1 //---------------------------------------------------------------------------------
2 //
3 // Little Color Management System
4 // Copyright (c) 1998-2017 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
12 //
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
15 //
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 //
24 //---------------------------------------------------------------------------------
25 //
26
27 #include "lcms2_internal.h"
28
29
30 //----------------------------------------------------------------------------------
31
32 // Optimization for 8 bits, Shaper-CLUT (3 inputs only)
33 typedef struct {
34
35 cmsContext ContextID;
36
37 const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer.
38
39 cmsUInt16Number rx[256], ry[256], rz[256];
40 cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
41
42
43 } Prelin8Data;
44
45
46 // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
47 typedef struct {
48
49 cmsContext ContextID;
50
51 // Number of channels
52 cmsUInt32Number nInputs;
53 cmsUInt32Number nOutputs;
54
55 _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
56 cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
57
58 _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
59 const cmsInterpParams* CLUTparams; // (not-owned pointer)
60
61
62 _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
63 cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
64
65
66 } Prelin16Data;
67
68
69 // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
70
71 typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
72
73 #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
74
75 typedef struct {
76
77 cmsContext ContextID;
78
79 cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
80 cmsS1Fixed14Number Shaper1G[256];
81 cmsS1Fixed14Number Shaper1B[256];
82
83 cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
84 cmsS1Fixed14Number Off[3];
85
86 cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
87 cmsUInt16Number Shaper2G[16385];
88 cmsUInt16Number Shaper2B[16385];
89
90 } MatShaper8Data;
91
92 // Curves, optimization is shared between 8 and 16 bits
93 typedef struct {
94
95 cmsContext ContextID;
96
97 cmsUInt32Number nCurves; // Number of curves
98 cmsUInt32Number nElements; // Elements in curves
99 cmsUInt16Number** Curves; // Points to a dynamically allocated array
100
101 } Curves16Data;
102
103
104 // Simple optimizations ----------------------------------------------------------------------------------------------------------
105
106
107 // Clamp a fixed point integer to signed 28 bits to avoid overflow in
108 // calculations. Clamp is intended for use with colorants, requiring one bit
109 // for a colorant and another two bits to avoid overflow when combining the
110 // colors.
_FixedClamp(cmsS1Fixed14Number n)111 cmsINLINE cmsS1Fixed14Number _FixedClamp(cmsS1Fixed14Number n) {
112 const cmsS1Fixed14Number max_positive = 268435455; // 0x0FFFFFFF;
113 const cmsS1Fixed14Number max_negative = -268435456; // 0xF0000000;
114 // Normally expect the provided number to be in the range [0..1] (but in
115 // fixed 1.14 format), so can perform a quick check for this typical case
116 // to reduce number of compares.
117 const cmsS1Fixed14Number typical_range_mask = 0xFFFF8000;
118
119 if (!(n & typical_range_mask))
120 return n;
121 if (n < max_negative)
122 return max_negative;
123 if (n > max_positive)
124 return max_positive;
125 return n;
126 }
127
128 // Perform one row of matrix multiply with translation for MatShaperEval16().
_MatShaperEvaluateRow(cmsS1Fixed14Number * mat,cmsS1Fixed14Number off,cmsS1Fixed14Number r,cmsS1Fixed14Number g,cmsS1Fixed14Number b)129 cmsINLINE cmsInt64Number _MatShaperEvaluateRow(cmsS1Fixed14Number* mat,
130 cmsS1Fixed14Number off,
131 cmsS1Fixed14Number r,
132 cmsS1Fixed14Number g,
133 cmsS1Fixed14Number b) {
134 return ((cmsInt64Number)mat[0] * r +
135 (cmsInt64Number)mat[1] * g +
136 (cmsInt64Number)mat[2] * b +
137 off + 0x2000) >> 14;
138 }
139
140 // Remove an element in linked chain
141 static
_RemoveElement(cmsStage ** head)142 void _RemoveElement(cmsStage** head)
143 {
144 cmsStage* mpe = *head;
145 cmsStage* next = mpe ->Next;
146 *head = next;
147 cmsStageFree(mpe);
148 }
149
150 // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
151 static
_Remove1Op(cmsPipeline * Lut,cmsStageSignature UnaryOp)152 cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
153 {
154 cmsStage** pt = &Lut ->Elements;
155 cmsBool AnyOpt = FALSE;
156
157 while (*pt != NULL) {
158
159 if ((*pt) ->Implements == UnaryOp) {
160 _RemoveElement(pt);
161 AnyOpt = TRUE;
162 }
163 else
164 pt = &((*pt) -> Next);
165 }
166
167 return AnyOpt;
168 }
169
170 // Same, but only if two adjacent elements are found
171 static
_Remove2Op(cmsPipeline * Lut,cmsStageSignature Op1,cmsStageSignature Op2)172 cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
173 {
174 cmsStage** pt1;
175 cmsStage** pt2;
176 cmsBool AnyOpt = FALSE;
177
178 pt1 = &Lut ->Elements;
179 if (*pt1 == NULL) return AnyOpt;
180
181 while (*pt1 != NULL) {
182
183 pt2 = &((*pt1) -> Next);
184 if (*pt2 == NULL) return AnyOpt;
185
186 if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
187 _RemoveElement(pt2);
188 _RemoveElement(pt1);
189 AnyOpt = TRUE;
190 }
191 else
192 pt1 = &((*pt1) -> Next);
193 }
194
195 return AnyOpt;
196 }
197
198
199 static
CloseEnoughFloat(cmsFloat64Number a,cmsFloat64Number b)200 cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
201 {
202 return fabs(b - a) < 0.00001f;
203 }
204
205 static
isFloatMatrixIdentity(const cmsMAT3 * a)206 cmsBool isFloatMatrixIdentity(const cmsMAT3* a)
207 {
208 cmsMAT3 Identity;
209 int i, j;
210
211 _cmsMAT3identity(&Identity);
212
213 for (i = 0; i < 3; i++)
214 for (j = 0; j < 3; j++)
215 if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
216
217 return TRUE;
218 }
219 // if two adjacent matrices are found, multiply them.
220 static
_MultiplyMatrix(cmsPipeline * Lut)221 cmsBool _MultiplyMatrix(cmsPipeline* Lut)
222 {
223 cmsStage** pt1;
224 cmsStage** pt2;
225 cmsStage* chain;
226 cmsBool AnyOpt = FALSE;
227
228 pt1 = &Lut->Elements;
229 if (*pt1 == NULL) return AnyOpt;
230
231 while (*pt1 != NULL) {
232
233 pt2 = &((*pt1)->Next);
234 if (*pt2 == NULL) return AnyOpt;
235
236 if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
237
238 // Get both matrices
239 _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
240 _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
241 cmsMAT3 res;
242
243 // Input offset and output offset should be zero to use this optimization
244 if (m1->Offset != NULL || m2 ->Offset != NULL ||
245 cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
246 cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
247 return FALSE;
248
249 // Multiply both matrices to get the result
250 _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
251
252 // Get the next in chain after the matrices
253 chain = (*pt2)->Next;
254
255 // Remove both matrices
256 _RemoveElement(pt2);
257 _RemoveElement(pt1);
258
259 // Now what if the result is a plain identity?
260 if (!isFloatMatrixIdentity(&res)) {
261
262 // We can not get rid of full matrix
263 cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
264 if (Multmat == NULL) return FALSE; // Should never happen
265
266 // Recover the chain
267 Multmat->Next = chain;
268 *pt1 = Multmat;
269 }
270
271 AnyOpt = TRUE;
272 }
273 else
274 pt1 = &((*pt1)->Next);
275 }
276
277 return AnyOpt;
278 }
279
280
281 // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
282 // by a v4 to v2 and vice-versa. The elements are then discarded.
283 static
PreOptimize(cmsPipeline * Lut)284 cmsBool PreOptimize(cmsPipeline* Lut)
285 {
286 cmsBool AnyOpt = FALSE, Opt;
287
288 do {
289
290 Opt = FALSE;
291
292 // Remove all identities
293 Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
294
295 // Remove XYZ2Lab followed by Lab2XYZ
296 Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
297
298 // Remove Lab2XYZ followed by XYZ2Lab
299 Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
300
301 // Remove V4 to V2 followed by V2 to V4
302 Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
303
304 // Remove V2 to V4 followed by V4 to V2
305 Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
306
307 // Remove float pcs Lab conversions
308 Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
309
310 // Remove float pcs Lab conversions
311 Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
312
313 // Simplify matrix.
314 Opt |= _MultiplyMatrix(Lut);
315
316 if (Opt) AnyOpt = TRUE;
317
318 } while (Opt);
319
320 return AnyOpt;
321 }
322
323 static
Eval16nop1D(register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const struct _cms_interp_struc * p)324 void Eval16nop1D(register const cmsUInt16Number Input[],
325 register cmsUInt16Number Output[],
326 register const struct _cms_interp_struc* p)
327 {
328 Output[0] = Input[0];
329
330 cmsUNUSED_PARAMETER(p);
331 }
332
333 static
PrelinEval16(register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const void * D)334 void PrelinEval16(register const cmsUInt16Number Input[],
335 register cmsUInt16Number Output[],
336 register const void* D)
337 {
338 Prelin16Data* p16 = (Prelin16Data*) D;
339 cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS];
340 cmsUInt16Number StageDEF[cmsMAXCHANNELS];
341 cmsUInt32Number i;
342
343 for (i=0; i < p16 ->nInputs; i++) {
344
345 p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
346 }
347
348 p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
349
350 for (i=0; i < p16 ->nOutputs; i++) {
351
352 p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
353 }
354 }
355
356
357 static
PrelinOpt16free(cmsContext ContextID,void * ptr)358 void PrelinOpt16free(cmsContext ContextID, void* ptr)
359 {
360 Prelin16Data* p16 = (Prelin16Data*) ptr;
361
362 _cmsFree(ContextID, p16 ->EvalCurveOut16);
363 _cmsFree(ContextID, p16 ->ParamsCurveOut16);
364
365 _cmsFree(ContextID, p16);
366 }
367
368 static
Prelin16dup(cmsContext ContextID,const void * ptr)369 void* Prelin16dup(cmsContext ContextID, const void* ptr)
370 {
371 Prelin16Data* p16 = (Prelin16Data*) ptr;
372 Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
373
374 if (Duped == NULL) return NULL;
375
376 Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
377 Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
378
379 return Duped;
380 }
381
382
383 static
PrelinOpt16alloc(cmsContext ContextID,const cmsInterpParams * ColorMap,cmsUInt32Number nInputs,cmsToneCurve ** In,cmsUInt32Number nOutputs,cmsToneCurve ** Out)384 Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
385 const cmsInterpParams* ColorMap,
386 cmsUInt32Number nInputs, cmsToneCurve** In,
387 cmsUInt32Number nOutputs, cmsToneCurve** Out )
388 {
389 cmsUInt32Number i;
390 Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
391 if (p16 == NULL) return NULL;
392
393 p16 ->nInputs = nInputs;
394 p16 ->nOutputs = nOutputs;
395
396
397 for (i=0; i < nInputs; i++) {
398
399 if (In == NULL) {
400 p16 -> ParamsCurveIn16[i] = NULL;
401 p16 -> EvalCurveIn16[i] = Eval16nop1D;
402
403 }
404 else {
405 p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
406 p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
407 }
408 }
409
410 p16 ->CLUTparams = ColorMap;
411 p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
412
413
414 p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
415 p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
416
417 for (i=0; i < nOutputs; i++) {
418
419 if (Out == NULL) {
420 p16 ->ParamsCurveOut16[i] = NULL;
421 p16 -> EvalCurveOut16[i] = Eval16nop1D;
422 }
423 else {
424
425 p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
426 p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
427 }
428 }
429
430 return p16;
431 }
432
433
434
435 // Resampling ---------------------------------------------------------------------------------
436
437 #define PRELINEARIZATION_POINTS 4096
438
439 // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
440 // almost any transform. We use floating point precision and then convert from floating point to 16 bits.
441 static
XFormSampler16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register void * Cargo)442 cmsInt32Number XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
443 {
444 cmsPipeline* Lut = (cmsPipeline*) Cargo;
445 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
446 cmsUInt32Number i;
447
448 _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
449 _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
450
451 // From 16 bit to floating point
452 for (i=0; i < Lut ->InputChannels; i++)
453 InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
454
455 // Evaluate in floating point
456 cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
457
458 // Back to 16 bits representation
459 for (i=0; i < Lut ->OutputChannels; i++)
460 Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
461
462 // Always succeed
463 return TRUE;
464 }
465
466 // Try to see if the curves of a given MPE are linear
467 static
AllCurvesAreLinear(cmsStage * mpe)468 cmsBool AllCurvesAreLinear(cmsStage* mpe)
469 {
470 cmsToneCurve** Curves;
471 cmsUInt32Number i, n;
472
473 Curves = _cmsStageGetPtrToCurveSet(mpe);
474 if (Curves == NULL) return FALSE;
475
476 n = cmsStageOutputChannels(mpe);
477
478 for (i=0; i < n; i++) {
479 if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
480 }
481
482 return TRUE;
483 }
484
485 // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
486 // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
487 static
PatchLUT(cmsStage * CLUT,cmsUInt16Number At[],cmsUInt16Number Value[],cmsUInt32Number nChannelsOut,cmsUInt32Number nChannelsIn)488 cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
489 cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
490 {
491 _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
492 cmsInterpParams* p16 = Grid ->Params;
493 cmsFloat64Number px, py, pz, pw;
494 int x0, y0, z0, w0;
495 int i, index;
496
497 if (CLUT -> Type != cmsSigCLutElemType) {
498 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
499 return FALSE;
500 }
501
502 if (nChannelsIn == 4) {
503
504 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
505 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
506 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
507 pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
508
509 x0 = (int) floor(px);
510 y0 = (int) floor(py);
511 z0 = (int) floor(pz);
512 w0 = (int) floor(pw);
513
514 if (((px - x0) != 0) ||
515 ((py - y0) != 0) ||
516 ((pz - z0) != 0) ||
517 ((pw - w0) != 0)) return FALSE; // Not on exact node
518
519 index = (int) p16 -> opta[3] * x0 +
520 (int) p16 -> opta[2] * y0 +
521 (int) p16 -> opta[1] * z0 +
522 (int) p16 -> opta[0] * w0;
523 }
524 else
525 if (nChannelsIn == 3) {
526
527 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
528 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
529 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
530
531 x0 = (int) floor(px);
532 y0 = (int) floor(py);
533 z0 = (int) floor(pz);
534
535 if (((px - x0) != 0) ||
536 ((py - y0) != 0) ||
537 ((pz - z0) != 0)) return FALSE; // Not on exact node
538
539 index = (int) p16 -> opta[2] * x0 +
540 (int) p16 -> opta[1] * y0 +
541 (int) p16 -> opta[0] * z0;
542 }
543 else
544 if (nChannelsIn == 1) {
545
546 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
547
548 x0 = (int) floor(px);
549
550 if (((px - x0) != 0)) return FALSE; // Not on exact node
551
552 index = (int) p16 -> opta[0] * x0;
553 }
554 else {
555 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
556 return FALSE;
557 }
558
559 for (i = 0; i < (int) nChannelsOut; i++)
560 Grid->Tab.T[index + i] = Value[i];
561
562 return TRUE;
563 }
564
565 // Auxiliary, to see if two values are equal or very different
566 static
WhitesAreEqual(cmsUInt32Number n,cmsUInt16Number White1[],cmsUInt16Number White2[])567 cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
568 {
569 cmsUInt32Number i;
570
571 for (i=0; i < n; i++) {
572
573 if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided
574 if (White1[i] != White2[i]) return FALSE;
575 }
576 return TRUE;
577 }
578
579
580 // Locate the node for the white point and fix it to pure white in order to avoid scum dot.
581 static
FixWhiteMisalignment(cmsPipeline * Lut,cmsColorSpaceSignature EntryColorSpace,cmsColorSpaceSignature ExitColorSpace)582 cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
583 {
584 cmsUInt16Number *WhitePointIn, *WhitePointOut;
585 cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
586 cmsUInt32Number i, nOuts, nIns;
587 cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
588
589 if (!_cmsEndPointsBySpace(EntryColorSpace,
590 &WhitePointIn, NULL, &nIns)) return FALSE;
591
592 if (!_cmsEndPointsBySpace(ExitColorSpace,
593 &WhitePointOut, NULL, &nOuts)) return FALSE;
594
595 // It needs to be fixed?
596 if (Lut ->InputChannels != nIns) return FALSE;
597 if (Lut ->OutputChannels != nOuts) return FALSE;
598
599 cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
600
601 if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
602
603 // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
604 if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
605 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
606 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
607 if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
608 return FALSE;
609
610 // We need to interpolate white points of both, pre and post curves
611 if (PreLin) {
612
613 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
614
615 for (i=0; i < nIns; i++) {
616 WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
617 }
618 }
619 else {
620 for (i=0; i < nIns; i++)
621 WhiteIn[i] = WhitePointIn[i];
622 }
623
624 // If any post-linearization, we need to find how is represented white before the curve, do
625 // a reverse interpolation in this case.
626 if (PostLin) {
627
628 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
629
630 for (i=0; i < nOuts; i++) {
631
632 cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
633 if (InversePostLin == NULL) {
634 WhiteOut[i] = WhitePointOut[i];
635
636 } else {
637
638 WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
639 cmsFreeToneCurve(InversePostLin);
640 }
641 }
642 }
643 else {
644 for (i=0; i < nOuts; i++)
645 WhiteOut[i] = WhitePointOut[i];
646 }
647
648 // Ok, proceed with patching. May fail and we don't care if it fails
649 PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
650
651 return TRUE;
652 }
653
654 // -----------------------------------------------------------------------------------------------------------------------------------------------
655 // This function creates simple LUT from complex ones. The generated LUT has an optional set of
656 // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
657 // These curves have to exist in the original LUT in order to be used in the simplified output.
658 // Caller may also use the flags to allow this feature.
659 // LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
660 // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
661 // -----------------------------------------------------------------------------------------------------------------------------------------------
662
663 static
OptimizeByResampling(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)664 cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
665 {
666 cmsPipeline* Src = NULL;
667 cmsPipeline* Dest = NULL;
668 cmsStage* mpe;
669 cmsStage* CLUT;
670 cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
671 cmsUInt32Number nGridPoints;
672 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
673 cmsStage *NewPreLin = NULL;
674 cmsStage *NewPostLin = NULL;
675 _cmsStageCLutData* DataCLUT;
676 cmsToneCurve** DataSetIn;
677 cmsToneCurve** DataSetOut;
678 Prelin16Data* p16;
679
680 // This is a loosy optimization! does not apply in floating-point cases
681 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
682
683 ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
684 OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
685
686 // Color space must be specified
687 if (ColorSpace == (cmsColorSpaceSignature)0 ||
688 OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
689
690 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
691
692 // For empty LUTs, 2 points are enough
693 if (cmsPipelineStageCount(*Lut) == 0)
694 nGridPoints = 2;
695
696 Src = *Lut;
697
698 // Named color pipelines cannot be optimized either
699 for (mpe = cmsPipelineGetPtrToFirstStage(Src);
700 mpe != NULL;
701 mpe = cmsStageNext(mpe)) {
702 if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
703 }
704
705 // Allocate an empty LUT
706 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
707 if (!Dest) return FALSE;
708
709 // Prelinearization tables are kept unless indicated by flags
710 if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
711
712 // Get a pointer to the prelinearization element
713 cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
714
715 // Check if suitable
716 if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
717
718 // Maybe this is a linear tram, so we can avoid the whole stuff
719 if (!AllCurvesAreLinear(PreLin)) {
720
721 // All seems ok, proceed.
722 NewPreLin = cmsStageDup(PreLin);
723 if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
724 goto Error;
725
726 // Remove prelinearization. Since we have duplicated the curve
727 // in destination LUT, the sampling should be applied after this stage.
728 cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
729 }
730 }
731 }
732
733 // Allocate the CLUT
734 CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
735 if (CLUT == NULL) goto Error;
736
737 // Add the CLUT to the destination LUT
738 if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
739 goto Error;
740 }
741
742 // Postlinearization tables are kept unless indicated by flags
743 if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
744
745 // Get a pointer to the postlinearization if present
746 cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
747
748 // Check if suitable
749 if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
750
751 // Maybe this is a linear tram, so we can avoid the whole stuff
752 if (!AllCurvesAreLinear(PostLin)) {
753
754 // All seems ok, proceed.
755 NewPostLin = cmsStageDup(PostLin);
756 if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
757 goto Error;
758
759 // In destination LUT, the sampling should be applied after this stage.
760 cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
761 }
762 }
763 }
764
765 // Now its time to do the sampling. We have to ignore pre/post linearization
766 // The source LUT without pre/post curves is passed as parameter.
767 if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
768 Error:
769 // Ops, something went wrong, Restore stages
770 if (KeepPreLin != NULL) {
771 if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
772 _cmsAssert(0); // This never happens
773 }
774 }
775 if (KeepPostLin != NULL) {
776 if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) {
777 _cmsAssert(0); // This never happens
778 }
779 }
780 cmsPipelineFree(Dest);
781 return FALSE;
782 }
783
784 // Done.
785
786 if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
787 if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
788 cmsPipelineFree(Src);
789
790 DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
791
792 if (NewPreLin == NULL) DataSetIn = NULL;
793 else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
794
795 if (NewPostLin == NULL) DataSetOut = NULL;
796 else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
797
798
799 if (DataSetIn == NULL && DataSetOut == NULL) {
800
801 _cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
802 }
803 else {
804
805 p16 = PrelinOpt16alloc(Dest ->ContextID,
806 DataCLUT ->Params,
807 Dest ->InputChannels,
808 DataSetIn,
809 Dest ->OutputChannels,
810 DataSetOut);
811
812 _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
813 }
814
815
816 // Don't fix white on absolute colorimetric
817 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
818 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
819
820 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
821
822 FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
823 }
824
825 *Lut = Dest;
826 return TRUE;
827
828 cmsUNUSED_PARAMETER(Intent);
829 }
830
831
832 // -----------------------------------------------------------------------------------------------------------------------------------------------
833 // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
834 // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
835 // for RGB transforms. See the paper for more details
836 // -----------------------------------------------------------------------------------------------------------------------------------------------
837
838
839 // Normalize endpoints by slope limiting max and min. This assures endpoints as well.
840 // Descending curves are handled as well.
841 static
SlopeLimiting(cmsToneCurve * g)842 void SlopeLimiting(cmsToneCurve* g)
843 {
844 int BeginVal, EndVal;
845 int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2%
846 int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98%
847 cmsFloat64Number Val, Slope, beta;
848 int i;
849
850 if (cmsIsToneCurveDescending(g)) {
851 BeginVal = 0xffff; EndVal = 0;
852 }
853 else {
854 BeginVal = 0; EndVal = 0xffff;
855 }
856
857 // Compute slope and offset for begin of curve
858 Val = g ->Table16[AtBegin];
859 Slope = (Val - BeginVal) / AtBegin;
860 beta = Val - Slope * AtBegin;
861
862 for (i=0; i < AtBegin; i++)
863 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
864
865 // Compute slope and offset for the end
866 Val = g ->Table16[AtEnd];
867 Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
868 beta = Val - Slope * AtEnd;
869
870 for (i = AtEnd; i < (int) g ->nEntries; i++)
871 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
872 }
873
874
875 // Precomputes tables for 8-bit on input devicelink.
876 static
PrelinOpt8alloc(cmsContext ContextID,const cmsInterpParams * p,cmsToneCurve * G[3])877 Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
878 {
879 int i;
880 cmsUInt16Number Input[3];
881 cmsS15Fixed16Number v1, v2, v3;
882 Prelin8Data* p8;
883
884 p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
885 if (p8 == NULL) return NULL;
886
887 // Since this only works for 8 bit input, values comes always as x * 257,
888 // we can safely take msb byte (x << 8 + x)
889
890 for (i=0; i < 256; i++) {
891
892 if (G != NULL) {
893
894 // Get 16-bit representation
895 Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
896 Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
897 Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
898 }
899 else {
900 Input[0] = FROM_8_TO_16(i);
901 Input[1] = FROM_8_TO_16(i);
902 Input[2] = FROM_8_TO_16(i);
903 }
904
905
906 // Move to 0..1.0 in fixed domain
907 v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
908 v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
909 v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
910
911 // Store the precalculated table of nodes
912 p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
913 p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
914 p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
915
916 // Store the precalculated table of offsets
917 p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
918 p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
919 p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
920 }
921
922 p8 ->ContextID = ContextID;
923 p8 ->p = p;
924
925 return p8;
926 }
927
928 static
Prelin8free(cmsContext ContextID,void * ptr)929 void Prelin8free(cmsContext ContextID, void* ptr)
930 {
931 _cmsFree(ContextID, ptr);
932 }
933
934 static
Prelin8dup(cmsContext ContextID,const void * ptr)935 void* Prelin8dup(cmsContext ContextID, const void* ptr)
936 {
937 return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
938 }
939
940
941
942 // A optimized interpolation for 8-bit input.
943 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
944 static
PrelinEval8(register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const void * D)945 void PrelinEval8(register const cmsUInt16Number Input[],
946 register cmsUInt16Number Output[],
947 register const void* D)
948 {
949
950 cmsUInt8Number r, g, b;
951 cmsS15Fixed16Number rx, ry, rz;
952 cmsS15Fixed16Number c0, c1, c2, c3, Rest;
953 int OutChan;
954 register cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
955 Prelin8Data* p8 = (Prelin8Data*) D;
956 register const cmsInterpParams* p = p8 ->p;
957 int TotalOut = (int) p -> nOutputs;
958 const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
959
960 r = (cmsUInt8Number) (Input[0] >> 8);
961 g = (cmsUInt8Number) (Input[1] >> 8);
962 b = (cmsUInt8Number) (Input[2] >> 8);
963
964 X0 = X1 = (cmsS15Fixed16Number) p8->X0[r];
965 Y0 = Y1 = (cmsS15Fixed16Number) p8->Y0[g];
966 Z0 = Z1 = (cmsS15Fixed16Number) p8->Z0[b];
967
968 rx = p8 ->rx[r];
969 ry = p8 ->ry[g];
970 rz = p8 ->rz[b];
971
972 X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]);
973 Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]);
974 Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]);
975
976
977 // These are the 6 Tetrahedral
978 for (OutChan=0; OutChan < TotalOut; OutChan++) {
979
980 c0 = DENS(X0, Y0, Z0);
981
982 if (rx >= ry && ry >= rz)
983 {
984 c1 = DENS(X1, Y0, Z0) - c0;
985 c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
986 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
987 }
988 else
989 if (rx >= rz && rz >= ry)
990 {
991 c1 = DENS(X1, Y0, Z0) - c0;
992 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
993 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
994 }
995 else
996 if (rz >= rx && rx >= ry)
997 {
998 c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
999 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
1000 c3 = DENS(X0, Y0, Z1) - c0;
1001 }
1002 else
1003 if (ry >= rx && rx >= rz)
1004 {
1005 c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
1006 c2 = DENS(X0, Y1, Z0) - c0;
1007 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
1008 }
1009 else
1010 if (ry >= rz && rz >= rx)
1011 {
1012 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1013 c2 = DENS(X0, Y1, Z0) - c0;
1014 c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
1015 }
1016 else
1017 if (rz >= ry && ry >= rx)
1018 {
1019 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1020 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
1021 c3 = DENS(X0, Y0, Z1) - c0;
1022 }
1023 else {
1024 c1 = c2 = c3 = 0;
1025 }
1026
1027 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
1028 Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
1029
1030 }
1031 }
1032
1033 #undef DENS
1034
1035
1036 // Curves that contain wide empty areas are not optimizeable
1037 static
IsDegenerated(const cmsToneCurve * g)1038 cmsBool IsDegenerated(const cmsToneCurve* g)
1039 {
1040 cmsUInt32Number i, Zeros = 0, Poles = 0;
1041 cmsUInt32Number nEntries = g ->nEntries;
1042
1043 for (i=0; i < nEntries; i++) {
1044
1045 if (g ->Table16[i] == 0x0000) Zeros++;
1046 if (g ->Table16[i] == 0xffff) Poles++;
1047 }
1048
1049 if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables
1050 if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros
1051 if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles
1052
1053 return FALSE;
1054 }
1055
1056 // --------------------------------------------------------------------------------------------------------------
1057 // We need xput over here
1058
1059 static
OptimizeByComputingLinearization(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1060 cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1061 {
1062 cmsPipeline* OriginalLut;
1063 cmsUInt32Number nGridPoints;
1064 cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1065 cmsUInt32Number t, i;
1066 cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1067 cmsBool lIsSuitable, lIsLinear;
1068 cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1069 cmsStage* OptimizedCLUTmpe;
1070 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1071 cmsStage* OptimizedPrelinMpe;
1072 cmsStage* mpe;
1073 cmsToneCurve** OptimizedPrelinCurves;
1074 _cmsStageCLutData* OptimizedPrelinCLUT;
1075
1076
1077 // This is a loosy optimization! does not apply in floating-point cases
1078 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1079
1080 // Only on chunky RGB
1081 if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE;
1082 if (T_PLANAR(*InputFormat)) return FALSE;
1083
1084 if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1085 if (T_PLANAR(*OutputFormat)) return FALSE;
1086
1087 // On 16 bits, user has to specify the feature
1088 if (!_cmsFormatterIs8bit(*InputFormat)) {
1089 if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1090 }
1091
1092 OriginalLut = *Lut;
1093
1094 // Named color pipelines cannot be optimized either
1095 for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut);
1096 mpe != NULL;
1097 mpe = cmsStageNext(mpe)) {
1098 if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
1099 }
1100
1101 ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
1102 OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
1103
1104 // Color space must be specified
1105 if (ColorSpace == (cmsColorSpaceSignature)0 ||
1106 OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
1107
1108 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
1109
1110 // Empty gamma containers
1111 memset(Trans, 0, sizeof(Trans));
1112 memset(TransReverse, 0, sizeof(TransReverse));
1113
1114 // If the last stage of the original lut are curves, and those curves are
1115 // degenerated, it is likely the transform is squeezing and clipping
1116 // the output from previous CLUT. We cannot optimize this case
1117 {
1118 cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
1119
1120 if (cmsStageType(last) == cmsSigCurveSetElemType) {
1121
1122 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
1123 for (i = 0; i < Data->nCurves; i++) {
1124 if (IsDegenerated(Data->TheCurves[i]))
1125 goto Error;
1126 }
1127 }
1128 }
1129
1130 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1131 Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
1132 if (Trans[t] == NULL) goto Error;
1133 }
1134
1135 // Populate the curves
1136 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1137
1138 v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1139
1140 // Feed input with a gray ramp
1141 for (t=0; t < OriginalLut ->InputChannels; t++)
1142 In[t] = v;
1143
1144 // Evaluate the gray value
1145 cmsPipelineEvalFloat(In, Out, OriginalLut);
1146
1147 // Store result in curve
1148 for (t=0; t < OriginalLut ->InputChannels; t++)
1149 Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1150 }
1151
1152 // Slope-limit the obtained curves
1153 for (t = 0; t < OriginalLut ->InputChannels; t++)
1154 SlopeLimiting(Trans[t]);
1155
1156 // Check for validity
1157 lIsSuitable = TRUE;
1158 lIsLinear = TRUE;
1159 for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1160
1161 // Exclude if already linear
1162 if (!cmsIsToneCurveLinear(Trans[t]))
1163 lIsLinear = FALSE;
1164
1165 // Exclude if non-monotonic
1166 if (!cmsIsToneCurveMonotonic(Trans[t]))
1167 lIsSuitable = FALSE;
1168
1169 if (IsDegenerated(Trans[t]))
1170 lIsSuitable = FALSE;
1171 }
1172
1173 // If it is not suitable, just quit
1174 if (!lIsSuitable) goto Error;
1175
1176 // Invert curves if possible
1177 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1178 TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1179 if (TransReverse[t] == NULL) goto Error;
1180 }
1181
1182 // Now inset the reversed curves at the begin of transform
1183 LutPlusCurves = cmsPipelineDup(OriginalLut);
1184 if (LutPlusCurves == NULL) goto Error;
1185
1186 if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1187 goto Error;
1188
1189 // Create the result LUT
1190 OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1191 if (OptimizedLUT == NULL) goto Error;
1192
1193 OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1194
1195 // Create and insert the curves at the beginning
1196 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1197 goto Error;
1198
1199 // Allocate the CLUT for result
1200 OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1201
1202 // Add the CLUT to the destination LUT
1203 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1204 goto Error;
1205
1206 // Resample the LUT
1207 if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1208
1209 // Free resources
1210 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1211
1212 if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1213 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1214 }
1215
1216 cmsPipelineFree(LutPlusCurves);
1217
1218
1219 OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1220 OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1221
1222 // Set the evaluator if 8-bit
1223 if (_cmsFormatterIs8bit(*InputFormat)) {
1224
1225 Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1226 OptimizedPrelinCLUT ->Params,
1227 OptimizedPrelinCurves);
1228 if (p8 == NULL) return FALSE;
1229
1230 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1231
1232 }
1233 else
1234 {
1235 Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1236 OptimizedPrelinCLUT ->Params,
1237 3, OptimizedPrelinCurves, 3, NULL);
1238 if (p16 == NULL) return FALSE;
1239
1240 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1241
1242 }
1243
1244 // Don't fix white on absolute colorimetric
1245 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1246 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1247
1248 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1249
1250 if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1251
1252 return FALSE;
1253 }
1254 }
1255
1256 // And return the obtained LUT
1257
1258 cmsPipelineFree(OriginalLut);
1259 *Lut = OptimizedLUT;
1260 return TRUE;
1261
1262 Error:
1263
1264 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1265
1266 if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1267 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1268 }
1269
1270 if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1271 if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1272
1273 return FALSE;
1274
1275 cmsUNUSED_PARAMETER(Intent);
1276 cmsUNUSED_PARAMETER(lIsLinear);
1277 }
1278
1279
1280 // Curves optimizer ------------------------------------------------------------------------------------------------------------------
1281
1282 static
CurvesFree(cmsContext ContextID,void * ptr)1283 void CurvesFree(cmsContext ContextID, void* ptr)
1284 {
1285 Curves16Data* Data = (Curves16Data*) ptr;
1286 cmsUInt32Number i;
1287
1288 for (i=0; i < Data -> nCurves; i++) {
1289
1290 _cmsFree(ContextID, Data ->Curves[i]);
1291 }
1292
1293 _cmsFree(ContextID, Data ->Curves);
1294 _cmsFree(ContextID, ptr);
1295 }
1296
1297 static
CurvesDup(cmsContext ContextID,const void * ptr)1298 void* CurvesDup(cmsContext ContextID, const void* ptr)
1299 {
1300 Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1301 cmsUInt32Number i;
1302
1303 if (Data == NULL) return NULL;
1304
1305 Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1306
1307 for (i=0; i < Data -> nCurves; i++) {
1308 Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1309 }
1310
1311 return (void*) Data;
1312 }
1313
1314 // Precomputes tables for 8-bit on input devicelink.
1315 static
CurvesAlloc(cmsContext ContextID,cmsUInt32Number nCurves,cmsUInt32Number nElements,cmsToneCurve ** G)1316 Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
1317 {
1318 cmsUInt32Number i, j;
1319 Curves16Data* c16;
1320
1321 c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1322 if (c16 == NULL) return NULL;
1323
1324 c16 ->nCurves = nCurves;
1325 c16 ->nElements = nElements;
1326
1327 c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1328 if (c16->Curves == NULL) {
1329 _cmsFree(ContextID, c16);
1330 return NULL;
1331 }
1332
1333 for (i=0; i < nCurves; i++) {
1334
1335 c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1336
1337 if (c16->Curves[i] == NULL) {
1338
1339 for (j=0; j < i; j++) {
1340 _cmsFree(ContextID, c16->Curves[j]);
1341 }
1342 _cmsFree(ContextID, c16->Curves);
1343 _cmsFree(ContextID, c16);
1344 return NULL;
1345 }
1346
1347 if (nElements == 256U) {
1348
1349 for (j=0; j < nElements; j++) {
1350
1351 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1352 }
1353 }
1354 else {
1355
1356 for (j=0; j < nElements; j++) {
1357 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1358 }
1359 }
1360 }
1361
1362 return c16;
1363 }
1364
1365 static
FastEvaluateCurves8(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1366 void FastEvaluateCurves8(register const cmsUInt16Number In[],
1367 register cmsUInt16Number Out[],
1368 register const void* D)
1369 {
1370 Curves16Data* Data = (Curves16Data*) D;
1371 int x;
1372 cmsUInt32Number i;
1373
1374 for (i=0; i < Data ->nCurves; i++) {
1375
1376 x = (In[i] >> 8);
1377 Out[i] = Data -> Curves[i][x];
1378 }
1379 }
1380
1381
1382 static
FastEvaluateCurves16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1383 void FastEvaluateCurves16(register const cmsUInt16Number In[],
1384 register cmsUInt16Number Out[],
1385 register const void* D)
1386 {
1387 Curves16Data* Data = (Curves16Data*) D;
1388 cmsUInt32Number i;
1389
1390 for (i=0; i < Data ->nCurves; i++) {
1391 Out[i] = Data -> Curves[i][In[i]];
1392 }
1393 }
1394
1395
1396 static
FastIdentity16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1397 void FastIdentity16(register const cmsUInt16Number In[],
1398 register cmsUInt16Number Out[],
1399 register const void* D)
1400 {
1401 cmsPipeline* Lut = (cmsPipeline*) D;
1402 cmsUInt32Number i;
1403
1404 for (i=0; i < Lut ->InputChannels; i++) {
1405 Out[i] = In[i];
1406 }
1407 }
1408
1409
1410 // If the target LUT holds only curves, the optimization procedure is to join all those
1411 // curves together. That only works on curves and does not work on matrices.
1412 static
OptimizeByJoiningCurves(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1413 cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1414 {
1415 cmsToneCurve** GammaTables = NULL;
1416 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1417 cmsUInt32Number i, j;
1418 cmsPipeline* Src = *Lut;
1419 cmsPipeline* Dest = NULL;
1420 cmsStage* mpe;
1421 cmsStage* ObtainedCurves = NULL;
1422
1423
1424 // This is a loosy optimization! does not apply in floating-point cases
1425 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1426
1427 // Only curves in this LUT?
1428 for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1429 mpe != NULL;
1430 mpe = cmsStageNext(mpe)) {
1431 if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1432 }
1433
1434 // Allocate an empty LUT
1435 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1436 if (Dest == NULL) return FALSE;
1437
1438 // Create target curves
1439 GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1440 if (GammaTables == NULL) goto Error;
1441
1442 for (i=0; i < Src ->InputChannels; i++) {
1443 GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1444 if (GammaTables[i] == NULL) goto Error;
1445 }
1446
1447 // Compute 16 bit result by using floating point
1448 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1449
1450 for (j=0; j < Src ->InputChannels; j++)
1451 InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1452
1453 cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1454
1455 for (j=0; j < Src ->InputChannels; j++)
1456 GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1457 }
1458
1459 ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1460 if (ObtainedCurves == NULL) goto Error;
1461
1462 for (i=0; i < Src ->InputChannels; i++) {
1463 cmsFreeToneCurve(GammaTables[i]);
1464 GammaTables[i] = NULL;
1465 }
1466
1467 if (GammaTables != NULL) {
1468 _cmsFree(Src->ContextID, GammaTables);
1469 GammaTables = NULL;
1470 }
1471
1472 // Maybe the curves are linear at the end
1473 if (!AllCurvesAreLinear(ObtainedCurves)) {
1474
1475 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1476 goto Error;
1477
1478 // If the curves are to be applied in 8 bits, we can save memory
1479 if (_cmsFormatterIs8bit(*InputFormat)) {
1480
1481 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) ObtainedCurves ->Data;
1482 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1483
1484 if (c16 == NULL) goto Error;
1485 *dwFlags |= cmsFLAGS_NOCACHE;
1486 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1487
1488 }
1489 else {
1490
1491 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1492 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1493
1494 if (c16 == NULL) goto Error;
1495 *dwFlags |= cmsFLAGS_NOCACHE;
1496 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1497 }
1498 }
1499 else {
1500
1501 // LUT optimizes to nothing. Set the identity LUT
1502 cmsStageFree(ObtainedCurves);
1503 ObtainedCurves = NULL;
1504
1505 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1506 goto Error;
1507
1508 *dwFlags |= cmsFLAGS_NOCACHE;
1509 _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1510 }
1511
1512 // We are done.
1513 cmsPipelineFree(Src);
1514 *Lut = Dest;
1515 return TRUE;
1516
1517 Error:
1518
1519 if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1520 if (GammaTables != NULL) {
1521 for (i=0; i < Src ->InputChannels; i++) {
1522 if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1523 }
1524
1525 _cmsFree(Src ->ContextID, GammaTables);
1526 }
1527
1528 if (Dest != NULL) cmsPipelineFree(Dest);
1529 return FALSE;
1530
1531 cmsUNUSED_PARAMETER(Intent);
1532 cmsUNUSED_PARAMETER(InputFormat);
1533 cmsUNUSED_PARAMETER(OutputFormat);
1534 cmsUNUSED_PARAMETER(dwFlags);
1535 }
1536
1537 // -------------------------------------------------------------------------------------------------------------------------------------
1538 // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1539
1540
1541 static
FreeMatShaper(cmsContext ContextID,void * Data)1542 void FreeMatShaper(cmsContext ContextID, void* Data)
1543 {
1544 if (Data != NULL) _cmsFree(ContextID, Data);
1545 }
1546
1547 static
DupMatShaper(cmsContext ContextID,const void * Data)1548 void* DupMatShaper(cmsContext ContextID, const void* Data)
1549 {
1550 return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1551 }
1552
1553
1554 // A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
1555 // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1556 // in total about 50K, and the performance boost is huge!
1557 static
MatShaperEval16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1558 void MatShaperEval16(register const cmsUInt16Number In[],
1559 register cmsUInt16Number Out[],
1560 register const void* D)
1561 {
1562 MatShaper8Data* p = (MatShaper8Data*) D;
1563 cmsS1Fixed14Number r, g, b;
1564 cmsInt64Number l1, l2, l3;
1565 cmsUInt32Number ri, gi, bi;
1566
1567 // In this case (and only in this case!) we can use this simplification since
1568 // In[] is assured to come from a 8 bit number. (a << 8 | a)
1569 ri = In[0] & 0xFFU;
1570 gi = In[1] & 0xFFU;
1571 bi = In[2] & 0xFFU;
1572
1573 // Across first shaper, which also converts to 1.14 fixed point
1574 r = _FixedClamp(p->Shaper1R[ri]);
1575 g = _FixedClamp(p->Shaper1G[gi]);
1576 b = _FixedClamp(p->Shaper1B[bi]);
1577
1578 // Evaluate the matrix in 1.14 fixed point
1579 l1 = _MatShaperEvaluateRow(p->Mat[0], p->Off[0], r, g, b);
1580 l2 = _MatShaperEvaluateRow(p->Mat[1], p->Off[1], r, g, b);
1581 l3 = _MatShaperEvaluateRow(p->Mat[2], p->Off[2], r, g, b);
1582
1583 // Now we have to clip to 0..1.0 range
1584 ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
1585 gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
1586 bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
1587
1588 // And across second shaper,
1589 Out[0] = p->Shaper2R[ri];
1590 Out[1] = p->Shaper2G[gi];
1591 Out[2] = p->Shaper2B[bi];
1592
1593 }
1594
1595 // This table converts from 8 bits to 1.14 after applying the curve
1596 static
FillFirstShaper(cmsS1Fixed14Number * Table,cmsToneCurve * Curve)1597 void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1598 {
1599 int i;
1600 cmsFloat32Number R, y;
1601
1602 for (i=0; i < 256; i++) {
1603
1604 R = (cmsFloat32Number) (i / 255.0);
1605 y = cmsEvalToneCurveFloat(Curve, R);
1606
1607 if (y < 131072.0)
1608 Table[i] = DOUBLE_TO_1FIXED14(y);
1609 else
1610 Table[i] = 0x7fffffff;
1611 }
1612 }
1613
1614 // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1615 static
FillSecondShaper(cmsUInt16Number * Table,cmsToneCurve * Curve,cmsBool Is8BitsOutput)1616 void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1617 {
1618 int i;
1619 cmsFloat32Number R, Val;
1620
1621 for (i=0; i < 16385; i++) {
1622
1623 R = (cmsFloat32Number) (i / 16384.0);
1624 Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0
1625
1626 if (Val < 0)
1627 Val = 0;
1628
1629 if (Val > 1.0)
1630 Val = 1.0;
1631
1632 if (Is8BitsOutput) {
1633
1634 // If 8 bits output, we can optimize further by computing the / 257 part.
1635 // first we compute the resulting byte and then we store the byte times
1636 // 257. This quantization allows to round very quick by doing a >> 8, but
1637 // since the low byte is always equal to msb, we can do a & 0xff and this works!
1638 cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1639 cmsUInt8Number b = FROM_16_TO_8(w);
1640
1641 Table[i] = FROM_8_TO_16(b);
1642 }
1643 else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
1644 }
1645 }
1646
1647 // Compute the matrix-shaper structure
1648 static
SetMatShaper(cmsPipeline * Dest,cmsToneCurve * Curve1[3],cmsMAT3 * Mat,cmsVEC3 * Off,cmsToneCurve * Curve2[3],cmsUInt32Number * OutputFormat)1649 cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1650 {
1651 MatShaper8Data* p;
1652 int i, j;
1653 cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1654
1655 // Allocate a big chuck of memory to store precomputed tables
1656 p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1657 if (p == NULL) return FALSE;
1658
1659 p -> ContextID = Dest -> ContextID;
1660
1661 // Precompute tables
1662 FillFirstShaper(p ->Shaper1R, Curve1[0]);
1663 FillFirstShaper(p ->Shaper1G, Curve1[1]);
1664 FillFirstShaper(p ->Shaper1B, Curve1[2]);
1665
1666 FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1667 FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1668 FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1669
1670 // Convert matrix to nFixed14. Note that those values may take more than 16 bits
1671 for (i=0; i < 3; i++) {
1672 for (j=0; j < 3; j++) {
1673 p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1674 }
1675 }
1676
1677 for (i=0; i < 3; i++) {
1678
1679 if (Off == NULL) {
1680 p ->Off[i] = 0;
1681 }
1682 else {
1683 p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1684 }
1685 }
1686
1687 // Mark as optimized for faster formatter
1688 if (Is8Bits)
1689 *OutputFormat |= OPTIMIZED_SH(1);
1690
1691 // Fill function pointers
1692 _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1693 return TRUE;
1694 }
1695
1696 // 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1697 static
OptimizeMatrixShaper(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1698 cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1699 {
1700 cmsStage* Curve1, *Curve2;
1701 cmsStage* Matrix1, *Matrix2;
1702 cmsMAT3 res;
1703 cmsBool IdentityMat;
1704 cmsPipeline* Dest, *Src;
1705 cmsFloat64Number* Offset;
1706
1707 // Only works on RGB to RGB
1708 if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1709
1710 // Only works on 8 bit input
1711 if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1712
1713 // Seems suitable, proceed
1714 Src = *Lut;
1715
1716 // Check for:
1717 //
1718 // shaper-matrix-matrix-shaper
1719 // shaper-matrix-shaper
1720 //
1721 // Both of those constructs are possible (first because abs. colorimetric).
1722 // additionally, In the first case, the input matrix offset should be zero.
1723
1724 IdentityMat = FALSE;
1725 if (cmsPipelineCheckAndRetreiveStages(Src, 4,
1726 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1727 &Curve1, &Matrix1, &Matrix2, &Curve2)) {
1728
1729 // Get both matrices
1730 _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1731 _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
1732
1733 // Input offset should be zero
1734 if (Data1->Offset != NULL) return FALSE;
1735
1736 // Multiply both matrices to get the result
1737 _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1738
1739 // Only 2nd matrix has offset, or it is zero
1740 Offset = Data2->Offset;
1741
1742 // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1743 if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1744
1745 // We can get rid of full matrix
1746 IdentityMat = TRUE;
1747 }
1748
1749 }
1750 else {
1751
1752 if (cmsPipelineCheckAndRetreiveStages(Src, 3,
1753 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1754 &Curve1, &Matrix1, &Curve2)) {
1755
1756 _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1757
1758 // Copy the matrix to our result
1759 memcpy(&res, Data->Double, sizeof(res));
1760
1761 // Preserve the Odffset (may be NULL as a zero offset)
1762 Offset = Data->Offset;
1763
1764 if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1765
1766 // We can get rid of full matrix
1767 IdentityMat = TRUE;
1768 }
1769 }
1770 else
1771 return FALSE; // Not optimizeable this time
1772
1773 }
1774
1775 // Allocate an empty LUT
1776 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1777 if (!Dest) return FALSE;
1778
1779 // Assamble the new LUT
1780 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1781 goto Error;
1782
1783 if (!IdentityMat) {
1784
1785 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1786 goto Error;
1787 }
1788
1789 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1790 goto Error;
1791
1792 // If identity on matrix, we can further optimize the curves, so call the join curves routine
1793 if (IdentityMat) {
1794
1795 OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1796 }
1797 else {
1798 _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1799 _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1800
1801 // In this particular optimization, cache does not help as it takes more time to deal with
1802 // the cache that with the pixel handling
1803 *dwFlags |= cmsFLAGS_NOCACHE;
1804
1805 // Setup the optimizarion routines
1806 SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1807 }
1808
1809 cmsPipelineFree(Src);
1810 *Lut = Dest;
1811 return TRUE;
1812 Error:
1813 // Leave Src unchanged
1814 cmsPipelineFree(Dest);
1815 return FALSE;
1816 }
1817
1818
1819 // -------------------------------------------------------------------------------------------------------------------------------------
1820 // Optimization plug-ins
1821
1822 // List of optimizations
1823 typedef struct _cmsOptimizationCollection_st {
1824
1825 _cmsOPToptimizeFn OptimizePtr;
1826
1827 struct _cmsOptimizationCollection_st *Next;
1828
1829 } _cmsOptimizationCollection;
1830
1831
1832 // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1833 static _cmsOptimizationCollection DefaultOptimization[] = {
1834
1835 { OptimizeByJoiningCurves, &DefaultOptimization[1] },
1836 { OptimizeMatrixShaper, &DefaultOptimization[2] },
1837 { OptimizeByComputingLinearization, &DefaultOptimization[3] },
1838 { OptimizeByResampling, NULL }
1839 };
1840
1841 // The linked list head
1842 _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1843
1844
1845 // Duplicates the zone of memory used by the plug-in in the new context
1846 static
DupPluginOptimizationList(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)1847 void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1848 const struct _cmsContext_struct* src)
1849 {
1850 _cmsOptimizationPluginChunkType newHead = { NULL };
1851 _cmsOptimizationCollection* entry;
1852 _cmsOptimizationCollection* Anterior = NULL;
1853 _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1854
1855 _cmsAssert(ctx != NULL);
1856 _cmsAssert(head != NULL);
1857
1858 // Walk the list copying all nodes
1859 for (entry = head->OptimizationCollection;
1860 entry != NULL;
1861 entry = entry ->Next) {
1862
1863 _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1864
1865 if (newEntry == NULL)
1866 return;
1867
1868 // We want to keep the linked list order, so this is a little bit tricky
1869 newEntry -> Next = NULL;
1870 if (Anterior)
1871 Anterior -> Next = newEntry;
1872
1873 Anterior = newEntry;
1874
1875 if (newHead.OptimizationCollection == NULL)
1876 newHead.OptimizationCollection = newEntry;
1877 }
1878
1879 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1880 }
1881
_cmsAllocOptimizationPluginChunk(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)1882 void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1883 const struct _cmsContext_struct* src)
1884 {
1885 if (src != NULL) {
1886
1887 // Copy all linked list
1888 DupPluginOptimizationList(ctx, src);
1889 }
1890 else {
1891 static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1892 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1893 }
1894 }
1895
1896
1897 // Register new ways to optimize
_cmsRegisterOptimizationPlugin(cmsContext ContextID,cmsPluginBase * Data)1898 cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1899 {
1900 cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1901 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1902 _cmsOptimizationCollection* fl;
1903
1904 if (Data == NULL) {
1905
1906 ctx->OptimizationCollection = NULL;
1907 return TRUE;
1908 }
1909
1910 // Optimizer callback is required
1911 if (Plugin ->OptimizePtr == NULL) return FALSE;
1912
1913 fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1914 if (fl == NULL) return FALSE;
1915
1916 // Copy the parameters
1917 fl ->OptimizePtr = Plugin ->OptimizePtr;
1918
1919 // Keep linked list
1920 fl ->Next = ctx->OptimizationCollection;
1921
1922 // Set the head
1923 ctx ->OptimizationCollection = fl;
1924
1925 // All is ok
1926 return TRUE;
1927 }
1928
1929 // The entry point for LUT optimization
_cmsOptimizePipeline(cmsContext ContextID,cmsPipeline ** PtrLut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1930 cmsBool _cmsOptimizePipeline(cmsContext ContextID,
1931 cmsPipeline** PtrLut,
1932 cmsUInt32Number Intent,
1933 cmsUInt32Number* InputFormat,
1934 cmsUInt32Number* OutputFormat,
1935 cmsUInt32Number* dwFlags)
1936 {
1937 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1938 _cmsOptimizationCollection* Opts;
1939 cmsBool AnySuccess = FALSE;
1940
1941 // A CLUT is being asked, so force this specific optimization
1942 if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1943
1944 PreOptimize(*PtrLut);
1945 return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1946 }
1947
1948 // Anything to optimize?
1949 if ((*PtrLut) ->Elements == NULL) {
1950 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1951 return TRUE;
1952 }
1953
1954 // Try to get rid of identities and trivial conversions.
1955 AnySuccess = PreOptimize(*PtrLut);
1956
1957 // After removal do we end with an identity?
1958 if ((*PtrLut) ->Elements == NULL) {
1959 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1960 return TRUE;
1961 }
1962
1963 // Do not optimize, keep all precision
1964 if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1965 return FALSE;
1966
1967 // Try plug-in optimizations
1968 for (Opts = ctx->OptimizationCollection;
1969 Opts != NULL;
1970 Opts = Opts ->Next) {
1971
1972 // If one schema succeeded, we are done
1973 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1974
1975 return TRUE; // Optimized!
1976 }
1977 }
1978
1979 // Try built-in optimizations
1980 for (Opts = DefaultOptimization;
1981 Opts != NULL;
1982 Opts = Opts ->Next) {
1983
1984 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1985
1986 return TRUE;
1987 }
1988 }
1989
1990 // Only simple optimizations succeeded
1991 return AnySuccess;
1992 }
1993
1994
1995
1996