• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 /*
12  * This file contains the splitting filter functions.
13  *
14  */
15 
16 #include "rtc_base/checks.h"
17 #include "common_audio/signal_processing/include/signal_processing_library.h"
18 
19 // Maximum number of samples in a low/high-band frame.
20 enum
21 {
22     kMaxBandFrameLength = 320  // 10 ms at 64 kHz.
23 };
24 
25 // QMF filter coefficients in Q16.
26 static const uint16_t WebRtcSpl_kAllPassFilter1[3] = {6418, 36982, 57261};
27 static const uint16_t WebRtcSpl_kAllPassFilter2[3] = {21333, 49062, 63010};
28 
29 ///////////////////////////////////////////////////////////////////////////////////////////////
30 // WebRtcSpl_AllPassQMF(...)
31 //
32 // Allpass filter used by the analysis and synthesis parts of the QMF filter.
33 //
34 // Input:
35 //    - in_data             : Input data sequence (Q10)
36 //    - data_length         : Length of data sequence (>2)
37 //    - filter_coefficients : Filter coefficients (length 3, Q16)
38 //
39 // Input & Output:
40 //    - filter_state        : Filter state (length 6, Q10).
41 //
42 // Output:
43 //    - out_data            : Output data sequence (Q10), length equal to
44 //                            |data_length|
45 //
46 
WebRtcSpl_AllPassQMF(int32_t * in_data,size_t data_length,int32_t * out_data,const uint16_t * filter_coefficients,int32_t * filter_state)47 void WebRtcSpl_AllPassQMF(int32_t* in_data, size_t data_length,
48                           int32_t* out_data, const uint16_t* filter_coefficients,
49                           int32_t* filter_state)
50 {
51     // The procedure is to filter the input with three first order all pass filters
52     // (cascade operations).
53     //
54     //         a_3 + q^-1    a_2 + q^-1    a_1 + q^-1
55     // y[n] =  -----------   -----------   -----------   x[n]
56     //         1 + a_3q^-1   1 + a_2q^-1   1 + a_1q^-1
57     //
58     // The input vector |filter_coefficients| includes these three filter coefficients.
59     // The filter state contains the in_data state, in_data[-1], followed by
60     // the out_data state, out_data[-1]. This is repeated for each cascade.
61     // The first cascade filter will filter the |in_data| and store the output in
62     // |out_data|. The second will the take the |out_data| as input and make an
63     // intermediate storage in |in_data|, to save memory. The third, and final, cascade
64     // filter operation takes the |in_data| (which is the output from the previous cascade
65     // filter) and store the output in |out_data|.
66     // Note that the input vector values are changed during the process.
67     size_t k;
68     int32_t diff;
69     // First all-pass cascade; filter from in_data to out_data.
70 
71     // Let y_i[n] indicate the output of cascade filter i (with filter coefficient a_i) at
72     // vector position n. Then the final output will be y[n] = y_3[n]
73 
74     // First loop, use the states stored in memory.
75     // "diff" should be safe from wrap around since max values are 2^25
76     // diff = (x[0] - y_1[-1])
77     diff = WebRtcSpl_SubSatW32(in_data[0], filter_state[1]);
78     // y_1[0] =  x[-1] + a_1 * (x[0] - y_1[-1])
79     out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, filter_state[0]);
80 
81     // For the remaining loops, use previous values.
82     for (k = 1; k < data_length; k++)
83     {
84         // diff = (x[n] - y_1[n-1])
85         diff = WebRtcSpl_SubSatW32(in_data[k], out_data[k - 1]);
86         // y_1[n] =  x[n-1] + a_1 * (x[n] - y_1[n-1])
87         out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, in_data[k - 1]);
88     }
89 
90     // Update states.
91     filter_state[0] = in_data[data_length - 1]; // x[N-1], becomes x[-1] next time
92     filter_state[1] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
93 
94     // Second all-pass cascade; filter from out_data to in_data.
95     // diff = (y_1[0] - y_2[-1])
96     diff = WebRtcSpl_SubSatW32(out_data[0], filter_state[3]);
97     // y_2[0] =  y_1[-1] + a_2 * (y_1[0] - y_2[-1])
98     in_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, filter_state[2]);
99     for (k = 1; k < data_length; k++)
100     {
101         // diff = (y_1[n] - y_2[n-1])
102         diff = WebRtcSpl_SubSatW32(out_data[k], in_data[k - 1]);
103         // y_2[0] =  y_1[-1] + a_2 * (y_1[0] - y_2[-1])
104         in_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, out_data[k-1]);
105     }
106 
107     filter_state[2] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
108     filter_state[3] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
109 
110     // Third all-pass cascade; filter from in_data to out_data.
111     // diff = (y_2[0] - y[-1])
112     diff = WebRtcSpl_SubSatW32(in_data[0], filter_state[5]);
113     // y[0] =  y_2[-1] + a_3 * (y_2[0] - y[-1])
114     out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, filter_state[4]);
115     for (k = 1; k < data_length; k++)
116     {
117         // diff = (y_2[n] - y[n-1])
118         diff = WebRtcSpl_SubSatW32(in_data[k], out_data[k - 1]);
119         // y[n] =  y_2[n-1] + a_3 * (y_2[n] - y[n-1])
120         out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, in_data[k-1]);
121     }
122     filter_state[4] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
123     filter_state[5] = out_data[data_length - 1]; // y[N-1], becomes y[-1] next time
124 }
125 
WebRtcSpl_AnalysisQMF(const int16_t * in_data,size_t in_data_length,int16_t * low_band,int16_t * high_band,int32_t * filter_state1,int32_t * filter_state2)126 void WebRtcSpl_AnalysisQMF(const int16_t* in_data, size_t in_data_length,
127                            int16_t* low_band, int16_t* high_band,
128                            int32_t* filter_state1, int32_t* filter_state2)
129 {
130     size_t i;
131     int16_t k;
132     int32_t tmp;
133     int32_t half_in1[kMaxBandFrameLength];
134     int32_t half_in2[kMaxBandFrameLength];
135     int32_t filter1[kMaxBandFrameLength];
136     int32_t filter2[kMaxBandFrameLength];
137     const size_t band_length = in_data_length / 2;
138     RTC_DCHECK_EQ(0, in_data_length % 2);
139     RTC_DCHECK_LE(band_length, kMaxBandFrameLength);
140 
141     // Split even and odd samples. Also shift them to Q10.
142     for (i = 0, k = 0; i < band_length; i++, k += 2)
143     {
144         half_in2[i] = ((int32_t)in_data[k]) * (1 << 10);
145         half_in1[i] = ((int32_t)in_data[k + 1]) * (1 << 10);
146     }
147 
148     // All pass filter even and odd samples, independently.
149     WebRtcSpl_AllPassQMF(half_in1, band_length, filter1,
150                          WebRtcSpl_kAllPassFilter1, filter_state1);
151     WebRtcSpl_AllPassQMF(half_in2, band_length, filter2,
152                          WebRtcSpl_kAllPassFilter2, filter_state2);
153 
154     // Take the sum and difference of filtered version of odd and even
155     // branches to get upper & lower band.
156     for (i = 0; i < band_length; i++)
157     {
158         tmp = (filter1[i] + filter2[i] + 1024) >> 11;
159         low_band[i] = WebRtcSpl_SatW32ToW16(tmp);
160 
161         tmp = (filter1[i] - filter2[i] + 1024) >> 11;
162         high_band[i] = WebRtcSpl_SatW32ToW16(tmp);
163     }
164 }
165 
WebRtcSpl_SynthesisQMF(const int16_t * low_band,const int16_t * high_band,size_t band_length,int16_t * out_data,int32_t * filter_state1,int32_t * filter_state2)166 void WebRtcSpl_SynthesisQMF(const int16_t* low_band, const int16_t* high_band,
167                             size_t band_length, int16_t* out_data,
168                             int32_t* filter_state1, int32_t* filter_state2)
169 {
170     int32_t tmp;
171     int32_t half_in1[kMaxBandFrameLength];
172     int32_t half_in2[kMaxBandFrameLength];
173     int32_t filter1[kMaxBandFrameLength];
174     int32_t filter2[kMaxBandFrameLength];
175     size_t i;
176     int16_t k;
177     RTC_DCHECK_LE(band_length, kMaxBandFrameLength);
178 
179     // Obtain the sum and difference channels out of upper and lower-band channels.
180     // Also shift to Q10 domain.
181     for (i = 0; i < band_length; i++)
182     {
183         tmp = (int32_t)low_band[i] + (int32_t)high_band[i];
184         half_in1[i] = tmp * (1 << 10);
185         tmp = (int32_t)low_band[i] - (int32_t)high_band[i];
186         half_in2[i] = tmp * (1 << 10);
187     }
188 
189     // all-pass filter the sum and difference channels
190     WebRtcSpl_AllPassQMF(half_in1, band_length, filter1,
191                          WebRtcSpl_kAllPassFilter2, filter_state1);
192     WebRtcSpl_AllPassQMF(half_in2, band_length, filter2,
193                          WebRtcSpl_kAllPassFilter1, filter_state2);
194 
195     // The filtered signals are even and odd samples of the output. Combine
196     // them. The signals are Q10 should shift them back to Q0 and take care of
197     // saturation.
198     for (i = 0, k = 0; i < band_length; i++)
199     {
200         tmp = (filter2[i] + 512) >> 10;
201         out_data[k++] = WebRtcSpl_SatW32ToW16(tmp);
202 
203         tmp = (filter1[i] + 512) >> 10;
204         out_data[k++] = WebRtcSpl_SatW32ToW16(tmp);
205     }
206 
207 }
208