1 /*
2 * Copyright (C) 2012 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include "util/debug.h"
28 #include "pipe/p_state.h"
29 #include "util/hash_table.h"
30 #include "util/u_dump.h"
31 #include "util/u_string.h"
32 #include "util/u_memory.h"
33 #include "util/u_inlines.h"
34 #include "util/format/u_format.h"
35
36 #include "freedreno_gmem.h"
37 #include "freedreno_context.h"
38 #include "freedreno_fence.h"
39 #include "freedreno_log.h"
40 #include "freedreno_resource.h"
41 #include "freedreno_query_hw.h"
42 #include "freedreno_util.h"
43
44 /*
45 * GMEM is the small (ie. 256KiB for a200, 512KiB for a220, etc) tile buffer
46 * inside the GPU. All rendering happens to GMEM. Larger render targets
47 * are split into tiles that are small enough for the color (and depth and/or
48 * stencil, if enabled) buffers to fit within GMEM. Before rendering a tile,
49 * if there was not a clear invalidating the previous tile contents, we need
50 * to restore the previous tiles contents (system mem -> GMEM), and after all
51 * the draw calls, before moving to the next tile, we need to save the tile
52 * contents (GMEM -> system mem).
53 *
54 * The code in this file handles dealing with GMEM and tiling.
55 *
56 * The structure of the ringbuffer ends up being:
57 *
58 * +--<---<-- IB ---<---+---<---+---<---<---<--+
59 * | | | |
60 * v ^ ^ ^
61 * ------------------------------------------------------
62 * | clear/draw cmds | Tile0 | Tile1 | .... | TileN |
63 * ------------------------------------------------------
64 * ^
65 * |
66 * address submitted in issueibcmds
67 *
68 * Where the per-tile section handles scissor setup, mem2gmem restore (if
69 * needed), IB to draw cmds earlier in the ringbuffer, and then gmem2mem
70 * resolve.
71 */
72
73 #ifndef BIN_DEBUG
74 # define BIN_DEBUG 0
75 #endif
76
77 /*
78 * GMEM Cache:
79 *
80 * Caches GMEM state based on a given framebuffer state. The key is
81 * meant to be the minimal set of data that results in a unique gmem
82 * configuration, avoiding multiple keys arriving at the same gmem
83 * state. For example, the render target format is not part of the
84 * key, only the size per pixel. And the max_scissor bounds is not
85 * part of they key, only the minx/miny (after clamping to tile
86 * alignment) and width/height. This ensures that slightly different
87 * max_scissor which would result in the same gmem state, do not
88 * become different keys that map to the same state.
89 */
90
91 struct gmem_key {
92 uint16_t minx, miny;
93 uint16_t width, height;
94 uint8_t gmem_page_align; /* alignment in multiples of 0x1000 to reduce key size */
95 uint8_t nr_cbufs;
96 uint8_t cbuf_cpp[MAX_RENDER_TARGETS];
97 uint8_t zsbuf_cpp[2];
98 };
99
100 static uint32_t
gmem_key_hash(const void * _key)101 gmem_key_hash(const void *_key)
102 {
103 const struct gmem_key *key = _key;
104 return _mesa_hash_data(key, sizeof(*key));
105 }
106
107 static bool
gmem_key_equals(const void * _a,const void * _b)108 gmem_key_equals(const void *_a, const void *_b)
109 {
110 const struct gmem_key *a = _a;
111 const struct gmem_key *b = _b;
112 return memcmp(a, b, sizeof(*a)) == 0;
113 }
114
115 static void
dump_gmem_key(const struct gmem_key * key)116 dump_gmem_key(const struct gmem_key *key)
117 {
118 printf("{ .minx=%u, .miny=%u, .width=%u, .height=%u",
119 key->minx, key->miny, key->width, key->height);
120 printf(", .gmem_page_align=%u, .nr_cbufs=%u",
121 key->gmem_page_align, key->nr_cbufs);
122 printf(", .cbuf_cpp = {");
123 for (unsigned i = 0; i < ARRAY_SIZE(key->cbuf_cpp); i++)
124 printf("%u,", key->cbuf_cpp[i]);
125 printf("}, .zsbuf_cpp = {");
126 for (unsigned i = 0; i < ARRAY_SIZE(key->zsbuf_cpp); i++)
127 printf("%u,", key->zsbuf_cpp[i]);
128 printf("}},\n");
129 }
130
131 static void
dump_gmem_state(const struct fd_gmem_stateobj * gmem)132 dump_gmem_state(const struct fd_gmem_stateobj *gmem)
133 {
134 unsigned total = 0;
135 printf("GMEM LAYOUT: bin=%ux%u, nbins=%ux%u\n",
136 gmem->bin_w, gmem->bin_h, gmem->nbins_x, gmem->nbins_y);
137 for (int i = 0; i < ARRAY_SIZE(gmem->cbuf_base); i++) {
138 if (!gmem->cbuf_cpp[i])
139 continue;
140
141 unsigned size = gmem->cbuf_cpp[i] * gmem->bin_w * gmem->bin_h;
142 printf(" cbuf[%d]: base=0x%06x, size=0x%x, cpp=%u\n", i,
143 gmem->cbuf_base[i], size, gmem->cbuf_cpp[i]);
144
145 total = gmem->cbuf_base[i] + size;
146 }
147
148 for (int i = 0; i < ARRAY_SIZE(gmem->zsbuf_base); i++) {
149 if (!gmem->zsbuf_cpp[i])
150 continue;
151
152 unsigned size = gmem->zsbuf_cpp[i] * gmem->bin_w * gmem->bin_h;
153 printf(" zsbuf[%d]: base=0x%06x, size=0x%x, cpp=%u\n", i,
154 gmem->zsbuf_base[i], size, gmem->zsbuf_cpp[i]);
155
156 total = gmem->zsbuf_base[i] + size;
157 }
158
159 printf("total: 0x%06x (of 0x%06x)\n", total,
160 gmem->screen->gmemsize_bytes);
161 }
162
163 static unsigned
div_align(unsigned num,unsigned denom,unsigned al)164 div_align(unsigned num, unsigned denom, unsigned al)
165 {
166 return util_align_npot(DIV_ROUND_UP(num, denom), al);
167 }
168
169 static bool
layout_gmem(struct gmem_key * key,uint32_t nbins_x,uint32_t nbins_y,struct fd_gmem_stateobj * gmem)170 layout_gmem(struct gmem_key *key, uint32_t nbins_x, uint32_t nbins_y,
171 struct fd_gmem_stateobj *gmem)
172 {
173 struct fd_screen *screen = gmem->screen;
174 uint32_t gmem_align = key->gmem_page_align * 0x1000;
175 uint32_t total = 0, i;
176
177 if ((nbins_x == 0) || (nbins_y == 0))
178 return false;
179
180 uint32_t bin_w, bin_h;
181 bin_w = div_align(key->width, nbins_x, screen->info.tile_align_w);
182 bin_h = div_align(key->height, nbins_y, screen->info.tile_align_h);
183
184 if (bin_w > screen->info.tile_max_w)
185 return false;
186
187 if (bin_h > screen->info.tile_max_h)
188 return false;
189
190 gmem->bin_w = bin_w;
191 gmem->bin_h = bin_h;
192
193 /* due to aligning bin_w/h, we could end up with one too
194 * many bins in either dimension, so recalculate:
195 */
196 gmem->nbins_x = DIV_ROUND_UP(key->width, bin_w);
197 gmem->nbins_y = DIV_ROUND_UP(key->height, bin_h);
198
199 for (i = 0; i < MAX_RENDER_TARGETS; i++) {
200 if (key->cbuf_cpp[i]) {
201 gmem->cbuf_base[i] = util_align_npot(total, gmem_align);
202 total = gmem->cbuf_base[i] + key->cbuf_cpp[i] * bin_w * bin_h;
203 }
204 }
205
206 if (key->zsbuf_cpp[0]) {
207 gmem->zsbuf_base[0] = util_align_npot(total, gmem_align);
208 total = gmem->zsbuf_base[0] + key->zsbuf_cpp[0] * bin_w * bin_h;
209 }
210
211 if (key->zsbuf_cpp[1]) {
212 gmem->zsbuf_base[1] = util_align_npot(total, gmem_align);
213 total = gmem->zsbuf_base[1] + key->zsbuf_cpp[1] * bin_w * bin_h;
214 }
215
216 return total <= screen->gmemsize_bytes;
217 }
218
219 static void
calc_nbins(struct gmem_key * key,struct fd_gmem_stateobj * gmem)220 calc_nbins(struct gmem_key *key, struct fd_gmem_stateobj *gmem)
221 {
222 struct fd_screen *screen = gmem->screen;
223 uint32_t nbins_x = 1, nbins_y = 1;
224 uint32_t max_width = screen->info.tile_max_w;
225 uint32_t max_height = screen->info.tile_max_h;
226
227 if (fd_mesa_debug & FD_DBG_MSGS) {
228 debug_printf("binning input: cbuf cpp:");
229 for (unsigned i = 0; i < key->nr_cbufs; i++)
230 debug_printf(" %d", key->cbuf_cpp[i]);
231 debug_printf(", zsbuf cpp: %d; %dx%d\n",
232 key->zsbuf_cpp[0], key->width, key->height);
233 }
234
235 /* first, find a bin size that satisfies the maximum width/
236 * height restrictions:
237 */
238 while (div_align(key->width, nbins_x, screen->info.tile_align_w) > max_width) {
239 nbins_x++;
240 }
241
242 while (div_align(key->height, nbins_y, screen->info.tile_align_h) > max_height) {
243 nbins_y++;
244 }
245
246 /* then find a bin width/height that satisfies the memory
247 * constraints:
248 */
249 while (!layout_gmem(key, nbins_x, nbins_y, gmem)) {
250 if (nbins_y > nbins_x) {
251 nbins_x++;
252 } else {
253 nbins_y++;
254 }
255 }
256
257 /* Lets see if we can tweak the layout a bit and come up with
258 * something better:
259 */
260 if ((((nbins_x - 1) * (nbins_y + 1)) < (nbins_x * nbins_y)) &&
261 layout_gmem(key, nbins_x - 1, nbins_y + 1, gmem)) {
262 nbins_x--;
263 nbins_y++;
264 } else if ((((nbins_x + 1) * (nbins_y - 1)) < (nbins_x * nbins_y)) &&
265 layout_gmem(key, nbins_x + 1, nbins_y - 1, gmem)) {
266 nbins_x++;
267 nbins_y--;
268 }
269
270 layout_gmem(key, nbins_x, nbins_y, gmem);
271 }
272
273 static struct fd_gmem_stateobj *
gmem_stateobj_init(struct fd_screen * screen,struct gmem_key * key)274 gmem_stateobj_init(struct fd_screen *screen, struct gmem_key *key)
275 {
276 struct fd_gmem_stateobj *gmem =
277 rzalloc(screen->gmem_cache.ht, struct fd_gmem_stateobj);
278 pipe_reference_init(&gmem->reference, 1);
279 gmem->screen = screen;
280 gmem->key = key;
281 list_inithead(&gmem->node);
282
283 const unsigned npipes = screen->info.num_vsc_pipes;
284 uint32_t i, j, t, xoff, yoff;
285 uint32_t tpp_x, tpp_y;
286 int tile_n[npipes];
287
288 calc_nbins(key, gmem);
289
290 DBG("using %d bins of size %dx%d", gmem->nbins_x * gmem->nbins_y,
291 gmem->bin_w, gmem->bin_h);
292
293 memcpy(gmem->cbuf_cpp, key->cbuf_cpp, sizeof(key->cbuf_cpp));
294 memcpy(gmem->zsbuf_cpp, key->zsbuf_cpp, sizeof(key->zsbuf_cpp));
295 gmem->minx = key->minx;
296 gmem->miny = key->miny;
297 gmem->width = key->width;
298 gmem->height = key->height;
299
300 if (BIN_DEBUG) {
301 dump_gmem_state(gmem);
302 dump_gmem_key(key);
303 }
304
305 /*
306 * Assign tiles and pipes:
307 *
308 * At some point it might be worth playing with different
309 * strategies and seeing if that makes much impact on
310 * performance.
311 */
312
313 #define div_round_up(v, a) (((v) + (a) - 1) / (a))
314 /* figure out number of tiles per pipe: */
315 if (is_a20x(screen)) {
316 /* for a20x we want to minimize the number of "pipes"
317 * binning data has 3 bits for x/y (8x8) but the edges are used to
318 * cull off-screen vertices with hw binning, so we have 6x6 pipes
319 */
320 tpp_x = 6;
321 tpp_y = 6;
322 } else {
323 tpp_x = tpp_y = 1;
324 while (div_round_up(gmem->nbins_y, tpp_y) > npipes)
325 tpp_y += 2;
326 while ((div_round_up(gmem->nbins_y, tpp_y) *
327 div_round_up(gmem->nbins_x, tpp_x)) > npipes)
328 tpp_x += 1;
329 }
330
331 #ifdef DEBUG
332 tpp_x = env_var_as_unsigned("TPP_X", tpp_x);
333 tpp_y = env_var_as_unsigned("TPP_Y", tpp_x);
334 #endif
335
336 gmem->maxpw = tpp_x;
337 gmem->maxph = tpp_y;
338
339 /* configure pipes: */
340 xoff = yoff = 0;
341 for (i = 0; i < npipes; i++) {
342 struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
343
344 if (xoff >= gmem->nbins_x) {
345 xoff = 0;
346 yoff += tpp_y;
347 }
348
349 if (yoff >= gmem->nbins_y) {
350 break;
351 }
352
353 pipe->x = xoff;
354 pipe->y = yoff;
355 pipe->w = MIN2(tpp_x, gmem->nbins_x - xoff);
356 pipe->h = MIN2(tpp_y, gmem->nbins_y - yoff);
357
358 xoff += tpp_x;
359 }
360
361 /* number of pipes to use for a20x */
362 gmem->num_vsc_pipes = MAX2(1, i);
363
364 for (; i < npipes; i++) {
365 struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
366 pipe->x = pipe->y = pipe->w = pipe->h = 0;
367 }
368
369 if (BIN_DEBUG) {
370 printf("%dx%d ... tpp=%dx%d\n", gmem->nbins_x, gmem->nbins_y, tpp_x, tpp_y);
371 for (i = 0; i < ARRAY_SIZE(gmem->vsc_pipe); i++) {
372 struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
373 printf("pipe[%d]: %ux%u @ %u,%u\n", i,
374 pipe->w, pipe->h, pipe->x, pipe->y);
375 }
376 }
377
378 /* configure tiles: */
379 t = 0;
380 yoff = key->miny;
381 memset(tile_n, 0, sizeof(tile_n));
382 for (i = 0; i < gmem->nbins_y; i++) {
383 int bw, bh;
384
385 xoff = key->minx;
386
387 /* clip bin height: */
388 bh = MIN2(gmem->bin_h, key->miny + key->height - yoff);
389 assert(bh > 0);
390
391 for (j = 0; j < gmem->nbins_x; j++) {
392 struct fd_tile *tile = &gmem->tile[t];
393 uint32_t p;
394
395 assert(t < ARRAY_SIZE(gmem->tile));
396
397 /* pipe number: */
398 p = ((i / tpp_y) * div_round_up(gmem->nbins_x, tpp_x)) + (j / tpp_x);
399 assert(p < gmem->num_vsc_pipes);
400
401 /* clip bin width: */
402 bw = MIN2(gmem->bin_w, key->minx + key->width - xoff);
403 assert(bw > 0);
404
405 tile->n = !is_a20x(screen) ? tile_n[p]++ :
406 ((i % tpp_y + 1) << 3 | (j % tpp_x + 1));
407 tile->p = p;
408 tile->bin_w = bw;
409 tile->bin_h = bh;
410 tile->xoff = xoff;
411 tile->yoff = yoff;
412
413 if (BIN_DEBUG) {
414 printf("tile[%d]: p=%u, bin=%ux%u+%u+%u\n", t,
415 p, bw, bh, xoff, yoff);
416 }
417
418 t++;
419
420 xoff += bw;
421 }
422
423 yoff += bh;
424 }
425
426 if (BIN_DEBUG) {
427 t = 0;
428 for (i = 0; i < gmem->nbins_y; i++) {
429 for (j = 0; j < gmem->nbins_x; j++) {
430 struct fd_tile *tile = &gmem->tile[t++];
431 printf("|p:%u n:%u|", tile->p, tile->n);
432 }
433 printf("\n");
434 }
435 }
436
437 return gmem;
438 }
439
440 void
__fd_gmem_destroy(struct fd_gmem_stateobj * gmem)441 __fd_gmem_destroy(struct fd_gmem_stateobj *gmem)
442 {
443 struct fd_gmem_cache *cache = &gmem->screen->gmem_cache;
444
445 fd_screen_assert_locked(gmem->screen);
446
447 _mesa_hash_table_remove_key(cache->ht, gmem->key);
448 list_del(&gmem->node);
449
450 ralloc_free(gmem->key);
451 ralloc_free(gmem);
452 }
453
454 static struct gmem_key *
gmem_key_init(struct fd_batch * batch,bool assume_zs,bool no_scis_opt)455 gmem_key_init(struct fd_batch *batch, bool assume_zs, bool no_scis_opt)
456 {
457 struct fd_screen *screen = batch->ctx->screen;
458 struct pipe_framebuffer_state *pfb = &batch->framebuffer;
459 bool has_zs = pfb->zsbuf && !!(batch->gmem_reason & (FD_GMEM_DEPTH_ENABLED |
460 FD_GMEM_STENCIL_ENABLED | FD_GMEM_CLEARS_DEPTH_STENCIL));
461 struct gmem_key *key = rzalloc(screen->gmem_cache.ht, struct gmem_key);
462
463 if (has_zs || assume_zs) {
464 struct fd_resource *rsc = fd_resource(pfb->zsbuf->texture);
465 key->zsbuf_cpp[0] = rsc->layout.cpp;
466 if (rsc->stencil)
467 key->zsbuf_cpp[1] = rsc->stencil->layout.cpp;
468 } else {
469 /* we might have a zsbuf, but it isn't used */
470 batch->restore &= ~(FD_BUFFER_DEPTH | FD_BUFFER_STENCIL);
471 batch->resolve &= ~(FD_BUFFER_DEPTH | FD_BUFFER_STENCIL);
472 }
473
474 key->nr_cbufs = pfb->nr_cbufs;
475 for (unsigned i = 0; i < pfb->nr_cbufs; i++) {
476 if (pfb->cbufs[i])
477 key->cbuf_cpp[i] = util_format_get_blocksize(pfb->cbufs[i]->format);
478 else
479 key->cbuf_cpp[i] = 4;
480 /* if MSAA, color buffers are super-sampled in GMEM: */
481 key->cbuf_cpp[i] *= pfb->samples;
482 }
483
484 /* NOTE: on a6xx, the max-scissor-rect is handled in fd6_gmem, and
485 * we just rely on CP_COND_EXEC to skip bins with no geometry.
486 */
487 if (no_scis_opt || is_a6xx(screen)) {
488 key->minx = 0;
489 key->miny = 0;
490 key->width = pfb->width;
491 key->height = pfb->height;
492 } else {
493 struct pipe_scissor_state *scissor = &batch->max_scissor;
494
495 if (fd_mesa_debug & FD_DBG_NOSCIS) {
496 scissor->minx = 0;
497 scissor->miny = 0;
498 scissor->maxx = pfb->width;
499 scissor->maxy = pfb->height;
500 }
501
502 /* round down to multiple of alignment: */
503 key->minx = scissor->minx & ~(screen->info.gmem_align_w - 1);
504 key->miny = scissor->miny & ~(screen->info.gmem_align_h - 1);
505 key->width = scissor->maxx - key->minx;
506 key->height = scissor->maxy - key->miny;
507 }
508
509 if (is_a20x(screen) && batch->cleared) {
510 /* under normal circumstances the requirement would be 4K
511 * but the fast clear path requires an alignment of 32K
512 */
513 key->gmem_page_align = 8;
514 } else if (is_a6xx(screen)) {
515 key->gmem_page_align = is_a650(screen) ? 3 : 1;
516 } else {
517 // TODO re-check this across gens.. maybe it should only
518 // be a single page in some cases:
519 key->gmem_page_align = 4;
520 }
521
522 return key;
523 }
524
525 static struct fd_gmem_stateobj *
lookup_gmem_state(struct fd_batch * batch,bool assume_zs,bool no_scis_opt)526 lookup_gmem_state(struct fd_batch *batch, bool assume_zs, bool no_scis_opt)
527 {
528 struct fd_screen *screen = batch->ctx->screen;
529 struct fd_gmem_cache *cache = &screen->gmem_cache;
530 struct fd_gmem_stateobj *gmem = NULL;
531
532 /* Lock before allocating gmem_key, since that a screen-wide
533 * ralloc pool and ralloc itself is not thread-safe.
534 */
535 fd_screen_lock(screen);
536
537 struct gmem_key *key = gmem_key_init(batch, assume_zs, no_scis_opt);
538 uint32_t hash = gmem_key_hash(key);
539
540 struct hash_entry *entry =
541 _mesa_hash_table_search_pre_hashed(cache->ht, hash, key);
542 if (entry) {
543 ralloc_free(key);
544 goto found;
545 }
546
547 /* limit the # of cached gmem states, discarding the least
548 * recently used state if needed:
549 */
550 if (cache->ht->entries >= 20) {
551 struct fd_gmem_stateobj *last =
552 list_last_entry(&cache->lru, struct fd_gmem_stateobj, node);
553 fd_gmem_reference(&last, NULL);
554 }
555
556 entry = _mesa_hash_table_insert_pre_hashed(cache->ht,
557 hash, key, gmem_stateobj_init(screen, key));
558
559 found:
560 fd_gmem_reference(&gmem, entry->data);
561 /* Move to the head of the LRU: */
562 list_delinit(&gmem->node);
563 list_add(&gmem->node, &cache->lru);
564
565 fd_screen_unlock(screen);
566
567 return gmem;
568 }
569
570 /*
571 * GMEM render pass
572 */
573
574 static void
render_tiles(struct fd_batch * batch,struct fd_gmem_stateobj * gmem)575 render_tiles(struct fd_batch *batch, struct fd_gmem_stateobj *gmem)
576 {
577 struct fd_context *ctx = batch->ctx;
578 int i;
579
580 mtx_lock(&ctx->gmem_lock);
581
582 ctx->emit_tile_init(batch);
583
584 if (batch->restore)
585 ctx->stats.batch_restore++;
586
587 for (i = 0; i < (gmem->nbins_x * gmem->nbins_y); i++) {
588 struct fd_tile *tile = &gmem->tile[i];
589
590 fd_log(batch, "bin_h=%d, yoff=%d, bin_w=%d, xoff=%d",
591 tile->bin_h, tile->yoff, tile->bin_w, tile->xoff);
592
593 ctx->emit_tile_prep(batch, tile);
594
595 if (batch->restore) {
596 ctx->emit_tile_mem2gmem(batch, tile);
597 }
598
599 ctx->emit_tile_renderprep(batch, tile);
600
601 if (ctx->query_prepare_tile)
602 ctx->query_prepare_tile(batch, i, batch->gmem);
603
604 /* emit IB to drawcmds: */
605 fd_log(batch, "TILE[%d]: START DRAW IB", i);
606 if (ctx->emit_tile) {
607 ctx->emit_tile(batch, tile);
608 } else {
609 ctx->screen->emit_ib(batch->gmem, batch->draw);
610 }
611
612 fd_log(batch, "TILE[%d]: END DRAW IB", i);
613 fd_reset_wfi(batch);
614
615 /* emit gmem2mem to transfer tile back to system memory: */
616 ctx->emit_tile_gmem2mem(batch, tile);
617 }
618
619 if (ctx->emit_tile_fini)
620 ctx->emit_tile_fini(batch);
621
622 mtx_unlock(&ctx->gmem_lock);
623 }
624
625 static void
render_sysmem(struct fd_batch * batch)626 render_sysmem(struct fd_batch *batch)
627 {
628 struct fd_context *ctx = batch->ctx;
629
630 ctx->emit_sysmem_prep(batch);
631
632 if (ctx->query_prepare_tile)
633 ctx->query_prepare_tile(batch, 0, batch->gmem);
634
635 /* emit IB to drawcmds: */
636 fd_log(batch, "SYSMEM: START DRAW IB");
637 ctx->screen->emit_ib(batch->gmem, batch->draw);
638 fd_log(batch, "SYSMEM: END DRAW IB");
639 fd_reset_wfi(batch);
640
641 if (ctx->emit_sysmem_fini)
642 ctx->emit_sysmem_fini(batch);
643 }
644
645 static void
flush_ring(struct fd_batch * batch)646 flush_ring(struct fd_batch *batch)
647 {
648 uint32_t timestamp;
649 int out_fence_fd = -1;
650
651 if (unlikely(fd_mesa_debug & FD_DBG_NOHW))
652 return;
653
654 fd_submit_flush(batch->submit, batch->in_fence_fd,
655 batch->needs_out_fence_fd ? &out_fence_fd : NULL,
656 ×tamp);
657
658 fd_fence_populate(batch->fence, timestamp, out_fence_fd);
659 fd_log_flush(batch);
660 }
661
662 void
fd_gmem_render_tiles(struct fd_batch * batch)663 fd_gmem_render_tiles(struct fd_batch *batch)
664 {
665 struct fd_context *ctx = batch->ctx;
666 struct pipe_framebuffer_state *pfb = &batch->framebuffer;
667 bool sysmem = false;
668
669 if (ctx->emit_sysmem_prep && !batch->nondraw) {
670 if (batch->cleared || batch->gmem_reason ||
671 ((batch->num_draws > 5) && !batch->blit) ||
672 (pfb->samples > 1)) {
673 fd_log(batch, "GMEM: cleared=%x, gmem_reason=%x, num_draws=%u, samples=%u",
674 batch->cleared, batch->gmem_reason, batch->num_draws,
675 pfb->samples);
676 } else if (!(fd_mesa_debug & FD_DBG_NOBYPASS)) {
677 sysmem = true;
678 }
679
680 /* For ARB_framebuffer_no_attachments: */
681 if ((pfb->nr_cbufs == 0) && !pfb->zsbuf) {
682 sysmem = true;
683 }
684 }
685
686 if (fd_mesa_debug & FD_DBG_NOGMEM)
687 sysmem = true;
688
689 /* Layered rendering always needs bypass. */
690 for (unsigned i = 0; i < pfb->nr_cbufs; i++) {
691 struct pipe_surface *psurf = pfb->cbufs[i];
692 if (!psurf)
693 continue;
694 if (psurf->u.tex.first_layer < psurf->u.tex.last_layer)
695 sysmem = true;
696 }
697
698 /* Tessellation doesn't seem to support tiled rendering so fall back to
699 * bypass.
700 */
701 if (batch->tessellation) {
702 debug_assert(ctx->emit_sysmem_prep);
703 sysmem = true;
704 }
705
706 fd_reset_wfi(batch);
707
708 ctx->stats.batch_total++;
709
710 if (unlikely(fd_mesa_debug & FD_DBG_LOG) && !batch->nondraw) {
711 fd_log_stream(batch, stream, util_dump_framebuffer_state(stream, pfb));
712 for (unsigned i = 0; i < pfb->nr_cbufs; i++) {
713 fd_log_stream(batch, stream, util_dump_surface(stream, pfb->cbufs[i]));
714 }
715 fd_log_stream(batch, stream, util_dump_surface(stream, pfb->zsbuf));
716 }
717
718 if (batch->nondraw) {
719 DBG("%p: rendering non-draw", batch);
720 render_sysmem(batch);
721 ctx->stats.batch_nondraw++;
722 } else if (sysmem) {
723 fd_log(batch, "%p: rendering sysmem %ux%u (%s/%s), num_draws=%u",
724 batch, pfb->width, pfb->height,
725 util_format_short_name(pipe_surface_format(pfb->cbufs[0])),
726 util_format_short_name(pipe_surface_format(pfb->zsbuf)),
727 batch->num_draws);
728 if (ctx->query_prepare)
729 ctx->query_prepare(batch, 1);
730 render_sysmem(batch);
731 ctx->stats.batch_sysmem++;
732 } else {
733 struct fd_gmem_stateobj *gmem = lookup_gmem_state(batch, false, false);
734 batch->gmem_state = gmem;
735 fd_log(batch, "%p: rendering %dx%d tiles %ux%u (%s/%s)",
736 batch, pfb->width, pfb->height, gmem->nbins_x, gmem->nbins_y,
737 util_format_short_name(pipe_surface_format(pfb->cbufs[0])),
738 util_format_short_name(pipe_surface_format(pfb->zsbuf)));
739 if (ctx->query_prepare)
740 ctx->query_prepare(batch, gmem->nbins_x * gmem->nbins_y);
741 render_tiles(batch, gmem);
742 batch->gmem_state = NULL;
743
744 fd_screen_lock(ctx->screen);
745 fd_gmem_reference(&gmem, NULL);
746 fd_screen_unlock(ctx->screen);
747
748 ctx->stats.batch_gmem++;
749 }
750
751 flush_ring(batch);
752 }
753
754 /* Determine a worst-case estimate (ie. assuming we don't eliminate an
755 * unused depth/stencil) number of bins per vsc pipe.
756 */
757 unsigned
fd_gmem_estimate_bins_per_pipe(struct fd_batch * batch)758 fd_gmem_estimate_bins_per_pipe(struct fd_batch *batch)
759 {
760 struct pipe_framebuffer_state *pfb = &batch->framebuffer;
761 struct fd_screen *screen = batch->ctx->screen;
762 struct fd_gmem_stateobj *gmem = lookup_gmem_state(batch, !!pfb->zsbuf, true);
763 unsigned nbins = gmem->maxpw * gmem->maxph;
764
765 fd_screen_lock(screen);
766 fd_gmem_reference(&gmem, NULL);
767 fd_screen_unlock(screen);
768
769 return nbins;
770 }
771
772 /* When deciding whether a tile needs mem2gmem, we need to take into
773 * account the scissor rect(s) that were cleared. To simplify we only
774 * consider the last scissor rect for each buffer, since the common
775 * case would be a single clear.
776 */
777 bool
fd_gmem_needs_restore(struct fd_batch * batch,const struct fd_tile * tile,uint32_t buffers)778 fd_gmem_needs_restore(struct fd_batch *batch, const struct fd_tile *tile,
779 uint32_t buffers)
780 {
781 if (!(batch->restore & buffers))
782 return false;
783
784 return true;
785 }
786
787 static inline unsigned
max_bitfield_val(unsigned high,unsigned low,unsigned shift)788 max_bitfield_val(unsigned high, unsigned low, unsigned shift)
789 {
790 return BITFIELD_MASK(high - low) << shift;
791 }
792
793 void
fd_gmem_screen_init(struct pipe_screen * pscreen)794 fd_gmem_screen_init(struct pipe_screen *pscreen)
795 {
796 struct fd_gmem_cache *cache = &fd_screen(pscreen)->gmem_cache;
797
798 cache->ht = _mesa_hash_table_create(NULL, gmem_key_hash, gmem_key_equals);
799 list_inithead(&cache->lru);
800 }
801
802 void
fd_gmem_screen_fini(struct pipe_screen * pscreen)803 fd_gmem_screen_fini(struct pipe_screen *pscreen)
804 {
805 struct fd_gmem_cache *cache = &fd_screen(pscreen)->gmem_cache;
806
807 _mesa_hash_table_destroy(cache->ht, NULL);
808 }
809