPC::BI__builtin_altivec_dss:
3263     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3264   case PPC::BI__builtin_tbegin:
3265   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3266   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3267   case PPC::BI__builtin_tabortwc:
3268   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3269   case PPC::BI__builtin_tabortwci:
3270   case PPC::BI__builtin_tabortdci:
3271     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3272            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3273   case PPC::BI__builtin_altivec_dst:
3274   case PPC::BI__builtin_altivec_dstt:
3275   case PPC::BI__builtin_altivec_dstst:
3276   case PPC::BI__builtin_altivec_dststt:
3277     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3278   case PPC::BI__builtin_vsx_xxpermdi:
3279   case PPC::BI__builtin_vsx_xxsldwi:
3280     return SemaBuiltinVSX(TheCall);
3281   case PPC::BI__builtin_unpack_vector_int128:
3282     return SemaVSXCheck(TheCall) ||
3283            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3284   case PPC::BI__builtin_pack_vector_int128:
3285     return SemaVSXCheck(TheCall);
3286   case PPC::BI__builtin_altivec_vgnb:
3287      return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
3288   case PPC::BI__builtin_altivec_vec_replace_elt:
3289   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
3290     QualType VecTy = TheCall->getArg(0)->getType();
3291     QualType EltTy = TheCall->getArg(1)->getType();
3292     unsigned Width = Context.getIntWidth(EltTy);
3293     return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) ||
3294            !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy);
3295   }
3296   case PPC::BI__builtin_vsx_xxeval:
3297      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
3298   case PPC::BI__builtin_altivec_vsldbi:
3299      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3300   case PPC::BI__builtin_altivec_vsrdbi:
3301      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3302   case PPC::BI__builtin_vsx_xxpermx:
3303      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
3304 #define MMA_BUILTIN(Name, Types, Acc) \
3305   case PPC::BI__builtin_mma_##Name: \
3306     return SemaBuiltinPPCMMACall(TheCall, Types);
3307 #include "clang/Basic/BuiltinsPPC.def"
3308   }
3309   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3310 }
3311 
3312 // Check if the given type is a non-pointer PPC MMA type. This function is used
3313 // in Sema to prevent invalid uses of restricted PPC MMA types.
CheckPPCMMAType(QualType Type,SourceLocation TypeLoc)3314 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
3315   if (Type->isPointerType() || Type->isArrayType())
3316     return false;
3317 
3318   QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
3319 #define PPC_MMA_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
3320   if (false
3321 #include "clang/Basic/PPCTypes.def"
3322      ) {
3323     Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
3324     return true;
3325   }
3326   return false;
3327 }
3328 
CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)3329 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
3330                                           CallExpr *TheCall) {
3331   // position of memory order and scope arguments in the builtin
3332   unsigned OrderIndex, ScopeIndex;
3333   switch (BuiltinID) {
3334   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
3335   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
3336   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
3337   case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
3338     OrderIndex = 2;
3339     ScopeIndex = 3;
3340     break;
3341   case AMDGPU::BI__builtin_amdgcn_fence:
3342     OrderIndex = 0;
3343     ScopeIndex = 1;
3344     break;
3345   default:
3346     return false;
3347   }
3348 
3349   ExprResult Arg = TheCall->getArg(OrderIndex);
3350   auto ArgExpr = Arg.get();
3351   Expr::EvalResult ArgResult;
3352 
3353   if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
3354     return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
3355            << ArgExpr->getType();
3356   int ord = ArgResult.Val.getInt().getZExtValue();
3357 
3358   // Check valididty of memory ordering as per C11 / C++11's memody model.
3359   switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
3360   case llvm::AtomicOrderingCABI::acquire:
3361   case llvm::AtomicOrderingCABI::release:
3362   case llvm::AtomicOrderingCABI::acq_rel:
3363   case llvm::AtomicOrderingCABI::seq_cst:
3364     break;
3365   default: {
3366     return Diag(ArgExpr->getBeginLoc(),
3367                 diag::warn_atomic_op_has_invalid_memory_order)
3368            << ArgExpr->getSourceRange();
3369   }
3370   }
3371 
3372   Arg = TheCall->getArg(ScopeIndex);
3373   ArgExpr = Arg.get();
3374   Expr::EvalResult ArgResult1;
3375   // Check that sync scope is a constant literal
3376   if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
3377     return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
3378            << ArgExpr->getType();
3379 
3380   return false;
3381 }
3382 
CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)3383 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3384                                            CallExpr *TheCall) {
3385   if (BuiltinID == SystemZ::BI__builtin_tabort) {
3386     Expr *Arg = TheCall->getArg(0);
3387     if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
3388       if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
3389         return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3390                << Arg->getSourceRange();
3391   }
3392 
3393   // For intrinsics which take an immediate value as part of the instruction,
3394   // range check them here.
3395   unsigned i = 0, l = 0, u = 0;
3396   switch (BuiltinID) {
3397   default: return false;
3398   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3399   case SystemZ::BI__builtin_s390_verimb:
3400   case SystemZ::BI__builtin_s390_verimh:
3401   case SystemZ::BI__builtin_s390_verimf:
3402   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3403   case SystemZ::BI__builtin_s390_vfaeb:
3404   case SystemZ::BI__builtin_s390_vfaeh:
3405   case SystemZ::BI__builtin_s390_vfaef:
3406   case SystemZ::BI__builtin_s390_vfaebs:
3407   case SystemZ::BI__builtin_s390_vfaehs:
3408   case SystemZ::BI__builtin_s390_vfaefs:
3409   case SystemZ::BI__builtin_s390_vfaezb:
3410   case SystemZ::BI__builtin_s390_vfaezh:
3411   case SystemZ::BI__builtin_s390_vfaezf:
3412   case SystemZ::BI__builtin_s390_vfaezbs:
3413   case SystemZ::BI__builtin_s390_vfaezhs:
3414   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3415   case SystemZ::BI__builtin_s390_vfisb:
3416   case SystemZ::BI__builtin_s390_vfidb:
3417     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3418            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3419   case SystemZ::BI__builtin_s390_vftcisb:
3420   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3421   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3422   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3423   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3424   case SystemZ::BI__builtin_s390_vstrcb:
3425   case SystemZ::BI__builtin_s390_vstrch:
3426   case SystemZ::BI__builtin_s390_vstrcf:
3427   case SystemZ::BI__builtin_s390_vstrczb:
3428   case SystemZ::BI__builtin_s390_vstrczh:
3429   case SystemZ::BI__builtin_s390_vstrczf:
3430   case SystemZ::BI__builtin_s390_vstrcbs:
3431   case SystemZ::BI__builtin_s390_vstrchs:
3432   case SystemZ::BI__builtin_s390_vstrcfs:
3433   case SystemZ::BI__builtin_s390_vstrczbs:
3434   case SystemZ::BI__builtin_s390_vstrczhs:
3435   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3436   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3437   case SystemZ::BI__builtin_s390_vfminsb:
3438   case SystemZ::BI__builtin_s390_vfmaxsb:
3439   case SystemZ::BI__builtin_s390_vfmindb:
3440   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3441   case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
3442   case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
3443   }
3444   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3445 }
3446 
3447 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3448 /// This checks that the target supports __builtin_cpu_supports and
3449 /// that the string argument is constant and valid.
SemaBuiltinCpuSupports(Sema & S,const TargetInfo & TI,CallExpr * TheCall)3450 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
3451                                    CallExpr *TheCall) {
3452   Expr *Arg = TheCall->getArg(0);
3453 
3454   // Check if the argument is a string literal.
3455   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3456     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3457            << Arg->getSourceRange();
3458 
3459   // Check the contents of the string.
3460   StringRef Feature =
3461       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3462   if (!TI.validateCpuSupports(Feature))
3463     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3464            << Arg->getSourceRange();
3465   return false;
3466 }
3467 
3468 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3469 /// This checks that the target supports __builtin_cpu_is and
3470 /// that the string argument is constant and valid.
SemaBuiltinCpuIs(Sema & S,const TargetInfo & TI,CallExpr * TheCall)3471 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
3472   Expr *Arg = TheCall->getArg(0);
3473 
3474   // Check if the argument is a string literal.
3475   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3476     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3477            << Arg->getSourceRange();
3478 
3479   // Check the contents of the string.
3480   StringRef Feature =
3481       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3482   if (!TI.validateCpuIs(Feature))
3483     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3484            << Arg->getSourceRange();
3485   return false;
3486 }
3487 
3488 // Check if the rounding mode is legal.
CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID,CallExpr * TheCall)3489 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3490   // Indicates if this instruction has rounding control or just SAE.
3491   bool HasRC = false;
3492 
3493   unsigned ArgNum = 0;
3494   switch (BuiltinID) {
3495   default:
3496     return false;
3497   case X86::BI__builtin_ia32_vcvttsd2si32:
3498   case X86::BI__builtin_ia32_vcvttsd2si64:
3499   case X86::BI__builtin_ia32_vcvttsd2usi32:
3500   case X86::BI__builtin_ia32_vcvttsd2usi64:
3501   case X86::BI__builtin_ia32_vcvttss2si32:
3502   case X86::BI__builtin_ia32_vcvttss2si64:
3503   case X86::BI__builtin_ia32_vcvttss2usi32:
3504   case X86::BI__builtin_ia32_vcvttss2usi64:
3505     ArgNum = 1;
3506     break;
3507   case X86::BI__builtin_ia32_maxpd512:
3508   case X86::BI__builtin_ia32_maxps512:
3509   case X86::BI__builtin_ia32_minpd512:
3510   case X86::BI__builtin_ia32_minps512:
3511     ArgNum = 2;
3512     break;
3513   case X86::BI__builtin_ia32_cvtps2pd512_mask:
3514   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3515   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3516   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3517   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3518   case X86::BI__builtin_ia32_cvttps2dq512_mask:
3519   case X86::BI__builtin_ia32_cvttps2qq512_mask:
3520   case X86::BI__builtin_ia32_cvttps2udq512_mask:
3521   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3522   case X86::BI__builtin_ia32_exp2pd_mask:
3523   case X86::BI__builtin_ia32_exp2ps_mask:
3524   case X86::BI__builtin_ia32_getexppd512_mask:
3525   case X86::BI__builtin_ia32_getexpps512_mask:
3526   case X86::BI__builtin_ia32_rcp28pd_mask:
3527   case X86::BI__builtin_ia32_rcp28ps_mask:
3528   case X86::BI__builtin_ia32_rsqrt28pd_mask:
3529   case X86::BI__builtin_ia32_rsqrt28ps_mask:
3530   case X86::BI__builtin_ia32_vcomisd:
3531   case X86::BI__builtin_ia32_vcomiss:
3532   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3533     ArgNum = 3;
3534     break;
3535   case X86::BI__builtin_ia32_cmppd512_mask:
3536   case X86::BI__builtin_ia32_cmpps512_mask:
3537   case X86::BI__builtin_ia32_cmpsd_mask:
3538   case X86::BI__builtin_ia32_cmpss_mask:
3539   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3540   case X86::BI__builtin_ia32_getexpsd128_round_mask:
3541   case X86::BI__builtin_ia32_getexpss128_round_mask:
3542   case X86::BI__builtin_ia32_getmantpd512_mask:
3543   case X86::BI__builtin_ia32_getmantps512_mask:
3544   case X86::BI__builtin_ia32_maxsd_round_mask:
3545   case X86::BI__builtin_ia32_maxss_round_mask:
3546   case X86::BI__builtin_ia32_minsd_round_mask:
3547   case X86::BI__builtin_ia32_minss_round_mask:
3548   case X86::BI__builtin_ia32_rcp28sd_round_mask:
3549   case X86::BI__builtin_ia32_rcp28ss_round_mask:
3550   case X86::BI__builtin_ia32_reducepd512_mask:
3551   case X86::BI__builtin_ia32_reduceps512_mask:
3552   case X86::BI__builtin_ia32_rndscalepd_mask:
3553   case X86::BI__builtin_ia32_rndscaleps_mask:
3554   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
3555   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
3556     ArgNum = 4;
3557     break;
3558   case X86::BI__builtin_ia32_fixupimmpd512_mask:
3559   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3560   case X86::BI__builtin_ia32_fixupimmps512_mask:
3561   case X86::BI__builtin_ia32_fixupimmps512_maskz:
3562   case X86::BI__builtin_ia32_fixupimmsd_mask:
3563   case X86::BI__builtin_ia32_fixupimmsd_maskz:
3564   case X86::BI__builtin_ia32_fixupimmss_mask:
3565   case X86::BI__builtin_ia32_fixupimmss_maskz:
3566   case X86::BI__builtin_ia32_getmantsd_round_mask:
3567   case X86::BI__builtin_ia32_getmantss_round_mask:
3568   case X86::BI__builtin_ia32_rangepd512_mask:
3569   case X86::BI__builtin_ia32_rangeps512_mask:
3570   case X86::BI__builtin_ia32_rangesd128_round_mask:
3571   case X86::BI__builtin_ia32_rangess128_round_mask:
3572   case X86::BI__builtin_ia32_reducesd_mask:
3573   case X86::BI__builtin_ia32_reducess_mask:
3574   case X86::BI__builtin_ia32_rndscalesd_round_mask:
3575   case X86::BI__builtin_ia32_rndscaless_round_mask:
3576     ArgNum = 5;
3577     break;
3578   case X86::BI__builtin_ia32_vcvtsd2si64:
3579   case X86::BI__builtin_ia32_vcvtsd2si32:
3580   case X86::BI__builtin_ia32_vcvtsd2usi32:
3581   case X86::BI__builtin_ia32_vcvtsd2usi64:
3582   case X86::BI__builtin_ia32_vcvtss2si32:
3583   case X86::BI__builtin_ia32_vcvtss2si64:
3584   case X86::BI__builtin_ia32_vcvtss2usi32:
3585   case X86::BI__builtin_ia32_vcvtss2usi64:
3586   case X86::BI__builtin_ia32_sqrtpd512:
3587   case X86::BI__builtin_ia32_sqrtps512:
3588     ArgNum = 1;
3589     HasRC = true;
3590     break;
3591   case X86::BI__builtin_ia32_addpd512:
3592   case X86::BI__builtin_ia32_addps512:
3593   case X86::BI__builtin_ia32_divpd512:
3594   case X86::BI__builtin_ia32_divps512:
3595   case X86::BI__builtin_ia32_mulpd512:
3596   case X86::BI__builtin_ia32_mulps512:
3597   case X86::BI__builtin_ia32_subpd512:
3598   case X86::BI__builtin_ia32_subps512:
3599   case X86::BI__builtin_ia32_cvtsi2sd64:
3600   case X86::BI__builtin_ia32_cvtsi2ss32:
3601   case X86::BI__builtin_ia32_cvtsi2ss64:
3602   case X86::BI__builtin_ia32_cvtusi2sd64:
3603   case X86::BI__builtin_ia32_cvtusi2ss32:
3604   case X86::BI__builtin_ia32_cvtusi2ss64:
3605     ArgNum = 2;
3606     HasRC = true;
3607     break;
3608   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
3609   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
3610   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
3611   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
3612   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
3613   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
3614   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
3615   case X86::BI__builtin_ia32_cvtps2dq512_mask:
3616   case X86::BI__builtin_ia32_cvtps2qq512_mask:
3617   case X86::BI__builtin_ia32_cvtps2udq512_mask:
3618   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
3619   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
3620   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
3621   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
3622   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
3623     ArgNum = 3;
3624     HasRC = true;
3625     break;
3626   case X86::BI__builtin_ia32_addss_round_mask:
3627   case X86::BI__builtin_ia32_addsd_round_mask:
3628   case X86::BI__builtin_ia32_divss_round_mask:
3629   case X86::BI__builtin_ia32_divsd_round_mask:
3630   case X86::BI__builtin_ia32_mulss_round_mask:
3631   case X86::BI__builtin_ia32_mulsd_round_mask:
3632   case X86::BI__builtin_ia32_subss_round_mask:
3633   case X86::BI__builtin_ia32_subsd_round_mask:
3634   case X86::BI__builtin_ia32_scalefpd512_mask:
3635   case X86::BI__builtin_ia32_scalefps512_mask:
3636   case X86::BI__builtin_ia32_scalefsd_round_mask:
3637   case X86::BI__builtin_ia32_scalefss_round_mask:
3638   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
3639   case X86::BI__builtin_ia32_sqrtsd_round_mask:
3640   case X86::BI__builtin_ia32_sqrtss_round_mask:
3641   case X86::BI__builtin_ia32_vfmaddsd3_mask:
3642   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
3643   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
3644   case X86::BI__builtin_ia32_vfmaddss3_mask:
3645   case X86::BI__builtin_ia32_vfmaddss3_maskz:
3646   case X86::BI__builtin_ia32_vfmaddss3_mask3:
3647   case X86::BI__builtin_ia32_vfmaddpd512_mask:
3648   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
3649   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
3650   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
3651   case X86::BI__builtin_ia32_vfmaddps512_mask:
3652   case X86::BI__builtin_ia32_vfmaddps512_maskz:
3653   case X86::BI__builtin_ia32_vfmaddps512_mask3:
3654   case X86::BI__builtin_ia32_vfmsubps512_mask3:
3655   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
3656   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
3657   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
3658   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
3659   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
3660   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
3661   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
3662   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
3663     ArgNum = 4;
3664     HasRC = true;
3665     break;
3666   }
3667 
3668   llvm::APSInt Result;
3669 
3670   // We can't check the value of a dependent argument.
3671   Expr *Arg = TheCall->getArg(ArgNum);
3672   if (Arg->isTypeDependent() || Arg->isValueDependent())
3673     return false;
3674 
3675   // Check constant-ness first.
3676   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3677     return true;
3678 
3679   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
3680   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
3681   // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
3682   // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
3683   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
3684       Result == 8/*ROUND_NO_EXC*/ ||
3685       (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
3686       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
3687     return false;
3688 
3689   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
3690          << Arg->getSourceRange();
3691 }
3692 
3693 // Check if the gather/scatter scale is legal.
CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,CallExpr * TheCall)3694 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
3695                                              CallExpr *TheCall) {
3696   unsigned ArgNum = 0;
3697   switch (BuiltinID) {
3698   default:
3699     return false;
3700   case X86::BI__builtin_ia32_gatherpfdpd:
3701   case X86::BI__builtin_ia32_gatherpfdps:
3702   case X86::BI__builtin_ia32_gatherpfqpd:
3703   case X86::BI__builtin_ia32_gatherpfqps:
3704   case X86::BI__builtin_ia32_scatterpfdpd:
3705   case X86::BI__builtin_ia32_scatterpfdps:
3706   case X86::BI__builtin_ia32_scatterpfqpd:
3707   case X86::BI__builtin_ia32_scatterpfqps:
3708     ArgNum = 3;
3709     break;
3710   case X86::BI__builtin_ia32_gatherd_pd:
3711   case X86::BI__builtin_ia32_gatherd_pd256:
3712   case X86::BI__builtin_ia32_gatherq_pd:
3713   case X86::BI__builtin_ia32_gatherq_pd256:
3714   case X86::BI__builtin_ia32_gatherd_ps:
3715   case X86::BI__builtin_ia32_gatherd_ps256:
3716   case X86::BI__builtin_ia32_gatherq_ps:
3717   case X86::BI__builtin_ia32_gatherq_ps256:
3718   case X86::BI__builtin_ia32_gatherd_q:
3719   case X86::BI__builtin_ia32_gatherd_q256:
3720   case X86::BI__builtin_ia32_gatherq_q:
3721   case X86::BI__builtin_ia32_gatherq_q256:
3722   case X86::BI__builtin_ia32_gatherd_d:
3723   case X86::BI__builtin_ia32_gatherd_d256:
3724   case X86::BI__builtin_ia32_gatherq_d:
3725   case X86::BI__builtin_ia32_gatherq_d256:
3726   case X86::BI__builtin_ia32_gather3div2df:
3727   case X86::BI__builtin_ia32_gather3div2di:
3728   case X86::BI__builtin_ia32_gather3div4df:
3729   case X86::BI__builtin_ia32_gather3div4di:
3730   case X86::BI__builtin_ia32_gather3div4sf:
3731   case X86::BI__builtin_ia32_gather3div4si:
3732   case X86::BI__builtin_ia32_gather3div8sf:
3733   case X86::BI__builtin_ia32_gather3div8si:
3734   case X86::BI__builtin_ia32_gather3siv2df:
3735   case X86::BI__builtin_ia32_gather3siv2di:
3736   case X86::BI__builtin_ia32_gather3siv4df:
3737   case X86::BI__builtin_ia32_gather3siv4di:
3738   case X86::BI__builtin_ia32_gather3siv4sf:
3739   case X86::BI__builtin_ia32_gather3siv4si:
3740   case X86::BI__builtin_ia32_gather3siv8sf:
3741   case X86::BI__builtin_ia32_gather3siv8si:
3742   case X86::BI__builtin_ia32_gathersiv8df:
3743   case X86::BI__builtin_ia32_gathersiv16sf:
3744   case X86::BI__builtin_ia32_gatherdiv8df:
3745   case X86::BI__builtin_ia32_gatherdiv16sf:
3746   case X86::BI__builtin_ia32_gathersiv8di:
3747   case X86::BI__builtin_ia32_gathersiv16si:
3748   case X86::BI__builtin_ia32_gatherdiv8di:
3749   case X86::BI__builtin_ia32_gatherdiv16si:
3750   case X86::BI__builtin_ia32_scatterdiv2df:
3751   case X86::BI__builtin_ia32_scatterdiv2di:
3752   case X86::BI__builtin_ia32_scatterdiv4df:
3753   case X86::BI__builtin_ia32_scatterdiv4di:
3754   case X86::BI__builtin_ia32_scatterdiv4sf:
3755   case X86::BI__builtin_ia32_scatterdiv4si:
3756   case X86::BI__builtin_ia32_scatterdiv8sf:
3757   case X86::BI__builtin_ia32_scatterdiv8si:
3758   case X86::BI__builtin_ia32_scattersiv2df:
3759   case X86::BI__builtin_ia32_scattersiv2di:
3760   case X86::BI__builtin_ia32_scattersiv4df:
3761   case X86::BI__builtin_ia32_scattersiv4di:
3762   case X86::BI__builtin_ia32_scattersiv4sf:
3763   case X86::BI__builtin_ia32_scattersiv4si:
3764   case X86::BI__builtin_ia32_scattersiv8sf:
3765   case X86::BI__builtin_ia32_scattersiv8si:
3766   case X86::BI__builtin_ia32_scattersiv8df:
3767   case X86::BI__builtin_ia32_scattersiv16sf:
3768   case X86::BI__builtin_ia32_scatterdiv8df:
3769   case X86::BI__builtin_ia32_scatterdiv16sf:
3770   case X86::BI__builtin_ia32_scattersiv8di:
3771   case X86::BI__builtin_ia32_scattersiv16si:
3772   case X86::BI__builtin_ia32_scatterdiv8di:
3773   case X86::BI__builtin_ia32_scatterdiv16si:
3774     ArgNum = 4;
3775     break;
3776   }
3777 
3778   llvm::APSInt Result;
3779 
3780   // We can't check the value of a dependent argument.
3781   Expr *Arg = TheCall->getArg(ArgNum);
3782   if (Arg->isTypeDependent() || Arg->isValueDependent())
3783     return false;
3784 
3785   // Check constant-ness first.
3786   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3787     return true;
3788 
3789   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
3790     return false;
3791 
3792   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
3793          << Arg->getSourceRange();
3794 }
3795 
3796 enum { TileRegLow = 0, TileRegHigh = 7 };
3797 
CheckX86BuiltinTileArgumentsRange(CallExpr * TheCall,ArrayRef<int> ArgNums)3798 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
3799                                              ArrayRef<int> ArgNums) {
3800   for (int ArgNum : ArgNums) {
3801     if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
3802       return true;
3803   }
3804   return false;
3805 }
3806 
CheckX86BuiltinTileDuplicate(CallExpr * TheCall,ArrayRef<int> ArgNums)3807 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
3808                                         ArrayRef<int> ArgNums) {
3809   // Because the max number of tile register is TileRegHigh + 1, so here we use
3810   // each bit to represent the usage of them in bitset.
3811   std::bitset<TileRegHigh + 1> ArgValues;
3812   for (int ArgNum : ArgNums) {
3813     Expr *Arg = TheCall->getArg(ArgNum);
3814     if (Arg->isTypeDependent() || Arg->isValueDependent())
3815       continue;
3816 
3817     llvm::APSInt Result;
3818     if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3819       return true;
3820     int ArgExtValue = Result.getExtValue();
3821     assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&
3822            "Incorrect tile register num.");
3823     if (ArgValues.test(ArgExtValue))
3824       return Diag(TheCall->getBeginLoc(),
3825                   diag::err_x86_builtin_tile_arg_duplicate)
3826              << TheCall->getArg(ArgNum)->getSourceRange();
3827     ArgValues.set(ArgExtValue);
3828   }
3829   return false;
3830 }
3831 
CheckX86BuiltinTileRangeAndDuplicate(CallExpr * TheCall,ArrayRef<int> ArgNums)3832 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
3833                                                 ArrayRef<int> ArgNums) {
3834   return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
3835          CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
3836 }
3837 
CheckX86BuiltinTileArguments(unsigned BuiltinID,CallExpr * TheCall)3838 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
3839   switch (BuiltinID) {
3840   default:
3841     return false;
3842   case X86::BI__builtin_ia32_tileloadd64:
3843   case X86::BI__builtin_ia32_tileloaddt164:
3844   case X86::BI__builtin_ia32_tilestored64:
3845   case X86::BI__builtin_ia32_tilezero:
3846     return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
3847   case X86::BI__builtin_ia32_tdpbssd:
3848   case X86::BI__builtin_ia32_tdpbsud:
3849   case X86::BI__builtin_ia32_tdpbusd:
3850   case X86::BI__builtin_ia32_tdpbuud:
3851   case X86::BI__builtin_ia32_tdpbf16ps:
3852     return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
3853   }
3854 }
isX86_32Builtin(unsigned BuiltinID)3855 static bool isX86_32Builtin(unsigned BuiltinID) {
3856   // These builtins only work on x86-32 targets.
3857   switch (BuiltinID) {
3858   case X86::BI__builtin_ia32_readeflags_u32:
3859   case X86::BI__builtin_ia32_writeeflags_u32:
3860     return true;
3861   }
3862 
3863   return false;
3864 }
3865 
CheckX86BuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)3866 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3867                                        CallExpr *TheCall) {
3868   if (BuiltinID == X86::BI__builtin_cpu_supports)
3869     return SemaBuiltinCpuSupports(*this, TI, TheCall);
3870 
3871   if (BuiltinID == X86::BI__builtin_cpu_is)
3872     return SemaBuiltinCpuIs(*this, TI, TheCall);
3873 
3874   // Check for 32-bit only builtins on a 64-bit target.
3875   const llvm::Triple &TT = TI.getTriple();
3876   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
3877     return Diag(TheCall->getCallee()->getBeginLoc(),
3878                 diag::err_32_bit_builtin_64_bit_tgt);
3879 
3880   // If the intrinsic has rounding or SAE make sure its valid.
3881   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
3882     return true;
3883 
3884   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
3885   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
3886     return true;
3887 
3888   // If the intrinsic has a tile arguments, make sure they are valid.
3889   if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
3890     return true;
3891 
3892   // For intrinsics which take an immediate value as part of the instruction,
3893   // range check them here.
3894   int i = 0, l = 0, u = 0;
3895   switch (BuiltinID) {
3896   default:
3897     return false;
3898   case X86::BI__builtin_ia32_vec_ext_v2si:
3899   case X86::BI__builtin_ia32_vec_ext_v2di:
3900   case X86::BI__builtin_ia32_vextractf128_pd256:
3901   case X86::BI__builtin_ia32_vextractf128_ps256:
3902   case X86::BI__builtin_ia32_vextractf128_si256:
3903   case X86::BI__builtin_ia32_extract128i256:
3904   case X86::BI__builtin_ia32_extractf64x4_mask:
3905   case X86::BI__builtin_ia32_extracti64x4_mask:
3906   case X86::BI__builtin_ia32_extractf32x8_mask:
3907   case X86::BI__builtin_ia32_extracti32x8_mask:
3908   case X86::BI__builtin_ia32_extractf64x2_256_mask:
3909   case X86::BI__builtin_ia32_extracti64x2_256_mask:
3910   case X86::BI__builtin_ia32_extractf32x4_256_mask:
3911   case X86::BI__builtin_ia32_extracti32x4_256_mask:
3912     i = 1; l = 0; u = 1;
3913     break;
3914   case X86::BI__builtin_ia32_vec_set_v2di:
3915   case X86::BI__builtin_ia32_vinsertf128_pd256:
3916   case X86::BI__builtin_ia32_vinsertf128_ps256:
3917   case X86::BI__builtin_ia32_vinsertf128_si256:
3918   case X86::BI__builtin_ia32_insert128i256:
3919   case X86::BI__builtin_ia32_insertf32x8:
3920   case X86::BI__builtin_ia32_inserti32x8:
3921   case X86::BI__builtin_ia32_insertf64x4:
3922   case X86::BI__builtin_ia32_inserti64x4:
3923   case X86::BI__builtin_ia32_insertf64x2_256:
3924   case X86::BI__builtin_ia32_inserti64x2_256:
3925   case X86::BI__builtin_ia32_insertf32x4_256:
3926   case X86::BI__builtin_ia32_inserti32x4_256:
3927     i = 2; l = 0; u = 1;
3928     break;
3929   case X86::BI__builtin_ia32_vpermilpd:
3930   case X86::BI__builtin_ia32_vec_ext_v4hi:
3931   case X86::BI__builtin_ia32_vec_ext_v4si:
3932   case X86::BI__builtin_ia32_vec_ext_v4sf:
3933   case X86::BI__builtin_ia32_vec_ext_v4di:
3934   case X86::BI__builtin_ia32_extractf32x4_mask:
3935   case X86::BI__builtin_ia32_extracti32x4_mask:
3936   case X86::BI__builtin_ia32_extractf64x2_512_mask:
3937   case X86::BI__builtin_ia32_extracti64x2_512_mask:
3938     i = 1; l = 0; u = 3;
3939     break;
3940   case X86::BI_mm_prefetch:
3941   case X86::BI__builtin_ia32_vec_ext_v8hi:
3942   case X86::BI__builtin_ia32_vec_ext_v8si:
3943     i = 1; l = 0; u = 7;
3944     break;
3945   case X86::BI__builtin_ia32_sha1rnds4:
3946   case X86::BI__builtin_ia32_blendpd:
3947   case X86::BI__builtin_ia32_shufpd:
3948   case X86::BI__builtin_ia32_vec_set_v4hi:
3949   case X86::BI__builtin_ia32_vec_set_v4si:
3950   case X86::BI__builtin_ia32_vec_set_v4di:
3951   case X86::BI__builtin_ia32_shuf_f32x4_256:
3952   case X86::BI__builtin_ia32_shuf_f64x2_256:
3953   case X86::BI__builtin_ia32_shuf_i32x4_256:
3954   case X86::BI__builtin_ia32_shuf_i64x2_256:
3955   case X86::BI__builtin_ia32_insertf64x2_512:
3956   case X86::BI__builtin_ia32_inserti64x2_512:
3957   case X86::BI__builtin_ia32_insertf32x4:
3958   case X86::BI__builtin_ia32_inserti32x4:
3959     i = 2; l = 0; u = 3;
3960     break;
3961   case X86::BI__builtin_ia32_vpermil2pd:
3962   case X86::BI__builtin_ia32_vpermil2pd256:
3963   case X86::BI__builtin_ia32_vpermil2ps:
3964   case X86::BI__builtin_ia32_vpermil2ps256:
3965     i = 3; l = 0; u = 3;
3966     break;
3967   case X86::BI__builtin_ia32_cmpb128_mask:
3968   case X86::BI__builtin_ia32_cmpw128_mask:
3969   case X86::BI__builtin_ia32_cmpd128_mask:
3970   case X86::BI__builtin_ia32_cmpq128_mask:
3971   case X86::BI__builtin_ia32_cmpb256_mask:
3972   case X86::BI__builtin_ia32_cmpw256_mask:
3973   case X86::BI__builtin_ia32_cmpd256_mask:
3974   case X86::BI__builtin_ia32_cmpq256_mask:
3975   case X86::BI__builtin_ia32_cmpb512_mask:
3976   case X86::BI__builtin_ia32_cmpw512_mask:
3977   case X86::BI__builtin_ia32_cmpd512_mask:
3978   case X86::BI__builtin_ia32_cmpq512_mask:
3979   case X86::BI__builtin_ia32_ucmpb128_mask:
3980   case X86::BI__builtin_ia32_ucmpw128_mask:
3981   case X86::BI__builtin_ia32_ucmpd128_mask:
3982   case X86::BI__builtin_ia32_ucmpq128_mask:
3983   case X86::BI__builtin_ia32_ucmpb256_mask:
3984   case X86::BI__builtin_ia32_ucmpw256_mask:
3985   case X86::BI__builtin_ia32_ucmpd256_mask:
3986   case X86::BI__builtin_ia32_ucmpq256_mask:
3987   case X86::BI__builtin_ia32_ucmpb512_mask:
3988   case X86::BI__builtin_ia32_ucmpw512_mask:
3989   case X86::BI__builtin_ia32_ucmpd512_mask:
3990   case X86::BI__builtin_ia32_ucmpq512_mask:
3991   case X86::BI__builtin_ia32_vpcomub:
3992   case X86::BI__builtin_ia32_vpcomuw:
3993   case X86::BI__builtin_ia32_vpcomud:
3994   case X86::BI__builtin_ia32_vpcomuq:
3995   case X86::BI__builtin_ia32_vpcomb:
3996   case X86::BI__builtin_ia32_vpcomw:
3997   case X86::BI__builtin_ia32_vpcomd:
3998   case X86::BI__builtin_ia32_vpcomq:
3999   case X86::BI__builtin_ia32_vec_set_v8hi:
4000   case X86::BI__builtin_ia32_vec_set_v8si:
4001     i = 2; l = 0; u = 7;
4002     break;
4003   case X86::BI__builtin_ia32_vpermilpd256:
4004   case X86::BI__builtin_ia32_roundps:
4005   case X86::BI__builtin_ia32_roundpd:
4006   case X86::BI__builtin_ia32_roundps256:
4007   case X86::BI__builtin_ia32_roundpd256:
4008   case X86::BI__builtin_ia32_getmantpd128_mask:
4009   case X86::BI__builtin_ia32_getmantpd256_mask:
4010   case X86::BI__builtin_ia32_getmantps128_mask:
4011   case X86::BI__builtin_ia32_getmantps256_mask:
4012   case X86::BI__builtin_ia32_getmantpd512_mask:
4013   case X86::BI__builtin_ia32_getmantps512_mask:
4014   case X86::BI__builtin_ia32_vec_ext_v16qi:
4015   case X86::BI__builtin_ia32_vec_ext_v16hi:
4016     i = 1; l = 0; u = 15;
4017     break;
4018   case X86::BI__builtin_ia32_pblendd128:
4019   case X86::BI__builtin_ia32_blendps:
4020   case X86::BI__builtin_ia32_blendpd256:
4021   case X86::BI__builtin_ia32_shufpd256:
4022   case X86::BI__builtin_ia32_roundss:
4023   case X86::BI__builtin_ia32_roundsd:
4024   case X86::BI__builtin_ia32_rangepd128_mask:
4025   case X86::BI__builtin_ia32_rangepd256_mask:
4026   case X86::BI__builtin_ia32_rangepd512_mask:
4027   case X86::BI__builtin_ia32_rangeps128_mask:
4028   case X86::BI__builtin_ia32_rangeps256_mask:
4029   case X86::BI__builtin_ia32_rangeps512_mask:
4030   case X86::BI__builtin_ia32_getmantsd_round_mask:
4031   case X86::BI__builtin_ia32_getmantss_round_mask:
4032   case X86::BI__builtin_ia32_vec_set_v16qi:
4033   case X86::BI__builtin_ia32_vec_set_v16hi:
4034     i = 2; l = 0; u = 15;
4035     break;
4036   case X86::BI__builtin_ia32_vec_ext_v32qi:
4037     i = 1; l = 0; u = 31;
4038     break;
4039   case X86::BI__builtin_ia32_cmpps:
4040   case X86::BI__builtin_ia32_cmpss:
4041   case X86::BI__builtin_ia32_cmppd:
4042   case X86::BI__builtin_ia32_cmpsd:
4043   case X86::BI__builtin_ia32_cmpps256:
4044   case X86::BI__builtin_ia32_cmppd256:
4045   case X86::BI__builtin_ia32_cmpps128_mask:
4046   case X86::BI__builtin_ia32_cmppd128_mask:
4047   case X86::BI__builtin_ia32_cmpps256_mask:
4048   case X86::BI__builtin_ia32_cmppd256_mask:
4049   case X86::BI__builtin_ia32_cmpps512_mask:
4050   case X86::BI__builtin_ia32_cmppd512_mask:
4051   case X86::BI__builtin_ia32_cmpsd_mask:
4052   case X86::BI__builtin_ia32_cmpss_mask:
4053   case X86::BI__builtin_ia32_vec_set_v32qi:
4054     i = 2; l = 0; u = 31;
4055     break;
4056   case X86::BI__builtin_ia32_permdf256:
4057   case X86::BI__builtin_ia32_permdi256:
4058   case X86::BI__builtin_ia32_permdf512:
4059   case X86::BI__builtin_ia32_permdi512:
4060   case X86::BI__builtin_ia32_vpermilps:
4061   case X86::BI__builtin_ia32_vpermilps256:
4062   case X86::BI__builtin_ia32_vpermilpd512:
4063   case X86::BI__builtin_ia32_vpermilps512:
4064   case X86::BI__builtin_ia32_pshufd:
4065   case X86::BI__builtin_ia32_pshufd256:
4066   case X86::BI__builtin_ia32_pshufd512:
4067   case X86::BI__builtin_ia32_pshufhw:
4068   case X86::BI__builtin_ia32_pshufhw256:
4069   case X86::BI__builtin_ia32_pshufhw512:
4070   case X86::BI__builtin_ia32_pshuflw:
4071   case X86::BI__builtin_ia32_pshuflw256:
4072   case X86::BI__builtin_ia32_pshuflw512:
4073   case X86::BI__builtin_ia32_vcvtps2ph:
4074   case X86::BI__builtin_ia32_vcvtps2ph_mask:
4075   case X86::BI__builtin_ia32_vcvtps2ph256:
4076   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4077   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4078   case X86::BI__builtin_ia32_rndscaleps_128_mask:
4079   case X86::BI__builtin_ia32_rndscalepd_128_mask:
4080   case X86::BI__builtin_ia32_rndscaleps_256_mask:
4081   case X86::BI__builtin_ia32_rndscalepd_256_mask:
4082   case X86::BI__builtin_ia32_rndscaleps_mask:
4083   case X86::BI__builtin_ia32_rndscalepd_mask:
4084   case X86::BI__builtin_ia32_reducepd128_mask:
4085   case X86::BI__builtin_ia32_reducepd256_mask:
4086   case X86::BI__builtin_ia32_reducepd512_mask:
4087   case X86::BI__builtin_ia32_reduceps128_mask:
4088   case X86::BI__builtin_ia32_reduceps256_mask:
4089   case X86::BI__builtin_ia32_reduceps512_mask:
4090   case X86::BI__builtin_ia32_prold512:
4091   case X86::BI__builtin_ia32_prolq512:
4092   case X86::BI__builtin_ia32_prold128:
4093   case X86::BI__builtin_ia32_prold256:
4094   case X86::BI__builtin_ia32_prolq128:
4095   case X86::BI__builtin_ia32_prolq256:
4096   case X86::BI__builtin_ia32_prord512:
4097   case X86::BI__builtin_ia32_prorq512:
4098   case X86::BI__builtin_ia32_prord128:
4099   case X86::BI__builtin_ia32_prord256:
4100   case X86::BI__builtin_ia32_prorq128:
4101   case X86::BI__builtin_ia32_prorq256:
4102   case X86::BI__builtin_ia32_fpclasspd128_mask:
4103   case X86::BI__builtin_ia32_fpclasspd256_mask:
4104   case X86::BI__builtin_ia32_fpclassps128_mask:
4105   case X86::BI__builtin_ia32_fpclassps256_mask:
4106   case X86::BI__builtin_ia32_fpclassps512_mask:
4107   case X86::BI__builtin_ia32_fpclasspd512_mask:
4108   case X86::BI__builtin_ia32_fpclasssd_mask:
4109   case X86::BI__builtin_ia32_fpclassss_mask:
4110   case X86::BI__builtin_ia32_pslldqi128_byteshift:
4111   case X86::BI__builtin_ia32_pslldqi256_byteshift:
4112   case X86::BI__builtin_ia32_pslldqi512_byteshift:
4113   case X86::BI__builtin_ia32_psrldqi128_byteshift:
4114   case X86::BI__builtin_ia32_psrldqi256_byteshift:
4115   case X86::BI__builtin_ia32_psrldqi512_byteshift:
4116   case X86::BI__builtin_ia32_kshiftliqi:
4117   case X86::BI__builtin_ia32_kshiftlihi:
4118   case X86::BI__builtin_ia32_kshiftlisi:
4119   case X86::BI__builtin_ia32_kshiftlidi:
4120   case X86::BI__builtin_ia32_kshiftriqi:
4121   case X86::BI__builtin_ia32_kshiftrihi:
4122   case X86::BI__builtin_ia32_kshiftrisi:
4123   case X86::BI__builtin_ia32_kshiftridi:
4124     i = 1; l = 0; u = 255;
4125     break;
4126   case X86::BI__builtin_ia32_vperm2f128_pd256:
4127   case X86::BI__builtin_ia32_vperm2f128_ps256:
4128   case X86::BI__builtin_ia32_vperm2f128_si256:
4129   case X86::BI__builtin_ia32_permti256:
4130   case X86::BI__builtin_ia32_pblendw128:
4131   case X86::BI__builtin_ia32_pblendw256:
4132   case X86::BI__builtin_ia32_blendps256:
4133   case X86::BI__builtin_ia32_pblendd256:
4134   case X86::BI__builtin_ia32_palignr128:
4135   case X86::BI__builtin_ia32_palignr256:
4136   case X86::BI__builtin_ia32_palignr512:
4137   case X86::BI__builtin_ia32_alignq512:
4138   case X86::BI__builtin_ia32_alignd512:
4139   case X86::BI__builtin_ia32_alignd128:
4140   case X86::BI__builtin_ia32_alignd256:
4141   case X86::BI__builtin_ia32_alignq128:
4142   case X86::BI__builtin_ia32_alignq256:
4143   case X86::BI__builtin_ia32_vcomisd:
4144   case X86::BI__builtin_ia32_vcomiss:
4145   case X86::BI__builtin_ia32_shuf_f32x4:
4146   case X86::BI__builtin_ia32_shuf_f64x2:
4147   case X86::BI__builtin_ia32_shuf_i32x4:
4148   case X86::BI__builtin_ia32_shuf_i64x2:
4149   case X86::BI__builtin_ia32_shufpd512:
4150   case X86::BI__builtin_ia32_shufps:
4151   case X86::BI__builtin_ia32_shufps256:
4152   case X86::BI__builtin_ia32_shufps512:
4153   case X86::BI__builtin_ia32_dbpsadbw128:
4154   case X86::BI__builtin_ia32_dbpsadbw256:
4155   case X86::BI__builtin_ia32_dbpsadbw512:
4156   case X86::BI__builtin_ia32_vpshldd128:
4157   case X86::BI__builtin_ia32_vpshldd256:
4158   case X86::BI__builtin_ia32_vpshldd512:
4159   case X86::BI__builtin_ia32_vpshldq128:
4160   case X86::BI__builtin_ia32_vpshldq256:
4161   case X86::BI__builtin_ia32_vpshldq512:
4162   case X86::BI__builtin_ia32_vpshldw128:
4163   case X86::BI__builtin_ia32_vpshldw256:
4164   case X86::BI__builtin_ia32_vpshldw512:
4165   case X86::BI__builtin_ia32_vpshrdd128:
4166   case X86::BI__builtin_ia32_vpshrdd256:
4167   case X86::BI__builtin_ia32_vpshrdd512:
4168   case X86::BI__builtin_ia32_vpshrdq128:
4169   case X86::BI__builtin_ia32_vpshrdq256:
4170   case X86::BI__builtin_ia32_vpshrdq512:
4171   case X86::BI__builtin_ia32_vpshrdw128:
4172   case X86::BI__builtin_ia32_vpshrdw256:
4173   case X86::BI__builtin_ia32_vpshrdw512:
4174     i = 2; l = 0; u = 255;
4175     break;
4176   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4177   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4178   case X86::BI__builtin_ia32_fixupimmps512_mask:
4179   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4180   case X86::BI__builtin_ia32_fixupimmsd_mask:
4181   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4182   case X86::BI__builtin_ia32_fixupimmss_mask:
4183   case X86::BI__builtin_ia32_fixupimmss_maskz:
4184   case X86::BI__builtin_ia32_fixupimmpd128_mask:
4185   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4186   case X86::BI__builtin_ia32_fixupimmpd256_mask:
4187   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4188   case X86::BI__builtin_ia32_fixupimmps128_mask:
4189   case X86::BI__builtin_ia32_fixupimmps128_maskz:
4190   case X86::BI__builtin_ia32_fixupimmps256_mask:
4191   case X86::BI__builtin_ia32_fixupimmps256_maskz:
4192   case X86::BI__builtin_ia32_pternlogd512_mask:
4193   case X86::BI__builtin_ia32_pternlogd512_maskz:
4194   case X86::BI__builtin_ia32_pternlogq512_mask:
4195   case X86::BI__builtin_ia32_pternlogq512_maskz:
4196   case X86::BI__builtin_ia32_pternlogd128_mask:
4197   case X86::BI__builtin_ia32_pternlogd128_maskz:
4198   case X86::BI__builtin_ia32_pternlogd256_mask:
4199   case X86::BI__builtin_ia32_pternlogd256_maskz:
4200   case X86::BI__builtin_ia32_pternlogq128_mask:
4201   case X86::BI__builtin_ia32_pternlogq128_maskz:
4202   case X86::BI__builtin_ia32_pternlogq256_mask:
4203   case X86::BI__builtin_ia32_pternlogq256_maskz:
4204     i = 3; l = 0; u = 255;
4205     break;
4206   case X86::BI__builtin_ia32_gatherpfdpd:
4207   case X86::BI__builtin_ia32_gatherpfdps:
4208   case X86::BI__builtin_ia32_gatherpfqpd:
4209   case X86::BI__builtin_ia32_gatherpfqps:
4210   case X86::BI__builtin_ia32_scatterpfdpd:
4211   case X86::BI__builtin_ia32_scatterpfdps:
4212   case X86::BI__builtin_ia32_scatterpfqpd:
4213   case X86::BI__builtin_ia32_scatterpfqps:
4214     i = 4; l = 2; u = 3;
4215     break;
4216   case X86::BI__builtin_ia32_reducesd_mask:
4217   case X86::BI__builtin_ia32_reducess_mask:
4218   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4219   case X86::BI__builtin_ia32_rndscaless_round_mask:
4220     i = 4; l = 0; u = 255;
4221     break;
4222   }
4223 
4224   // Note that we don't force a hard error on the range check here, allowing
4225   // template-generated or macro-generated dead code to potentially have out-of-
4226   // range values. These need to code generate, but don't need to necessarily
4227   // make any sense. We use a warning that defaults to an error.
4228   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4229 }
4230 
4231 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4232 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
4233 /// Returns true when the format fits the function and the FormatStringInfo has
4234 /// been populated.
getFormatStringInfo(const FormatAttr * Format,bool IsCXXMember,FormatStringInfo * FSI)4235 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4236                                FormatStringInfo *FSI) {
4237   FSI->HasVAListArg = Format->getFirstArg() == 0;
4238   FSI->FormatIdx = Format->getFormatIdx() - 1;
4239   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4240 
4241   // The way the format attribute works in GCC, the implicit this argument
4242   // of member functions is counted. However, it doesn't appear in our own
4243   // lists, so decrement format_idx in that case.
4244   if (IsCXXMember) {
4245     if(FSI->FormatIdx == 0)
4246       return false;
4247     --FSI->FormatIdx;
4248     if (FSI->FirstDataArg != 0)
4249       --FSI->FirstDataArg;
4250   }
4251   return true;
4252 }
4253 
4254 /// Checks if a the given expression evaluates to null.
4255 ///
4256 /// Returns true if the value evaluates to null.
CheckNonNullExpr(Sema & S,const Expr * Expr)4257 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4258   // If the expression has non-null type, it doesn't evaluate to null.
4259   if (auto nullability
4260         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4261     if (*nullability == NullabilityKind::NonNull)
4262       return false;
4263   }
4264 
4265   // As a special case, transparent unions initialized with zero are
4266   // considered null for the purposes of the nonnull attribute.
4267   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4268     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4269       if (const CompoundLiteralExpr *CLE =
4270           dyn_cast<CompoundLiteralExpr>(Expr))
4271         if (const InitListExpr *ILE =
4272             dyn_cast<InitListExpr>(CLE->getInitializer()))
4273           Expr = ILE->getInit(0);
4274   }
4275 
4276   bool Result;
4277   return (!Expr->isValueDependent() &&
4278           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4279           !Result);
4280 }
4281 
CheckNonNullArgument(Sema & S,const Expr * ArgExpr,SourceLocation CallSiteLoc)4282 static void CheckNonNullArgument(Sema &S,
4283                                  const Expr *ArgExpr,
4284                                  SourceLocation CallSiteLoc) {
4285   if (CheckNonNullExpr(S, ArgExpr))
4286     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4287                           S.PDiag(diag::warn_null_arg)
4288                               << ArgExpr->getSourceRange());
4289 }
4290 
GetFormatNSStringIdx(const FormatAttr * Format,unsigned & Idx)4291 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4292   FormatStringInfo FSI;
4293   if ((GetFormatStringType(Format) == FST_NSString) &&
4294       getFormatStringInfo(Format, false, &FSI)) {
4295     Idx = FSI.FormatIdx;
4296     return true;
4297   }
4298   return false;
4299 }
4300 
4301 /// Diagnose use of %s directive in an NSString which is being passed
4302 /// as formatting string to formatting method.
4303 static void
DiagnoseCStringFormatDirectiveInCFAPI(Sema & S,const NamedDecl * FDecl,Expr ** Args,unsigned NumArgs)4304 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4305                                         const NamedDecl *FDecl,
4306                                         Expr **Args,
4307                                         unsigned NumArgs) {
4308   unsigned Idx = 0;
4309   bool Format = false;
4310   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4311   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4312     Idx = 2;
4313     Format = true;
4314   }
4315   else
4316     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4317       if (S.GetFormatNSStringIdx(I, Idx)) {
4318         Format = true;
4319         break;
4320       }
4321     }
4322   if (!Format || NumArgs <= Idx)
4323     return;
4324   const Expr *FormatExpr = Args[Idx];
4325   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4326     FormatExpr = CSCE->getSubExpr();
4327   const StringLiteral *FormatString;
4328   if (const ObjCStringLiteral *OSL =
4329       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4330     FormatString = OSL->getString();
4331   else
4332     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4333   if (!FormatString)
4334     return;
4335   if (S.FormatStringHasSArg(FormatString)) {
4336     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4337       << "%s" << 1 << 1;
4338     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4339       << FDecl->getDeclName();
4340   }
4341 }
4342 
4343 /// Determine whether the given type has a non-null nullability annotation.
isNonNullType(ASTContext & ctx,QualType type)4344 static bool isNonNullType(ASTContext &ctx, QualType type) {
4345   if (auto nullability = type->getNullability(ctx))
4346     return *nullability == NullabilityKind::NonNull;
4347 
4348   return false;
4349 }
4350 
CheckNonNullArguments(Sema & S,const NamedDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<const Expr * > Args,SourceLocation CallSiteLoc)4351 static void CheckNonNullArguments(Sema &S,
4352                                   const NamedDecl *FDecl,
4353                                   const FunctionProtoType *Proto,
4354                                   ArrayRef<const Expr *> Args,
4355                                   SourceLocation CallSiteLoc) {
4356   assert((FDecl || Proto) && "Need a function declaration or prototype");
4357 
4358   // Already checked by by constant evaluator.
4359   if (S.isConstantEvaluated())
4360     return;
4361   // Check the attributes attached to the method/function itself.
4362   llvm::SmallBitVector NonNullArgs;
4363   if (FDecl) {
4364     // Handle the nonnull attribute on the function/method declaration itself.
4365     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4366       if (!NonNull->args_size()) {
4367         // Easy case: all pointer arguments are nonnull.
4368         for (const auto *Arg : Args)
4369           if (S.isValidPointerAttrType(Arg->getType()))
4370             CheckNonNullArgument(S, Arg, CallSiteLoc);
4371         return;
4372       }
4373 
4374       for (const ParamIdx &Idx : NonNull->args()) {
4375         unsigned IdxAST = Idx.getASTIndex();
4376         if (IdxAST >= Args.size())
4377           continue;
4378         if (NonNullArgs.empty())
4379           NonNullArgs.resize(Args.size());
4380         NonNullArgs.set(IdxAST);
4381       }
4382     }
4383   }
4384 
4385   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4386     // Handle the nonnull attribute on the parameters of the
4387     // function/method.
4388     ArrayRef<ParmVarDecl*> parms;
4389     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4390       parms = FD->parameters();
4391     else
4392       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4393 
4394     unsigned ParamIndex = 0;
4395     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4396          I != E; ++I, ++ParamIndex) {
4397       const ParmVarDecl *PVD = *I;
4398       if (PVD->hasAttr<NonNullAttr>() ||
4399           isNonNullType(S.Context, PVD->getType())) {
4400         if (NonNullArgs.empty())
4401           NonNullArgs.resize(Args.size());
4402 
4403         NonNullArgs.set(ParamIndex);
4404       }
4405     }
4406   } else {
4407     // If we have a non-function, non-method declaration but no
4408     // function prototype, try to dig out the function prototype.
4409     if (!Proto) {
4410       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4411         QualType type = VD->getType().getNonReferenceType();
4412         if (auto pointerType = type->getAs<PointerType>())
4413           type = pointerType->getPointeeType();
4414         else if (auto blockType = type->getAs<BlockPointerType>())
4415           type = blockType->getPointeeType();
4416         // FIXME: data member pointers?
4417 
4418         // Dig out the function prototype, if there is one.
4419         Proto = type->getAs<FunctionProtoType>();
4420       }
4421     }
4422 
4423     // Fill in non-null argument information from the nullability
4424     // information on the parameter types (if we have them).
4425     if (Proto) {
4426       unsigned Index = 0;
4427       for (auto paramType : Proto->getParamTypes()) {
4428         if (isNonNullType(S.Context, paramType)) {
4429           if (NonNullArgs.empty())
4430             NonNullArgs.resize(Args.size());
4431 
4432           NonNullArgs.set(Index);
4433         }
4434 
4435         ++Index;
4436       }
4437     }
4438   }
4439 
4440   // Check for non-null arguments.
4441   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4442        ArgIndex != ArgIndexEnd; ++ArgIndex) {
4443     if (NonNullArgs[ArgIndex])
4444       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4445   }
4446 }
4447 
4448 /// Handles the checks for format strings, non-POD arguments to vararg
4449 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
4450 /// attributes.
checkCall(NamedDecl * FDecl,const FunctionProtoType * Proto,const Expr * ThisArg,ArrayRef<const Expr * > Args,bool IsMemberFunction,SourceLocation Loc,SourceRange Range,VariadicCallType CallType)4451 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
4452                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
4453                      bool IsMemberFunction, SourceLocation Loc,
4454                      SourceRange Range, VariadicCallType CallType) {
4455   // FIXME: We should check as much as we can in the template definition.
4456   if (CurContext->isDependentContext())
4457     return;
4458 
4459   // Printf and scanf checking.
4460   llvm::SmallBitVector CheckedVarArgs;
4461   if (FDecl) {
4462     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4463       // Only create vector if there are format attributes.
4464       CheckedVarArgs.resize(Args.size());
4465 
4466       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
4467                            CheckedVarArgs);
4468     }
4469   }
4470 
4471   // Refuse POD arguments that weren't caught by the format string
4472   // checks above.
4473   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
4474   if (CallType != VariadicDoesNotApply &&
4475       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
4476     unsigned NumParams = Proto ? Proto->getNumParams()
4477                        : FDecl && isa<FunctionDecl>(FDecl)
4478                            ? cast<FunctionDecl>(FDecl)->getNumParams()
4479                        : FDecl && isa<ObjCMethodDecl>(FDecl)
4480                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
4481                        : 0;
4482 
4483     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
4484       // Args[ArgIdx] can be null in malformed code.
4485       if (const Expr *Arg = Args[ArgIdx]) {
4486         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
4487           checkVariadicArgument(Arg, CallType);
4488       }
4489     }
4490   }
4491 
4492   if (FDecl || Proto) {
4493     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
4494 
4495     // Type safety checking.
4496     if (FDecl) {
4497       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
4498         CheckArgumentWithTypeTag(I, Args, Loc);
4499     }
4500   }
4501 
4502   if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
4503     auto *AA = FDecl->getAttr<AllocAlignAttr>();
4504     const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
4505     if (!Arg->isValueDependent()) {
4506       Expr::EvalResult Align;
4507       if (Arg->EvaluateAsInt(Align, Context)) {
4508         const llvm::APSInt &I = Align.Val.getInt();
4509         if (!I.isPowerOf2())
4510           Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
4511               << Arg->getSourceRange();
4512 
4513         if (I > Sema::MaximumAlignment)
4514           Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
4515               << Arg->getSourceRange() << Sema::MaximumAlignment;
4516       }
4517     }
4518   }
4519 
4520   if (FD)
4521     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
4522 }
4523 
4524 /// CheckConstructorCall - Check a constructor call for correctness and safety
4525 /// properties not enforced by the C type system.
CheckConstructorCall(FunctionDecl * FDecl,ArrayRef<const Expr * > Args,const FunctionProtoType * Proto,SourceLocation Loc)4526 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
4527                                 ArrayRef<const Expr *> Args,
4528                                 const FunctionProtoType *Proto,
4529                                 SourceLocation Loc) {
4530   VariadicCallType CallType =
4531     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4532   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
4533             Loc, SourceRange(), CallType);
4534 }
4535 
4536 /// CheckFunctionCall - Check a direct function call for various correctness
4537 /// and safety properties not strictly enforced by the C type system.
CheckFunctionCall(FunctionDecl * FDecl,CallExpr * TheCall,const FunctionProtoType * Proto)4538 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
4539                              const FunctionProtoType *Proto) {
4540   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
4541                               isa<CXXMethodDecl>(FDecl);
4542   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
4543                           IsMemberOperatorCall;
4544   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
4545                                                   TheCall->getCallee());
4546   Expr** Args = TheCall->getArgs();
4547   unsigned NumArgs = TheCall->getNumArgs();
4548 
4549   Expr *ImplicitThis = nullptr;
4550   if (IsMemberOperatorCall) {
4551     // If this is a call to a member operator, hide the first argument
4552     // from checkCall.
4553     // FIXME: Our choice of AST representation here is less than ideal.
4554     ImplicitThis = Args[0];
4555     ++Args;
4556     --NumArgs;
4557   } else if (IsMemberFunction)
4558     ImplicitThis =
4559         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
4560 
4561   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
4562             IsMemberFunction, TheCall->getRParenLoc(),
4563             TheCall->getCallee()->getSourceRange(), CallType);
4564 
4565   IdentifierInfo *FnInfo = FDecl->getIdentifier();
4566   // None of the checks below are needed for functions that don't have
4567   // simple names (e.g., C++ conversion functions).
4568   if (!FnInfo)
4569     return false;
4570 
4571   CheckAbsoluteValueFunction(TheCall, FDecl);
4572   CheckMaxUnsignedZero(TheCall, FDecl);
4573 
4574   if (getLangOpts().ObjC)
4575     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
4576 
4577   unsigned CMId = FDecl->getMemoryFunctionKind();
4578 
4579   // Handle memory setting and copying functions.
4580   switch (CMId) {
4581   case 0:
4582     return false;
4583   case Builtin::BIstrlcpy: // fallthrough
4584   case Builtin::BIstrlcat:
4585     CheckStrlcpycatArguments(TheCall, FnInfo);
4586     break;
4587   case Builtin::BIstrncat:
4588     CheckStrncatArguments(TheCall, FnInfo);
4589     break;
4590   case Builtin::BIfree:
4591     CheckFreeArguments(TheCall);
4592     break;
4593   default:
4594     CheckMemaccessArguments(TheCall, CMId, FnInfo);
4595   }
4596 
4597   return false;
4598 }
4599 
CheckObjCMethodCall(ObjCMethodDecl * Method,SourceLocation lbrac,ArrayRef<const Expr * > Args)4600 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
4601                                ArrayRef<const Expr *> Args) {
4602   VariadicCallType CallType =
4603       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
4604 
4605   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
4606             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
4607             CallType);
4608 
4609   return false;
4610 }
4611 
CheckPointerCall(NamedDecl * NDecl,CallExpr * TheCall,const FunctionProtoType * Proto)4612 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
4613                             const FunctionProtoType *Proto) {
4614   QualType Ty;
4615   if (const auto *V = dyn_cast<VarDecl>(NDecl))
4616     Ty = V->getType().getNonReferenceType();
4617   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
4618     Ty = F->getType().getNonReferenceType();
4619   else
4620     return false;
4621 
4622   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
4623       !Ty->isFunctionProtoType())
4624     return false;
4625 
4626   VariadicCallType CallType;
4627   if (!Proto || !Proto->isVariadic()) {
4628     CallType = VariadicDoesNotApply;
4629   } else if (Ty->isBlockPointerType()) {
4630     CallType = VariadicBlock;
4631   } else { // Ty->isFunctionPointerType()
4632     CallType = VariadicFunction;
4633   }
4634 
4635   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
4636             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4637             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4638             TheCall->getCallee()->getSourceRange(), CallType);
4639 
4640   return false;
4641 }
4642 
4643 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
4644 /// such as function pointers returned from functions.
CheckOtherCall(CallExpr * TheCall,const FunctionProtoType * Proto)4645 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
4646   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
4647                                                   TheCall->getCallee());
4648   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
4649             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4650             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4651             TheCall->getCallee()->getSourceRange(), CallType);
4652 
4653   return false;
4654 }
4655 
isValidOrderingForOp(int64_t Ordering,AtomicExpr::AtomicOp Op)4656 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
4657   if (!llvm::isValidAtomicOrderingCABI(Ordering))
4658     return false;
4659 
4660   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
4661   switch (Op) {
4662   case AtomicExpr::AO__c11_atomic_init:
4663   case AtomicExpr::AO__opencl_atomic_init:
4664     llvm_unreachable("There is no ordering argument for an init");
4665 
4666   case AtomicExpr::AO__c11_atomic_load:
4667   case AtomicExpr::AO__opencl_atomic_load:
4668   case AtomicExpr::AO__atomic_load_n:
4669   case AtomicExpr::AO__atomic_load:
4670     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
4671            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4672 
4673   case AtomicExpr::AO__c11_atomic_store:
4674   case AtomicExpr::AO__opencl_atomic_store:
4675   case AtomicExpr::AO__atomic_store:
4676   case AtomicExpr::AO__atomic_store_n:
4677     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
4678            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
4679            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4680 
4681   default:
4682     return true;
4683   }
4684 }
4685 
SemaAtomicOpsOverloaded(ExprResult TheCallResult,AtomicExpr::AtomicOp Op)4686 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
4687                                          AtomicExpr::AtomicOp Op) {
4688   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
4689   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4690   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
4691   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
4692                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
4693                          Op);
4694 }
4695 
BuildAtomicExpr(SourceRange CallRange,SourceRange ExprRange,SourceLocation RParenLoc,MultiExprArg Args,AtomicExpr::AtomicOp Op,AtomicArgumentOrder ArgOrder)4696 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
4697                                  SourceLocation RParenLoc, MultiExprArg Args,
4698                                  AtomicExpr::AtomicOp Op,
4699                                  AtomicArgumentOrder ArgOrder) {
4700   // All the non-OpenCL operations take one of the following forms.
4701   // The OpenCL operations take the __c11 forms with one extra argument for
4702   // synchronization scope.
4703   enum {
4704     // C    __c11_atomic_init(A *, C)
4705     Init,
4706 
4707     // C    __c11_atomic_load(A *, int)
4708     Load,
4709 
4710     // void __atomic_load(A *, CP, int)
4711     LoadCopy,
4712 
4713     // void __atomic_store(A *, CP, int)
4714     Copy,
4715 
4716     // C    __c11_atomic_add(A *, M, int)
4717     Arithmetic,
4718 
4719     // C    __atomic_exchange_n(A *, CP, int)
4720     Xchg,
4721 
4722     // void __atomic_exchange(A *, C *, CP, int)
4723     GNUXchg,
4724 
4725     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
4726     C11CmpXchg,
4727 
4728     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
4729     GNUCmpXchg
4730   } Form = Init;
4731 
4732   const unsigned NumForm = GNUCmpXchg + 1;
4733   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
4734   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
4735   // where:
4736   //   C is an appropriate type,
4737   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
4738   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
4739   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
4740   //   the int parameters are for orderings.
4741 
4742   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
4743       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
4744       "need to update code for modified forms");
4745   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
4746                     AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
4747                         AtomicExpr::AO__atomic_load,
4748                 "need to update code for modified C11 atomics");
4749   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
4750                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
4751   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
4752                Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
4753                IsOpenCL;
4754   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
4755              Op == AtomicExpr::AO__atomic_store_n ||
4756              Op == AtomicExpr::AO__atomic_exchange_n ||
4757              Op == AtomicExpr::AO__atomic_compare_exchange_n;
4758   bool IsAddSub = false;
4759 
4760   switch (Op) {
4761   case AtomicExpr::AO__c11_atomic_init:
4762   case AtomicExpr::AO__opencl_atomic_init:
4763     Form = Init;
4764     break;
4765 
4766   case AtomicExpr::AO__c11_atomic_load:
4767   case AtomicExpr::AO__opencl_atomic_load:
4768   case AtomicExpr::AO__atomic_load_n:
4769     Form = Load;
4770     break;
4771 
4772   case AtomicExpr::AO__atomic_load:
4773     Form = LoadCopy;
4774     break;
4775 
4776   case AtomicExpr::AO__c11_atomic_store:
4777   case AtomicExpr::AO__opencl_atomic_store:
4778   case AtomicExpr::AO__atomic_store:
4779   case AtomicExpr::AO__atomic_store_n:
4780     Form = Copy;
4781     break;
4782 
4783   case AtomicExpr::AO__c11_atomic_fetch_add:
4784   case AtomicExpr::AO__c11_atomic_fetch_sub:
4785   case AtomicExpr::AO__opencl_atomic_fetch_add:
4786   case AtomicExpr::AO__opencl_atomic_fetch_sub:
4787   case AtomicExpr::AO__atomic_fetch_add:
4788   case AtomicExpr::AO__atomic_fetch_sub:
4789   case AtomicExpr::AO__atomic_add_fetch:
4790   case AtomicExpr::AO__atomic_sub_fetch:
4791     IsAddSub = true;
4792     LLVM_FALLTHROUGH;
4793   case AtomicExpr::AO__c11_atomic_fetch_and:
4794   case AtomicExpr::AO__c11_atomic_fetch_or:
4795   case AtomicExpr::AO__c11_atomic_fetch_xor:
4796   case AtomicExpr::AO__opencl_atomic_fetch_and:
4797   case AtomicExpr::AO__opencl_atomic_fetch_or:
4798   case AtomicExpr::AO__opencl_atomic_fetch_xor:
4799   case AtomicExpr::AO__atomic_fetch_and:
4800   case AtomicExpr::AO__atomic_fetch_or:
4801   case AtomicExpr::AO__atomic_fetch_xor:
4802   case AtomicExpr::AO__atomic_fetch_nand:
4803   case AtomicExpr::AO__atomic_and_fetch:
4804   case AtomicExpr::AO__atomic_or_fetch:
4805   case AtomicExpr::AO__atomic_xor_fetch:
4806   case AtomicExpr::AO__atomic_nand_fetch:
4807   case AtomicExpr::AO__c11_atomic_fetch_min:
4808   case AtomicExpr::AO__c11_atomic_fetch_max:
4809   case AtomicExpr::AO__opencl_atomic_fetch_min:
4810   case AtomicExpr::AO__opencl_atomic_fetch_max:
4811   case AtomicExpr::AO__atomic_min_fetch:
4812   case AtomicExpr::AO__atomic_max_fetch:
4813   case AtomicExpr::AO__atomic_fetch_min:
4814   case AtomicExpr::AO__atomic_fetch_max:
4815     Form = Arithmetic;
4816     break;
4817 
4818   case AtomicExpr::AO__c11_atomic_exchange:
4819   case AtomicExpr::AO__opencl_atomic_exchange:
4820   case AtomicExpr::AO__atomic_exchange_n:
4821     Form = Xchg;
4822     break;
4823 
4824   case AtomicExpr::AO__atomic_exchange:
4825     Form = GNUXchg;
4826     break;
4827 
4828   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
4829   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
4830   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
4831   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
4832     Form = C11CmpXchg;
4833     break;
4834 
4835   case AtomicExpr::AO__atomic_compare_exchange:
4836   case AtomicExpr::AO__atomic_compare_exchange_n:
4837     Form = GNUCmpXchg;
4838     break;
4839   }
4840 
4841   unsigned AdjustedNumArgs = NumArgs[Form];
4842   if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
4843     ++AdjustedNumArgs;
4844   // Check we have the right number of arguments.
4845   if (Args.size() < AdjustedNumArgs) {
4846     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
4847         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4848         << ExprRange;
4849     return ExprError();
4850   } else if (Args.size() > AdjustedNumArgs) {
4851     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
4852          diag::err_typecheck_call_too_many_args)
4853         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4854         << ExprRange;
4855     return ExprError();
4856   }
4857 
4858   // Inspect the first argument of the atomic operation.
4859   Expr *Ptr = Args[0];
4860   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
4861   if (ConvertedPtr.isInvalid())
4862     return ExprError();
4863 
4864   Ptr = ConvertedPtr.get();
4865   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
4866   if (!pointerType) {
4867     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
4868         << Ptr->getType() << Ptr->getSourceRange();
4869     return ExprError();
4870   }
4871 
4872   // For a __c11 builtin, this should be a pointer to an _Atomic type.
4873   QualType AtomTy = pointerType->getPointeeType(); // 'A'
4874   QualType ValType = AtomTy; // 'C'
4875   if (IsC11) {
4876     if (!AtomTy->isAtomicType()) {
4877       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
4878           << Ptr->getType() << Ptr->getSourceRange();
4879       return ExprError();
4880     }
4881     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
4882         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
4883       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
4884           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
4885           << Ptr->getSourceRange();
4886       return ExprError();
4887     }
4888     ValType = AtomTy->castAs<AtomicType>()->getValueType();
4889   } else if (Form != Load && Form != LoadCopy) {
4890     if (ValType.isConstQualified()) {
4891       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
4892           << Ptr->getType() << Ptr->getSourceRange();
4893       return ExprError();
4894     }
4895   }
4896 
4897   // For an arithmetic operation, the implied arithmetic must be well-formed.
4898   if (Form == Arithmetic) {
4899     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
4900     if (IsAddSub && !ValType->isIntegerType()
4901         && !ValType->isPointerType()) {
4902       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4903           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4904       return ExprError();
4905     }
4906     if (!IsAddSub && !ValType->isIntegerType()) {
4907       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
4908           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4909       return ExprError();
4910     }
4911     if (IsC11 && ValType->isPointerType() &&
4912         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
4913                             diag::err_incomplete_type)) {
4914       return ExprError();
4915     }
4916   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
4917     // For __atomic_*_n operations, the value type must be a scalar integral or
4918     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
4919     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4920         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4921     return ExprError();
4922   }
4923 
4924   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
4925       !AtomTy->isScalarType()) {
4926     // For GNU atomics, require a trivially-copyable type. This is not part of
4927     // the GNU atomics specification, but we enforce it for sanity.
4928     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
4929         << Ptr->getType() << Ptr->getSourceRange();
4930     return ExprError();
4931   }
4932 
4933   switch (ValType.getObjCLifetime()) {
4934   case Qualifiers::OCL_None:
4935   case Qualifiers::OCL_ExplicitNone:
4936     // okay
4937     break;
4938 
4939   case Qualifiers::OCL_Weak:
4940   case Qualifiers::OCL_Strong:
4941   case Qualifiers::OCL_Autoreleasing:
4942     // FIXME: Can this happen? By this point, ValType should be known
4943     // to be trivially copyable.
4944     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
4945         << ValType << Ptr->getSourceRange();
4946     return ExprError();
4947   }
4948 
4949   // All atomic operations have an overload which takes a pointer to a volatile
4950   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
4951   // into the result or the other operands. Similarly atomic_load takes a
4952   // pointer to a const 'A'.
4953   ValType.removeLocalVolatile();
4954   ValType.removeLocalConst();
4955   QualType ResultType = ValType;
4956   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
4957       Form == Init)
4958     ResultType = Context.VoidTy;
4959   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
4960     ResultType = Context.BoolTy;
4961 
4962   // The type of a parameter passed 'by value'. In the GNU atomics, such
4963   // arguments are actually passed as pointers.
4964   QualType ByValType = ValType; // 'CP'
4965   bool IsPassedByAddress = false;
4966   if (!IsC11 && !IsN) {
4967     ByValType = Ptr->getType();
4968     IsPassedByAddress = true;
4969   }
4970 
4971   SmallVector<Expr *, 5> APIOrderedArgs;
4972   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
4973     APIOrderedArgs.push_back(Args[0]);
4974     switch (Form) {
4975     case Init:
4976     case Load:
4977       APIOrderedArgs.push_back(Args[1]); // Val1/Order
4978       break;
4979     case LoadCopy:
4980     case Copy:
4981     case Arithmetic:
4982     case Xchg:
4983       APIOrderedArgs.push_back(Args[2]); // Val1
4984       APIOrderedArgs.push_back(Args[1]); // Order
4985       break;
4986     case GNUXchg:
4987       APIOrderedArgs.push_back(Args[2]); // Val1
4988       APIOrderedArgs.push_back(Args[3]); // Val2
4989       APIOrderedArgs.push_back(Args[1]); // Order
4990       break;
4991     case C11CmpXchg:
4992       APIOrderedArgs.push_back(Args[2]); // Val1
4993       APIOrderedArgs.push_back(Args[4]); // Val2
4994       APIOrderedArgs.push_back(Args[1]); // Order
4995       APIOrderedArgs.push_back(Args[3]); // OrderFail
4996       break;
4997     case GNUCmpXchg:
4998       APIOrderedArgs.push_back(Args[2]); // Val1
4999       APIOrderedArgs.push_back(Args[4]); // Val2
5000       APIOrderedArgs.push_back(Args[5]); // Weak
5001       APIOrderedArgs.push_back(Args[1]); // Order
5002       APIOrderedArgs.push_back(Args[3]); // OrderFail
5003       break;
5004     }
5005   } else
5006     APIOrderedArgs.append(Args.begin(), Args.end());
5007 
5008   // The first argument's non-CV pointer type is used to deduce the type of
5009   // subsequent arguments, except for:
5010   //  - weak flag (always converted to bool)
5011   //  - memory order (always converted to int)
5012   //  - scope  (always converted to int)
5013   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
5014     QualType Ty;
5015     if (i < NumVals[Form] + 1) {
5016       switch (i) {
5017       case 0:
5018         // The first argument is always a pointer. It has a fixed type.
5019         // It is always dereferenced, a nullptr is undefined.
5020         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5021         // Nothing else to do: we already know all we want about this pointer.
5022         continue;
5023       case 1:
5024         // The second argument is the non-atomic operand. For arithmetic, this
5025         // is always passed by value, and for a compare_exchange it is always
5026         // passed by address. For the rest, GNU uses by-address and C11 uses
5027         // by-value.
5028         assert(Form != Load);
5029         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
5030           Ty = ValType;
5031         else if (Form == Copy || Form == Xchg) {
5032           if (IsPassedByAddress) {
5033             // The value pointer is always dereferenced, a nullptr is undefined.
5034             CheckNonNullArgument(*this, APIOrderedArgs[i],
5035                                  ExprRange.getBegin());
5036           }
5037           Ty = ByValType;
5038         } else if (Form == Arithmetic)
5039           Ty = Context.getPointerDiffType();
5040         else {
5041           Expr *ValArg = APIOrderedArgs[i];
5042           // The value pointer is always dereferenced, a nullptr is undefined.
5043           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
5044           LangAS AS = LangAS::Default;
5045           // Keep address space of non-atomic pointer type.
5046           if (const PointerType *PtrTy =
5047                   ValArg->getType()->getAs<PointerType>()) {
5048             AS = PtrTy->getPointeeType().getAddressSpace();
5049           }
5050           Ty = Context.getPointerType(
5051               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5052         }
5053         break;
5054       case 2:
5055         // The third argument to compare_exchange / GNU exchange is the desired
5056         // value, either by-value (for the C11 and *_n variant) or as a pointer.
5057         if (IsPassedByAddress)
5058           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5059         Ty = ByValType;
5060         break;
5061       case 3:
5062         // The fourth argument to GNU compare_exchange is a 'weak' flag.
5063         Ty = Context.BoolTy;
5064         break;
5065       }
5066     } else {
5067       // The order(s) and scope are always converted to int.
5068       Ty = Context.IntTy;
5069     }
5070 
5071     InitializedEntity Entity =
5072         InitializedEntity::InitializeParameter(Context, Ty, false);
5073     ExprResult Arg = APIOrderedArgs[i];
5074     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5075     if (Arg.isInvalid())
5076       return true;
5077     APIOrderedArgs[i] = Arg.get();
5078   }
5079 
5080   // Permute the arguments into a 'consistent' order.
5081   SmallVector<Expr*, 5> SubExprs;
5082   SubExprs.push_back(Ptr);
5083   switch (Form) {
5084   case Init:
5085     // Note, AtomicExpr::getVal1() has a special case for this atomic.
5086     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5087     break;
5088   case Load:
5089     SubExprs.push_back(APIOrderedArgs[1]); // Order
5090     break;
5091   case LoadCopy:
5092   case Copy:
5093   case Arithmetic:
5094   case Xchg:
5095     SubExprs.push_back(APIOrderedArgs[2]); // Order
5096     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5097     break;
5098   case GNUXchg:
5099     // Note, AtomicExpr::getVal2() has a special case for this atomic.
5100     SubExprs.push_back(APIOrderedArgs[3]); // Order
5101     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5102     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5103     break;
5104   case C11CmpXchg:
5105     SubExprs.push_back(APIOrderedArgs[3]); // Order
5106     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5107     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5108     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5109     break;
5110   case GNUCmpXchg:
5111     SubExprs.push_back(APIOrderedArgs[4]); // Order
5112     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5113     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5114     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5115     SubExprs.push_back(APIOrderedArgs[3]); // Weak
5116     break;
5117   }
5118 
5119   if (SubExprs.size() >= 2 && Form != Init) {
5120     if (Optional<llvm::APSInt> Result =
5121             SubExprs[1]->getIntegerConstantExpr(Context))
5122       if (!isValidOrderingForOp(Result->getSExtValue(), Op))
5123         Diag(SubExprs[1]->getBeginLoc(),
5124              diag::warn_atomic_op_has_invalid_memory_order)
5125             << SubExprs[1]->getSourceRange();
5126   }
5127 
5128   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
5129     auto *Scope = Args[Args.size() - 1];
5130     if (Optional<llvm::APSInt> Result =
5131             Scope->getIntegerConstantExpr(Context)) {
5132       if (!ScopeModel->isValid(Result->getZExtValue()))
5133         Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
5134             << Scope->getSourceRange();
5135     }
5136     SubExprs.push_back(Scope);
5137   }
5138 
5139   AtomicExpr *AE = new (Context)
5140       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
5141 
5142   if ((Op == AtomicExpr::AO__c11_atomic_load ||
5143        Op == AtomicExpr::AO__c11_atomic_store ||
5144        Op == AtomicExpr::AO__opencl_atomic_load ||
5145        Op == AtomicExpr::AO__opencl_atomic_store ) &&
5146       Context.AtomicUsesUnsupportedLibcall(AE))
5147     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
5148         << ((Op == AtomicExpr::AO__c11_atomic_load ||
5149              Op == AtomicExpr::AO__opencl_atomic_load)
5150                 ? 0
5151                 : 1);
5152 
5153   if (ValType->isExtIntType()) {
5154     Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit);
5155     return ExprError();
5156   }
5157 
5158   return AE;
5159 }
5160 
5161 /// checkBuiltinArgument - Given a call to a builtin function, perform
5162 /// normal type-checking on the given argument, updating the call in
5163 /// place.  This is useful when a builtin function requires custom
5164 /// type-checking for some of its arguments but not necessarily all of
5165 /// them.
5166 ///
5167 /// Returns true on error.
checkBuiltinArgument(Sema & S,CallExpr * E,unsigned ArgIndex)5168 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
5169   FunctionDecl *Fn = E->getDirectCallee();
5170   assert(Fn && "builtin call without direct callee!");
5171 
5172   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
5173   InitializedEntity Entity =
5174     InitializedEntity::InitializeParameter(S.Context, Param);
5175 
5176   ExprResult Arg = E->getArg(0);
5177   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
5178   if (Arg.isInvalid())
5179     return true;
5180 
5181   E->setArg(ArgIndex, Arg.get());
5182   return false;
5183 }
5184 
5185 /// We have a call to a function like __sync_fetch_and_add, which is an
5186 /// overloaded function based on the pointer type of its first argument.
5187 /// The main BuildCallExpr routines have already promoted the types of
5188 /// arguments because all of these calls are prototyped as void(...).
5189 ///
5190 /// This function goes through and does final semantic checking for these
5191 /// builtins, as well as generating any warnings.
5192 ExprResult
SemaBuiltinAtomicOverloaded(ExprResult TheCallResult)5193 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
5194   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
5195   Expr *Callee = TheCall->getCallee();
5196   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
5197   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5198 
5199   // Ensure that we have at least one argument to do type inference from.
5200   if (TheCall->getNumArgs() < 1) {
5201     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5202         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
5203     return ExprError();
5204   }
5205 
5206   // Inspect the first argument of the atomic builtin.  This should always be
5207   // a pointer type, whose element is an integral scalar or pointer type.
5208   // Because it is a pointer type, we don't have to worry about any implicit
5209   // casts here.
5210   // FIXME: We don't allow floating point scalars as input.
5211   Expr *FirstArg = TheCall->getArg(0);
5212   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
5213   if (FirstArgResult.isInvalid())
5214     return ExprError();
5215   FirstArg = FirstArgResult.get();
5216   TheCall->setArg(0, FirstArg);
5217 
5218   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
5219   if (!pointerType) {
5220     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
5221         << FirstArg->getType() << FirstArg->getSourceRange();
5222     return ExprError();
5223   }
5224 
5225   QualType ValType = pointerType->getPointeeType();
5226   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5227       !ValType->isBlockPointerType()) {
5228     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
5229         << FirstArg->getType() << FirstArg->getSourceRange();
5230     return ExprError();
5231   }
5232 
5233   if (ValType.isConstQualified()) {
5234     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
5235         << FirstArg->getType() << FirstArg->getSourceRange();
5236     return ExprError();
5237   }
5238 
5239   switch (ValType.getObjCLifetime()) {
5240   case Qualifiers::OCL_None:
5241   case Qualifiers::OCL_ExplicitNone:
5242     // okay
5243     break;
5244 
5245   case Qualifiers::OCL_Weak:
5246   case Qualifiers::OCL_Strong:
5247   case Qualifiers::OCL_Autoreleasing:
5248     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
5249         << ValType << FirstArg->getSourceRange();
5250     return ExprError();
5251   }
5252 
5253   // Strip any qualifiers off ValType.
5254   ValType = ValType.getUnqualifiedType();
5255 
5256   // The majority of builtins return a value, but a few have special return
5257   // types, so allow them to override appropriately below.
5258   QualType ResultType = ValType;
5259 
5260   // We need to figure out which concrete builtin this maps onto.  For example,
5261   // __sync_fetch_and_add with a 2 byte object turns into
5262   // __sync_fetch_and_add_2.
5263 #define BUILTIN_ROW(x) \
5264   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
5265     Builtin::BI##x##_8, Builtin::BI##x##_16 }
5266 
5267   static const unsigned BuiltinIndices[][5] = {
5268     BUILTIN_ROW(__sync_fetch_and_add),
5269     BUILTIN_ROW(__sync_fetch_and_sub),
5270     BUILTIN_ROW(__sync_fetch_and_or),
5271     BUILTIN_ROW(__sync_fetch_and_and),
5272     BUILTIN_ROW(__sync_fetch_and_xor),
5273     BUILTIN_ROW(__sync_fetch_and_nand),
5274 
5275     BUILTIN_ROW(__sync_add_and_fetch),
5276     BUILTIN_ROW(__sync_sub_and_fetch),
5277     BUILTIN_ROW(__sync_and_and_fetch),
5278     BUILTIN_ROW(__sync_or_and_fetch),
5279     BUILTIN_ROW(__sync_xor_and_fetch),
5280     BUILTIN_ROW(__sync_nand_and_fetch),
5281 
5282     BUILTIN_ROW(__sync_val_compare_and_swap),
5283     BUILTIN_ROW(__sync_bool_compare_and_swap),
5284     BUILTIN_ROW(__sync_lock_test_and_set),
5285     BUILTIN_ROW(__sync_lock_release),
5286     BUILTIN_ROW(__sync_swap)
5287   };
5288 #undef BUILTIN_ROW
5289 
5290   // Determine the index of the size.
5291   unsigned SizeIndex;
5292   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
5293   case 1: SizeIndex = 0; break;
5294   case 2: SizeIndex = 1; break;
5295   case 4: SizeIndex = 2; break;
5296   case 8: SizeIndex = 3; break;
5297   case 16: SizeIndex = 4; break;
5298   default:
5299     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5300         << FirstArg->getType() << FirstArg->getSourceRange();
5301     return ExprError();
5302   }
5303 
5304   // Each of these builtins has one pointer argument, followed by some number of
5305   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5306   // that we ignore.  Find out which row of BuiltinIndices to read from as well
5307   // as the number of fixed args.
5308   unsigned BuiltinID = FDecl->getBuiltinID();
5309   unsigned BuiltinIndex, NumFixed = 1;
5310   bool WarnAboutSemanticsChange = false;
5311   switch (BuiltinID) {
5312   default: llvm_unreachable("Unknown overloaded atomic builtin!");
5313   case Builtin::BI__sync_fetch_and_add:
5314   case Builtin::BI__sync_fetch_and_add_1:
5315   case Builtin::BI__sync_fetch_and_add_2:
5316   case Builtin::BI__sync_fetch_and_add_4:
5317   case Builtin::BI__sync_fetch_and_add_8:
5318   case Builtin::BI__sync_fetch_and_add_16:
5319     BuiltinIndex = 0;
5320     break;
5321 
5322   case Builtin::BI__sync_fetch_and_sub:
5323   case Builtin::BI__sync_fetch_and_sub_1:
5324   case Builtin::BI__sync_fetch_and_sub_2:
5325   case Builtin::BI__sync_fetch_and_sub_4:
5326   case Builtin::BI__sync_fetch_and_sub_8:
5327   case Builtin::BI__sync_fetch_and_sub_16:
5328     BuiltinIndex = 1;
5329     break;
5330 
5331   case Builtin::BI__sync_fetch_and_or:
5332   case Builtin::BI__sync_fetch_and_or_1:
5333   case Builtin::BI__sync_fetch_and_or_2:
5334   case Builtin::BI__sync_fetch_and_or_4:
5335   case Builtin::BI__sync_fetch_and_or_8:
5336   case Builtin::BI__sync_fetch_and_or_16:
5337     BuiltinIndex = 2;
5338     break;
5339 
5340   case Builtin::BI__sync_fetch_and_and:
5341   case Builtin::BI__sync_fetch_and_and_1:
5342   case Builtin::BI__sync_fetch_and_and_2:
5343   case Builtin::BI__sync_fetch_and_and_4:
5344   case Builtin::BI__sync_fetch_and_and_8:
5345   case Builtin::BI__sync_fetch_and_and_16:
5346     BuiltinIndex = 3;
5347     break;
5348 
5349   case Builtin::BI__sync_fetch_and_xor:
5350   case Builtin::BI__sync_fetch_and_xor_1:
5351   case Builtin::BI__sync_fetch_and_xor_2:
5352   case Builtin::BI__sync_fetch_and_xor_4:
5353   case Builtin::BI__sync_fetch_and_xor_8:
5354   case Builtin::BI__sync_fetch_and_xor_16:
5355     BuiltinIndex = 4;
5356     break;
5357 
5358   case Builtin::BI__sync_fetch_and_nand:
5359   case Builtin::BI__sync_fetch_and_nand_1:
5360   case Builtin::BI__sync_fetch_and_nand_2:
5361   case Builtin::BI__sync_fetch_and_nand_4:
5362   case Builtin::BI__sync_fetch_and_nand_8:
5363   case Builtin::BI__sync_fetch_and_nand_16:
5364     BuiltinIndex = 5;
5365     WarnAboutSemanticsChange = true;
5366     break;
5367 
5368   case Builtin::BI__sync_add_and_fetch:
5369   case Builtin::BI__sync_add_and_fetch_1:
5370   case Builtin::BI__sync_add_and_fetch_2:
5371   case Builtin::BI__sync_add_and_fetch_4:
5372   case Builtin::BI__sync_add_and_fetch_8:
5373   case Builtin::BI__sync_add_and_fetch_16:
5374     BuiltinIndex = 6;
5375     break;
5376 
5377   case Builtin::BI__sync_sub_and_fetch:
5378   case Builtin::BI__sync_sub_and_fetch_1:
5379   case Builtin::BI__sync_sub_and_fetch_2:
5380   case Builtin::BI__sync_sub_and_fetch_4:
5381   case Builtin::BI__sync_sub_and_fetch_8:
5382   case Builtin::BI__sync_sub_and_fetch_16:
5383     BuiltinIndex = 7;
5384     break;
5385 
5386   case Builtin::BI__sync_and_and_fetch:
5387   case Builtin::BI__sync_and_and_fetch_1:
5388   case Builtin::BI__sync_and_and_fetch_2:
5389   case Builtin::BI__sync_and_and_fetch_4:
5390   case Builtin::BI__sync_and_and_fetch_8:
5391   case Builtin::BI__sync_and_and_fetch_16:
5392     BuiltinIndex = 8;
5393     break;
5394 
5395   case Builtin::BI__sync_or_and_fetch:
5396   case Builtin::BI__sync_or_and_fetch_1:
5397   case Builtin::BI__sync_or_and_fetch_2:
5398   case Builtin::BI__sync_or_and_fetch_4:
5399   case Builtin::BI__sync_or_and_fetch_8:
5400   case Builtin::BI__sync_or_and_fetch_16:
5401     BuiltinIndex = 9;
5402     break;
5403 
5404   case Builtin::BI__sync_xor_and_fetch:
5405   case Builtin::BI__sync_xor_and_fetch_1:
5406   case Builtin::BI__sync_xor_and_fetch_2:
5407   case Builtin::BI__sync_xor_and_fetch_4:
5408   case Builtin::BI__sync_xor_and_fetch_8:
5409   case Builtin::BI__sync_xor_and_fetch_16:
5410     BuiltinIndex = 10;
5411     break;
5412 
5413   case Builtin::BI__sync_nand_and_fetch:
5414   case Builtin::BI__sync_nand_and_fetch_1:
5415   case Builtin::BI__sync_nand_and_fetch_2:
5416   case Builtin::BI__sync_nand_and_fetch_4:
5417   case Builtin::BI__sync_nand_and_fetch_8:
5418   case Builtin::BI__sync_nand_and_fetch_16:
5419     BuiltinIndex = 11;
5420     WarnAboutSemanticsChange = true;
5421     break;
5422 
5423   case Builtin::BI__sync_val_compare_and_swap:
5424   case Builtin::BI__sync_val_compare_and_swap_1:
5425   case Builtin::BI__sync_val_compare_and_swap_2:
5426   case Builtin::BI__sync_val_compare_and_swap_4:
5427   case Builtin::BI__sync_val_compare_and_swap_8:
5428   case Builtin::BI__sync_val_compare_and_swap_16:
5429     BuiltinIndex = 12;
5430     NumFixed = 2;
5431     break;
5432 
5433   case Builtin::BI__sync_bool_compare_and_swap:
5434   case Builtin::BI__sync_bool_compare_and_swap_1:
5435   case Builtin::BI__sync_bool_compare_and_swap_2:
5436   case Builtin::BI__sync_bool_compare_and_swap_4:
5437   case Builtin::BI__sync_bool_compare_and_swap_8:
5438   case Builtin::BI__sync_bool_compare_and_swap_16:
5439     BuiltinIndex = 13;
5440     NumFixed = 2;
5441     ResultType = Context.BoolTy;
5442     break;
5443 
5444   case Builtin::BI__sync_lock_test_and_set:
5445   case Builtin::BI__sync_lock_test_and_set_1:
5446   case Builtin::BI__sync_lock_test_and_set_2:
5447   case Builtin::BI__sync_lock_test_and_set_4:
5448   case Builtin::BI__sync_lock_test_and_set_8:
5449   case Builtin::BI__sync_lock_test_and_set_16:
5450     BuiltinIndex = 14;
5451     break;
5452 
5453   case Builtin::BI__sync_lock_release:
5454   case Builtin::BI__sync_lock_release_1:
5455   case Builtin::BI__sync_lock_release_2:
5456   case Builtin::BI__sync_lock_release_4:
5457   case Builtin::BI__sync_lock_release_8:
5458   case Builtin::BI__sync_lock_release_16:
5459     BuiltinIndex = 15;
5460     NumFixed = 0;
5461     ResultType = Context.VoidTy;
5462     break;
5463 
5464   case Builtin::BI__sync_swap:
5465   case Builtin::BI__sync_swap_1:
5466   case Builtin::BI__sync_swap_2:
5467   case Builtin::BI__sync_swap_4:
5468   case Builtin::BI__sync_swap_8:
5469   case Builtin::BI__sync_swap_16:
5470     BuiltinIndex = 16;
5471     break;
5472   }
5473 
5474   // Now that we know how many fixed arguments we expect, first check that we
5475   // have at least that many.
5476   if (TheCall->getNumArgs() < 1+NumFixed) {
5477     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5478         << 0 << 1 + NumFixed << TheCall->getNumArgs()
5479         << Callee->getSourceRange();
5480     return ExprError();
5481   }
5482 
5483   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
5484       << Callee->getSourceRange();
5485 
5486   if (WarnAboutSemanticsChange) {
5487     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
5488         << Callee->getSourceRange();
5489   }
5490 
5491   // Get the decl for the concrete builtin from this, we can tell what the
5492   // concrete integer type we should convert to is.
5493   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
5494   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
5495   FunctionDecl *NewBuiltinDecl;
5496   if (NewBuiltinID == BuiltinID)
5497     NewBuiltinDecl = FDecl;
5498   else {
5499     // Perform builtin lookup to avoid redeclaring it.
5500     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
5501     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
5502     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
5503     assert(Res.getFoundDecl());
5504     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
5505     if (!NewBuiltinDecl)
5506       return ExprError();
5507   }
5508 
5509   // The first argument --- the pointer --- has a fixed type; we
5510   // deduce the types of the rest of the arguments accordingly.  Walk
5511   // the remaining arguments, converting them to the deduced value type.
5512   for (unsigned i = 0; i != NumFixed; ++i) {
5513     ExprResult Arg = TheCall->getArg(i+1);
5514 
5515     // GCC does an implicit conversion to the pointer or integer ValType.  This
5516     // can fail in some cases (1i -> int**), check for this error case now.
5517     // Initialize the argument.
5518     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
5519                                                    ValType, /*consume*/ false);
5520     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5521     if (Arg.isInvalid())
5522       return ExprError();
5523 
5524     // Okay, we have something that *can* be converted to the right type.  Check
5525     // to see if there is a potentially weird extension going on here.  This can
5526     // happen when you do an atomic operation on something like an char* and
5527     // pass in 42.  The 42 gets converted to char.  This is even more strange
5528     // for things like 45.123 -> char, etc.
5529     // FIXME: Do this check.
5530     TheCall->setArg(i+1, Arg.get());
5531   }
5532 
5533   // Create a new DeclRefExpr to refer to the new decl.
5534   DeclRefExpr *NewDRE = DeclRefExpr::Create(
5535       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
5536       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
5537       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
5538 
5539   // Set the callee in the CallExpr.
5540   // FIXME: This loses syntactic information.
5541   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
5542   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
5543                                               CK_BuiltinFnToFnPtr);
5544   TheCall->setCallee(PromotedCall.get());
5545 
5546   // Change the result type of the call to match the original value type. This
5547   // is arbitrary, but the codegen for these builtins ins design to handle it
5548   // gracefully.
5549   TheCall->setType(ResultType);
5550 
5551   // Prohibit use of _ExtInt with atomic builtins.
5552   // The arguments would have already been converted to the first argument's
5553   // type, so only need to check the first argument.
5554   const auto *ExtIntValType = ValType->getAs<ExtIntType>();
5555   if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) {
5556     Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
5557     return ExprError();
5558   }
5559 
5560   return TheCallResult;
5561 }
5562 
5563 /// SemaBuiltinNontemporalOverloaded - We have a call to
5564 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
5565 /// overloaded function based on the pointer type of its last argument.
5566 ///
5567 /// This function goes through and does final semantic checking for these
5568 /// builtins.
SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult)5569 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
5570   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
5571   DeclRefExpr *DRE =
5572       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5573   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5574   unsigned BuiltinID = FDecl->getBuiltinID();
5575   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
5576           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
5577          "Unexpected nontemporal load/store builtin!");
5578   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
5579   unsigned numArgs = isStore ? 2 : 1;
5580 
5581   // Ensure that we have the proper number of arguments.
5582   if (checkArgCount(*this, TheCall, numArgs))
5583     return ExprError();
5584 
5585   // Inspect the last argument of the nontemporal builtin.  This should always
5586   // be a pointer type, from which we imply the type of the memory access.
5587   // Because it is a pointer type, we don't have to worry about any implicit
5588   // casts here.
5589   Expr *PointerArg = TheCall->getArg(numArgs - 1);
5590   ExprResult PointerArgResult =
5591       DefaultFunctionArrayLvalueConversion(PointerArg);
5592 
5593   if (PointerArgResult.isInvalid())
5594     return ExprError();
5595   PointerArg = PointerArgResult.get();
5596   TheCall->setArg(numArgs - 1, PointerArg);
5597 
5598   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
5599   if (!pointerType) {
5600     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
5601         << PointerArg->getType() << PointerArg->getSourceRange();
5602     return ExprError();
5603   }
5604 
5605   QualType ValType = pointerType->getPointeeType();
5606 
5607   // Strip any qualifiers off ValType.
5608   ValType = ValType.getUnqualifiedType();
5609   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5610       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
5611       !ValType->isVectorType()) {
5612     Diag(DRE->getBeginLoc(),
5613          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
5614         << PointerArg->getType() << PointerArg->getSourceRange();
5615     return ExprError();
5616   }
5617 
5618   if (!isStore) {
5619     TheCall->setType(ValType);
5620     return TheCallResult;
5621   }
5622 
5623   ExprResult ValArg = TheCall->getArg(0);
5624   InitializedEntity Entity = InitializedEntity::InitializeParameter(
5625       Context, ValType, /*consume*/ false);
5626   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
5627   if (ValArg.isInvalid())
5628     return ExprError();
5629 
5630   TheCall->setArg(0, ValArg.get());
5631   TheCall->setType(Context.VoidTy);
5632   return TheCallResult;
5633 }
5634 
5635 /// CheckObjCString - Checks that the argument to the builtin
5636 /// CFString constructor is correct
5637 /// Note: It might also make sense to do the UTF-16 conversion here (would
5638 /// simplify the backend).
CheckObjCString(Expr * Arg)5639 bool Sema::CheckObjCString(Expr *Arg) {
5640   Arg = Arg->IgnoreParenCasts();
5641   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
5642 
5643   if (!Literal || !Literal->isAscii()) {
5644     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
5645         << Arg->getSourceRange();
5646     return true;
5647   }
5648 
5649   if (Literal->containsNonAsciiOrNull()) {
5650     StringRef String = Literal->getString();
5651     unsigned NumBytes = String.size();
5652     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
5653     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5654     llvm::UTF16 *ToPtr = &ToBuf[0];
5655 
5656     llvm::ConversionResult Result =
5657         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5658                                  ToPtr + NumBytes, llvm::strictConversion);
5659     // Check for conversion failure.
5660     if (Result != llvm::conversionOK)
5661       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
5662           << Arg->getSourceRange();
5663   }
5664   return false;
5665 }
5666 
5667 /// CheckObjCString - Checks that the format string argument to the os_log()
5668 /// and os_trace() functions is correct, and converts it to const char *.
CheckOSLogFormatStringArg(Expr * Arg)5669 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
5670   Arg = Arg->IgnoreParenCasts();
5671   auto *Literal = dyn_cast<StringLiteral>(Arg);
5672   if (!Literal) {
5673     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
5674       Literal = ObjcLiteral->getString();
5675     }
5676   }
5677 
5678   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
5679     return ExprError(
5680         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
5681         << Arg->getSourceRange());
5682   }
5683 
5684   ExprResult Result(Literal);
5685   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
5686   InitializedEntity Entity =
5687       InitializedEntity::InitializeParameter(Context, ResultTy, false);
5688   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
5689   return Result;
5690 }
5691 
5692 /// Check that the user is calling the appropriate va_start builtin for the
5693 /// target and calling convention.
checkVAStartABI(Sema & S,unsigned BuiltinID,Expr * Fn)5694 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
5695   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
5696   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
5697   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
5698                     TT.getArch() == llvm::Triple::aarch64_32);
5699   bool IsWindows = TT.isOSWindows();
5700   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
5701   if (IsX64 || IsAArch64) {
5702     CallingConv CC = CC_C;
5703     if (const FunctionDecl *FD = S.getCurFunctionDecl())
5704       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
5705     if (IsMSVAStart) {
5706       // Don't allow this in System V ABI functions.
5707       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
5708         return S.Diag(Fn->getBeginLoc(),
5709                       diag::err_ms_va_start_used_in_sysv_function);
5710     } else {
5711       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
5712       // On x64 Windows, don't allow this in System V ABI functions.
5713       // (Yes, that means there's no corresponding way to support variadic
5714       // System V ABI functions on Windows.)
5715       if ((IsWindows && CC == CC_X86_64SysV) ||
5716           (!IsWindows && CC == CC_Win64))
5717         return S.Diag(Fn->getBeginLoc(),
5718                       diag::err_va_start_used_in_wrong_abi_function)
5719                << !IsWindows;
5720     }
5721     return false;
5722   }
5723 
5724   if (IsMSVAStart)
5725     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
5726   return false;
5727 }
5728 
checkVAStartIsInVariadicFunction(Sema & S,Expr * Fn,ParmVarDecl ** LastParam=nullptr)5729 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
5730                                              ParmVarDecl **LastParam = nullptr) {
5731   // Determine whether the current function, block, or obj-c method is variadic
5732   // and get its parameter list.
5733   bool IsVariadic = false;
5734   ArrayRef<ParmVarDecl *> Params;
5735   DeclContext *Caller = S.CurContext;
5736   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
5737     IsVariadic = Block->isVariadic();
5738     Params = Block->parameters();
5739   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
5740     IsVariadic = FD->isVariadic();
5741     Params = FD->parameters();
5742   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
5743     IsVariadic = MD->isVariadic();
5744     // FIXME: This isn't correct for methods (results in bogus warning).
5745     Params = MD->parameters();
5746   } else if (isa<CapturedDecl>(Caller)) {
5747     // We don't support va_start in a CapturedDecl.
5748     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
5749     return true;
5750   } else {
5751     // This must be some other declcontext that parses exprs.
5752     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
5753     return true;
5754   }
5755 
5756   if (!IsVariadic) {
5757     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
5758     return true;
5759   }
5760 
5761   if (LastParam)
5762     *LastParam = Params.empty() ? nullptr : Params.back();
5763 
5764   return false;
5765 }
5766 
5767 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
5768 /// for validity.  Emit an error and return true on failure; return false
5769 /// on success.
SemaBuiltinVAStart(unsigned BuiltinID,CallExpr * TheCall)5770 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
5771   Expr *Fn = TheCall->getCallee();
5772 
5773   if (checkVAStartABI(*this, BuiltinID, Fn))
5774     return true;
5775 
5776   if (checkArgCount(*this, TheCall, 2))
5777     return true;
5778 
5779   // Type-check the first argument normally.
5780   if (checkBuiltinArgument(*this, TheCall, 0))
5781     return true;
5782 
5783   // Check that the current function is variadic, and get its last parameter.
5784   ParmVarDecl *LastParam;
5785   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
5786     return true;
5787 
5788   // Verify that the second argument to the builtin is the last argument of the
5789   // current function or method.
5790   bool SecondArgIsLastNamedArgument = false;
5791   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
5792 
5793   // These are valid if SecondArgIsLastNamedArgument is false after the next
5794   // block.
5795   QualType Type;
5796   SourceLocation ParamLoc;
5797   bool IsCRegister = false;
5798 
5799   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
5800     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
5801       SecondArgIsLastNamedArgument = PV == LastParam;
5802 
5803       Type = PV->getType();
5804       ParamLoc = PV->getLocation();
5805       IsCRegister =
5806           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
5807     }
5808   }
5809 
5810   if (!SecondArgIsLastNamedArgument)
5811     Diag(TheCall->getArg(1)->getBeginLoc(),
5812          diag::warn_second_arg_of_va_start_not_last_named_param);
5813   else if (IsCRegister || Type->isReferenceType() ||
5814            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
5815              // Promotable integers are UB, but enumerations need a bit of
5816              // extra checking to see what their promotable type actually is.
5817              if (!Type->isPromotableIntegerType())
5818                return false;
5819              if (!Type->isEnumeralType())
5820                return true;
5821              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
5822              return !(ED &&
5823                       Context.typesAreCompatible(ED->getPromotionType(), Type));
5824            }()) {
5825     unsigned Reason = 0;
5826     if (Type->isReferenceType())  Reason = 1;
5827     else if (IsCRegister)         Reason = 2;
5828     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
5829     Diag(ParamLoc, diag::note_parameter_type) << Type;
5830   }
5831 
5832   TheCall->setType(Context.VoidTy);
5833   return false;
5834 }
5835 
SemaBuiltinVAStartARMMicrosoft(CallExpr * Call)5836 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
5837   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
5838   //                 const char *named_addr);
5839 
5840   Expr *Func = Call->getCallee();
5841 
5842   if (Call->getNumArgs() < 3)
5843     return Diag(Call->getEndLoc(),
5844                 diag::err_typecheck_call_too_few_args_at_least)
5845            << 0 /*function call*/ << 3 << Call->getNumArgs();
5846 
5847   // Type-check the first argument normally.
5848   if (checkBuiltinArgument(*this, Call, 0))
5849     return true;
5850 
5851   // Check that the current function is variadic.
5852   if (checkVAStartIsInVariadicFunction(*this, Func))
5853     return true;
5854 
5855   // __va_start on Windows does not validate the parameter qualifiers
5856 
5857   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
5858   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
5859 
5860   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
5861   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
5862 
5863   const QualType &ConstCharPtrTy =
5864       Context.getPointerType(Context.CharTy.withConst());
5865   if (!Arg1Ty->isPointerType() ||
5866       Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
5867     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5868         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
5869         << 0                                      /* qualifier difference */
5870         << 3                                      /* parameter mismatch */
5871         << 2 << Arg1->getType() << ConstCharPtrTy;
5872 
5873   const QualType SizeTy = Context.getSizeType();
5874   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
5875     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5876         << Arg2->getType() << SizeTy << 1 /* different class */
5877         << 0                              /* qualifier difference */
5878         << 3                              /* parameter mismatch */
5879         << 3 << Arg2->getType() << SizeTy;
5880 
5881   return false;
5882 }
5883 
5884 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
5885 /// friends.  This is declared to take (...), so we have to check everything.
SemaBuiltinUnorderedCompare(CallExpr * TheCall)5886 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
5887   if (checkArgCount(*this, TheCall, 2))
5888     return true;
5889 
5890   ExprResult OrigArg0 = TheCall->getArg(0);
5891   ExprResult OrigArg1 = TheCall->getArg(1);
5892 
5893   // Do standard promotions between the two arguments, returning their common
5894   // type.
5895   QualType Res = UsualArithmeticConversions(
5896       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
5897   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
5898     return true;
5899 
5900   // Make sure any conversions are pushed back into the call; this is
5901   // type safe since unordered compare builtins are declared as "_Bool
5902   // foo(...)".
5903   TheCall->setArg(0, OrigArg0.get());
5904   TheCall->setArg(1, OrigArg1.get());
5905 
5906   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
5907     return false;
5908 
5909   // If the common type isn't a real floating type, then the arguments were
5910   // invalid for this operation.
5911   if (Res.isNull() || !Res->isRealFloatingType())
5912     return Diag(OrigArg0.get()->getBeginLoc(),
5913                 diag::err_typecheck_call_invalid_ordered_compare)
5914            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
5915            << SourceRange(OrigArg0.get()->getBeginLoc(),
5916                           OrigArg1.get()->getEndLoc());
5917 
5918   return false;
5919 }
5920 
5921 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
5922 /// __builtin_isnan and friends.  This is declared to take (...), so we have
5923 /// to check everything. We expect the last argument to be a floating point
5924 /// value.
SemaBuiltinFPClassification(CallExpr * TheCall,unsigned NumArgs)5925 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
5926   if (checkArgCount(*this, TheCall, NumArgs))
5927     return true;
5928 
5929   // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
5930   // on all preceding parameters just being int.  Try all of those.
5931   for (unsigned i = 0; i < NumArgs - 1; ++i) {
5932     Expr *Arg = TheCall->getArg(i);
5933 
5934     if (Arg->isTypeDependent())
5935       return false;
5936 
5937     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
5938 
5939     if (Res.isInvalid())
5940       return true;
5941     TheCall->setArg(i, Res.get());
5942   }
5943 
5944   Expr *OrigArg = TheCall->getArg(NumArgs-1);
5945 
5946   if (OrigArg->isTypeDependent())
5947     return false;
5948 
5949   // Usual Unary Conversions will convert half to float, which we want for
5950   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
5951   // type how it is, but do normal L->Rvalue conversions.
5952   if (Context.getTargetInfo().useFP16ConversionIntrinsics())
5953     OrigArg = UsualUnaryConversions(OrigArg).get();
5954   else
5955     OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
5956   TheCall->setArg(NumArgs - 1, OrigArg);
5957 
5958   // This operation requires a non-_Complex floating-point number.
5959   if (!OrigArg->getType()->isRealFloatingType())
5960     return Diag(OrigArg->getBeginLoc(),
5961                 diag::err_typecheck_call_invalid_unary_fp)
5962            << OrigArg->getType() << OrigArg->getSourceRange();
5963 
5964   return false;
5965 }
5966 
5967 /// Perform semantic analysis for a call to __builtin_complex.
SemaBuiltinComplex(CallExpr * TheCall)5968 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
5969   if (checkArgCount(*this, TheCall, 2))
5970     return true;
5971 
5972   bool Dependent = false;
5973   for (unsigned I = 0; I != 2; ++I) {
5974     Expr *Arg = TheCall->getArg(I);
5975     QualType T = Arg->getType();
5976     if (T->isDependentType()) {
5977       Dependent = true;
5978       continue;
5979     }
5980 
5981     // Despite supporting _Complex int, GCC requires a real floating point type
5982     // for the operands of __builtin_complex.
5983     if (!T->isRealFloatingType()) {
5984       return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
5985              << Arg->getType() << Arg->getSourceRange();
5986     }
5987 
5988     ExprResult Converted = DefaultLvalueConversion(Arg);
5989     if (Converted.isInvalid())
5990       return true;
5991     TheCall->setArg(I, Converted.get());
5992   }
5993 
5994   if (Dependent) {
5995     TheCall->setType(Context.DependentTy);
5996     return false;
5997   }
5998 
5999   Expr *Real = TheCall->getArg(0);
6000   Expr *Imag = TheCall->getArg(1);
6001   if (!Context.hasSameType(Real->getType(), Imag->getType())) {
6002     return Diag(Real->getBeginLoc(),
6003                 diag::err_typecheck_call_different_arg_types)
6004            << Real->getType() << Imag->getType()
6005            << Real->getSourceRange() << Imag->getSourceRange();
6006   }
6007 
6008   // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
6009   // don't allow this builtin to form those types either.
6010   // FIXME: Should we allow these types?
6011   if (Real->getType()->isFloat16Type())
6012     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6013            << "_Float16";
6014   if (Real->getType()->isHalfType())
6015     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6016            << "half";
6017 
6018   TheCall->setType(Context.getComplexType(Real->getType()));
6019   return false;
6020 }
6021 
6022 // Customized Sema Checking for VSX builtins that have the following signature:
6023 // vector [...] builtinName(vector [...], vector [...], const int);
6024 // Which takes the same type of vectors (any legal vector type) for the first
6025 // two arguments and takes compile time constant for the third argument.
6026 // Example builtins are :
6027 // vector double vec_xxpermdi(vector double, vector double, int);
6028 // vector short vec_xxsldwi(vector short, vector short, int);
SemaBuiltinVSX(CallExpr * TheCall)6029 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
6030   unsigned ExpectedNumArgs = 3;
6031   if (checkArgCount(*this, TheCall, ExpectedNumArgs))
6032     return true;
6033 
6034   // Check the third argument is a compile time constant
6035   if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
6036     return Diag(TheCall->getBeginLoc(),
6037                 diag::err_vsx_builtin_nonconstant_argument)
6038            << 3 /* argument index */ << TheCall->getDirectCallee()
6039            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
6040                           TheCall->getArg(2)->getEndLoc());
6041 
6042   QualType Arg1Ty = TheCall->getArg(0)->getType();
6043   QualType Arg2Ty = TheCall->getArg(1)->getType();
6044 
6045   // Check the type of argument 1 and argument 2 are vectors.
6046   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
6047   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
6048       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
6049     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
6050            << TheCall->getDirectCallee()
6051            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6052                           TheCall->getArg(1)->getEndLoc());
6053   }
6054 
6055   // Check the first two arguments are the same type.
6056   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
6057     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
6058            << TheCall->getDirectCallee()
6059            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6060                           TheCall->getArg(1)->getEndLoc());
6061   }
6062 
6063   // When default clang type checking is turned off and the customized type
6064   // checking is used, the returning type of the function must be explicitly
6065   // set. Otherwise it is _Bool by default.
6066   TheCall->setType(Arg1Ty);
6067 
6068   return false;
6069 }
6070 
6071 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
6072 // This is declared to take (...), so we have to check everything.
SemaBuiltinShuffleVector(CallExpr * TheCall)6073 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
6074   if (TheCall->getNumArgs() < 2)
6075     return ExprError(Diag(TheCall->getEndLoc(),
6076                           diag::err_typecheck_call_too_few_args_at_least)
6077                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
6078                      << TheCall->getSourceRange());
6079 
6080   // Determine which of the following types of shufflevector we're checking:
6081   // 1) unary, vector mask: (lhs, mask)
6082   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
6083   QualType resType = TheCall->getArg(0)->getType();
6084   unsigned numElements = 0;
6085 
6086   if (!TheCall->getArg(0)->isTypeDependent() &&
6087       !TheCall->getArg(1)->isTypeDependent()) {
6088     QualType LHSType = TheCall->getArg(0)->getType();
6089     QualType RHSType = TheCall->getArg(1)->getType();
6090 
6091     if (!LHSType->isVectorType() || !RHSType->isVectorType())
6092       return ExprError(
6093           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
6094           << TheCall->getDirectCallee()
6095           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6096                          TheCall->getArg(1)->getEndLoc()));
6097 
6098     numElements = LHSType->castAs<VectorType>()->getNumElements();
6099     unsigned numResElements = TheCall->getNumArgs() - 2;
6100 
6101     // Check to see if we have a call with 2 vector arguments, the unary shuffle
6102     // with mask.  If so, verify that RHS is an integer vector type with the
6103     // same number of elts as lhs.
6104     if (TheCall->getNumArgs() == 2) {
6105       if (!RHSType->hasIntegerRepresentation() ||
6106           RHSType->castAs<VectorType>()->getNumElements() != numElements)
6107         return ExprError(Diag(TheCall->getBeginLoc(),
6108                               diag::err_vec_builtin_incompatible_vector)
6109                          << TheCall->getDirectCallee()
6110                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
6111                                         TheCall->getArg(1)->getEndLoc()));
6112     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
6113       return ExprError(Diag(TheCall->getBeginLoc(),
6114                             diag::err_vec_builtin_incompatible_vector)
6115                        << TheCall->getDirectCallee()
6116                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6117                                       TheCall->getArg(1)->getEndLoc()));
6118     } else if (numElements != numResElements) {
6119       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
6120       resType = Context.getVectorType(eltType, numResElements,
6121                                       VectorType::GenericVector);
6122     }
6123   }
6124 
6125   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
6126     if (TheCall->getArg(i)->isTypeDependent() ||
6127         TheCall->getArg(i)->isValueDependent())
6128       continue;
6129 
6130     Optional<llvm::APSInt> Result;
6131     if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
6132       return ExprError(Diag(TheCall->getBeginLoc(),
6133                             diag::err_shufflevector_nonconstant_argument)
6134                        << TheCall->getArg(i)->getSourceRange());
6135 
6136     // Allow -1 which will be translated to undef in the IR.
6137     if (Result->isSigned() && Result->isAllOnesValue())
6138       continue;
6139 
6140     if (Result->getActiveBits() > 64 ||
6141         Result->getZExtValue() >= numElements * 2)
6142       return ExprError(Diag(TheCall->getBeginLoc(),
6143                             diag::err_shufflevector_argument_too_large)
6144                        << TheCall->getArg(i)->getSourceRange());
6145   }
6146 
6147   SmallVector<Expr*, 32> exprs;
6148 
6149   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
6150     exprs.push_back(TheCall->getArg(i));
6151     TheCall->setArg(i, nullptr);
6152   }
6153 
6154   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
6155                                          TheCall->getCallee()->getBeginLoc(),
6156                                          TheCall->getRParenLoc());
6157 }
6158 
6159 /// SemaConvertVectorExpr - Handle __builtin_convertvector
SemaConvertVectorExpr(Expr * E,TypeSourceInfo * TInfo,SourceLocation BuiltinLoc,SourceLocation RParenLoc)6160 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
6161                                        SourceLocation BuiltinLoc,
6162                                        SourceLocation RParenLoc) {
6163   ExprValueKind VK = VK_RValue;
6164   ExprObjectKind OK = OK_Ordinary;
6165   QualType DstTy = TInfo->getType();
6166   QualType SrcTy = E->getType();
6167 
6168   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
6169     return ExprError(Diag(BuiltinLoc,
6170                           diag::err_convertvector_non_vector)
6171                      << E->getSourceRange());
6172   if (!DstTy->isVectorType() && !DstTy->isDependentType())
6173     return ExprError(Diag(BuiltinLoc,
6174                           diag::err_convertvector_non_vector_type));
6175 
6176   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
6177     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
6178     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
6179     if (SrcElts != DstElts)
6180       return ExprError(Diag(BuiltinLoc,
6181                             diag::err_convertvector_incompatible_vector)
6182                        << E->getSourceRange());
6183   }
6184 
6185   return new (Context)
6186       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6187 }
6188 
6189 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
6190 // This is declared to take (const void*, ...) and can take two
6191 // optional constant int args.
SemaBuiltinPrefetch(CallExpr * TheCall)6192 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
6193   unsigned NumArgs = TheCall->getNumArgs();
6194 
6195   if (NumArgs > 3)
6196     return Diag(TheCall->getEndLoc(),
6197                 diag::err_typecheck_call_too_many_args_at_most)
6198            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6199 
6200   // Argument 0 is checked for us and the remaining arguments must be
6201   // constant integers.
6202   for (unsigned i = 1; i != NumArgs; ++i)
6203     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
6204       return true;
6205 
6206   return false;
6207 }
6208 
6209 /// SemaBuiltinAssume - Handle __assume (MS Extension).
6210 // __assume does not evaluate its arguments, and should warn if its argument
6211 // has side effects.
SemaBuiltinAssume(CallExpr * TheCall)6212 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
6213   Expr *Arg = TheCall->getArg(0);
6214   if (Arg->isInstantiationDependent()) return false;
6215 
6216   if (Arg->HasSideEffects(Context))
6217     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
6218         << Arg->getSourceRange()
6219         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
6220 
6221   return false;
6222 }
6223 
6224 /// Handle __builtin_alloca_with_align. This is declared
6225 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
6226 /// than 8.
SemaBuiltinAllocaWithAlign(CallExpr * TheCall)6227 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
6228   // The alignment must be a constant integer.
6229   Expr *Arg = TheCall->getArg(1);
6230 
6231   // We can't check the value of a dependent argument.
6232   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6233     if (const auto *UE =
6234             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
6235       if (UE->getKind() == UETT_AlignOf ||
6236           UE->getKind() == UETT_PreferredAlignOf)
6237         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
6238             << Arg->getSourceRange();
6239 
6240     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
6241 
6242     if (!Result.isPowerOf2())
6243       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6244              << Arg->getSourceRange();
6245 
6246     if (Result < Context.getCharWidth())
6247       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
6248              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
6249 
6250     if (Result > std::numeric_limits<int32_t>::max())
6251       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
6252              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
6253   }
6254 
6255   return false;
6256 }
6257 
6258 /// Handle __builtin_assume_aligned. This is declared
6259 /// as (const void*, size_t, ...) and can take one optional constant int arg.
SemaBuiltinAssumeAligned(CallExpr * TheCall)6260 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
6261   unsigned NumArgs = TheCall->getNumArgs();
6262 
6263   if (NumArgs > 3)
6264     return Diag(TheCall->getEndLoc(),
6265                 diag::err_typecheck_call_too_many_args_at_most)
6266            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6267 
6268   // The alignment must be a constant integer.
6269   Expr *Arg = TheCall->getArg(1);
6270 
6271   // We can't check the value of a dependent argument.
6272   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6273     llvm::APSInt Result;
6274     if (SemaBuiltinConstantArg(TheCall, 1, Result))
6275       return true;
6276 
6277     if (!Result.isPowerOf2())
6278       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6279              << Arg->getSourceRange();
6280 
6281     if (Result > Sema::MaximumAlignment)
6282       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
6283           << Arg->getSourceRange() << Sema::MaximumAlignment;
6284   }
6285 
6286   if (NumArgs > 2) {
6287     ExprResult Arg(TheCall->getArg(2));
6288     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6289       Context.getSizeType(), false);
6290     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6291     if (Arg.isInvalid()) return true;
6292     TheCall->setArg(2, Arg.get());
6293   }
6294 
6295   return false;
6296 }
6297 
SemaBuiltinOSLogFormat(CallExpr * TheCall)6298 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
6299   unsigned BuiltinID =
6300       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
6301   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
6302 
6303   unsigned NumArgs = TheCall->getNumArgs();
6304   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
6305   if (NumArgs < NumRequiredArgs) {
6306     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
6307            << 0 /* function call */ << NumRequiredArgs << NumArgs
6308            << TheCall->getSourceRange();
6309   }
6310   if (NumArgs >= NumRequiredArgs + 0x100) {
6311     return Diag(TheCall->getEndLoc(),
6312                 diag::err_typecheck_call_too_many_args_at_most)
6313            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
6314            << TheCall->getSourceRange();
6315   }
6316   unsigned i = 0;
6317 
6318   // For formatting call, check buffer arg.
6319   if (!IsSizeCall) {
6320     ExprResult Arg(TheCall->getArg(i));
6321     InitializedEntity Entity = InitializedEntity::InitializeParameter(
6322         Context, Context.VoidPtrTy, false);
6323     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6324     if (Arg.isInvalid())
6325       return true;
6326     TheCall->setArg(i, Arg.get());
6327     i++;
6328   }
6329 
6330   // Check string literal arg.
6331   unsigned FormatIdx = i;
6332   {
6333     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
6334     if (Arg.isInvalid())
6335       return true;
6336     TheCall->setArg(i, Arg.get());
6337     i++;
6338   }
6339 
6340   // Make sure variadic args are scalar.
6341   unsigned FirstDataArg = i;
6342   while (i < NumArgs) {
6343     ExprResult Arg = DefaultVariadicArgumentPromotion(
6344         TheCall->getArg(i), VariadicFunction, nullptr);
6345     if (Arg.isInvalid())
6346       return true;
6347     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
6348     if (ArgSize.getQuantity() >= 0x100) {
6349       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
6350              << i << (int)ArgSize.getQuantity() << 0xff
6351              << TheCall->getSourceRange();
6352     }
6353     TheCall->setArg(i, Arg.get());
6354     i++;
6355   }
6356 
6357   // Check formatting specifiers. NOTE: We're only doing this for the non-size
6358   // call to avoid duplicate diagnostics.
6359   if (!IsSizeCall) {
6360     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
6361     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
6362     bool Success = CheckFormatArguments(
6363         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
6364         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
6365         CheckedVarArgs);
6366     if (!Success)
6367       return true;
6368   }
6369 
6370   if (IsSizeCall) {
6371     TheCall->setType(Context.getSizeType());
6372   } else {
6373     TheCall->setType(Context.VoidPtrTy);
6374   }
6375   return false;
6376 }
6377 
6378 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
6379 /// TheCall is a constant expression.
SemaBuiltinConstantArg(CallExpr * TheCall,int ArgNum,llvm::APSInt & Result)6380 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
6381                                   llvm::APSInt &Result) {
6382   Expr *Arg = TheCall->getArg(ArgNum);
6383   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6384   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6385 
6386   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
6387 
6388   Optional<llvm::APSInt> R;
6389   if (!(R = Arg->getIntegerConstantExpr(Context)))
6390     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
6391            << FDecl->getDeclName() << Arg->getSourceRange();
6392   Result = *R;
6393   return false;
6394 }
6395 
6396 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
6397 /// TheCall is a constant expression in the range [Low, High].
SemaBuiltinConstantArgRange(CallExpr * TheCall,int ArgNum,int Low,int High,bool RangeIsError)6398 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
6399                                        int Low, int High, bool RangeIsError) {
6400   if (isConstantEvaluated())
6401     return false;
6402   llvm::APSInt Result;
6403 
6404   // We can't check the value of a dependent argument.
6405   Expr *Arg = TheCall->getArg(ArgNum);
6406   if (Arg->isTypeDependent() || Arg->isValueDependent())
6407     return false;
6408 
6409   // Check constant-ness first.
6410   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6411     return true;
6412 
6413   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
6414     if (RangeIsError)
6415       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
6416              << Result.toString(10) << Low << High << Arg->getSourceRange();
6417     else
6418       // Defer the warning until we know if the code will be emitted so that
6419       // dead code can ignore this.
6420       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
6421                           PDiag(diag::warn_argument_invalid_range)
6422                               << Result.toString(10) << Low << High
6423                               << Arg->getSourceRange());
6424   }
6425 
6426   return false;
6427 }
6428 
6429 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
6430 /// TheCall is a constant expression is a multiple of Num..
SemaBuiltinConstantArgMultiple(CallExpr * TheCall,int ArgNum,unsigned Num)6431 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
6432                                           unsigned Num) {
6433   llvm::APSInt Result;
6434 
6435   // We can't check the value of a dependent argument.
6436   Expr *Arg = TheCall->getArg(ArgNum);
6437   if (Arg->isTypeDependent() || Arg->isValueDependent())
6438     return false;
6439 
6440   // Check constant-ness first.
6441   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6442     return true;
6443 
6444   if (Result.getSExtValue() % Num != 0)
6445     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
6446            << Num << Arg->getSourceRange();
6447 
6448   return false;
6449 }
6450 
6451 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
6452 /// constant expression representing a power of 2.
SemaBuiltinConstantArgPower2(CallExpr * TheCall,int ArgNum)6453 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
6454   llvm::APSInt Result;
6455 
6456   // We can't check the value of a dependent argument.
6457   Expr *Arg = TheCall->getArg(ArgNum);
6458   if (Arg->isTypeDependent() || Arg->isValueDependent())
6459     return false;
6460 
6461   // Check constant-ness first.
6462   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6463     return true;
6464 
6465   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
6466   // and only if x is a power of 2.
6467   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
6468     return false;
6469 
6470   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
6471          << Arg->getSourceRange();
6472 }
6473 
IsShiftedByte(llvm::APSInt Value)6474 static bool IsShiftedByte(llvm::APSInt Value) {
6475   if (Value.isNegative())
6476     return false;
6477 
6478   // Check if it's a shifted byte, by shifting it down
6479   while (true) {
6480     // If the value fits in the bottom byte, the check passes.
6481     if (Value < 0x100)
6482       return true;
6483 
6484     // Otherwise, if the value has _any_ bits in the bottom byte, the check
6485     // fails.
6486     if ((Value & 0xFF) != 0)
6487       return false;
6488 
6489     // If the bottom 8 bits are all 0, but something above that is nonzero,
6490     // then shifting the value right by 8 bits won't affect whether it's a
6491     // shifted byte or not. So do that, and go round again.
6492     Value >>= 8;
6493   }
6494 }
6495 
6496 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
6497 /// a constant expression representing an arbitrary byte value shifted left by
6498 /// a multiple of 8 bits.
SemaBuiltinConstantArgShiftedByte(CallExpr * TheCall,int ArgNum,unsigned ArgBits)6499 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
6500                                              unsigned ArgBits) {
6501   llvm::APSInt Result;
6502 
6503   // We can't check the value of a dependent argument.
6504   Expr *Arg = TheCall->getArg(ArgNum);
6505   if (Arg->isTypeDependent() || Arg->isValueDependent())
6506     return false;
6507 
6508   // Check constant-ness first.
6509   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6510     return true;
6511 
6512   // Truncate to the given size.
6513   Result = Result.getLoBits(ArgBits);
6514   Result.setIsUnsigned(true);
6515 
6516   if (IsShiftedByte(Result))
6517     return false;
6518 
6519   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
6520          << Arg->getSourceRange();
6521 }
6522 
6523 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
6524 /// TheCall is a constant expression representing either a shifted byte value,
6525 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
6526 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
6527 /// Arm MVE intrinsics.
SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr * TheCall,int ArgNum,unsigned ArgBits)6528 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
6529                                                    int ArgNum,
6530                                                    unsigned ArgBits) {
6531   llvm::APSInt Result;
6532 
6533   // We can't check the value of a dependent argument.
6534   Expr *Arg = TheCall->getArg(ArgNum);
6535   if (Arg->isTypeDependent() || Arg->isValueDependent())
6536     return false;
6537 
6538   // Check constant-ness first.
6539   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6540     return true;
6541 
6542   // Truncate to the given size.
6543   Result = Result.getLoBits(ArgBits);
6544   Result.setIsUnsigned(true);
6545 
6546   // Check to see if it's in either of the required forms.
6547   if (IsShiftedByte(Result) ||
6548       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
6549     return false;
6550 
6551   return Diag(TheCall->getBeginLoc(),
6552               diag::err_argument_not_shifted_byte_or_xxff)
6553          << Arg->getSourceRange();
6554 }
6555 
6556 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID,CallExpr * TheCall)6557 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
6558   if (BuiltinID == AArch64::BI__builtin_arm_irg) {
6559     if (checkArgCount(*this, TheCall, 2))
6560       return true;
6561     Expr *Arg0 = TheCall->getArg(0);
6562     Expr *Arg1 = TheCall->getArg(1);
6563 
6564     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6565     if (FirstArg.isInvalid())
6566       return true;
6567     QualType FirstArgType = FirstArg.get()->getType();
6568     if (!FirstArgType->isAnyPointerType())
6569       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6570                << "first" << FirstArgType << Arg0->getSourceRange();
6571     TheCall->setArg(0, FirstArg.get());
6572 
6573     ExprResult SecArg = DefaultLvalueConversion(Arg1);
6574     if (SecArg.isInvalid())
6575       return true;
6576     QualType SecArgType = SecArg.get()->getType();
6577     if (!SecArgType->isIntegerType())
6578       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6579                << "second" << SecArgType << Arg1->getSourceRange();
6580 
6581     // Derive the return type from the pointer argument.
6582     TheCall->setType(FirstArgType);
6583     return false;
6584   }
6585 
6586   if (BuiltinID == AArch64::BI__builtin_arm_addg) {
6587     if (checkArgCount(*this, TheCall, 2))
6588       return true;
6589 
6590     Expr *Arg0 = TheCall->getArg(0);
6591     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6592     if (FirstArg.isInvalid())
6593       return true;
6594     QualType FirstArgType = FirstArg.get()->getType();
6595     if (!FirstArgType->isAnyPointerType())
6596       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6597                << "first" << FirstArgType << Arg0->getSourceRange();
6598     TheCall->setArg(0, FirstArg.get());
6599 
6600     // Derive the return type from the pointer argument.
6601     TheCall->setType(FirstArgType);
6602 
6603     // Second arg must be an constant in range [0,15]
6604     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6605   }
6606 
6607   if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
6608     if (checkArgCount(*this, TheCall, 2))
6609       return true;
6610     Expr *Arg0 = TheCall->getArg(0);
6611     Expr *Arg1 = TheCall->getArg(1);
6612 
6613     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6614     if (FirstArg.isInvalid())
6615       return true;
6616     QualType FirstArgType = FirstArg.get()->getType();
6617     if (!FirstArgType->isAnyPointerType())
6618       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6619                << "first" << FirstArgType << Arg0->getSourceRange();
6620 
6621     QualType SecArgType = Arg1->getType();
6622     if (!SecArgType->isIntegerType())
6623       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6624                << "second" << SecArgType << Arg1->getSourceRange();
6625     TheCall->setType(Context.IntTy);
6626     return false;
6627   }
6628 
6629   if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
6630       BuiltinID == AArch64::BI__builtin_arm_stg) {
6631     if (checkArgCount(*this, TheCall, 1))
6632       return true;
6633     Expr *Arg0 = TheCall->getArg(0);
6634     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6635     if (FirstArg.isInvalid())
6636       return true;
6637 
6638     QualType FirstArgType = FirstArg.get()->getType();
6639     if (!FirstArgType->isAnyPointerType())
6640       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6641                << "first" << FirstArgType << Arg0->getSourceRange();
6642     TheCall->setArg(0, FirstArg.get());
6643 
6644     // Derive the return type from the pointer argument.
6645     if (BuiltinID == AArch64::BI__builtin_arm_ldg)
6646       TheCall->setType(FirstArgType);
6647     return false;
6648   }
6649 
6650   if (BuiltinID == AArch64::BI__builtin_arm_subp) {
6651     Expr *ArgA = TheCall->getArg(0);
6652     Expr *ArgB = TheCall->getArg(1);
6653 
6654     ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
6655     ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
6656 
6657     if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
6658       return true;
6659 
6660     QualType ArgTypeA = ArgExprA.get()->getType();
6661     QualType ArgTypeB = ArgExprB.get()->getType();
6662 
6663     auto isNull = [&] (Expr *E) -> bool {
6664       return E->isNullPointerConstant(
6665                         Context, Expr::NPC_ValueDependentIsNotNull); };
6666 
6667     // argument should be either a pointer or null
6668     if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
6669       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6670         << "first" << ArgTypeA << ArgA->getSourceRange();
6671 
6672     if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
6673       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6674         << "second" << ArgTypeB << ArgB->getSourceRange();
6675 
6676     // Ensure Pointee types are compatible
6677     if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
6678         ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
6679       QualType pointeeA = ArgTypeA->getPointeeType();
6680       QualType pointeeB = ArgTypeB->getPointeeType();
6681       if (!Context.typesAreCompatible(
6682              Context.getCanonicalType(pointeeA).getUnqualifiedType(),
6683              Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
6684         return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
6685           << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
6686           << ArgB->getSourceRange();
6687       }
6688     }
6689 
6690     // at least one argument should be pointer type
6691     if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
6692       return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
6693         <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
6694 
6695     if (isNull(ArgA)) // adopt type of the other pointer
6696       ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
6697 
6698     if (isNull(ArgB))
6699       ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
6700 
6701     TheCall->setArg(0, ArgExprA.get());
6702     TheCall->setArg(1, ArgExprB.get());
6703     TheCall->setType(Context.LongLongTy);
6704     return false;
6705   }
6706   assert(false && "Unhandled ARM MTE intrinsic");
6707   return true;
6708 }
6709 
6710 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
6711 /// TheCall is an ARM/AArch64 special register string literal.
SemaBuiltinARMSpecialReg(unsigned BuiltinID,CallExpr * TheCall,int ArgNum,unsigned ExpectedFieldNum,bool AllowName)6712 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
6713                                     int ArgNum, unsigned ExpectedFieldNum,
6714                                     bool AllowName) {
6715   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6716                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6717                       BuiltinID == ARM::BI__builtin_arm_rsr ||
6718                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
6719                       BuiltinID == ARM::BI__builtin_arm_wsr ||
6720                       BuiltinID == ARM::BI__builtin_arm_wsrp;
6721   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6722                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
6723                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
6724                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6725                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
6726                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
6727   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
6728 
6729   // We can't check the value of a dependent argument.
6730   Expr *Arg = TheCall->getArg(ArgNum);
6731   if (Arg->isTypeDependent() || Arg->isValueDependent())
6732     return false;
6733 
6734   // Check if the argument is a string literal.
6735   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
6736     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
6737            << Arg->getSourceRange();
6738 
6739   // Check the type of special register given.
6740   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
6741   SmallVector<StringRef, 6> Fields;
6742   Reg.split(Fields, ":");
6743 
6744   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
6745     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6746            << Arg->getSourceRange();
6747 
6748   // If the string is the name of a register then we cannot check that it is
6749   // valid here but if the string is of one the forms described in ACLE then we
6750   // can check that the supplied fields are integers and within the valid
6751   // ranges.
6752   if (Fields.size() > 1) {
6753     bool FiveFields = Fields.size() == 5;
6754 
6755     bool ValidString = true;
6756     if (IsARMBuiltin) {
6757       ValidString &= Fields[0].startswith_lower("cp") ||
6758                      Fields[0].startswith_lower("p");
6759       if (ValidString)
6760         Fields[0] =
6761           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
6762 
6763       ValidString &= Fields[2].startswith_lower("c");
6764       if (ValidString)
6765         Fields[2] = Fields[2].drop_front(1);
6766 
6767       if (FiveFields) {
6768         ValidString &= Fields[3].startswith_lower("c");
6769         if (ValidString)
6770           Fields[3] = Fields[3].drop_front(1);
6771       }
6772     }
6773 
6774     SmallVector<int, 5> Ranges;
6775     if (FiveFields)
6776       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
6777     else
6778       Ranges.append({15, 7, 15});
6779 
6780     for (unsigned i=0; i<Fields.size(); ++i) {
6781       int IntField;
6782       ValidString &= !Fields[i].getAsInteger(10, IntField);
6783       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
6784     }
6785 
6786     if (!ValidString)
6787       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6788              << Arg->getSourceRange();
6789   } else if (IsAArch64Builtin && Fields.size() == 1) {
6790     // If the register name is one of those that appear in the condition below
6791     // and the special register builtin being used is one of the write builtins,
6792     // then we require that the argument provided for writing to the register
6793     // is an integer constant expression. This is because it will be lowered to
6794     // an MSR (immediate) instruction, so we need to know the immediate at
6795     // compile time.
6796     if (TheCall->getNumArgs() != 2)
6797       return false;
6798 
6799     std::string RegLower = Reg.lower();
6800     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
6801         RegLower != "pan" && RegLower != "uao")
6802       return false;
6803 
6804     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6805   }
6806 
6807   return false;
6808 }
6809 
6810 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
6811 /// Emit an error and return true on failure; return false on success.
6812 /// TypeStr is a string containing the type descriptor of the value returned by
6813 /// the builtin and the descriptors of the expected type of the arguments.
SemaBuiltinPPCMMACall(CallExpr * TheCall,const char * TypeStr)6814 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeStr) {
6815 
6816   assert((TypeStr[0] != '\0') &&
6817          "Invalid types in PPC MMA builtin declaration");
6818 
6819   unsigned Mask = 0;
6820   unsigned ArgNum = 0;
6821 
6822   // The first type in TypeStr is the type of the value returned by the
6823   // builtin. So we first read that type and change the type of TheCall.
6824   QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6825   TheCall->setType(type);
6826 
6827   while (*TypeStr != '\0') {
6828     Mask = 0;
6829     QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6830     if (ArgNum >= TheCall->getNumArgs()) {
6831       ArgNum++;
6832       break;
6833     }
6834 
6835     Expr *Arg = TheCall->getArg(ArgNum);
6836     QualType ArgType = Arg->getType();
6837 
6838     if ((ExpectedType->isVoidPointerType() && !ArgType->isPointerType()) ||
6839         (!ExpectedType->isVoidPointerType() &&
6840            ArgType.getCanonicalType() != ExpectedType))
6841       return Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6842              << ArgType << ExpectedType << 1 << 0 << 0;
6843 
6844     // If the value of the Mask is not 0, we have a constraint in the size of
6845     // the integer argument so here we ensure the argument is a constant that
6846     // is in the valid range.
6847     if (Mask != 0 &&
6848         SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
6849       return true;
6850 
6851     ArgNum++;
6852   }
6853 
6854   // In case we exited early from the previous loop, there are other types to
6855   // read from TypeStr. So we need to read them all to ensure we have the right
6856   // number of arguments in TheCall and if it is not the case, to display a
6857   // better error message.
6858   while (*TypeStr != '\0') {
6859     (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6860     ArgNum++;
6861   }
6862   if (checkArgCount(*this, TheCall, ArgNum))
6863     return true;
6864 
6865   return false;
6866 }
6867 
6868 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
6869 /// This checks that the target supports __builtin_longjmp and
6870 /// that val is a constant 1.
SemaBuiltinLongjmp(CallExpr * TheCall)6871 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
6872   if (!Context.getTargetInfo().hasSjLjLowering())
6873     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
6874            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6875 
6876   Expr *Arg = TheCall->getArg(1);
6877   llvm::APSInt Result;
6878 
6879   // TODO: This is less than ideal. Overload this to take a value.
6880   if (SemaBuiltinConstantArg(TheCall, 1, Result))
6881     return true;
6882 
6883   if (Result != 1)
6884     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
6885            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
6886 
6887   return false;
6888 }
6889 
6890 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
6891 /// This checks that the target supports __builtin_setjmp.
SemaBuiltinSetjmp(CallExpr * TheCall)6892 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
6893   if (!Context.getTargetInfo().hasSjLjLowering())
6894     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
6895            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6896   return false;
6897 }
6898 
6899 namespace {
6900 
6901 class UncoveredArgHandler {
6902   enum { Unknown = -1, AllCovered = -2 };
6903 
6904   signed FirstUncoveredArg = Unknown;
6905   SmallVector<const Expr *, 4> DiagnosticExprs;
6906 
6907 public:
6908   UncoveredArgHandler() = default;
6909 
hasUncoveredArg() const6910   bool hasUncoveredArg() const {
6911     return (FirstUncoveredArg >= 0);
6912   }
6913 
getUncoveredArg() const6914   unsigned getUncoveredArg() const {
6915     assert(hasUncoveredArg() && "no uncovered argument");
6916     return FirstUncoveredArg;
6917   }
6918 
setAllCovered()6919   void setAllCovered() {
6920     // A string has been found with all arguments covered, so clear out
6921     // the diagnostics.
6922     DiagnosticExprs.clear();
6923     FirstUncoveredArg = AllCovered;
6924   }
6925 
Update(signed NewFirstUncoveredArg,const Expr * StrExpr)6926   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
6927     assert(NewFirstUncoveredArg >= 0 && "Outside range");
6928 
6929     // Don't update if a previous string covers all arguments.
6930     if (FirstUncoveredArg == AllCovered)
6931       return;
6932 
6933     // UncoveredArgHandler tracks the highest uncovered argument index
6934     // and with it all the strings that match this index.
6935     if (NewFirstUncoveredArg == FirstUncoveredArg)
6936       DiagnosticExprs.push_back(StrExpr);
6937     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
6938       DiagnosticExprs.clear();
6939       DiagnosticExprs.push_back(StrExpr);
6940       FirstUncoveredArg = NewFirstUncoveredArg;
6941     }
6942   }
6943 
6944   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
6945 };
6946 
6947 enum StringLiteralCheckType {
6948   SLCT_NotALiteral,
6949   SLCT_UncheckedLiteral,
6950   SLCT_CheckedLiteral
6951 };
6952 
6953 } // namespace
6954 
sumOffsets(llvm::APSInt & Offset,llvm::APSInt Addend,BinaryOperatorKind BinOpKind,bool AddendIsRight)6955 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
6956                                      BinaryOperatorKind BinOpKind,
6957                                      bool AddendIsRight) {
6958   unsigned BitWidth = Offset.getBitWidth();
6959   unsigned AddendBitWidth = Addend.getBitWidth();
6960   // There might be negative interim results.
6961   if (Addend.isUnsigned()) {
6962     Addend = Addend.zext(++AddendBitWidth);
6963     Addend.setIsSigned(true);
6964   }
6965   // Adjust the bit width of the APSInts.
6966   if (AddendBitWidth > BitWidth) {
6967     Offset = Offset.sext(AddendBitWidth);
6968     BitWidth = AddendBitWidth;
6969   } else if (BitWidth > AddendBitWidth) {
6970     Addend = Addend.sext(BitWidth);
6971   }
6972 
6973   bool Ov = false;
6974   llvm::APSInt ResOffset = Offset;
6975   if (BinOpKind == BO_Add)
6976     ResOffset = Offset.sadd_ov(Addend, Ov);
6977   else {
6978     assert(AddendIsRight && BinOpKind == BO_Sub &&
6979            "operator must be add or sub with addend on the right");
6980     ResOffset = Offset.ssub_ov(Addend, Ov);
6981   }
6982 
6983   // We add an offset to a pointer here so we should support an offset as big as
6984   // possible.
6985   if (Ov) {
6986     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
6987            "index (intermediate) result too big");
6988     Offset = Offset.sext(2 * BitWidth);
6989     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
6990     return;
6991   }
6992 
6993   Offset = ResOffset;
6994 }
6995 
6996 namespace {
6997 
6998 // This is a wrapper class around StringLiteral to support offsetted string
6999 // literals as format strings. It takes the offset into account when returning
7000 // the string and its length or the source locations to display notes correctly.
7001 class FormatStringLiteral {
7002   const StringLiteral *FExpr;
7003   int64_t Offset;
7004 
7005  public:
FormatStringLiteral(const StringLiteral * fexpr,int64_t Offset=0)7006   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
7007       : FExpr(fexpr), Offset(Offset) {}
7008 
getString() const7009   StringRef getString() const {
7010     return FExpr->getString().drop_front(Offset);
7011   }
7012 
getByteLength() const7013   unsigned getByteLength() const {
7014     return FExpr->getByteLength() - getCharByteWidth() * Offset;
7015   }
7016 
getLength() const7017   unsigned getLength() const { return FExpr->getLength() - Offset; }
getCharByteWidth() const7018   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
7019 
getKind() const7020   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
7021 
getType() const7022   QualType getType() const { return FExpr->getType(); }
7023 
isAscii() const7024   bool isAscii() const { return FExpr->isAscii(); }
isWide() const7025   bool isWide() const { return FExpr->isWide(); }
isUTF8() const7026   bool isUTF8() const { return FExpr->isUTF8(); }
isUTF16() const7027   bool isUTF16() const { return FExpr->isUTF16(); }
isUTF32() const7028   bool isUTF32() const { return FExpr->isUTF32(); }
isPascal() const7029   bool isPascal() const { return FExpr->isPascal(); }
7030 
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target,unsigned * StartToken=nullptr,unsigned * StartTokenByteOffset=nullptr) const7031   SourceLocation getLocationOfByte(
7032       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
7033       const TargetInfo &Target, unsigned *StartToken = nullptr,
7034       unsigned *StartTokenByteOffset = nullptr) const {
7035     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
7036                                     StartToken, StartTokenByteOffset);
7037   }
7038 
getBeginLoc() const7039   SourceLocation getBeginLoc() const LLVM_READONLY {
7040     return FExpr->getBeginLoc().getLocWithOffset(Offset);
7041   }
7042 
getEndLoc() const7043   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
7044 };
7045 
7046 }  // namespace
7047 
7048 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
7049                               const Expr *OrigFormatExpr,
7050                               ArrayRef<const Expr *> Args,
7051                               bool HasVAListArg, unsigned format_idx,
7052                               unsigned firstDataArg,
7053                               Sema::FormatStringType Type,
7054                               bool inFunctionCall,
7055                               Sema::VariadicCallType CallType,
7056                               llvm::SmallBitVector &CheckedVarArgs,
7057                               UncoveredArgHandler &UncoveredArg,
7058                               bool IgnoreStringsWithoutSpecifiers);
7059 
7060 // Determine if an expression is a string literal or constant string.
7061 // If this function returns false on the arguments to a function expecting a
7062 // format string, we will usually need to emit a warning.
7063 // True string literals are then checked by CheckFormatString.
7064 static StringLiteralCheckType
checkFormatStringExpr(Sema & S,const Expr * E,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,Sema::VariadicCallType CallType,bool InFunctionCall,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg,llvm::APSInt Offset,bool IgnoreStringsWithoutSpecifiers=false)7065 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
7066                       bool HasVAListArg, unsigned format_idx,
7067                       unsigned firstDataArg, Sema::FormatStringType Type,
7068                       Sema::VariadicCallType CallType, bool InFunctionCall,
7069                       llvm::SmallBitVector &CheckedVarArgs,
7070                       UncoveredArgHandler &UncoveredArg,
7071                       llvm::APSInt Offset,
7072                       bool IgnoreStringsWithoutSpecifiers = false) {
7073   if (S.isConstantEvaluated())
7074     return SLCT_NotALiteral;
7075  tryAgain:
7076   assert(Offset.isSigned() && "invalid offset");
7077 
7078   if (E->isTypeDependent() || E->isValueDependent())
7079     return SLCT_NotALiteral;
7080 
7081   E = E->IgnoreParenCasts();
7082 
7083   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
7084     // Technically -Wformat-nonliteral does not warn about this case.
7085     // The behavior of printf and friends in this case is implementation
7086     // dependent.  Ideally if the format string cannot be null then
7087     // it should have a 'nonnull' attribute in the function prototype.
7088     return SLCT_UncheckedLiteral;
7089 
7090   switch (E->getStmtClass()) {
7091   case Stmt::BinaryConditionalOperatorClass:
7092   case Stmt::ConditionalOperatorClass: {
7093     // The expression is a literal if both sub-expressions were, and it was
7094     // completely checked only if both sub-expressions were checked.
7095     const AbstractConditionalOperator *C =
7096         cast<AbstractConditionalOperator>(E);
7097 
7098     // Determine whether it is necessary to check both sub-expressions, for
7099     // example, because the condition expression is a constant that can be
7100     // evaluated at compile time.
7101     bool CheckLeft = true, CheckRight = true;
7102 
7103     bool Cond;
7104     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
7105                                                  S.isConstantEvaluated())) {
7106       if (Cond)
7107         CheckRight = false;
7108       else
7109         CheckLeft = false;
7110     }
7111 
7112     // We need to maintain the offsets for the right and the left hand side
7113     // separately to check if every possible indexed expression is a valid
7114     // string literal. They might have different offsets for different string
7115     // literals in the end.
7116     StringLiteralCheckType Left;
7117     if (!CheckLeft)
7118       Left = SLCT_UncheckedLiteral;
7119     else {
7120       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
7121                                    HasVAListArg, format_idx, firstDataArg,
7122                                    Type, CallType, InFunctionCall,
7123                                    CheckedVarArgs, UncoveredArg, Offset,
7124                                    IgnoreStringsWithoutSpecifiers);
7125       if (Left == SLCT_NotALiteral || !CheckRight) {
7126         return Left;
7127       }
7128     }
7129 
7130     StringLiteralCheckType Right = checkFormatStringExpr(
7131         S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
7132         Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7133         IgnoreStringsWithoutSpecifiers);
7134 
7135     return (CheckLeft && Left < Right) ? Left : Right;
7136   }
7137 
7138   case Stmt::ImplicitCastExprClass:
7139     E = cast<ImplicitCastExpr>(E)->getSubExpr();
7140     goto tryAgain;
7141 
7142   case Stmt::OpaqueValueExprClass:
7143     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
7144       E = src;
7145       goto tryAgain;
7146     }
7147     return SLCT_NotALiteral;
7148 
7149   case Stmt::PredefinedExprClass:
7150     // While __func__, etc., are technically not string literals, they
7151     // cannot contain format specifiers and thus are not a security
7152     // liability.
7153     return SLCT_UncheckedLiteral;
7154 
7155   case Stmt::DeclRefExprClass: {
7156     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7157 
7158     // As an exception, do not flag errors for variables binding to
7159     // const string literals.
7160     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
7161       bool isConstant = false;
7162       QualType T = DR->getType();
7163 
7164       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
7165         isConstant = AT->getElementType().isConstant(S.Context);
7166       } else if (const PointerType *PT = T->getAs<PointerType>()) {
7167         isConstant = T.isConstant(S.Context) &&
7168                      PT->getPointeeType().isConstant(S.Context);
7169       } else if (T->isObjCObjectPointerType()) {
7170         // In ObjC, there is usually no "const ObjectPointer" type,
7171         // so don't check if the pointee type is constant.
7172         isConstant = T.isConstant(S.Context);
7173       }
7174 
7175       if (isConstant) {
7176         if (const Expr *Init = VD->getAnyInitializer()) {
7177           // Look through initializers like const char c[] = { "foo" }
7178           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
7179             if (InitList->isStringLiteralInit())
7180               Init = InitList->getInit(0)->IgnoreParenImpCasts();
7181           }
7182           return checkFormatStringExpr(S, Init, Args,
7183                                        HasVAListArg, format_idx,
7184                                        firstDataArg, Type, CallType,
7185                                        /*InFunctionCall*/ false, CheckedVarArgs,
7186                                        UncoveredArg, Offset);
7187         }
7188       }
7189 
7190       // For vprintf* functions (i.e., HasVAListArg==true), we add a
7191       // special check to see if the format string is a function parameter
7192       // of the function calling the printf function.  If the function
7193       // has an attribute indicating it is a printf-like function, then we
7194       // should suppress warnings concerning non-literals being used in a call
7195       // to a vprintf function.  For example:
7196       //
7197       // void
7198       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
7199       //      va_list ap;
7200       //      va_start(ap, fmt);
7201       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
7202       //      ...
7203       // }
7204       if (HasVAListArg) {
7205         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
7206           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
7207             int PVIndex = PV->getFunctionScopeIndex() + 1;
7208             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
7209               // adjust for implicit parameter
7210               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7211                 if (MD->isInstance())
7212                   ++PVIndex;
7213               // We also check if the formats are compatible.
7214               // We can't pass a 'scanf' string to a 'printf' function.
7215               if (PVIndex == PVFormat->getFormatIdx() &&
7216                   Type == S.GetFormatStringType(PVFormat))
7217                 return SLCT_UncheckedLiteral;
7218             }
7219           }
7220         }
7221       }
7222     }
7223 
7224     return SLCT_NotALiteral;
7225   }
7226 
7227   case Stmt::CallExprClass:
7228   case Stmt::CXXMemberCallExprClass: {
7229     const CallExpr *CE = cast<CallExpr>(E);
7230     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
7231       bool IsFirst = true;
7232       StringLiteralCheckType CommonResult;
7233       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
7234         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
7235         StringLiteralCheckType Result = checkFormatStringExpr(
7236             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7237             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7238             IgnoreStringsWithoutSpecifiers);
7239         if (IsFirst) {
7240           CommonResult = Result;
7241           IsFirst = false;
7242         }
7243       }
7244       if (!IsFirst)
7245         return CommonResult;
7246 
7247       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
7248         unsigned BuiltinID = FD->getBuiltinID();
7249         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
7250             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
7251           const Expr *Arg = CE->getArg(0);
7252           return checkFormatStringExpr(S, Arg, Args,
7253                                        HasVAListArg, format_idx,
7254                                        firstDataArg, Type, CallType,
7255                                        InFunctionCall, CheckedVarArgs,
7256                                        UncoveredArg, Offset,
7257                                        IgnoreStringsWithoutSpecifiers);
7258         }
7259       }
7260     }
7261 
7262     return SLCT_NotALiteral;
7263   }
7264   case Stmt::ObjCMessageExprClass: {
7265     const auto *ME = cast<ObjCMessageExpr>(E);
7266     if (const auto *MD = ME->getMethodDecl()) {
7267       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
7268         // As a special case heuristic, if we're using the method -[NSBundle
7269         // localizedStringForKey:value:table:], ignore any key strings that lack
7270         // format specifiers. The idea is that if the key doesn't have any
7271         // format specifiers then its probably just a key to map to the
7272         // localized strings. If it does have format specifiers though, then its
7273         // likely that the text of the key is the format string in the
7274         // programmer's language, and should be checked.
7275         const ObjCInterfaceDecl *IFace;
7276         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
7277             IFace->getIdentifier()->isStr("NSBundle") &&
7278             MD->getSelector().isKeywordSelector(
7279                 {"localizedStringForKey", "value", "table"})) {
7280           IgnoreStringsWithoutSpecifiers = true;
7281         }
7282 
7283         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
7284         return checkFormatStringExpr(
7285             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7286             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7287             IgnoreStringsWithoutSpecifiers);
7288       }
7289     }
7290 
7291     return SLCT_NotALiteral;
7292   }
7293   case Stmt::ObjCStringLiteralClass:
7294   case Stmt::StringLiteralClass: {
7295     const StringLiteral *StrE = nullptr;
7296 
7297     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
7298       StrE = ObjCFExpr->getString();
7299     else
7300       StrE = cast<StringLiteral>(E);
7301 
7302     if (StrE) {
7303       if (Offset.isNegative() || Offset > StrE->getLength()) {
7304         // TODO: It would be better to have an explicit warning for out of
7305         // bounds literals.
7306         return SLCT_NotALiteral;
7307       }
7308       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
7309       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
7310                         firstDataArg, Type, InFunctionCall, CallType,
7311                         CheckedVarArgs, UncoveredArg,
7312                         IgnoreStringsWithoutSpecifiers);
7313       return SLCT_CheckedLiteral;
7314     }
7315 
7316     return SLCT_NotALiteral;
7317   }
7318   case Stmt::BinaryOperatorClass: {
7319     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
7320 
7321     // A string literal + an int offset is still a string literal.
7322     if (BinOp->isAdditiveOp()) {
7323       Expr::EvalResult LResult, RResult;
7324 
7325       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
7326           LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7327       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
7328           RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7329 
7330       if (LIsInt != RIsInt) {
7331         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
7332 
7333         if (LIsInt) {
7334           if (BinOpKind == BO_Add) {
7335             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
7336             E = BinOp->getRHS();
7337             goto tryAgain;
7338           }
7339         } else {
7340           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
7341           E = BinOp->getLHS();
7342           goto tryAgain;
7343         }
7344       }
7345     }
7346 
7347     return SLCT_NotALiteral;
7348   }
7349   case Stmt::UnaryOperatorClass: {
7350     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
7351     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
7352     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
7353       Expr::EvalResult IndexResult;
7354       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
7355                                        Expr::SE_NoSideEffects,
7356                                        S.isConstantEvaluated())) {
7357         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
7358                    /*RHS is int*/ true);
7359         E = ASE->getBase();
7360         goto tryAgain;
7361       }
7362     }
7363 
7364     return SLCT_NotALiteral;
7365   }
7366 
7367   default:
7368     return SLCT_NotALiteral;
7369   }
7370 }
7371 
GetFormatStringType(const FormatAttr * Format)7372 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
7373   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
7374       .Case("scanf", FST_Scanf)
7375       .Cases("printf", "printf0", FST_Printf)
7376       .Cases("NSString", "CFString", FST_NSString)
7377       .Case("strftime", FST_Strftime)
7378       .Case("strfmon", FST_Strfmon)
7379       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
7380       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
7381       .Case("os_trace", FST_OSLog)
7382       .Case("os_log", FST_OSLog)
7383       .Default(FST_Unknown);
7384 }
7385 
7386 /// CheckFormatArguments - Check calls to printf and scanf (and similar
7387 /// functions) for correct use of format strings.
7388 /// Returns true if a format string has been fully checked.
CheckFormatArguments(const FormatAttr * Format,ArrayRef<const Expr * > Args,bool IsCXXMember,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)7389 bool Sema::CheckFormatArguments(const FormatAttr *Format,
7390                                 ArrayRef<const Expr *> Args,
7391                                 bool IsCXXMember,
7392                                 VariadicCallType CallType,
7393                                 SourceLocation Loc, SourceRange Range,
7394                                 llvm::SmallBitVector &CheckedVarArgs) {
7395   FormatStringInfo FSI;
7396   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
7397     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
7398                                 FSI.FirstDataArg, GetFormatStringType(Format),
7399                                 CallType, Loc, Range, CheckedVarArgs);
7400   return false;
7401 }
7402 
CheckFormatArguments(ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)7403 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
7404                                 bool HasVAListArg, unsigned format_idx,
7405                                 unsigned firstDataArg, FormatStringType Type,
7406                                 VariadicCallType CallType,
7407                                 SourceLocation Loc, SourceRange Range,
7408                                 llvm::SmallBitVector &CheckedVarArgs) {
7409   // CHECK: printf/scanf-like function is called with no format string.
7410   if (format_idx >= Args.size()) {
7411     Diag(Loc, diag::warn_missing_format_string) << Range;
7412     return false;
7413   }
7414 
7415   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
7416 
7417   // CHECK: format string is not a string literal.
7418   //
7419   // Dynamically generated format strings are difficult to
7420   // automatically vet at compile time.  Requiring that format strings
7421   // are string literals: (1) permits the checking of format strings by
7422   // the compiler and thereby (2) can practically remove the source of
7423   // many format string exploits.
7424 
7425   // Format string can be either ObjC string (e.g. @"%d") or
7426   // C string (e.g. "%d")
7427   // ObjC string uses the same format specifiers as C string, so we can use
7428   // the same format string checking logic for both ObjC and C strings.
7429   UncoveredArgHandler UncoveredArg;
7430   StringLiteralCheckType CT =
7431       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
7432                             format_idx, firstDataArg, Type, CallType,
7433                             /*IsFunctionCall*/ true, CheckedVarArgs,
7434                             UncoveredArg,
7435                             /*no string offset*/ llvm::APSInt(64, false) = 0);
7436 
7437   // Generate a diagnostic where an uncovered argument is detected.
7438   if (UncoveredArg.hasUncoveredArg()) {
7439     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
7440     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
7441     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
7442   }
7443 
7444   if (CT != SLCT_NotALiteral)
7445     // Literal format string found, check done!
7446     return CT == SLCT_CheckedLiteral;
7447 
7448   // Strftime is particular as it always uses a single 'time' argument,
7449   // so it is safe to pass a non-literal string.
7450   if (Type == FST_Strftime)
7451     return false;
7452 
7453   // Do not emit diag when the string param is a macro expansion and the
7454   // format is either NSString or CFString. This is a hack to prevent
7455   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
7456   // which are usually used in place of NS and CF string literals.
7457   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
7458   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
7459     return false;
7460 
7461   // If there are no arguments specified, warn with -Wformat-security, otherwise
7462   // warn only with -Wformat-nonliteral.
7463   if (Args.size() == firstDataArg) {
7464     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
7465       << OrigFormatExpr->getSourceRange();
7466     switch (Type) {
7467     default:
7468       break;
7469     case FST_Kprintf:
7470     case FST_FreeBSDKPrintf:
7471     case FST_Printf:
7472       Diag(FormatLoc, diag::note_format_security_fixit)
7473         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
7474       break;
7475     case FST_NSString:
7476       Diag(FormatLoc, diag::note_format_security_fixit)
7477         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
7478       break;
7479     }
7480   } else {
7481     Diag(FormatLoc, diag::warn_format_nonliteral)
7482       << OrigFormatExpr->getSourceRange();
7483   }
7484   return false;
7485 }
7486 
7487 namespace {
7488 
7489 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
7490 protected:
7491   Sema &S;
7492   const FormatStringLiteral *FExpr;
7493   const Expr *OrigFormatExpr;
7494   const Sema::FormatStringType FSType;
7495   const unsigned FirstDataArg;
7496   const unsigned NumDataArgs;
7497   const char *Beg; // Start of format string.
7498   const bool HasVAListArg;
7499   ArrayRef<const Expr *> Args;
7500   unsigned FormatIdx;
7501   llvm::SmallBitVector CoveredArgs;
7502   bool usesPositionalArgs = false;
7503   bool atFirstArg = true;
7504   bool inFunctionCall;
7505   Sema::VariadicCallType CallType;
7506   llvm::SmallBitVector &CheckedVarArgs;
7507   UncoveredArgHandler &UncoveredArg;
7508 
7509 public:
CheckFormatHandler(Sema & s,const FormatStringLiteral * fexpr,const Expr * origFormatExpr,const Sema::FormatStringType type,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType callType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)7510   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
7511                      const Expr *origFormatExpr,
7512                      const Sema::FormatStringType type, unsigned firstDataArg,
7513                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
7514                      ArrayRef<const Expr *> Args, unsigned formatIdx,
7515                      bool inFunctionCall, Sema::VariadicCallType callType,
7516                      llvm::SmallBitVector &CheckedVarArgs,
7517                      UncoveredArgHandler &UncoveredArg)
7518       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
7519         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
7520         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
7521         inFunctionCall(inFunctionCall), CallType(callType),
7522         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
7523     CoveredArgs.resize(numDataArgs);
7524     CoveredArgs.reset();
7525   }
7526 
7527   void DoneProcessing();
7528 
7529   void HandleIncompleteSpecifier(const char *startSpecifier,
7530                                  unsigned specifierLen) override;
7531 
7532   void HandleInvalidLengthModifier(
7533                            const analyze_format_string::FormatSpecifier &FS,
7534                            const analyze_format_string::ConversionSpecifier &CS,
7535                            const char *startSpecifier, unsigned specifierLen,
7536                            unsigned DiagID);
7537 
7538   void HandleNonStandardLengthModifier(
7539                     const analyze_format_string::FormatSpecifier &FS,
7540                     const char *startSpecifier, unsigned specifierLen);
7541 
7542   void HandleNonStandardConversionSpecifier(
7543                     const analyze_format_string::ConversionSpecifier &CS,
7544                     const char *startSpecifier, unsigned specifierLen);
7545 
7546   void HandlePosition(const char *startPos, unsigned posLen) override;
7547 
7548   void HandleInvalidPosition(const char *startSpecifier,
7549                              unsigned specifierLen,
7550                              analyze_format_string::PositionContext p) override;
7551 
7552   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
7553 
7554   void HandleNullChar(const char *nullCharacter) override;
7555 
7556   template <typename Range>
7557   static void
7558   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
7559                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
7560                        bool IsStringLocation, Range StringRange,
7561                        ArrayRef<FixItHint> Fixit = None);
7562 
7563 protected:
7564   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
7565                                         const char *startSpec,
7566                                         unsigned specifierLen,
7567                                         const char *csStart, unsigned csLen);
7568 
7569   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
7570                                          const char *startSpec,
7571                                          unsigned specifierLen);
7572 
7573   SourceRange getFormatStringRange();
7574   CharSourceRange getSpecifierRange(const char *startSpecifier,
7575                                     unsigned specifierLen);
7576   SourceLocation getLocationOfByte(const char *x);
7577 
7578   const Expr *getDataArg(unsigned i) const;
7579 
7580   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
7581                     const analyze_format_string::ConversionSpecifier &CS,
7582                     const char *startSpecifier, unsigned specifierLen,
7583                     unsigned argIndex);
7584 
7585   template <typename Range>
7586   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
7587                             bool IsStringLocation, Range StringRange,
7588                             ArrayRef<FixItHint> Fixit = None);
7589 };
7590 
7591 } // namespace
7592 
getFormatStringRange()7593 SourceRange CheckFormatHandler::getFormatStringRange() {
7594   return OrigFormatExpr->getSourceRange();
7595 }
7596 
7597 CharSourceRange CheckFormatHandler::
getSpecifierRange(const char * startSpecifier,unsigned specifierLen)7598 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
7599   SourceLocation Start = getLocationOfByte(startSpecifier);
7600   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
7601 
7602   // Advance the end SourceLocation by one due to half-open ranges.
7603   End = End.getLocWithOffset(1);
7604 
7605   return CharSourceRange::getCharRange(Start, End);
7606 }
7607 
getLocationOfByte(const char * x)7608 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
7609   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
7610                                   S.getLangOpts(), S.Context.getTargetInfo());
7611 }
7612 
HandleIncompleteSpecifier(const char * startSpecifier,unsigned specifierLen)7613 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
7614                                                    unsigned specifierLen){
7615   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
7616                        getLocationOfByte(startSpecifier),
7617                        /*IsStringLocation*/true,
7618                        getSpecifierRange(startSpecifier, specifierLen));
7619 }
7620 
HandleInvalidLengthModifier(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned DiagID)7621 void CheckFormatHandler::HandleInvalidLengthModifier(
7622     const analyze_format_string::FormatSpecifier &FS,
7623     const analyze_format_string::ConversionSpecifier &CS,
7624     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
7625   using namespace analyze_format_string;
7626 
7627   const LengthModifier &LM = FS.getLengthModifier();
7628   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7629 
7630   // See if we know how to fix this length modifier.
7631   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7632   if (FixedLM) {
7633     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7634                          getLocationOfByte(LM.getStart()),
7635                          /*IsStringLocation*/true,
7636                          getSpecifierRange(startSpecifier, specifierLen));
7637 
7638     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7639       << FixedLM->toString()
7640       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7641 
7642   } else {
7643     FixItHint Hint;
7644     if (DiagID == diag::warn_format_nonsensical_length)
7645       Hint = FixItHint::CreateRemoval(LMRange);
7646 
7647     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7648                          getLocationOfByte(LM.getStart()),
7649                          /*IsStringLocation*/true,
7650                          getSpecifierRange(startSpecifier, specifierLen),
7651                          Hint);
7652   }
7653 }
7654 
HandleNonStandardLengthModifier(const analyze_format_string::FormatSpecifier & FS,const char * startSpecifier,unsigned specifierLen)7655 void CheckFormatHandler::HandleNonStandardLengthModifier(
7656     const analyze_format_string::FormatSpecifier &FS,
7657     const char *startSpecifier, unsigned specifierLen) {
7658   using namespace analyze_format_string;
7659 
7660   const LengthModifier &LM = FS.getLengthModifier();
7661   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7662 
7663   // See if we know how to fix this length modifier.
7664   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7665   if (FixedLM) {
7666     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7667                            << LM.toString() << 0,
7668                          getLocationOfByte(LM.getStart()),
7669                          /*IsStringLocation*/true,
7670                          getSpecifierRange(startSpecifier, specifierLen));
7671 
7672     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7673       << FixedLM->toString()
7674       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7675 
7676   } else {
7677     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7678                            << LM.toString() << 0,
7679                          getLocationOfByte(LM.getStart()),
7680                          /*IsStringLocation*/true,
7681                          getSpecifierRange(startSpecifier, specifierLen));
7682   }
7683 }
7684 
HandleNonStandardConversionSpecifier(const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen)7685 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
7686     const analyze_format_string::ConversionSpecifier &CS,
7687     const char *startSpecifier, unsigned specifierLen) {
7688   using namespace analyze_format_string;
7689 
7690   // See if we know how to fix this conversion specifier.
7691   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
7692   if (FixedCS) {
7693     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7694                           << CS.toString() << /*conversion specifier*/1,
7695                          getLocationOfByte(CS.getStart()),
7696                          /*IsStringLocation*/true,
7697                          getSpecifierRange(startSpecifier, specifierLen));
7698 
7699     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
7700     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
7701       << FixedCS->toString()
7702       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
7703   } else {
7704     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7705                           << CS.toString() << /*conversion specifier*/1,
7706                          getLocationOfByte(CS.getStart()),
7707                          /*IsStringLocation*/true,
7708                          getSpecifierRange(startSpecifier, specifierLen));
7709   }
7710 }
7711 
HandlePosition(const char * startPos,unsigned posLen)7712 void CheckFormatHandler::HandlePosition(const char *startPos,
7713                                         unsigned posLen) {
7714   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
7715                                getLocationOfByte(startPos),
7716                                /*IsStringLocation*/true,
7717                                getSpecifierRange(startPos, posLen));
7718 }
7719 
7720 void
HandleInvalidPosition(const char * startPos,unsigned posLen,analyze_format_string::PositionContext p)7721 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
7722                                      analyze_format_string::PositionContext p) {
7723   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
7724                          << (unsigned) p,
7725                        getLocationOfByte(startPos), /*IsStringLocation*/true,
7726                        getSpecifierRange(startPos, posLen));
7727 }
7728 
HandleZeroPosition(const char * startPos,unsigned posLen)7729 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
7730                                             unsigned posLen) {
7731   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
7732                                getLocationOfByte(startPos),
7733                                /*IsStringLocation*/true,
7734                                getSpecifierRange(startPos, posLen));
7735 }
7736 
HandleNullChar(const char * nullCharacter)7737 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
7738   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
7739     // The presence of a null character is likely an error.
7740     EmitFormatDiagnostic(
7741       S.PDiag(diag::warn_printf_format_string_contains_null_char),
7742       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
7743       getFormatStringRange());
7744   }
7745 }
7746 
7747 // Note that this may return NULL if there was an error parsing or building
7748 // one of the argument expressions.
getDataArg(unsigned i) const7749 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
7750   return Args[FirstDataArg + i];
7751 }
7752 
DoneProcessing()7753 void CheckFormatHandler::DoneProcessing() {
7754   // Does the number of data arguments exceed the number of
7755   // format conversions in the format string?
7756   if (!HasVAListArg) {
7757       // Find any arguments that weren't covered.
7758     CoveredArgs.flip();
7759     signed notCoveredArg = CoveredArgs.find_first();
7760     if (notCoveredArg >= 0) {
7761       assert((unsigned)notCoveredArg < NumDataArgs);
7762       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
7763     } else {
7764       UncoveredArg.setAllCovered();
7765     }
7766   }
7767 }
7768 
Diagnose(Sema & S,bool IsFunctionCall,const Expr * ArgExpr)7769 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
7770                                    const Expr *ArgExpr) {
7771   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
7772          "Invalid state");
7773 
7774   if (!ArgExpr)
7775     return;
7776 
7777   SourceLocation Loc = ArgExpr->getBeginLoc();
7778 
7779   if (S.getSourceManager().isInSystemMacro(Loc))
7780     return;
7781 
7782   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
7783   for (auto E : DiagnosticExprs)
7784     PDiag << E->getSourceRange();
7785 
7786   CheckFormatHandler::EmitFormatDiagnostic(
7787                                   S, IsFunctionCall, DiagnosticExprs[0],
7788                                   PDiag, Loc, /*IsStringLocation*/false,
7789                                   DiagnosticExprs[0]->getSourceRange());
7790 }
7791 
7792 bool
HandleInvalidConversionSpecifier(unsigned argIndex,SourceLocation Loc,const char * startSpec,unsigned specifierLen,const char * csStart,unsigned csLen)7793 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
7794                                                      SourceLocation Loc,
7795                                                      const char *startSpec,
7796                                                      unsigned specifierLen,
7797                                                      const char *csStart,
7798                                                      unsigned csLen) {
7799   bool keepGoing = true;
7800   if (argIndex < NumDataArgs) {
7801     // Consider the argument coverered, even though the specifier doesn't
7802     // make sense.
7803     CoveredArgs.set(argIndex);
7804   }
7805   else {
7806     // If argIndex exceeds the number of data arguments we
7807     // don't issue a warning because that is just a cascade of warnings (and
7808     // they may have intended '%%' anyway). We don't want to continue processing
7809     // the format string after this point, however, as we will like just get
7810     // gibberish when trying to match arguments.
7811     keepGoing = false;
7812   }
7813 
7814   StringRef Specifier(csStart, csLen);
7815 
7816   // If the specifier in non-printable, it could be the first byte of a UTF-8
7817   // sequence. In that case, print the UTF-8 code point. If not, print the byte
7818   // hex value.
7819   std::string CodePointStr;
7820   if (!llvm::sys::locale::isPrint(*csStart)) {
7821     llvm::UTF32 CodePoint;
7822     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
7823     const llvm::UTF8 *E =
7824         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
7825     llvm::ConversionResult Result =
7826         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
7827 
7828     if (Result != llvm::conversionOK) {
7829       unsigned char FirstChar = *csStart;
7830       CodePoint = (llvm::UTF32)FirstChar;
7831     }
7832 
7833     llvm::raw_string_ostream OS(CodePointStr);
7834     if (CodePoint < 256)
7835       OS << "\\x" << llvm::format("%02x", CodePoint);
7836     else if (CodePoint <= 0xFFFF)
7837       OS << "\\u" << llvm::format("%04x", CodePoint);
7838     else
7839       OS << "\\U" << llvm::format("%08x", CodePoint);
7840     OS.flush();
7841     Specifier = CodePointStr;
7842   }
7843 
7844   EmitFormatDiagnostic(
7845       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
7846       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
7847 
7848   return keepGoing;
7849 }
7850 
7851 void
HandlePositionalNonpositionalArgs(SourceLocation Loc,const char * startSpec,unsigned specifierLen)7852 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
7853                                                       const char *startSpec,
7854                                                       unsigned specifierLen) {
7855   EmitFormatDiagnostic(
7856     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
7857     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
7858 }
7859 
7860 bool
CheckNumArgs(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned argIndex)7861 CheckFormatHandler::CheckNumArgs(
7862   const analyze_format_string::FormatSpecifier &FS,
7863   const analyze_format_string::ConversionSpecifier &CS,
7864   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
7865 
7866   if (argIndex >= NumDataArgs) {
7867     PartialDiagnostic PDiag = FS.usesPositionalArg()
7868       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
7869            << (argIndex+1) << NumDataArgs)
7870       : S.PDiag(diag::warn_printf_insufficient_data_args);
7871     EmitFormatDiagnostic(
7872       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
7873       getSpecifierRange(startSpecifier, specifierLen));
7874 
7875     // Since more arguments than conversion tokens are given, by extension
7876     // all arguments are covered, so mark this as so.
7877     UncoveredArg.setAllCovered();
7878     return false;
7879   }
7880   return true;
7881 }
7882 
7883 template<typename Range>
EmitFormatDiagnostic(PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)7884 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
7885                                               SourceLocation Loc,
7886                                               bool IsStringLocation,
7887                                               Range StringRange,
7888                                               ArrayRef<FixItHint> FixIt) {
7889   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
7890                        Loc, IsStringLocation, StringRange, FixIt);
7891 }
7892 
7893 /// If the format string is not within the function call, emit a note
7894 /// so that the function call and string are in diagnostic messages.
7895 ///
7896 /// \param InFunctionCall if true, the format string is within the function
7897 /// call and only one diagnostic message will be produced.  Otherwise, an
7898 /// extra note will be emitted pointing to location of the format string.
7899 ///
7900 /// \param ArgumentExpr the expression that is passed as the format string
7901 /// argument in the function call.  Used for getting locations when two
7902 /// diagnostics are emitted.
7903 ///
7904 /// \param PDiag the callee should already have provided any strings for the
7905 /// diagnostic message.  This function only adds locations and fixits
7906 /// to diagnostics.
7907 ///
7908 /// \param Loc primary location for diagnostic.  If two diagnostics are
7909 /// required, one will be at Loc and a new SourceLocation will be created for
7910 /// the other one.
7911 ///
7912 /// \param IsStringLocation if true, Loc points to the format string should be
7913 /// used for the note.  Otherwise, Loc points to the argument list and will
7914 /// be used with PDiag.
7915 ///
7916 /// \param StringRange some or all of the string to highlight.  This is
7917 /// templated so it can accept either a CharSourceRange or a SourceRange.
7918 ///
7919 /// \param FixIt optional fix it hint for the format string.
7920 template <typename Range>
EmitFormatDiagnostic(Sema & S,bool InFunctionCall,const Expr * ArgumentExpr,const PartialDiagnostic & PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)7921 void CheckFormatHandler::EmitFormatDiagnostic(
7922     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
7923     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
7924     Range StringRange, ArrayRef<FixItHint> FixIt) {
7925   if (InFunctionCall) {
7926     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
7927     D << StringRange;
7928     D << FixIt;
7929   } else {
7930     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
7931       << ArgumentExpr->getSourceRange();
7932 
7933     const Sema::SemaDiagnosticBuilder &Note =
7934       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
7935              diag::note_format_string_defined);
7936 
7937     Note << StringRange;
7938     Note << FixIt;
7939   }
7940 }
7941 
7942 //===--- CHECK: Printf format string checking ------------------------------===//
7943 
7944 namespace {
7945 
7946 class CheckPrintfHandler : public CheckFormatHandler {
7947 public:
CheckPrintfHandler(Sema & s,const FormatStringLiteral * fexpr,const Expr * origFormatExpr,const Sema::FormatStringType type,unsigned firstDataArg,unsigned numDataArgs,bool isObjC,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)7948   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
7949                      const Expr *origFormatExpr,
7950                      const Sema::FormatStringType type, unsigned firstDataArg,
7951                      unsigned numDataArgs, bool isObjC, const char *beg,
7952                      bool hasVAListArg, ArrayRef<const Expr *> Args,
7953                      unsigned formatIdx, bool inFunctionCall,
7954                      Sema::VariadicCallType CallType,
7955                      llvm::SmallBitVector &CheckedVarArgs,
7956                      UncoveredArgHandler &UncoveredArg)
7957       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
7958                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
7959                            inFunctionCall, CallType, CheckedVarArgs,
7960                            UncoveredArg) {}
7961 
isObjCContext() const7962   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
7963 
7964   /// Returns true if '%@' specifiers are allowed in the format string.
allowsObjCArg() const7965   bool allowsObjCArg() const {
7966     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
7967            FSType == Sema::FST_OSTrace;
7968   }
7969 
7970   bool HandleInvalidPrintfConversionSpecifier(
7971                                       const analyze_printf::PrintfSpecifier &FS,
7972                                       const char *startSpecifier,
7973                                       unsigned specifierLen) override;
7974 
7975   void handleInvalidMaskType(StringRef MaskType) override;
7976 
7977   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
7978                              const char *startSpecifier,
7979                              unsigned specifierLen) override;
7980   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7981                        const char *StartSpecifier,
7982                        unsigned SpecifierLen,
7983                        const Expr *E);
7984 
7985   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
7986                     const char *startSpecifier, unsigned specifierLen);
7987   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
7988                            const analyze_printf::OptionalAmount &Amt,
7989                            unsigned type,
7990                            const char *startSpecifier, unsigned specifierLen);
7991   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
7992                   const analyze_printf::OptionalFlag &flag,
7993                   const char *startSpecifier, unsigned specifierLen);
7994   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
7995                          const analyze_printf::OptionalFlag &ignoredFlag,
7996                          const analyze_printf::OptionalFlag &flag,
7997                          const char *startSpecifier, unsigned specifierLen);
7998   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
7999                            const Expr *E);
8000 
8001   void HandleEmptyObjCModifierFlag(const char *startFlag,
8002                                    unsigned flagLen) override;
8003 
8004   void HandleInvalidObjCModifierFlag(const char *startFlag,
8005                                             unsigned flagLen) override;
8006 
8007   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
8008                                            const char *flagsEnd,
8009                                            const char *conversionPosition)
8010                                              override;
8011 };
8012 
8013 } // namespace
8014 
HandleInvalidPrintfConversionSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)8015 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
8016                                       const analyze_printf::PrintfSpecifier &FS,
8017                                       const char *startSpecifier,
8018                                       unsigned specifierLen) {
8019   const analyze_printf::PrintfConversionSpecifier &CS =
8020     FS.getConversionSpecifier();
8021 
8022   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8023                                           getLocationOfByte(CS.getStart()),
8024                                           startSpecifier, specifierLen,
8025                                           CS.getStart(), CS.getLength());
8026 }
8027 
handleInvalidMaskType(StringRef MaskType)8028 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
8029   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
8030 }
8031 
HandleAmount(const analyze_format_string::OptionalAmount & Amt,unsigned k,const char * startSpecifier,unsigned specifierLen)8032 bool CheckPrintfHandler::HandleAmount(
8033                                const analyze_format_string::OptionalAmount &Amt,
8034                                unsigned k, const char *startSpecifier,
8035                                unsigned specifierLen) {
8036   if (Amt.hasDataArgument()) {
8037     if (!HasVAListArg) {
8038       unsigned argIndex = Amt.getArgIndex();
8039       if (argIndex >= NumDataArgs) {
8040         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
8041                                << k,
8042                              getLocationOfByte(Amt.getStart()),
8043                              /*IsStringLocation*/true,
8044                              getSpecifierRange(startSpecifier, specifierLen));
8045         // Don't do any more checking.  We will just emit
8046         // spurious errors.
8047         return false;
8048       }
8049 
8050       // Type check the data argument.  It should be an 'int'.
8051       // Although not in conformance with C99, we also allow the argument to be
8052       // an 'unsigned int' as that is a reasonably safe case.  GCC also
8053       // doesn't emit a warning for that case.
8054       CoveredArgs.set(argIndex);
8055       const Expr *Arg = getDataArg(argIndex);
8056       if (!Arg)
8057         return false;
8058 
8059       QualType T = Arg->getType();
8060 
8061       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
8062       assert(AT.isValid());
8063 
8064       if (!AT.matchesType(S.Context, T)) {
8065         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
8066                                << k << AT.getRepresentativeTypeName(S.Context)
8067                                << T << Arg->getSourceRange(),
8068                              getLocationOfByte(Amt.getStart()),
8069                              /*IsStringLocation*/true,
8070                              getSpecifierRange(startSpecifier, specifierLen));
8071         // Don't do any more checking.  We will just emit
8072         // spurious errors.
8073         return false;
8074       }
8075     }
8076   }
8077   return true;
8078 }
8079 
HandleInvalidAmount(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalAmount & Amt,unsigned type,const char * startSpecifier,unsigned specifierLen)8080 void CheckPrintfHandler::HandleInvalidAmount(
8081                                       const analyze_printf::PrintfSpecifier &FS,
8082                                       const analyze_printf::OptionalAmount &Amt,
8083                                       unsigned type,
8084                                       const char *startSpecifier,
8085                                       unsigned specifierLen) {
8086   const analyze_printf::PrintfConversionSpecifier &CS =
8087     FS.getConversionSpecifier();
8088 
8089   FixItHint fixit =
8090     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
8091       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
8092                                  Amt.getConstantLength()))
8093       : FixItHint();
8094 
8095   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
8096                          << type << CS.toString(),
8097                        getLocationOfByte(Amt.getStart()),
8098                        /*IsStringLocation*/true,
8099                        getSpecifierRange(startSpecifier, specifierLen),
8100                        fixit);
8101 }
8102 
HandleFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)8103 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8104                                     const analyze_printf::OptionalFlag &flag,
8105                                     const char *startSpecifier,
8106                                     unsigned specifierLen) {
8107   // Warn about pointless flag with a fixit removal.
8108   const analyze_printf::PrintfConversionSpecifier &CS =
8109     FS.getConversionSpecifier();
8110   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
8111                          << flag.toString() << CS.toString(),
8112                        getLocationOfByte(flag.getPosition()),
8113                        /*IsStringLocation*/true,
8114                        getSpecifierRange(startSpecifier, specifierLen),
8115                        FixItHint::CreateRemoval(
8116                          getSpecifierRange(flag.getPosition(), 1)));
8117 }
8118 
HandleIgnoredFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & ignoredFlag,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)8119 void CheckPrintfHandler::HandleIgnoredFlag(
8120                                 const analyze_printf::PrintfSpecifier &FS,
8121                                 const analyze_printf::OptionalFlag &ignoredFlag,
8122                                 const analyze_printf::OptionalFlag &flag,
8123                                 const char *startSpecifier,
8124                                 unsigned specifierLen) {
8125   // Warn about ignored flag with a fixit removal.
8126   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
8127                          << ignoredFlag.toString() << flag.toString(),
8128                        getLocationOfByte(ignoredFlag.getPosition()),
8129                        /*IsStringLocation*/true,
8130                        getSpecifierRange(startSpecifier, specifierLen),
8131                        FixItHint::CreateRemoval(
8132                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
8133 }
8134 
HandleEmptyObjCModifierFlag(const char * startFlag,unsigned flagLen)8135 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
8136                                                      unsigned flagLen) {
8137   // Warn about an empty flag.
8138   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
8139                        getLocationOfByte(startFlag),
8140                        /*IsStringLocation*/true,
8141                        getSpecifierRange(startFlag, flagLen));
8142 }
8143 
HandleInvalidObjCModifierFlag(const char * startFlag,unsigned flagLen)8144 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
8145                                                        unsigned flagLen) {
8146   // Warn about an invalid flag.
8147   auto Range = getSpecifierRange(startFlag, flagLen);
8148   StringRef flag(startFlag, flagLen);
8149   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
8150                       getLocationOfByte(startFlag),
8151                       /*IsStringLocation*/true,
8152                       Range, FixItHint::CreateRemoval(Range));
8153 }
8154 
HandleObjCFlagsWithNonObjCConversion(const char * flagsStart,const char * flagsEnd,const char * conversionPosition)8155 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
8156     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
8157     // Warn about using '[...]' without a '@' conversion.
8158     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
8159     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
8160     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
8161                          getLocationOfByte(conversionPosition),
8162                          /*IsStringLocation*/true,
8163                          Range, FixItHint::CreateRemoval(Range));
8164 }
8165 
8166 // Determines if the specified is a C++ class or struct containing
8167 // a member with the specified name and kind (e.g. a CXXMethodDecl named
8168 // "c_str()").
8169 template<typename MemberKind>
8170 static llvm::SmallPtrSet<MemberKind*, 1>
CXXRecordMembersNamed(StringRef Name,Sema & S,QualType Ty)8171 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
8172   const RecordType *RT = Ty->getAs<RecordType>();
8173   llvm::SmallPtrSet<MemberKind*, 1> Results;
8174 
8175   if (!RT)
8176     return Results;
8177   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
8178   if (!RD || !RD->getDefinition())
8179     return Results;
8180 
8181   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
8182                  Sema::LookupMemberName);
8183   R.suppressDiagnostics();
8184 
8185   // We just need to include all members of the right kind turned up by the
8186   // filter, at this point.
8187   if (S.LookupQualifiedName(R, RT->getDecl()))
8188     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8189       NamedDecl *decl = (*I)->getUnderlyingDecl();
8190       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
8191         Results.insert(FK);
8192     }
8193   return Results;
8194 }
8195 
8196 /// Check if we could call '.c_str()' on an object.
8197 ///
8198 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
8199 /// allow the call, or if it would be ambiguous).
hasCStrMethod(const Expr * E)8200 bool Sema::hasCStrMethod(const Expr *E) {
8201   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8202 
8203   MethodSet Results =
8204       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
8205   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8206        MI != ME; ++MI)
8207     if ((*MI)->getMinRequiredArguments() == 0)
8208       return true;
8209   return false;
8210 }
8211 
8212 // Check if a (w)string was passed when a (w)char* was needed, and offer a
8213 // better diagnostic if so. AT is assumed to be valid.
8214 // Returns true when a c_str() conversion method is found.
checkForCStrMembers(const analyze_printf::ArgType & AT,const Expr * E)8215 bool CheckPrintfHandler::checkForCStrMembers(
8216     const analyze_printf::ArgType &AT, const Expr *E) {
8217   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8218 
8219   MethodSet Results =
8220       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
8221 
8222   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8223        MI != ME; ++MI) {
8224     const CXXMethodDecl *Method = *MI;
8225     if (Method->getMinRequiredArguments() == 0 &&
8226         AT.matchesType(S.Context, Method->getReturnType())) {
8227       // FIXME: Suggest parens if the expression needs them.
8228       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
8229       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
8230           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
8231       return true;
8232     }
8233   }
8234 
8235   return false;
8236 }
8237 
8238 bool
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)8239 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
8240                                             &FS,
8241                                           const char *startSpecifier,
8242                                           unsigned specifierLen) {
8243   using namespace analyze_format_string;
8244   using namespace analyze_printf;
8245 
8246   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
8247 
8248   if (FS.consumesDataArgument()) {
8249     if (atFirstArg) {
8250         atFirstArg = false;
8251         usesPositionalArgs = FS.usesPositionalArg();
8252     }
8253     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8254       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8255                                         startSpecifier, specifierLen);
8256       return false;
8257     }
8258   }
8259 
8260   // First check if the field width, precision, and conversion specifier
8261   // have matching data arguments.
8262   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
8263                     startSpecifier, specifierLen)) {
8264     return false;
8265   }
8266 
8267   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
8268                     startSpecifier, specifierLen)) {
8269     return false;
8270   }
8271 
8272   if (!CS.consumesDataArgument()) {
8273     // FIXME: Technically specifying a precision or field width here
8274     // makes no sense.  Worth issuing a warning at some point.
8275     return true;
8276   }
8277 
8278   // Consume the argument.
8279   unsigned argIndex = FS.getArgIndex();
8280   if (argIndex < NumDataArgs) {
8281     // The check to see if the argIndex is valid will come later.
8282     // We set the bit here because we may exit early from this
8283     // function if we encounter some other error.
8284     CoveredArgs.set(argIndex);
8285   }
8286 
8287   // FreeBSD kernel extensions.
8288   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
8289       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
8290     // We need at least two arguments.
8291     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
8292       return false;
8293 
8294     // Claim the second argument.
8295     CoveredArgs.set(argIndex + 1);
8296 
8297     // Type check the first argument (int for %b, pointer for %D)
8298     const Expr *Ex = getDataArg(argIndex);
8299     const analyze_printf::ArgType &AT =
8300       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
8301         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
8302     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
8303       EmitFormatDiagnostic(
8304           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8305               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
8306               << false << Ex->getSourceRange(),
8307           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8308           getSpecifierRange(startSpecifier, specifierLen));
8309 
8310     // Type check the second argument (char * for both %b and %D)
8311     Ex = getDataArg(argIndex + 1);
8312     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
8313     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
8314       EmitFormatDiagnostic(
8315           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8316               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
8317               << false << Ex->getSourceRange(),
8318           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8319           getSpecifierRange(startSpecifier, specifierLen));
8320 
8321      return true;
8322   }
8323 
8324   // Check for using an Objective-C specific conversion specifier
8325   // in a non-ObjC literal.
8326   if (!allowsObjCArg() && CS.isObjCArg()) {
8327     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8328                                                   specifierLen);
8329   }
8330 
8331   // %P can only be used with os_log.
8332   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
8333     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8334                                                   specifierLen);
8335   }
8336 
8337   // %n is not allowed with os_log.
8338   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
8339     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
8340                          getLocationOfByte(CS.getStart()),
8341                          /*IsStringLocation*/ false,
8342                          getSpecifierRange(startSpecifier, specifierLen));
8343 
8344     return true;
8345   }
8346 
8347   // Only scalars are allowed for os_trace.
8348   if (FSType == Sema::FST_OSTrace &&
8349       (CS.getKind() == ConversionSpecifier::PArg ||
8350        CS.getKind() == ConversionSpecifier::sArg ||
8351        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
8352     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8353                                                   specifierLen);
8354   }
8355 
8356   // Check for use of public/private annotation outside of os_log().
8357   if (FSType != Sema::FST_OSLog) {
8358     if (FS.isPublic().isSet()) {
8359       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8360                                << "public",
8361                            getLocationOfByte(FS.isPublic().getPosition()),
8362                            /*IsStringLocation*/ false,
8363                            getSpecifierRange(startSpecifier, specifierLen));
8364     }
8365     if (FS.isPrivate().isSet()) {
8366       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8367                                << "private",
8368                            getLocationOfByte(FS.isPrivate().getPosition()),
8369                            /*IsStringLocation*/ false,
8370                            getSpecifierRange(startSpecifier, specifierLen));
8371     }
8372   }
8373 
8374   // Check for invalid use of field width
8375   if (!FS.hasValidFieldWidth()) {
8376     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
8377         startSpecifier, specifierLen);
8378   }
8379 
8380   // Check for invalid use of precision
8381   if (!FS.hasValidPrecision()) {
8382     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
8383         startSpecifier, specifierLen);
8384   }
8385 
8386   // Precision is mandatory for %P specifier.
8387   if (CS.getKind() == ConversionSpecifier::PArg &&
8388       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
8389     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
8390                          getLocationOfByte(startSpecifier),
8391                          /*IsStringLocation*/ false,
8392                          getSpecifierRange(startSpecifier, specifierLen));
8393   }
8394 
8395   // Check each flag does not conflict with any other component.
8396   if (!FS.hasValidThousandsGroupingPrefix())
8397     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
8398   if (!FS.hasValidLeadingZeros())
8399     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
8400   if (!FS.hasValidPlusPrefix())
8401     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
8402   if (!FS.hasValidSpacePrefix())
8403     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
8404   if (!FS.hasValidAlternativeForm())
8405     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
8406   if (!FS.hasValidLeftJustified())
8407     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
8408 
8409   // Check that flags are not ignored by another flag
8410   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
8411     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
8412         startSpecifier, specifierLen);
8413   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
8414     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
8415             startSpecifier, specifierLen);
8416 
8417   // Check the length modifier is valid with the given conversion specifier.
8418   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8419                                  S.getLangOpts()))
8420     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8421                                 diag::warn_format_nonsensical_length);
8422   else if (!FS.hasStandardLengthModifier())
8423     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8424   else if (!FS.hasStandardLengthConversionCombination())
8425     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8426                                 diag::warn_format_non_standard_conversion_spec);
8427 
8428   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8429     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8430 
8431   // The remaining checks depend on the data arguments.
8432   if (HasVAListArg)
8433     return true;
8434 
8435   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8436     return false;
8437 
8438   const Expr *Arg = getDataArg(argIndex);
8439   if (!Arg)
8440     return true;
8441 
8442   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
8443 }
8444 
requiresParensToAddCast(const Expr * E)8445 static bool requiresParensToAddCast(const Expr *E) {
8446   // FIXME: We should have a general way to reason about operator
8447   // precedence and whether parens are actually needed here.
8448   // Take care of a few common cases where they aren't.
8449   const Expr *Inside = E->IgnoreImpCasts();
8450   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
8451     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
8452 
8453   switch (Inside->getStmtClass()) {
8454   case Stmt::ArraySubscriptExprClass:
8455   case Stmt::CallExprClass:
8456   case Stmt::CharacterLiteralClass:
8457   case Stmt::CXXBoolLiteralExprClass:
8458   case Stmt::DeclRefExprClass:
8459   case Stmt::FloatingLiteralClass:
8460   case Stmt::IntegerLiteralClass:
8461   case Stmt::MemberExprClass:
8462   case Stmt::ObjCArrayLiteralClass:
8463   case Stmt::ObjCBoolLiteralExprClass:
8464   case Stmt::ObjCBoxedExprClass:
8465   case Stmt::ObjCDictionaryLiteralClass:
8466   case Stmt::ObjCEncodeExprClass:
8467   case Stmt::ObjCIvarRefExprClass:
8468   case Stmt::ObjCMessageExprClass:
8469   case Stmt::ObjCPropertyRefExprClass:
8470   case Stmt::ObjCStringLiteralClass:
8471   case Stmt::ObjCSubscriptRefExprClass:
8472   case Stmt::ParenExprClass:
8473   case Stmt::StringLiteralClass:
8474   case Stmt::UnaryOperatorClass:
8475     return false;
8476   default:
8477     return true;
8478   }
8479 }
8480 
8481 static std::pair<QualType, StringRef>
shouldNotPrintDirectly(const ASTContext & Context,QualType IntendedTy,const Expr * E)8482 shouldNotPrintDirectly(const ASTContext &Context,
8483                        QualType IntendedTy,
8484                        const Expr *E) {
8485   // Use a 'while' to peel off layers of typedefs.
8486   QualType TyTy = IntendedTy;
8487   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
8488     StringRef Name = UserTy->getDecl()->getName();
8489     QualType CastTy = llvm::StringSwitch<QualType>(Name)
8490       .Case("CFIndex", Context.getNSIntegerType())
8491       .Case("NSInteger", Context.getNSIntegerType())
8492       .Case("NSUInteger", Context.getNSUIntegerType())
8493       .Case("SInt32", Context.IntTy)
8494       .Case("UInt32", Context.UnsignedIntTy)
8495       .Default(QualType());
8496 
8497     if (!CastTy.isNull())
8498       return std::make_pair(CastTy, Name);
8499 
8500     TyTy = UserTy->desugar();
8501   }
8502 
8503   // Strip parens if necessary.
8504   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
8505     return shouldNotPrintDirectly(Context,
8506                                   PE->getSubExpr()->getType(),
8507                                   PE->getSubExpr());
8508 
8509   // If this is a conditional expression, then its result type is constructed
8510   // via usual arithmetic conversions and thus there might be no necessary
8511   // typedef sugar there.  Recurse to operands to check for NSInteger &
8512   // Co. usage condition.
8513   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8514     QualType TrueTy, FalseTy;
8515     StringRef TrueName, FalseName;
8516 
8517     std::tie(TrueTy, TrueName) =
8518       shouldNotPrintDirectly(Context,
8519                              CO->getTrueExpr()->getType(),
8520                              CO->getTrueExpr());
8521     std::tie(FalseTy, FalseName) =
8522       shouldNotPrintDirectly(Context,
8523                              CO->getFalseExpr()->getType(),
8524                              CO->getFalseExpr());
8525 
8526     if (TrueTy == FalseTy)
8527       return std::make_pair(TrueTy, TrueName);
8528     else if (TrueTy.isNull())
8529       return std::make_pair(FalseTy, FalseName);
8530     else if (FalseTy.isNull())
8531       return std::make_pair(TrueTy, TrueName);
8532   }
8533 
8534   return std::make_pair(QualType(), StringRef());
8535 }
8536 
8537 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
8538 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
8539 /// type do not count.
8540 static bool
isArithmeticArgumentPromotion(Sema & S,const ImplicitCastExpr * ICE)8541 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
8542   QualType From = ICE->getSubExpr()->getType();
8543   QualType To = ICE->getType();
8544   // It's an integer promotion if the destination type is the promoted
8545   // source type.
8546   if (ICE->getCastKind() == CK_IntegralCast &&
8547       From->isPromotableIntegerType() &&
8548       S.Context.getPromotedIntegerType(From) == To)
8549     return true;
8550   // Look through vector types, since we do default argument promotion for
8551   // those in OpenCL.
8552   if (const auto *VecTy = From->getAs<ExtVectorType>())
8553     From = VecTy->getElementType();
8554   if (const auto *VecTy = To->getAs<ExtVectorType>())
8555     To = VecTy->getElementType();
8556   // It's a floating promotion if the source type is a lower rank.
8557   return ICE->getCastKind() == CK_FloatingCast &&
8558          S.Context.getFloatingTypeOrder(From, To) < 0;
8559 }
8560 
8561 bool
checkFormatExpr(const analyze_printf::PrintfSpecifier & FS,const char * StartSpecifier,unsigned SpecifierLen,const Expr * E)8562 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8563                                     const char *StartSpecifier,
8564                                     unsigned SpecifierLen,
8565                                     const Expr *E) {
8566   using namespace analyze_format_string;
8567   using namespace analyze_printf;
8568 
8569   // Now type check the data expression that matches the
8570   // format specifier.
8571   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
8572   if (!AT.isValid())
8573     return true;
8574 
8575   QualType ExprTy = E->getType();
8576   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
8577     ExprTy = TET->getUnderlyingExpr()->getType();
8578   }
8579 
8580   // Diagnose attempts to print a boolean value as a character. Unlike other
8581   // -Wformat diagnostics, this is fine from a type perspective, but it still
8582   // doesn't make sense.
8583   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
8584       E->isKnownToHaveBooleanValue()) {
8585     const CharSourceRange &CSR =
8586         getSpecifierRange(StartSpecifier, SpecifierLen);
8587     SmallString<4> FSString;
8588     llvm::raw_svector_ostream os(FSString);
8589     FS.toString(os);
8590     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
8591                              << FSString,
8592                          E->getExprLoc(), false, CSR);
8593     return true;
8594   }
8595 
8596   analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
8597   if (Match == analyze_printf::ArgType::Match)
8598     return true;
8599 
8600   // Look through argument promotions for our error message's reported type.
8601   // This includes the integral and floating promotions, but excludes array
8602   // and function pointer decay (seeing that an argument intended to be a
8603   // string has type 'char [6]' is probably more confusing than 'char *') and
8604   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
8605   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
8606     if (isArithmeticArgumentPromotion(S, ICE)) {
8607       E = ICE->getSubExpr();
8608       ExprTy = E->getType();
8609 
8610       // Check if we didn't match because of an implicit cast from a 'char'
8611       // or 'short' to an 'int'.  This is done because printf is a varargs
8612       // function.
8613       if (ICE->getType() == S.Context.IntTy ||
8614           ICE->getType() == S.Context.UnsignedIntTy) {
8615         // All further checking is done on the subexpression
8616         const analyze_printf::ArgType::MatchKind ImplicitMatch =
8617             AT.matchesType(S.Context, ExprTy);
8618         if (ImplicitMatch == analyze_printf::ArgType::Match)
8619           return true;
8620         if (ImplicitMatch == ArgType::NoMatchPedantic ||
8621             ImplicitMatch == ArgType::NoMatchTypeConfusion)
8622           Match = ImplicitMatch;
8623       }
8624     }
8625   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
8626     // Special case for 'a', which has type 'int' in C.
8627     // Note, however, that we do /not/ want to treat multibyte constants like
8628     // 'MooV' as characters! This form is deprecated but still exists.
8629     if (ExprTy == S.Context.IntTy)
8630       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
8631         ExprTy = S.Context.CharTy;
8632   }
8633 
8634   // Look through enums to their underlying type.
8635   bool IsEnum = false;
8636   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
8637     ExprTy = EnumTy->getDecl()->getIntegerType();
8638     IsEnum = true;
8639   }
8640 
8641   // %C in an Objective-C context prints a unichar, not a wchar_t.
8642   // If the argument is an integer of some kind, believe the %C and suggest
8643   // a cast instead of changing the conversion specifier.
8644   QualType IntendedTy = ExprTy;
8645   if (isObjCContext() &&
8646       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
8647     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
8648         !ExprTy->isCharType()) {
8649       // 'unichar' is defined as a typedef of unsigned short, but we should
8650       // prefer using the typedef if it is visible.
8651       IntendedTy = S.Context.UnsignedShortTy;
8652 
8653       // While we are here, check if the value is an IntegerLiteral that happens
8654       // to be within the valid range.
8655       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
8656         const llvm::APInt &V = IL->getValue();
8657         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
8658           return true;
8659       }
8660 
8661       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
8662                           Sema::LookupOrdinaryName);
8663       if (S.LookupName(Result, S.getCurScope())) {
8664         NamedDecl *ND = Result.getFoundDecl();
8665         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
8666           if (TD->getUnderlyingType() == IntendedTy)
8667             IntendedTy = S.Context.getTypedefType(TD);
8668       }
8669     }
8670   }
8671 
8672   // Special-case some of Darwin's platform-independence types by suggesting
8673   // casts to primitive types that are known to be large enough.
8674   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
8675   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
8676     QualType CastTy;
8677     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
8678     if (!CastTy.isNull()) {
8679       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
8680       // (long in ASTContext). Only complain to pedants.
8681       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
8682           (AT.isSizeT() || AT.isPtrdiffT()) &&
8683           AT.matchesType(S.Context, CastTy))
8684         Match = ArgType::NoMatchPedantic;
8685       IntendedTy = CastTy;
8686       ShouldNotPrintDirectly = true;
8687     }
8688   }
8689 
8690   // We may be able to offer a FixItHint if it is a supported type.
8691   PrintfSpecifier fixedFS = FS;
8692   bool Success =
8693       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
8694 
8695   if (Success) {
8696     // Get the fix string from the fixed format specifier
8697     SmallString<16> buf;
8698     llvm::raw_svector_ostream os(buf);
8699     fixedFS.toString(os);
8700 
8701     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
8702 
8703     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
8704       unsigned Diag;
8705       switch (Match) {
8706       case ArgType::Match: llvm_unreachable("expected non-matching");
8707       case ArgType::NoMatchPedantic:
8708         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8709         break;
8710       case ArgType::NoMatchTypeConfusion:
8711         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8712         break;
8713       case ArgType::NoMatch:
8714         Diag = diag::warn_format_conversion_argument_type_mismatch;
8715         break;
8716       }
8717 
8718       // In this case, the specifier is wrong and should be changed to match
8719       // the argument.
8720       EmitFormatDiagnostic(S.PDiag(Diag)
8721                                << AT.getRepresentativeTypeName(S.Context)
8722                                << IntendedTy << IsEnum << E->getSourceRange(),
8723                            E->getBeginLoc(),
8724                            /*IsStringLocation*/ false, SpecRange,
8725                            FixItHint::CreateReplacement(SpecRange, os.str()));
8726     } else {
8727       // The canonical type for formatting this value is different from the
8728       // actual type of the expression. (This occurs, for example, with Darwin's
8729       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
8730       // should be printed as 'long' for 64-bit compatibility.)
8731       // Rather than emitting a normal format/argument mismatch, we want to
8732       // add a cast to the recommended type (and correct the format string
8733       // if necessary).
8734       SmallString<16> CastBuf;
8735       llvm::raw_svector_ostream CastFix(CastBuf);
8736       CastFix << "(";
8737       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
8738       CastFix << ")";
8739 
8740       SmallVector<FixItHint,4> Hints;
8741       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
8742         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
8743 
8744       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
8745         // If there's already a cast present, just replace it.
8746         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
8747         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
8748 
8749       } else if (!requiresParensToAddCast(E)) {
8750         // If the expression has high enough precedence,
8751         // just write the C-style cast.
8752         Hints.push_back(
8753             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8754       } else {
8755         // Otherwise, add parens around the expression as well as the cast.
8756         CastFix << "(";
8757         Hints.push_back(
8758             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8759 
8760         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
8761         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
8762       }
8763 
8764       if (ShouldNotPrintDirectly) {
8765         // The expression has a type that should not be printed directly.
8766         // We extract the name from the typedef because we don't want to show
8767         // the underlying type in the diagnostic.
8768         StringRef Name;
8769         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
8770           Name = TypedefTy->getDecl()->getName();
8771         else
8772           Name = CastTyName;
8773         unsigned Diag = Match == ArgType::NoMatchPedantic
8774                             ? diag::warn_format_argument_needs_cast_pedantic
8775                             : diag::warn_format_argument_needs_cast;
8776         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
8777                                            << E->getSourceRange(),
8778                              E->getBeginLoc(), /*IsStringLocation=*/false,
8779                              SpecRange, Hints);
8780       } else {
8781         // In this case, the expression could be printed using a different
8782         // specifier, but we've decided that the specifier is probably correct
8783         // and we should cast instead. Just use the normal warning message.
8784         EmitFormatDiagnostic(
8785             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8786                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
8787                 << E->getSourceRange(),
8788             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
8789       }
8790     }
8791   } else {
8792     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
8793                                                    SpecifierLen);
8794     // Since the warning for passing non-POD types to variadic functions
8795     // was deferred until now, we emit a warning for non-POD
8796     // arguments here.
8797     switch (S.isValidVarArgType(ExprTy)) {
8798     case Sema::VAK_Valid:
8799     case Sema::VAK_ValidInCXX11: {
8800       unsigned Diag;
8801       switch (Match) {
8802       case ArgType::Match: llvm_unreachable("expected non-matching");
8803       case ArgType::NoMatchPedantic:
8804         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8805         break;
8806       case ArgType::NoMatchTypeConfusion:
8807         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8808         break;
8809       case ArgType::NoMatch:
8810         Diag = diag::warn_format_conversion_argument_type_mismatch;
8811         break;
8812       }
8813 
8814       EmitFormatDiagnostic(
8815           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
8816                         << IsEnum << CSR << E->getSourceRange(),
8817           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8818       break;
8819     }
8820     case Sema::VAK_Undefined:
8821     case Sema::VAK_MSVCUndefined:
8822       EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
8823                                << S.getLangOpts().CPlusPlus11 << ExprTy
8824                                << CallType
8825                                << AT.getRepresentativeTypeName(S.Context) << CSR
8826                                << E->getSourceRange(),
8827                            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8828       checkForCStrMembers(AT, E);
8829       break;
8830 
8831     case Sema::VAK_Invalid:
8832       if (ExprTy->isObjCObjectType())
8833         EmitFormatDiagnostic(
8834             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
8835                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
8836                 << AT.getRepresentativeTypeName(S.Context) << CSR
8837                 << E->getSourceRange(),
8838             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8839       else
8840         // FIXME: If this is an initializer list, suggest removing the braces
8841         // or inserting a cast to the target type.
8842         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
8843             << isa<InitListExpr>(E) << ExprTy << CallType
8844             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
8845       break;
8846     }
8847 
8848     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
8849            "format string specifier index out of range");
8850     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
8851   }
8852 
8853   return true;
8854 }
8855 
8856 //===--- CHECK: Scanf format string checking ------------------------------===//
8857 
8858 namespace {
8859 
8860 class CheckScanfHandler : public CheckFormatHandler {
8861 public:
CheckScanfHandler(Sema & s,const FormatStringLiteral * fexpr,const Expr * origFormatExpr,Sema::FormatStringType type,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)8862   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
8863                     const Expr *origFormatExpr, Sema::FormatStringType type,
8864                     unsigned firstDataArg, unsigned numDataArgs,
8865                     const char *beg, bool hasVAListArg,
8866                     ArrayRef<const Expr *> Args, unsigned formatIdx,
8867                     bool inFunctionCall, Sema::VariadicCallType CallType,
8868                     llvm::SmallBitVector &CheckedVarArgs,
8869                     UncoveredArgHandler &UncoveredArg)
8870       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8871                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
8872                            inFunctionCall, CallType, CheckedVarArgs,
8873                            UncoveredArg) {}
8874 
8875   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
8876                             const char *startSpecifier,
8877                             unsigned specifierLen) override;
8878 
8879   bool HandleInvalidScanfConversionSpecifier(
8880           const analyze_scanf::ScanfSpecifier &FS,
8881           const char *startSpecifier,
8882           unsigned specifierLen) override;
8883 
8884   void HandleIncompleteScanList(const char *start, const char *end) override;
8885 };
8886 
8887 } // namespace
8888 
HandleIncompleteScanList(const char * start,const char * end)8889 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
8890                                                  const char *end) {
8891   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
8892                        getLocationOfByte(end), /*IsStringLocation*/true,
8893                        getSpecifierRange(start, end - start));
8894 }
8895 
HandleInvalidScanfConversionSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)8896 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
8897                                         const analyze_scanf::ScanfSpecifier &FS,
8898                                         const char *startSpecifier,
8899                                         unsigned specifierLen) {
8900   const analyze_scanf::ScanfConversionSpecifier &CS =
8901     FS.getConversionSpecifier();
8902 
8903   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8904                                           getLocationOfByte(CS.getStart()),
8905                                           startSpecifier, specifierLen,
8906                                           CS.getStart(), CS.getLength());
8907 }
8908 
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)8909 bool CheckScanfHandler::HandleScanfSpecifier(
8910                                        const analyze_scanf::ScanfSpecifier &FS,
8911                                        const char *startSpecifier,
8912                                        unsigned specifierLen) {
8913   using namespace analyze_scanf;
8914   using namespace analyze_format_string;
8915 
8916   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
8917 
8918   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
8919   // be used to decide if we are using positional arguments consistently.
8920   if (FS.consumesDataArgument()) {
8921     if (atFirstArg) {
8922       atFirstArg = false;
8923       usesPositionalArgs = FS.usesPositionalArg();
8924     }
8925     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8926       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8927                                         startSpecifier, specifierLen);
8928       return false;
8929     }
8930   }
8931 
8932   // Check if the field with is non-zero.
8933   const OptionalAmount &Amt = FS.getFieldWidth();
8934   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
8935     if (Amt.getConstantAmount() == 0) {
8936       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
8937                                                    Amt.getConstantLength());
8938       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
8939                            getLocationOfByte(Amt.getStart()),
8940                            /*IsStringLocation*/true, R,
8941                            FixItHint::CreateRemoval(R));
8942     }
8943   }
8944 
8945   if (!FS.consumesDataArgument()) {
8946     // FIXME: Technically specifying a precision or field width here
8947     // makes no sense.  Worth issuing a warning at some point.
8948     return true;
8949   }
8950 
8951   // Consume the argument.
8952   unsigned argIndex = FS.getArgIndex();
8953   if (argIndex < NumDataArgs) {
8954       // The check to see if the argIndex is valid will come later.
8955       // We set the bit here because we may exit early from this
8956       // function if we encounter some other error.
8957     CoveredArgs.set(argIndex);
8958   }
8959 
8960   // Check the length modifier is valid with the given conversion specifier.
8961   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8962                                  S.getLangOpts()))
8963     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8964                                 diag::warn_format_nonsensical_length);
8965   else if (!FS.hasStandardLengthModifier())
8966     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8967   else if (!FS.hasStandardLengthConversionCombination())
8968     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8969                                 diag::warn_format_non_standard_conversion_spec);
8970 
8971   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8972     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8973 
8974   // The remaining checks depend on the data arguments.
8975   if (HasVAListArg)
8976     return true;
8977 
8978   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8979     return false;
8980 
8981   // Check that the argument type matches the format specifier.
8982   const Expr *Ex = getDataArg(argIndex);
8983   if (!Ex)
8984     return true;
8985 
8986   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
8987 
8988   if (!AT.isValid()) {
8989     return true;
8990   }
8991 
8992   analyze_format_string::ArgType::MatchKind Match =
8993       AT.matchesType(S.Context, Ex->getType());
8994   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
8995   if (Match == analyze_format_string::ArgType::Match)
8996     return true;
8997 
8998   ScanfSpecifier fixedFS = FS;
8999   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
9000                                  S.getLangOpts(), S.Context);
9001 
9002   unsigned Diag =
9003       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
9004                : diag::warn_format_conversion_argument_type_mismatch;
9005 
9006   if (Success) {
9007     // Get the fix string from the fixed format specifier.
9008     SmallString<128> buf;
9009     llvm::raw_svector_ostream os(buf);
9010     fixedFS.toString(os);
9011 
9012     EmitFormatDiagnostic(
9013         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
9014                       << Ex->getType() << false << Ex->getSourceRange(),
9015         Ex->getBeginLoc(),
9016         /*IsStringLocation*/ false,
9017         getSpecifierRange(startSpecifier, specifierLen),
9018         FixItHint::CreateReplacement(
9019             getSpecifierRange(startSpecifier, specifierLen), os.str()));
9020   } else {
9021     EmitFormatDiagnostic(S.PDiag(Diag)
9022                              << AT.getRepresentativeTypeName(S.Context)
9023                              << Ex->getType() << false << Ex->getSourceRange(),
9024                          Ex->getBeginLoc(),
9025                          /*IsStringLocation*/ false,
9026                          getSpecifierRange(startSpecifier, specifierLen));
9027   }
9028 
9029   return true;
9030 }
9031 
CheckFormatString(Sema & S,const FormatStringLiteral * FExpr,const Expr * OrigFormatExpr,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg,bool IgnoreStringsWithoutSpecifiers)9032 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
9033                               const Expr *OrigFormatExpr,
9034                               ArrayRef<const Expr *> Args,
9035                               bool HasVAListArg, unsigned format_idx,
9036                               unsigned firstDataArg,
9037                               Sema::FormatStringType Type,
9038                               bool inFunctionCall,
9039                               Sema::VariadicCallType CallType,
9040                               llvm::SmallBitVector &CheckedVarArgs,
9041                               UncoveredArgHandler &UncoveredArg,
9042                               bool IgnoreStringsWithoutSpecifiers) {
9043   // CHECK: is the format string a wide literal?
9044   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
9045     CheckFormatHandler::EmitFormatDiagnostic(
9046         S, inFunctionCall, Args[format_idx],
9047         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
9048         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9049     return;
9050   }
9051 
9052   // Str - The format string.  NOTE: this is NOT null-terminated!
9053   StringRef StrRef = FExpr->getString();
9054   const char *Str = StrRef.data();
9055   // Account for cases where the string literal is truncated in a declaration.
9056   const ConstantArrayType *T =
9057     S.Context.getAsConstantArrayType(FExpr->getType());
9058   assert(T && "String literal not of constant array type!");
9059   size_t TypeSize = T->getSize().getZExtValue();
9060   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9061   const unsigned numDataArgs = Args.size() - firstDataArg;
9062 
9063   if (IgnoreStringsWithoutSpecifiers &&
9064       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
9065           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
9066     return;
9067 
9068   // Emit a warning if the string literal is truncated and does not contain an
9069   // embedded null character.
9070   if (TypeSize <= StrRef.size() &&
9071       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
9072     CheckFormatHandler::EmitFormatDiagnostic(
9073         S, inFunctionCall, Args[format_idx],
9074         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
9075         FExpr->getBeginLoc(),
9076         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
9077     return;
9078   }
9079 
9080   // CHECK: empty format string?
9081   if (StrLen == 0 && numDataArgs > 0) {
9082     CheckFormatHandler::EmitFormatDiagnostic(
9083         S, inFunctionCall, Args[format_idx],
9084         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
9085         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9086     return;
9087   }
9088 
9089   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
9090       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
9091       Type == Sema::FST_OSTrace) {
9092     CheckPrintfHandler H(
9093         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
9094         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
9095         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
9096         CheckedVarArgs, UncoveredArg);
9097 
9098     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
9099                                                   S.getLangOpts(),
9100                                                   S.Context.getTargetInfo(),
9101                                             Type == Sema::FST_FreeBSDKPrintf))
9102       H.DoneProcessing();
9103   } else if (Type == Sema::FST_Scanf) {
9104     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
9105                         numDataArgs, Str, HasVAListArg, Args, format_idx,
9106                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
9107 
9108     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
9109                                                  S.getLangOpts(),
9110                                                  S.Context.getTargetInfo()))
9111       H.DoneProcessing();
9112   } // TODO: handle other formats
9113 }
9114 
FormatStringHasSArg(const StringLiteral * FExpr)9115 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
9116   // Str - The format string.  NOTE: this is NOT null-terminated!
9117   StringRef StrRef = FExpr->getString();
9118   const char *Str = StrRef.data();
9119   // Account for cases where the string literal is truncated in a declaration.
9120   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
9121   assert(T && "String literal not of constant array type!");
9122   size_t TypeSize = T->getSize().getZExtValue();
9123   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9124   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
9125                                                          getLangOpts(),
9126                                                          Context.getTargetInfo());
9127 }
9128 
9129 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
9130 
9131 // Returns the related absolute value function that is larger, of 0 if one
9132 // does not exist.
getLargerAbsoluteValueFunction(unsigned AbsFunction)9133 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
9134   switch (AbsFunction) {
9135   default:
9136     return 0;
9137 
9138   case Builtin::BI__builtin_abs:
9139     return Builtin::BI__builtin_labs;
9140   case Builtin::BI__builtin_labs:
9141     return Builtin::BI__builtin_llabs;
9142   case Builtin::BI__builtin_llabs:
9143     return 0;
9144 
9145   case Builtin::BI__builtin_fabsf:
9146     return Builtin::BI__builtin_fabs;
9147   case Builtin::BI__builtin_fabs:
9148     return Builtin::BI__builtin_fabsl;
9149   case Builtin::BI__builtin_fabsl:
9150     return 0;
9151 
9152   case Builtin::BI__builtin_cabsf:
9153     return Builtin::BI__builtin_cabs;
9154   case Builtin::BI__builtin_cabs:
9155     return Builtin::BI__builtin_cabsl;
9156   case Builtin::BI__builtin_cabsl:
9157     return 0;
9158 
9159   case Builtin::BIabs:
9160     return Builtin::BIlabs;
9161   case Builtin::BIlabs:
9162     return Builtin::BIllabs;
9163   case Builtin::BIllabs:
9164     return 0;
9165 
9166   case Builtin::BIfabsf:
9167     return Builtin::BIfabs;
9168   case Builtin::BIfabs:
9169     return Builtin::BIfabsl;
9170   case Builtin::BIfabsl:
9171     return 0;
9172 
9173   case Builtin::BIcabsf:
9174    return Builtin::BIcabs;
9175   case Builtin::BIcabs:
9176     return Builtin::BIcabsl;
9177   case Builtin::BIcabsl:
9178     return 0;
9179   }
9180 }
9181 
9182 // Returns the argument type of the absolute value function.
getAbsoluteValueArgumentType(ASTContext & Context,unsigned AbsType)9183 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
9184                                              unsigned AbsType) {
9185   if (AbsType == 0)
9186     return QualType();
9187 
9188   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
9189   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
9190   if (Error != ASTContext::GE_None)
9191     return QualType();
9192 
9193   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
9194   if (!FT)
9195     return QualType();
9196 
9197   if (FT->getNumParams() != 1)
9198     return QualType();
9199 
9200   return FT->getParamType(0);
9201 }
9202 
9203 // Returns the best absolute value function, or zero, based on type and
9204 // current absolute value function.
getBestAbsFunction(ASTContext & Context,QualType ArgType,unsigned AbsFunctionKind)9205 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
9206                                    unsigned AbsFunctionKind) {
9207   unsigned BestKind = 0;
9208   uint64_t ArgSize = Context.getTypeSize(ArgType);
9209   for (unsigned Kind = AbsFunctionKind; Kind != 0;
9210        Kind = getLargerAbsoluteValueFunction(Kind)) {
9211     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
9212     if (Context.getTypeSize(ParamType) >= ArgSize) {
9213       if (BestKind == 0)
9214         BestKind = Kind;
9215       else if (Context.hasSameType(ParamType, ArgType)) {
9216         BestKind = Kind;
9217         break;
9218       }
9219     }
9220   }
9221   return BestKind;
9222 }
9223 
9224 enum AbsoluteValueKind {
9225   AVK_Integer,
9226   AVK_Floating,
9227   AVK_Complex
9228 };
9229 
getAbsoluteValueKind(QualType T)9230 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
9231   if (T->isIntegralOrEnumerationType())
9232     return AVK_Integer;
9233   if (T->isRealFloatingType())
9234     return AVK_Floating;
9235   if (T->isAnyComplexType())
9236     return AVK_Complex;
9237 
9238   llvm_unreachable("Type not integer, floating, or complex");
9239 }
9240 
9241 // Changes the absolute value function to a different type.  Preserves whether
9242 // the function is a builtin.
changeAbsFunction(unsigned AbsKind,AbsoluteValueKind ValueKind)9243 static unsigned changeAbsFunction(unsigned AbsKind,
9244                                   AbsoluteValueKind ValueKind) {
9245   switch (ValueKind) {
9246   case AVK_Integer:
9247     switch (AbsKind) {
9248     default:
9249       return 0;
9250     case Builtin::BI__builtin_fabsf:
9251     case Builtin::BI__builtin_fabs:
9252     case Builtin::BI__builtin_fabsl:
9253     case Builtin::BI__builtin_cabsf:
9254     case Builtin::BI__builtin_cabs:
9255     case Builtin::BI__builtin_cabsl:
9256       return Builtin::BI__builtin_abs;
9257     case Builtin::BIfabsf:
9258     case Builtin::BIfabs:
9259     case Builtin::BIfabsl:
9260     case Builtin::BIcabsf:
9261     case Builtin::BIcabs:
9262     case Builtin::BIcabsl:
9263       return Builtin::BIabs;
9264     }
9265   case AVK_Floating:
9266     switch (AbsKind) {
9267     default:
9268       return 0;
9269     case Builtin::BI__builtin_abs:
9270     case Builtin::BI__builtin_labs:
9271     case Builtin::BI__builtin_llabs:
9272     case Builtin::BI__builtin_cabsf:
9273     case Builtin::BI__builtin_cabs:
9274     case Builtin::BI__builtin_cabsl:
9275       return Builtin::BI__builtin_fabsf;
9276     case Builtin::BIabs:
9277     case Builtin::BIlabs:
9278     case Builtin::BIllabs:
9279     case Builtin::BIcabsf:
9280     case Builtin::BIcabs:
9281     case Builtin::BIcabsl:
9282       return Builtin::BIfabsf;
9283     }
9284   case AVK_Complex:
9285     switch (AbsKind) {
9286     default:
9287       return 0;
9288     case Builtin::BI__builtin_abs:
9289     case Builtin::BI__builtin_labs:
9290     case Builtin::BI__builtin_llabs:
9291     case Builtin::BI__builtin_fabsf:
9292     case Builtin::BI__builtin_fabs:
9293     case Builtin::BI__builtin_fabsl:
9294       return Builtin::BI__builtin_cabsf;
9295     case Builtin::BIabs:
9296     case Builtin::BIlabs:
9297     case Builtin::BIllabs:
9298     case Builtin::BIfabsf:
9299     case Builtin::BIfabs:
9300     case Builtin::BIfabsl:
9301       return Builtin::BIcabsf;
9302     }
9303   }
9304   llvm_unreachable("Unable to convert function");
9305 }
9306 
getAbsoluteValueFunctionKind(const FunctionDecl * FDecl)9307 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
9308   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
9309   if (!FnInfo)
9310     return 0;
9311 
9312   switch (FDecl->getBuiltinID()) {
9313   default:
9314     return 0;
9315   case Builtin::BI__builtin_abs:
9316   case Builtin::BI__builtin_fabs:
9317   case Builtin::BI__builtin_fabsf:
9318   case Builtin::BI__builtin_fabsl:
9319   case Builtin::BI__builtin_labs:
9320   case Builtin::BI__builtin_llabs:
9321   case Builtin::BI__builtin_cabs:
9322   case Builtin::BI__builtin_cabsf:
9323   case Builtin::BI__builtin_cabsl:
9324   case Builtin::BIabs:
9325   case Builtin::BIlabs:
9326   case Builtin::BIllabs:
9327   case Builtin::BIfabs:
9328   case Builtin::BIfabsf:
9329   case Builtin::BIfabsl:
9330   case Builtin::BIcabs:
9331   case Builtin::BIcabsf:
9332   case Builtin::BIcabsl:
9333     return FDecl->getBuiltinID();
9334   }
9335   llvm_unreachable("Unknown Builtin type");
9336 }
9337 
9338 // If the replacement is valid, emit a note with replacement function.
9339 // Additionally, suggest including the proper header if not already included.
emitReplacement(Sema & S,SourceLocation Loc,SourceRange Range,unsigned AbsKind,QualType ArgType)9340 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
9341                             unsigned AbsKind, QualType ArgType) {
9342   bool EmitHeaderHint = true;
9343   const char *HeaderName = nullptr;
9344   const char *FunctionName = nullptr;
9345   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
9346     FunctionName = "std::abs";
9347     if (ArgType->isIntegralOrEnumerationType()) {
9348       HeaderName = "cstdlib";
9349     } else if (ArgType->isRealFloatingType()) {
9350       HeaderName = "cmath";
9351     } else {
9352       llvm_unreachable("Invalid Type");
9353     }
9354 
9355     // Lookup all std::abs
9356     if (NamespaceDecl *Std = S.getStdNamespace()) {
9357       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
9358       R.suppressDiagnostics();
9359       S.LookupQualifiedName(R, Std);
9360 
9361       for (const auto *I : R) {
9362         const FunctionDecl *FDecl = nullptr;
9363         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
9364           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
9365         } else {
9366           FDecl = dyn_cast<FunctionDecl>(I);
9367         }
9368         if (!FDecl)
9369           continue;
9370 
9371         // Found std::abs(), check that they are the right ones.
9372         if (FDecl->getNumParams() != 1)
9373           continue;
9374 
9375         // Check that the parameter type can handle the argument.
9376         QualType ParamType = FDecl->getParamDecl(0)->getType();
9377         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
9378             S.Context.getTypeSize(ArgType) <=
9379                 S.Context.getTypeSize(ParamType)) {
9380           // Found a function, don't need the header hint.
9381           EmitHeaderHint = false;
9382           break;
9383         }
9384       }
9385     }
9386   } else {
9387     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
9388     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
9389 
9390     if (HeaderName) {
9391       DeclarationName DN(&S.Context.Idents.get(FunctionName));
9392       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
9393       R.suppressDiagnostics();
9394       S.LookupName(R, S.getCurScope());
9395 
9396       if (R.isSingleResult()) {
9397         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
9398         if (FD && FD->getBuiltinID() == AbsKind) {
9399           EmitHeaderHint = false;
9400         } else {
9401           return;
9402         }
9403       } else if (!R.empty()) {
9404         return;
9405       }
9406     }
9407   }
9408 
9409   S.Diag(Loc, diag::note_replace_abs_function)
9410       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
9411 
9412   if (!HeaderName)
9413     return;
9414 
9415   if (!EmitHeaderHint)
9416     return;
9417 
9418   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
9419                                                     << FunctionName;
9420 }
9421 
9422 template <std::size_t StrLen>
IsStdFunction(const FunctionDecl * FDecl,const char (& Str)[StrLen])9423 static bool IsStdFunction(const FunctionDecl *FDecl,
9424                           const char (&Str)[StrLen]) {
9425   if (!FDecl)
9426     return false;
9427   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
9428     return false;
9429   if (!FDecl->isInStdNamespace())
9430     return false;
9431 
9432   return true;
9433 }
9434 
9435 // Warn when using the wrong abs() function.
CheckAbsoluteValueFunction(const CallExpr * Call,const FunctionDecl * FDecl)9436 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
9437                                       const FunctionDecl *FDecl) {
9438   if (Call->getNumArgs() != 1)
9439     return;
9440 
9441   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
9442   bool IsStdAbs = IsStdFunction(FDecl, "abs");
9443   if (AbsKind == 0 && !IsStdAbs)
9444     return;
9445 
9446   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9447   QualType ParamType = Call->getArg(0)->getType();
9448 
9449   // Unsigned types cannot be negative.  Suggest removing the absolute value
9450   // function call.
9451   if (ArgType->isUnsignedIntegerType()) {
9452     const char *FunctionName =
9453         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
9454     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
9455     Diag(Call->getExprLoc(), diag::note_remove_abs)
9456         << FunctionName
9457         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
9458     return;
9459   }
9460 
9461   // Taking the absolute value of a pointer is very suspicious, they probably
9462   // wanted to index into an array, dereference a pointer, call a function, etc.
9463   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
9464     unsigned DiagType = 0;
9465     if (ArgType->isFunctionType())
9466       DiagType = 1;
9467     else if (ArgType->isArrayType())
9468       DiagType = 2;
9469 
9470     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
9471     return;
9472   }
9473 
9474   // std::abs has overloads which prevent most of the absolute value problems
9475   // from occurring.
9476   if (IsStdAbs)
9477     return;
9478 
9479   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
9480   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
9481 
9482   // The argument and parameter are the same kind.  Check if they are the right
9483   // size.
9484   if (ArgValueKind == ParamValueKind) {
9485     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
9486       return;
9487 
9488     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
9489     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
9490         << FDecl << ArgType << ParamType;
9491 
9492     if (NewAbsKind == 0)
9493       return;
9494 
9495     emitReplacement(*this, Call->getExprLoc(),
9496                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9497     return;
9498   }
9499 
9500   // ArgValueKind != ParamValueKind
9501   // The wrong type of absolute value function was used.  Attempt to find the
9502   // proper one.
9503   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
9504   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
9505   if (NewAbsKind == 0)
9506     return;
9507 
9508   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
9509       << FDecl << ParamValueKind << ArgValueKind;
9510 
9511   emitReplacement(*this, Call->getExprLoc(),
9512                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9513 }
9514 
9515 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
CheckMaxUnsignedZero(const CallExpr * Call,const FunctionDecl * FDecl)9516 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
9517                                 const FunctionDecl *FDecl) {
9518   if (!Call || !FDecl) return;
9519 
9520   // Ignore template specializations and macros.
9521   if (inTemplateInstantiation()) return;
9522   if (Call->getExprLoc().isMacroID()) return;
9523 
9524   // Only care about the one template argument, two function parameter std::max
9525   if (Call->getNumArgs() != 2) return;
9526   if (!IsStdFunction(FDecl, "max")) return;
9527   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
9528   if (!ArgList) return;
9529   if (ArgList->size() != 1) return;
9530 
9531   // Check that template type argument is unsigned integer.
9532   const auto& TA = ArgList->get(0);
9533   if (TA.getKind() != TemplateArgument::Type) return;
9534   QualType ArgType = TA.getAsType();
9535   if (!ArgType->isUnsignedIntegerType()) return;
9536 
9537   // See if either argument is a literal zero.
9538   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
9539     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
9540     if (!MTE) return false;
9541     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
9542     if (!Num) return false;
9543     if (Num->getValue() != 0) return false;
9544     return true;
9545   };
9546 
9547   const Expr *FirstArg = Call->getArg(0);
9548   const Expr *SecondArg = Call->getArg(1);
9549   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
9550   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
9551 
9552   // Only warn when exactly one argument is zero.
9553   if (IsFirstArgZero == IsSecondArgZero) return;
9554 
9555   SourceRange FirstRange = FirstArg->getSourceRange();
9556   SourceRange SecondRange = SecondArg->getSourceRange();
9557 
9558   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
9559 
9560   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
9561       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
9562 
9563   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
9564   SourceRange RemovalRange;
9565   if (IsFirstArgZero) {
9566     RemovalRange = SourceRange(FirstRange.getBegin(),
9567                                SecondRange.getBegin().getLocWithOffset(-1));
9568   } else {
9569     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
9570                                SecondRange.getEnd());
9571   }
9572 
9573   Diag(Call->getExprLoc(), diag::note_remove_max_call)
9574         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
9575         << FixItHint::CreateRemoval(RemovalRange);
9576 }
9577 
9578 //===--- CHECK: Standard memory functions ---------------------------------===//
9579 
9580 /// Takes the expression passed to the size_t parameter of functions
9581 /// such as memcmp, strncat, etc and warns if it's a comparison.
9582 ///
9583 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
CheckMemorySizeofForComparison(Sema & S,const Expr * E,IdentifierInfo * FnName,SourceLocation FnLoc,SourceLocation RParenLoc)9584 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
9585                                            IdentifierInfo *FnName,
9586                                            SourceLocation FnLoc,
9587                                            SourceLocation RParenLoc) {
9588   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
9589   if (!Size)
9590     return false;
9591 
9592   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
9593   if (!Size->isComparisonOp() && !Size->isLogicalOp())
9594     return false;
9595 
9596   SourceRange SizeRange = Size->getSourceRange();
9597   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
9598       << SizeRange << FnName;
9599   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
9600       << FnName
9601       << FixItHint::CreateInsertion(
9602              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
9603       << FixItHint::CreateRemoval(RParenLoc);
9604   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
9605       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
9606       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
9607                                     ")");
9608 
9609   return true;
9610 }
9611 
9612 /// Determine whether the given type is or contains a dynamic class type
9613 /// (e.g., whether it has a vtable).
getContainedDynamicClass(QualType T,bool & IsContained)9614 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
9615                                                      bool &IsContained) {
9616   // Look through array types while ignoring qualifiers.
9617   const Type *Ty = T->getBaseElementTypeUnsafe();
9618   IsContained = false;
9619 
9620   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
9621   RD = RD ? RD->getDefinition() : nullptr;
9622   if (!RD || RD->isInvalidDecl())
9623     return nullptr;
9624 
9625   if (RD->isDynamicClass())
9626     return RD;
9627 
9628   // Check all the fields.  If any bases were dynamic, the class is dynamic.
9629   // It's impossible for a class to transitively contain itself by value, so
9630   // infinite recursion is impossible.
9631   for (auto *FD : RD->fields()) {
9632     bool SubContained;
9633     if (const CXXRecordDecl *ContainedRD =
9634             getContainedDynamicClass(FD->getType(), SubContained)) {
9635       IsContained = true;
9636       return ContainedRD;
9637     }
9638   }
9639 
9640   return nullptr;
9641 }
9642 
getAsSizeOfExpr(const Expr * E)9643 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
9644   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
9645     if (Unary->getKind() == UETT_SizeOf)
9646       return Unary;
9647   return nullptr;
9648 }
9649 
9650 /// If E is a sizeof expression, returns its argument expression,
9651 /// otherwise returns NULL.
getSizeOfExprArg(const Expr * E)9652 static const Expr *getSizeOfExprArg(const Expr *E) {
9653   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9654     if (!SizeOf->isArgumentType())
9655       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
9656   return nullptr;
9657 }
9658 
9659 /// If E is a sizeof expression, returns its argument type.
getSizeOfArgType(const Expr * E)9660 static QualType getSizeOfArgType(const Expr *E) {
9661   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9662     return SizeOf->getTypeOfArgument();
9663   return QualType();
9664 }
9665 
9666 namespace {
9667 
9668 struct SearchNonTrivialToInitializeField
9669     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
9670   using Super =
9671       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
9672 
SearchNonTrivialToInitializeField__anon33aba9e81611::SearchNonTrivialToInitializeField9673   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
9674 
visitWithKind__anon33aba9e81611::SearchNonTrivialToInitializeField9675   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
9676                      SourceLocation SL) {
9677     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9678       asDerived().visitArray(PDIK, AT, SL);
9679       return;
9680     }
9681 
9682     Super::visitWithKind(PDIK, FT, SL);
9683   }
9684 
visitARCStrong__anon33aba9e81611::SearchNonTrivialToInitializeField9685   void visitARCStrong(QualType FT, SourceLocation SL) {
9686     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9687   }
visitARCWeak__anon33aba9e81611::SearchNonTrivialToInitializeField9688   void visitARCWeak(QualType FT, SourceLocation SL) {
9689     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9690   }
visitStruct__anon33aba9e81611::SearchNonTrivialToInitializeField9691   void visitStruct(QualType FT, SourceLocation SL) {
9692     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9693       visit(FD->getType(), FD->getLocation());
9694   }
visitArray__anon33aba9e81611::SearchNonTrivialToInitializeField9695   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
9696                   const ArrayType *AT, SourceLocation SL) {
9697     visit(getContext().getBaseElementType(AT), SL);
9698   }
visitTrivial__anon33aba9e81611::SearchNonTrivialToInitializeField9699   void visitTrivial(QualType FT, SourceLocation SL) {}
9700 
diag__anon33aba9e81611::SearchNonTrivialToInitializeField9701   static void diag(QualType RT, const Expr *E, Sema &S) {
9702     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
9703   }
9704 
getContext__anon33aba9e81611::SearchNonTrivialToInitializeField9705   ASTContext &getContext() { return S.getASTContext(); }
9706 
9707   const Expr *E;
9708   Sema &S;
9709 };
9710 
9711 struct SearchNonTrivialToCopyField
9712     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
9713   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
9714 
SearchNonTrivialToCopyField__anon33aba9e81611::SearchNonTrivialToCopyField9715   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
9716 
visitWithKind__anon33aba9e81611::SearchNonTrivialToCopyField9717   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
9718                      SourceLocation SL) {
9719     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9720       asDerived().visitArray(PCK, AT, SL);
9721       return;
9722     }
9723 
9724     Super::visitWithKind(PCK, FT, SL);
9725   }
9726 
visitARCStrong__anon33aba9e81611::SearchNonTrivialToCopyField9727   void visitARCStrong(QualType FT, SourceLocation SL) {
9728     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9729   }
visitARCWeak__anon33aba9e81611::SearchNonTrivialToCopyField9730   void visitARCWeak(QualType FT, SourceLocation SL) {
9731     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9732   }
visitStruct__anon33aba9e81611::SearchNonTrivialToCopyField9733   void visitStruct(QualType FT, SourceLocation SL) {
9734     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9735       visit(FD->getType(), FD->getLocation());
9736   }
visitArray__anon33aba9e81611::SearchNonTrivialToCopyField9737   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
9738                   SourceLocation SL) {
9739     visit(getContext().getBaseElementType(AT), SL);
9740   }
preVisit__anon33aba9e81611::SearchNonTrivialToCopyField9741   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
9742                 SourceLocation SL) {}
visitTrivial__anon33aba9e81611::SearchNonTrivialToCopyField9743   void visitTrivial(QualType FT, SourceLocation SL) {}
visitVolatileTrivial__anon33aba9e81611::SearchNonTrivialToCopyField9744   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
9745 
diag__anon33aba9e81611::SearchNonTrivialToCopyField9746   static void diag(QualType RT, const Expr *E, Sema &S) {
9747     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
9748   }
9749 
getContext__anon33aba9e81611::SearchNonTrivialToCopyField9750   ASTContext &getContext() { return S.getASTContext(); }
9751 
9752   const Expr *E;
9753   Sema &S;
9754 };
9755 
9756 }
9757 
9758 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
doesExprLikelyComputeSize(const Expr * SizeofExpr)9759 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
9760   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
9761 
9762   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
9763     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
9764       return false;
9765 
9766     return doesExprLikelyComputeSize(BO->getLHS()) ||
9767            doesExprLikelyComputeSize(BO->getRHS());
9768   }
9769 
9770   return getAsSizeOfExpr(SizeofExpr) != nullptr;
9771 }
9772 
9773 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
9774 ///
9775 /// \code
9776 ///   #define MACRO 0
9777 ///   foo(MACRO);
9778 ///   foo(0);
9779 /// \endcode
9780 ///
9781 /// This should return true for the first call to foo, but not for the second
9782 /// (regardless of whether foo is a macro or function).
isArgumentExpandedFromMacro(SourceManager & SM,SourceLocation CallLoc,SourceLocation ArgLoc)9783 static bool isArgumentExpandedFromMacro(SourceManager &SM,
9784                                         SourceLocation CallLoc,
9785                                         SourceLocation ArgLoc) {
9786   if (!CallLoc.isMacroID())
9787     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
9788 
9789   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
9790          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
9791 }
9792 
9793 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
9794 /// last two arguments transposed.
CheckMemaccessSize(Sema & S,unsigned BId,const CallExpr * Call)9795 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
9796   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
9797     return;
9798 
9799   const Expr *SizeArg =
9800     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
9801 
9802   auto isLiteralZero = [](const Expr *E) {
9803     return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
9804   };
9805 
9806   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
9807   SourceLocation CallLoc = Call->getRParenLoc();
9808   SourceManager &SM = S.getSourceManager();
9809   if (isLiteralZero(SizeArg) &&
9810       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
9811 
9812     SourceLocation DiagLoc = SizeArg->getExprLoc();
9813 
9814     // Some platforms #define bzero to __builtin_memset. See if this is the
9815     // case, and if so, emit a better diagnostic.
9816     if (BId == Builtin::BIbzero ||
9817         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
9818                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
9819       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
9820       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
9821     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
9822       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
9823       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
9824     }
9825     return;
9826   }
9827 
9828   // If the second argument to a memset is a sizeof expression and the third
9829   // isn't, this is also likely an error. This should catch
9830   // 'memset(buf, sizeof(buf), 0xff)'.
9831   if (BId == Builtin::BImemset &&
9832       doesExprLikelyComputeSize(Call->getArg(1)) &&
9833       !doesExprLikelyComputeSize(Call->getArg(2))) {
9834     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
9835     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
9836     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
9837     return;
9838   }
9839 }
9840 
9841 /// Check for dangerous or invalid arguments to memset().
9842 ///
9843 /// This issues warnings on known problematic, dangerous or unspecified
9844 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
9845 /// function calls.
9846 ///
9847 /// \param Call The call expression to diagnose.
CheckMemaccessArguments(const CallExpr * Call,unsigned BId,IdentifierInfo * FnName)9848 void Sema::CheckMemaccessArguments(const CallExpr *Call,
9849                                    unsigned BId,
9850                                    IdentifierInfo *FnName) {
9851   assert(BId != 0);
9852 
9853   // It is possible to have a non-standard definition of memset.  Validate
9854   // we have enough arguments, and if not, abort further checking.
9855   unsigned ExpectedNumArgs =
9856       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
9857   if (Call->getNumArgs() < ExpectedNumArgs)
9858     return;
9859 
9860   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
9861                       BId == Builtin::BIstrndup ? 1 : 2);
9862   unsigned LenArg =
9863       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
9864   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
9865 
9866   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
9867                                      Call->getBeginLoc(), Call->getRParenLoc()))
9868     return;
9869 
9870   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
9871   CheckMemaccessSize(*this, BId, Call);
9872 
9873   // We have special checking when the length is a sizeof expression.
9874   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
9875   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
9876   llvm::FoldingSetNodeID SizeOfArgID;
9877 
9878   // Although widely used, 'bzero' is not a standard function. Be more strict
9879   // with the argument types before allowing diagnostics and only allow the
9880   // form bzero(ptr, sizeof(...)).
9881   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9882   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
9883     return;
9884 
9885   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
9886     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
9887     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
9888 
9889     QualType DestTy = Dest->getType();
9890     QualType PointeeTy;
9891     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
9892       PointeeTy = DestPtrTy->getPointeeType();
9893 
9894       // Never warn about void type pointers. This can be used to suppress
9895       // false positives.
9896       if (PointeeTy->isVoidType())
9897         continue;
9898 
9899       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
9900       // actually comparing the expressions for equality. Because computing the
9901       // expression IDs can be expensive, we only do this if the diagnostic is
9902       // enabled.
9903       if (SizeOfArg &&
9904           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
9905                            SizeOfArg->getExprLoc())) {
9906         // We only compute IDs for expressions if the warning is enabled, and
9907         // cache the sizeof arg's ID.
9908         if (SizeOfArgID == llvm::FoldingSetNodeID())
9909           SizeOfArg->Profile(SizeOfArgID, Context, true);
9910         llvm::FoldingSetNodeID DestID;
9911         Dest->Profile(DestID, Context, true);
9912         if (DestID == SizeOfArgID) {
9913           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
9914           //       over sizeof(src) as well.
9915           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
9916           StringRef ReadableName = FnName->getName();
9917 
9918           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
9919             if (UnaryOp->getOpcode() == UO_AddrOf)
9920               ActionIdx = 1; // If its an address-of operator, just remove it.
9921           if (!PointeeTy->isIncompleteType() &&
9922               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
9923             ActionIdx = 2; // If the pointee's size is sizeof(char),
9924                            // suggest an explicit length.
9925 
9926           // If the function is defined as a builtin macro, do not show macro
9927           // expansion.
9928           SourceLocation SL = SizeOfArg->getExprLoc();
9929           SourceRange DSR = Dest->getSourceRange();
9930           SourceRange SSR = SizeOfArg->getSourceRange();
9931           SourceManager &SM = getSourceManager();
9932 
9933           if (SM.isMacroArgExpansion(SL)) {
9934             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
9935             SL = SM.getSpellingLoc(SL);
9936             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
9937                              SM.getSpellingLoc(DSR.getEnd()));
9938             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
9939                              SM.getSpellingLoc(SSR.getEnd()));
9940           }
9941 
9942           DiagRuntimeBehavior(SL, SizeOfArg,
9943                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
9944                                 << ReadableName
9945                                 << PointeeTy
9946                                 << DestTy
9947                                 << DSR
9948                                 << SSR);
9949           DiagRuntimeBehavior(SL, SizeOfArg,
9950                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
9951                                 << ActionIdx
9952                                 << SSR);
9953 
9954           break;
9955         }
9956       }
9957 
9958       // Also check for cases where the sizeof argument is the exact same
9959       // type as the memory argument, and where it points to a user-defined
9960       // record type.
9961       if (SizeOfArgTy != QualType()) {
9962         if (PointeeTy->isRecordType() &&
9963             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
9964           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
9965                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
9966                                 << FnName << SizeOfArgTy << ArgIdx
9967                                 << PointeeTy << Dest->getSourceRange()
9968                                 << LenExpr->getSourceRange());
9969           break;
9970         }
9971       }
9972     } else if (DestTy->isArrayType()) {
9973       PointeeTy = DestTy;
9974     }
9975 
9976     if (PointeeTy == QualType())
9977       continue;
9978 
9979     // Always complain about dynamic classes.
9980     bool IsContained;
9981     if (const CXXRecordDecl *ContainedRD =
9982             getContainedDynamicClass(PointeeTy, IsContained)) {
9983 
9984       unsigned OperationType = 0;
9985       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
9986       // "overwritten" if we're warning about the destination for any call
9987       // but memcmp; otherwise a verb appropriate to the call.
9988       if (ArgIdx != 0 || IsCmp) {
9989         if (BId == Builtin::BImemcpy)
9990           OperationType = 1;
9991         else if(BId == Builtin::BImemmove)
9992           OperationType = 2;
9993         else if (IsCmp)
9994           OperationType = 3;
9995       }
9996 
9997       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9998                           PDiag(diag::warn_dyn_class_memaccess)
9999                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
10000                               << IsContained << ContainedRD << OperationType
10001                               << Call->getCallee()->getSourceRange());
10002     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
10003              BId != Builtin::BImemset)
10004       DiagRuntimeBehavior(
10005         Dest->getExprLoc(), Dest,
10006         PDiag(diag::warn_arc_object_memaccess)
10007           << ArgIdx << FnName << PointeeTy
10008           << Call->getCallee()->getSourceRange());
10009     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
10010       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
10011           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
10012         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10013                             PDiag(diag::warn_cstruct_memaccess)
10014                                 << ArgIdx << FnName << PointeeTy << 0);
10015         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
10016       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
10017                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
10018         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10019                             PDiag(diag::warn_cstruct_memaccess)
10020                                 << ArgIdx << FnName << PointeeTy << 1);
10021         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
10022       } else {
10023         continue;
10024       }
10025     } else
10026       continue;
10027 
10028     DiagRuntimeBehavior(
10029       Dest->getExprLoc(), Dest,
10030       PDiag(diag::note_bad_memaccess_silence)
10031         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
10032     break;
10033   }
10034 }
10035 
10036 // A little helper routine: ignore addition and subtraction of integer literals.
10037 // This intentionally does not ignore all integer constant expressions because
10038 // we don't want to remove sizeof().
ignoreLiteralAdditions(const Expr * Ex,ASTContext & Ctx)10039 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
10040   Ex = Ex->IgnoreParenCasts();
10041 
10042   while (true) {
10043     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
10044     if (!BO || !BO->isAdditiveOp())
10045       break;
10046 
10047     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
10048     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
10049 
10050     if (isa<IntegerLiteral>(RHS))
10051       Ex = LHS;
10052     else if (isa<IntegerLiteral>(LHS))
10053       Ex = RHS;
10054     else
10055       break;
10056   }
10057 
10058   return Ex;
10059 }
10060 
isConstantSizeArrayWithMoreThanOneElement(QualType Ty,ASTContext & Context)10061 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
10062                                                       ASTContext &Context) {
10063   // Only handle constant-sized or VLAs, but not flexible members.
10064   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
10065     // Only issue the FIXIT for arrays of size > 1.
10066     if (CAT->getSize().getSExtValue() <= 1)
10067       return false;
10068   } else if (!Ty->isVariableArrayType()) {
10069     return false;
10070   }
10071   return true;
10072 }
10073 
10074 // Warn if the user has made the 'size' argument to strlcpy or strlcat
10075 // be the size of the source, instead of the destination.
CheckStrlcpycatArguments(const CallExpr * Call,IdentifierInfo * FnName)10076 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
10077                                     IdentifierInfo *FnName) {
10078 
10079   // Don't crash if the user has the wrong number of arguments
10080   unsigned NumArgs = Call->getNumArgs();
10081   if ((NumArgs != 3) && (NumArgs != 4))
10082     return;
10083 
10084   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
10085   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
10086   const Expr *CompareWithSrc = nullptr;
10087 
10088   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
10089                                      Call->getBeginLoc(), Call->getRParenLoc()))
10090     return;
10091 
10092   // Look for 'strlcpy(dst, x, sizeof(x))'
10093   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
10094     CompareWithSrc = Ex;
10095   else {
10096     // Look for 'strlcpy(dst, x, strlen(x))'
10097     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
10098       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
10099           SizeCall->getNumArgs() == 1)
10100         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
10101     }
10102   }
10103 
10104   if (!CompareWithSrc)
10105     return;
10106 
10107   // Determine if the argument to sizeof/strlen is equal to the source
10108   // argument.  In principle there's all kinds of things you could do
10109   // here, for instance creating an == expression and evaluating it with
10110   // EvaluateAsBooleanCondition, but this uses a more direct technique:
10111   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
10112   if (!SrcArgDRE)
10113     return;
10114 
10115   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
10116   if (!CompareWithSrcDRE ||
10117       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
10118     return;
10119 
10120   const Expr *OriginalSizeArg = Call->getArg(2);
10121   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
10122       << OriginalSizeArg->getSourceRange() << FnName;
10123 
10124   // Output a FIXIT hint if the destination is an array (rather than a
10125   // pointer to an array).  This could be enhanced to handle some
10126   // pointers if we know the actual size, like if DstArg is 'array+2'
10127   // we could say 'sizeof(array)-2'.
10128   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
10129   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
10130     return;
10131 
10132   SmallString<128> sizeString;
10133   llvm::raw_svector_ostream OS(sizeString);
10134   OS << "sizeof(";
10135   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10136   OS << ")";
10137 
10138   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
10139       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
10140                                       OS.str());
10141 }
10142 
10143 /// Check if two expressions refer to the same declaration.
referToTheSameDecl(const Expr * E1,const Expr * E2)10144 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
10145   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
10146     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
10147       return D1->getDecl() == D2->getDecl();
10148   return false;
10149 }
10150 
getStrlenExprArg(const Expr * E)10151 static const Expr *getStrlenExprArg(const Expr *E) {
10152   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
10153     const FunctionDecl *FD = CE->getDirectCallee();
10154     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
10155       return nullptr;
10156     return CE->getArg(0)->IgnoreParenCasts();
10157   }
10158   return nullptr;
10159 }
10160 
10161 // Warn on anti-patterns as the 'size' argument to strncat.
10162 // The correct size argument should look like following:
10163 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
CheckStrncatArguments(const CallExpr * CE,IdentifierInfo * FnName)10164 void Sema::CheckStrncatArguments(const CallExpr *CE,
10165                                  IdentifierInfo *FnName) {
10166   // Don't crash if the user has the wrong number of arguments.
10167   if (CE->getNumArgs() < 3)
10168     return;
10169   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
10170   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
10171   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
10172 
10173   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
10174                                      CE->getRParenLoc()))
10175     return;
10176 
10177   // Identify common expressions, which are wrongly used as the size argument
10178   // to strncat and may lead to buffer overflows.
10179   unsigned PatternType = 0;
10180   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
10181     // - sizeof(dst)
10182     if (referToTheSameDecl(SizeOfArg, DstArg))
10183       PatternType = 1;
10184     // - sizeof(src)
10185     else if (referToTheSameDecl(SizeOfArg, SrcArg))
10186       PatternType = 2;
10187   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
10188     if (BE->getOpcode() == BO_Sub) {
10189       const Expr *L = BE->getLHS()->IgnoreParenCasts();
10190       const Expr *R = BE->getRHS()->IgnoreParenCasts();
10191       // - sizeof(dst) - strlen(dst)
10192       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
10193           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
10194         PatternType = 1;
10195       // - sizeof(src) - (anything)
10196       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
10197         PatternType = 2;
10198     }
10199   }
10200 
10201   if (PatternType == 0)
10202     return;
10203 
10204   // Generate the diagnostic.
10205   SourceLocation SL = LenArg->getBeginLoc();
10206   SourceRange SR = LenArg->getSourceRange();
10207   SourceManager &SM = getSourceManager();
10208 
10209   // If the function is defined as a builtin macro, do not show macro expansion.
10210   if (SM.isMacroArgExpansion(SL)) {
10211     SL = SM.getSpellingLoc(SL);
10212     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
10213                      SM.getSpellingLoc(SR.getEnd()));
10214   }
10215 
10216   // Check if the destination is an array (rather than a pointer to an array).
10217   QualType DstTy = DstArg->getType();
10218   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
10219                                                                     Context);
10220   if (!isKnownSizeArray) {
10221     if (PatternType == 1)
10222       Diag(SL, diag::warn_strncat_wrong_size) << SR;
10223     else
10224       Diag(SL, diag::warn_strncat_src_size) << SR;
10225     return;
10226   }
10227 
10228   if (PatternType == 1)
10229     Diag(SL, diag::warn_strncat_large_size) << SR;
10230   else
10231     Diag(SL, diag::warn_strncat_src_size) << SR;
10232 
10233   SmallString<128> sizeString;
10234   llvm::raw_svector_ostream OS(sizeString);
10235   OS << "sizeof(";
10236   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10237   OS << ") - ";
10238   OS << "strlen(";
10239   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10240   OS << ") - 1";
10241 
10242   Diag(SL, diag::note_strncat_wrong_size)
10243     << FixItHint::CreateReplacement(SR, OS.str());
10244 }
10245 
10246 namespace {
CheckFreeArgumentsOnLvalue(Sema & S,const std::string & CalleeName,const UnaryOperator * UnaryExpr,const VarDecl * Var)10247 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10248                                 const UnaryOperator *UnaryExpr,
10249                                 const VarDecl *Var) {
10250   StorageClass Class = Var->getStorageClass();
10251   if (Class == StorageClass::SC_Extern ||
10252       Class == StorageClass::SC_PrivateExtern ||
10253       Var->getType()->isReferenceType())
10254     return;
10255 
10256   S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10257       << CalleeName << Var;
10258 }
10259 
CheckFreeArgumentsOnLvalue(Sema & S,const std::string & CalleeName,const UnaryOperator * UnaryExpr,const Decl * D)10260 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10261                                 const UnaryOperator *UnaryExpr, const Decl *D) {
10262   if (const auto *Field = dyn_cast<FieldDecl>(D))
10263     S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10264         << CalleeName << Field;
10265 }
10266 
CheckFreeArgumentsAddressof(Sema & S,const std::string & CalleeName,const UnaryOperator * UnaryExpr)10267 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
10268                                  const UnaryOperator *UnaryExpr) {
10269   if (UnaryExpr->getOpcode() != UnaryOperator::Opcode::UO_AddrOf)
10270     return;
10271 
10272   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr()))
10273     if (const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl()))
10274       return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, Var);
10275 
10276   if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
10277     return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
10278                                       Lvalue->getMemberDecl());
10279 }
10280 
CheckFreeArgumentsStackArray(Sema & S,const std::string & CalleeName,const DeclRefExpr * Lvalue)10281 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
10282                                   const DeclRefExpr *Lvalue) {
10283   if (!Lvalue->getType()->isArrayType())
10284     return;
10285 
10286   const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
10287   if (Var == nullptr)
10288     return;
10289 
10290   S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
10291       << CalleeName << Var;
10292 }
10293 } // namespace
10294 
10295 /// Alerts the user that they are attempting to free a non-malloc'd object.
CheckFreeArguments(const CallExpr * E)10296 void Sema::CheckFreeArguments(const CallExpr *E) {
10297   const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
10298   const std::string CalleeName =
10299       dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
10300 
10301   if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
10302     return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
10303 
10304   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
10305     return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
10306 }
10307 
10308 void
CheckReturnValExpr(Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc,bool isObjCMethod,const AttrVec * Attrs,const FunctionDecl * FD)10309 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
10310                          SourceLocation ReturnLoc,
10311                          bool isObjCMethod,
10312                          const AttrVec *Attrs,
10313                          const FunctionDecl *FD) {
10314   // Check if the return value is null but should not be.
10315   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
10316        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
10317       CheckNonNullExpr(*this, RetValExp))
10318     Diag(ReturnLoc, diag::warn_null_ret)
10319       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
10320 
10321   // C++11 [basic.stc.dynamic.allocation]p4:
10322   //   If an allocation function declared with a non-throwing
10323   //   exception-specification fails to allocate storage, it shall return
10324   //   a null pointer. Any other allocation function that fails to allocate
10325   //   storage shall indicate failure only by throwing an exception [...]
10326   if (FD) {
10327     OverloadedOperatorKind Op = FD->getOverloadedOperator();
10328     if (Op == OO_New || Op == OO_Array_New) {
10329       const FunctionProtoType *Proto
10330         = FD->getType()->castAs<FunctionProtoType>();
10331       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
10332           CheckNonNullExpr(*this, RetValExp))
10333         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
10334           << FD << getLangOpts().CPlusPlus11;
10335     }
10336   }
10337 
10338   // PPC MMA non-pointer types are not allowed as return type. Checking the type
10339   // here prevent the user from using a PPC MMA type as trailing return type.
10340   if (Context.getTargetInfo().getTriple().isPPC64())
10341     CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
10342 }
10343 
10344 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
10345 
10346 /// Check for comparisons of floating point operands using != and ==.
10347 /// Issue a warning if these are no self-comparisons, as they are not likely
10348 /// to do what the programmer intended.
CheckFloatComparison(SourceLocation Loc,Expr * LHS,Expr * RHS)10349 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
10350   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
10351   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
10352 
10353   // Special case: check for x == x (which is OK).
10354   // Do not emit warnings for such cases.
10355   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
10356     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
10357       if (DRL->getDecl() == DRR->getDecl())
10358         return;
10359 
10360   // Special case: check for comparisons against literals that can be exactly
10361   //  represented by APFloat.  In such cases, do not emit a warning.  This
10362   //  is a heuristic: often comparison against such literals are used to
10363   //  detect if a value in a variable has not changed.  This clearly can
10364   //  lead to false negatives.
10365   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
10366     if (FLL->isExact())
10367       return;
10368   } else
10369     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
10370       if (FLR->isExact())
10371         return;
10372 
10373   // Check for comparisons with builtin types.
10374   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
10375     if (CL->getBuiltinCallee())
10376       return;
10377 
10378   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
10379     if (CR->getBuiltinCallee())
10380       return;
10381 
10382   // Emit the diagnostic.
10383   Diag(Loc, diag::warn_floatingpoint_eq)
10384     << LHS->getSourceRange() << RHS->getSourceRange();
10385 }
10386 
10387 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
10388 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
10389 
10390 namespace {
10391 
10392 /// Structure recording the 'active' range of an integer-valued
10393 /// expression.
10394 struct IntRange {
10395   /// The number of bits active in the int. Note that this includes exactly one
10396   /// sign bit if !NonNegative.
10397   unsigned Width;
10398 
10399   /// True if the int is known not to have negative values. If so, all leading
10400   /// bits before Width are known zero, otherwise they are known to be the
10401   /// same as the MSB within Width.
10402   bool NonNegative;
10403 
IntRange__anon33aba9e81911::IntRange10404   IntRange(unsigned Width, bool NonNegative)
10405       : Width(Width), NonNegative(NonNegative) {}
10406 
10407   /// Number of bits excluding the sign bit.
valueBits__anon33aba9e81911::IntRange10408   unsigned valueBits() const {
10409     return NonNegative ? Width : Width - 1;
10410   }
10411 
10412   /// Returns the range of the bool type.
forBoolType__anon33aba9e81911::IntRange10413   static IntRange forBoolType() {
10414     return IntRange(1, true);
10415   }
10416 
10417   /// Returns the range of an opaque value of the given integral type.
forValueOfType__anon33aba9e81911::IntRange10418   static IntRange forValueOfType(ASTContext &C, QualType T) {
10419     return forValueOfCanonicalType(C,
10420                           T->getCanonicalTypeInternal().getTypePtr());
10421   }
10422 
10423   /// Returns the range of an opaque value of a canonical integral type.
forValueOfCanonicalType__anon33aba9e81911::IntRange10424   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
10425     assert(T->isCanonicalUnqualified());
10426 
10427     if (const VectorType *VT = dyn_cast<VectorType>(T))
10428       T = VT->getElementType().getTypePtr();
10429     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10430       T = CT->getElementType().getTypePtr();
10431     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10432       T = AT->getValueType().getTypePtr();
10433 
10434     if (!C.getLangOpts().CPlusPlus) {
10435       // For enum types in C code, use the underlying datatype.
10436       if (const EnumType *ET = dyn_cast<EnumType>(T))
10437         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
10438     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
10439       // For enum types in C++, use the known bit width of the enumerators.
10440       EnumDecl *Enum = ET->getDecl();
10441       // In C++11, enums can have a fixed underlying type. Use this type to
10442       // compute the range.
10443       if (Enum->isFixed()) {
10444         return IntRange(C.getIntWidth(QualType(T, 0)),
10445                         !ET->isSignedIntegerOrEnumerationType());
10446       }
10447 
10448       unsigned NumPositive = Enum->getNumPositiveBits();
10449       unsigned NumNegative = Enum->getNumNegativeBits();
10450 
10451       if (NumNegative == 0)
10452         return IntRange(NumPositive, true/*NonNegative*/);
10453       else
10454         return IntRange(std::max(NumPositive + 1, NumNegative),
10455                         false/*NonNegative*/);
10456     }
10457 
10458     if (const auto *EIT = dyn_cast<ExtIntType>(T))
10459       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
10460 
10461     const BuiltinType *BT = cast<BuiltinType>(T);
10462     assert(BT->isInteger());
10463 
10464     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10465   }
10466 
10467   /// Returns the "target" range of a canonical integral type, i.e.
10468   /// the range of values expressible in the type.
10469   ///
10470   /// This matches forValueOfCanonicalType except that enums have the
10471   /// full range of their type, not the range of their enumerators.
forTargetOfCanonicalType__anon33aba9e81911::IntRange10472   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
10473     assert(T->isCanonicalUnqualified());
10474 
10475     if (const VectorType *VT = dyn_cast<VectorType>(T))
10476       T = VT->getElementType().getTypePtr();
10477     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10478       T = CT->getElementType().getTypePtr();
10479     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10480       T = AT->getValueType().getTypePtr();
10481     if (const EnumType *ET = dyn_cast<EnumType>(T))
10482       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
10483 
10484     if (const auto *EIT = dyn_cast<ExtIntType>(T))
10485       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
10486 
10487     const BuiltinType *BT = cast<BuiltinType>(T);
10488     assert(BT->isInteger());
10489 
10490     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10491   }
10492 
10493   /// Returns the supremum of two ranges: i.e. their conservative merge.
join__anon33aba9e81911::IntRange10494   static IntRange join(IntRange L, IntRange R) {
10495     bool Unsigned = L.NonNegative && R.NonNegative;
10496     return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
10497                     L.NonNegative && R.NonNegative);
10498   }
10499 
10500   /// Return the range of a bitwise-AND of the two ranges.
bit_and__anon33aba9e81911::IntRange10501   static IntRange bit_and(IntRange L, IntRange R) {
10502     unsigned Bits = std::max(L.Width, R.Width);
10503     bool NonNegative = false;
10504     if (L.NonNegative) {
10505       Bits = std::min(Bits, L.Width);
10506       NonNegative = true;
10507     }
10508     if (R.NonNegative) {
10509       Bits = std::min(Bits, R.Width);
10510       NonNegative = true;
10511     }
10512     return IntRange(Bits, NonNegative);
10513   }
10514 
10515   /// Return the range of a sum of the two ranges.
sum__anon33aba9e81911::IntRange10516   static IntRange sum(IntRange L, IntRange R) {
10517     bool Unsigned = L.NonNegative && R.NonNegative;
10518     return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
10519                     Unsigned);
10520   }
10521 
10522   /// Return the range of a difference of the two ranges.
difference__anon33aba9e81911::IntRange10523   static IntRange difference(IntRange L, IntRange R) {
10524     // We need a 1-bit-wider range if:
10525     //   1) LHS can be negative: least value can be reduced.
10526     //   2) RHS can be negative: greatest value can be increased.
10527     bool CanWiden = !L.NonNegative || !R.NonNegative;
10528     bool Unsigned = L.NonNegative && R.Width == 0;
10529     return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
10530                         !Unsigned,
10531                     Unsigned);
10532   }
10533 
10534   /// Return the range of a product of the two ranges.
product__anon33aba9e81911::IntRange10535   static IntRange product(IntRange L, IntRange R) {
10536     // If both LHS and RHS can be negative, we can form
10537     //   -2^L * -2^R = 2^(L + R)
10538     // which requires L + R + 1 value bits to represent.
10539     bool CanWiden = !L.NonNegative && !R.NonNegative;
10540     bool Unsigned = L.NonNegative && R.NonNegative;
10541     return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
10542                     Unsigned);
10543   }
10544 
10545   /// Return the range of a remainder operation between the two ranges.
rem__anon33aba9e81911::IntRange10546   static IntRange rem(IntRange L, IntRange R) {
10547     // The result of a remainder can't be larger than the result of
10548     // either side. The sign of the result is the sign of the LHS.
10549     bool Unsigned = L.NonNegative;
10550     return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
10551                     Unsigned);
10552   }
10553 };
10554 
10555 } // namespace
10556 
GetValueRange(ASTContext & C,llvm::APSInt & value,unsigned MaxWidth)10557 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
10558                               unsigned MaxWidth) {
10559   if (value.isSigned() && value.isNegative())
10560     return IntRange(value.getMinSignedBits(), false);
10561 
10562   if (value.getBitWidth() > MaxWidth)
10563     value = value.trunc(MaxWidth);
10564 
10565   // isNonNegative() just checks the sign bit without considering
10566   // signedness.
10567   return IntRange(value.getActiveBits(), true);
10568 }
10569 
GetValueRange(ASTContext & C,APValue & result,QualType Ty,unsigned MaxWidth)10570 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
10571                               unsigned MaxWidth) {
10572   if (result.isInt())
10573     return GetValueRange(C, result.getInt(), MaxWidth);
10574 
10575   if (result.isVector()) {
10576     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
10577     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
10578       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
10579       R = IntRange::join(R, El);
10580     }
10581     return R;
10582   }
10583 
10584   if (result.isComplexInt()) {
10585     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
10586     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
10587     return IntRange::join(R, I);
10588   }
10589 
10590   // This can happen with lossless casts to intptr_t of "based" lvalues.
10591   // Assume it might use arbitrary bits.
10592   // FIXME: The only reason we need to pass the type in here is to get
10593   // the sign right on this one case.  It would be nice if APValue
10594   // preserved this.
10595   assert(result.isLValue() || result.isAddrLabelDiff());
10596   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
10597 }
10598 
GetExprType(const Expr * E)10599 static QualType GetExprType(const Expr *E) {
10600   QualType Ty = E->getType();
10601   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
10602     Ty = AtomicRHS->getValueType();
10603   return Ty;
10604 }
10605 
10606 /// Pseudo-evaluate the given integer expression, estimating the
10607 /// range of values it might take.
10608 ///
10609 /// \param MaxWidth The width to which the value will be truncated.
10610 /// \param Approximate If \c true, return a likely range for the result: in
10611 ///        particular, assume that aritmetic on narrower types doesn't leave
10612 ///        those types. If \c false, return a range including all possible
10613 ///        result values.
GetExprRange(ASTContext & C,const Expr * E,unsigned MaxWidth,bool InConstantContext,bool Approximate)10614 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
10615                              bool InConstantContext, bool Approximate) {
10616   E = E->IgnoreParens();
10617 
10618   // Try a full evaluation first.
10619   Expr::EvalResult result;
10620   if (E->EvaluateAsRValue(result, C, InConstantContext))
10621     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
10622 
10623   // I think we only want to look through implicit casts here; if the
10624   // user has an explicit widening cast, we should treat the value as
10625   // being of the new, wider type.
10626   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
10627     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
10628       return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
10629                           Approximate);
10630 
10631     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
10632 
10633     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
10634                          CE->getCastKind() == CK_BooleanToSignedIntegral;
10635 
10636     // Assume that non-integer casts can span the full range of the type.
10637     if (!isIntegerCast)
10638       return OutputTypeRange;
10639 
10640     IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
10641                                      std::min(MaxWidth, OutputTypeRange.Width),
10642                                      InConstantContext, Approximate);
10643 
10644     // Bail out if the subexpr's range is as wide as the cast type.
10645     if (SubRange.Width >= OutputTypeRange.Width)
10646       return OutputTypeRange;
10647 
10648     // Otherwise, we take the smaller width, and we're non-negative if
10649     // either the output type or the subexpr is.
10650     return IntRange(SubRange.Width,
10651                     SubRange.NonNegative || OutputTypeRange.NonNegative);
10652   }
10653 
10654   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
10655     // If we can fold the condition, just take that operand.
10656     bool CondResult;
10657     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
10658       return GetExprRange(C,
10659                           CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
10660                           MaxWidth, InConstantContext, Approximate);
10661 
10662     // Otherwise, conservatively merge.
10663     // GetExprRange requires an integer expression, but a throw expression
10664     // results in a void type.
10665     Expr *E = CO->getTrueExpr();
10666     IntRange L = E->getType()->isVoidType()
10667                      ? IntRange{0, true}
10668                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
10669     E = CO->getFalseExpr();
10670     IntRange R = E->getType()->isVoidType()
10671                      ? IntRange{0, true}
10672                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
10673     return IntRange::join(L, R);
10674   }
10675 
10676   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
10677     IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
10678 
10679     switch (BO->getOpcode()) {
10680     case BO_Cmp:
10681       llvm_unreachable("builtin <=> should have class type");
10682 
10683     // Boolean-valued operations are single-bit and positive.
10684     case BO_LAnd:
10685     case BO_LOr:
10686     case BO_LT:
10687     case BO_GT:
10688     case BO_LE:
10689     case BO_GE:
10690     case BO_EQ:
10691     case BO_NE:
10692       return IntRange::forBoolType();
10693 
10694     // The type of the assignments is the type of the LHS, so the RHS
10695     // is not necessarily the same type.
10696     case BO_MulAssign:
10697     case BO_DivAssign:
10698     case BO_RemAssign:
10699     case BO_AddAssign:
10700     case BO_SubAssign:
10701     case BO_XorAssign:
10702     case BO_OrAssign:
10703       // TODO: bitfields?
10704       return IntRange::forValueOfType(C, GetExprType(E));
10705 
10706     // Simple assignments just pass through the RHS, which will have
10707     // been coerced to the LHS type.
10708     case BO_Assign:
10709       // TODO: bitfields?
10710       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
10711                           Approximate);
10712 
10713     // Operations with opaque sources are black-listed.
10714     case BO_PtrMemD:
10715     case BO_PtrMemI:
10716       return IntRange::forValueOfType(C, GetExprType(E));
10717 
10718     // Bitwise-and uses the *infinum* of the two source ranges.
10719     case BO_And:
10720     case BO_AndAssign:
10721       Combine = IntRange::bit_and;
10722       break;
10723 
10724     // Left shift gets black-listed based on a judgement call.
10725     case BO_Shl:
10726       // ...except that we want to treat '1 << (blah)' as logically
10727       // positive.  It's an important idiom.
10728       if (IntegerLiteral *I
10729             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
10730         if (I->getValue() == 1) {
10731           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
10732           return IntRange(R.Width, /*NonNegative*/ true);
10733         }
10734       }
10735       LLVM_FALLTHROUGH;
10736 
10737     case BO_ShlAssign:
10738       return IntRange::forValueOfType(C, GetExprType(E));
10739 
10740     // Right shift by a constant can narrow its left argument.
10741     case BO_Shr:
10742     case BO_ShrAssign: {
10743       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
10744                                 Approximate);
10745 
10746       // If the shift amount is a positive constant, drop the width by
10747       // that much.
10748       if (Optional<llvm::APSInt> shift =
10749               BO->getRHS()->getIntegerConstantExpr(C)) {
10750         if (shift->isNonNegative()) {
10751           unsigned zext = shift->getZExtValue();
10752           if (zext >= L.Width)
10753             L.Width = (L.NonNegative ? 0 : 1);
10754           else
10755             L.Width -= zext;
10756         }
10757       }
10758 
10759       return L;
10760     }
10761 
10762     // Comma acts as its right operand.
10763     case BO_Comma:
10764       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
10765                           Approximate);
10766 
10767     case BO_Add:
10768       if (!Approximate)
10769         Combine = IntRange::sum;
10770       break;
10771 
10772     case BO_Sub:
10773       if (BO->getLHS()->getType()->isPointerType())
10774         return IntRange::forValueOfType(C, GetExprType(E));
10775       if (!Approximate)
10776         Combine = IntRange::difference;
10777       break;
10778 
10779     case BO_Mul:
10780       if (!Approximate)
10781         Combine = IntRange::product;
10782       break;
10783 
10784     // The width of a division result is mostly determined by the size
10785     // of the LHS.
10786     case BO_Div: {
10787       // Don't 'pre-truncate' the operands.
10788       unsigned opWidth = C.getIntWidth(GetExprType(E));
10789       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
10790                                 Approximate);
10791 
10792       // If the divisor is constant, use that.
10793       if (Optional<llvm::APSInt> divisor =
10794               BO->getRHS()->getIntegerConstantExpr(C)) {
10795         unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
10796         if (log2 >= L.Width)
10797           L.Width = (L.NonNegative ? 0 : 1);
10798         else
10799           L.Width = std::min(L.Width - log2, MaxWidth);
10800         return L;
10801       }
10802 
10803       // Otherwise, just use the LHS's width.
10804       // FIXME: This is wrong if the LHS could be its minimal value and the RHS
10805       // could be -1.
10806       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
10807                                 Approximate);
10808       return IntRange(L.Width, L.NonNegative && R.NonNegative);
10809     }
10810 
10811     case BO_Rem:
10812       Combine = IntRange::rem;
10813       break;
10814 
10815     // The default behavior is okay for these.
10816     case BO_Xor:
10817     case BO_Or:
10818       break;
10819     }
10820 
10821     // Combine the two ranges, but limit the result to the type in which we
10822     // performed the computation.
10823     QualType T = GetExprType(E);
10824     unsigned opWidth = C.getIntWidth(T);
10825     IntRange L =
10826         GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
10827     IntRange R =
10828         GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
10829     IntRange C = Combine(L, R);
10830     C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
10831     C.Width = std::min(C.Width, MaxWidth);
10832     return C;
10833   }
10834 
10835   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
10836     switch (UO->getOpcode()) {
10837     // Boolean-valued operations are white-listed.
10838     case UO_LNot:
10839       return IntRange::forBoolType();
10840 
10841     // Operations with opaque sources are black-listed.
10842     case UO_Deref:
10843     case UO_AddrOf: // should be impossible
10844       return IntRange::forValueOfType(C, GetExprType(E));
10845 
10846     default:
10847       return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
10848                           Approximate);
10849     }
10850   }
10851 
10852   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
10853     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
10854                         Approximate);
10855 
10856   if (const auto *BitField = E->getSourceBitField())
10857     return IntRange(BitField->getBitWidthValue(C),
10858                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
10859 
10860   return IntRange::forValueOfType(C, GetExprType(E));
10861 }
10862 
GetExprRange(ASTContext & C,const Expr * E,bool InConstantContext,bool Approximate)10863 static IntRange GetExprRange(ASTContext &C, const Expr *E,
10864                              bool InConstantContext, bool Approximate) {
10865   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
10866                       Approximate);
10867 }
10868 
10869 /// Checks whether the given value, which currently has the given
10870 /// source semantics, has the same value when coerced through the
10871 /// target semantics.
IsSameFloatAfterCast(const llvm::APFloat & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)10872 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
10873                                  const llvm::fltSemantics &Src,
10874                                  const llvm::fltSemantics &Tgt) {
10875   llvm::APFloat truncated = value;
10876 
10877   bool ignored;
10878   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
10879   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
10880 
10881   return truncated.bitwiseIsEqual(value);
10882 }
10883 
10884 /// Checks whether the given value, which currently has the given
10885 /// source semantics, has the same value when coerced through the
10886 /// target semantics.
10887 ///
10888 /// The value might be a vector of floats (or a complex number).
IsSameFloatAfterCast(const APValue & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)10889 static bool IsSameFloatAfterCast(const APValue &value,
10890                                  const llvm::fltSemantics &Src,
10891                                  const llvm::fltSemantics &Tgt) {
10892   if (value.isFloat())
10893     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
10894 
10895   if (value.isVector()) {
10896     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
10897       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
10898         return false;
10899     return true;
10900   }
10901 
10902   assert(value.isComplexFloat());
10903   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
10904           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
10905 }
10906 
10907 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
10908                                        bool IsListInit = false);
10909 
IsEnumConstOrFromMacro(Sema & S,Expr * E)10910 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
10911   // Suppress cases where we are comparing against an enum constant.
10912   if (const DeclRefExpr *DR =
10913       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
10914     if (isa<EnumConstantDecl>(DR->getDecl()))
10915       return true;
10916 
10917   // Suppress cases where the value is expanded from a macro, unless that macro
10918   // is how a language represents a boolean literal. This is the case in both C
10919   // and Objective-C.
10920   SourceLocation BeginLoc = E->getBeginLoc();
10921   if (BeginLoc.isMacroID()) {
10922     StringRef MacroName = Lexer::getImmediateMacroName(
10923         BeginLoc, S.getSourceManager(), S.getLangOpts());
10924     return MacroName != "YES" && MacroName != "NO" &&
10925            MacroName != "true" && MacroName != "false";
10926   }
10927 
10928   return false;
10929 }
10930 
isKnownToHaveUnsignedValue(Expr * E)10931 static bool isKnownToHaveUnsignedValue(Expr *E) {
10932   return E->getType()->isIntegerType() &&
10933          (!E->getType()->isSignedIntegerType() ||
10934           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
10935 }
10936 
10937 namespace {
10938 /// The promoted range of values of a type. In general this has the
10939 /// following structure:
10940 ///
10941 ///     |-----------| . . . |-----------|
10942 ///     ^           ^       ^           ^
10943 ///    Min       HoleMin  HoleMax      Max
10944 ///
10945 /// ... where there is only a hole if a signed type is promoted to unsigned
10946 /// (in which case Min and Max are the smallest and largest representable
10947 /// values).
10948 struct PromotedRange {
10949   // Min, or HoleMax if there is a hole.
10950   llvm::APSInt PromotedMin;
10951   // Max, or HoleMin if there is a hole.
10952   llvm::APSInt PromotedMax;
10953 
PromotedRange__anon33aba9e81a11::PromotedRange10954   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
10955     if (R.Width == 0)
10956       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
10957     else if (R.Width >= BitWidth && !Unsigned) {
10958       // Promotion made the type *narrower*. This happens when promoting
10959       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
10960       // Treat all values of 'signed int' as being in range for now.
10961       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
10962       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
10963     } else {
10964       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
10965                         .extOrTrunc(BitWidth);
10966       PromotedMin.setIsUnsigned(Unsigned);
10967 
10968       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
10969                         .extOrTrunc(BitWidth);
10970       PromotedMax.setIsUnsigned(Unsigned);
10971     }
10972   }
10973 
10974   // Determine whether this range is contiguous (has no hole).
isContiguous__anon33aba9e81a11::PromotedRange10975   bool isContiguous() const { return PromotedMin <= PromotedMax; }
10976 
10977   // Where a constant value is within the range.
10978   enum ComparisonResult {
10979     LT = 0x1,
10980     LE = 0x2,
10981     GT = 0x4,
10982     GE = 0x8,
10983     EQ = 0x10,
10984     NE = 0x20,
10985     InRangeFlag = 0x40,
10986 
10987     Less = LE | LT | NE,
10988     Min = LE | InRangeFlag,
10989     InRange = InRangeFlag,
10990     Max = GE | InRangeFlag,
10991     Greater = GE | GT | NE,
10992 
10993     OnlyValue = LE | GE | EQ | InRangeFlag,
10994     InHole = NE
10995   };
10996 
compare__anon33aba9e81a11::PromotedRange10997   ComparisonResult compare(const llvm::APSInt &Value) const {
10998     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
10999            Value.isUnsigned() == PromotedMin.isUnsigned());
11000     if (!isContiguous()) {
11001       assert(Value.isUnsigned() && "discontiguous range for signed compare");
11002       if (Value.isMinValue()) return Min;
11003       if (Value.isMaxValue()) return Max;
11004       if (Value >= PromotedMin) return InRange;
11005       if (Value <= PromotedMax) return InRange;
11006       return InHole;
11007     }
11008 
11009     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
11010     case -1: return Less;
11011     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
11012     case 1:
11013       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
11014       case -1: return InRange;
11015       case 0: return Max;
11016       case 1: return Greater;
11017       }
11018     }
11019 
11020     llvm_unreachable("impossible compare result");
11021   }
11022 
11023   static llvm::Optional<StringRef>
constantValue__anon33aba9e81a11::PromotedRange11024   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
11025     if (Op == BO_Cmp) {
11026       ComparisonResult LTFlag = LT, GTFlag = GT;
11027       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
11028 
11029       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
11030       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
11031       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
11032       return llvm::None;
11033     }
11034 
11035     ComparisonResult TrueFlag, FalseFlag;
11036     if (Op == BO_EQ) {
11037       TrueFlag = EQ;
11038       FalseFlag = NE;
11039     } else if (Op == BO_NE) {
11040       TrueFlag = NE;
11041       FalseFlag = EQ;
11042     } else {
11043       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
11044         TrueFlag = LT;
11045         FalseFlag = GE;
11046       } else {
11047         TrueFlag = GT;
11048         FalseFlag = LE;
11049       }
11050       if (Op == BO_GE || Op == BO_LE)
11051         std::swap(TrueFlag, FalseFlag);
11052     }
11053     if (R & TrueFlag)
11054       return StringRef("true");
11055     if (R & FalseFlag)
11056       return StringRef("false");
11057     return llvm::None;
11058   }
11059 };
11060 }
11061 
HasEnumType(Expr * E)11062 static bool HasEnumType(Expr *E) {
11063   // Strip off implicit integral promotions.
11064   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11065     if (ICE->getCastKind() != CK_IntegralCast &&
11066         ICE->getCastKind() != CK_NoOp)
11067       break;
11068     E = ICE->getSubExpr();
11069   }
11070 
11071   return E->getType()->isEnumeralType();
11072 }
11073 
classifyConstantValue(Expr * Constant)11074 static int classifyConstantValue(Expr *Constant) {
11075   // The values of this enumeration are used in the diagnostics
11076   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
11077   enum ConstantValueKind {
11078     Miscellaneous = 0,
11079     LiteralTrue,
11080     LiteralFalse
11081   };
11082   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
11083     return BL->getValue() ? ConstantValueKind::LiteralTrue
11084                           : ConstantValueKind::LiteralFalse;
11085   return ConstantValueKind::Miscellaneous;
11086 }
11087 
CheckTautologicalComparison(Sema & S,BinaryOperator * E,Expr * Constant,Expr * Other,const llvm::APSInt & Value,bool RhsConstant)11088 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
11089                                         Expr *Constant, Expr *Other,
11090                                         const llvm::APSInt &Value,
11091                                         bool RhsConstant) {
11092   if (S.inTemplateInstantiation())
11093     return false;
11094 
11095   Expr *OriginalOther = Other;
11096 
11097   Constant = Constant->IgnoreParenImpCasts();
11098   Other = Other->IgnoreParenImpCasts();
11099 
11100   // Suppress warnings on tautological comparisons between values of the same
11101   // enumeration type. There are only two ways we could warn on this:
11102   //  - If the constant is outside the range of representable values of
11103   //    the enumeration. In such a case, we should warn about the cast
11104   //    to enumeration type, not about the comparison.
11105   //  - If the constant is the maximum / minimum in-range value. For an
11106   //    enumeratin type, such comparisons can be meaningful and useful.
11107   if (Constant->getType()->isEnumeralType() &&
11108       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
11109     return false;
11110 
11111   IntRange OtherValueRange = GetExprRange(
11112       S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
11113 
11114   QualType OtherT = Other->getType();
11115   if (const auto *AT = OtherT->getAs<AtomicType>())
11116     OtherT = AT->getValueType();
11117   IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
11118 
11119   // Special case for ObjC BOOL on targets where its a typedef for a signed char
11120   // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
11121   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
11122                               S.NSAPIObj->isObjCBOOLType(OtherT) &&
11123                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
11124 
11125   // Whether we're treating Other as being a bool because of the form of
11126   // expression despite it having another type (typically 'int' in C).
11127   bool OtherIsBooleanDespiteType =
11128       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
11129   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
11130     OtherTypeRange = OtherValueRange = IntRange::forBoolType();
11131 
11132   // Check if all values in the range of possible values of this expression
11133   // lead to the same comparison outcome.
11134   PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
11135                                         Value.isUnsigned());
11136   auto Cmp = OtherPromotedValueRange.compare(Value);
11137   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
11138   if (!Result)
11139     return false;
11140 
11141   // Also consider the range determined by the type alone. This allows us to
11142   // classify the warning under the proper diagnostic group.
11143   bool TautologicalTypeCompare = false;
11144   {
11145     PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
11146                                          Value.isUnsigned());
11147     auto TypeCmp = OtherPromotedTypeRange.compare(Value);
11148     if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
11149                                                        RhsConstant)) {
11150       TautologicalTypeCompare = true;
11151       Cmp = TypeCmp;
11152       Result = TypeResult;
11153     }
11154   }
11155 
11156   // Don't warn if the non-constant operand actually always evaluates to the
11157   // same value.
11158   if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
11159     return false;
11160 
11161   // Suppress the diagnostic for an in-range comparison if the constant comes
11162   // from a macro or enumerator. We don't want to diagnose
11163   //
11164   //   some_long_value <= INT_MAX
11165   //
11166   // when sizeof(int) == sizeof(long).
11167   bool InRange = Cmp & PromotedRange::InRangeFlag;
11168   if (InRange && IsEnumConstOrFromMacro(S, Constant))
11169     return false;
11170 
11171   // A comparison of an unsigned bit-field against 0 is really a type problem,
11172   // even though at the type level the bit-field might promote to 'signed int'.
11173   if (Other->refersToBitField() && InRange && Value == 0 &&
11174       Other->getType()->isUnsignedIntegerOrEnumerationType())
11175     TautologicalTypeCompare = true;
11176 
11177   // If this is a comparison to an enum constant, include that
11178   // constant in the diagnostic.
11179   const EnumConstantDecl *ED = nullptr;
11180   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
11181     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
11182 
11183   // Should be enough for uint128 (39 decimal digits)
11184   SmallString<64> PrettySourceValue;
11185   llvm::raw_svector_ostream OS(PrettySourceValue);
11186   if (ED) {
11187     OS << '\'' << *ED << "' (" << Value << ")";
11188   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
11189                Constant->IgnoreParenImpCasts())) {
11190     OS << (BL->getValue() ? "YES" : "NO");
11191   } else {
11192     OS << Value;
11193   }
11194 
11195   if (!TautologicalTypeCompare) {
11196     S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
11197         << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
11198         << E->getOpcodeStr() << OS.str() << *Result
11199         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11200     return true;
11201   }
11202 
11203   if (IsObjCSignedCharBool) {
11204     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11205                           S.PDiag(diag::warn_tautological_compare_objc_bool)
11206                               << OS.str() << *Result);
11207     return true;
11208   }
11209 
11210   // FIXME: We use a somewhat different formatting for the in-range cases and
11211   // cases involving boolean values for historical reasons. We should pick a
11212   // consistent way of presenting these diagnostics.
11213   if (!InRange || Other->isKnownToHaveBooleanValue()) {
11214 
11215     S.DiagRuntimeBehavior(
11216         E->getOperatorLoc(), E,
11217         S.PDiag(!InRange ? diag::warn_out_of_range_compare
11218                          : diag::warn_tautological_bool_compare)
11219             << OS.str() << classifyConstantValue(Constant) << OtherT
11220             << OtherIsBooleanDespiteType << *Result
11221             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
11222   } else {
11223     unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
11224                         ? (HasEnumType(OriginalOther)
11225                                ? diag::warn_unsigned_enum_always_true_comparison
11226                                : diag::warn_unsigned_always_true_comparison)
11227                         : diag::warn_tautological_constant_compare;
11228 
11229     S.Diag(E->getOperatorLoc(), Diag)
11230         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
11231         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11232   }
11233 
11234   return true;
11235 }
11236 
11237 /// Analyze the operands of the given comparison.  Implements the
11238 /// fallback case from AnalyzeComparison.
AnalyzeImpConvsInComparison(Sema & S,BinaryOperator * E)11239 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
11240   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11241   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11242 }
11243 
11244 /// Implements -Wsign-compare.
11245 ///
11246 /// \param E the binary operator to check for warnings
AnalyzeComparison(Sema & S,BinaryOperator * E)11247 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
11248   // The type the comparison is being performed in.
11249   QualType T = E->getLHS()->getType();
11250 
11251   // Only analyze comparison operators where both sides have been converted to
11252   // the same type.
11253   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
11254     return AnalyzeImpConvsInComparison(S, E);
11255 
11256   // Don't analyze value-dependent comparisons directly.
11257   if (E->isValueDependent())
11258     return AnalyzeImpConvsInComparison(S, E);
11259 
11260   Expr *LHS = E->getLHS();
11261   Expr *RHS = E->getRHS();
11262 
11263   if (T->isIntegralType(S.Context)) {
11264     Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
11265     Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
11266 
11267     // We don't care about expressions whose result is a constant.
11268     if (RHSValue && LHSValue)
11269       return AnalyzeImpConvsInComparison(S, E);
11270 
11271     // We only care about expressions where just one side is literal
11272     if ((bool)RHSValue ^ (bool)LHSValue) {
11273       // Is the constant on the RHS or LHS?
11274       const bool RhsConstant = (bool)RHSValue;
11275       Expr *Const = RhsConstant ? RHS : LHS;
11276       Expr *Other = RhsConstant ? LHS : RHS;
11277       const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
11278 
11279       // Check whether an integer constant comparison results in a value
11280       // of 'true' or 'false'.
11281       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
11282         return AnalyzeImpConvsInComparison(S, E);
11283     }
11284   }
11285 
11286   if (!T->hasUnsignedIntegerRepresentation()) {
11287     // We don't do anything special if this isn't an unsigned integral
11288     // comparison:  we're only interested in integral comparisons, and
11289     // signed comparisons only happen in cases we don't care to warn about.
11290     return AnalyzeImpConvsInComparison(S, E);
11291   }
11292 
11293   LHS = LHS->IgnoreParenImpCasts();
11294   RHS = RHS->IgnoreParenImpCasts();
11295 
11296   if (!S.getLangOpts().CPlusPlus) {
11297     // Avoid warning about comparison of integers with different signs when
11298     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
11299     // the type of `E`.
11300     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
11301       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11302     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
11303       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11304   }
11305 
11306   // Check to see if one of the (unmodified) operands is of different
11307   // signedness.
11308   Expr *signedOperand, *unsignedOperand;
11309   if (LHS->getType()->hasSignedIntegerRepresentation()) {
11310     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
11311            "unsigned comparison between two signed integer expressions?");
11312     signedOperand = LHS;
11313     unsignedOperand = RHS;
11314   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
11315     signedOperand = RHS;
11316     unsignedOperand = LHS;
11317   } else {
11318     return AnalyzeImpConvsInComparison(S, E);
11319   }
11320 
11321   // Otherwise, calculate the effective range of the signed operand.
11322   IntRange signedRange = GetExprRange(
11323       S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
11324 
11325   // Go ahead and analyze implicit conversions in the operands.  Note
11326   // that we skip the implicit conversions on both sides.
11327   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
11328   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
11329 
11330   // If the signed range is non-negative, -Wsign-compare won't fire.
11331   if (signedRange.NonNegative)
11332     return;
11333 
11334   // For (in)equality comparisons, if the unsigned operand is a
11335   // constant which cannot collide with a overflowed signed operand,
11336   // then reinterpreting the signed operand as unsigned will not
11337   // change the result of the comparison.
11338   if (E->isEqualityOp()) {
11339     unsigned comparisonWidth = S.Context.getIntWidth(T);
11340     IntRange unsignedRange =
11341         GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
11342                      /*Approximate*/ true);
11343 
11344     // We should never be unable to prove that the unsigned operand is
11345     // non-negative.
11346     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
11347 
11348     if (unsignedRange.Width < comparisonWidth)
11349       return;
11350   }
11351 
11352   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11353                         S.PDiag(diag::warn_mixed_sign_comparison)
11354                             << LHS->getType() << RHS->getType()
11355                             << LHS->getSourceRange() << RHS->getSourceRange());
11356 }
11357 
11358 /// Analyzes an attempt to assign the given value to a bitfield.
11359 ///
11360 /// Returns true if there was something fishy about the attempt.
AnalyzeBitFieldAssignment(Sema & S,FieldDecl * Bitfield,Expr * Init,SourceLocation InitLoc)11361 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
11362                                       SourceLocation InitLoc) {
11363   assert(Bitfield->isBitField());
11364   if (Bitfield->isInvalidDecl())
11365     return false;
11366 
11367   // White-list bool bitfields.
11368   QualType BitfieldType = Bitfield->getType();
11369   if (BitfieldType->isBooleanType())
11370      return false;
11371 
11372   if (BitfieldType->isEnumeralType()) {
11373     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
11374     // If the underlying enum type was not explicitly specified as an unsigned
11375     // type and the enum contain only positive values, MSVC++ will cause an
11376     // inconsistency by storing this as a signed type.
11377     if (S.getLangOpts().CPlusPlus11 &&
11378         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
11379         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
11380         BitfieldEnumDecl->getNumNegativeBits() == 0) {
11381       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
11382           << BitfieldEnumDecl;
11383     }
11384   }
11385 
11386   if (Bitfield->getType()->isBooleanType())
11387     return false;
11388 
11389   // Ignore value- or type-dependent expressions.
11390   if (Bitfield->getBitWidth()->isValueDependent() ||
11391       Bitfield->getBitWidth()->isTypeDependent() ||
11392       Init->isValueDependent() ||
11393       Init->isTypeDependent())
11394     return false;
11395 
11396   Expr *OriginalInit = Init->IgnoreParenImpCasts();
11397   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
11398 
11399   Expr::EvalResult Result;
11400   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
11401                                    Expr::SE_AllowSideEffects)) {
11402     // The RHS is not constant.  If the RHS has an enum type, make sure the
11403     // bitfield is wide enough to hold all the values of the enum without
11404     // truncation.
11405     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
11406       EnumDecl *ED = EnumTy->getDecl();
11407       bool SignedBitfield = BitfieldType->isSignedIntegerType();
11408 
11409       // Enum types are implicitly signed on Windows, so check if there are any
11410       // negative enumerators to see if the enum was intended to be signed or
11411       // not.
11412       bool SignedEnum = ED->getNumNegativeBits() > 0;
11413 
11414       // Check for surprising sign changes when assigning enum values to a
11415       // bitfield of different signedness.  If the bitfield is signed and we
11416       // have exactly the right number of bits to store this unsigned enum,
11417       // suggest changing the enum to an unsigned type. This typically happens
11418       // on Windows where unfixed enums always use an underlying type of 'int'.
11419       unsigned DiagID = 0;
11420       if (SignedEnum && !SignedBitfield) {
11421         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
11422       } else if (SignedBitfield && !SignedEnum &&
11423                  ED->getNumPositiveBits() == FieldWidth) {
11424         DiagID = diag::warn_signed_bitfield_enum_conversion;
11425       }
11426 
11427       if (DiagID) {
11428         S.Diag(InitLoc, DiagID) << Bitfield << ED;
11429         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
11430         SourceRange TypeRange =
11431             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
11432         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
11433             << SignedEnum << TypeRange;
11434       }
11435 
11436       // Compute the required bitwidth. If the enum has negative values, we need
11437       // one more bit than the normal number of positive bits to represent the
11438       // sign bit.
11439       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
11440                                                   ED->getNumNegativeBits())
11441                                        : ED->getNumPositiveBits();
11442 
11443       // Check the bitwidth.
11444       if (BitsNeeded > FieldWidth) {
11445         Expr *WidthExpr = Bitfield->getBitWidth();
11446         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
11447             << Bitfield << ED;
11448         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
11449             << BitsNeeded << ED << WidthExpr->getSourceRange();
11450       }
11451     }
11452 
11453     return false;
11454   }
11455 
11456   llvm::APSInt Value = Result.Val.getInt();
11457 
11458   unsigned OriginalWidth = Value.getBitWidth();
11459 
11460   if (!Value.isSigned() || Value.isNegative())
11461     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
11462       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
11463         OriginalWidth = Value.getMinSignedBits();
11464 
11465   if (OriginalWidth <= FieldWidth)
11466     return false;
11467 
11468   // Compute the value which the bitfield will contain.
11469   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
11470   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
11471 
11472   // Check whether the stored value is equal to the original value.
11473   TruncatedValue = TruncatedValue.extend(OriginalWidth);
11474   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
11475     return false;
11476 
11477   // Special-case bitfields of width 1: booleans are naturally 0/1, and
11478   // therefore don't strictly fit into a signed bitfield of width 1.
11479   if (FieldWidth == 1 && Value == 1)
11480     return false;
11481 
11482   std::string PrettyValue = Value.toString(10);
11483   std::string PrettyTrunc = TruncatedValue.toString(10);
11484 
11485   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
11486     << PrettyValue << PrettyTrunc << OriginalInit->getType()
11487     << Init->getSourceRange();
11488 
11489   return true;
11490 }
11491 
11492 /// Analyze the given simple or compound assignment for warning-worthy
11493 /// operations.
AnalyzeAssignment(Sema & S,BinaryOperator * E)11494 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
11495   // Just recurse on the LHS.
11496   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11497 
11498   // We want to recurse on the RHS as normal unless we're assigning to
11499   // a bitfield.
11500   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
11501     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
11502                                   E->getOperatorLoc())) {
11503       // Recurse, ignoring any implicit conversions on the RHS.
11504       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
11505                                         E->getOperatorLoc());
11506     }
11507   }
11508 
11509   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11510 
11511   // Diagnose implicitly sequentially-consistent atomic assignment.
11512   if (E->getLHS()->getType()->isAtomicType())
11513     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
11514 }
11515 
11516 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType SourceType,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)11517 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
11518                             SourceLocation CContext, unsigned diag,
11519                             bool pruneControlFlow = false) {
11520   if (pruneControlFlow) {
11521     S.DiagRuntimeBehavior(E->getExprLoc(), E,
11522                           S.PDiag(diag)
11523                               << SourceType << T << E->getSourceRange()
11524                               << SourceRange(CContext));
11525     return;
11526   }
11527   S.Diag(E->getExprLoc(), diag)
11528     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
11529 }
11530 
11531 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)11532 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
11533                             SourceLocation CContext,
11534                             unsigned diag, bool pruneControlFlow = false) {
11535   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
11536 }
11537 
isObjCSignedCharBool(Sema & S,QualType Ty)11538 static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
11539   return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
11540       S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
11541 }
11542 
adornObjCBoolConversionDiagWithTernaryFixit(Sema & S,Expr * SourceExpr,const Sema::SemaDiagnosticBuilder & Builder)11543 static void adornObjCBoolConversionDiagWithTernaryFixit(
11544     Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
11545   Expr *Ignored = SourceExpr->IgnoreImplicit();
11546   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
11547     Ignored = OVE->getSourceExpr();
11548   bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
11549                      isa<BinaryOperator>(Ignored) ||
11550                      isa<CXXOperatorCallExpr>(Ignored);
11551   SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
11552   if (NeedsParens)
11553     Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
11554             << FixItHint::CreateInsertion(EndLoc, ")");
11555   Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
11556 }
11557 
11558 /// Diagnose an implicit cast from a floating point value to an integer value.
DiagnoseFloatingImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext)11559 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
11560                                     SourceLocation CContext) {
11561   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
11562   const bool PruneWarnings = S.inTemplateInstantiation();
11563 
11564   Expr *InnerE = E->IgnoreParenImpCasts();
11565   // We also want to warn on, e.g., "int i = -1.234"
11566   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
11567     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
11568       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
11569 
11570   const bool IsLiteral =
11571       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
11572 
11573   llvm::APFloat Value(0.0);
11574   bool IsConstant =
11575     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
11576   if (!IsConstant) {
11577     if (isObjCSignedCharBool(S, T)) {
11578       return adornObjCBoolConversionDiagWithTernaryFixit(
11579           S, E,
11580           S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
11581               << E->getType());
11582     }
11583 
11584     return DiagnoseImpCast(S, E, T, CContext,
11585                            diag::warn_impcast_float_integer, PruneWarnings);
11586   }
11587 
11588   bool isExact = false;
11589 
11590   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
11591                             T->hasUnsignedIntegerRepresentation());
11592   llvm::APFloat::opStatus Result = Value.convertToInteger(
11593       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
11594 
11595   // FIXME: Force the precision of the source value down so we don't print
11596   // digits which are usually useless (we don't really care here if we
11597   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
11598   // would automatically print the shortest representation, but it's a bit
11599   // tricky to implement.
11600   SmallString<16> PrettySourceValue;
11601   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
11602   precision = (precision * 59 + 195) / 196;
11603   Value.toString(PrettySourceValue, precision);
11604 
11605   if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
11606     return adornObjCBoolConversionDiagWithTernaryFixit(
11607         S, E,
11608         S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
11609             << PrettySourceValue);
11610   }
11611 
11612   if (Result == llvm::APFloat::opOK && isExact) {
11613     if (IsLiteral) return;
11614     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
11615                            PruneWarnings);
11616   }
11617 
11618   // Conversion of a floating-point value to a non-bool integer where the
11619   // integral part cannot be represented by the integer type is undefined.
11620   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
11621     return DiagnoseImpCast(
11622         S, E, T, CContext,
11623         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
11624                   : diag::warn_impcast_float_to_integer_out_of_range,
11625         PruneWarnings);
11626 
11627   unsigned DiagID = 0;
11628   if (IsLiteral) {
11629     // Warn on floating point literal to integer.
11630     DiagID = diag::warn_impcast_literal_float_to_integer;
11631   } else if (IntegerValue == 0) {
11632     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
11633       return DiagnoseImpCast(S, E, T, CContext,
11634                              diag::warn_impcast_float_integer, PruneWarnings);
11635     }
11636     // Warn on non-zero to zero conversion.
11637     DiagID = diag::warn_impcast_float_to_integer_zero;
11638   } else {
11639     if (IntegerValue.isUnsigned()) {
11640       if (!IntegerValue.isMaxValue()) {
11641         return DiagnoseImpCast(S, E, T, CContext,
11642                                diag::warn_impcast_float_integer, PruneWarnings);
11643       }
11644     } else {  // IntegerValue.isSigned()
11645       if (!IntegerValue.isMaxSignedValue() &&
11646           !IntegerValue.isMinSignedValue()) {
11647         return DiagnoseImpCast(S, E, T, CContext,
11648                                diag::warn_impcast_float_integer, PruneWarnings);
11649       }
11650     }
11651     // Warn on evaluatable floating point expression to integer conversion.
11652     DiagID = diag::warn_impcast_float_to_integer;
11653   }
11654 
11655   SmallString<16> PrettyTargetValue;
11656   if (IsBool)
11657     PrettyTargetValue = Value.isZero() ? "false" : "true";
11658   else
11659     IntegerValue.toString(PrettyTargetValue);
11660 
11661   if (PruneWarnings) {
11662     S.DiagRuntimeBehavior(E->getExprLoc(), E,
11663                           S.PDiag(DiagID)
11664                               << E->getType() << T.getUnqualifiedType()
11665                               << PrettySourceValue << PrettyTargetValue
11666                               << E->getSourceRange() << SourceRange(CContext));
11667   } else {
11668     S.Diag(E->getExprLoc(), DiagID)
11669         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
11670         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
11671   }
11672 }
11673 
11674 /// Analyze the given compound assignment for the possible losing of
11675 /// floating-point precision.
AnalyzeCompoundAssignment(Sema & S,BinaryOperator * E)11676 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
11677   assert(isa<CompoundAssignOperator>(E) &&
11678          "Must be compound assignment operation");
11679   // Recurse on the LHS and RHS in here
11680   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11681   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11682 
11683   if (E->getLHS()->getType()->isAtomicType())
11684     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
11685 
11686   // Now check the outermost expression
11687   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
11688   const auto *RBT = cast<CompoundAssignOperator>(E)
11689                         ->getComputationResultType()
11690                         ->getAs<BuiltinType>();
11691 
11692   // The below checks assume source is floating point.
11693   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
11694 
11695   // If source is floating point but target is an integer.
11696   if (ResultBT->isInteger())
11697     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
11698                            E->getExprLoc(), diag::warn_impcast_float_integer);
11699 
11700   if (!ResultBT->isFloatingPoint())
11701     return;
11702 
11703   // If both source and target are floating points, warn about losing precision.
11704   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
11705       QualType(ResultBT, 0), QualType(RBT, 0));
11706   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
11707     // warn about dropping FP rank.
11708     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
11709                     diag::warn_impcast_float_result_precision);
11710 }
11711 
PrettyPrintInRange(const llvm::APSInt & Value,IntRange Range)11712 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
11713                                       IntRange Range) {
11714   if (!Range.Width) return "0";
11715 
11716   llvm::APSInt ValueInRange = Value;
11717   ValueInRange.setIsSigned(!Range.NonNegative);
11718   ValueInRange = ValueInRange.trunc(Range.Width);
11719   return ValueInRange.toString(10);
11720 }
11721 
IsImplicitBoolFloatConversion(Sema & S,Expr * Ex,bool ToBool)11722 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
11723   if (!isa<ImplicitCastExpr>(Ex))
11724     return false;
11725 
11726   Expr *InnerE = Ex->IgnoreParenImpCasts();
11727   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
11728   const Type *Source =
11729     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
11730   if (Target->isDependentType())
11731     return false;
11732 
11733   const BuiltinType *FloatCandidateBT =
11734     dyn_cast<BuiltinType>(ToBool ? Source : Target);
11735   const Type *BoolCandidateType = ToBool ? Target : Source;
11736 
11737   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
11738           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
11739 }
11740 
CheckImplicitArgumentConversions(Sema & S,CallExpr * TheCall,SourceLocation CC)11741 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
11742                                              SourceLocation CC) {
11743   unsigned NumArgs = TheCall->getNumArgs();
11744   for (unsigned i = 0; i < NumArgs; ++i) {
11745     Expr *CurrA = TheCall->getArg(i);
11746     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
11747       continue;
11748 
11749     bool IsSwapped = ((i > 0) &&
11750         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
11751     IsSwapped |= ((i < (NumArgs - 1)) &&
11752         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
11753     if (IsSwapped) {
11754       // Warn on this floating-point to bool conversion.
11755       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
11756                       CurrA->getType(), CC,
11757                       diag::warn_impcast_floating_point_to_bool);
11758     }
11759   }
11760 }
11761 
DiagnoseNullConversion(Sema & S,Expr * E,QualType T,SourceLocation CC)11762 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
11763                                    SourceLocation CC) {
11764   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
11765                         E->getExprLoc()))
11766     return;
11767 
11768   // Don't warn on functions which have return type nullptr_t.
11769   if (isa<CallExpr>(E))
11770     return;
11771 
11772   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
11773   const Expr::NullPointerConstantKind NullKind =
11774       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
11775   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
11776     return;
11777 
11778   // Return if target type is a safe conversion.
11779   if (T->isAnyPointerType() || T->isBlockPointerType() ||
11780       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
11781     return;
11782 
11783   SourceLocation Loc = E->getSourceRange().getBegin();
11784 
11785   // Venture through the macro stacks to get to the source of macro arguments.
11786   // The new location is a better location than the complete location that was
11787   // passed in.
11788   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
11789   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
11790 
11791   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
11792   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
11793     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
11794         Loc, S.SourceMgr, S.getLangOpts());
11795     if (MacroName == "NULL")
11796       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
11797   }
11798 
11799   // Only warn if the null and context location are in the same macro expansion.
11800   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
11801     return;
11802 
11803   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
11804       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
11805       << FixItHint::CreateReplacement(Loc,
11806                                       S.getFixItZeroLiteralForType(T, Loc));
11807 }
11808 
11809 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11810                                   ObjCArrayLiteral *ArrayLiteral);
11811 
11812 static void
11813 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11814                            ObjCDictionaryLiteral *DictionaryLiteral);
11815 
11816 /// Check a single element within a collection literal against the
11817 /// target element type.
checkObjCCollectionLiteralElement(Sema & S,QualType TargetElementType,Expr * Element,unsigned ElementKind)11818 static void checkObjCCollectionLiteralElement(Sema &S,
11819                                               QualType TargetElementType,
11820                                               Expr *Element,
11821                                               unsigned ElementKind) {
11822   // Skip a bitcast to 'id' or qualified 'id'.
11823   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
11824     if (ICE->getCastKind() == CK_BitCast &&
11825         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
11826       Element = ICE->getSubExpr();
11827   }
11828 
11829   QualType ElementType = Element->getType();
11830   ExprResult ElementResult(Element);
11831   if (ElementType->getAs<ObjCObjectPointerType>() &&
11832       S.CheckSingleAssignmentConstraints(TargetElementType,
11833                                          ElementResult,
11834                                          false, false)
11835         != Sema::Compatible) {
11836     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
11837         << ElementType << ElementKind << TargetElementType
11838         << Element->getSourceRange();
11839   }
11840 
11841   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
11842     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
11843   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
11844     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
11845 }
11846 
11847 /// Check an Objective-C array literal being converted to the given
11848 /// target type.
checkObjCArrayLiteral(Sema & S,QualType TargetType,ObjCArrayLiteral * ArrayLiteral)11849 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11850                                   ObjCArrayLiteral *ArrayLiteral) {
11851   if (!S.NSArrayDecl)
11852     return;
11853 
11854   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11855   if (!TargetObjCPtr)
11856     return;
11857 
11858   if (TargetObjCPtr->isUnspecialized() ||
11859       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11860         != S.NSArrayDecl->getCanonicalDecl())
11861     return;
11862 
11863   auto TypeArgs = TargetObjCPtr->getTypeArgs();
11864   if (TypeArgs.size() != 1)
11865     return;
11866 
11867   QualType TargetElementType = TypeArgs[0];
11868   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
11869     checkObjCCollectionLiteralElement(S, TargetElementType,
11870                                       ArrayLiteral->getElement(I),
11871                                       0);
11872   }
11873 }
11874 
11875 /// Check an Objective-C dictionary literal being converted to the given
11876 /// target type.
11877 static void
checkObjCDictionaryLiteral(Sema & S,QualType TargetType,ObjCDictionaryLiteral * DictionaryLiteral)11878 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11879                            ObjCDictionaryLiteral *DictionaryLiteral) {
11880   if (!S.NSDictionaryDecl)
11881     return;
11882 
11883   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11884   if (!TargetObjCPtr)
11885     return;
11886 
11887   if (TargetObjCPtr->isUnspecialized() ||
11888       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11889         != S.NSDictionaryDecl->getCanonicalDecl())
11890     return;
11891 
11892   auto TypeArgs = TargetObjCPtr->getTypeArgs();
11893   if (TypeArgs.size() != 2)
11894     return;
11895 
11896   QualType TargetKeyType = TypeArgs[0];
11897   QualType TargetObjectType = TypeArgs[1];
11898   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
11899     auto Element = DictionaryLiteral->getKeyValueElement(I);
11900     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
11901     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
11902   }
11903 }
11904 
11905 // Helper function to filter out cases for constant width constant conversion.
11906 // Don't warn on char array initialization or for non-decimal values.
isSameWidthConstantConversion(Sema & S,Expr * E,QualType T,SourceLocation CC)11907 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
11908                                           SourceLocation CC) {
11909   // If initializing from a constant, and the constant starts with '0',
11910   // then it is a binary, octal, or hexadecimal.  Allow these constants
11911   // to fill all the bits, even if there is a sign change.
11912   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
11913     const char FirstLiteralCharacter =
11914         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
11915     if (FirstLiteralCharacter == '0')
11916       return false;
11917   }
11918 
11919   // If the CC location points to a '{', and the type is char, then assume
11920   // assume it is an array initialization.
11921   if (CC.isValid() && T->isCharType()) {
11922     const char FirstContextCharacter =
11923         S.getSourceManager().getCharacterData(CC)[0];
11924     if (FirstContextCharacter == '{')
11925       return false;
11926   }
11927 
11928   return true;
11929 }
11930 
getIntegerLiteral(Expr * E)11931 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
11932   const auto *IL = dyn_cast<IntegerLiteral>(E);
11933   if (!IL) {
11934     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
11935       if (UO->getOpcode() == UO_Minus)
11936         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
11937     }
11938   }
11939 
11940   return IL;
11941 }
11942 
DiagnoseIntInBoolContext(Sema & S,Expr * E)11943 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
11944   E = E->IgnoreParenImpCasts();
11945   SourceLocation ExprLoc = E->getExprLoc();
11946 
11947   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11948     BinaryOperator::Opcode Opc = BO->getOpcode();
11949     Expr::EvalResult Result;
11950     // Do not diagnose unsigned shifts.
11951     if (Opc == BO_Shl) {
11952       const auto *LHS = getIntegerLiteral(BO->getLHS());
11953       const auto *RHS = getIntegerLiteral(BO->getRHS());
11954       if (LHS && LHS->getValue() == 0)
11955         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
11956       else if (!E->isValueDependent() && LHS && RHS &&
11957                RHS->getValue().isNonNegative() &&
11958                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
11959         S.Diag(ExprLoc, diag::warn_left_shift_always)
11960             << (Result.Val.getInt() != 0);
11961       else if (E->getType()->isSignedIntegerType())
11962         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
11963     }
11964   }
11965 
11966   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11967     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
11968     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
11969     if (!LHS || !RHS)
11970       return;
11971     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
11972         (RHS->getValue() == 0 || RHS->getValue() == 1))
11973       // Do not diagnose common idioms.
11974       return;
11975     if (LHS->getValue() != 0 && RHS->getValue() != 0)
11976       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
11977   }
11978 }
11979 
CheckImplicitConversion(Sema & S,Expr * E,QualType T,SourceLocation CC,bool * ICContext=nullptr,bool IsListInit=false)11980 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
11981                                     SourceLocation CC,
11982                                     bool *ICContext = nullptr,
11983                                     bool IsListInit = false) {
11984   if (E->isTypeDependent() || E->isValueDependent()) return;
11985 
11986   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
11987   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
11988   if (Source == Target) return;
11989   if (Target->isDependentType()) return;
11990 
11991   // If the conversion context location is invalid don't complain. We also
11992   // don't want to emit a warning if the issue occurs from the expansion of
11993   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
11994   // delay this check as long as possible. Once we detect we are in that
11995   // scenario, we just return.
11996   if (CC.isInvalid())
11997     return;
11998 
11999   if (Source->isAtomicType())
12000     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
12001 
12002   // Diagnose implicit casts to bool.
12003   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
12004     if (isa<StringLiteral>(E))
12005       // Warn on string literal to bool.  Checks for string literals in logical
12006       // and expressions, for instance, assert(0 && "error here"), are
12007       // prevented by a check in AnalyzeImplicitConversions().
12008       return DiagnoseImpCast(S, E, T, CC,
12009                              diag::warn_impcast_string_literal_to_bool);
12010     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
12011         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
12012       // This covers the literal expressions that evaluate to Objective-C
12013       // objects.
12014       return DiagnoseImpCast(S, E, T, CC,
12015                              diag::warn_impcast_objective_c_literal_to_bool);
12016     }
12017     if (Source->isPointerType() || Source->canDecayToPointerType()) {
12018       // Warn on pointer to bool conversion that is always true.
12019       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
12020                                      SourceRange(CC));
12021     }
12022   }
12023 
12024   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
12025   // is a typedef for signed char (macOS), then that constant value has to be 1
12026   // or 0.
12027   if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
12028     Expr::EvalResult Result;
12029     if (E->EvaluateAsInt(Result, S.getASTContext(),
12030                          Expr::SE_AllowSideEffects)) {
12031       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
12032         adornObjCBoolConversionDiagWithTernaryFixit(
12033             S, E,
12034             S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
12035                 << Result.Val.getInt().toString(10));
12036       }
12037       return;
12038     }
12039   }
12040 
12041   // Check implicit casts from Objective-C collection literals to specialized
12042   // collection types, e.g., NSArray<NSString *> *.
12043   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
12044     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
12045   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
12046     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
12047 
12048   // Strip vector types.
12049   if (isa<VectorType>(Source)) {
12050     if (!isa<VectorType>(Target)) {
12051       if (S.SourceMgr.isInSystemMacro(CC))
12052         return;
12053       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
12054     }
12055 
12056     // If the vector cast is cast between two vectors of the same size, it is
12057     // a bitcast, not a conversion.
12058     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
12059       return;
12060 
12061     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
12062     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
12063   }
12064   if (auto VecTy = dyn_cast<VectorType>(Target))
12065     Target = VecTy->getElementType().getTypePtr();
12066 
12067   // Strip complex types.
12068   if (isa<ComplexType>(Source)) {
12069     if (!isa<ComplexType>(Target)) {
12070       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
12071         return;
12072 
12073       return DiagnoseImpCast(S, E, T, CC,
12074                              S.getLangOpts().CPlusPlus
12075                                  ? diag::err_impcast_complex_scalar
12076                                  : diag::warn_impcast_complex_scalar);
12077     }
12078 
12079     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
12080     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
12081   }
12082 
12083   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
12084   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
12085 
12086   // If the source is floating point...
12087   if (SourceBT && SourceBT->isFloatingPoint()) {
12088     // ...and the target is floating point...
12089     if (TargetBT && TargetBT->isFloatingPoint()) {
12090       // ...then warn if we're dropping FP rank.
12091 
12092       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12093           QualType(SourceBT, 0), QualType(TargetBT, 0));
12094       if (Order > 0) {
12095         // Don't warn about float constants that are precisely
12096         // representable in the target type.
12097         Expr::EvalResult result;
12098         if (E->EvaluateAsRValue(result, S.Context)) {
12099           // Value might be a float, a float vector, or a float complex.
12100           if (IsSameFloatAfterCast(result.Val,
12101                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
12102                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
12103             return;
12104         }
12105 
12106         if (S.SourceMgr.isInSystemMacro(CC))
12107           return;
12108 
12109         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
12110       }
12111       // ... or possibly if we're increasing rank, too
12112       else if (Order < 0) {
12113         if (S.SourceMgr.isInSystemMacro(CC))
12114           return;
12115 
12116         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
12117       }
12118       return;
12119     }
12120 
12121     // If the target is integral, always warn.
12122     if (TargetBT && TargetBT->isInteger()) {
12123       if (S.SourceMgr.isInSystemMacro(CC))
12124         return;
12125 
12126       DiagnoseFloatingImpCast(S, E, T, CC);
12127     }
12128 
12129     // Detect the case where a call result is converted from floating-point to
12130     // to bool, and the final argument to the call is converted from bool, to
12131     // discover this typo:
12132     //
12133     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
12134     //
12135     // FIXME: This is an incredibly special case; is there some more general
12136     // way to detect this class of misplaced-parentheses bug?
12137     if (Target->isBooleanType() && isa<CallExpr>(E)) {
12138       // Check last argument of function call to see if it is an
12139       // implicit cast from a type matching the type the result
12140       // is being cast to.
12141       CallExpr *CEx = cast<CallExpr>(E);
12142       if (unsigned NumArgs = CEx->getNumArgs()) {
12143         Expr *LastA = CEx->getArg(NumArgs - 1);
12144         Expr *InnerE = LastA->IgnoreParenImpCasts();
12145         if (isa<ImplicitCastExpr>(LastA) &&
12146             InnerE->getType()->isBooleanType()) {
12147           // Warn on this floating-point to bool conversion
12148           DiagnoseImpCast(S, E, T, CC,
12149                           diag::warn_impcast_floating_point_to_bool);
12150         }
12151       }
12152     }
12153     return;
12154   }
12155 
12156   // Valid casts involving fixed point types should be accounted for here.
12157   if (Source->isFixedPointType()) {
12158     if (Target->isUnsaturatedFixedPointType()) {
12159       Expr::EvalResult Result;
12160       if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
12161                                   S.isConstantEvaluated())) {
12162         llvm::APFixedPoint Value = Result.Val.getFixedPoint();
12163         llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
12164         llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
12165         if (Value > MaxVal || Value < MinVal) {
12166           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12167                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12168                                     << Value.toString() << T
12169                                     << E->getSourceRange()
12170                                     << clang::SourceRange(CC));
12171           return;
12172         }
12173       }
12174     } else if (Target->isIntegerType()) {
12175       Expr::EvalResult Result;
12176       if (!S.isConstantEvaluated() &&
12177           E->EvaluateAsFixedPoint(Result, S.Context,
12178                                   Expr::SE_AllowSideEffects)) {
12179         llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
12180 
12181         bool Overflowed;
12182         llvm::APSInt IntResult = FXResult.convertToInt(
12183             S.Context.getIntWidth(T),
12184             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
12185 
12186         if (Overflowed) {
12187           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12188                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12189                                     << FXResult.toString() << T
12190                                     << E->getSourceRange()
12191                                     << clang::SourceRange(CC));
12192           return;
12193         }
12194       }
12195     }
12196   } else if (Target->isUnsaturatedFixedPointType()) {
12197     if (Source->isIntegerType()) {
12198       Expr::EvalResult Result;
12199       if (!S.isConstantEvaluated() &&
12200           E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
12201         llvm::APSInt Value = Result.Val.getInt();
12202 
12203         bool Overflowed;
12204         llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
12205             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
12206 
12207         if (Overflowed) {
12208           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12209                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12210                                     << Value.toString(/*Radix=*/10) << T
12211                                     << E->getSourceRange()
12212                                     << clang::SourceRange(CC));
12213           return;
12214         }
12215       }
12216     }
12217   }
12218 
12219   // If we are casting an integer type to a floating point type without
12220   // initialization-list syntax, we might lose accuracy if the floating
12221   // point type has a narrower significand than the integer type.
12222   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
12223       TargetBT->isFloatingType() && !IsListInit) {
12224     // Determine the number of precision bits in the source integer type.
12225     IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
12226                                         /*Approximate*/ true);
12227     unsigned int SourcePrecision = SourceRange.Width;
12228 
12229     // Determine the number of precision bits in the
12230     // target floating point type.
12231     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
12232         S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12233 
12234     if (SourcePrecision > 0 && TargetPrecision > 0 &&
12235         SourcePrecision > TargetPrecision) {
12236 
12237       if (Optional<llvm::APSInt> SourceInt =
12238               E->getIntegerConstantExpr(S.Context)) {
12239         // If the source integer is a constant, convert it to the target
12240         // floating point type. Issue a warning if the value changes
12241         // during the whole conversion.
12242         llvm::APFloat TargetFloatValue(
12243             S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12244         llvm::APFloat::opStatus ConversionStatus =
12245             TargetFloatValue.convertFromAPInt(
12246                 *SourceInt, SourceBT->isSignedInteger(),
12247                 llvm::APFloat::rmNearestTiesToEven);
12248 
12249         if (ConversionStatus != llvm::APFloat::opOK) {
12250           std::string PrettySourceValue = SourceInt->toString(10);
12251           SmallString<32> PrettyTargetValue;
12252           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
12253 
12254           S.DiagRuntimeBehavior(
12255               E->getExprLoc(), E,
12256               S.PDiag(diag::warn_impcast_integer_float_precision_constant)
12257                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
12258                   << E->getSourceRange() << clang::SourceRange(CC));
12259         }
12260       } else {
12261         // Otherwise, the implicit conversion may lose precision.
12262         DiagnoseImpCast(S, E, T, CC,
12263                         diag::warn_impcast_integer_float_precision);
12264       }
12265     }
12266   }
12267 
12268   DiagnoseNullConversion(S, E, T, CC);
12269 
12270   S.DiscardMisalignedMemberAddress(Target, E);
12271 
12272   if (Target->isBooleanType())
12273     DiagnoseIntInBoolContext(S, E);
12274 
12275   if (!Source->isIntegerType() || !Target->isIntegerType())
12276     return;
12277 
12278   // TODO: remove this early return once the false positives for constant->bool
12279   // in templates, macros, etc, are reduced or removed.
12280   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
12281     return;
12282 
12283   if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
12284       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
12285     return adornObjCBoolConversionDiagWithTernaryFixit(
12286         S, E,
12287         S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
12288             << E->getType());
12289   }
12290 
12291   IntRange SourceTypeRange =
12292       IntRange::forTargetOfCanonicalType(S.Context, Source);
12293   IntRange LikelySourceRange =
12294       GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
12295   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
12296 
12297   if (LikelySourceRange.Width > TargetRange.Width) {
12298     // If the source is a constant, use a default-on diagnostic.
12299     // TODO: this should happen for bitfield stores, too.
12300     Expr::EvalResult Result;
12301     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
12302                          S.isConstantEvaluated())) {
12303       llvm::APSInt Value(32);
12304       Value = Result.Val.getInt();
12305 
12306       if (S.SourceMgr.isInSystemMacro(CC))
12307         return;
12308 
12309       std::string PrettySourceValue = Value.toString(10);
12310       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12311 
12312       S.DiagRuntimeBehavior(
12313           E->getExprLoc(), E,
12314           S.PDiag(diag::warn_impcast_integer_precision_constant)
12315               << PrettySourceValue << PrettyTargetValue << E->getType() << T
12316               << E->getSourceRange() << SourceRange(CC));
12317       return;
12318     }
12319 
12320     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
12321     if (S.SourceMgr.isInSystemMacro(CC))
12322       return;
12323 
12324     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
12325       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
12326                              /* pruneControlFlow */ true);
12327     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
12328   }
12329 
12330   if (TargetRange.Width > SourceTypeRange.Width) {
12331     if (auto *UO = dyn_cast<UnaryOperator>(E))
12332       if (UO->getOpcode() == UO_Minus)
12333         if (Source->isUnsignedIntegerType()) {
12334           if (Target->isUnsignedIntegerType())
12335             return DiagnoseImpCast(S, E, T, CC,
12336                                    diag::warn_impcast_high_order_zero_bits);
12337           if (Target->isSignedIntegerType())
12338             return DiagnoseImpCast(S, E, T, CC,
12339                                    diag::warn_impcast_nonnegative_result);
12340         }
12341   }
12342 
12343   if (TargetRange.Width == LikelySourceRange.Width &&
12344       !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12345       Source->isSignedIntegerType()) {
12346     // Warn when doing a signed to signed conversion, warn if the positive
12347     // source value is exactly the width of the target type, which will
12348     // cause a negative value to be stored.
12349 
12350     Expr::EvalResult Result;
12351     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
12352         !S.SourceMgr.isInSystemMacro(CC)) {
12353       llvm::APSInt Value = Result.Val.getInt();
12354       if (isSameWidthConstantConversion(S, E, T, CC)) {
12355         std::string PrettySourceValue = Value.toString(10);
12356         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12357 
12358         S.DiagRuntimeBehavior(
12359             E->getExprLoc(), E,
12360             S.PDiag(diag::warn_impcast_integer_precision_constant)
12361                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12362                 << E->getSourceRange() << SourceRange(CC));
12363         return;
12364       }
12365     }
12366 
12367     // Fall through for non-constants to give a sign conversion warning.
12368   }
12369 
12370   if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
12371       (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12372        LikelySourceRange.Width == TargetRange.Width)) {
12373     if (S.SourceMgr.isInSystemMacro(CC))
12374       return;
12375 
12376     unsigned DiagID = diag::warn_impcast_integer_sign;
12377 
12378     // Traditionally, gcc has warned about this under -Wsign-compare.
12379     // We also want to warn about it in -Wconversion.
12380     // So if -Wconversion is off, use a completely identical diagnostic
12381     // in the sign-compare group.
12382     // The conditional-checking code will
12383     if (ICContext) {
12384       DiagID = diag::warn_impcast_integer_sign_conditional;
12385       *ICContext = true;
12386     }
12387 
12388     return DiagnoseImpCast(S, E, T, CC, DiagID);
12389   }
12390 
12391   // Diagnose conversions between different enumeration types.
12392   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
12393   // type, to give us better diagnostics.
12394   QualType SourceType = E->getType();
12395   if (!S.getLangOpts().CPlusPlus) {
12396     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12397       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
12398         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
12399         SourceType = S.Context.getTypeDeclType(Enum);
12400         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
12401       }
12402   }
12403 
12404   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
12405     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
12406       if (SourceEnum->getDecl()->hasNameForLinkage() &&
12407           TargetEnum->getDecl()->hasNameForLinkage() &&
12408           SourceEnum != TargetEnum) {
12409         if (S.SourceMgr.isInSystemMacro(CC))
12410           return;
12411 
12412         return DiagnoseImpCast(S, E, SourceType, T, CC,
12413                                diag::warn_impcast_different_enum_types);
12414       }
12415 }
12416 
12417 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
12418                                      SourceLocation CC, QualType T);
12419 
CheckConditionalOperand(Sema & S,Expr * E,QualType T,SourceLocation CC,bool & ICContext)12420 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
12421                                     SourceLocation CC, bool &ICContext) {
12422   E = E->IgnoreParenImpCasts();
12423 
12424   if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
12425     return CheckConditionalOperator(S, CO, CC, T);
12426 
12427   AnalyzeImplicitConversions(S, E, CC);
12428   if (E->getType() != T)
12429     return CheckImplicitConversion(S, E, T, CC, &ICContext);
12430 }
12431 
CheckConditionalOperator(Sema & S,AbstractConditionalOperator * E,SourceLocation CC,QualType T)12432 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
12433                                      SourceLocation CC, QualType T) {
12434   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
12435 
12436   Expr *TrueExpr = E->getTrueExpr();
12437   if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
12438     TrueExpr = BCO->getCommon();
12439 
12440   bool Suspicious = false;
12441   CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
12442   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
12443 
12444   if (T->isBooleanType())
12445     DiagnoseIntInBoolContext(S, E);
12446 
12447   // If -Wconversion would have warned about either of the candidates
12448   // for a signedness conversion to the context type...
12449   if (!Suspicious) return;
12450 
12451   // ...but it's currently ignored...
12452   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
12453     return;
12454 
12455   // ...then check whether it would have warned about either of the
12456   // candidates for a signedness conversion to the condition type.
12457   if (E->getType() == T) return;
12458 
12459   Suspicious = false;
12460   CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
12461                           E->getType(), CC, &Suspicious);
12462   if (!Suspicious)
12463     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
12464                             E->getType(), CC, &Suspicious);
12465 }
12466 
12467 /// Check conversion of given expression to boolean.
12468 /// Input argument E is a logical expression.
CheckBoolLikeConversion(Sema & S,Expr * E,SourceLocation CC)12469 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
12470   if (S.getLangOpts().Bool)
12471     return;
12472   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
12473     return;
12474   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
12475 }
12476 
12477 namespace {
12478 struct AnalyzeImplicitConversionsWorkItem {
12479   Expr *E;
12480   SourceLocation CC;
12481   bool IsListInit;
12482 };
12483 }
12484 
12485 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
12486 /// that should be visited are added to WorkList.
AnalyzeImplicitConversions(Sema & S,AnalyzeImplicitConversionsWorkItem Item,llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> & WorkList)12487 static void AnalyzeImplicitConversions(
12488     Sema &S, AnalyzeImplicitConversionsWorkItem Item,
12489     llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
12490   Expr *OrigE = Item.E;
12491   SourceLocation CC = Item.CC;
12492 
12493   QualType T = OrigE->getType();
12494   Expr *E = OrigE->IgnoreParenImpCasts();
12495 
12496   // Propagate whether we are in a C++ list initialization expression.
12497   // If so, we do not issue warnings for implicit int-float conversion
12498   // precision loss, because C++11 narrowing already handles it.
12499   bool IsListInit = Item.IsListInit ||
12500                     (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
12501 
12502   if (E->isTypeDependent() || E->isValueDependent())
12503     return;
12504 
12505   Expr *SourceExpr = E;
12506   // Examine, but don't traverse into the source expression of an
12507   // OpaqueValueExpr, since it may have multiple parents and we don't want to
12508   // emit duplicate diagnostics. Its fine to examine the form or attempt to
12509   // evaluate it in the context of checking the specific conversion to T though.
12510   if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
12511     if (auto *Src = OVE->getSourceExpr())
12512       SourceExpr = Src;
12513 
12514   if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
12515     if (UO->getOpcode() == UO_Not &&
12516         UO->getSubExpr()->isKnownToHaveBooleanValue())
12517       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
12518           << OrigE->getSourceRange() << T->isBooleanType()
12519           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
12520 
12521   // For conditional operators, we analyze the arguments as if they
12522   // were being fed directly into the output.
12523   if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
12524     CheckConditionalOperator(S, CO, CC, T);
12525     return;
12526   }
12527 
12528   // Check implicit argument conversions for function calls.
12529   if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
12530     CheckImplicitArgumentConversions(S, Call, CC);
12531 
12532   // Go ahead and check any implicit conversions we might have skipped.
12533   // The non-canonical typecheck is just an optimization;
12534   // CheckImplicitConversion will filter out dead implicit conversions.
12535   if (SourceExpr->getType() != T)
12536     CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
12537 
12538   // Now continue drilling into this expression.
12539 
12540   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
12541     // The bound subexpressions in a PseudoObjectExpr are not reachable
12542     // as transitive children.
12543     // FIXME: Use a more uniform representation for this.
12544     for (auto *SE : POE->semantics())
12545       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
12546         WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
12547   }
12548 
12549   // Skip past explicit casts.
12550   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
12551     E = CE->getSubExpr()->IgnoreParenImpCasts();
12552     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
12553       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12554     WorkList.push_back({E, CC, IsListInit});
12555     return;
12556   }
12557 
12558   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12559     // Do a somewhat different check with comparison operators.
12560     if (BO->isComparisonOp())
12561       return AnalyzeComparison(S, BO);
12562 
12563     // And with simple assignments.
12564     if (BO->getOpcode() == BO_Assign)
12565       return AnalyzeAssignment(S, BO);
12566     // And with compound assignments.
12567     if (BO->isAssignmentOp())
12568       return AnalyzeCompoundAssignment(S, BO);
12569   }
12570 
12571   // These break the otherwise-useful invariant below.  Fortunately,
12572   // we don't really need to recurse into them, because any internal
12573   // expressions should have been analyzed already when they were
12574   // built into statements.
12575   if (isa<StmtExpr>(E)) return;
12576 
12577   // Don't descend into unevaluated contexts.
12578   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
12579 
12580   // Now just recurse over the expression's children.
12581   CC = E->getExprLoc();
12582   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
12583   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
12584   for (Stmt *SubStmt : E->children()) {
12585     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
12586     if (!ChildExpr)
12587       continue;
12588 
12589     if (IsLogicalAndOperator &&
12590         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
12591       // Ignore checking string literals that are in logical and operators.
12592       // This is a common pattern for asserts.
12593       continue;
12594     WorkList.push_back({ChildExpr, CC, IsListInit});
12595   }
12596 
12597   if (BO && BO->isLogicalOp()) {
12598     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
12599     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12600       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12601 
12602     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
12603     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12604       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12605   }
12606 
12607   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
12608     if (U->getOpcode() == UO_LNot) {
12609       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
12610     } else if (U->getOpcode() != UO_AddrOf) {
12611       if (U->getSubExpr()->getType()->isAtomicType())
12612         S.Diag(U->getSubExpr()->getBeginLoc(),
12613                diag::warn_atomic_implicit_seq_cst);
12614     }
12615   }
12616 }
12617 
12618 /// AnalyzeImplicitConversions - Find and report any interesting
12619 /// implicit conversions in the given expression.  There are a couple
12620 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
AnalyzeImplicitConversions(Sema & S,Expr * OrigE,SourceLocation CC,bool IsListInit)12621 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
12622                                        bool IsListInit/*= false*/) {
12623   llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
12624   WorkList.push_back({OrigE, CC, IsListInit});
12625   while (!WorkList.empty())
12626     AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
12627 }
12628 
12629 /// Diagnose integer type and any valid implicit conversion to it.
checkOpenCLEnqueueIntType(Sema & S,Expr * E,const QualType & IntT)12630 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
12631   // Taking into account implicit conversions,
12632   // allow any integer.
12633   if (!E->getType()->isIntegerType()) {
12634     S.Diag(E->getBeginLoc(),
12635            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
12636     return true;
12637   }
12638   // Potentially emit standard warnings for implicit conversions if enabled
12639   // using -Wconversion.
12640   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
12641   return false;
12642 }
12643 
12644 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
12645 // Returns true when emitting a warning about taking the address of a reference.
CheckForReference(Sema & SemaRef,const Expr * E,const PartialDiagnostic & PD)12646 static bool CheckForReference(Sema &SemaRef, const Expr *E,
12647                               const PartialDiagnostic &PD) {
12648   E = E->IgnoreParenImpCasts();
12649 
12650   const FunctionDecl *FD = nullptr;
12651 
12652   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12653     if (!DRE->getDecl()->getType()->isReferenceType())
12654       return false;
12655   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12656     if (!M->getMemberDecl()->getType()->isReferenceType())
12657       return false;
12658   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
12659     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
12660       return false;
12661     FD = Call->getDirectCallee();
12662   } else {
12663     return false;
12664   }
12665 
12666   SemaRef.Diag(E->getExprLoc(), PD);
12667 
12668   // If possible, point to location of function.
12669   if (FD) {
12670     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
12671   }
12672 
12673   return true;
12674 }
12675 
12676 // Returns true if the SourceLocation is expanded from any macro body.
12677 // Returns false if the SourceLocation is invalid, is from not in a macro
12678 // expansion, or is from expanded from a top-level macro argument.
IsInAnyMacroBody(const SourceManager & SM,SourceLocation Loc)12679 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
12680   if (Loc.isInvalid())
12681     return false;
12682 
12683   while (Loc.isMacroID()) {
12684     if (SM.isMacroBodyExpansion(Loc))
12685       return true;
12686     Loc = SM.getImmediateMacroCallerLoc(Loc);
12687   }
12688 
12689   return false;
12690 }
12691 
12692 /// Diagnose pointers that are always non-null.
12693 /// \param E the expression containing the pointer
12694 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
12695 /// compared to a null pointer
12696 /// \param IsEqual True when the comparison is equal to a null pointer
12697 /// \param Range Extra SourceRange to highlight in the diagnostic
DiagnoseAlwaysNonNullPointer(Expr * E,Expr::NullPointerConstantKind NullKind,bool IsEqual,SourceRange Range)12698 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
12699                                         Expr::NullPointerConstantKind NullKind,
12700                                         bool IsEqual, SourceRange Range) {
12701   if (!E)
12702     return;
12703 
12704   // Don't warn inside macros.
12705   if (E->getExprLoc().isMacroID()) {
12706     const SourceManager &SM = getSourceManager();
12707     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
12708         IsInAnyMacroBody(SM, Range.getBegin()))
12709       return;
12710   }
12711   E = E->IgnoreImpCasts();
12712 
12713   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
12714 
12715   if (isa<CXXThisExpr>(E)) {
12716     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
12717                                 : diag::warn_this_bool_conversion;
12718     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
12719     return;
12720   }
12721 
12722   bool IsAddressOf = false;
12723 
12724   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12725     if (UO->getOpcode() != UO_AddrOf)
12726       return;
12727     IsAddressOf = true;
12728     E = UO->getSubExpr();
12729   }
12730 
12731   if (IsAddressOf) {
12732     unsigned DiagID = IsCompare
12733                           ? diag::warn_address_of_reference_null_compare
12734                           : diag::warn_address_of_reference_bool_conversion;
12735     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
12736                                          << IsEqual;
12737     if (CheckForReference(*this, E, PD)) {
12738       return;
12739     }
12740   }
12741 
12742   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
12743     bool IsParam = isa<NonNullAttr>(NonnullAttr);
12744     std::string Str;
12745     llvm::raw_string_ostream S(Str);
12746     E->printPretty(S, nullptr, getPrintingPolicy());
12747     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
12748                                 : diag::warn_cast_nonnull_to_bool;
12749     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
12750       << E->getSourceRange() << Range << IsEqual;
12751     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
12752   };
12753 
12754   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
12755   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
12756     if (auto *Callee = Call->getDirectCallee()) {
12757       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
12758         ComplainAboutNonnullParamOrCall(A);
12759         return;
12760       }
12761     }
12762   }
12763 
12764   // Expect to find a single Decl.  Skip anything more complicated.
12765   ValueDecl *D = nullptr;
12766   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
12767     D = R->getDecl();
12768   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12769     D = M->getMemberDecl();
12770   }
12771 
12772   // Weak Decls can be null.
12773   if (!D || D->isWeak())
12774     return;
12775 
12776   // Check for parameter decl with nonnull attribute
12777   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
12778     if (getCurFunction() &&
12779         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
12780       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
12781         ComplainAboutNonnullParamOrCall(A);
12782         return;
12783       }
12784 
12785       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
12786         // Skip function template not specialized yet.
12787         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
12788           return;
12789         auto ParamIter = llvm::find(FD->parameters(), PV);
12790         assert(ParamIter != FD->param_end());
12791         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
12792 
12793         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
12794           if (!NonNull->args_size()) {
12795               ComplainAboutNonnullParamOrCall(NonNull);
12796               return;
12797           }
12798 
12799           for (const ParamIdx &ArgNo : NonNull->args()) {
12800             if (ArgNo.getASTIndex() == ParamNo) {
12801               ComplainAboutNonnullParamOrCall(NonNull);
12802               return;
12803             }
12804           }
12805         }
12806       }
12807     }
12808   }
12809 
12810   QualType T = D->getType();
12811   const bool IsArray = T->isArrayType();
12812   const bool IsFunction = T->isFunctionType();
12813 
12814   // Address of function is used to silence the function warning.
12815   if (IsAddressOf && IsFunction) {
12816     return;
12817   }
12818 
12819   // Found nothing.
12820   if (!IsAddressOf && !IsFunction && !IsArray)
12821     return;
12822 
12823   // Pretty print the expression for the diagnostic.
12824   std::string Str;
12825   llvm::raw_string_ostream S(Str);
12826   E->printPretty(S, nullptr, getPrintingPolicy());
12827 
12828   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
12829                               : diag::warn_impcast_pointer_to_bool;
12830   enum {
12831     AddressOf,
12832     FunctionPointer,
12833     ArrayPointer
12834   } DiagType;
12835   if (IsAddressOf)
12836     DiagType = AddressOf;
12837   else if (IsFunction)
12838     DiagType = FunctionPointer;
12839   else if (IsArray)
12840     DiagType = ArrayPointer;
12841   else
12842     llvm_unreachable("Could not determine diagnostic.");
12843   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
12844                                 << Range << IsEqual;
12845 
12846   if (!IsFunction)
12847     return;
12848 
12849   // Suggest '&' to silence the function warning.
12850   Diag(E->getExprLoc(), diag::note_function_warning_silence)
12851       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
12852 
12853   // Check to see if '()' fixit should be emitted.
12854   QualType ReturnType;
12855   UnresolvedSet<4> NonTemplateOverloads;
12856   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
12857   if (ReturnType.isNull())
12858     return;
12859 
12860   if (IsCompare) {
12861     // There are two cases here.  If there is null constant, the only suggest
12862     // for a pointer return type.  If the null is 0, then suggest if the return
12863     // type is a pointer or an integer type.
12864     if (!ReturnType->isPointerType()) {
12865       if (NullKind == Expr::NPCK_ZeroExpression ||
12866           NullKind == Expr::NPCK_ZeroLiteral) {
12867         if (!ReturnType->isIntegerType())
12868           return;
12869       } else {
12870         return;
12871       }
12872     }
12873   } else { // !IsCompare
12874     // For function to bool, only suggest if the function pointer has bool
12875     // return type.
12876     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
12877       return;
12878   }
12879   Diag(E->getExprLoc(), diag::note_function_to_function_call)
12880       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
12881 }
12882 
12883 /// Diagnoses "dangerous" implicit conversions within the given
12884 /// expression (which is a full expression).  Implements -Wconversion
12885 /// and -Wsign-compare.
12886 ///
12887 /// \param CC the "context" location of the implicit conversion, i.e.
12888 ///   the most location of the syntactic entity requiring the implicit
12889 ///   conversion
CheckImplicitConversions(Expr * E,SourceLocation CC)12890 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
12891   // Don't diagnose in unevaluated contexts.
12892   if (isUnevaluatedContext())
12893     return;
12894 
12895   // Don't diagnose for value- or type-dependent expressions.
12896   if (E->isTypeDependent() || E->isValueDependent())
12897     return;
12898 
12899   // Check for array bounds violations in cases where the check isn't triggered
12900   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
12901   // ArraySubscriptExpr is on the RHS of a variable initialization.
12902   CheckArrayAccess(E);
12903 
12904   // This is not the right CC for (e.g.) a variable initialization.
12905   AnalyzeImplicitConversions(*this, E, CC);
12906 }
12907 
12908 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
12909 /// Input argument E is a logical expression.
CheckBoolLikeConversion(Expr * E,SourceLocation CC)12910 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
12911   ::CheckBoolLikeConversion(*this, E, CC);
12912 }
12913 
12914 /// Diagnose when expression is an integer constant expression and its evaluation
12915 /// results in integer overflow
CheckForIntOverflow(Expr * E)12916 void Sema::CheckForIntOverflow (Expr *E) {
12917   // Use a work list to deal with nested struct initializers.
12918   SmallVector<Expr *, 2> Exprs(1, E);
12919 
12920   do {
12921     Expr *OriginalE = Exprs.pop_back_val();
12922     Expr *E = OriginalE->IgnoreParenCasts();
12923 
12924     if (isa<BinaryOperator>(E)) {
12925       E->EvaluateForOverflow(Context);
12926       continue;
12927     }
12928 
12929     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
12930       Exprs.append(InitList->inits().begin(), InitList->inits().end());
12931     else if (isa<ObjCBoxedExpr>(OriginalE))
12932       E->EvaluateForOverflow(Context);
12933     else if (auto Call = dyn_cast<CallExpr>(E))
12934       Exprs.append(Call->arg_begin(), Call->arg_end());
12935     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
12936       Exprs.append(Message->arg_begin(), Message->arg_end());
12937   } while (!Exprs.empty());
12938 }
12939 
12940 namespace {
12941 
12942 /// Visitor for expressions which looks for unsequenced operations on the
12943 /// same object.
12944 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
12945   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
12946 
12947   /// A tree of sequenced regions within an expression. Two regions are
12948   /// unsequenced if one is an ancestor or a descendent of the other. When we
12949   /// finish processing an expression with sequencing, such as a comma
12950   /// expression, we fold its tree nodes into its parent, since they are
12951   /// unsequenced with respect to nodes we will visit later.
12952   class SequenceTree {
12953     struct Value {
Value__anon33aba9e81e11::SequenceChecker::SequenceTree::Value12954       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
12955       unsigned Parent : 31;
12956       unsigned Merged : 1;
12957     };
12958     SmallVector<Value, 8> Values;
12959 
12960   public:
12961     /// A region within an expression which may be sequenced with respect
12962     /// to some other region.
12963     class Seq {
12964       friend class SequenceTree;
12965 
12966       unsigned Index;
12967 
Seq(unsigned N)12968       explicit Seq(unsigned N) : Index(N) {}
12969 
12970     public:
Seq()12971       Seq() : Index(0) {}
12972     };
12973 
SequenceTree()12974     SequenceTree() { Values.push_back(Value(0)); }
root() const12975     Seq root() const { return Seq(0); }
12976 
12977     /// Create a new sequence of operations, which is an unsequenced
12978     /// subset of \p Parent. This sequence of operations is sequenced with
12979     /// respect to other children of \p Parent.
allocate(Seq Parent)12980     Seq allocate(Seq Parent) {
12981       Values.push_back(Value(Parent.Index));
12982       return Seq(Values.size() - 1);
12983     }
12984 
12985     /// Merge a sequence of operations into its parent.
merge(Seq S)12986     void merge(Seq S) {
12987       Values[S.Index].Merged = true;
12988     }
12989 
12990     /// Determine whether two operations are unsequenced. This operation
12991     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
12992     /// should have been merged into its parent as appropriate.
isUnsequenced(Seq Cur,Seq Old)12993     bool isUnsequenced(Seq Cur, Seq Old) {
12994       unsigned C = representative(Cur.Index);
12995       unsigned Target = representative(Old.Index);
12996       while (C >= Target) {
12997         if (C == Target)
12998           return true;
12999         C = Values[C].Parent;
13000       }
13001       return false;
13002     }
13003 
13004   private:
13005     /// Pick a representative for a sequence.
representative(unsigned K)13006     unsigned representative(unsigned K) {
13007       if (Values[K].Merged)
13008         // Perform path compression as we go.
13009         return Values[K].Parent = representative(Values[K].Parent);
13010       return K;
13011     }
13012   };
13013 
13014   /// An object for which we can track unsequenced uses.
13015   using Object = const NamedDecl *;
13016 
13017   /// Different flavors of object usage which we track. We only track the
13018   /// least-sequenced usage of each kind.
13019   enum UsageKind {
13020     /// A read of an object. Multiple unsequenced reads are OK.
13021     UK_Use,
13022 
13023     /// A modification of an object which is sequenced before the value
13024     /// computation of the expression, such as ++n in C++.
13025     UK_ModAsValue,
13026 
13027     /// A modification of an object which is not sequenced before the value
13028     /// computation of the expression, such as n++.
13029     UK_ModAsSideEffect,
13030 
13031     UK_Count = UK_ModAsSideEffect + 1
13032   };
13033 
13034   /// Bundle together a sequencing region and the expression corresponding
13035   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
13036   struct Usage {
13037     const Expr *UsageExpr;
13038     SequenceTree::Seq Seq;
13039 
Usage__anon33aba9e81e11::SequenceChecker::Usage13040     Usage() : UsageExpr(nullptr), Seq() {}
13041   };
13042 
13043   struct UsageInfo {
13044     Usage Uses[UK_Count];
13045 
13046     /// Have we issued a diagnostic for this object already?
13047     bool Diagnosed;
13048 
UsageInfo__anon33aba9e81e11::SequenceChecker::UsageInfo13049     UsageInfo() : Uses(), Diagnosed(false) {}
13050   };
13051   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
13052 
13053   Sema &SemaRef;
13054 
13055   /// Sequenced regions within the expression.
13056   SequenceTree Tree;
13057 
13058   /// Declaration modifications and references which we have seen.
13059   UsageInfoMap UsageMap;
13060 
13061   /// The region we are currently within.
13062   SequenceTree::Seq Region;
13063 
13064   /// Filled in with declarations which were modified as a side-effect
13065   /// (that is, post-increment operations).
13066   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
13067 
13068   /// Expressions to check later. We defer checking these to reduce
13069   /// stack usage.
13070   SmallVectorImpl<const Expr *> &WorkList;
13071 
13072   /// RAII object wrapping the visitation of a sequenced subexpression of an
13073   /// expression. At the end of this process, the side-effects of the evaluation
13074   /// become sequenced with respect to the value computation of the result, so
13075   /// we downgrade any UK_ModAsSideEffect within the evaluation to
13076   /// UK_ModAsValue.
13077   struct SequencedSubexpression {
SequencedSubexpression__anon33aba9e81e11::SequenceChecker::SequencedSubexpression13078     SequencedSubexpression(SequenceChecker &Self)
13079       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
13080       Self.ModAsSideEffect = &ModAsSideEffect;
13081     }
13082 
~SequencedSubexpression__anon33aba9e81e11::SequenceChecker::SequencedSubexpression13083     ~SequencedSubexpression() {
13084       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
13085         // Add a new usage with usage kind UK_ModAsValue, and then restore
13086         // the previous usage with UK_ModAsSideEffect (thus clearing it if
13087         // the previous one was empty).
13088         UsageInfo &UI = Self.UsageMap[M.first];
13089         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
13090         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
13091         SideEffectUsage = M.second;
13092       }
13093       Self.ModAsSideEffect = OldModAsSideEffect;
13094     }
13095 
13096     SequenceChecker &Self;
13097     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
13098     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
13099   };
13100 
13101   /// RAII object wrapping the visitation of a subexpression which we might
13102   /// choose to evaluate as a constant. If any subexpression is evaluated and
13103   /// found to be non-constant, this allows us to suppress the evaluation of
13104   /// the outer expression.
13105   class EvaluationTracker {
13106   public:
EvaluationTracker(SequenceChecker & Self)13107     EvaluationTracker(SequenceChecker &Self)
13108         : Self(Self), Prev(Self.EvalTracker) {
13109       Self.EvalTracker = this;
13110     }
13111 
~EvaluationTracker()13112     ~EvaluationTracker() {
13113       Self.EvalTracker = Prev;
13114       if (Prev)
13115         Prev->EvalOK &= EvalOK;
13116     }
13117 
evaluate(const Expr * E,bool & Result)13118     bool evaluate(const Expr *E, bool &Result) {
13119       if (!EvalOK || E->isValueDependent())
13120         return false;
13121       EvalOK = E->EvaluateAsBooleanCondition(
13122           Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
13123       return EvalOK;
13124     }
13125 
13126   private:
13127     SequenceChecker &Self;
13128     EvaluationTracker *Prev;
13129     bool EvalOK = true;
13130   } *EvalTracker = nullptr;
13131 
13132   /// Find the object which is produced by the specified expression,
13133   /// if any.
getObject(const Expr * E,bool Mod) const13134   Object getObject(const Expr *E, bool Mod) const {
13135     E = E->IgnoreParenCasts();
13136     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13137       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
13138         return getObject(UO->getSubExpr(), Mod);
13139     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13140       if (BO->getOpcode() == BO_Comma)
13141         return getObject(BO->getRHS(), Mod);
13142       if (Mod && BO->isAssignmentOp())
13143         return getObject(BO->getLHS(), Mod);
13144     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13145       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
13146       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
13147         return ME->getMemberDecl();
13148     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13149       // FIXME: If this is a reference, map through to its value.
13150       return DRE->getDecl();
13151     return nullptr;
13152   }
13153 
13154   /// Note that an object \p O was modified or used by an expression
13155   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
13156   /// the object \p O as obtained via the \p UsageMap.
addUsage(Object O,UsageInfo & UI,const Expr * UsageExpr,UsageKind UK)13157   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
13158     // Get the old usage for the given object and usage kind.
13159     Usage &U = UI.Uses[UK];
13160     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
13161       // If we have a modification as side effect and are in a sequenced
13162       // subexpression, save the old Usage so that we can restore it later
13163       // in SequencedSubexpression::~SequencedSubexpression.
13164       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
13165         ModAsSideEffect->push_back(std::make_pair(O, U));
13166       // Then record the new usage with the current sequencing region.
13167       U.UsageExpr = UsageExpr;
13168       U.Seq = Region;
13169     }
13170   }
13171 
13172   /// Check whether a modification or use of an object \p O in an expression
13173   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
13174   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
13175   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
13176   /// usage and false we are checking for a mod-use unsequenced usage.
checkUsage(Object O,UsageInfo & UI,const Expr * UsageExpr,UsageKind OtherKind,bool IsModMod)13177   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
13178                   UsageKind OtherKind, bool IsModMod) {
13179     if (UI.Diagnosed)
13180       return;
13181 
13182     const Usage &U = UI.Uses[OtherKind];
13183     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
13184       return;
13185 
13186     const Expr *Mod = U.UsageExpr;
13187     const Expr *ModOrUse = UsageExpr;
13188     if (OtherKind == UK_Use)
13189       std::swap(Mod, ModOrUse);
13190 
13191     SemaRef.DiagRuntimeBehavior(
13192         Mod->getExprLoc(), {Mod, ModOrUse},
13193         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
13194                                : diag::warn_unsequenced_mod_use)
13195             << O << SourceRange(ModOrUse->getExprLoc()));
13196     UI.Diagnosed = true;
13197   }
13198 
13199   // A note on note{Pre, Post}{Use, Mod}:
13200   //
13201   // (It helps to follow the algorithm with an expression such as
13202   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
13203   //  operations before C++17 and both are well-defined in C++17).
13204   //
13205   // When visiting a node which uses/modify an object we first call notePreUse
13206   // or notePreMod before visiting its sub-expression(s). At this point the
13207   // children of the current node have not yet been visited and so the eventual
13208   // uses/modifications resulting from the children of the current node have not
13209   // been recorded yet.
13210   //
13211   // We then visit the children of the current node. After that notePostUse or
13212   // notePostMod is called. These will 1) detect an unsequenced modification
13213   // as side effect (as in "k++ + k") and 2) add a new usage with the
13214   // appropriate usage kind.
13215   //
13216   // We also have to be careful that some operation sequences modification as
13217   // side effect as well (for example: || or ,). To account for this we wrap
13218   // the visitation of such a sub-expression (for example: the LHS of || or ,)
13219   // with SequencedSubexpression. SequencedSubexpression is an RAII object
13220   // which record usages which are modifications as side effect, and then
13221   // downgrade them (or more accurately restore the previous usage which was a
13222   // modification as side effect) when exiting the scope of the sequenced
13223   // subexpression.
13224 
notePreUse(Object O,const Expr * UseExpr)13225   void notePreUse(Object O, const Expr *UseExpr) {
13226     UsageInfo &UI = UsageMap[O];
13227     // Uses conflict with other modifications.
13228     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
13229   }
13230 
notePostUse(Object O,const Expr * UseExpr)13231   void notePostUse(Object O, const Expr *UseExpr) {
13232     UsageInfo &UI = UsageMap[O];
13233     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
13234                /*IsModMod=*/false);
13235     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
13236   }
13237 
notePreMod(Object O,const Expr * ModExpr)13238   void notePreMod(Object O, const Expr *ModExpr) {
13239     UsageInfo &UI = UsageMap[O];
13240     // Modifications conflict with other modifications and with uses.
13241     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
13242     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
13243   }
13244 
notePostMod(Object O,const Expr * ModExpr,UsageKind UK)13245   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
13246     UsageInfo &UI = UsageMap[O];
13247     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
13248                /*IsModMod=*/true);
13249     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
13250   }
13251 
13252 public:
SequenceChecker(Sema & S,const Expr * E,SmallVectorImpl<const Expr * > & WorkList)13253   SequenceChecker(Sema &S, const Expr *E,
13254                   SmallVectorImpl<const Expr *> &WorkList)
13255       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
13256     Visit(E);
13257     // Silence a -Wunused-private-field since WorkList is now unused.
13258     // TODO: Evaluate if it can be used, and if not remove it.
13259     (void)this->WorkList;
13260   }
13261 
VisitStmt(const Stmt * S)13262   void VisitStmt(const Stmt *S) {
13263     // Skip all statements which aren't expressions for now.
13264   }
13265 
VisitExpr(const Expr * E)13266   void VisitExpr(const Expr *E) {
13267     // By default, just recurse to evaluated subexpressions.
13268     Base::VisitStmt(E);
13269   }
13270 
VisitCastExpr(const CastExpr * E)13271   void VisitCastExpr(const CastExpr *E) {
13272     Object O = Object();
13273     if (E->getCastKind() == CK_LValueToRValue)
13274       O = getObject(E->getSubExpr(), false);
13275 
13276     if (O)
13277       notePreUse(O, E);
13278     VisitExpr(E);
13279     if (O)
13280       notePostUse(O, E);
13281   }
13282 
VisitSequencedExpressions(const Expr * SequencedBefore,const Expr * SequencedAfter)13283   void VisitSequencedExpressions(const Expr *SequencedBefore,
13284                                  const Expr *SequencedAfter) {
13285     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
13286     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
13287     SequenceTree::Seq OldRegion = Region;
13288 
13289     {
13290       SequencedSubexpression SeqBefore(*this);
13291       Region = BeforeRegion;
13292       Visit(SequencedBefore);
13293     }
13294 
13295     Region = AfterRegion;
13296     Visit(SequencedAfter);
13297 
13298     Region = OldRegion;
13299 
13300     Tree.merge(BeforeRegion);
13301     Tree.merge(AfterRegion);
13302   }
13303 
VisitArraySubscriptExpr(const ArraySubscriptExpr * ASE)13304   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
13305     // C++17 [expr.sub]p1:
13306     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
13307     //   expression E1 is sequenced before the expression E2.
13308     if (SemaRef.getLangOpts().CPlusPlus17)
13309       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
13310     else {
13311       Visit(ASE->getLHS());
13312       Visit(ASE->getRHS());
13313     }
13314   }
13315 
VisitBinPtrMemD(const BinaryOperator * BO)13316   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
VisitBinPtrMemI(const BinaryOperator * BO)13317   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
VisitBinPtrMem(const BinaryOperator * BO)13318   void VisitBinPtrMem(const BinaryOperator *BO) {
13319     // C++17 [expr.mptr.oper]p4:
13320     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
13321     //  the expression E1 is sequenced before the expression E2.
13322     if (SemaRef.getLangOpts().CPlusPlus17)
13323       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13324     else {
13325       Visit(BO->getLHS());
13326       Visit(BO->getRHS());
13327     }
13328   }
13329 
VisitBinShl(const BinaryOperator * BO)13330   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
VisitBinShr(const BinaryOperator * BO)13331   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
VisitBinShlShr(const BinaryOperator * BO)13332   void VisitBinShlShr(const BinaryOperator *BO) {
13333     // C++17 [expr.shift]p4:
13334     //  The expression E1 is sequenced before the expression E2.
13335     if (SemaRef.getLangOpts().CPlusPlus17)
13336       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13337     else {
13338       Visit(BO->getLHS());
13339       Visit(BO->getRHS());
13340     }
13341   }
13342 
VisitBinComma(const BinaryOperator * BO)13343   void VisitBinComma(const BinaryOperator *BO) {
13344     // C++11 [expr.comma]p1:
13345     //   Every value computation and side effect associated with the left
13346     //   expression is sequenced before every value computation and side
13347     //   effect associated with the right expression.
13348     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13349   }
13350 
VisitBinAssign(const BinaryOperator * BO)13351   void VisitBinAssign(const BinaryOperator *BO) {
13352     SequenceTree::Seq RHSRegion;
13353     SequenceTree::Seq LHSRegion;
13354     if (SemaRef.getLangOpts().CPlusPlus17) {
13355       RHSRegion = Tree.allocate(Region);
13356       LHSRegion = Tree.allocate(Region);
13357     } else {
13358       RHSRegion = Region;
13359       LHSRegion = Region;
13360     }
13361     SequenceTree::Seq OldRegion = Region;
13362 
13363     // C++11 [expr.ass]p1:
13364     //  [...] the assignment is sequenced after the value computation
13365     //  of the right and left operands, [...]
13366     //
13367     // so check it before inspecting the operands and update the
13368     // map afterwards.
13369     Object O = getObject(BO->getLHS(), /*Mod=*/true);
13370     if (O)
13371       notePreMod(O, BO);
13372 
13373     if (SemaRef.getLangOpts().CPlusPlus17) {
13374       // C++17 [expr.ass]p1:
13375       //  [...] The right operand is sequenced before the left operand. [...]
13376       {
13377         SequencedSubexpression SeqBefore(*this);
13378         Region = RHSRegion;
13379         Visit(BO->getRHS());
13380       }
13381 
13382       Region = LHSRegion;
13383       Visit(BO->getLHS());
13384 
13385       if (O && isa<CompoundAssignOperator>(BO))
13386         notePostUse(O, BO);
13387 
13388     } else {
13389       // C++11 does not specify any sequencing between the LHS and RHS.
13390       Region = LHSRegion;
13391       Visit(BO->getLHS());
13392 
13393       if (O && isa<CompoundAssignOperator>(BO))
13394         notePostUse(O, BO);
13395 
13396       Region = RHSRegion;
13397       Visit(BO->getRHS());
13398     }
13399 
13400     // C++11 [expr.ass]p1:
13401     //  the assignment is sequenced [...] before the value computation of the
13402     //  assignment expression.
13403     // C11 6.5.16/3 has no such rule.
13404     Region = OldRegion;
13405     if (O)
13406       notePostMod(O, BO,
13407                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13408                                                   : UK_ModAsSideEffect);
13409     if (SemaRef.getLangOpts().CPlusPlus17) {
13410       Tree.merge(RHSRegion);
13411       Tree.merge(LHSRegion);
13412     }
13413   }
13414 
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)13415   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
13416     VisitBinAssign(CAO);
13417   }
13418 
VisitUnaryPreInc(const UnaryOperator * UO)13419   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreDec(const UnaryOperator * UO)13420   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreIncDec(const UnaryOperator * UO)13421   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
13422     Object O = getObject(UO->getSubExpr(), true);
13423     if (!O)
13424       return VisitExpr(UO);
13425 
13426     notePreMod(O, UO);
13427     Visit(UO->getSubExpr());
13428     // C++11 [expr.pre.incr]p1:
13429     //   the expression ++x is equivalent to x+=1
13430     notePostMod(O, UO,
13431                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13432                                                 : UK_ModAsSideEffect);
13433   }
13434 
VisitUnaryPostInc(const UnaryOperator * UO)13435   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostDec(const UnaryOperator * UO)13436   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostIncDec(const UnaryOperator * UO)13437   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
13438     Object O = getObject(UO->getSubExpr(), true);
13439     if (!O)
13440       return VisitExpr(UO);
13441 
13442     notePreMod(O, UO);
13443     Visit(UO->getSubExpr());
13444     notePostMod(O, UO, UK_ModAsSideEffect);
13445   }
13446 
VisitBinLOr(const BinaryOperator * BO)13447   void VisitBinLOr(const BinaryOperator *BO) {
13448     // C++11 [expr.log.or]p2:
13449     //  If the second expression is evaluated, every value computation and
13450     //  side effect associated with the first expression is sequenced before
13451     //  every value computation and side effect associated with the
13452     //  second expression.
13453     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13454     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13455     SequenceTree::Seq OldRegion = Region;
13456 
13457     EvaluationTracker Eval(*this);
13458     {
13459       SequencedSubexpression Sequenced(*this);
13460       Region = LHSRegion;
13461       Visit(BO->getLHS());
13462     }
13463 
13464     // C++11 [expr.log.or]p1:
13465     //  [...] the second operand is not evaluated if the first operand
13466     //  evaluates to true.
13467     bool EvalResult = false;
13468     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13469     bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
13470     if (ShouldVisitRHS) {
13471       Region = RHSRegion;
13472       Visit(BO->getRHS());
13473     }
13474 
13475     Region = OldRegion;
13476     Tree.merge(LHSRegion);
13477     Tree.merge(RHSRegion);
13478   }
13479 
VisitBinLAnd(const BinaryOperator * BO)13480   void VisitBinLAnd(const BinaryOperator *BO) {
13481     // C++11 [expr.log.and]p2:
13482     //  If the second expression is evaluated, every value computation and
13483     //  side effect associated with the first expression is sequenced before
13484     //  every value computation and side effect associated with the
13485     //  second expression.
13486     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13487     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13488     SequenceTree::Seq OldRegion = Region;
13489 
13490     EvaluationTracker Eval(*this);
13491     {
13492       SequencedSubexpression Sequenced(*this);
13493       Region = LHSRegion;
13494       Visit(BO->getLHS());
13495     }
13496 
13497     // C++11 [expr.log.and]p1:
13498     //  [...] the second operand is not evaluated if the first operand is false.
13499     bool EvalResult = false;
13500     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13501     bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
13502     if (ShouldVisitRHS) {
13503       Region = RHSRegion;
13504       Visit(BO->getRHS());
13505     }
13506 
13507     Region = OldRegion;
13508     Tree.merge(LHSRegion);
13509     Tree.merge(RHSRegion);
13510   }
13511 
VisitAbstractConditionalOperator(const AbstractConditionalOperator * CO)13512   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
13513     // C++11 [expr.cond]p1:
13514     //  [...] Every value computation and side effect associated with the first
13515     //  expression is sequenced before every value computation and side effect
13516     //  associated with the second or third expression.
13517     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
13518 
13519     // No sequencing is specified between the true and false expression.
13520     // However since exactly one of both is going to be evaluated we can
13521     // consider them to be sequenced. This is needed to avoid warning on
13522     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
13523     // both the true and false expressions because we can't evaluate x.
13524     // This will still allow us to detect an expression like (pre C++17)
13525     // "(x ? y += 1 : y += 2) = y".
13526     //
13527     // We don't wrap the visitation of the true and false expression with
13528     // SequencedSubexpression because we don't want to downgrade modifications
13529     // as side effect in the true and false expressions after the visition
13530     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
13531     // not warn between the two "y++", but we should warn between the "y++"
13532     // and the "y".
13533     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
13534     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
13535     SequenceTree::Seq OldRegion = Region;
13536 
13537     EvaluationTracker Eval(*this);
13538     {
13539       SequencedSubexpression Sequenced(*this);
13540       Region = ConditionRegion;
13541       Visit(CO->getCond());
13542     }
13543 
13544     // C++11 [expr.cond]p1:
13545     // [...] The first expression is contextually converted to bool (Clause 4).
13546     // It is evaluated and if it is true, the result of the conditional
13547     // expression is the value of the second expression, otherwise that of the
13548     // third expression. Only one of the second and third expressions is
13549     // evaluated. [...]
13550     bool EvalResult = false;
13551     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
13552     bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
13553     bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
13554     if (ShouldVisitTrueExpr) {
13555       Region = TrueRegion;
13556       Visit(CO->getTrueExpr());
13557     }
13558     if (ShouldVisitFalseExpr) {
13559       Region = FalseRegion;
13560       Visit(CO->getFalseExpr());
13561     }
13562 
13563     Region = OldRegion;
13564     Tree.merge(ConditionRegion);
13565     Tree.merge(TrueRegion);
13566     Tree.merge(FalseRegion);
13567   }
13568 
VisitCallExpr(const CallExpr * CE)13569   void VisitCallExpr(const CallExpr *CE) {
13570     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
13571 
13572     if (CE->isUnevaluatedBuiltinCall(Context))
13573       return;
13574 
13575     // C++11 [intro.execution]p15:
13576     //   When calling a function [...], every value computation and side effect
13577     //   associated with any argument expression, or with the postfix expression
13578     //   designating the called function, is sequenced before execution of every
13579     //   expression or statement in the body of the function [and thus before
13580     //   the value computation of its result].
13581     SequencedSubexpression Sequenced(*this);
13582     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
13583       // C++17 [expr.call]p5
13584       //   The postfix-expression is sequenced before each expression in the
13585       //   expression-list and any default argument. [...]
13586       SequenceTree::Seq CalleeRegion;
13587       SequenceTree::Seq OtherRegion;
13588       if (SemaRef.getLangOpts().CPlusPlus17) {
13589         CalleeRegion = Tree.allocate(Region);
13590         OtherRegion = Tree.allocate(Region);
13591       } else {
13592         CalleeRegion = Region;
13593         OtherRegion = Region;
13594       }
13595       SequenceTree::Seq OldRegion = Region;
13596 
13597       // Visit the callee expression first.
13598       Region = CalleeRegion;
13599       if (SemaRef.getLangOpts().CPlusPlus17) {
13600         SequencedSubexpression Sequenced(*this);
13601         Visit(CE->getCallee());
13602       } else {
13603         Visit(CE->getCallee());
13604       }
13605 
13606       // Then visit the argument expressions.
13607       Region = OtherRegion;
13608       for (const Expr *Argument : CE->arguments())
13609         Visit(Argument);
13610 
13611       Region = OldRegion;
13612       if (SemaRef.getLangOpts().CPlusPlus17) {
13613         Tree.merge(CalleeRegion);
13614         Tree.merge(OtherRegion);
13615       }
13616     });
13617   }
13618 
VisitCXXOperatorCallExpr(const CXXOperatorCallExpr * CXXOCE)13619   void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
13620     // C++17 [over.match.oper]p2:
13621     //   [...] the operator notation is first transformed to the equivalent
13622     //   function-call notation as summarized in Table 12 (where @ denotes one
13623     //   of the operators covered in the specified subclause). However, the
13624     //   operands are sequenced in the order prescribed for the built-in
13625     //   operator (Clause 8).
13626     //
13627     // From the above only overloaded binary operators and overloaded call
13628     // operators have sequencing rules in C++17 that we need to handle
13629     // separately.
13630     if (!SemaRef.getLangOpts().CPlusPlus17 ||
13631         (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
13632       return VisitCallExpr(CXXOCE);
13633 
13634     enum {
13635       NoSequencing,
13636       LHSBeforeRHS,
13637       RHSBeforeLHS,
13638       LHSBeforeRest
13639     } SequencingKind;
13640     switch (CXXOCE->getOperator()) {
13641     case OO_Equal:
13642     case OO_PlusEqual:
13643     case OO_MinusEqual:
13644     case OO_StarEqual:
13645     case OO_SlashEqual:
13646     case OO_PercentEqual:
13647     case OO_CaretEqual:
13648     case OO_AmpEqual:
13649     case OO_PipeEqual:
13650     case OO_LessLessEqual:
13651     case OO_GreaterGreaterEqual:
13652       SequencingKind = RHSBeforeLHS;
13653       break;
13654 
13655     case OO_LessLess:
13656     case OO_GreaterGreater:
13657     case OO_AmpAmp:
13658     case OO_PipePipe:
13659     case OO_Comma:
13660     case OO_ArrowStar:
13661     case OO_Subscript:
13662       SequencingKind = LHSBeforeRHS;
13663       break;
13664 
13665     case OO_Call:
13666       SequencingKind = LHSBeforeRest;
13667       break;
13668 
13669     default:
13670       SequencingKind = NoSequencing;
13671       break;
13672     }
13673 
13674     if (SequencingKind == NoSequencing)
13675       return VisitCallExpr(CXXOCE);
13676 
13677     // This is a call, so all subexpressions are sequenced before the result.
13678     SequencedSubexpression Sequenced(*this);
13679 
13680     SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
13681       assert(SemaRef.getLangOpts().CPlusPlus17 &&
13682              "Should only get there with C++17 and above!");
13683       assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
13684              "Should only get there with an overloaded binary operator"
13685              " or an overloaded call operator!");
13686 
13687       if (SequencingKind == LHSBeforeRest) {
13688         assert(CXXOCE->getOperator() == OO_Call &&
13689                "We should only have an overloaded call operator here!");
13690 
13691         // This is very similar to VisitCallExpr, except that we only have the
13692         // C++17 case. The postfix-expression is the first argument of the
13693         // CXXOperatorCallExpr. The expressions in the expression-list, if any,
13694         // are in the following arguments.
13695         //
13696         // Note that we intentionally do not visit the callee expression since
13697         // it is just a decayed reference to a function.
13698         SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
13699         SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
13700         SequenceTree::Seq OldRegion = Region;
13701 
13702         assert(CXXOCE->getNumArgs() >= 1 &&
13703                "An overloaded call operator must have at least one argument"
13704                " for the postfix-expression!");
13705         const Expr *PostfixExpr = CXXOCE->getArgs()[0];
13706         llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
13707                                           CXXOCE->getNumArgs() - 1);
13708 
13709         // Visit the postfix-expression first.
13710         {
13711           Region = PostfixExprRegion;
13712           SequencedSubexpression Sequenced(*this);
13713           Visit(PostfixExpr);
13714         }
13715 
13716         // Then visit the argument expressions.
13717         Region = ArgsRegion;
13718         for (const Expr *Arg : Args)
13719           Visit(Arg);
13720 
13721         Region = OldRegion;
13722         Tree.merge(PostfixExprRegion);
13723         Tree.merge(ArgsRegion);
13724       } else {
13725         assert(CXXOCE->getNumArgs() == 2 &&
13726                "Should only have two arguments here!");
13727         assert((SequencingKind == LHSBeforeRHS ||
13728                 SequencingKind == RHSBeforeLHS) &&
13729                "Unexpected sequencing kind!");
13730 
13731         // We do not visit the callee expression since it is just a decayed
13732         // reference to a function.
13733         const Expr *E1 = CXXOCE->getArg(0);
13734         const Expr *E2 = CXXOCE->getArg(1);
13735         if (SequencingKind == RHSBeforeLHS)
13736           std::swap(E1, E2);
13737 
13738         return VisitSequencedExpressions(E1, E2);
13739       }
13740     });
13741   }
13742 
VisitCXXConstructExpr(const CXXConstructExpr * CCE)13743   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
13744     // This is a call, so all subexpressions are sequenced before the result.
13745     SequencedSubexpression Sequenced(*this);
13746 
13747     if (!CCE->isListInitialization())
13748       return VisitExpr(CCE);
13749 
13750     // In C++11, list initializations are sequenced.
13751     SmallVector<SequenceTree::Seq, 32> Elts;
13752     SequenceTree::Seq Parent = Region;
13753     for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
13754                                               E = CCE->arg_end();
13755          I != E; ++I) {
13756       Region = Tree.allocate(Parent);
13757       Elts.push_back(Region);
13758       Visit(*I);
13759     }
13760 
13761     // Forget that the initializers are sequenced.
13762     Region = Parent;
13763     for (unsigned I = 0; I < Elts.size(); ++I)
13764       Tree.merge(Elts[I]);
13765   }
13766 
VisitInitListExpr(const InitListExpr * ILE)13767   void VisitInitListExpr(const InitListExpr *ILE) {
13768     if (!SemaRef.getLangOpts().CPlusPlus11)
13769       return VisitExpr(ILE);
13770 
13771     // In C++11, list initializations are sequenced.
13772     SmallVector<SequenceTree::Seq, 32> Elts;
13773     SequenceTree::Seq Parent = Region;
13774     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
13775       const Expr *E = ILE->getInit(I);
13776       if (!E)
13777         continue;
13778       Region = Tree.allocate(Parent);
13779       Elts.push_back(Region);
13780       Visit(E);
13781     }
13782 
13783     // Forget that the initializers are sequenced.
13784     Region = Parent;
13785     for (unsigned I = 0; I < Elts.size(); ++I)
13786       Tree.merge(Elts[I]);
13787   }
13788 };
13789 
13790 } // namespace
13791 
CheckUnsequencedOperations(const Expr * E)13792 void Sema::CheckUnsequencedOperations(const Expr *E) {
13793   SmallVector<const Expr *, 8> WorkList;
13794   WorkList.push_back(E);
13795   while (!WorkList.empty()) {
13796     const Expr *Item = WorkList.pop_back_val();
13797     SequenceChecker(*this, Item, WorkList);
13798   }
13799 }
13800 
CheckCompletedExpr(Expr * E,SourceLocation CheckLoc,bool IsConstexpr)13801 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
13802                               bool IsConstexpr) {
13803   llvm::SaveAndRestore<bool> ConstantContext(
13804       isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
13805   CheckImplicitConversions(E, CheckLoc);
13806   if (!E->isInstantiationDependent())
13807     CheckUnsequencedOperations(E);
13808   if (!IsConstexpr && !E->isValueDependent())
13809     CheckForIntOverflow(E);
13810   DiagnoseMisalignedMembers();
13811 }
13812 
CheckBitFieldInitialization(SourceLocation InitLoc,FieldDecl * BitField,Expr * Init)13813 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
13814                                        FieldDecl *BitField,
13815                                        Expr *Init) {
13816   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
13817 }
13818 
diagnoseArrayStarInParamType(Sema & S,QualType PType,SourceLocation Loc)13819 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
13820                                          SourceLocation Loc) {
13821   if (!PType->isVariablyModifiedType())
13822     return;
13823   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
13824     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
13825     return;
13826   }
13827   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
13828     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
13829     return;
13830   }
13831   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
13832     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
13833     return;
13834   }
13835 
13836   const ArrayType *AT = S.Context.getAsArrayType(PType);
13837   if (!AT)
13838     return;
13839 
13840   if (AT->getSizeModifier() != ArrayType::Star) {
13841     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
13842     return;
13843   }
13844 
13845   S.Diag(Loc, diag::err_array_star_in_function_definition);
13846 }
13847 
13848 /// CheckParmsForFunctionDef - Check that the parameters of the given
13849 /// function are appropriate for the definition of a function. This
13850 /// takes care of any checks that cannot be performed on the
13851 /// declaration itself, e.g., that the types of each of the function
13852 /// parameters are complete.
CheckParmsForFunctionDef(ArrayRef<ParmVarDecl * > Parameters,bool CheckParameterNames)13853 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
13854                                     bool CheckParameterNames) {
13855   bool HasInvalidParm = false;
13856   for (ParmVarDecl *Param : Parameters) {
13857     // C99 6.7.5.3p4: the parameters in a parameter type list in a
13858     // function declarator that is part of a function definition of
13859     // that function shall not have incomplete type.
13860     //
13861     // This is also C++ [dcl.fct]p6.
13862     if (!Param->isInvalidDecl() &&
13863         RequireCompleteType(Param->getLocation(), Param->getType(),
13864                             diag::err_typecheck_decl_incomplete_type)) {
13865       Param->setInvalidDecl();
13866       HasInvalidParm = true;
13867     }
13868 
13869     // C99 6.9.1p5: If the declarator includes a parameter type list, the
13870     // declaration of each parameter shall include an identifier.
13871     if (CheckParameterNames && Param->getIdentifier() == nullptr &&
13872         !Param->isImplicit() && !getLangOpts().CPlusPlus) {
13873       // Diagnose this as an extension in C17 and earlier.
13874       if (!getLangOpts().C2x)
13875         Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
13876     }
13877 
13878     // C99 6.7.5.3p12:
13879     //   If the function declarator is not part of a definition of that
13880     //   function, parameters may have incomplete type and may use the [*]
13881     //   notation in their sequences of declarator specifiers to specify
13882     //   variable length array types.
13883     QualType PType = Param->getOriginalType();
13884     // FIXME: This diagnostic should point the '[*]' if source-location
13885     // information is added for it.
13886     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
13887 
13888     // If the parameter is a c++ class type and it has to be destructed in the
13889     // callee function, declare the destructor so that it can be called by the
13890     // callee function. Do not perform any direct access check on the dtor here.
13891     if (!Param->isInvalidDecl()) {
13892       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
13893         if (!ClassDecl->isInvalidDecl() &&
13894             !ClassDecl->hasIrrelevantDestructor() &&
13895             !ClassDecl->isDependentContext() &&
13896             ClassDecl->isParamDestroyedInCallee()) {
13897           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
13898           MarkFunctionReferenced(Param->getLocation(), Destructor);
13899           DiagnoseUseOfDecl(Destructor, Param->getLocation());
13900         }
13901       }
13902     }
13903 
13904     // Parameters with the pass_object_size attribute only need to be marked
13905     // constant at function definitions. Because we lack information about
13906     // whether we're on a declaration or definition when we're instantiating the
13907     // attribute, we need to check for constness here.
13908     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
13909       if (!Param->getType().isConstQualified())
13910         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
13911             << Attr->getSpelling() << 1;
13912 
13913     // Check for parameter names shadowing fields from the class.
13914     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
13915       // The owning context for the parameter should be the function, but we
13916       // want to see if this function's declaration context is a record.
13917       DeclContext *DC = Param->getDeclContext();
13918       if (DC && DC->isFunctionOrMethod()) {
13919         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
13920           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
13921                                      RD, /*DeclIsField*/ false);
13922       }
13923     }
13924   }
13925 
13926   return HasInvalidParm;
13927 }
13928 
13929 Optional<std::pair<CharUnits, CharUnits>>
13930 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
13931 
13932 /// Compute the alignment and offset of the base class object given the
13933 /// derived-to-base cast expression and the alignment and offset of the derived
13934 /// class object.
13935 static std::pair<CharUnits, CharUnits>
getDerivedToBaseAlignmentAndOffset(const CastExpr * CE,QualType DerivedType,CharUnits BaseAlignment,CharUnits Offset,ASTContext & Ctx)13936 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
13937                                    CharUnits BaseAlignment, CharUnits Offset,
13938                                    ASTContext &Ctx) {
13939   for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
13940        ++PathI) {
13941     const CXXBaseSpecifier *Base = *PathI;
13942     const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
13943     if (Base->isVirtual()) {
13944       // The complete object may have a lower alignment than the non-virtual
13945       // alignment of the base, in which case the base may be misaligned. Choose
13946       // the smaller of the non-virtual alignment and BaseAlignment, which is a
13947       // conservative lower bound of the complete object alignment.
13948       CharUnits NonVirtualAlignment =
13949           Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
13950       BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
13951       Offset = CharUnits::Zero();
13952     } else {
13953       const ASTRecordLayout &RL =
13954           Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
13955       Offset += RL.getBaseClassOffset(BaseDecl);
13956     }
13957     DerivedType = Base->getType();
13958   }
13959 
13960   return std::make_pair(BaseAlignment, Offset);
13961 }
13962 
13963 /// Compute the alignment and offset of a binary additive operator.
13964 static Optional<std::pair<CharUnits, CharUnits>>
getAlignmentAndOffsetFromBinAddOrSub(const Expr * PtrE,const Expr * IntE,bool IsSub,ASTContext & Ctx)13965 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
13966                                      bool IsSub, ASTContext &Ctx) {
13967   QualType PointeeType = PtrE->getType()->getPointeeType();
13968 
13969   if (!PointeeType->isConstantSizeType())
13970     return llvm::None;
13971 
13972   auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
13973 
13974   if (!P)
13975     return llvm::None;
13976 
13977   CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
13978   if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
13979     CharUnits Offset = EltSize * IdxRes->getExtValue();
13980     if (IsSub)
13981       Offset = -Offset;
13982     return std::make_pair(P->first, P->second + Offset);
13983   }
13984 
13985   // If the integer expression isn't a constant expression, compute the lower
13986   // bound of the alignment using the alignment and offset of the pointer
13987   // expression and the element size.
13988   return std::make_pair(
13989       P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
13990       CharUnits::Zero());
13991 }
13992 
13993 /// This helper function takes an lvalue expression and returns the alignment of
13994 /// a VarDecl and a constant offset from the VarDecl.
13995 Optional<std::pair<CharUnits, CharUnits>>
getBaseAlignmentAndOffsetFromLValue(const Expr * E,ASTContext & Ctx)13996 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
13997   E = E->IgnoreParens();
13998   switch (E->getStmtClass()) {
13999   default:
14000     break;
14001   case Stmt::CStyleCastExprClass:
14002   case Stmt::CXXStaticCastExprClass:
14003   case Stmt::ImplicitCastExprClass: {
14004     auto *CE = cast<CastExpr>(E);
14005     const Expr *From = CE->getSubExpr();
14006     switch (CE->getCastKind()) {
14007     default:
14008       break;
14009     case CK_NoOp:
14010       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14011     case CK_UncheckedDerivedToBase:
14012     case CK_DerivedToBase: {
14013       auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14014       if (!P)
14015         break;
14016       return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
14017                                                 P->second, Ctx);
14018     }
14019     }
14020     break;
14021   }
14022   case Stmt::ArraySubscriptExprClass: {
14023     auto *ASE = cast<ArraySubscriptExpr>(E);
14024     return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
14025                                                 false, Ctx);
14026   }
14027   case Stmt::DeclRefExprClass: {
14028     if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
14029       // FIXME: If VD is captured by copy or is an escaping __block variable,
14030       // use the alignment of VD's type.
14031       if (!VD->getType()->isReferenceType())
14032         return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
14033       if (VD->hasInit())
14034         return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
14035     }
14036     break;
14037   }
14038   case Stmt::MemberExprClass: {
14039     auto *ME = cast<MemberExpr>(E);
14040     auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
14041     if (!FD || FD->getType()->isReferenceType())
14042       break;
14043     Optional<std::pair<CharUnits, CharUnits>> P;
14044     if (ME->isArrow())
14045       P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
14046     else
14047       P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
14048     if (!P)
14049       break;
14050     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
14051     uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
14052     return std::make_pair(P->first,
14053                           P->second + CharUnits::fromQuantity(Offset));
14054   }
14055   case Stmt::UnaryOperatorClass: {
14056     auto *UO = cast<UnaryOperator>(E);
14057     switch (UO->getOpcode()) {
14058     default:
14059       break;
14060     case UO_Deref:
14061       return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
14062     }
14063     break;
14064   }
14065   case Stmt::BinaryOperatorClass: {
14066     auto *BO = cast<BinaryOperator>(E);
14067     auto Opcode = BO->getOpcode();
14068     switch (Opcode) {
14069     default:
14070       break;
14071     case BO_Comma:
14072       return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
14073     }
14074     break;
14075   }
14076   }
14077   return llvm::None;
14078 }
14079 
14080 /// This helper function takes a pointer expression and returns the alignment of
14081 /// a VarDecl and a constant offset from the VarDecl.
14082 Optional<std::pair<CharUnits, CharUnits>>
getBaseAlignmentAndOffsetFromPtr(const Expr * E,ASTContext & Ctx)14083 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
14084   E = E->IgnoreParens();
14085   switch (E->getStmtClass()) {
14086   default:
14087     break;
14088   case Stmt::CStyleCastExprClass:
14089   case Stmt::CXXStaticCastExprClass:
14090   case Stmt::ImplicitCastExprClass: {
14091     auto *CE = cast<CastExpr>(E);
14092     const Expr *From = CE->getSubExpr();
14093     switch (CE->getCastKind()) {
14094     default:
14095       break;
14096     case CK_NoOp:
14097       return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14098     case CK_ArrayToPointerDecay:
14099       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14100     case CK_UncheckedDerivedToBase:
14101     case CK_DerivedToBase: {
14102       auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14103       if (!P)
14104         break;
14105       return getDerivedToBaseAlignmentAndOffset(
14106           CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
14107     }
14108     }
14109     break;
14110   }
14111   case Stmt::CXXThisExprClass: {
14112     auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
14113     CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
14114     return std::make_pair(Alignment, CharUnits::Zero());
14115   }
14116   case Stmt::UnaryOperatorClass: {
14117     auto *UO = cast<UnaryOperator>(E);
14118     if (UO->getOpcode() == UO_AddrOf)
14119       return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
14120     break;
14121   }
14122   case Stmt::BinaryOperatorClass: {
14123     auto *BO = cast<BinaryOperator>(E);
14124     auto Opcode = BO->getOpcode();
14125     switch (Opcode) {
14126     default:
14127       break;
14128     case BO_Add:
14129     case BO_Sub: {
14130       const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
14131       if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
14132         std::swap(LHS, RHS);
14133       return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
14134                                                   Ctx);
14135     }
14136     case BO_Comma:
14137       return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
14138     }
14139     break;
14140   }
14141   }
14142   return llvm::None;
14143 }
14144 
getPresumedAlignmentOfPointer(const Expr * E,Sema & S)14145 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
14146   // See if we can compute the alignment of a VarDecl and an offset from it.
14147   Optional<std::pair<CharUnits, CharUnits>> P =
14148       getBaseAlignmentAndOffsetFromPtr(E, S.Context);
14149 
14150   if (P)
14151     return P->first.alignmentAtOffset(P->second);
14152 
14153   // If that failed, return the type's alignment.
14154   return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
14155 }
14156 
14157 /// CheckCastAlign - Implements -Wcast-align, which warns when a
14158 /// pointer cast increases the alignment requirements.
CheckCastAlign(Expr * Op,QualType T,SourceRange TRange)14159 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
14160   // This is actually a lot of work to potentially be doing on every
14161   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
14162   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
14163     return;
14164 
14165   // Ignore dependent types.
14166   if (T->isDependentType() || Op->getType()->isDependentType())
14167     return;
14168 
14169   // Require that the destination be a pointer type.
14170   const PointerType *DestPtr = T->getAs<PointerType>();
14171   if (!DestPtr) return;
14172 
14173   // If the destination has alignment 1, we're done.
14174   QualType DestPointee = DestPtr->getPointeeType();
14175   if (DestPointee->isIncompleteType()) return;
14176   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
14177   if (DestAlign.isOne()) return;
14178 
14179   // Require that the source be a pointer type.
14180   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
14181   if (!SrcPtr) return;
14182   QualType SrcPointee = SrcPtr->getPointeeType();
14183 
14184   // Explicitly allow casts from cv void*.  We already implicitly
14185   // allowed casts to cv void*, since they have alignment 1.
14186   // Also allow casts involving incomplete types, which implicitly
14187   // includes 'void'.
14188   if (SrcPointee->isIncompleteType()) return;
14189 
14190   CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
14191 
14192   if (SrcAlign >= DestAlign) return;
14193 
14194   Diag(TRange.getBegin(), diag::warn_cast_align)
14195     << Op->getType() << T
14196     << static_cast<unsigned>(SrcAlign.getQuantity())
14197     << static_cast<unsigned>(DestAlign.getQuantity())
14198     << TRange << Op->getSourceRange();
14199 }
14200 
14201 /// Check whether this array fits the idiom of a size-one tail padded
14202 /// array member of a struct.
14203 ///
14204 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
14205 /// commonly used to emulate flexible arrays in C89 code.
IsTailPaddedMemberArray(Sema & S,const llvm::APInt & Size,const NamedDecl * ND)14206 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
14207                                     const NamedDecl *ND) {
14208   if (Size != 1 || !ND) return false;
14209 
14210   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
14211   if (!FD) return false;
14212 
14213   // Don't consider sizes resulting from macro expansions or template argument
14214   // substitution to form C89 tail-padded arrays.
14215 
14216   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
14217   while (TInfo) {
14218     TypeLoc TL = TInfo->getTypeLoc();
14219     // Look through typedefs.
14220     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
14221       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
14222       TInfo = TDL->getTypeSourceInfo();
14223       continue;
14224     }
14225     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
14226       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
14227       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
14228         return false;
14229     }
14230     break;
14231   }
14232 
14233   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
14234   if (!RD) return false;
14235   if (RD->isUnion()) return false;
14236   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
14237     if (!CRD->isStandardLayout()) return false;
14238   }
14239 
14240   // See if this is the last field decl in the record.
14241   const Decl *D = FD;
14242   while ((D = D->getNextDeclInContext()))
14243     if (isa<FieldDecl>(D))
14244       return false;
14245   return true;
14246 }
14247 
CheckArrayAccess(const Expr * BaseExpr,const Expr * IndexExpr,const ArraySubscriptExpr * ASE,bool AllowOnePastEnd,bool IndexNegated)14248 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
14249                             const ArraySubscriptExpr *ASE,
14250                             bool AllowOnePastEnd, bool IndexNegated) {
14251   // Already diagnosed by the constant evaluator.
14252   if (isConstantEvaluated())
14253     return;
14254 
14255   IndexExpr = IndexExpr->IgnoreParenImpCasts();
14256   if (IndexExpr->isValueDependent())
14257     return;
14258 
14259   const Type *EffectiveType =
14260       BaseExpr->getType()->getPointeeOrArrayElementType();
14261   BaseExpr = BaseExpr->IgnoreParenCasts();
14262   const ConstantArrayType *ArrayTy =
14263       Context.getAsConstantArrayType(BaseExpr->getType());
14264 
14265   if (!ArrayTy)
14266     return;
14267 
14268   const Type *BaseType = ArrayTy->getElementType().getTypePtr();
14269   if (EffectiveType->isDependentType() || BaseType->isDependentType())
14270     return;
14271 
14272   Expr::EvalResult Result;
14273   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
14274     return;
14275 
14276   llvm::APSInt index = Result.Val.getInt();
14277   if (IndexNegated)
14278     index = -index;
14279 
14280   const NamedDecl *ND = nullptr;
14281   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14282     ND = DRE->getDecl();
14283   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14284     ND = ME->getMemberDecl();
14285 
14286   if (index.isUnsigned() || !index.isNegative()) {
14287     // It is possible that the type of the base expression after
14288     // IgnoreParenCasts is incomplete, even though the type of the base
14289     // expression before IgnoreParenCasts is complete (see PR39746 for an
14290     // example). In this case we have no information about whether the array
14291     // access exceeds the array bounds. However we can still diagnose an array
14292     // access which precedes the array bounds.
14293     if (BaseType->isIncompleteType())
14294       return;
14295 
14296     llvm::APInt size = ArrayTy->getSize();
14297     if (!size.isStrictlyPositive())
14298       return;
14299 
14300     if (BaseType != EffectiveType) {
14301       // Make sure we're comparing apples to apples when comparing index to size
14302       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
14303       uint64_t array_typesize = Context.getTypeSize(BaseType);
14304       // Handle ptrarith_typesize being zero, such as when casting to void*
14305       if (!ptrarith_typesize) ptrarith_typesize = 1;
14306       if (ptrarith_typesize != array_typesize) {
14307         // There's a cast to a different size type involved
14308         uint64_t ratio = array_typesize / ptrarith_typesize;
14309         // TODO: Be smarter about handling cases where array_typesize is not a
14310         // multiple of ptrarith_typesize
14311         if (ptrarith_typesize * ratio == array_typesize)
14312           size *= llvm::APInt(size.getBitWidth(), ratio);
14313       }
14314     }
14315 
14316     if (size.getBitWidth() > index.getBitWidth())
14317       index = index.zext(size.getBitWidth());
14318     else if (size.getBitWidth() < index.getBitWidth())
14319       size = size.zext(index.getBitWidth());
14320 
14321     // For array subscripting the index must be less than size, but for pointer
14322     // arithmetic also allow the index (offset) to be equal to size since
14323     // computing the next address after the end of the array is legal and
14324     // commonly done e.g. in C++ iterators and range-based for loops.
14325     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
14326       return;
14327 
14328     // Also don't warn for arrays of size 1 which are members of some
14329     // structure. These are often used to approximate flexible arrays in C89
14330     // code.
14331     if (IsTailPaddedMemberArray(*this, size, ND))
14332       return;
14333 
14334     // Suppress the warning if the subscript expression (as identified by the
14335     // ']' location) and the index expression are both from macro expansions
14336     // within a system header.
14337     if (ASE) {
14338       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
14339           ASE->getRBracketLoc());
14340       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
14341         SourceLocation IndexLoc =
14342             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
14343         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
14344           return;
14345       }
14346     }
14347 
14348     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
14349     if (ASE)
14350       DiagID = diag::warn_array_index_exceeds_bounds;
14351 
14352     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14353                         PDiag(DiagID) << index.toString(10, true)
14354                                       << size.toString(10, true)
14355                                       << (unsigned)size.getLimitedValue(~0U)
14356                                       << IndexExpr->getSourceRange());
14357   } else {
14358     unsigned DiagID = diag::warn_array_index_precedes_bounds;
14359     if (!ASE) {
14360       DiagID = diag::warn_ptr_arith_precedes_bounds;
14361       if (index.isNegative()) index = -index;
14362     }
14363 
14364     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14365                         PDiag(DiagID) << index.toString(10, true)
14366                                       << IndexExpr->getSourceRange());
14367   }
14368 
14369   if (!ND) {
14370     // Try harder to find a NamedDecl to point at in the note.
14371     while (const ArraySubscriptExpr *ASE =
14372            dyn_cast<ArraySubscriptExpr>(BaseExpr))
14373       BaseExpr = ASE->getBase()->IgnoreParenCasts();
14374     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14375       ND = DRE->getDecl();
14376     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14377       ND = ME->getMemberDecl();
14378   }
14379 
14380   if (ND)
14381     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
14382                         PDiag(diag::note_array_declared_here) << ND);
14383 }
14384 
CheckArrayAccess(const Expr * expr)14385 void Sema::CheckArrayAccess(const Expr *expr) {
14386   int AllowOnePastEnd = 0;
14387   while (expr) {
14388     expr = expr->IgnoreParenImpCasts();
14389     switch (expr->getStmtClass()) {
14390       case Stmt::ArraySubscriptExprClass: {
14391         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
14392         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
14393                          AllowOnePastEnd > 0);
14394         expr = ASE->getBase();
14395         break;
14396       }
14397       case Stmt::MemberExprClass: {
14398         expr = cast<MemberExpr>(expr)->getBase();
14399         break;
14400       }
14401       case Stmt::OMPArraySectionExprClass: {
14402         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
14403         if (ASE->getLowerBound())
14404           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
14405                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
14406         return;
14407       }
14408       case Stmt::UnaryOperatorClass: {
14409         // Only unwrap the * and & unary operators
14410         const UnaryOperator *UO = cast<UnaryOperator>(expr);
14411         expr = UO->getSubExpr();
14412         switch (UO->getOpcode()) {
14413           case UO_AddrOf:
14414             AllowOnePastEnd++;
14415             break;
14416           case UO_Deref:
14417             AllowOnePastEnd--;
14418             break;
14419           default:
14420             return;
14421         }
14422         break;
14423       }
14424       case Stmt::ConditionalOperatorClass: {
14425         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
14426         if (const Expr *lhs = cond->getLHS())
14427           CheckArrayAccess(lhs);
14428         if (const Expr *rhs = cond->getRHS())
14429           CheckArrayAccess(rhs);
14430         return;
14431       }
14432       case Stmt::CXXOperatorCallExprClass: {
14433         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
14434         for (const auto *Arg : OCE->arguments())
14435           CheckArrayAccess(Arg);
14436         return;
14437       }
14438       default:
14439         return;
14440     }
14441   }
14442 }
14443 
14444 //===--- CHECK: Objective-C retain cycles ----------------------------------//
14445 
14446 namespace {
14447 
14448 struct RetainCycleOwner {
14449   VarDecl *Variable = nullptr;
14450   SourceRange Range;
14451   SourceLocation Loc;
14452   bool Indirect = false;
14453 
14454   RetainCycleOwner() = default;
14455 
setLocsFrom__anon33aba9e82211::RetainCycleOwner14456   void setLocsFrom(Expr *e) {
14457     Loc = e->getExprLoc();
14458     Range = e->getSourceRange();
14459   }
14460 };
14461 
14462 } // namespace
14463 
14464 /// Consider whether capturing the given variable can possibly lead to
14465 /// a retain cycle.
considerVariable(VarDecl * var,Expr * ref,RetainCycleOwner & owner)14466 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
14467   // In ARC, it's captured strongly iff the variable has __strong
14468   // lifetime.  In MRR, it's captured strongly if the variable is
14469   // __block and has an appropriate type.
14470   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
14471     return false;
14472 
14473   owner.Variable = var;
14474   if (ref)
14475     owner.setLocsFrom(ref);
14476   return true;
14477 }
14478 
findRetainCycleOwner(Sema & S,Expr * e,RetainCycleOwner & owner)14479 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
14480   while (true) {
14481     e = e->IgnoreParens();
14482     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
14483       switch (cast->getCastKind()) {
14484       case CK_BitCast:
14485       case CK_LValueBitCast:
14486       case CK_LValueToRValue:
14487       case CK_ARCReclaimReturnedObject:
14488         e = cast->getSubExpr();
14489         continue;
14490 
14491       default:
14492         return false;
14493       }
14494     }
14495 
14496     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
14497       ObjCIvarDecl *ivar = ref->getDecl();
14498       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
14499         return false;
14500 
14501       // Try to find a retain cycle in the base.
14502       if (!findRetainCycleOwner(S, ref->getBase(), owner))
14503         return false;
14504 
14505       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
14506       owner.Indirect = true;
14507       return true;
14508     }
14509 
14510     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
14511       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
14512       if (!var) return false;
14513       return considerVariable(var, ref, owner);
14514     }
14515 
14516     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
14517       if (member->isArrow()) return false;
14518 
14519       // Don't count this as an indirect ownership.
14520       e = member->getBase();
14521       continue;
14522     }
14523 
14524     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
14525       // Only pay attention to pseudo-objects on property references.
14526       ObjCPropertyRefExpr *pre
14527         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
14528                                               ->IgnoreParens());
14529       if (!pre) return false;
14530       if (pre->isImplicitProperty()) return false;
14531       ObjCPropertyDecl *property = pre->getExplicitProperty();
14532       if (!property->isRetaining() &&
14533           !(property->getPropertyIvarDecl() &&
14534             property->getPropertyIvarDecl()->getType()
14535               .getObjCLifetime() == Qualifiers::OCL_Strong))
14536           return false;
14537 
14538       owner.Indirect = true;
14539       if (pre->isSuperReceiver()) {
14540         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
14541         if (!owner.Variable)
14542           return false;
14543         owner.Loc = pre->getLocation();
14544         owner.Range = pre->getSourceRange();
14545         return true;
14546       }
14547       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
14548                               ->getSourceExpr());
14549       continue;
14550     }
14551 
14552     // Array ivars?
14553 
14554     return false;
14555   }
14556 }
14557 
14558 namespace {
14559 
14560   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
14561     ASTContext &Context;
14562     VarDecl *Variable;
14563     Expr *Capturer = nullptr;
14564     bool VarWillBeReased = false;
14565 
FindCaptureVisitor__anon33aba9e82311::FindCaptureVisitor14566     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
14567         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
14568           Context(Context), Variable(variable) {}
14569 
VisitDeclRefExpr__anon33aba9e82311::FindCaptureVisitor14570     void VisitDeclRefExpr(DeclRefExpr *ref) {
14571       if (ref->getDecl() == Variable && !Capturer)
14572         Capturer = ref;
14573     }
14574 
VisitObjCIvarRefExpr__anon33aba9e82311::FindCaptureVisitor14575     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
14576       if (Capturer) return;
14577       Visit(ref->getBase());
14578       if (Capturer && ref->isFreeIvar())
14579         Capturer = ref;
14580     }
14581 
VisitBlockExpr__anon33aba9e82311::FindCaptureVisitor14582     void VisitBlockExpr(BlockExpr *block) {
14583       // Look inside nested blocks
14584       if (block->getBlockDecl()->capturesVariable(Variable))
14585         Visit(block->getBlockDecl()->getBody());
14586     }
14587 
VisitOpaqueValueExpr__anon33aba9e82311::FindCaptureVisitor14588     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
14589       if (Capturer) return;
14590       if (OVE->getSourceExpr())
14591         Visit(OVE->getSourceExpr());
14592     }
14593 
VisitBinaryOperator__anon33aba9e82311::FindCaptureVisitor14594     void VisitBinaryOperator(BinaryOperator *BinOp) {
14595       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
14596         return;
14597       Expr *LHS = BinOp->getLHS();
14598       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
14599         if (DRE->getDecl() != Variable)
14600           return;
14601         if (Expr *RHS = BinOp->getRHS()) {
14602           RHS = RHS->IgnoreParenCasts();
14603           Optional<llvm::APSInt> Value;
14604           VarWillBeReased =
14605               (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
14606                *Value == 0);
14607         }
14608       }
14609     }
14610   };
14611 
14612 } // namespace
14613 
14614 /// Check whether the given argument is a block which captures a
14615 /// variable.
findCapturingExpr(Sema & S,Expr * e,RetainCycleOwner & owner)14616 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
14617   assert(owner.Variable && owner.Loc.isValid());
14618 
14619   e = e->IgnoreParenCasts();
14620 
14621   // Look through [^{...} copy] and Block_copy(^{...}).
14622   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
14623     Selector Cmd = ME->getSelector();
14624     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
14625       e = ME->getInstanceReceiver();
14626       if (!e)
14627         return nullptr;
14628       e = e->IgnoreParenCasts();
14629     }
14630   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
14631     if (CE->getNumArgs() == 1) {
14632       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
14633       if (Fn) {
14634         const IdentifierInfo *FnI = Fn->getIdentifier();
14635         if (FnI && FnI->isStr("_Block_copy")) {
14636           e = CE->getArg(0)->IgnoreParenCasts();
14637         }
14638       }
14639     }
14640   }
14641 
14642   BlockExpr *block = dyn_cast<BlockExpr>(e);
14643   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
14644     return nullptr;
14645 
14646   FindCaptureVisitor visitor(S.Context, owner.Variable);
14647   visitor.Visit(block->getBlockDecl()->getBody());
14648   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
14649 }
14650 
diagnoseRetainCycle(Sema & S,Expr * capturer,RetainCycleOwner & owner)14651 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
14652                                 RetainCycleOwner &owner) {
14653   assert(capturer);
14654   assert(owner.Variable && owner.Loc.isValid());
14655 
14656   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
14657     << owner.Variable << capturer->getSourceRange();
14658   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
14659     << owner.Indirect << owner.Range;
14660 }
14661 
14662 /// Check for a keyword selector that starts with the word 'add' or
14663 /// 'set'.
isSetterLikeSelector(Selector sel)14664 static bool isSetterLikeSelector(Selector sel) {
14665   if (sel.isUnarySelector()) return false;
14666 
14667   StringRef str = sel.getNameForSlot(0);
14668   while (!str.empty() && str.front() == '_') str = str.substr(1);
14669   if (str.startswith("set"))
14670     str = str.substr(3);
14671   else if (str.startswith("add")) {
14672     // Specially allow 'addOperationWithBlock:'.
14673     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
14674       return false;
14675     str = str.substr(3);
14676   }
14677   else
14678     return false;
14679 
14680   if (str.empty()) return true;
14681   return !isLowercase(str.front());
14682 }
14683 
GetNSMutableArrayArgumentIndex(Sema & S,ObjCMessageExpr * Message)14684 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
14685                                                     ObjCMessageExpr *Message) {
14686   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
14687                                                 Message->getReceiverInterface(),
14688                                                 NSAPI::ClassId_NSMutableArray);
14689   if (!IsMutableArray) {
14690     return None;
14691   }
14692 
14693   Selector Sel = Message->getSelector();
14694 
14695   Optional<NSAPI::NSArrayMethodKind> MKOpt =
14696     S.NSAPIObj->getNSArrayMethodKind(Sel);
14697   if (!MKOpt) {
14698     return None;
14699   }
14700 
14701   NSAPI::NSArrayMethodKind MK = *MKOpt;
14702 
14703   switch (MK) {
14704     case NSAPI::NSMutableArr_addObject:
14705     case NSAPI::NSMutableArr_insertObjectAtIndex:
14706     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
14707       return 0;
14708     case NSAPI::NSMutableArr_replaceObjectAtIndex:
14709       return 1;
14710 
14711     default:
14712       return None;
14713   }
14714 
14715   return None;
14716 }
14717 
14718 static
GetNSMutableDictionaryArgumentIndex(Sema & S,ObjCMessageExpr * Message)14719 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
14720                                                   ObjCMessageExpr *Message) {
14721   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
14722                                             Message->getReceiverInterface(),
14723                                             NSAPI::ClassId_NSMutableDictionary);
14724   if (!IsMutableDictionary) {
14725     return None;
14726   }
14727 
14728   Selector Sel = Message->getSelector();
14729 
14730   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
14731     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
14732   if (!MKOpt) {
14733     return None;
14734   }
14735 
14736   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
14737 
14738   switch (MK) {
14739     case NSAPI::NSMutableDict_setObjectForKey:
14740     case NSAPI::NSMutableDict_setValueForKey:
14741     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
14742       return 0;
14743 
14744     default:
14745       return None;
14746   }
14747 
14748   return None;
14749 }
14750 
GetNSSetArgumentIndex(Sema & S,ObjCMessageExpr * Message)14751 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
14752   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
14753                                                 Message->getReceiverInterface(),
14754                                                 NSAPI::ClassId_NSMutableSet);
14755 
14756   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
14757                                             Message->getReceiverInterface(),
14758                                             NSAPI::ClassId_NSMutableOrderedSet);
14759   if (!IsMutableSet && !IsMutableOrderedSet) {
14760     return None;
14761   }
14762 
14763   Selector Sel = Message->getSelector();
14764 
14765   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
14766   if (!MKOpt) {
14767     return None;
14768   }
14769 
14770   NSAPI::NSSetMethodKind MK = *MKOpt;
14771 
14772   switch (MK) {
14773     case NSAPI::NSMutableSet_addObject:
14774     case NSAPI::NSOrderedSet_setObjectAtIndex:
14775     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
14776     case NSAPI::NSOrderedSet_insertObjectAtIndex:
14777       return 0;
14778     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
14779       return 1;
14780   }
14781 
14782   return None;
14783 }
14784 
CheckObjCCircularContainer(ObjCMessageExpr * Message)14785 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
14786   if (!Message->isInstanceMessage()) {
14787     return;
14788   }
14789 
14790   Optional<int> ArgOpt;
14791 
14792   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
14793       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
14794       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
14795     return;
14796   }
14797 
14798   int ArgIndex = *ArgOpt;
14799 
14800   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
14801   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
14802     Arg = OE->getSourceExpr()->IgnoreImpCasts();
14803   }
14804 
14805   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
14806     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14807       if (ArgRE->isObjCSelfExpr()) {
14808         Diag(Message->getSourceRange().getBegin(),
14809              diag::warn_objc_circular_container)
14810           << ArgRE->getDecl() << StringRef("'super'");
14811       }
14812     }
14813   } else {
14814     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
14815 
14816     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
14817       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
14818     }
14819 
14820     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
14821       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14822         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
14823           ValueDecl *Decl = ReceiverRE->getDecl();
14824           Diag(Message->getSourceRange().getBegin(),
14825                diag::warn_objc_circular_container)
14826             << Decl << Decl;
14827           if (!ArgRE->isObjCSelfExpr()) {
14828             Diag(Decl->getLocation(),
14829                  diag::note_objc_circular_container_declared_here)
14830               << Decl;
14831           }
14832         }
14833       }
14834     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
14835       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
14836         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
14837           ObjCIvarDecl *Decl = IvarRE->getDecl();
14838           Diag(Message->getSourceRange().getBegin(),
14839                diag::warn_objc_circular_container)
14840             << Decl << Decl;
14841           Diag(Decl->getLocation(),
14842                diag::note_objc_circular_container_declared_here)
14843             << Decl;
14844         }
14845       }
14846     }
14847   }
14848 }
14849 
14850 /// Check a message send to see if it's likely to cause a retain cycle.
checkRetainCycles(ObjCMessageExpr * msg)14851 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
14852   // Only check instance methods whose selector looks like a setter.
14853   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
14854     return;
14855 
14856   // Try to find a variable that the receiver is strongly owned by.
14857   RetainCycleOwner owner;
14858   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
14859     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
14860       return;
14861   } else {
14862     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
14863     owner.Variable = getCurMethodDecl()->getSelfDecl();
14864     owner.Loc = msg->getSuperLoc();
14865     owner.Range = msg->getSuperLoc();
14866   }
14867 
14868   // Check whether the receiver is captured by any of the arguments.
14869   const ObjCMethodDecl *MD = msg->getMethodDecl();
14870   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
14871     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
14872       // noescape blocks should not be retained by the method.
14873       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
14874         continue;
14875       return diagnoseRetainCycle(*this, capturer, owner);
14876     }
14877   }
14878 }
14879 
14880 /// Check a property assign to see if it's likely to cause a retain cycle.
checkRetainCycles(Expr * receiver,Expr * argument)14881 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
14882   RetainCycleOwner owner;
14883   if (!findRetainCycleOwner(*this, receiver, owner))
14884     return;
14885 
14886   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
14887     diagnoseRetainCycle(*this, capturer, owner);
14888 }
14889 
checkRetainCycles(VarDecl * Var,Expr * Init)14890 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
14891   RetainCycleOwner Owner;
14892   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
14893     return;
14894 
14895   // Because we don't have an expression for the variable, we have to set the
14896   // location explicitly here.
14897   Owner.Loc = Var->getLocation();
14898   Owner.Range = Var->getSourceRange();
14899 
14900   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
14901     diagnoseRetainCycle(*this, Capturer, Owner);
14902 }
14903 
checkUnsafeAssignLiteral(Sema & S,SourceLocation Loc,Expr * RHS,bool isProperty)14904 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
14905                                      Expr *RHS, bool isProperty) {
14906   // Check if RHS is an Objective-C object literal, which also can get
14907   // immediately zapped in a weak reference.  Note that we explicitly
14908   // allow ObjCStringLiterals, since those are designed to never really die.
14909   RHS = RHS->IgnoreParenImpCasts();
14910 
14911   // This enum needs to match with the 'select' in
14912   // warn_objc_arc_literal_assign (off-by-1).
14913   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
14914   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
14915     return false;
14916 
14917   S.Diag(Loc, diag::warn_arc_literal_assign)
14918     << (unsigned) Kind
14919     << (isProperty ? 0 : 1)
14920     << RHS->getSourceRange();
14921 
14922   return true;
14923 }
14924 
checkUnsafeAssignObject(Sema & S,SourceLocation Loc,Qualifiers::ObjCLifetime LT,Expr * RHS,bool isProperty)14925 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
14926                                     Qualifiers::ObjCLifetime LT,
14927                                     Expr *RHS, bool isProperty) {
14928   // Strip off any implicit cast added to get to the one ARC-specific.
14929   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
14930     if (cast->getCastKind() == CK_ARCConsumeObject) {
14931       S.Diag(Loc, diag::warn_arc_retained_assign)
14932         << (LT == Qualifiers::OCL_ExplicitNone)
14933         << (isProperty ? 0 : 1)
14934         << RHS->getSourceRange();
14935       return true;
14936     }
14937     RHS = cast->getSubExpr();
14938   }
14939 
14940   if (LT == Qualifiers::OCL_Weak &&
14941       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
14942     return true;
14943 
14944   return false;
14945 }
14946 
checkUnsafeAssigns(SourceLocation Loc,QualType LHS,Expr * RHS)14947 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
14948                               QualType LHS, Expr *RHS) {
14949   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
14950 
14951   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
14952     return false;
14953 
14954   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
14955     return true;
14956 
14957   return false;
14958 }
14959 
checkUnsafeExprAssigns(SourceLocation Loc,Expr * LHS,Expr * RHS)14960 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
14961                               Expr *LHS, Expr *RHS) {
14962   QualType LHSType;
14963   // PropertyRef on LHS type need be directly obtained from
14964   // its declaration as it has a PseudoType.
14965   ObjCPropertyRefExpr *PRE
14966     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
14967   if (PRE && !PRE->isImplicitProperty()) {
14968     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14969     if (PD)
14970       LHSType = PD->getType();
14971   }
14972 
14973   if (LHSType.isNull())
14974     LHSType = LHS->getType();
14975 
14976   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
14977 
14978   if (LT == Qualifiers::OCL_Weak) {
14979     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
14980       getCurFunction()->markSafeWeakUse(LHS);
14981   }
14982 
14983   if (checkUnsafeAssigns(Loc, LHSType, RHS))
14984     return;
14985 
14986   // FIXME. Check for other life times.
14987   if (LT != Qualifiers::OCL_None)
14988     return;
14989 
14990   if (PRE) {
14991     if (PRE->isImplicitProperty())
14992       return;
14993     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14994     if (!PD)
14995       return;
14996 
14997     unsigned Attributes = PD->getPropertyAttributes();
14998     if (Attributes & ObjCPropertyAttribute::kind_assign) {
14999       // when 'assign' attribute was not explicitly specified
15000       // by user, ignore it and rely on property type itself
15001       // for lifetime info.
15002       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
15003       if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
15004           LHSType->isObjCRetainableType())
15005         return;
15006 
15007       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15008         if (cast->getCastKind() == CK_ARCConsumeObject) {
15009           Diag(Loc, diag::warn_arc_retained_property_assign)
15010           << RHS->getSourceRange();
15011           return;
15012         }
15013         RHS = cast->getSubExpr();
15014       }
15015     } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
15016       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
15017         return;
15018     }
15019   }
15020 }
15021 
15022 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
15023 
ShouldDiagnoseEmptyStmtBody(const SourceManager & SourceMgr,SourceLocation StmtLoc,const NullStmt * Body)15024 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
15025                                         SourceLocation StmtLoc,
15026                                         const NullStmt *Body) {
15027   // Do not warn if the body is a macro that expands to nothing, e.g:
15028   //
15029   // #define CALL(x)
15030   // if (condition)
15031   //   CALL(0);
15032   if (Body->hasLeadingEmptyMacro())
15033     return false;
15034 
15035   // Get line numbers of statement and body.
15036   bool StmtLineInvalid;
15037   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
15038                                                       &StmtLineInvalid);
15039   if (StmtLineInvalid)
15040     return false;
15041 
15042   bool BodyLineInvalid;
15043   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
15044                                                       &BodyLineInvalid);
15045   if (BodyLineInvalid)
15046     return false;
15047 
15048   // Warn if null statement and body are on the same line.
15049   if (StmtLine != BodyLine)
15050     return false;
15051 
15052   return true;
15053 }
15054 
DiagnoseEmptyStmtBody(SourceLocation StmtLoc,const Stmt * Body,unsigned DiagID)15055 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
15056                                  const Stmt *Body,
15057                                  unsigned DiagID) {
15058   // Since this is a syntactic check, don't emit diagnostic for template
15059   // instantiations, this just adds noise.
15060   if (CurrentInstantiationScope)
15061     return;
15062 
15063   // The body should be a null statement.
15064   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15065   if (!NBody)
15066     return;
15067 
15068   // Do the usual checks.
15069   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15070     return;
15071 
15072   Diag(NBody->getSemiLoc(), DiagID);
15073   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15074 }
15075 
DiagnoseEmptyLoopBody(const Stmt * S,const Stmt * PossibleBody)15076 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
15077                                  const Stmt *PossibleBody) {
15078   assert(!CurrentInstantiationScope); // Ensured by caller
15079 
15080   SourceLocation StmtLoc;
15081   const Stmt *Body;
15082   unsigned DiagID;
15083   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
15084     StmtLoc = FS->getRParenLoc();
15085     Body = FS->getBody();
15086     DiagID = diag::warn_empty_for_body;
15087   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
15088     StmtLoc = WS->getCond()->getSourceRange().getEnd();
15089     Body = WS->getBody();
15090     DiagID = diag::warn_empty_while_body;
15091   } else
15092     return; // Neither `for' nor `while'.
15093 
15094   // The body should be a null statement.
15095   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15096   if (!NBody)
15097     return;
15098 
15099   // Skip expensive checks if diagnostic is disabled.
15100   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
15101     return;
15102 
15103   // Do the usual checks.
15104   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15105     return;
15106 
15107   // `for(...);' and `while(...);' are popular idioms, so in order to keep
15108   // noise level low, emit diagnostics only if for/while is followed by a
15109   // CompoundStmt, e.g.:
15110   //    for (int i = 0; i < n; i++);
15111   //    {
15112   //      a(i);
15113   //    }
15114   // or if for/while is followed by a statement with more indentation
15115   // than for/while itself:
15116   //    for (int i = 0; i < n; i++);
15117   //      a(i);
15118   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
15119   if (!ProbableTypo) {
15120     bool BodyColInvalid;
15121     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
15122         PossibleBody->getBeginLoc(), &BodyColInvalid);
15123     if (BodyColInvalid)
15124       return;
15125 
15126     bool StmtColInvalid;
15127     unsigned StmtCol =
15128         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
15129     if (StmtColInvalid)
15130       return;
15131 
15132     if (BodyCol > StmtCol)
15133       ProbableTypo = true;
15134   }
15135 
15136   if (ProbableTypo) {
15137     Diag(NBody->getSemiLoc(), DiagID);
15138     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15139   }
15140 }
15141 
15142 //===--- CHECK: Warn on self move with std::move. -------------------------===//
15143 
15144 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
DiagnoseSelfMove(const Expr * LHSExpr,const Expr * RHSExpr,SourceLocation OpLoc)15145 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
15146                              SourceLocation OpLoc) {
15147   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
15148     return;
15149 
15150   if (inTemplateInstantiation())
15151     return;
15152 
15153   // Strip parens and casts away.
15154   LHSExpr = LHSExpr->IgnoreParenImpCasts();
15155   RHSExpr = RHSExpr->IgnoreParenImpCasts();
15156 
15157   // Check for a call expression
15158   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
15159   if (!CE || CE->getNumArgs() != 1)
15160     return;
15161 
15162   // Check for a call to std::move
15163   if (!CE->isCallToStdMove())
15164     return;
15165 
15166   // Get argument from std::move
15167   RHSExpr = CE->getArg(0);
15168 
15169   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15170   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15171 
15172   // Two DeclRefExpr's, check that the decls are the same.
15173   if (LHSDeclRef && RHSDeclRef) {
15174     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15175       return;
15176     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15177         RHSDeclRef->getDecl()->getCanonicalDecl())
15178       return;
15179 
15180     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15181                                         << LHSExpr->getSourceRange()
15182                                         << RHSExpr->getSourceRange();
15183     return;
15184   }
15185 
15186   // Member variables require a different approach to check for self moves.
15187   // MemberExpr's are the same if every nested MemberExpr refers to the same
15188   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
15189   // the base Expr's are CXXThisExpr's.
15190   const Expr *LHSBase = LHSExpr;
15191   const Expr *RHSBase = RHSExpr;
15192   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
15193   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
15194   if (!LHSME || !RHSME)
15195     return;
15196 
15197   while (LHSME && RHSME) {
15198     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
15199         RHSME->getMemberDecl()->getCanonicalDecl())
15200       return;
15201 
15202     LHSBase = LHSME->getBase();
15203     RHSBase = RHSME->getBase();
15204     LHSME = dyn_cast<MemberExpr>(LHSBase);
15205     RHSME = dyn_cast<MemberExpr>(RHSBase);
15206   }
15207 
15208   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
15209   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
15210   if (LHSDeclRef && RHSDeclRef) {
15211     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15212       return;
15213     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15214         RHSDeclRef->getDecl()->getCanonicalDecl())
15215       return;
15216 
15217     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15218                                         << LHSExpr->getSourceRange()
15219                                         << RHSExpr->getSourceRange();
15220     return;
15221   }
15222 
15223   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
15224     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15225                                         << LHSExpr->getSourceRange()
15226                                         << RHSExpr->getSourceRange();
15227 }
15228 
15229 //===--- Layout compatibility ----------------------------------------------//
15230 
15231 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
15232 
15233 /// Check if two enumeration types are layout-compatible.
isLayoutCompatible(ASTContext & C,EnumDecl * ED1,EnumDecl * ED2)15234 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
15235   // C++11 [dcl.enum] p8:
15236   // Two enumeration types are layout-compatible if they have the same
15237   // underlying type.
15238   return ED1->isComplete() && ED2->isComplete() &&
15239          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
15240 }
15241 
15242 /// Check if two fields are layout-compatible.
isLayoutCompatible(ASTContext & C,FieldDecl * Field1,FieldDecl * Field2)15243 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
15244                                FieldDecl *Field2) {
15245   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
15246     return false;
15247 
15248   if (Field1->isBitField() != Field2->isBitField())
15249     return false;
15250 
15251   if (Field1->isBitField()) {
15252     // Make sure that the bit-fields are the same length.
15253     unsigned Bits1 = Field1->getBitWidthValue(C);
15254     unsigned Bits2 = Field2->getBitWidthValue(C);
15255 
15256     if (Bits1 != Bits2)
15257       return false;
15258   }
15259 
15260   return true;
15261 }
15262 
15263 /// Check if two standard-layout structs are layout-compatible.
15264 /// (C++11 [class.mem] p17)
isLayoutCompatibleStruct(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)15265 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
15266                                      RecordDecl *RD2) {
15267   // If both records are C++ classes, check that base classes match.
15268   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
15269     // If one of records is a CXXRecordDecl we are in C++ mode,
15270     // thus the other one is a CXXRecordDecl, too.
15271     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
15272     // Check number of base classes.
15273     if (D1CXX->getNumBases() != D2CXX->getNumBases())
15274       return false;
15275 
15276     // Check the base classes.
15277     for (CXXRecordDecl::base_class_const_iterator
15278                Base1 = D1CXX->bases_begin(),
15279            BaseEnd1 = D1CXX->bases_end(),
15280               Base2 = D2CXX->bases_begin();
15281          Base1 != BaseEnd1;
15282          ++Base1, ++Base2) {
15283       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
15284         return false;
15285     }
15286   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
15287     // If only RD2 is a C++ class, it should have zero base classes.
15288     if (D2CXX->getNumBases() > 0)
15289       return false;
15290   }
15291 
15292   // Check the fields.
15293   RecordDecl::field_iterator Field2 = RD2->field_begin(),
15294                              Field2End = RD2->field_end(),
15295                              Field1 = RD1->field_begin(),
15296                              Field1End = RD1->field_end();
15297   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
15298     if (!isLayoutCompatible(C, *Field1, *Field2))
15299       return false;
15300   }
15301   if (Field1 != Field1End || Field2 != Field2End)
15302     return false;
15303 
15304   return true;
15305 }
15306 
15307 /// Check if two standard-layout unions are layout-compatible.
15308 /// (C++11 [class.mem] p18)
isLayoutCompatibleUnion(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)15309 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
15310                                     RecordDecl *RD2) {
15311   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
15312   for (auto *Field2 : RD2->fields())
15313     UnmatchedFields.insert(Field2);
15314 
15315   for (auto *Field1 : RD1->fields()) {
15316     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
15317         I = UnmatchedFields.begin(),
15318         E = UnmatchedFields.end();
15319 
15320     for ( ; I != E; ++I) {
15321       if (isLayoutCompatible(C, Field1, *I)) {
15322         bool Result = UnmatchedFields.erase(*I);
15323         (void) Result;
15324         assert(Result);
15325         break;
15326       }
15327     }
15328     if (I == E)
15329       return false;
15330   }
15331 
15332   return UnmatchedFields.empty();
15333 }
15334 
isLayoutCompatible(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)15335 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
15336                                RecordDecl *RD2) {
15337   if (RD1->isUnion() != RD2->isUnion())
15338     return false;
15339 
15340   if (RD1->isUnion())
15341     return isLayoutCompatibleUnion(C, RD1, RD2);
15342   else
15343     return isLayoutCompatibleStruct(C, RD1, RD2);
15344 }
15345 
15346 /// Check if two types are layout-compatible in C++11 sense.
isLayoutCompatible(ASTContext & C,QualType T1,QualType T2)15347 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
15348   if (T1.isNull() || T2.isNull())
15349     return false;
15350 
15351   // C++11 [basic.types] p11:
15352   // If two types T1 and T2 are the same type, then T1 and T2 are
15353   // layout-compatible types.
15354   if (C.hasSameType(T1, T2))
15355     return true;
15356 
15357   T1 = T1.getCanonicalType().getUnqualifiedType();
15358   T2 = T2.getCanonicalType().getUnqualifiedType();
15359 
15360   const Type::TypeClass TC1 = T1->getTypeClass();
15361   const Type::TypeClass TC2 = T2->getTypeClass();
15362 
15363   if (TC1 != TC2)
15364     return false;
15365 
15366   if (TC1 == Type::Enum) {
15367     return isLayoutCompatible(C,
15368                               cast<EnumType>(T1)->getDecl(),
15369                               cast<EnumType>(T2)->getDecl());
15370   } else if (TC1 == Type::Record) {
15371     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
15372       return false;
15373 
15374     return isLayoutCompatible(C,
15375                               cast<RecordType>(T1)->getDecl(),
15376                               cast<RecordType>(T2)->getDecl());
15377   }
15378 
15379   return false;
15380 }
15381 
15382 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
15383 
15384 /// Given a type tag expression find the type tag itself.
15385 ///
15386 /// \param TypeExpr Type tag expression, as it appears in user's code.
15387 ///
15388 /// \param VD Declaration of an identifier that appears in a type tag.
15389 ///
15390 /// \param MagicValue Type tag magic value.
15391 ///
15392 /// \param isConstantEvaluated wether the evalaution should be performed in
15393 
15394 /// constant context.
FindTypeTagExpr(const Expr * TypeExpr,const ASTContext & Ctx,const ValueDecl ** VD,uint64_t * MagicValue,bool isConstantEvaluated)15395 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
15396                             const ValueDecl **VD, uint64_t *MagicValue,
15397                             bool isConstantEvaluated) {
15398   while(true) {
15399     if (!TypeExpr)
15400       return false;
15401 
15402     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
15403 
15404     switch (TypeExpr->getStmtClass()) {
15405     case Stmt::UnaryOperatorClass: {
15406       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
15407       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
15408         TypeExpr = UO->getSubExpr();
15409         continue;
15410       }
15411       return false;
15412     }
15413 
15414     case Stmt::DeclRefExprClass: {
15415       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
15416       *VD = DRE->getDecl();
15417       return true;
15418     }
15419 
15420     case Stmt::IntegerLiteralClass: {
15421       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
15422       llvm::APInt MagicValueAPInt = IL->getValue();
15423       if (MagicValueAPInt.getActiveBits() <= 64) {
15424         *MagicValue = MagicValueAPInt.getZExtValue();
15425         return true;
15426       } else
15427         return false;
15428     }
15429 
15430     case Stmt::BinaryConditionalOperatorClass:
15431     case Stmt::ConditionalOperatorClass: {
15432       const AbstractConditionalOperator *ACO =
15433           cast<AbstractConditionalOperator>(TypeExpr);
15434       bool Result;
15435       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
15436                                                      isConstantEvaluated)) {
15437         if (Result)
15438           TypeExpr = ACO->getTrueExpr();
15439         else
15440           TypeExpr = ACO->getFalseExpr();
15441         continue;
15442       }
15443       return false;
15444     }
15445 
15446     case Stmt::BinaryOperatorClass: {
15447       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
15448       if (BO->getOpcode() == BO_Comma) {
15449         TypeExpr = BO->getRHS();
15450         continue;
15451       }
15452       return false;
15453     }
15454 
15455     default:
15456       return false;
15457     }
15458   }
15459 }
15460 
15461 /// Retrieve the C type corresponding to type tag TypeExpr.
15462 ///
15463 /// \param TypeExpr Expression that specifies a type tag.
15464 ///
15465 /// \param MagicValues Registered magic values.
15466 ///
15467 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
15468 ///        kind.
15469 ///
15470 /// \param TypeInfo Information about the corresponding C type.
15471 ///
15472 /// \param isConstantEvaluated wether the evalaution should be performed in
15473 /// constant context.
15474 ///
15475 /// \returns true if the corresponding C type was found.
GetMatchingCType(const IdentifierInfo * ArgumentKind,const Expr * TypeExpr,const ASTContext & Ctx,const llvm::DenseMap<Sema::TypeTagMagicValue,Sema::TypeTagData> * MagicValues,bool & FoundWrongKind,Sema::TypeTagData & TypeInfo,bool isConstantEvaluated)15476 static bool GetMatchingCType(
15477     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
15478     const ASTContext &Ctx,
15479     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
15480         *MagicValues,
15481     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
15482     bool isConstantEvaluated) {
15483   FoundWrongKind = false;
15484 
15485   // Variable declaration that has type_tag_for_datatype attribute.
15486   const ValueDecl *VD = nullptr;
15487 
15488   uint64_t MagicValue;
15489 
15490   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
15491     return false;
15492 
15493   if (VD) {
15494     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
15495       if (I->getArgumentKind() != ArgumentKind) {
15496         FoundWrongKind = true;
15497         return false;
15498       }
15499       TypeInfo.Type = I->getMatchingCType();
15500       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
15501       TypeInfo.MustBeNull = I->getMustBeNull();
15502       return true;
15503     }
15504     return false;
15505   }
15506 
15507   if (!MagicValues)
15508     return false;
15509 
15510   llvm::DenseMap<Sema::TypeTagMagicValue,
15511                  Sema::TypeTagData>::const_iterator I =
15512       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
15513   if (I == MagicValues->end())
15514     return false;
15515 
15516   TypeInfo = I->second;
15517   return true;
15518 }
15519 
RegisterTypeTagForDatatype(const IdentifierInfo * ArgumentKind,uint64_t MagicValue,QualType Type,bool LayoutCompatible,bool MustBeNull)15520 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
15521                                       uint64_t MagicValue, QualType Type,
15522                                       bool LayoutCompatible,
15523                                       bool MustBeNull) {
15524   if (!TypeTagForDatatypeMagicValues)
15525     TypeTagForDatatypeMagicValues.reset(
15526         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
15527 
15528   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
15529   (*TypeTagForDatatypeMagicValues)[Magic] =
15530       TypeTagData(Type, LayoutCompatible, MustBeNull);
15531 }
15532 
IsSameCharType(QualType T1,QualType T2)15533 static bool IsSameCharType(QualType T1, QualType T2) {
15534   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
15535   if (!BT1)
15536     return false;
15537 
15538   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
15539   if (!BT2)
15540     return false;
15541 
15542   BuiltinType::Kind T1Kind = BT1->getKind();
15543   BuiltinType::Kind T2Kind = BT2->getKind();
15544 
15545   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
15546          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
15547          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
15548          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
15549 }
15550 
CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr * Attr,const ArrayRef<const Expr * > ExprArgs,SourceLocation CallSiteLoc)15551 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
15552                                     const ArrayRef<const Expr *> ExprArgs,
15553                                     SourceLocation CallSiteLoc) {
15554   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
15555   bool IsPointerAttr = Attr->getIsPointer();
15556 
15557   // Retrieve the argument representing the 'type_tag'.
15558   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
15559   if (TypeTagIdxAST >= ExprArgs.size()) {
15560     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
15561         << 0 << Attr->getTypeTagIdx().getSourceIndex();
15562     return;
15563   }
15564   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
15565   bool FoundWrongKind;
15566   TypeTagData TypeInfo;
15567   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
15568                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
15569                         TypeInfo, isConstantEvaluated())) {
15570     if (FoundWrongKind)
15571       Diag(TypeTagExpr->getExprLoc(),
15572            diag::warn_type_tag_for_datatype_wrong_kind)
15573         << TypeTagExpr->getSourceRange();
15574     return;
15575   }
15576 
15577   // Retrieve the argument representing the 'arg_idx'.
15578   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
15579   if (ArgumentIdxAST >= ExprArgs.size()) {
15580     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
15581         << 1 << Attr->getArgumentIdx().getSourceIndex();
15582     return;
15583   }
15584   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
15585   if (IsPointerAttr) {
15586     // Skip implicit cast of pointer to `void *' (as a function argument).
15587     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
15588       if (ICE->getType()->isVoidPointerType() &&
15589           ICE->getCastKind() == CK_BitCast)
15590         ArgumentExpr = ICE->getSubExpr();
15591   }
15592   QualType ArgumentType = ArgumentExpr->getType();
15593 
15594   // Passing a `void*' pointer shouldn't trigger a warning.
15595   if (IsPointerAttr && ArgumentType->isVoidPointerType())
15596     return;
15597 
15598   if (TypeInfo.MustBeNull) {
15599     // Type tag with matching void type requires a null pointer.
15600     if (!ArgumentExpr->isNullPointerConstant(Context,
15601                                              Expr::NPC_ValueDependentIsNotNull)) {
15602       Diag(ArgumentExpr->getExprLoc(),
15603            diag::warn_type_safety_null_pointer_required)
15604           << ArgumentKind->getName()
15605           << ArgumentExpr->getSourceRange()
15606           << TypeTagExpr->getSourceRange();
15607     }
15608     return;
15609   }
15610 
15611   QualType RequiredType = TypeInfo.Type;
15612   if (IsPointerAttr)
15613     RequiredType = Context.getPointerType(RequiredType);
15614 
15615   bool mismatch = false;
15616   if (!TypeInfo.LayoutCompatible) {
15617     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
15618 
15619     // C++11 [basic.fundamental] p1:
15620     // Plain char, signed char, and unsigned char are three distinct types.
15621     //
15622     // But we treat plain `char' as equivalent to `signed char' or `unsigned
15623     // char' depending on the current char signedness mode.
15624     if (mismatch)
15625       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
15626                                            RequiredType->getPointeeType())) ||
15627           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
15628         mismatch = false;
15629   } else
15630     if (IsPointerAttr)
15631       mismatch = !isLayoutCompatible(Context,
15632                                      ArgumentType->getPointeeType(),
15633                                      RequiredType->getPointeeType());
15634     else
15635       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
15636 
15637   if (mismatch)
15638     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
15639         << ArgumentType << ArgumentKind
15640         << TypeInfo.LayoutCompatible << RequiredType
15641         << ArgumentExpr->getSourceRange()
15642         << TypeTagExpr->getSourceRange();
15643 }
15644 
AddPotentialMisalignedMembers(Expr * E,RecordDecl * RD,ValueDecl * MD,CharUnits Alignment)15645 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
15646                                          CharUnits Alignment) {
15647   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
15648 }
15649 
DiagnoseMisalignedMembers()15650 void Sema::DiagnoseMisalignedMembers() {
15651   for (MisalignedMember &m : MisalignedMembers) {
15652     const NamedDecl *ND = m.RD;
15653     if (ND->getName().empty()) {
15654       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
15655         ND = TD;
15656     }
15657     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
15658         << m.MD << ND << m.E->getSourceRange();
15659   }
15660   MisalignedMembers.clear();
15661 }
15662 
DiscardMisalignedMemberAddress(const Type * T,Expr * E)15663 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
15664   E = E->IgnoreParens();
15665   if (!T->isPointerType() && !T->isIntegerType())
15666     return;
15667   if (isa<UnaryOperator>(E) &&
15668       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
15669     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
15670     if (isa<MemberExpr>(Op)) {
15671       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
15672       if (MA != MisalignedMembers.end() &&
15673           (T->isIntegerType() ||
15674            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
15675                                    Context.getTypeAlignInChars(
15676                                        T->getPointeeType()) <= MA->Alignment))))
15677         MisalignedMembers.erase(MA);
15678     }
15679   }
15680 }
15681 
RefersToMemberWithReducedAlignment(Expr * E,llvm::function_ref<void (Expr *,RecordDecl *,FieldDecl *,CharUnits)> Action)15682 void Sema::RefersToMemberWithReducedAlignment(
15683     Expr *E,
15684     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
15685         Action) {
15686   const auto *ME = dyn_cast<MemberExpr>(E);
15687   if (!ME)
15688     return;
15689 
15690   // No need to check expressions with an __unaligned-qualified type.
15691   if (E->getType().getQualifiers().hasUnaligned())
15692     return;
15693 
15694   // For a chain of MemberExpr like "a.b.c.d" this list
15695   // will keep FieldDecl's like [d, c, b].
15696   SmallVector<FieldDecl *, 4> ReverseMemberChain;
15697   const MemberExpr *TopME = nullptr;
15698   bool AnyIsPacked = false;
15699   do {
15700     QualType BaseType = ME->getBase()->getType();
15701     if (BaseType->isDependentType())
15702       return;
15703     if (ME->isArrow())
15704       BaseType = BaseType->getPointeeType();
15705     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
15706     if (RD->isInvalidDecl())
15707       return;
15708 
15709     ValueDecl *MD = ME->getMemberDecl();
15710     auto *FD = dyn_cast<FieldDecl>(MD);
15711     // We do not care about non-data members.
15712     if (!FD || FD->isInvalidDecl())
15713       return;
15714 
15715     AnyIsPacked =
15716         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
15717     ReverseMemberChain.push_back(FD);
15718 
15719     TopME = ME;
15720     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
15721   } while (ME);
15722   assert(TopME && "We did not compute a topmost MemberExpr!");
15723 
15724   // Not the scope of this diagnostic.
15725   if (!AnyIsPacked)
15726     return;
15727 
15728   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
15729   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
15730   // TODO: The innermost base of the member expression may be too complicated.
15731   // For now, just disregard these cases. This is left for future
15732   // improvement.
15733   if (!DRE && !isa<CXXThisExpr>(TopBase))
15734       return;
15735 
15736   // Alignment expected by the whole expression.
15737   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
15738 
15739   // No need to do anything else with this case.
15740   if (ExpectedAlignment.isOne())
15741     return;
15742 
15743   // Synthesize offset of the whole access.
15744   CharUnits Offset;
15745   for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
15746        I++) {
15747     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
15748   }
15749 
15750   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
15751   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
15752       ReverseMemberChain.back()->getParent()->getTypeForDecl());
15753 
15754   // The base expression of the innermost MemberExpr may give
15755   // stronger guarantees than the class containing the member.
15756   if (DRE && !TopME->isArrow()) {
15757     const ValueDecl *VD = DRE->getDecl();
15758     if (!VD->getType()->isReferenceType())
15759       CompleteObjectAlignment =
15760           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
15761   }
15762 
15763   // Check if the synthesized offset fulfills the alignment.
15764   if (Offset % ExpectedAlignment != 0 ||
15765       // It may fulfill the offset it but the effective alignment may still be
15766       // lower than the expected expression alignment.
15767       CompleteObjectAlignment < ExpectedAlignment) {
15768     // If this happens, we want to determine a sensible culprit of this.
15769     // Intuitively, watching the chain of member expressions from right to
15770     // left, we start with the required alignment (as required by the field
15771     // type) but some packed attribute in that chain has reduced the alignment.
15772     // It may happen that another packed structure increases it again. But if
15773     // we are here such increase has not been enough. So pointing the first
15774     // FieldDecl that either is packed or else its RecordDecl is,
15775     // seems reasonable.
15776     FieldDecl *FD = nullptr;
15777     CharUnits Alignment;
15778     for (FieldDecl *FDI : ReverseMemberChain) {
15779       if (FDI->hasAttr<PackedAttr>() ||
15780           FDI->getParent()->hasAttr<PackedAttr>()) {
15781         FD = FDI;
15782         Alignment = std::min(
15783             Context.getTypeAlignInChars(FD->getType()),
15784             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
15785         break;
15786       }
15787     }
15788     assert(FD && "We did not find a packed FieldDecl!");
15789     Action(E, FD->getParent(), FD, Alignment);
15790   }
15791 }
15792 
CheckAddressOfPackedMember(Expr * rhs)15793 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
15794   using namespace std::placeholders;
15795 
15796   RefersToMemberWithReducedAlignment(
15797       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
15798                      _2, _3, _4));
15799 }
15800 
SemaBuiltinMatrixTranspose(CallExpr * TheCall,ExprResult CallResult)15801 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
15802                                             ExprResult CallResult) {
15803   if (checkArgCount(*this, TheCall, 1))
15804     return ExprError();
15805 
15806   ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
15807   if (MatrixArg.isInvalid())
15808     return MatrixArg;
15809   Expr *Matrix = MatrixArg.get();
15810 
15811   auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
15812   if (!MType) {
15813     Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg);
15814     return ExprError();
15815   }
15816 
15817   // Create returned matrix type by swapping rows and columns of the argument
15818   // matrix type.
15819   QualType ResultType = Context.getConstantMatrixType(
15820       MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
15821 
15822   // Change the return type to the type of the returned matrix.
15823   TheCall->setType(ResultType);
15824 
15825   // Update call argument to use the possibly converted matrix argument.
15826   TheCall->setArg(0, Matrix);
15827   return CallResult;
15828 }
15829 
15830 // Get and verify the matrix dimensions.
15831 static llvm::Optional<unsigned>
getAndVerifyMatrixDimension(Expr * Expr,StringRef Name,Sema & S)15832 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
15833   SourceLocation ErrorPos;
15834   Optional<llvm::APSInt> Value =
15835       Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
15836   if (!Value) {
15837     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
15838         << Name;
15839     return {};
15840   }
15841   uint64_t Dim = Value->getZExtValue();
15842   if (!ConstantMatrixType::isDimensionValid(Dim)) {
15843     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
15844         << Name << ConstantMatrixType::getMaxElementsPerDimension();
15845     return {};
15846   }
15847   return Dim;
15848 }
15849 
SemaBuiltinMatrixColumnMajorLoad(CallExpr * TheCall,ExprResult CallResult)15850 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
15851                                                   ExprResult CallResult) {
15852   if (!getLangOpts().MatrixTypes) {
15853     Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
15854     return ExprError();
15855   }
15856 
15857   if (checkArgCount(*this, TheCall, 4))
15858     return ExprError();
15859 
15860   unsigned PtrArgIdx = 0;
15861   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
15862   Expr *RowsExpr = TheCall->getArg(1);
15863   Expr *ColumnsExpr = TheCall->getArg(2);
15864   Expr *StrideExpr = TheCall->getArg(3);
15865 
15866   bool ArgError = false;
15867 
15868   // Check pointer argument.
15869   {
15870     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
15871     if (PtrConv.isInvalid())
15872       return PtrConv;
15873     PtrExpr = PtrConv.get();
15874     TheCall->setArg(0, PtrExpr);
15875     if (PtrExpr->isTypeDependent()) {
15876       TheCall->setType(Context.DependentTy);
15877       return TheCall;
15878     }
15879   }
15880 
15881   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
15882   QualType ElementTy;
15883   if (!PtrTy) {
15884     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
15885         << PtrArgIdx + 1;
15886     ArgError = true;
15887   } else {
15888     ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
15889 
15890     if (!ConstantMatrixType::isValidElementType(ElementTy)) {
15891       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
15892           << PtrArgIdx + 1;
15893       ArgError = true;
15894     }
15895   }
15896 
15897   // Apply default Lvalue conversions and convert the expression to size_t.
15898   auto ApplyArgumentConversions = [this](Expr *E) {
15899     ExprResult Conv = DefaultLvalueConversion(E);
15900     if (Conv.isInvalid())
15901       return Conv;
15902 
15903     return tryConvertExprToType(Conv.get(), Context.getSizeType());
15904   };
15905 
15906   // Apply conversion to row and column expressions.
15907   ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
15908   if (!RowsConv.isInvalid()) {
15909     RowsExpr = RowsConv.get();
15910     TheCall->setArg(1, RowsExpr);
15911   } else
15912     RowsExpr = nullptr;
15913 
15914   ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
15915   if (!ColumnsConv.isInvalid()) {
15916     ColumnsExpr = ColumnsConv.get();
15917     TheCall->setArg(2, ColumnsExpr);
15918   } else
15919     ColumnsExpr = nullptr;
15920 
15921   // If any any part of the result matrix type is still pending, just use
15922   // Context.DependentTy, until all parts are resolved.
15923   if ((RowsExpr && RowsExpr->isTypeDependent()) ||
15924       (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
15925     TheCall->setType(Context.DependentTy);
15926     return CallResult;
15927   }
15928 
15929   // Check row and column dimenions.
15930   llvm::Optional<unsigned> MaybeRows;
15931   if (RowsExpr)
15932     MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
15933 
15934   llvm::Optional<unsigned> MaybeColumns;
15935   if (ColumnsExpr)
15936     MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
15937 
15938   // Check stride argument.
15939   ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
15940   if (StrideConv.isInvalid())
15941     return ExprError();
15942   StrideExpr = StrideConv.get();
15943   TheCall->setArg(3, StrideExpr);
15944 
15945   if (MaybeRows) {
15946     if (Optional<llvm::APSInt> Value =
15947             StrideExpr->getIntegerConstantExpr(Context)) {
15948       uint64_t Stride = Value->getZExtValue();
15949       if (Stride < *MaybeRows) {
15950         Diag(StrideExpr->getBeginLoc(),
15951              diag::err_builtin_matrix_stride_too_small);
15952         ArgError = true;
15953       }
15954     }
15955   }
15956 
15957   if (ArgError || !MaybeRows || !MaybeColumns)
15958     return ExprError();
15959 
15960   TheCall->setType(
15961       Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
15962   return CallResult;
15963 }
15964 
SemaBuiltinMatrixColumnMajorStore(CallExpr * TheCall,ExprResult CallResult)15965 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
15966                                                    ExprResult CallResult) {
15967   if (checkArgCount(*this, TheCall, 3))
15968     return ExprError();
15969 
15970   unsigned PtrArgIdx = 1;
15971   Expr *MatrixExpr = TheCall->getArg(0);
15972   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
15973   Expr *StrideExpr = TheCall->getArg(2);
15974 
15975   bool ArgError = false;
15976 
15977   {
15978     ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
15979     if (MatrixConv.isInvalid())
15980       return MatrixConv;
15981     MatrixExpr = MatrixConv.get();
15982     TheCall->setArg(0, MatrixExpr);
15983   }
15984   if (MatrixExpr->isTypeDependent()) {
15985     TheCall->setType(Context.DependentTy);
15986     return TheCall;
15987   }
15988 
15989   auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
15990   if (!MatrixTy) {
15991     Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0;
15992     ArgError = true;
15993   }
15994 
15995   {
15996     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
15997     if (PtrConv.isInvalid())
15998       return PtrConv;
15999     PtrExpr = PtrConv.get();
16000     TheCall->setArg(1, PtrExpr);
16001     if (PtrExpr->isTypeDependent()) {
16002       TheCall->setType(Context.DependentTy);
16003       return TheCall;
16004     }
16005   }
16006 
16007   // Check pointer argument.
16008   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16009   if (!PtrTy) {
16010     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16011         << PtrArgIdx + 1;
16012     ArgError = true;
16013   } else {
16014     QualType ElementTy = PtrTy->getPointeeType();
16015     if (ElementTy.isConstQualified()) {
16016       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
16017       ArgError = true;
16018     }
16019     ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
16020     if (MatrixTy &&
16021         !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
16022       Diag(PtrExpr->getBeginLoc(),
16023            diag::err_builtin_matrix_pointer_arg_mismatch)
16024           << ElementTy << MatrixTy->getElementType();
16025       ArgError = true;
16026     }
16027   }
16028 
16029   // Apply default Lvalue conversions and convert the stride expression to
16030   // size_t.
16031   {
16032     ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
16033     if (StrideConv.isInvalid())
16034       return StrideConv;
16035 
16036     StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
16037     if (StrideConv.isInvalid())
16038       return StrideConv;
16039     StrideExpr = StrideConv.get();
16040     TheCall->setArg(2, StrideExpr);
16041   }
16042 
16043   // Check stride argument.
16044   if (MatrixTy) {
16045     if (Optional<llvm::APSInt> Value =
16046             StrideExpr->getIntegerConstantExpr(Context)) {
16047       uint64_t Stride = Value->getZExtValue();
16048       if (Stride < MatrixTy->getNumRows()) {
16049         Diag(StrideExpr->getBeginLoc(),
16050              diag::err_builtin_matrix_stride_too_small);
16051         ArgError = true;
16052       }
16053     }
16054   }
16055 
16056   if (ArgError)
16057     return ExprError();
16058 
16059   return CallResult;
16060 }
16061