1 /*
2 * z_Linux_util.cpp -- platform specific routines.
3 */
4
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #include <sys/resource.h>
29 #include <sys/syscall.h>
30 #include <sys/time.h>
31 #include <sys/times.h>
32 #include <unistd.h>
33
34 #if KMP_OS_LINUX
35 #include <sys/sysinfo.h>
36 #if KMP_USE_FUTEX
37 // We should really include <futex.h>, but that causes compatibility problems on
38 // different Linux* OS distributions that either require that you include (or
39 // break when you try to include) <pci/types.h>. Since all we need is the two
40 // macros below (which are part of the kernel ABI, so can't change) we just
41 // define the constants here and don't include <futex.h>
42 #ifndef FUTEX_WAIT
43 #define FUTEX_WAIT 0
44 #endif
45 #ifndef FUTEX_WAKE
46 #define FUTEX_WAKE 1
47 #endif
48 #endif
49 #elif KMP_OS_DARWIN
50 #include <mach/mach.h>
51 #include <sys/sysctl.h>
52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
53 #include <sys/types.h>
54 #include <sys/sysctl.h>
55 #include <sys/user.h>
56 #include <pthread_np.h>
57 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
58 #include <sys/types.h>
59 #include <sys/sysctl.h>
60 #endif
61
62 #include <ctype.h>
63 #include <dirent.h>
64 #include <fcntl.h>
65
66 #include "tsan_annotations.h"
67
68 struct kmp_sys_timer {
69 struct timespec start;
70 };
71
72 // Convert timespec to nanoseconds.
73 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
74
75 static struct kmp_sys_timer __kmp_sys_timer_data;
76
77 #if KMP_HANDLE_SIGNALS
78 typedef void (*sig_func_t)(int);
79 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
80 static sigset_t __kmp_sigset;
81 #endif
82
83 static int __kmp_init_runtime = FALSE;
84
85 static int __kmp_fork_count = 0;
86
87 static pthread_condattr_t __kmp_suspend_cond_attr;
88 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
89
90 static kmp_cond_align_t __kmp_wait_cv;
91 static kmp_mutex_align_t __kmp_wait_mx;
92
93 kmp_uint64 __kmp_ticks_per_msec = 1000000;
94
95 #ifdef DEBUG_SUSPEND
__kmp_print_cond(char * buffer,kmp_cond_align_t * cond)96 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
97 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
98 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
99 cond->c_cond.__c_waiting);
100 }
101 #endif
102
103 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
104
105 /* Affinity support */
106
__kmp_affinity_bind_thread(int which)107 void __kmp_affinity_bind_thread(int which) {
108 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
109 "Illegal set affinity operation when not capable");
110
111 kmp_affin_mask_t *mask;
112 KMP_CPU_ALLOC_ON_STACK(mask);
113 KMP_CPU_ZERO(mask);
114 KMP_CPU_SET(which, mask);
115 __kmp_set_system_affinity(mask, TRUE);
116 KMP_CPU_FREE_FROM_STACK(mask);
117 }
118
119 /* Determine if we can access affinity functionality on this version of
120 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
121 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
__kmp_affinity_determine_capable(const char * env_var)122 void __kmp_affinity_determine_capable(const char *env_var) {
123 // Check and see if the OS supports thread affinity.
124
125 #if KMP_OS_LINUX
126 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
127 #elif KMP_OS_FREEBSD
128 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
129 #endif
130
131
132 #if KMP_OS_LINUX
133 // If Linux* OS:
134 // If the syscall fails or returns a suggestion for the size,
135 // then we don't have to search for an appropriate size.
136 int gCode;
137 int sCode;
138 unsigned char *buf;
139 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
140 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
141 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
142 "initial getaffinity call returned %d errno = %d\n",
143 gCode, errno));
144
145 // if ((gCode < 0) && (errno == ENOSYS))
146 if (gCode < 0) {
147 // System call not supported
148 if (__kmp_affinity_verbose ||
149 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
150 (__kmp_affinity_type != affinity_default) &&
151 (__kmp_affinity_type != affinity_disabled))) {
152 int error = errno;
153 kmp_msg_t err_code = KMP_ERR(error);
154 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
155 err_code, __kmp_msg_null);
156 if (__kmp_generate_warnings == kmp_warnings_off) {
157 __kmp_str_free(&err_code.str);
158 }
159 }
160 KMP_AFFINITY_DISABLE();
161 KMP_INTERNAL_FREE(buf);
162 return;
163 }
164 if (gCode > 0) { // Linux* OS only
165 // The optimal situation: the OS returns the size of the buffer it expects.
166 //
167 // A verification of correct behavior is that setaffinity on a NULL
168 // buffer with the same size fails with errno set to EFAULT.
169 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
170 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
171 "setaffinity for mask size %d returned %d errno = %d\n",
172 gCode, sCode, errno));
173 if (sCode < 0) {
174 if (errno == ENOSYS) {
175 if (__kmp_affinity_verbose ||
176 (__kmp_affinity_warnings &&
177 (__kmp_affinity_type != affinity_none) &&
178 (__kmp_affinity_type != affinity_default) &&
179 (__kmp_affinity_type != affinity_disabled))) {
180 int error = errno;
181 kmp_msg_t err_code = KMP_ERR(error);
182 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
183 err_code, __kmp_msg_null);
184 if (__kmp_generate_warnings == kmp_warnings_off) {
185 __kmp_str_free(&err_code.str);
186 }
187 }
188 KMP_AFFINITY_DISABLE();
189 KMP_INTERNAL_FREE(buf);
190 }
191 if (errno == EFAULT) {
192 KMP_AFFINITY_ENABLE(gCode);
193 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
194 "affinity supported (mask size %d)\n",
195 (int)__kmp_affin_mask_size));
196 KMP_INTERNAL_FREE(buf);
197 return;
198 }
199 }
200 }
201
202 // Call the getaffinity system call repeatedly with increasing set sizes
203 // until we succeed, or reach an upper bound on the search.
204 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
205 "searching for proper set size\n"));
206 int size;
207 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
208 gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
209 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
210 "getaffinity for mask size %d returned %d errno = %d\n",
211 size, gCode, errno));
212
213 if (gCode < 0) {
214 if (errno == ENOSYS) {
215 // We shouldn't get here
216 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
217 "inconsistent OS call behavior: errno == ENOSYS for mask "
218 "size %d\n",
219 size));
220 if (__kmp_affinity_verbose ||
221 (__kmp_affinity_warnings &&
222 (__kmp_affinity_type != affinity_none) &&
223 (__kmp_affinity_type != affinity_default) &&
224 (__kmp_affinity_type != affinity_disabled))) {
225 int error = errno;
226 kmp_msg_t err_code = KMP_ERR(error);
227 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
228 err_code, __kmp_msg_null);
229 if (__kmp_generate_warnings == kmp_warnings_off) {
230 __kmp_str_free(&err_code.str);
231 }
232 }
233 KMP_AFFINITY_DISABLE();
234 KMP_INTERNAL_FREE(buf);
235 return;
236 }
237 continue;
238 }
239
240 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
241 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
242 "setaffinity for mask size %d returned %d errno = %d\n",
243 gCode, sCode, errno));
244 if (sCode < 0) {
245 if (errno == ENOSYS) { // Linux* OS only
246 // We shouldn't get here
247 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
248 "inconsistent OS call behavior: errno == ENOSYS for mask "
249 "size %d\n",
250 size));
251 if (__kmp_affinity_verbose ||
252 (__kmp_affinity_warnings &&
253 (__kmp_affinity_type != affinity_none) &&
254 (__kmp_affinity_type != affinity_default) &&
255 (__kmp_affinity_type != affinity_disabled))) {
256 int error = errno;
257 kmp_msg_t err_code = KMP_ERR(error);
258 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
259 err_code, __kmp_msg_null);
260 if (__kmp_generate_warnings == kmp_warnings_off) {
261 __kmp_str_free(&err_code.str);
262 }
263 }
264 KMP_AFFINITY_DISABLE();
265 KMP_INTERNAL_FREE(buf);
266 return;
267 }
268 if (errno == EFAULT) {
269 KMP_AFFINITY_ENABLE(gCode);
270 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
271 "affinity supported (mask size %d)\n",
272 (int)__kmp_affin_mask_size));
273 KMP_INTERNAL_FREE(buf);
274 return;
275 }
276 }
277 }
278 #elif KMP_OS_FREEBSD
279 int gCode;
280 unsigned char *buf;
281 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
282 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, reinterpret_cast<cpuset_t *>(buf));
283 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
284 "initial getaffinity call returned %d errno = %d\n",
285 gCode, errno));
286 if (gCode == 0) {
287 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
288 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
289 "affinity supported (mask size %d)\n",
290 (int)__kmp_affin_mask_size));
291 KMP_INTERNAL_FREE(buf);
292 return;
293 }
294 #endif
295 // save uncaught error code
296 // int error = errno;
297 KMP_INTERNAL_FREE(buf);
298 // restore uncaught error code, will be printed at the next KMP_WARNING below
299 // errno = error;
300
301 // Affinity is not supported
302 KMP_AFFINITY_DISABLE();
303 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
304 "cannot determine mask size - affinity not supported\n"));
305 if (__kmp_affinity_verbose ||
306 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
307 (__kmp_affinity_type != affinity_default) &&
308 (__kmp_affinity_type != affinity_disabled))) {
309 KMP_WARNING(AffCantGetMaskSize, env_var);
310 }
311 }
312
313 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
314
315 #if KMP_USE_FUTEX
316
__kmp_futex_determine_capable()317 int __kmp_futex_determine_capable() {
318 int loc = 0;
319 int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
320 int retval = (rc == 0) || (errno != ENOSYS);
321
322 KA_TRACE(10,
323 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
324 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
325 retval ? "" : " not"));
326
327 return retval;
328 }
329
330 #endif // KMP_USE_FUTEX
331
332 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
333 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
334 use compare_and_store for these routines */
335
__kmp_test_then_or8(volatile kmp_int8 * p,kmp_int8 d)336 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
337 kmp_int8 old_value, new_value;
338
339 old_value = TCR_1(*p);
340 new_value = old_value | d;
341
342 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
343 KMP_CPU_PAUSE();
344 old_value = TCR_1(*p);
345 new_value = old_value | d;
346 }
347 return old_value;
348 }
349
__kmp_test_then_and8(volatile kmp_int8 * p,kmp_int8 d)350 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
351 kmp_int8 old_value, new_value;
352
353 old_value = TCR_1(*p);
354 new_value = old_value & d;
355
356 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
357 KMP_CPU_PAUSE();
358 old_value = TCR_1(*p);
359 new_value = old_value & d;
360 }
361 return old_value;
362 }
363
__kmp_test_then_or32(volatile kmp_uint32 * p,kmp_uint32 d)364 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
365 kmp_uint32 old_value, new_value;
366
367 old_value = TCR_4(*p);
368 new_value = old_value | d;
369
370 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
371 KMP_CPU_PAUSE();
372 old_value = TCR_4(*p);
373 new_value = old_value | d;
374 }
375 return old_value;
376 }
377
__kmp_test_then_and32(volatile kmp_uint32 * p,kmp_uint32 d)378 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
379 kmp_uint32 old_value, new_value;
380
381 old_value = TCR_4(*p);
382 new_value = old_value & d;
383
384 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
385 KMP_CPU_PAUSE();
386 old_value = TCR_4(*p);
387 new_value = old_value & d;
388 }
389 return old_value;
390 }
391
392 #if KMP_ARCH_X86
__kmp_test_then_add8(volatile kmp_int8 * p,kmp_int8 d)393 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
394 kmp_int8 old_value, new_value;
395
396 old_value = TCR_1(*p);
397 new_value = old_value + d;
398
399 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
400 KMP_CPU_PAUSE();
401 old_value = TCR_1(*p);
402 new_value = old_value + d;
403 }
404 return old_value;
405 }
406
__kmp_test_then_add64(volatile kmp_int64 * p,kmp_int64 d)407 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
408 kmp_int64 old_value, new_value;
409
410 old_value = TCR_8(*p);
411 new_value = old_value + d;
412
413 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
414 KMP_CPU_PAUSE();
415 old_value = TCR_8(*p);
416 new_value = old_value + d;
417 }
418 return old_value;
419 }
420 #endif /* KMP_ARCH_X86 */
421
__kmp_test_then_or64(volatile kmp_uint64 * p,kmp_uint64 d)422 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
423 kmp_uint64 old_value, new_value;
424
425 old_value = TCR_8(*p);
426 new_value = old_value | d;
427 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
428 KMP_CPU_PAUSE();
429 old_value = TCR_8(*p);
430 new_value = old_value | d;
431 }
432 return old_value;
433 }
434
__kmp_test_then_and64(volatile kmp_uint64 * p,kmp_uint64 d)435 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
436 kmp_uint64 old_value, new_value;
437
438 old_value = TCR_8(*p);
439 new_value = old_value & d;
440 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
441 KMP_CPU_PAUSE();
442 old_value = TCR_8(*p);
443 new_value = old_value & d;
444 }
445 return old_value;
446 }
447
448 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
449
__kmp_terminate_thread(int gtid)450 void __kmp_terminate_thread(int gtid) {
451 int status;
452 kmp_info_t *th = __kmp_threads[gtid];
453
454 if (!th)
455 return;
456
457 #ifdef KMP_CANCEL_THREADS
458 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
459 status = pthread_cancel(th->th.th_info.ds.ds_thread);
460 if (status != 0 && status != ESRCH) {
461 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
462 __kmp_msg_null);
463 }
464 #endif
465 KMP_YIELD(TRUE);
466 } //
467
468 /* Set thread stack info according to values returned by pthread_getattr_np().
469 If values are unreasonable, assume call failed and use incremental stack
470 refinement method instead. Returns TRUE if the stack parameters could be
471 determined exactly, FALSE if incremental refinement is necessary. */
__kmp_set_stack_info(int gtid,kmp_info_t * th)472 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
473 int stack_data;
474 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
475 KMP_OS_HURD
476 pthread_attr_t attr;
477 int status;
478 size_t size = 0;
479 void *addr = 0;
480
481 /* Always do incremental stack refinement for ubermaster threads since the
482 initial thread stack range can be reduced by sibling thread creation so
483 pthread_attr_getstack may cause thread gtid aliasing */
484 if (!KMP_UBER_GTID(gtid)) {
485
486 /* Fetch the real thread attributes */
487 status = pthread_attr_init(&attr);
488 KMP_CHECK_SYSFAIL("pthread_attr_init", status);
489 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
490 status = pthread_attr_get_np(pthread_self(), &attr);
491 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
492 #else
493 status = pthread_getattr_np(pthread_self(), &attr);
494 KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
495 #endif
496 status = pthread_attr_getstack(&attr, &addr, &size);
497 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
498 KA_TRACE(60,
499 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
500 " %lu, low addr: %p\n",
501 gtid, size, addr));
502 status = pthread_attr_destroy(&attr);
503 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
504 }
505
506 if (size != 0 && addr != 0) { // was stack parameter determination successful?
507 /* Store the correct base and size */
508 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
509 TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
510 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
511 return TRUE;
512 }
513 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
514 KMP_OS_HURD */
515 /* Use incremental refinement starting from initial conservative estimate */
516 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
517 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
518 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
519 return FALSE;
520 }
521
__kmp_launch_worker(void * thr)522 static void *__kmp_launch_worker(void *thr) {
523 int status, old_type, old_state;
524 #ifdef KMP_BLOCK_SIGNALS
525 sigset_t new_set, old_set;
526 #endif /* KMP_BLOCK_SIGNALS */
527 void *exit_val;
528 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
529 KMP_OS_OPENBSD || KMP_OS_HURD
530 void *volatile padding = 0;
531 #endif
532 int gtid;
533
534 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
535 __kmp_gtid_set_specific(gtid);
536 #ifdef KMP_TDATA_GTID
537 __kmp_gtid = gtid;
538 #endif
539 #if KMP_STATS_ENABLED
540 // set thread local index to point to thread-specific stats
541 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
542 __kmp_stats_thread_ptr->startLife();
543 KMP_SET_THREAD_STATE(IDLE);
544 KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
545 #endif
546
547 #if USE_ITT_BUILD
548 __kmp_itt_thread_name(gtid);
549 #endif /* USE_ITT_BUILD */
550
551 #if KMP_AFFINITY_SUPPORTED
552 __kmp_affinity_set_init_mask(gtid, FALSE);
553 #endif
554
555 #ifdef KMP_CANCEL_THREADS
556 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
557 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
558 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
559 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
560 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
561 #endif
562
563 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
564 // Set FP control regs to be a copy of the parallel initialization thread's.
565 __kmp_clear_x87_fpu_status_word();
566 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
567 __kmp_load_mxcsr(&__kmp_init_mxcsr);
568 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
569
570 #ifdef KMP_BLOCK_SIGNALS
571 status = sigfillset(&new_set);
572 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
573 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
574 KMP_CHECK_SYSFAIL("pthread_sigmask", status);
575 #endif /* KMP_BLOCK_SIGNALS */
576
577 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
578 KMP_OS_OPENBSD
579 if (__kmp_stkoffset > 0 && gtid > 0) {
580 padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
581 }
582 #endif
583
584 KMP_MB();
585 __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
586
587 __kmp_check_stack_overlap((kmp_info_t *)thr);
588
589 exit_val = __kmp_launch_thread((kmp_info_t *)thr);
590
591 #ifdef KMP_BLOCK_SIGNALS
592 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
593 KMP_CHECK_SYSFAIL("pthread_sigmask", status);
594 #endif /* KMP_BLOCK_SIGNALS */
595
596 return exit_val;
597 }
598
599 #if KMP_USE_MONITOR
600 /* The monitor thread controls all of the threads in the complex */
601
__kmp_launch_monitor(void * thr)602 static void *__kmp_launch_monitor(void *thr) {
603 int status, old_type, old_state;
604 #ifdef KMP_BLOCK_SIGNALS
605 sigset_t new_set;
606 #endif /* KMP_BLOCK_SIGNALS */
607 struct timespec interval;
608
609 KMP_MB(); /* Flush all pending memory write invalidates. */
610
611 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
612
613 /* register us as the monitor thread */
614 __kmp_gtid_set_specific(KMP_GTID_MONITOR);
615 #ifdef KMP_TDATA_GTID
616 __kmp_gtid = KMP_GTID_MONITOR;
617 #endif
618
619 KMP_MB();
620
621 #if USE_ITT_BUILD
622 // Instruct Intel(R) Threading Tools to ignore monitor thread.
623 __kmp_itt_thread_ignore();
624 #endif /* USE_ITT_BUILD */
625
626 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
627 (kmp_info_t *)thr);
628
629 __kmp_check_stack_overlap((kmp_info_t *)thr);
630
631 #ifdef KMP_CANCEL_THREADS
632 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
633 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
634 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
635 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
636 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
637 #endif
638
639 #if KMP_REAL_TIME_FIX
640 // This is a potential fix which allows application with real-time scheduling
641 // policy work. However, decision about the fix is not made yet, so it is
642 // disabled by default.
643 { // Are program started with real-time scheduling policy?
644 int sched = sched_getscheduler(0);
645 if (sched == SCHED_FIFO || sched == SCHED_RR) {
646 // Yes, we are a part of real-time application. Try to increase the
647 // priority of the monitor.
648 struct sched_param param;
649 int max_priority = sched_get_priority_max(sched);
650 int rc;
651 KMP_WARNING(RealTimeSchedNotSupported);
652 sched_getparam(0, ¶m);
653 if (param.sched_priority < max_priority) {
654 param.sched_priority += 1;
655 rc = sched_setscheduler(0, sched, ¶m);
656 if (rc != 0) {
657 int error = errno;
658 kmp_msg_t err_code = KMP_ERR(error);
659 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
660 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
661 if (__kmp_generate_warnings == kmp_warnings_off) {
662 __kmp_str_free(&err_code.str);
663 }
664 }
665 } else {
666 // We cannot abort here, because number of CPUs may be enough for all
667 // the threads, including the monitor thread, so application could
668 // potentially work...
669 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
670 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
671 __kmp_msg_null);
672 }
673 }
674 // AC: free thread that waits for monitor started
675 TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
676 }
677 #endif // KMP_REAL_TIME_FIX
678
679 KMP_MB(); /* Flush all pending memory write invalidates. */
680
681 if (__kmp_monitor_wakeups == 1) {
682 interval.tv_sec = 1;
683 interval.tv_nsec = 0;
684 } else {
685 interval.tv_sec = 0;
686 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
687 }
688
689 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
690
691 while (!TCR_4(__kmp_global.g.g_done)) {
692 struct timespec now;
693 struct timeval tval;
694
695 /* This thread monitors the state of the system */
696
697 KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
698
699 status = gettimeofday(&tval, NULL);
700 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
701 TIMEVAL_TO_TIMESPEC(&tval, &now);
702
703 now.tv_sec += interval.tv_sec;
704 now.tv_nsec += interval.tv_nsec;
705
706 if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
707 now.tv_sec += 1;
708 now.tv_nsec -= KMP_NSEC_PER_SEC;
709 }
710
711 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
712 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
713 // AC: the monitor should not fall asleep if g_done has been set
714 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
715 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
716 &__kmp_wait_mx.m_mutex, &now);
717 if (status != 0) {
718 if (status != ETIMEDOUT && status != EINTR) {
719 KMP_SYSFAIL("pthread_cond_timedwait", status);
720 }
721 }
722 }
723 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
724 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
725
726 TCW_4(__kmp_global.g.g_time.dt.t_value,
727 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
728
729 KMP_MB(); /* Flush all pending memory write invalidates. */
730 }
731
732 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
733
734 #ifdef KMP_BLOCK_SIGNALS
735 status = sigfillset(&new_set);
736 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
737 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
738 KMP_CHECK_SYSFAIL("pthread_sigmask", status);
739 #endif /* KMP_BLOCK_SIGNALS */
740
741 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
742
743 if (__kmp_global.g.g_abort != 0) {
744 /* now we need to terminate the worker threads */
745 /* the value of t_abort is the signal we caught */
746
747 int gtid;
748
749 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
750 __kmp_global.g.g_abort));
751
752 /* terminate the OpenMP worker threads */
753 /* TODO this is not valid for sibling threads!!
754 * the uber master might not be 0 anymore.. */
755 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
756 __kmp_terminate_thread(gtid);
757
758 __kmp_cleanup();
759
760 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
761 __kmp_global.g.g_abort));
762
763 if (__kmp_global.g.g_abort > 0)
764 raise(__kmp_global.g.g_abort);
765 }
766
767 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
768
769 return thr;
770 }
771 #endif // KMP_USE_MONITOR
772
__kmp_create_worker(int gtid,kmp_info_t * th,size_t stack_size)773 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
774 pthread_t handle;
775 pthread_attr_t thread_attr;
776 int status;
777
778 th->th.th_info.ds.ds_gtid = gtid;
779
780 #if KMP_STATS_ENABLED
781 // sets up worker thread stats
782 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
783
784 // th->th.th_stats is used to transfer thread-specific stats-pointer to
785 // __kmp_launch_worker. So when thread is created (goes into
786 // __kmp_launch_worker) it will set its thread local pointer to
787 // th->th.th_stats
788 if (!KMP_UBER_GTID(gtid)) {
789 th->th.th_stats = __kmp_stats_list->push_back(gtid);
790 } else {
791 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
792 // so set the th->th.th_stats field to it.
793 th->th.th_stats = __kmp_stats_thread_ptr;
794 }
795 __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
796
797 #endif // KMP_STATS_ENABLED
798
799 if (KMP_UBER_GTID(gtid)) {
800 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
801 th->th.th_info.ds.ds_thread = pthread_self();
802 __kmp_set_stack_info(gtid, th);
803 __kmp_check_stack_overlap(th);
804 return;
805 }
806
807 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
808
809 KMP_MB(); /* Flush all pending memory write invalidates. */
810
811 #ifdef KMP_THREAD_ATTR
812 status = pthread_attr_init(&thread_attr);
813 if (status != 0) {
814 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
815 }
816 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
817 if (status != 0) {
818 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
819 }
820
821 /* Set stack size for this thread now.
822 The multiple of 2 is there because on some machines, requesting an unusual
823 stacksize causes the thread to have an offset before the dummy alloca()
824 takes place to create the offset. Since we want the user to have a
825 sufficient stacksize AND support a stack offset, we alloca() twice the
826 offset so that the upcoming alloca() does not eliminate any premade offset,
827 and also gives the user the stack space they requested for all threads */
828 stack_size += gtid * __kmp_stkoffset * 2;
829
830 #if defined(__ANDROID__) && __ANDROID_API__ < 19
831 // Round the stack size to a multiple of the page size. Older versions of
832 // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL
833 // if the stack size was not a multiple of the page size.
834 stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
835 #endif
836
837 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
838 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
839 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
840
841 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
842 status = pthread_attr_setstacksize(&thread_attr, stack_size);
843 #ifdef KMP_BACKUP_STKSIZE
844 if (status != 0) {
845 if (!__kmp_env_stksize) {
846 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
847 __kmp_stksize = KMP_BACKUP_STKSIZE;
848 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
849 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
850 "bytes\n",
851 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
852 status = pthread_attr_setstacksize(&thread_attr, stack_size);
853 }
854 }
855 #endif /* KMP_BACKUP_STKSIZE */
856 if (status != 0) {
857 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
858 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
859 }
860 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
861
862 #endif /* KMP_THREAD_ATTR */
863
864 status =
865 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
866 if (status != 0 || !handle) { // ??? Why do we check handle??
867 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
868 if (status == EINVAL) {
869 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
870 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
871 }
872 if (status == ENOMEM) {
873 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
874 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
875 }
876 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
877 if (status == EAGAIN) {
878 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
879 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
880 }
881 KMP_SYSFAIL("pthread_create", status);
882 }
883
884 th->th.th_info.ds.ds_thread = handle;
885
886 #ifdef KMP_THREAD_ATTR
887 status = pthread_attr_destroy(&thread_attr);
888 if (status) {
889 kmp_msg_t err_code = KMP_ERR(status);
890 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
891 __kmp_msg_null);
892 if (__kmp_generate_warnings == kmp_warnings_off) {
893 __kmp_str_free(&err_code.str);
894 }
895 }
896 #endif /* KMP_THREAD_ATTR */
897
898 KMP_MB(); /* Flush all pending memory write invalidates. */
899
900 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
901
902 } // __kmp_create_worker
903
904 #if KMP_USE_MONITOR
__kmp_create_monitor(kmp_info_t * th)905 void __kmp_create_monitor(kmp_info_t *th) {
906 pthread_t handle;
907 pthread_attr_t thread_attr;
908 size_t size;
909 int status;
910 int auto_adj_size = FALSE;
911
912 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
913 // We don't need monitor thread in case of MAX_BLOCKTIME
914 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
915 "MAX blocktime\n"));
916 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
917 th->th.th_info.ds.ds_gtid = 0;
918 return;
919 }
920 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
921
922 KMP_MB(); /* Flush all pending memory write invalidates. */
923
924 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
925 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
926 #if KMP_REAL_TIME_FIX
927 TCW_4(__kmp_global.g.g_time.dt.t_value,
928 -1); // Will use it for synchronization a bit later.
929 #else
930 TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
931 #endif // KMP_REAL_TIME_FIX
932
933 #ifdef KMP_THREAD_ATTR
934 if (__kmp_monitor_stksize == 0) {
935 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
936 auto_adj_size = TRUE;
937 }
938 status = pthread_attr_init(&thread_attr);
939 if (status != 0) {
940 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
941 }
942 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
943 if (status != 0) {
944 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
945 }
946
947 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
948 status = pthread_attr_getstacksize(&thread_attr, &size);
949 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
950 #else
951 size = __kmp_sys_min_stksize;
952 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
953 #endif /* KMP_THREAD_ATTR */
954
955 if (__kmp_monitor_stksize == 0) {
956 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
957 }
958 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
959 __kmp_monitor_stksize = __kmp_sys_min_stksize;
960 }
961
962 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
963 "requested stacksize = %lu bytes\n",
964 size, __kmp_monitor_stksize));
965
966 retry:
967
968 /* Set stack size for this thread now. */
969 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
970 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
971 __kmp_monitor_stksize));
972 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
973 if (status != 0) {
974 if (auto_adj_size) {
975 __kmp_monitor_stksize *= 2;
976 goto retry;
977 }
978 kmp_msg_t err_code = KMP_ERR(status);
979 __kmp_msg(kmp_ms_warning, // should this be fatal? BB
980 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
981 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
982 if (__kmp_generate_warnings == kmp_warnings_off) {
983 __kmp_str_free(&err_code.str);
984 }
985 }
986 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
987
988 status =
989 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
990
991 if (status != 0) {
992 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
993 if (status == EINVAL) {
994 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
995 __kmp_monitor_stksize *= 2;
996 goto retry;
997 }
998 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
999 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
1000 __kmp_msg_null);
1001 }
1002 if (status == ENOMEM) {
1003 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
1004 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
1005 __kmp_msg_null);
1006 }
1007 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1008 if (status == EAGAIN) {
1009 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
1010 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
1011 }
1012 KMP_SYSFAIL("pthread_create", status);
1013 }
1014
1015 th->th.th_info.ds.ds_thread = handle;
1016
1017 #if KMP_REAL_TIME_FIX
1018 // Wait for the monitor thread is really started and set its *priority*.
1019 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1020 sizeof(__kmp_global.g.g_time.dt.t_value));
1021 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
1022 &__kmp_neq_4, NULL);
1023 #endif // KMP_REAL_TIME_FIX
1024
1025 #ifdef KMP_THREAD_ATTR
1026 status = pthread_attr_destroy(&thread_attr);
1027 if (status != 0) {
1028 kmp_msg_t err_code = KMP_ERR(status);
1029 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1030 __kmp_msg_null);
1031 if (__kmp_generate_warnings == kmp_warnings_off) {
1032 __kmp_str_free(&err_code.str);
1033 }
1034 }
1035 #endif
1036
1037 KMP_MB(); /* Flush all pending memory write invalidates. */
1038
1039 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1040 th->th.th_info.ds.ds_thread));
1041
1042 } // __kmp_create_monitor
1043 #endif // KMP_USE_MONITOR
1044
__kmp_exit_thread(int exit_status)1045 void __kmp_exit_thread(int exit_status) {
1046 pthread_exit((void *)(intptr_t)exit_status);
1047 } // __kmp_exit_thread
1048
1049 #if KMP_USE_MONITOR
1050 void __kmp_resume_monitor();
1051
__kmp_reap_monitor(kmp_info_t * th)1052 void __kmp_reap_monitor(kmp_info_t *th) {
1053 int status;
1054 void *exit_val;
1055
1056 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1057 " %#.8lx\n",
1058 th->th.th_info.ds.ds_thread));
1059
1060 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1061 // If both tid and gtid are 0, it means the monitor did not ever start.
1062 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1063 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1064 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1065 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1066 return;
1067 }
1068
1069 KMP_MB(); /* Flush all pending memory write invalidates. */
1070
1071 /* First, check to see whether the monitor thread exists to wake it up. This
1072 is to avoid performance problem when the monitor sleeps during
1073 blocktime-size interval */
1074
1075 status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1076 if (status != ESRCH) {
1077 __kmp_resume_monitor(); // Wake up the monitor thread
1078 }
1079 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1080 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1081 if (exit_val != th) {
1082 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1083 }
1084
1085 th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1086 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1087
1088 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1089 " %#.8lx\n",
1090 th->th.th_info.ds.ds_thread));
1091
1092 KMP_MB(); /* Flush all pending memory write invalidates. */
1093 }
1094 #endif // KMP_USE_MONITOR
1095
__kmp_reap_worker(kmp_info_t * th)1096 void __kmp_reap_worker(kmp_info_t *th) {
1097 int status;
1098 void *exit_val;
1099
1100 KMP_MB(); /* Flush all pending memory write invalidates. */
1101
1102 KA_TRACE(
1103 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1104
1105 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1106 #ifdef KMP_DEBUG
1107 /* Don't expose these to the user until we understand when they trigger */
1108 if (status != 0) {
1109 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1110 }
1111 if (exit_val != th) {
1112 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1113 "exit_val = %p\n",
1114 th->th.th_info.ds.ds_gtid, exit_val));
1115 }
1116 #endif /* KMP_DEBUG */
1117
1118 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1119 th->th.th_info.ds.ds_gtid));
1120
1121 KMP_MB(); /* Flush all pending memory write invalidates. */
1122 }
1123
1124 #if KMP_HANDLE_SIGNALS
1125
__kmp_null_handler(int signo)1126 static void __kmp_null_handler(int signo) {
1127 // Do nothing, for doing SIG_IGN-type actions.
1128 } // __kmp_null_handler
1129
__kmp_team_handler(int signo)1130 static void __kmp_team_handler(int signo) {
1131 if (__kmp_global.g.g_abort == 0) {
1132 /* Stage 1 signal handler, let's shut down all of the threads */
1133 #ifdef KMP_DEBUG
1134 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1135 #endif
1136 switch (signo) {
1137 case SIGHUP:
1138 case SIGINT:
1139 case SIGQUIT:
1140 case SIGILL:
1141 case SIGABRT:
1142 case SIGFPE:
1143 case SIGBUS:
1144 case SIGSEGV:
1145 #ifdef SIGSYS
1146 case SIGSYS:
1147 #endif
1148 case SIGTERM:
1149 if (__kmp_debug_buf) {
1150 __kmp_dump_debug_buffer();
1151 }
1152 __kmp_unregister_library(); // cleanup shared memory
1153 KMP_MB(); // Flush all pending memory write invalidates.
1154 TCW_4(__kmp_global.g.g_abort, signo);
1155 KMP_MB(); // Flush all pending memory write invalidates.
1156 TCW_4(__kmp_global.g.g_done, TRUE);
1157 KMP_MB(); // Flush all pending memory write invalidates.
1158 break;
1159 default:
1160 #ifdef KMP_DEBUG
1161 __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1162 #endif
1163 break;
1164 }
1165 }
1166 } // __kmp_team_handler
1167
__kmp_sigaction(int signum,const struct sigaction * act,struct sigaction * oldact)1168 static void __kmp_sigaction(int signum, const struct sigaction *act,
1169 struct sigaction *oldact) {
1170 int rc = sigaction(signum, act, oldact);
1171 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1172 }
1173
__kmp_install_one_handler(int sig,sig_func_t handler_func,int parallel_init)1174 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1175 int parallel_init) {
1176 KMP_MB(); // Flush all pending memory write invalidates.
1177 KB_TRACE(60,
1178 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1179 if (parallel_init) {
1180 struct sigaction new_action;
1181 struct sigaction old_action;
1182 new_action.sa_handler = handler_func;
1183 new_action.sa_flags = 0;
1184 sigfillset(&new_action.sa_mask);
1185 __kmp_sigaction(sig, &new_action, &old_action);
1186 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1187 sigaddset(&__kmp_sigset, sig);
1188 } else {
1189 // Restore/keep user's handler if one previously installed.
1190 __kmp_sigaction(sig, &old_action, NULL);
1191 }
1192 } else {
1193 // Save initial/system signal handlers to see if user handlers installed.
1194 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1195 }
1196 KMP_MB(); // Flush all pending memory write invalidates.
1197 } // __kmp_install_one_handler
1198
__kmp_remove_one_handler(int sig)1199 static void __kmp_remove_one_handler(int sig) {
1200 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1201 if (sigismember(&__kmp_sigset, sig)) {
1202 struct sigaction old;
1203 KMP_MB(); // Flush all pending memory write invalidates.
1204 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1205 if ((old.sa_handler != __kmp_team_handler) &&
1206 (old.sa_handler != __kmp_null_handler)) {
1207 // Restore the users signal handler.
1208 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1209 "restoring: sig=%d\n",
1210 sig));
1211 __kmp_sigaction(sig, &old, NULL);
1212 }
1213 sigdelset(&__kmp_sigset, sig);
1214 KMP_MB(); // Flush all pending memory write invalidates.
1215 }
1216 } // __kmp_remove_one_handler
1217
__kmp_install_signals(int parallel_init)1218 void __kmp_install_signals(int parallel_init) {
1219 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1220 if (__kmp_handle_signals || !parallel_init) {
1221 // If ! parallel_init, we do not install handlers, just save original
1222 // handlers. Let us do it even __handle_signals is 0.
1223 sigemptyset(&__kmp_sigset);
1224 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1225 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1226 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1227 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1228 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1229 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1230 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1231 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1232 #ifdef SIGSYS
1233 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1234 #endif // SIGSYS
1235 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1236 #ifdef SIGPIPE
1237 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1238 #endif // SIGPIPE
1239 }
1240 } // __kmp_install_signals
1241
__kmp_remove_signals(void)1242 void __kmp_remove_signals(void) {
1243 int sig;
1244 KB_TRACE(10, ("__kmp_remove_signals()\n"));
1245 for (sig = 1; sig < NSIG; ++sig) {
1246 __kmp_remove_one_handler(sig);
1247 }
1248 } // __kmp_remove_signals
1249
1250 #endif // KMP_HANDLE_SIGNALS
1251
__kmp_enable(int new_state)1252 void __kmp_enable(int new_state) {
1253 #ifdef KMP_CANCEL_THREADS
1254 int status, old_state;
1255 status = pthread_setcancelstate(new_state, &old_state);
1256 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1257 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1258 #endif
1259 }
1260
__kmp_disable(int * old_state)1261 void __kmp_disable(int *old_state) {
1262 #ifdef KMP_CANCEL_THREADS
1263 int status;
1264 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1265 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1266 #endif
1267 }
1268
__kmp_atfork_prepare(void)1269 static void __kmp_atfork_prepare(void) {
1270 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1271 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1272 }
1273
__kmp_atfork_parent(void)1274 static void __kmp_atfork_parent(void) {
1275 __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1276 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1277 }
1278
1279 /* Reset the library so execution in the child starts "all over again" with
1280 clean data structures in initial states. Don't worry about freeing memory
1281 allocated by parent, just abandon it to be safe. */
__kmp_atfork_child(void)1282 static void __kmp_atfork_child(void) {
1283 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1284 /* TODO make sure this is done right for nested/sibling */
1285 // ATT: Memory leaks are here? TODO: Check it and fix.
1286 /* KMP_ASSERT( 0 ); */
1287
1288 ++__kmp_fork_count;
1289
1290 #if KMP_AFFINITY_SUPPORTED
1291 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1292 // reset the affinity in the child to the initial thread
1293 // affinity in the parent
1294 kmp_set_thread_affinity_mask_initial();
1295 #endif
1296 // Set default not to bind threads tightly in the child (we’re expecting
1297 // over-subscription after the fork and this can improve things for
1298 // scripting languages that use OpenMP inside process-parallel code).
1299 __kmp_affinity_type = affinity_none;
1300 if (__kmp_nested_proc_bind.bind_types != NULL) {
1301 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1302 }
1303 #endif // KMP_AFFINITY_SUPPORTED
1304
1305 __kmp_init_runtime = FALSE;
1306 #if KMP_USE_MONITOR
1307 __kmp_init_monitor = 0;
1308 #endif
1309 __kmp_init_parallel = FALSE;
1310 __kmp_init_middle = FALSE;
1311 __kmp_init_serial = FALSE;
1312 TCW_4(__kmp_init_gtid, FALSE);
1313 __kmp_init_common = FALSE;
1314
1315 TCW_4(__kmp_init_user_locks, FALSE);
1316 #if !KMP_USE_DYNAMIC_LOCK
1317 __kmp_user_lock_table.used = 1;
1318 __kmp_user_lock_table.allocated = 0;
1319 __kmp_user_lock_table.table = NULL;
1320 __kmp_lock_blocks = NULL;
1321 #endif
1322
1323 __kmp_all_nth = 0;
1324 TCW_4(__kmp_nth, 0);
1325
1326 __kmp_thread_pool = NULL;
1327 __kmp_thread_pool_insert_pt = NULL;
1328 __kmp_team_pool = NULL;
1329
1330 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1331 here so threadprivate doesn't use stale data */
1332 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1333 __kmp_threadpriv_cache_list));
1334
1335 while (__kmp_threadpriv_cache_list != NULL) {
1336
1337 if (*__kmp_threadpriv_cache_list->addr != NULL) {
1338 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1339 &(*__kmp_threadpriv_cache_list->addr)));
1340
1341 *__kmp_threadpriv_cache_list->addr = NULL;
1342 }
1343 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1344 }
1345
1346 __kmp_init_runtime = FALSE;
1347
1348 /* reset statically initialized locks */
1349 __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1350 __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1351 __kmp_init_bootstrap_lock(&__kmp_console_lock);
1352 __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1353
1354 #if USE_ITT_BUILD
1355 __kmp_itt_reset(); // reset ITT's global state
1356 #endif /* USE_ITT_BUILD */
1357
1358 /* This is necessary to make sure no stale data is left around */
1359 /* AC: customers complain that we use unsafe routines in the atfork
1360 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1361 in dynamic_link when check the presence of shared tbbmalloc library.
1362 Suggestion is to make the library initialization lazier, similar
1363 to what done for __kmpc_begin(). */
1364 // TODO: synchronize all static initializations with regular library
1365 // startup; look at kmp_global.cpp and etc.
1366 //__kmp_internal_begin ();
1367 }
1368
__kmp_register_atfork(void)1369 void __kmp_register_atfork(void) {
1370 if (__kmp_need_register_atfork) {
1371 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1372 __kmp_atfork_child);
1373 KMP_CHECK_SYSFAIL("pthread_atfork", status);
1374 __kmp_need_register_atfork = FALSE;
1375 }
1376 }
1377
__kmp_suspend_initialize(void)1378 void __kmp_suspend_initialize(void) {
1379 int status;
1380 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1381 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1382 status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1383 KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1384 }
1385
__kmp_suspend_initialize_thread(kmp_info_t * th)1386 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1387 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1388 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1389 int new_value = __kmp_fork_count + 1;
1390 // Return if already initialized
1391 if (old_value == new_value)
1392 return;
1393 // Wait, then return if being initialized
1394 if (old_value == -1 ||
1395 !__kmp_atomic_compare_store(&th->th.th_suspend_init_count, old_value,
1396 -1)) {
1397 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1398 KMP_CPU_PAUSE();
1399 }
1400 } else {
1401 // Claim to be the initializer and do initializations
1402 int status;
1403 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1404 &__kmp_suspend_cond_attr);
1405 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1406 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1407 &__kmp_suspend_mutex_attr);
1408 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1409 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1410 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1411 }
1412 }
1413
__kmp_suspend_uninitialize_thread(kmp_info_t * th)1414 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1415 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1416 /* this means we have initialize the suspension pthread objects for this
1417 thread in this instance of the process */
1418 int status;
1419
1420 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1421 if (status != 0 && status != EBUSY) {
1422 KMP_SYSFAIL("pthread_cond_destroy", status);
1423 }
1424 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1425 if (status != 0 && status != EBUSY) {
1426 KMP_SYSFAIL("pthread_mutex_destroy", status);
1427 }
1428 --th->th.th_suspend_init_count;
1429 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1430 __kmp_fork_count);
1431 }
1432 }
1433
1434 // return true if lock obtained, false otherwise
__kmp_try_suspend_mx(kmp_info_t * th)1435 int __kmp_try_suspend_mx(kmp_info_t *th) {
1436 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1437 }
1438
__kmp_lock_suspend_mx(kmp_info_t * th)1439 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1440 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1441 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1442 }
1443
__kmp_unlock_suspend_mx(kmp_info_t * th)1444 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1445 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1446 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1447 }
1448
1449 /* This routine puts the calling thread to sleep after setting the
1450 sleep bit for the indicated flag variable to true. */
1451 template <class C>
__kmp_suspend_template(int th_gtid,C * flag)1452 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1453 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1454 kmp_info_t *th = __kmp_threads[th_gtid];
1455 int status;
1456 typename C::flag_t old_spin;
1457
1458 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1459 flag->get()));
1460
1461 __kmp_suspend_initialize_thread(th);
1462
1463 __kmp_lock_suspend_mx(th);
1464
1465 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1466 th_gtid, flag->get()));
1467
1468 /* TODO: shouldn't this use release semantics to ensure that
1469 __kmp_suspend_initialize_thread gets called first? */
1470 old_spin = flag->set_sleeping();
1471 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1472 __kmp_pause_status != kmp_soft_paused) {
1473 flag->unset_sleeping();
1474 __kmp_unlock_suspend_mx(th);
1475 return;
1476 }
1477 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1478 " was %x\n",
1479 th_gtid, flag->get(), flag->load(), old_spin));
1480
1481 if (flag->done_check_val(old_spin)) {
1482 old_spin = flag->unset_sleeping();
1483 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1484 "for spin(%p)\n",
1485 th_gtid, flag->get()));
1486 } else {
1487 /* Encapsulate in a loop as the documentation states that this may
1488 "with low probability" return when the condition variable has
1489 not been signaled or broadcast */
1490 int deactivated = FALSE;
1491 TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1492
1493 while (flag->is_sleeping()) {
1494 #ifdef DEBUG_SUSPEND
1495 char buffer[128];
1496 __kmp_suspend_count++;
1497 __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1498 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1499 buffer);
1500 #endif
1501 // Mark the thread as no longer active (only in the first iteration of the
1502 // loop).
1503 if (!deactivated) {
1504 th->th.th_active = FALSE;
1505 if (th->th.th_active_in_pool) {
1506 th->th.th_active_in_pool = FALSE;
1507 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1508 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1509 }
1510 deactivated = TRUE;
1511 }
1512
1513 #if USE_SUSPEND_TIMEOUT
1514 struct timespec now;
1515 struct timeval tval;
1516 int msecs;
1517
1518 status = gettimeofday(&tval, NULL);
1519 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1520 TIMEVAL_TO_TIMESPEC(&tval, &now);
1521
1522 msecs = (4 * __kmp_dflt_blocktime) + 200;
1523 now.tv_sec += msecs / 1000;
1524 now.tv_nsec += (msecs % 1000) * 1000;
1525
1526 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1527 "pthread_cond_timedwait\n",
1528 th_gtid));
1529 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1530 &th->th.th_suspend_mx.m_mutex, &now);
1531 #else
1532 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1533 " pthread_cond_wait\n",
1534 th_gtid));
1535 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1536 &th->th.th_suspend_mx.m_mutex);
1537 #endif // USE_SUSPEND_TIMEOUT
1538
1539 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1540 KMP_SYSFAIL("pthread_cond_wait", status);
1541 }
1542 #ifdef KMP_DEBUG
1543 if (status == ETIMEDOUT) {
1544 if (flag->is_sleeping()) {
1545 KF_TRACE(100,
1546 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1547 } else {
1548 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1549 "not set!\n",
1550 th_gtid));
1551 }
1552 } else if (flag->is_sleeping()) {
1553 KF_TRACE(100,
1554 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1555 }
1556 #endif
1557 } // while
1558
1559 // Mark the thread as active again (if it was previous marked as inactive)
1560 if (deactivated) {
1561 th->th.th_active = TRUE;
1562 if (TCR_4(th->th.th_in_pool)) {
1563 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1564 th->th.th_active_in_pool = TRUE;
1565 }
1566 }
1567 }
1568 #ifdef DEBUG_SUSPEND
1569 {
1570 char buffer[128];
1571 __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1572 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1573 buffer);
1574 }
1575 #endif
1576
1577 __kmp_unlock_suspend_mx(th);
1578 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1579 }
1580
1581 template <bool C, bool S>
__kmp_suspend_32(int th_gtid,kmp_flag_32<C,S> * flag)1582 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1583 __kmp_suspend_template(th_gtid, flag);
1584 }
1585 template <bool C, bool S>
__kmp_suspend_64(int th_gtid,kmp_flag_64<C,S> * flag)1586 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1587 __kmp_suspend_template(th_gtid, flag);
1588 }
__kmp_suspend_oncore(int th_gtid,kmp_flag_oncore * flag)1589 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1590 __kmp_suspend_template(th_gtid, flag);
1591 }
1592
1593 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1594 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1595 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1596
1597 /* This routine signals the thread specified by target_gtid to wake up
1598 after setting the sleep bit indicated by the flag argument to FALSE.
1599 The target thread must already have called __kmp_suspend_template() */
1600 template <class C>
__kmp_resume_template(int target_gtid,C * flag)1601 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1602 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1603 kmp_info_t *th = __kmp_threads[target_gtid];
1604 int status;
1605
1606 #ifdef KMP_DEBUG
1607 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1608 #endif
1609
1610 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1611 gtid, target_gtid));
1612 KMP_DEBUG_ASSERT(gtid != target_gtid);
1613
1614 __kmp_suspend_initialize_thread(th);
1615
1616 __kmp_lock_suspend_mx(th);
1617
1618 if (!flag) { // coming from __kmp_null_resume_wrapper
1619 flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1620 }
1621
1622 // First, check if the flag is null or its type has changed. If so, someone
1623 // else woke it up.
1624 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1625 // simply shows what flag was cast to
1626 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1627 "awake: flag(%p)\n",
1628 gtid, target_gtid, NULL));
1629 __kmp_unlock_suspend_mx(th);
1630 return;
1631 } else { // if multiple threads are sleeping, flag should be internally
1632 // referring to a specific thread here
1633 typename C::flag_t old_spin = flag->unset_sleeping();
1634 if (!flag->is_sleeping_val(old_spin)) {
1635 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1636 "awake: flag(%p): "
1637 "%u => %u\n",
1638 gtid, target_gtid, flag->get(), old_spin, flag->load()));
1639 __kmp_unlock_suspend_mx(th);
1640 return;
1641 }
1642 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1643 "sleep bit for flag's loc(%p): "
1644 "%u => %u\n",
1645 gtid, target_gtid, flag->get(), old_spin, flag->load()));
1646 }
1647 TCW_PTR(th->th.th_sleep_loc, NULL);
1648
1649 #ifdef DEBUG_SUSPEND
1650 {
1651 char buffer[128];
1652 __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1653 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1654 target_gtid, buffer);
1655 }
1656 #endif
1657 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1658 KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1659 __kmp_unlock_suspend_mx(th);
1660 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1661 " for T#%d\n",
1662 gtid, target_gtid));
1663 }
1664
1665 template <bool C, bool S>
__kmp_resume_32(int target_gtid,kmp_flag_32<C,S> * flag)1666 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1667 __kmp_resume_template(target_gtid, flag);
1668 }
1669 template <bool C, bool S>
__kmp_resume_64(int target_gtid,kmp_flag_64<C,S> * flag)1670 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1671 __kmp_resume_template(target_gtid, flag);
1672 }
__kmp_resume_oncore(int target_gtid,kmp_flag_oncore * flag)1673 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1674 __kmp_resume_template(target_gtid, flag);
1675 }
1676
1677 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1678 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1679
1680 #if KMP_USE_MONITOR
__kmp_resume_monitor()1681 void __kmp_resume_monitor() {
1682 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1683 int status;
1684 #ifdef KMP_DEBUG
1685 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1686 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1687 KMP_GTID_MONITOR));
1688 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1689 #endif
1690 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1691 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1692 #ifdef DEBUG_SUSPEND
1693 {
1694 char buffer[128];
1695 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1696 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1697 KMP_GTID_MONITOR, buffer);
1698 }
1699 #endif
1700 status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1701 KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1702 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1703 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1704 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1705 " for T#%d\n",
1706 gtid, KMP_GTID_MONITOR));
1707 }
1708 #endif // KMP_USE_MONITOR
1709
__kmp_yield()1710 void __kmp_yield() { sched_yield(); }
1711
__kmp_gtid_set_specific(int gtid)1712 void __kmp_gtid_set_specific(int gtid) {
1713 if (__kmp_init_gtid) {
1714 int status;
1715 status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1716 (void *)(intptr_t)(gtid + 1));
1717 KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1718 } else {
1719 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1720 }
1721 }
1722
__kmp_gtid_get_specific()1723 int __kmp_gtid_get_specific() {
1724 int gtid;
1725 if (!__kmp_init_gtid) {
1726 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1727 "KMP_GTID_SHUTDOWN\n"));
1728 return KMP_GTID_SHUTDOWN;
1729 }
1730 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1731 if (gtid == 0) {
1732 gtid = KMP_GTID_DNE;
1733 } else {
1734 gtid--;
1735 }
1736 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1737 __kmp_gtid_threadprivate_key, gtid));
1738 return gtid;
1739 }
1740
__kmp_read_cpu_time(void)1741 double __kmp_read_cpu_time(void) {
1742 /*clock_t t;*/
1743 struct tms buffer;
1744
1745 /*t =*/times(&buffer);
1746
1747 return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1748 }
1749
__kmp_read_system_info(struct kmp_sys_info * info)1750 int __kmp_read_system_info(struct kmp_sys_info *info) {
1751 int status;
1752 struct rusage r_usage;
1753
1754 memset(info, 0, sizeof(*info));
1755
1756 status = getrusage(RUSAGE_SELF, &r_usage);
1757 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1758
1759 // The maximum resident set size utilized (in kilobytes)
1760 info->maxrss = r_usage.ru_maxrss;
1761 // The number of page faults serviced without any I/O
1762 info->minflt = r_usage.ru_minflt;
1763 // The number of page faults serviced that required I/O
1764 info->majflt = r_usage.ru_majflt;
1765 // The number of times a process was "swapped" out of memory
1766 info->nswap = r_usage.ru_nswap;
1767 // The number of times the file system had to perform input
1768 info->inblock = r_usage.ru_inblock;
1769 // The number of times the file system had to perform output
1770 info->oublock = r_usage.ru_oublock;
1771 // The number of times a context switch was voluntarily
1772 info->nvcsw = r_usage.ru_nvcsw;
1773 // The number of times a context switch was forced
1774 info->nivcsw = r_usage.ru_nivcsw;
1775
1776 return (status != 0);
1777 }
1778
__kmp_read_system_time(double * delta)1779 void __kmp_read_system_time(double *delta) {
1780 double t_ns;
1781 struct timeval tval;
1782 struct timespec stop;
1783 int status;
1784
1785 status = gettimeofday(&tval, NULL);
1786 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1787 TIMEVAL_TO_TIMESPEC(&tval, &stop);
1788 t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1789 *delta = (t_ns * 1e-9);
1790 }
1791
__kmp_clear_system_time(void)1792 void __kmp_clear_system_time(void) {
1793 struct timeval tval;
1794 int status;
1795 status = gettimeofday(&tval, NULL);
1796 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1797 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1798 }
1799
__kmp_get_xproc(void)1800 static int __kmp_get_xproc(void) {
1801
1802 int r = 0;
1803
1804 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
1805 KMP_OS_OPENBSD || KMP_OS_HURD
1806
1807 r = sysconf(_SC_NPROCESSORS_ONLN);
1808
1809 #elif KMP_OS_DARWIN
1810
1811 // Bug C77011 High "OpenMP Threads and number of active cores".
1812
1813 // Find the number of available CPUs.
1814 kern_return_t rc;
1815 host_basic_info_data_t info;
1816 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1817 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1818 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1819 // Cannot use KA_TRACE() here because this code works before trace support
1820 // is initialized.
1821 r = info.avail_cpus;
1822 } else {
1823 KMP_WARNING(CantGetNumAvailCPU);
1824 KMP_INFORM(AssumedNumCPU);
1825 }
1826
1827 #else
1828
1829 #error "Unknown or unsupported OS."
1830
1831 #endif
1832
1833 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1834
1835 } // __kmp_get_xproc
1836
__kmp_read_from_file(char const * path,char const * format,...)1837 int __kmp_read_from_file(char const *path, char const *format, ...) {
1838 int result;
1839 va_list args;
1840
1841 va_start(args, format);
1842 FILE *f = fopen(path, "rb");
1843 if (f == NULL)
1844 return 0;
1845 result = vfscanf(f, format, args);
1846 fclose(f);
1847
1848 return result;
1849 }
1850
__kmp_runtime_initialize(void)1851 void __kmp_runtime_initialize(void) {
1852 int status;
1853 pthread_mutexattr_t mutex_attr;
1854 pthread_condattr_t cond_attr;
1855
1856 if (__kmp_init_runtime) {
1857 return;
1858 }
1859
1860 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1861 if (!__kmp_cpuinfo.initialized) {
1862 __kmp_query_cpuid(&__kmp_cpuinfo);
1863 }
1864 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1865
1866 __kmp_xproc = __kmp_get_xproc();
1867
1868 #if ! KMP_32_BIT_ARCH
1869 struct rlimit rlim;
1870 // read stack size of calling thread, save it as default for worker threads;
1871 // this should be done before reading environment variables
1872 status = getrlimit(RLIMIT_STACK, &rlim);
1873 if (status == 0) { // success?
1874 __kmp_stksize = rlim.rlim_cur;
1875 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1876 }
1877 #endif /* KMP_32_BIT_ARCH */
1878
1879 if (sysconf(_SC_THREADS)) {
1880
1881 /* Query the maximum number of threads */
1882 __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1883 if (__kmp_sys_max_nth == -1) {
1884 /* Unlimited threads for NPTL */
1885 __kmp_sys_max_nth = INT_MAX;
1886 } else if (__kmp_sys_max_nth <= 1) {
1887 /* Can't tell, just use PTHREAD_THREADS_MAX */
1888 __kmp_sys_max_nth = KMP_MAX_NTH;
1889 }
1890
1891 /* Query the minimum stack size */
1892 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1893 if (__kmp_sys_min_stksize <= 1) {
1894 __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1895 }
1896 }
1897
1898 /* Set up minimum number of threads to switch to TLS gtid */
1899 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1900
1901 status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1902 __kmp_internal_end_dest);
1903 KMP_CHECK_SYSFAIL("pthread_key_create", status);
1904 status = pthread_mutexattr_init(&mutex_attr);
1905 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1906 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1907 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1908 status = pthread_condattr_init(&cond_attr);
1909 KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1910 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1911 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1912 #if USE_ITT_BUILD
1913 __kmp_itt_initialize();
1914 #endif /* USE_ITT_BUILD */
1915
1916 __kmp_init_runtime = TRUE;
1917 }
1918
__kmp_runtime_destroy(void)1919 void __kmp_runtime_destroy(void) {
1920 int status;
1921
1922 if (!__kmp_init_runtime) {
1923 return; // Nothing to do.
1924 }
1925
1926 #if USE_ITT_BUILD
1927 __kmp_itt_destroy();
1928 #endif /* USE_ITT_BUILD */
1929
1930 status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1931 KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1932
1933 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1934 if (status != 0 && status != EBUSY) {
1935 KMP_SYSFAIL("pthread_mutex_destroy", status);
1936 }
1937 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1938 if (status != 0 && status != EBUSY) {
1939 KMP_SYSFAIL("pthread_cond_destroy", status);
1940 }
1941 #if KMP_AFFINITY_SUPPORTED
1942 __kmp_affinity_uninitialize();
1943 #endif
1944
1945 __kmp_init_runtime = FALSE;
1946 }
1947
1948 /* Put the thread to sleep for a time period */
1949 /* NOTE: not currently used anywhere */
__kmp_thread_sleep(int millis)1950 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1951
1952 /* Calculate the elapsed wall clock time for the user */
__kmp_elapsed(double * t)1953 void __kmp_elapsed(double *t) {
1954 int status;
1955 #ifdef FIX_SGI_CLOCK
1956 struct timespec ts;
1957
1958 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1959 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1960 *t =
1961 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1962 #else
1963 struct timeval tv;
1964
1965 status = gettimeofday(&tv, NULL);
1966 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1967 *t =
1968 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1969 #endif
1970 }
1971
1972 /* Calculate the elapsed wall clock tick for the user */
__kmp_elapsed_tick(double * t)1973 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1974
1975 /* Return the current time stamp in nsec */
__kmp_now_nsec()1976 kmp_uint64 __kmp_now_nsec() {
1977 struct timeval t;
1978 gettimeofday(&t, NULL);
1979 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1980 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1981 return nsec;
1982 }
1983
1984 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1985 /* Measure clock ticks per millisecond */
__kmp_initialize_system_tick()1986 void __kmp_initialize_system_tick() {
1987 kmp_uint64 now, nsec2, diff;
1988 kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1989 kmp_uint64 nsec = __kmp_now_nsec();
1990 kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1991 while ((now = __kmp_hardware_timestamp()) < goal)
1992 ;
1993 nsec2 = __kmp_now_nsec();
1994 diff = nsec2 - nsec;
1995 if (diff > 0) {
1996 kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff);
1997 if (tpms > 0)
1998 __kmp_ticks_per_msec = tpms;
1999 }
2000 }
2001 #endif
2002
2003 /* Determine whether the given address is mapped into the current address
2004 space. */
2005
__kmp_is_address_mapped(void * addr)2006 int __kmp_is_address_mapped(void *addr) {
2007
2008 int found = 0;
2009 int rc;
2010
2011 #if KMP_OS_LINUX || KMP_OS_HURD
2012
2013 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address
2014 ranges mapped into the address space. */
2015
2016 char *name = __kmp_str_format("/proc/%d/maps", getpid());
2017 FILE *file = NULL;
2018
2019 file = fopen(name, "r");
2020 KMP_ASSERT(file != NULL);
2021
2022 for (;;) {
2023
2024 void *beginning = NULL;
2025 void *ending = NULL;
2026 char perms[5];
2027
2028 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2029 if (rc == EOF) {
2030 break;
2031 }
2032 KMP_ASSERT(rc == 3 &&
2033 KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2034
2035 // Ending address is not included in the region, but beginning is.
2036 if ((addr >= beginning) && (addr < ending)) {
2037 perms[2] = 0; // 3th and 4th character does not matter.
2038 if (strcmp(perms, "rw") == 0) {
2039 // Memory we are looking for should be readable and writable.
2040 found = 1;
2041 }
2042 break;
2043 }
2044 }
2045
2046 // Free resources.
2047 fclose(file);
2048 KMP_INTERNAL_FREE(name);
2049 #elif KMP_OS_FREEBSD
2050 char *buf;
2051 size_t lstsz;
2052 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2053 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2054 if (rc < 0)
2055 return 0;
2056 // We pass from number of vm entry's semantic
2057 // to size of whole entry map list.
2058 lstsz = lstsz * 4 / 3;
2059 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2060 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2061 if (rc < 0) {
2062 kmpc_free(buf);
2063 return 0;
2064 }
2065
2066 char *lw = buf;
2067 char *up = buf + lstsz;
2068
2069 while (lw < up) {
2070 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2071 size_t cursz = cur->kve_structsize;
2072 if (cursz == 0)
2073 break;
2074 void *start = reinterpret_cast<void *>(cur->kve_start);
2075 void *end = reinterpret_cast<void *>(cur->kve_end);
2076 // Readable/Writable addresses within current map entry
2077 if ((addr >= start) && (addr < end)) {
2078 if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2079 (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2080 found = 1;
2081 break;
2082 }
2083 }
2084 lw += cursz;
2085 }
2086 kmpc_free(buf);
2087
2088 #elif KMP_OS_DARWIN
2089
2090 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2091 using vm interface. */
2092
2093 int buffer;
2094 vm_size_t count;
2095 rc = vm_read_overwrite(
2096 mach_task_self(), // Task to read memory of.
2097 (vm_address_t)(addr), // Address to read from.
2098 1, // Number of bytes to be read.
2099 (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2100 &count // Address of var to save number of read bytes in.
2101 );
2102 if (rc == 0) {
2103 // Memory successfully read.
2104 found = 1;
2105 }
2106
2107 #elif KMP_OS_NETBSD
2108
2109 int mib[5];
2110 mib[0] = CTL_VM;
2111 mib[1] = VM_PROC;
2112 mib[2] = VM_PROC_MAP;
2113 mib[3] = getpid();
2114 mib[4] = sizeof(struct kinfo_vmentry);
2115
2116 size_t size;
2117 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2118 KMP_ASSERT(!rc);
2119 KMP_ASSERT(size);
2120
2121 size = size * 4 / 3;
2122 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2123 KMP_ASSERT(kiv);
2124
2125 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2126 KMP_ASSERT(!rc);
2127 KMP_ASSERT(size);
2128
2129 for (size_t i = 0; i < size; i++) {
2130 if (kiv[i].kve_start >= (uint64_t)addr &&
2131 kiv[i].kve_end <= (uint64_t)addr) {
2132 found = 1;
2133 break;
2134 }
2135 }
2136 KMP_INTERNAL_FREE(kiv);
2137 #elif KMP_OS_OPENBSD
2138
2139 int mib[3];
2140 mib[0] = CTL_KERN;
2141 mib[1] = KERN_PROC_VMMAP;
2142 mib[2] = getpid();
2143
2144 size_t size;
2145 uint64_t end;
2146 rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2147 KMP_ASSERT(!rc);
2148 KMP_ASSERT(size);
2149 end = size;
2150
2151 struct kinfo_vmentry kiv = {.kve_start = 0};
2152
2153 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2154 KMP_ASSERT(size);
2155 if (kiv.kve_end == end)
2156 break;
2157
2158 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2159 found = 1;
2160 break;
2161 }
2162 kiv.kve_start += 1;
2163 }
2164 #elif KMP_OS_DRAGONFLY
2165
2166 // FIXME(DragonFly): Implement this
2167 found = 1;
2168
2169 #else
2170
2171 #error "Unknown or unsupported OS"
2172
2173 #endif
2174
2175 return found;
2176
2177 } // __kmp_is_address_mapped
2178
2179 #ifdef USE_LOAD_BALANCE
2180
2181 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2182
2183 // The function returns the rounded value of the system load average
2184 // during given time interval which depends on the value of
2185 // __kmp_load_balance_interval variable (default is 60 sec, other values
2186 // may be 300 sec or 900 sec).
2187 // It returns -1 in case of error.
__kmp_get_load_balance(int max)2188 int __kmp_get_load_balance(int max) {
2189 double averages[3];
2190 int ret_avg = 0;
2191
2192 int res = getloadavg(averages, 3);
2193
2194 // Check __kmp_load_balance_interval to determine which of averages to use.
2195 // getloadavg() may return the number of samples less than requested that is
2196 // less than 3.
2197 if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2198 ret_avg = averages[0]; // 1 min
2199 } else if ((__kmp_load_balance_interval >= 180 &&
2200 __kmp_load_balance_interval < 600) &&
2201 (res >= 2)) {
2202 ret_avg = averages[1]; // 5 min
2203 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2204 ret_avg = averages[2]; // 15 min
2205 } else { // Error occurred
2206 return -1;
2207 }
2208
2209 return ret_avg;
2210 }
2211
2212 #else // Linux* OS
2213
2214 // The function returns number of running (not sleeping) threads, or -1 in case
2215 // of error. Error could be reported if Linux* OS kernel too old (without
2216 // "/proc" support). Counting running threads stops if max running threads
2217 // encountered.
__kmp_get_load_balance(int max)2218 int __kmp_get_load_balance(int max) {
2219 static int permanent_error = 0;
2220 static int glb_running_threads = 0; // Saved count of the running threads for
2221 // the thread balance algorithm
2222 static double glb_call_time = 0; /* Thread balance algorithm call time */
2223
2224 int running_threads = 0; // Number of running threads in the system.
2225
2226 DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2227 struct dirent *proc_entry = NULL;
2228
2229 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2230 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2231 struct dirent *task_entry = NULL;
2232 int task_path_fixed_len;
2233
2234 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2235 int stat_file = -1;
2236 int stat_path_fixed_len;
2237
2238 int total_processes = 0; // Total number of processes in system.
2239 int total_threads = 0; // Total number of threads in system.
2240
2241 double call_time = 0.0;
2242
2243 __kmp_str_buf_init(&task_path);
2244 __kmp_str_buf_init(&stat_path);
2245
2246 __kmp_elapsed(&call_time);
2247
2248 if (glb_call_time &&
2249 (call_time - glb_call_time < __kmp_load_balance_interval)) {
2250 running_threads = glb_running_threads;
2251 goto finish;
2252 }
2253
2254 glb_call_time = call_time;
2255
2256 // Do not spend time on scanning "/proc/" if we have a permanent error.
2257 if (permanent_error) {
2258 running_threads = -1;
2259 goto finish;
2260 }
2261
2262 if (max <= 0) {
2263 max = INT_MAX;
2264 }
2265
2266 // Open "/proc/" directory.
2267 proc_dir = opendir("/proc");
2268 if (proc_dir == NULL) {
2269 // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2270 // error now and in subsequent calls.
2271 running_threads = -1;
2272 permanent_error = 1;
2273 goto finish;
2274 }
2275
2276 // Initialize fixed part of task_path. This part will not change.
2277 __kmp_str_buf_cat(&task_path, "/proc/", 6);
2278 task_path_fixed_len = task_path.used; // Remember number of used characters.
2279
2280 proc_entry = readdir(proc_dir);
2281 while (proc_entry != NULL) {
2282 // Proc entry is a directory and name starts with a digit. Assume it is a
2283 // process' directory.
2284 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2285
2286 ++total_processes;
2287 // Make sure init process is the very first in "/proc", so we can replace
2288 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2289 // 1. We are going to check that total_processes == 1 => d_name == "1" is
2290 // true (where "=>" is implication). Since C++ does not have => operator,
2291 // let us replace it with its equivalent: a => b == ! a || b.
2292 KMP_DEBUG_ASSERT(total_processes != 1 ||
2293 strcmp(proc_entry->d_name, "1") == 0);
2294
2295 // Construct task_path.
2296 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2297 __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2298 KMP_STRLEN(proc_entry->d_name));
2299 __kmp_str_buf_cat(&task_path, "/task", 5);
2300
2301 task_dir = opendir(task_path.str);
2302 if (task_dir == NULL) {
2303 // Process can finish between reading "/proc/" directory entry and
2304 // opening process' "task/" directory. So, in general case we should not
2305 // complain, but have to skip this process and read the next one. But on
2306 // systems with no "task/" support we will spend lot of time to scan
2307 // "/proc/" tree again and again without any benefit. "init" process
2308 // (its pid is 1) should exist always, so, if we cannot open
2309 // "/proc/1/task/" directory, it means "task/" is not supported by
2310 // kernel. Report an error now and in the future.
2311 if (strcmp(proc_entry->d_name, "1") == 0) {
2312 running_threads = -1;
2313 permanent_error = 1;
2314 goto finish;
2315 }
2316 } else {
2317 // Construct fixed part of stat file path.
2318 __kmp_str_buf_clear(&stat_path);
2319 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2320 __kmp_str_buf_cat(&stat_path, "/", 1);
2321 stat_path_fixed_len = stat_path.used;
2322
2323 task_entry = readdir(task_dir);
2324 while (task_entry != NULL) {
2325 // It is a directory and name starts with a digit.
2326 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2327 ++total_threads;
2328
2329 // Construct complete stat file path. Easiest way would be:
2330 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2331 // task_entry->d_name );
2332 // but seriae of __kmp_str_buf_cat works a bit faster.
2333 stat_path.used =
2334 stat_path_fixed_len; // Reset stat path to its fixed part.
2335 __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2336 KMP_STRLEN(task_entry->d_name));
2337 __kmp_str_buf_cat(&stat_path, "/stat", 5);
2338
2339 // Note: Low-level API (open/read/close) is used. High-level API
2340 // (fopen/fclose) works ~ 30 % slower.
2341 stat_file = open(stat_path.str, O_RDONLY);
2342 if (stat_file == -1) {
2343 // We cannot report an error because task (thread) can terminate
2344 // just before reading this file.
2345 } else {
2346 /* Content of "stat" file looks like:
2347 24285 (program) S ...
2348
2349 It is a single line (if program name does not include funny
2350 symbols). First number is a thread id, then name of executable
2351 file name in paretheses, then state of the thread. We need just
2352 thread state.
2353
2354 Good news: Length of program name is 15 characters max. Longer
2355 names are truncated.
2356
2357 Thus, we need rather short buffer: 15 chars for program name +
2358 2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2359
2360 Bad news: Program name may contain special symbols like space,
2361 closing parenthesis, or even new line. This makes parsing
2362 "stat" file not 100 % reliable. In case of fanny program names
2363 parsing may fail (report incorrect thread state).
2364
2365 Parsing "status" file looks more promissing (due to different
2366 file structure and escaping special symbols) but reading and
2367 parsing of "status" file works slower.
2368 -- ln
2369 */
2370 char buffer[65];
2371 int len;
2372 len = read(stat_file, buffer, sizeof(buffer) - 1);
2373 if (len >= 0) {
2374 buffer[len] = 0;
2375 // Using scanf:
2376 // sscanf( buffer, "%*d (%*s) %c ", & state );
2377 // looks very nice, but searching for a closing parenthesis
2378 // works a bit faster.
2379 char *close_parent = strstr(buffer, ") ");
2380 if (close_parent != NULL) {
2381 char state = *(close_parent + 2);
2382 if (state == 'R') {
2383 ++running_threads;
2384 if (running_threads >= max) {
2385 goto finish;
2386 }
2387 }
2388 }
2389 }
2390 close(stat_file);
2391 stat_file = -1;
2392 }
2393 }
2394 task_entry = readdir(task_dir);
2395 }
2396 closedir(task_dir);
2397 task_dir = NULL;
2398 }
2399 }
2400 proc_entry = readdir(proc_dir);
2401 }
2402
2403 // There _might_ be a timing hole where the thread executing this
2404 // code get skipped in the load balance, and running_threads is 0.
2405 // Assert in the debug builds only!!!
2406 KMP_DEBUG_ASSERT(running_threads > 0);
2407 if (running_threads <= 0) {
2408 running_threads = 1;
2409 }
2410
2411 finish: // Clean up and exit.
2412 if (proc_dir != NULL) {
2413 closedir(proc_dir);
2414 }
2415 __kmp_str_buf_free(&task_path);
2416 if (task_dir != NULL) {
2417 closedir(task_dir);
2418 }
2419 __kmp_str_buf_free(&stat_path);
2420 if (stat_file != -1) {
2421 close(stat_file);
2422 }
2423
2424 glb_running_threads = running_threads;
2425
2426 return running_threads;
2427
2428 } // __kmp_get_load_balance
2429
2430 #endif // KMP_OS_DARWIN
2431
2432 #endif // USE_LOAD_BALANCE
2433
2434 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
2435 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \
2436 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64)
2437
2438 // we really only need the case with 1 argument, because CLANG always build
2439 // a struct of pointers to shared variables referenced in the outlined function
__kmp_invoke_microtask(microtask_t pkfn,int gtid,int tid,int argc,void * p_argv[],void ** exit_frame_ptr)2440 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2441 void *p_argv[]
2442 #if OMPT_SUPPORT
2443 ,
2444 void **exit_frame_ptr
2445 #endif
2446 ) {
2447 #if OMPT_SUPPORT
2448 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2449 #endif
2450
2451 switch (argc) {
2452 default:
2453 fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2454 fflush(stderr);
2455 exit(-1);
2456 case 0:
2457 (*pkfn)(>id, &tid);
2458 break;
2459 case 1:
2460 (*pkfn)(>id, &tid, p_argv[0]);
2461 break;
2462 case 2:
2463 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]);
2464 break;
2465 case 3:
2466 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]);
2467 break;
2468 case 4:
2469 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2470 break;
2471 case 5:
2472 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2473 break;
2474 case 6:
2475 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2476 p_argv[5]);
2477 break;
2478 case 7:
2479 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2480 p_argv[5], p_argv[6]);
2481 break;
2482 case 8:
2483 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2484 p_argv[5], p_argv[6], p_argv[7]);
2485 break;
2486 case 9:
2487 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2488 p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2489 break;
2490 case 10:
2491 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2492 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2493 break;
2494 case 11:
2495 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2496 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2497 break;
2498 case 12:
2499 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2500 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2501 p_argv[11]);
2502 break;
2503 case 13:
2504 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2505 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2506 p_argv[11], p_argv[12]);
2507 break;
2508 case 14:
2509 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2510 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2511 p_argv[11], p_argv[12], p_argv[13]);
2512 break;
2513 case 15:
2514 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2515 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2516 p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2517 break;
2518 }
2519
2520 return 1;
2521 }
2522
2523 #endif
2524
2525 // end of file //
2526