• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* The PyObject_ memory family:  high-level object memory interfaces.
2    See pymem.h for the low-level PyMem_ family.
3 */
4 
5 #ifndef Py_OBJIMPL_H
6 #define Py_OBJIMPL_H
7 
8 #include "pymem.h"
9 
10 #ifdef __cplusplus
11 extern "C" {
12 #endif
13 
14 /* BEWARE:
15 
16    Each interface exports both functions and macros.  Extension modules should
17    use the functions, to ensure binary compatibility across Python versions.
18    Because the Python implementation is free to change internal details, and
19    the macros may (or may not) expose details for speed, if you do use the
20    macros you must recompile your extensions with each Python release.
21 
22    Never mix calls to PyObject_ memory functions with calls to the platform
23    malloc/realloc/ calloc/free, or with calls to PyMem_.
24 */
25 
26 /*
27 Functions and macros for modules that implement new object types.
28 
29  - PyObject_New(type, typeobj) allocates memory for a new object of the given
30    type, and initializes part of it.  'type' must be the C structure type used
31    to represent the object, and 'typeobj' the address of the corresponding
32    type object.  Reference count and type pointer are filled in; the rest of
33    the bytes of the object are *undefined*!  The resulting expression type is
34    'type *'.  The size of the object is determined by the tp_basicsize field
35    of the type object.
36 
37  - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size
38    object with room for n items.  In addition to the refcount and type pointer
39    fields, this also fills in the ob_size field.
40 
41  - PyObject_Del(op) releases the memory allocated for an object.  It does not
42    run a destructor -- it only frees the memory.  PyObject_Free is identical.
43 
44  - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't
45    allocate memory.  Instead of a 'type' parameter, they take a pointer to a
46    new object (allocated by an arbitrary allocator), and initialize its object
47    header fields.
48 
49 Note that objects created with PyObject_{New, NewVar} are allocated using the
50 specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is
51 enabled.  In addition, a special debugging allocator is used if PYMALLOC_DEBUG
52 is also #defined.
53 
54 In case a specific form of memory management is needed (for example, if you
55 must use the platform malloc heap(s), or shared memory, or C++ local storage or
56 operator new), you must first allocate the object with your custom allocator,
57 then pass its pointer to PyObject_{Init, InitVar} for filling in its Python-
58 specific fields:  reference count, type pointer, possibly others.  You should
59 be aware that Python has no control over these objects because they don't
60 cooperate with the Python memory manager.  Such objects may not be eligible
61 for automatic garbage collection and you have to make sure that they are
62 released accordingly whenever their destructor gets called (cf. the specific
63 form of memory management you're using).
64 
65 Unless you have specific memory management requirements, use
66 PyObject_{New, NewVar, Del}.
67 */
68 
69 /*
70  * Raw object memory interface
71  * ===========================
72  */
73 
74 /* Functions to call the same malloc/realloc/free as used by Python's
75    object allocator.  If WITH_PYMALLOC is enabled, these may differ from
76    the platform malloc/realloc/free.  The Python object allocator is
77    designed for fast, cache-conscious allocation of many "small" objects,
78    and with low hidden memory overhead.
79 
80    PyObject_Malloc(0) returns a unique non-NULL pointer if possible.
81 
82    PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n).
83    PyObject_Realloc(p != NULL, 0) does not return  NULL, or free the memory
84    at p.
85 
86    Returned pointers must be checked for NULL explicitly; no action is
87    performed on failure other than to return NULL (no warning it printed, no
88    exception is set, etc).
89 
90    For allocating objects, use PyObject_{New, NewVar} instead whenever
91    possible.  The PyObject_{Malloc, Realloc, Free} family is exposed
92    so that you can exploit Python's small-block allocator for non-object
93    uses.  If you must use these routines to allocate object memory, make sure
94    the object gets initialized via PyObject_{Init, InitVar} after obtaining
95    the raw memory.
96 */
97 PyAPI_FUNC(void *) PyObject_Malloc(size_t);
98 PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t);
99 PyAPI_FUNC(void) PyObject_Free(void *);
100 
101 
102 /* Macros */
103 #ifdef WITH_PYMALLOC
104 #ifdef PYMALLOC_DEBUG   /* WITH_PYMALLOC && PYMALLOC_DEBUG */
105 PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes);
106 PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes);
107 PyAPI_FUNC(void) _PyObject_DebugFree(void *p);
108 PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p);
109 PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p);
110 PyAPI_FUNC(void) _PyObject_DebugMallocStats(void);
111 PyAPI_FUNC(void *) _PyObject_DebugMallocApi(char api, size_t nbytes);
112 PyAPI_FUNC(void *) _PyObject_DebugReallocApi(char api, void *p, size_t nbytes);
113 PyAPI_FUNC(void) _PyObject_DebugFreeApi(char api, void *p);
114 PyAPI_FUNC(void) _PyObject_DebugCheckAddressApi(char api, const void *p);
115 PyAPI_FUNC(void *) _PyMem_DebugMalloc(size_t nbytes);
116 PyAPI_FUNC(void *) _PyMem_DebugRealloc(void *p, size_t nbytes);
117 PyAPI_FUNC(void) _PyMem_DebugFree(void *p);
118 #define PyObject_MALLOC         _PyObject_DebugMalloc
119 #define PyObject_Malloc         _PyObject_DebugMalloc
120 #define PyObject_REALLOC        _PyObject_DebugRealloc
121 #define PyObject_Realloc        _PyObject_DebugRealloc
122 #define PyObject_FREE           _PyObject_DebugFree
123 #define PyObject_Free           _PyObject_DebugFree
124 
125 #else   /* WITH_PYMALLOC && ! PYMALLOC_DEBUG */
126 #define PyObject_MALLOC         PyObject_Malloc
127 #define PyObject_REALLOC        PyObject_Realloc
128 #define PyObject_FREE           PyObject_Free
129 #endif
130 
131 #else   /* ! WITH_PYMALLOC */
132 #define PyObject_MALLOC         PyMem_MALLOC
133 #define PyObject_REALLOC        PyMem_REALLOC
134 #define PyObject_FREE           PyMem_FREE
135 
136 #endif  /* WITH_PYMALLOC */
137 
138 #define PyObject_Del            PyObject_Free
139 #define PyObject_DEL            PyObject_FREE
140 
141 /* for source compatibility with 2.2 */
142 #define _PyObject_Del           PyObject_Free
143 
144 /*
145  * Generic object allocator interface
146  * ==================================
147  */
148 
149 /* Functions */
150 PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *);
151 PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *,
152                                                  PyTypeObject *, Py_ssize_t);
153 PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *);
154 PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t);
155 
156 #define PyObject_New(type, typeobj) \
157                 ( (type *) _PyObject_New(typeobj) )
158 #define PyObject_NewVar(type, typeobj, n) \
159                 ( (type *) _PyObject_NewVar((typeobj), (n)) )
160 
161 /* Macros trading binary compatibility for speed. See also pymem.h.
162    Note that these macros expect non-NULL object pointers.*/
163 #define PyObject_INIT(op, typeobj) \
164     ( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
165 #define PyObject_INIT_VAR(op, typeobj, size) \
166     ( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) )
167 
168 #define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
169 
170 /* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a
171    vrbl-size object with nitems items, exclusive of gc overhead (if any).  The
172    value is rounded up to the closest multiple of sizeof(void *), in order to
173    ensure that pointer fields at the end of the object are correctly aligned
174    for the platform (this is of special importance for subclasses of, e.g.,
175    str or long, so that pointers can be stored after the embedded data).
176 
177    Note that there's no memory wastage in doing this, as malloc has to
178    return (at worst) pointer-aligned memory anyway.
179 */
180 #if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0
181 #   error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2"
182 #endif
183 
184 #define _PyObject_VAR_SIZE(typeobj, nitems)     \
185     (size_t)                                    \
186     ( ( (typeobj)->tp_basicsize +               \
187         (nitems)*(typeobj)->tp_itemsize +       \
188         (SIZEOF_VOID_P - 1)                     \
189       ) & ~(SIZEOF_VOID_P - 1)                  \
190     )
191 
192 #define PyObject_NEW(type, typeobj) \
193 ( (type *) PyObject_Init( \
194     (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) )
195 
196 #define PyObject_NEW_VAR(type, typeobj, n) \
197 ( (type *) PyObject_InitVar( \
198       (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\
199       (typeobj), (n)) )
200 
201 /* This example code implements an object constructor with a custom
202    allocator, where PyObject_New is inlined, and shows the important
203    distinction between two steps (at least):
204        1) the actual allocation of the object storage;
205        2) the initialization of the Python specific fields
206       in this storage with PyObject_{Init, InitVar}.
207 
208    PyObject *
209    YourObject_New(...)
210    {
211        PyObject *op;
212 
213        op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
214        if (op == NULL)
215        return PyErr_NoMemory();
216 
217        PyObject_Init(op, &YourTypeStruct);
218 
219        op->ob_field = value;
220        ...
221        return op;
222    }
223 
224    Note that in C++, the use of the new operator usually implies that
225    the 1st step is performed automatically for you, so in a C++ class
226    constructor you would start directly with PyObject_Init/InitVar
227 */
228 
229 /*
230  * Garbage Collection Support
231  * ==========================
232  */
233 
234 /* C equivalent of gc.collect(). */
235 PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void);
236 
237 /* Test if a type has a GC head */
238 #define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
239 
240 /* Test if an object has a GC head */
241 #define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \
242     (Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o)))
243 
244 PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t);
245 #define PyObject_GC_Resize(type, op, n) \
246                 ( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) )
247 
248 /* for source compatibility with 2.2 */
249 #define _PyObject_GC_Del PyObject_GC_Del
250 
251 /*
252  * Former over-aligned definition of PyGC_Head, used to compute the size of the
253  * padding for the new version below.
254  */
255 union _gc_head;
256 union _gc_head_old {
257     struct {
258         union _gc_head_old *gc_next;
259         union _gc_head_old *gc_prev;
260         Py_ssize_t gc_refs;
261     } gc;
262     long double dummy;
263 };
264 
265 /* GC information is stored BEFORE the object structure. */
266 typedef union _gc_head {
267     struct {
268         union _gc_head *gc_next;
269         union _gc_head *gc_prev;
270         Py_ssize_t gc_refs;
271     } gc;
272     double dummy; /* Force at least 8-byte alignment. */
273     char dummy_padding[sizeof(union _gc_head_old)];
274 } PyGC_Head;
275 
276 extern PyGC_Head *_PyGC_generation0;
277 
278 #define _Py_AS_GC(o) ((PyGC_Head *)(o)-1)
279 
280 #define _PyGC_REFS_UNTRACKED                    (-2)
281 #define _PyGC_REFS_REACHABLE                    (-3)
282 #define _PyGC_REFS_TENTATIVELY_UNREACHABLE      (-4)
283 
284 /* Tell the GC to track this object.  NB: While the object is tracked the
285  * collector it must be safe to call the ob_traverse method. */
286 #define _PyObject_GC_TRACK(o) do { \
287     PyGC_Head *g = _Py_AS_GC(o); \
288     if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \
289         Py_FatalError("GC object already tracked"); \
290     g->gc.gc_refs = _PyGC_REFS_REACHABLE; \
291     g->gc.gc_next = _PyGC_generation0; \
292     g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \
293     g->gc.gc_prev->gc.gc_next = g; \
294     _PyGC_generation0->gc.gc_prev = g; \
295     } while (0);
296 
297 /* Tell the GC to stop tracking this object.
298  * gc_next doesn't need to be set to NULL, but doing so is a good
299  * way to provoke memory errors if calling code is confused.
300  */
301 #define _PyObject_GC_UNTRACK(o) do { \
302     PyGC_Head *g = _Py_AS_GC(o); \
303     assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \
304     g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \
305     g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \
306     g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \
307     g->gc.gc_next = NULL; \
308     } while (0);
309 
310 /* True if the object is currently tracked by the GC. */
311 #define _PyObject_GC_IS_TRACKED(o) \
312     ((_Py_AS_GC(o))->gc.gc_refs != _PyGC_REFS_UNTRACKED)
313 
314 /* True if the object may be tracked by the GC in the future, or already is.
315    This can be useful to implement some optimizations. */
316 #define _PyObject_GC_MAY_BE_TRACKED(obj) \
317     (PyObject_IS_GC(obj) && \
318         (!PyTuple_CheckExact(obj) || _PyObject_GC_IS_TRACKED(obj)))
319 
320 
321 PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t);
322 PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *);
323 PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t);
324 PyAPI_FUNC(void) PyObject_GC_Track(void *);
325 PyAPI_FUNC(void) PyObject_GC_UnTrack(void *);
326 PyAPI_FUNC(void) PyObject_GC_Del(void *);
327 
328 #define PyObject_GC_New(type, typeobj) \
329                 ( (type *) _PyObject_GC_New(typeobj) )
330 #define PyObject_GC_NewVar(type, typeobj, n) \
331                 ( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
332 
333 
334 /* Utility macro to help write tp_traverse functions.
335  * To use this macro, the tp_traverse function must name its arguments
336  * "visit" and "arg".  This is intended to keep tp_traverse functions
337  * looking as much alike as possible.
338  */
339 #define Py_VISIT(op)                                                    \
340     do {                                                                \
341         if (op) {                                                       \
342             int vret = visit((PyObject *)(op), arg);                    \
343             if (vret)                                                   \
344                 return vret;                                            \
345         }                                                               \
346     } while (0)
347 
348 /* This is here for the sake of backwards compatibility.  Extensions that
349  * use the old GC API will still compile but the objects will not be
350  * tracked by the GC. */
351 #define PyGC_HEAD_SIZE 0
352 #define PyObject_GC_Init(op)
353 #define PyObject_GC_Fini(op)
354 #define PyObject_AS_GC(op) (op)
355 #define PyObject_FROM_GC(op) (op)
356 
357 
358 /* Test if a type supports weak references */
359 #define PyType_SUPPORTS_WEAKREFS(t) \
360     (PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \
361      && ((t)->tp_weaklistoffset > 0))
362 
363 #define PyObject_GET_WEAKREFS_LISTPTR(o) \
364     ((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset))
365 
366 #ifdef __cplusplus
367 }
368 #endif
369 #endif /* !Py_OBJIMPL_H */
370