1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file mipmap.c mipmap generation and teximage resizing functions.
28 */
29
30 #include "errors.h"
31
32 #include "formats.h"
33 #include "glformats.h"
34 #include "mipmap.h"
35 #include "mtypes.h"
36 #include "teximage.h"
37 #include "texobj.h"
38 #include "texstore.h"
39 #include "image.h"
40 #include "macros.h"
41 #include "util/half_float.h"
42 #include "util/format_rgb9e5.h"
43 #include "util/format_r11g11b10f.h"
44
45
46 /**
47 * Compute the expected number of mipmap levels in the texture given
48 * the width/height/depth of the base image and the GL_TEXTURE_BASE_LEVEL/
49 * GL_TEXTURE_MAX_LEVEL settings. This will tell us how many mipmap
50 * levels should be generated.
51 */
52 unsigned
_mesa_compute_num_levels(struct gl_context * ctx,struct gl_texture_object * texObj,GLenum target)53 _mesa_compute_num_levels(struct gl_context *ctx,
54 struct gl_texture_object *texObj,
55 GLenum target)
56 {
57 const struct gl_texture_image *baseImage;
58 GLuint numLevels;
59
60 baseImage = _mesa_get_tex_image(ctx, texObj, target, texObj->BaseLevel);
61
62 numLevels = texObj->BaseLevel + baseImage->MaxNumLevels;
63 numLevels = MIN2(numLevels, (GLuint) texObj->MaxLevel + 1);
64 if (texObj->Immutable)
65 numLevels = MIN2(numLevels, texObj->NumLevels);
66 assert(numLevels >= 1);
67
68 return numLevels;
69 }
70
71 static GLint
bytes_per_pixel(GLenum datatype,GLuint comps)72 bytes_per_pixel(GLenum datatype, GLuint comps)
73 {
74 GLint b;
75
76 if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA ||
77 datatype == GL_UNSIGNED_INT_24_8_MESA)
78 return 4;
79
80 b = _mesa_sizeof_packed_type(datatype);
81 assert(b >= 0);
82
83 if (_mesa_type_is_packed(datatype))
84 return b;
85 else
86 return b * comps;
87 }
88
89
90 /**
91 * \name Support macros for do_row and do_row_3d
92 *
93 * The macro madness is here for two reasons. First, it compacts the code
94 * slightly. Second, it makes it much easier to adjust the specifics of the
95 * filter to tune the rounding characteristics.
96 */
97 /*@{*/
98 #define DECLARE_ROW_POINTERS(t, e) \
99 const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
100 const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
101 const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
102 const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
103 t(*dst)[e] = (t(*)[e]) dstRow
104
105 #define DECLARE_ROW_POINTERS0(t) \
106 const t *rowA = (const t *) srcRowA; \
107 const t *rowB = (const t *) srcRowB; \
108 const t *rowC = (const t *) srcRowC; \
109 const t *rowD = (const t *) srcRowD; \
110 t *dst = (t *) dstRow
111
112 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
113 ((unsigned) Aj + (unsigned) Ak \
114 + (unsigned) Bj + (unsigned) Bk \
115 + (unsigned) Cj + (unsigned) Ck \
116 + (unsigned) Dj + (unsigned) Dk \
117 + 4) >> 3
118
119 #define FILTER_3D(e) \
120 do { \
121 dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
122 rowB[j][e], rowB[k][e], \
123 rowC[j][e], rowC[k][e], \
124 rowD[j][e], rowD[k][e]); \
125 } while(0)
126
127 #define FILTER_SUM_3D_SIGNED(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
128 (Aj + Ak \
129 + Bj + Bk \
130 + Cj + Ck \
131 + Dj + Dk \
132 + 4) / 8
133
134 #define FILTER_3D_SIGNED(e) \
135 do { \
136 dst[i][e] = FILTER_SUM_3D_SIGNED(rowA[j][e], rowA[k][e], \
137 rowB[j][e], rowB[k][e], \
138 rowC[j][e], rowC[k][e], \
139 rowD[j][e], rowD[k][e]); \
140 } while(0)
141
142 #define FILTER_F_3D(e) \
143 do { \
144 dst[i][e] = (rowA[j][e] + rowA[k][e] \
145 + rowB[j][e] + rowB[k][e] \
146 + rowC[j][e] + rowC[k][e] \
147 + rowD[j][e] + rowD[k][e]) * 0.125F; \
148 } while(0)
149
150 #define FILTER_HF_3D(e) \
151 do { \
152 const GLfloat aj = _mesa_half_to_float(rowA[j][e]); \
153 const GLfloat ak = _mesa_half_to_float(rowA[k][e]); \
154 const GLfloat bj = _mesa_half_to_float(rowB[j][e]); \
155 const GLfloat bk = _mesa_half_to_float(rowB[k][e]); \
156 const GLfloat cj = _mesa_half_to_float(rowC[j][e]); \
157 const GLfloat ck = _mesa_half_to_float(rowC[k][e]); \
158 const GLfloat dj = _mesa_half_to_float(rowD[j][e]); \
159 const GLfloat dk = _mesa_half_to_float(rowD[k][e]); \
160 dst[i][e] = _mesa_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
161 * 0.125F); \
162 } while(0)
163 /*@}*/
164
165
166 /**
167 * Average together two rows of a source image to produce a single new
168 * row in the dest image. It's legal for the two source rows to point
169 * to the same data. The source width must be equal to either the
170 * dest width or two times the dest width.
171 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
172 * \param comps number of components per pixel (1..4)
173 */
174 static void
do_row(GLenum datatype,GLuint comps,GLint srcWidth,const GLvoid * srcRowA,const GLvoid * srcRowB,GLint dstWidth,GLvoid * dstRow)175 do_row(GLenum datatype, GLuint comps, GLint srcWidth,
176 const GLvoid *srcRowA, const GLvoid *srcRowB,
177 GLint dstWidth, GLvoid *dstRow)
178 {
179 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
180 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
181
182 assert(comps >= 1);
183 assert(comps <= 4);
184
185 /* This assertion is no longer valid with non-power-of-2 textures
186 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
187 */
188
189 if (datatype == GL_UNSIGNED_BYTE && comps == 4) {
190 GLuint i, j, k;
191 const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA;
192 const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB;
193 GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow;
194 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
195 i++, j += colStride, k += colStride) {
196 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
197 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
198 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
199 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
200 }
201 }
202 else if (datatype == GL_UNSIGNED_BYTE && comps == 3) {
203 GLuint i, j, k;
204 const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA;
205 const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB;
206 GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow;
207 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
208 i++, j += colStride, k += colStride) {
209 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
210 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
211 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
212 }
213 }
214 else if (datatype == GL_UNSIGNED_BYTE && comps == 2) {
215 GLuint i, j, k;
216 const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA;
217 const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB;
218 GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow;
219 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
220 i++, j += colStride, k += colStride) {
221 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
222 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
223 }
224 }
225 else if (datatype == GL_UNSIGNED_BYTE && comps == 1) {
226 GLuint i, j, k;
227 const GLubyte *rowA = (const GLubyte *) srcRowA;
228 const GLubyte *rowB = (const GLubyte *) srcRowB;
229 GLubyte *dst = (GLubyte *) dstRow;
230 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
231 i++, j += colStride, k += colStride) {
232 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
233 }
234 }
235
236 else if (datatype == GL_BYTE && comps == 4) {
237 GLuint i, j, k;
238 const GLbyte(*rowA)[4] = (const GLbyte(*)[4]) srcRowA;
239 const GLbyte(*rowB)[4] = (const GLbyte(*)[4]) srcRowB;
240 GLbyte(*dst)[4] = (GLbyte(*)[4]) dstRow;
241 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
242 i++, j += colStride, k += colStride) {
243 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
244 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
245 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
246 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
247 }
248 }
249 else if (datatype == GL_BYTE && comps == 3) {
250 GLuint i, j, k;
251 const GLbyte(*rowA)[3] = (const GLbyte(*)[3]) srcRowA;
252 const GLbyte(*rowB)[3] = (const GLbyte(*)[3]) srcRowB;
253 GLbyte(*dst)[3] = (GLbyte(*)[3]) dstRow;
254 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
255 i++, j += colStride, k += colStride) {
256 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
257 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
258 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
259 }
260 }
261 else if (datatype == GL_BYTE && comps == 2) {
262 GLuint i, j, k;
263 const GLbyte(*rowA)[2] = (const GLbyte(*)[2]) srcRowA;
264 const GLbyte(*rowB)[2] = (const GLbyte(*)[2]) srcRowB;
265 GLbyte(*dst)[2] = (GLbyte(*)[2]) dstRow;
266 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
267 i++, j += colStride, k += colStride) {
268 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
269 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
270 }
271 }
272 else if (datatype == GL_BYTE && comps == 1) {
273 GLuint i, j, k;
274 const GLbyte *rowA = (const GLbyte *) srcRowA;
275 const GLbyte *rowB = (const GLbyte *) srcRowB;
276 GLbyte *dst = (GLbyte *) dstRow;
277 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
278 i++, j += colStride, k += colStride) {
279 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
280 }
281 }
282
283 else if (datatype == GL_UNSIGNED_SHORT && comps == 4) {
284 GLuint i, j, k;
285 const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA;
286 const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB;
287 GLushort(*dst)[4] = (GLushort(*)[4]) dstRow;
288 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
289 i++, j += colStride, k += colStride) {
290 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
291 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
292 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
293 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
294 }
295 }
296 else if (datatype == GL_UNSIGNED_SHORT && comps == 3) {
297 GLuint i, j, k;
298 const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA;
299 const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB;
300 GLushort(*dst)[3] = (GLushort(*)[3]) dstRow;
301 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
302 i++, j += colStride, k += colStride) {
303 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
304 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
305 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
306 }
307 }
308 else if (datatype == GL_UNSIGNED_SHORT && comps == 2) {
309 GLuint i, j, k;
310 const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA;
311 const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB;
312 GLushort(*dst)[2] = (GLushort(*)[2]) dstRow;
313 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
314 i++, j += colStride, k += colStride) {
315 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
316 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
317 }
318 }
319 else if (datatype == GL_UNSIGNED_SHORT && comps == 1) {
320 GLuint i, j, k;
321 const GLushort *rowA = (const GLushort *) srcRowA;
322 const GLushort *rowB = (const GLushort *) srcRowB;
323 GLushort *dst = (GLushort *) dstRow;
324 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
325 i++, j += colStride, k += colStride) {
326 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
327 }
328 }
329
330 else if (datatype == GL_SHORT && comps == 4) {
331 GLuint i, j, k;
332 const GLshort(*rowA)[4] = (const GLshort(*)[4]) srcRowA;
333 const GLshort(*rowB)[4] = (const GLshort(*)[4]) srcRowB;
334 GLshort(*dst)[4] = (GLshort(*)[4]) dstRow;
335 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
336 i++, j += colStride, k += colStride) {
337 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
338 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
339 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
340 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
341 }
342 }
343 else if (datatype == GL_SHORT && comps == 3) {
344 GLuint i, j, k;
345 const GLshort(*rowA)[3] = (const GLshort(*)[3]) srcRowA;
346 const GLshort(*rowB)[3] = (const GLshort(*)[3]) srcRowB;
347 GLshort(*dst)[3] = (GLshort(*)[3]) dstRow;
348 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
349 i++, j += colStride, k += colStride) {
350 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
351 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
352 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
353 }
354 }
355 else if (datatype == GL_SHORT && comps == 2) {
356 GLuint i, j, k;
357 const GLshort(*rowA)[2] = (const GLshort(*)[2]) srcRowA;
358 const GLshort(*rowB)[2] = (const GLshort(*)[2]) srcRowB;
359 GLshort(*dst)[2] = (GLshort(*)[2]) dstRow;
360 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
361 i++, j += colStride, k += colStride) {
362 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
363 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
364 }
365 }
366 else if (datatype == GL_SHORT && comps == 1) {
367 GLuint i, j, k;
368 const GLshort *rowA = (const GLshort *) srcRowA;
369 const GLshort *rowB = (const GLshort *) srcRowB;
370 GLshort *dst = (GLshort *) dstRow;
371 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
372 i++, j += colStride, k += colStride) {
373 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
374 }
375 }
376
377 else if (datatype == GL_FLOAT && comps == 4) {
378 GLuint i, j, k;
379 const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA;
380 const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB;
381 GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow;
382 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
383 i++, j += colStride, k += colStride) {
384 dst[i][0] = (rowA[j][0] + rowA[k][0] +
385 rowB[j][0] + rowB[k][0]) * 0.25F;
386 dst[i][1] = (rowA[j][1] + rowA[k][1] +
387 rowB[j][1] + rowB[k][1]) * 0.25F;
388 dst[i][2] = (rowA[j][2] + rowA[k][2] +
389 rowB[j][2] + rowB[k][2]) * 0.25F;
390 dst[i][3] = (rowA[j][3] + rowA[k][3] +
391 rowB[j][3] + rowB[k][3]) * 0.25F;
392 }
393 }
394 else if (datatype == GL_FLOAT && comps == 3) {
395 GLuint i, j, k;
396 const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA;
397 const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB;
398 GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow;
399 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
400 i++, j += colStride, k += colStride) {
401 dst[i][0] = (rowA[j][0] + rowA[k][0] +
402 rowB[j][0] + rowB[k][0]) * 0.25F;
403 dst[i][1] = (rowA[j][1] + rowA[k][1] +
404 rowB[j][1] + rowB[k][1]) * 0.25F;
405 dst[i][2] = (rowA[j][2] + rowA[k][2] +
406 rowB[j][2] + rowB[k][2]) * 0.25F;
407 }
408 }
409 else if (datatype == GL_FLOAT && comps == 2) {
410 GLuint i, j, k;
411 const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA;
412 const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB;
413 GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow;
414 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
415 i++, j += colStride, k += colStride) {
416 dst[i][0] = (rowA[j][0] + rowA[k][0] +
417 rowB[j][0] + rowB[k][0]) * 0.25F;
418 dst[i][1] = (rowA[j][1] + rowA[k][1] +
419 rowB[j][1] + rowB[k][1]) * 0.25F;
420 }
421 }
422 else if (datatype == GL_FLOAT && comps == 1) {
423 GLuint i, j, k;
424 const GLfloat *rowA = (const GLfloat *) srcRowA;
425 const GLfloat *rowB = (const GLfloat *) srcRowB;
426 GLfloat *dst = (GLfloat *) dstRow;
427 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
428 i++, j += colStride, k += colStride) {
429 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
430 }
431 }
432
433 else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) {
434 GLuint i, j, k, comp;
435 const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA;
436 const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB;
437 GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow;
438 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
439 i++, j += colStride, k += colStride) {
440 for (comp = 0; comp < 4; comp++) {
441 GLfloat aj, ak, bj, bk;
442 aj = _mesa_half_to_float(rowA[j][comp]);
443 ak = _mesa_half_to_float(rowA[k][comp]);
444 bj = _mesa_half_to_float(rowB[j][comp]);
445 bk = _mesa_half_to_float(rowB[k][comp]);
446 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
447 }
448 }
449 }
450 else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) {
451 GLuint i, j, k, comp;
452 const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA;
453 const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB;
454 GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow;
455 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
456 i++, j += colStride, k += colStride) {
457 for (comp = 0; comp < 3; comp++) {
458 GLfloat aj, ak, bj, bk;
459 aj = _mesa_half_to_float(rowA[j][comp]);
460 ak = _mesa_half_to_float(rowA[k][comp]);
461 bj = _mesa_half_to_float(rowB[j][comp]);
462 bk = _mesa_half_to_float(rowB[k][comp]);
463 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
464 }
465 }
466 }
467 else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) {
468 GLuint i, j, k, comp;
469 const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA;
470 const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB;
471 GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow;
472 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
473 i++, j += colStride, k += colStride) {
474 for (comp = 0; comp < 2; comp++) {
475 GLfloat aj, ak, bj, bk;
476 aj = _mesa_half_to_float(rowA[j][comp]);
477 ak = _mesa_half_to_float(rowA[k][comp]);
478 bj = _mesa_half_to_float(rowB[j][comp]);
479 bk = _mesa_half_to_float(rowB[k][comp]);
480 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
481 }
482 }
483 }
484 else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) {
485 GLuint i, j, k;
486 const GLhalfARB *rowA = (const GLhalfARB *) srcRowA;
487 const GLhalfARB *rowB = (const GLhalfARB *) srcRowB;
488 GLhalfARB *dst = (GLhalfARB *) dstRow;
489 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
490 i++, j += colStride, k += colStride) {
491 GLfloat aj, ak, bj, bk;
492 aj = _mesa_half_to_float(rowA[j]);
493 ak = _mesa_half_to_float(rowA[k]);
494 bj = _mesa_half_to_float(rowB[j]);
495 bk = _mesa_half_to_float(rowB[k]);
496 dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
497 }
498 }
499
500 else if (datatype == GL_UNSIGNED_INT && comps == 1) {
501 GLuint i, j, k;
502 const GLuint *rowA = (const GLuint *) srcRowA;
503 const GLuint *rowB = (const GLuint *) srcRowB;
504 GLuint *dst = (GLuint *) dstRow;
505 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
506 i++, j += colStride, k += colStride) {
507 dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
508 }
509 }
510
511 else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) {
512 GLuint i, j, k;
513 const GLushort *rowA = (const GLushort *) srcRowA;
514 const GLushort *rowB = (const GLushort *) srcRowB;
515 GLushort *dst = (GLushort *) dstRow;
516 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
517 i++, j += colStride, k += colStride) {
518 const GLint rowAr0 = rowA[j] & 0x1f;
519 const GLint rowAr1 = rowA[k] & 0x1f;
520 const GLint rowBr0 = rowB[j] & 0x1f;
521 const GLint rowBr1 = rowB[k] & 0x1f;
522 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
523 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
524 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
525 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
526 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
527 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
528 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
529 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
530 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
531 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
532 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
533 dst[i] = (blue << 11) | (green << 5) | red;
534 }
535 }
536 else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) {
537 GLuint i, j, k;
538 const GLushort *rowA = (const GLushort *) srcRowA;
539 const GLushort *rowB = (const GLushort *) srcRowB;
540 GLushort *dst = (GLushort *) dstRow;
541 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
542 i++, j += colStride, k += colStride) {
543 const GLint rowAr0 = rowA[j] & 0xf;
544 const GLint rowAr1 = rowA[k] & 0xf;
545 const GLint rowBr0 = rowB[j] & 0xf;
546 const GLint rowBr1 = rowB[k] & 0xf;
547 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
548 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
549 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
550 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
551 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
552 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
553 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
554 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
555 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
556 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
557 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
558 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
559 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
560 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
561 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
562 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
563 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
564 }
565 }
566 else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) {
567 GLuint i, j, k;
568 const GLushort *rowA = (const GLushort *) srcRowA;
569 const GLushort *rowB = (const GLushort *) srcRowB;
570 GLushort *dst = (GLushort *) dstRow;
571 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
572 i++, j += colStride, k += colStride) {
573 const GLint rowAr0 = rowA[j] & 0x1f;
574 const GLint rowAr1 = rowA[k] & 0x1f;
575 const GLint rowBr0 = rowB[j] & 0x1f;
576 const GLint rowBr1 = rowB[k] & 0x1f;
577 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
578 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
579 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
580 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
581 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
582 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
583 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
584 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
585 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
586 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
587 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
588 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
589 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
590 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
591 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
592 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
593 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
594 }
595 }
596 else if (datatype == GL_UNSIGNED_SHORT_5_5_5_1 && comps == 4) {
597 GLuint i, j, k;
598 const GLushort *rowA = (const GLushort *) srcRowA;
599 const GLushort *rowB = (const GLushort *) srcRowB;
600 GLushort *dst = (GLushort *) dstRow;
601 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
602 i++, j += colStride, k += colStride) {
603 const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
604 const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
605 const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
606 const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
607 const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
608 const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
609 const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
610 const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
611 const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
612 const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
613 const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
614 const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
615 const GLint rowAa0 = (rowA[j] & 0x1);
616 const GLint rowAa1 = (rowA[k] & 0x1);
617 const GLint rowBa0 = (rowB[j] & 0x1);
618 const GLint rowBa1 = (rowB[k] & 0x1);
619 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
620 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
621 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
622 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
623 dst[i] = (red << 11) | (green << 6) | (blue << 1) | alpha;
624 }
625 }
626
627 else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) {
628 GLuint i, j, k;
629 const GLubyte *rowA = (const GLubyte *) srcRowA;
630 const GLubyte *rowB = (const GLubyte *) srcRowB;
631 GLubyte *dst = (GLubyte *) dstRow;
632 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
633 i++, j += colStride, k += colStride) {
634 const GLint rowAr0 = rowA[j] & 0x3;
635 const GLint rowAr1 = rowA[k] & 0x3;
636 const GLint rowBr0 = rowB[j] & 0x3;
637 const GLint rowBr1 = rowB[k] & 0x3;
638 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
639 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
640 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
641 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
642 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
643 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
644 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
645 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
646 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
647 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
648 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
649 dst[i] = (blue << 5) | (green << 2) | red;
650 }
651 }
652
653 else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) {
654 GLuint i, j, k;
655 const GLubyte *rowA = (const GLubyte *) srcRowA;
656 const GLubyte *rowB = (const GLubyte *) srcRowB;
657 GLubyte *dst = (GLubyte *) dstRow;
658 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
659 i++, j += colStride, k += colStride) {
660 const GLint rowAr0 = rowA[j] & 0xf;
661 const GLint rowAr1 = rowA[k] & 0xf;
662 const GLint rowBr0 = rowB[j] & 0xf;
663 const GLint rowBr1 = rowB[k] & 0xf;
664 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
665 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
666 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
667 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
668 const GLint r = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
669 const GLint g = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
670 dst[i] = (g << 4) | r;
671 }
672 }
673
674 else if (datatype == GL_UNSIGNED_INT_2_10_10_10_REV && comps == 4) {
675 GLuint i, j, k;
676 const GLuint *rowA = (const GLuint *) srcRowA;
677 const GLuint *rowB = (const GLuint *) srcRowB;
678 GLuint *dst = (GLuint *) dstRow;
679 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
680 i++, j += colStride, k += colStride) {
681 const GLint rowAr0 = rowA[j] & 0x3ff;
682 const GLint rowAr1 = rowA[k] & 0x3ff;
683 const GLint rowBr0 = rowB[j] & 0x3ff;
684 const GLint rowBr1 = rowB[k] & 0x3ff;
685 const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff;
686 const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff;
687 const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff;
688 const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff;
689 const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff;
690 const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff;
691 const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff;
692 const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff;
693 const GLint rowAa0 = (rowA[j] >> 30) & 0x3;
694 const GLint rowAa1 = (rowA[k] >> 30) & 0x3;
695 const GLint rowBa0 = (rowB[j] >> 30) & 0x3;
696 const GLint rowBa1 = (rowB[k] >> 30) & 0x3;
697 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
698 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
699 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
700 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
701 dst[i] = (alpha << 30) | (blue << 20) | (green << 10) | red;
702 }
703 }
704
705 else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) {
706 GLuint i, j, k;
707 const GLuint *rowA = (const GLuint*) srcRowA;
708 const GLuint *rowB = (const GLuint*) srcRowB;
709 GLuint *dst = (GLuint*)dstRow;
710 GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3];
711 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
712 i++, j += colStride, k += colStride) {
713 rgb9e5_to_float3(rowA[j], rowAj);
714 rgb9e5_to_float3(rowB[j], rowBj);
715 rgb9e5_to_float3(rowA[k], rowAk);
716 rgb9e5_to_float3(rowB[k], rowBk);
717 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F;
718 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F;
719 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F;
720 dst[i] = float3_to_rgb9e5(res);
721 }
722 }
723
724 else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) {
725 GLuint i, j, k;
726 const GLuint *rowA = (const GLuint*) srcRowA;
727 const GLuint *rowB = (const GLuint*) srcRowB;
728 GLuint *dst = (GLuint*)dstRow;
729 GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3];
730 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
731 i++, j += colStride, k += colStride) {
732 r11g11b10f_to_float3(rowA[j], rowAj);
733 r11g11b10f_to_float3(rowB[j], rowBj);
734 r11g11b10f_to_float3(rowA[k], rowAk);
735 r11g11b10f_to_float3(rowB[k], rowBk);
736 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F;
737 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F;
738 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F;
739 dst[i] = float3_to_r11g11b10f(res);
740 }
741 }
742
743 else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) {
744 GLuint i, j, k;
745 const GLfloat *rowA = (const GLfloat *) srcRowA;
746 const GLfloat *rowB = (const GLfloat *) srcRowB;
747 GLfloat *dst = (GLfloat *) dstRow;
748 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
749 i++, j += colStride, k += colStride) {
750 dst[i*2] = (rowA[j*2] + rowA[k*2] + rowB[j*2] + rowB[k*2]) * 0.25F;
751 }
752 }
753
754 else if (datatype == GL_UNSIGNED_INT_24_8_MESA && comps == 2) {
755 GLuint i, j, k;
756 const GLuint *rowA = (const GLuint *) srcRowA;
757 const GLuint *rowB = (const GLuint *) srcRowB;
758 GLuint *dst = (GLuint *) dstRow;
759 /* note: averaging stencil values seems weird, but what else? */
760 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
761 i++, j += colStride, k += colStride) {
762 GLuint z = (((rowA[j] >> 8) + (rowA[k] >> 8) +
763 (rowB[j] >> 8) + (rowB[k] >> 8)) / 4) << 8;
764 GLuint s = ((rowA[j] & 0xff) + (rowA[k] & 0xff) +
765 (rowB[j] & 0xff) + (rowB[k] & 0xff)) / 4;
766 dst[i] = z | s;
767 }
768 }
769 else if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA && comps == 2) {
770 GLuint i, j, k;
771 const GLuint *rowA = (const GLuint *) srcRowA;
772 const GLuint *rowB = (const GLuint *) srcRowB;
773 GLuint *dst = (GLuint *) dstRow;
774 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
775 i++, j += colStride, k += colStride) {
776 GLuint z = ((rowA[j] & 0xffffff) + (rowA[k] & 0xffffff) +
777 (rowB[j] & 0xffffff) + (rowB[k] & 0xffffff)) / 4;
778 GLuint s = (((rowA[j] >> 24) + (rowA[k] >> 24) +
779 (rowB[j] >> 24) + (rowB[k] >> 24)) / 4) << 24;
780 dst[i] = z | s;
781 }
782 }
783
784 else {
785 unreachable("bad format in do_row()");
786 }
787 }
788
789
790 /**
791 * Average together four rows of a source image to produce a single new
792 * row in the dest image. It's legal for the two source rows to point
793 * to the same data. The source width must be equal to either the
794 * dest width or two times the dest width.
795 *
796 * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
797 * \c GL_FLOAT, etc.
798 * \param comps number of components per pixel (1..4)
799 * \param srcWidth Width of a row in the source data
800 * \param srcRowA Pointer to one of the rows of source data
801 * \param srcRowB Pointer to one of the rows of source data
802 * \param srcRowC Pointer to one of the rows of source data
803 * \param srcRowD Pointer to one of the rows of source data
804 * \param dstWidth Width of a row in the destination data
805 * \param srcRowA Pointer to the row of destination data
806 */
807 static void
do_row_3D(GLenum datatype,GLuint comps,GLint srcWidth,const GLvoid * srcRowA,const GLvoid * srcRowB,const GLvoid * srcRowC,const GLvoid * srcRowD,GLint dstWidth,GLvoid * dstRow)808 do_row_3D(GLenum datatype, GLuint comps, GLint srcWidth,
809 const GLvoid *srcRowA, const GLvoid *srcRowB,
810 const GLvoid *srcRowC, const GLvoid *srcRowD,
811 GLint dstWidth, GLvoid *dstRow)
812 {
813 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
814 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
815 GLuint i, j, k;
816
817 assert(comps >= 1);
818 assert(comps <= 4);
819
820 if ((datatype == GL_UNSIGNED_BYTE) && (comps == 4)) {
821 DECLARE_ROW_POINTERS(GLubyte, 4);
822
823 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
824 i++, j += colStride, k += colStride) {
825 FILTER_3D(0);
826 FILTER_3D(1);
827 FILTER_3D(2);
828 FILTER_3D(3);
829 }
830 }
831 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 3)) {
832 DECLARE_ROW_POINTERS(GLubyte, 3);
833
834 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
835 i++, j += colStride, k += colStride) {
836 FILTER_3D(0);
837 FILTER_3D(1);
838 FILTER_3D(2);
839 }
840 }
841 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 2)) {
842 DECLARE_ROW_POINTERS(GLubyte, 2);
843
844 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
845 i++, j += colStride, k += colStride) {
846 FILTER_3D(0);
847 FILTER_3D(1);
848 }
849 }
850 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 1)) {
851 DECLARE_ROW_POINTERS(GLubyte, 1);
852
853 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
854 i++, j += colStride, k += colStride) {
855 FILTER_3D(0);
856 }
857 }
858 else if ((datatype == GL_BYTE) && (comps == 4)) {
859 DECLARE_ROW_POINTERS(GLbyte, 4);
860
861 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
862 i++, j += colStride, k += colStride) {
863 FILTER_3D_SIGNED(0);
864 FILTER_3D_SIGNED(1);
865 FILTER_3D_SIGNED(2);
866 FILTER_3D_SIGNED(3);
867 }
868 }
869 else if ((datatype == GL_BYTE) && (comps == 3)) {
870 DECLARE_ROW_POINTERS(GLbyte, 3);
871
872 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
873 i++, j += colStride, k += colStride) {
874 FILTER_3D_SIGNED(0);
875 FILTER_3D_SIGNED(1);
876 FILTER_3D_SIGNED(2);
877 }
878 }
879 else if ((datatype == GL_BYTE) && (comps == 2)) {
880 DECLARE_ROW_POINTERS(GLbyte, 2);
881
882 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
883 i++, j += colStride, k += colStride) {
884 FILTER_3D_SIGNED(0);
885 FILTER_3D_SIGNED(1);
886 }
887 }
888 else if ((datatype == GL_BYTE) && (comps == 1)) {
889 DECLARE_ROW_POINTERS(GLbyte, 1);
890
891 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
892 i++, j += colStride, k += colStride) {
893 FILTER_3D_SIGNED(0);
894 }
895 }
896 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 4)) {
897 DECLARE_ROW_POINTERS(GLushort, 4);
898
899 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
900 i++, j += colStride, k += colStride) {
901 FILTER_3D(0);
902 FILTER_3D(1);
903 FILTER_3D(2);
904 FILTER_3D(3);
905 }
906 }
907 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 3)) {
908 DECLARE_ROW_POINTERS(GLushort, 3);
909
910 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
911 i++, j += colStride, k += colStride) {
912 FILTER_3D(0);
913 FILTER_3D(1);
914 FILTER_3D(2);
915 }
916 }
917 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 2)) {
918 DECLARE_ROW_POINTERS(GLushort, 2);
919
920 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
921 i++, j += colStride, k += colStride) {
922 FILTER_3D(0);
923 FILTER_3D(1);
924 }
925 }
926 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 1)) {
927 DECLARE_ROW_POINTERS(GLushort, 1);
928
929 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
930 i++, j += colStride, k += colStride) {
931 FILTER_3D(0);
932 }
933 }
934 else if ((datatype == GL_SHORT) && (comps == 4)) {
935 DECLARE_ROW_POINTERS(GLshort, 4);
936
937 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
938 i++, j += colStride, k += colStride) {
939 FILTER_3D(0);
940 FILTER_3D(1);
941 FILTER_3D(2);
942 FILTER_3D(3);
943 }
944 }
945 else if ((datatype == GL_SHORT) && (comps == 3)) {
946 DECLARE_ROW_POINTERS(GLshort, 3);
947
948 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
949 i++, j += colStride, k += colStride) {
950 FILTER_3D(0);
951 FILTER_3D(1);
952 FILTER_3D(2);
953 }
954 }
955 else if ((datatype == GL_SHORT) && (comps == 2)) {
956 DECLARE_ROW_POINTERS(GLshort, 2);
957
958 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
959 i++, j += colStride, k += colStride) {
960 FILTER_3D(0);
961 FILTER_3D(1);
962 }
963 }
964 else if ((datatype == GL_SHORT) && (comps == 1)) {
965 DECLARE_ROW_POINTERS(GLshort, 1);
966
967 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
968 i++, j += colStride, k += colStride) {
969 FILTER_3D(0);
970 }
971 }
972 else if ((datatype == GL_FLOAT) && (comps == 4)) {
973 DECLARE_ROW_POINTERS(GLfloat, 4);
974
975 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
976 i++, j += colStride, k += colStride) {
977 FILTER_F_3D(0);
978 FILTER_F_3D(1);
979 FILTER_F_3D(2);
980 FILTER_F_3D(3);
981 }
982 }
983 else if ((datatype == GL_FLOAT) && (comps == 3)) {
984 DECLARE_ROW_POINTERS(GLfloat, 3);
985
986 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
987 i++, j += colStride, k += colStride) {
988 FILTER_F_3D(0);
989 FILTER_F_3D(1);
990 FILTER_F_3D(2);
991 }
992 }
993 else if ((datatype == GL_FLOAT) && (comps == 2)) {
994 DECLARE_ROW_POINTERS(GLfloat, 2);
995
996 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
997 i++, j += colStride, k += colStride) {
998 FILTER_F_3D(0);
999 FILTER_F_3D(1);
1000 }
1001 }
1002 else if ((datatype == GL_FLOAT) && (comps == 1)) {
1003 DECLARE_ROW_POINTERS(GLfloat, 1);
1004
1005 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1006 i++, j += colStride, k += colStride) {
1007 FILTER_F_3D(0);
1008 }
1009 }
1010 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 4)) {
1011 DECLARE_ROW_POINTERS(GLhalfARB, 4);
1012
1013 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1014 i++, j += colStride, k += colStride) {
1015 FILTER_HF_3D(0);
1016 FILTER_HF_3D(1);
1017 FILTER_HF_3D(2);
1018 FILTER_HF_3D(3);
1019 }
1020 }
1021 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 3)) {
1022 DECLARE_ROW_POINTERS(GLhalfARB, 3);
1023
1024 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1025 i++, j += colStride, k += colStride) {
1026 FILTER_HF_3D(0);
1027 FILTER_HF_3D(1);
1028 FILTER_HF_3D(2);
1029 }
1030 }
1031 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 2)) {
1032 DECLARE_ROW_POINTERS(GLhalfARB, 2);
1033
1034 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1035 i++, j += colStride, k += colStride) {
1036 FILTER_HF_3D(0);
1037 FILTER_HF_3D(1);
1038 }
1039 }
1040 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 1)) {
1041 DECLARE_ROW_POINTERS(GLhalfARB, 1);
1042
1043 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1044 i++, j += colStride, k += colStride) {
1045 FILTER_HF_3D(0);
1046 }
1047 }
1048 else if ((datatype == GL_UNSIGNED_INT) && (comps == 1)) {
1049 const GLuint *rowA = (const GLuint *) srcRowA;
1050 const GLuint *rowB = (const GLuint *) srcRowB;
1051 const GLuint *rowC = (const GLuint *) srcRowC;
1052 const GLuint *rowD = (const GLuint *) srcRowD;
1053 GLfloat *dst = (GLfloat *) dstRow;
1054
1055 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1056 i++, j += colStride, k += colStride) {
1057 const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
1058 + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
1059 + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
1060 + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
1061 dst[i] = (GLfloat)((double) tmp * 0.125);
1062 }
1063 }
1064 else if ((datatype == GL_UNSIGNED_SHORT_5_6_5) && (comps == 3)) {
1065 DECLARE_ROW_POINTERS0(GLushort);
1066
1067 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1068 i++, j += colStride, k += colStride) {
1069 const GLint rowAr0 = rowA[j] & 0x1f;
1070 const GLint rowAr1 = rowA[k] & 0x1f;
1071 const GLint rowBr0 = rowB[j] & 0x1f;
1072 const GLint rowBr1 = rowB[k] & 0x1f;
1073 const GLint rowCr0 = rowC[j] & 0x1f;
1074 const GLint rowCr1 = rowC[k] & 0x1f;
1075 const GLint rowDr0 = rowD[j] & 0x1f;
1076 const GLint rowDr1 = rowD[k] & 0x1f;
1077 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
1078 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
1079 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
1080 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
1081 const GLint rowCg0 = (rowC[j] >> 5) & 0x3f;
1082 const GLint rowCg1 = (rowC[k] >> 5) & 0x3f;
1083 const GLint rowDg0 = (rowD[j] >> 5) & 0x3f;
1084 const GLint rowDg1 = (rowD[k] >> 5) & 0x3f;
1085 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
1086 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
1087 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
1088 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
1089 const GLint rowCb0 = (rowC[j] >> 11) & 0x1f;
1090 const GLint rowCb1 = (rowC[k] >> 11) & 0x1f;
1091 const GLint rowDb0 = (rowD[j] >> 11) & 0x1f;
1092 const GLint rowDb1 = (rowD[k] >> 11) & 0x1f;
1093 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1094 rowCr0, rowCr1, rowDr0, rowDr1);
1095 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1096 rowCg0, rowCg1, rowDg0, rowDg1);
1097 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1098 rowCb0, rowCb1, rowDb0, rowDb1);
1099 dst[i] = (b << 11) | (g << 5) | r;
1100 }
1101 }
1102 else if ((datatype == GL_UNSIGNED_SHORT_4_4_4_4) && (comps == 4)) {
1103 DECLARE_ROW_POINTERS0(GLushort);
1104
1105 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1106 i++, j += colStride, k += colStride) {
1107 const GLint rowAr0 = rowA[j] & 0xf;
1108 const GLint rowAr1 = rowA[k] & 0xf;
1109 const GLint rowBr0 = rowB[j] & 0xf;
1110 const GLint rowBr1 = rowB[k] & 0xf;
1111 const GLint rowCr0 = rowC[j] & 0xf;
1112 const GLint rowCr1 = rowC[k] & 0xf;
1113 const GLint rowDr0 = rowD[j] & 0xf;
1114 const GLint rowDr1 = rowD[k] & 0xf;
1115 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
1116 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
1117 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
1118 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
1119 const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
1120 const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
1121 const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
1122 const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
1123 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
1124 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
1125 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
1126 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
1127 const GLint rowCb0 = (rowC[j] >> 8) & 0xf;
1128 const GLint rowCb1 = (rowC[k] >> 8) & 0xf;
1129 const GLint rowDb0 = (rowD[j] >> 8) & 0xf;
1130 const GLint rowDb1 = (rowD[k] >> 8) & 0xf;
1131 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
1132 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
1133 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
1134 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
1135 const GLint rowCa0 = (rowC[j] >> 12) & 0xf;
1136 const GLint rowCa1 = (rowC[k] >> 12) & 0xf;
1137 const GLint rowDa0 = (rowD[j] >> 12) & 0xf;
1138 const GLint rowDa1 = (rowD[k] >> 12) & 0xf;
1139 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1140 rowCr0, rowCr1, rowDr0, rowDr1);
1141 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1142 rowCg0, rowCg1, rowDg0, rowDg1);
1143 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1144 rowCb0, rowCb1, rowDb0, rowDb1);
1145 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1146 rowCa0, rowCa1, rowDa0, rowDa1);
1147
1148 dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
1149 }
1150 }
1151 else if ((datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV) && (comps == 4)) {
1152 DECLARE_ROW_POINTERS0(GLushort);
1153
1154 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1155 i++, j += colStride, k += colStride) {
1156 const GLint rowAr0 = rowA[j] & 0x1f;
1157 const GLint rowAr1 = rowA[k] & 0x1f;
1158 const GLint rowBr0 = rowB[j] & 0x1f;
1159 const GLint rowBr1 = rowB[k] & 0x1f;
1160 const GLint rowCr0 = rowC[j] & 0x1f;
1161 const GLint rowCr1 = rowC[k] & 0x1f;
1162 const GLint rowDr0 = rowD[j] & 0x1f;
1163 const GLint rowDr1 = rowD[k] & 0x1f;
1164 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
1165 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
1166 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
1167 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
1168 const GLint rowCg0 = (rowC[j] >> 5) & 0x1f;
1169 const GLint rowCg1 = (rowC[k] >> 5) & 0x1f;
1170 const GLint rowDg0 = (rowD[j] >> 5) & 0x1f;
1171 const GLint rowDg1 = (rowD[k] >> 5) & 0x1f;
1172 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
1173 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
1174 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
1175 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
1176 const GLint rowCb0 = (rowC[j] >> 10) & 0x1f;
1177 const GLint rowCb1 = (rowC[k] >> 10) & 0x1f;
1178 const GLint rowDb0 = (rowD[j] >> 10) & 0x1f;
1179 const GLint rowDb1 = (rowD[k] >> 10) & 0x1f;
1180 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
1181 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
1182 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
1183 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
1184 const GLint rowCa0 = (rowC[j] >> 15) & 0x1;
1185 const GLint rowCa1 = (rowC[k] >> 15) & 0x1;
1186 const GLint rowDa0 = (rowD[j] >> 15) & 0x1;
1187 const GLint rowDa1 = (rowD[k] >> 15) & 0x1;
1188 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1189 rowCr0, rowCr1, rowDr0, rowDr1);
1190 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1191 rowCg0, rowCg1, rowDg0, rowDg1);
1192 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1193 rowCb0, rowCb1, rowDb0, rowDb1);
1194 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1195 rowCa0, rowCa1, rowDa0, rowDa1);
1196
1197 dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
1198 }
1199 }
1200 else if ((datatype == GL_UNSIGNED_SHORT_5_5_5_1) && (comps == 4)) {
1201 DECLARE_ROW_POINTERS0(GLushort);
1202
1203 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1204 i++, j += colStride, k += colStride) {
1205 const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
1206 const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
1207 const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
1208 const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
1209 const GLint rowCr0 = (rowC[j] >> 11) & 0x1f;
1210 const GLint rowCr1 = (rowC[k] >> 11) & 0x1f;
1211 const GLint rowDr0 = (rowD[j] >> 11) & 0x1f;
1212 const GLint rowDr1 = (rowD[k] >> 11) & 0x1f;
1213 const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
1214 const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
1215 const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
1216 const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
1217 const GLint rowCg0 = (rowC[j] >> 6) & 0x1f;
1218 const GLint rowCg1 = (rowC[k] >> 6) & 0x1f;
1219 const GLint rowDg0 = (rowD[j] >> 6) & 0x1f;
1220 const GLint rowDg1 = (rowD[k] >> 6) & 0x1f;
1221 const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
1222 const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
1223 const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
1224 const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
1225 const GLint rowCb0 = (rowC[j] >> 1) & 0x1f;
1226 const GLint rowCb1 = (rowC[k] >> 1) & 0x1f;
1227 const GLint rowDb0 = (rowD[j] >> 1) & 0x1f;
1228 const GLint rowDb1 = (rowD[k] >> 1) & 0x1f;
1229 const GLint rowAa0 = (rowA[j] & 0x1);
1230 const GLint rowAa1 = (rowA[k] & 0x1);
1231 const GLint rowBa0 = (rowB[j] & 0x1);
1232 const GLint rowBa1 = (rowB[k] & 0x1);
1233 const GLint rowCa0 = (rowC[j] & 0x1);
1234 const GLint rowCa1 = (rowC[k] & 0x1);
1235 const GLint rowDa0 = (rowD[j] & 0x1);
1236 const GLint rowDa1 = (rowD[k] & 0x1);
1237 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1238 rowCr0, rowCr1, rowDr0, rowDr1);
1239 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1240 rowCg0, rowCg1, rowDg0, rowDg1);
1241 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1242 rowCb0, rowCb1, rowDb0, rowDb1);
1243 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1244 rowCa0, rowCa1, rowDa0, rowDa1);
1245
1246 dst[i] = (r << 11) | (g << 6) | (b << 1) | a;
1247 }
1248 }
1249 else if ((datatype == GL_UNSIGNED_BYTE_3_3_2) && (comps == 3)) {
1250 DECLARE_ROW_POINTERS0(GLubyte);
1251
1252 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1253 i++, j += colStride, k += colStride) {
1254 const GLint rowAr0 = rowA[j] & 0x3;
1255 const GLint rowAr1 = rowA[k] & 0x3;
1256 const GLint rowBr0 = rowB[j] & 0x3;
1257 const GLint rowBr1 = rowB[k] & 0x3;
1258 const GLint rowCr0 = rowC[j] & 0x3;
1259 const GLint rowCr1 = rowC[k] & 0x3;
1260 const GLint rowDr0 = rowD[j] & 0x3;
1261 const GLint rowDr1 = rowD[k] & 0x3;
1262 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
1263 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
1264 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
1265 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
1266 const GLint rowCg0 = (rowC[j] >> 2) & 0x7;
1267 const GLint rowCg1 = (rowC[k] >> 2) & 0x7;
1268 const GLint rowDg0 = (rowD[j] >> 2) & 0x7;
1269 const GLint rowDg1 = (rowD[k] >> 2) & 0x7;
1270 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
1271 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
1272 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
1273 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
1274 const GLint rowCb0 = (rowC[j] >> 5) & 0x7;
1275 const GLint rowCb1 = (rowC[k] >> 5) & 0x7;
1276 const GLint rowDb0 = (rowD[j] >> 5) & 0x7;
1277 const GLint rowDb1 = (rowD[k] >> 5) & 0x7;
1278 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1279 rowCr0, rowCr1, rowDr0, rowDr1);
1280 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1281 rowCg0, rowCg1, rowDg0, rowDg1);
1282 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1283 rowCb0, rowCb1, rowDb0, rowDb1);
1284 dst[i] = (b << 5) | (g << 2) | r;
1285 }
1286 }
1287 else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) {
1288 DECLARE_ROW_POINTERS0(GLubyte);
1289
1290 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1291 i++, j += colStride, k += colStride) {
1292 const GLint rowAr0 = rowA[j] & 0xf;
1293 const GLint rowAr1 = rowA[k] & 0xf;
1294 const GLint rowBr0 = rowB[j] & 0xf;
1295 const GLint rowBr1 = rowB[k] & 0xf;
1296 const GLint rowCr0 = rowC[j] & 0xf;
1297 const GLint rowCr1 = rowC[k] & 0xf;
1298 const GLint rowDr0 = rowD[j] & 0xf;
1299 const GLint rowDr1 = rowD[k] & 0xf;
1300 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
1301 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
1302 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
1303 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
1304 const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
1305 const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
1306 const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
1307 const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
1308 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1309 rowCr0, rowCr1, rowDr0, rowDr1);
1310 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1311 rowCg0, rowCg1, rowDg0, rowDg1);
1312 dst[i] = (g << 4) | r;
1313 }
1314 }
1315 else if ((datatype == GL_UNSIGNED_INT_2_10_10_10_REV) && (comps == 4)) {
1316 DECLARE_ROW_POINTERS0(GLuint);
1317
1318 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1319 i++, j += colStride, k += colStride) {
1320 const GLint rowAr0 = rowA[j] & 0x3ff;
1321 const GLint rowAr1 = rowA[k] & 0x3ff;
1322 const GLint rowBr0 = rowB[j] & 0x3ff;
1323 const GLint rowBr1 = rowB[k] & 0x3ff;
1324 const GLint rowCr0 = rowC[j] & 0x3ff;
1325 const GLint rowCr1 = rowC[k] & 0x3ff;
1326 const GLint rowDr0 = rowD[j] & 0x3ff;
1327 const GLint rowDr1 = rowD[k] & 0x3ff;
1328 const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff;
1329 const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff;
1330 const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff;
1331 const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff;
1332 const GLint rowCg0 = (rowC[j] >> 10) & 0x3ff;
1333 const GLint rowCg1 = (rowC[k] >> 10) & 0x3ff;
1334 const GLint rowDg0 = (rowD[j] >> 10) & 0x3ff;
1335 const GLint rowDg1 = (rowD[k] >> 10) & 0x3ff;
1336 const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff;
1337 const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff;
1338 const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff;
1339 const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff;
1340 const GLint rowCb0 = (rowC[j] >> 20) & 0x3ff;
1341 const GLint rowCb1 = (rowC[k] >> 20) & 0x3ff;
1342 const GLint rowDb0 = (rowD[j] >> 20) & 0x3ff;
1343 const GLint rowDb1 = (rowD[k] >> 20) & 0x3ff;
1344 const GLint rowAa0 = (rowA[j] >> 30) & 0x3;
1345 const GLint rowAa1 = (rowA[k] >> 30) & 0x3;
1346 const GLint rowBa0 = (rowB[j] >> 30) & 0x3;
1347 const GLint rowBa1 = (rowB[k] >> 30) & 0x3;
1348 const GLint rowCa0 = (rowC[j] >> 30) & 0x3;
1349 const GLint rowCa1 = (rowC[k] >> 30) & 0x3;
1350 const GLint rowDa0 = (rowD[j] >> 30) & 0x3;
1351 const GLint rowDa1 = (rowD[k] >> 30) & 0x3;
1352 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1353 rowCr0, rowCr1, rowDr0, rowDr1);
1354 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1355 rowCg0, rowCg1, rowDg0, rowDg1);
1356 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1357 rowCb0, rowCb1, rowDb0, rowDb1);
1358 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1359 rowCa0, rowCa1, rowDa0, rowDa1);
1360
1361 dst[i] = (a << 30) | (b << 20) | (g << 10) | r;
1362 }
1363 }
1364
1365 else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) {
1366 DECLARE_ROW_POINTERS0(GLuint);
1367
1368 GLfloat res[3];
1369 GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3];
1370 GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3];
1371
1372 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1373 i++, j += colStride, k += colStride) {
1374 rgb9e5_to_float3(rowA[j], rowAj);
1375 rgb9e5_to_float3(rowB[j], rowBj);
1376 rgb9e5_to_float3(rowC[j], rowCj);
1377 rgb9e5_to_float3(rowD[j], rowDj);
1378 rgb9e5_to_float3(rowA[k], rowAk);
1379 rgb9e5_to_float3(rowB[k], rowBk);
1380 rgb9e5_to_float3(rowC[k], rowCk);
1381 rgb9e5_to_float3(rowD[k], rowDk);
1382 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] +
1383 rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F;
1384 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] +
1385 rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F;
1386 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] +
1387 rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F;
1388 dst[i] = float3_to_rgb9e5(res);
1389 }
1390 }
1391
1392 else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) {
1393 DECLARE_ROW_POINTERS0(GLuint);
1394
1395 GLfloat res[3];
1396 GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3];
1397 GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3];
1398
1399 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1400 i++, j += colStride, k += colStride) {
1401 r11g11b10f_to_float3(rowA[j], rowAj);
1402 r11g11b10f_to_float3(rowB[j], rowBj);
1403 r11g11b10f_to_float3(rowC[j], rowCj);
1404 r11g11b10f_to_float3(rowD[j], rowDj);
1405 r11g11b10f_to_float3(rowA[k], rowAk);
1406 r11g11b10f_to_float3(rowB[k], rowBk);
1407 r11g11b10f_to_float3(rowC[k], rowCk);
1408 r11g11b10f_to_float3(rowD[k], rowDk);
1409 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] +
1410 rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F;
1411 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] +
1412 rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F;
1413 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] +
1414 rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F;
1415 dst[i] = float3_to_r11g11b10f(res);
1416 }
1417 }
1418
1419 else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) {
1420 DECLARE_ROW_POINTERS(GLfloat, 2);
1421
1422 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1423 i++, j += colStride, k += colStride) {
1424 FILTER_F_3D(0);
1425 }
1426 }
1427
1428 else {
1429 unreachable("bad format in do_row()");
1430 }
1431 }
1432
1433
1434 /*
1435 * These functions generate a 1/2-size mipmap image from a source image.
1436 * Texture borders are handled by copying or averaging the source image's
1437 * border texels, depending on the scale-down factor.
1438 */
1439
1440 static void
make_1d_mipmap(GLenum datatype,GLuint comps,GLint border,GLint srcWidth,const GLubyte * srcPtr,GLint dstWidth,GLubyte * dstPtr)1441 make_1d_mipmap(GLenum datatype, GLuint comps, GLint border,
1442 GLint srcWidth, const GLubyte *srcPtr,
1443 GLint dstWidth, GLubyte *dstPtr)
1444 {
1445 const GLint bpt = bytes_per_pixel(datatype, comps);
1446 const GLubyte *src;
1447 GLubyte *dst;
1448
1449 /* skip the border pixel, if any */
1450 src = srcPtr + border * bpt;
1451 dst = dstPtr + border * bpt;
1452
1453 /* we just duplicate the input row, kind of hack, saves code */
1454 do_row(datatype, comps, srcWidth - 2 * border, src, src,
1455 dstWidth - 2 * border, dst);
1456
1457 if (border) {
1458 /* copy left-most pixel from source */
1459 assert(dstPtr);
1460 assert(srcPtr);
1461 memcpy(dstPtr, srcPtr, bpt);
1462 /* copy right-most pixel from source */
1463 memcpy(dstPtr + (dstWidth - 1) * bpt,
1464 srcPtr + (srcWidth - 1) * bpt,
1465 bpt);
1466 }
1467 }
1468
1469
1470 static void
make_2d_mipmap(GLenum datatype,GLuint comps,GLint border,GLint srcWidth,GLint srcHeight,const GLubyte * srcPtr,GLint srcRowStride,GLint dstWidth,GLint dstHeight,GLubyte * dstPtr,GLint dstRowStride)1471 make_2d_mipmap(GLenum datatype, GLuint comps, GLint border,
1472 GLint srcWidth, GLint srcHeight,
1473 const GLubyte *srcPtr, GLint srcRowStride,
1474 GLint dstWidth, GLint dstHeight,
1475 GLubyte *dstPtr, GLint dstRowStride)
1476 {
1477 const GLint bpt = bytes_per_pixel(datatype, comps);
1478 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1479 const GLint dstWidthNB = dstWidth - 2 * border;
1480 const GLint dstHeightNB = dstHeight - 2 * border;
1481 const GLubyte *srcA, *srcB;
1482 GLubyte *dst;
1483 GLint row, srcRowStep;
1484
1485 /* Compute src and dst pointers, skipping any border */
1486 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1487 if (srcHeight > 1 && srcHeight > dstHeight) {
1488 /* sample from two source rows */
1489 srcB = srcA + srcRowStride;
1490 srcRowStep = 2;
1491 }
1492 else {
1493 /* sample from one source row */
1494 srcB = srcA;
1495 srcRowStep = 1;
1496 }
1497
1498 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1499
1500 for (row = 0; row < dstHeightNB; row++) {
1501 do_row(datatype, comps, srcWidthNB, srcA, srcB,
1502 dstWidthNB, dst);
1503 srcA += srcRowStep * srcRowStride;
1504 srcB += srcRowStep * srcRowStride;
1505 dst += dstRowStride;
1506 }
1507
1508 /* This is ugly but probably won't be used much */
1509 if (border > 0) {
1510 /* fill in dest border */
1511 /* lower-left border pixel */
1512 assert(dstPtr);
1513 assert(srcPtr);
1514 memcpy(dstPtr, srcPtr, bpt);
1515 /* lower-right border pixel */
1516 memcpy(dstPtr + (dstWidth - 1) * bpt,
1517 srcPtr + (srcWidth - 1) * bpt, bpt);
1518 /* upper-left border pixel */
1519 memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1520 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1521 /* upper-right border pixel */
1522 memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1523 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1524 /* lower border */
1525 do_row(datatype, comps, srcWidthNB,
1526 srcPtr + bpt,
1527 srcPtr + bpt,
1528 dstWidthNB, dstPtr + bpt);
1529 /* upper border */
1530 do_row(datatype, comps, srcWidthNB,
1531 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1532 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1533 dstWidthNB,
1534 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1535 /* left and right borders */
1536 if (srcHeight == dstHeight) {
1537 /* copy border pixel from src to dst */
1538 for (row = 1; row < srcHeight; row++) {
1539 memcpy(dstPtr + dstWidth * row * bpt,
1540 srcPtr + srcWidth * row * bpt, bpt);
1541 memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1542 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1543 }
1544 }
1545 else {
1546 /* average two src pixels each dest pixel */
1547 for (row = 0; row < dstHeightNB; row += 2) {
1548 do_row(datatype, comps, 1,
1549 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1550 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1551 1, dstPtr + (dstWidth * row + 1) * bpt);
1552 do_row(datatype, comps, 1,
1553 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1554 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1555 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1556 }
1557 }
1558 }
1559 }
1560
1561
1562 static void
make_3d_mipmap(GLenum datatype,GLuint comps,GLint border,GLint srcWidth,GLint srcHeight,GLint srcDepth,const GLubyte ** srcPtr,GLint srcRowStride,GLint dstWidth,GLint dstHeight,GLint dstDepth,GLubyte ** dstPtr,GLint dstRowStride)1563 make_3d_mipmap(GLenum datatype, GLuint comps, GLint border,
1564 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1565 const GLubyte **srcPtr, GLint srcRowStride,
1566 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1567 GLubyte **dstPtr, GLint dstRowStride)
1568 {
1569 const GLint bpt = bytes_per_pixel(datatype, comps);
1570 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1571 const GLint srcDepthNB = srcDepth - 2 * border;
1572 const GLint dstWidthNB = dstWidth - 2 * border;
1573 const GLint dstHeightNB = dstHeight - 2 * border;
1574 const GLint dstDepthNB = dstDepth - 2 * border;
1575 GLint img, row;
1576 GLint bytesPerSrcImage, bytesPerDstImage;
1577 GLint srcImageOffset, srcRowOffset;
1578
1579 (void) srcDepthNB; /* silence warnings */
1580
1581 bytesPerSrcImage = srcRowStride * srcHeight * bpt;
1582 bytesPerDstImage = dstRowStride * dstHeight * bpt;
1583
1584 /* Offset between adjacent src images to be averaged together */
1585 srcImageOffset = (srcDepth == dstDepth) ? 0 : 1;
1586
1587 /* Offset between adjacent src rows to be averaged together */
1588 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride;
1589
1590 /*
1591 * Need to average together up to 8 src pixels for each dest pixel.
1592 * Break that down into 3 operations:
1593 * 1. take two rows from source image and average them together.
1594 * 2. take two rows from next source image and average them together.
1595 * 3. take the two averaged rows and average them for the final dst row.
1596 */
1597
1598 /*
1599 printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1600 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1601 */
1602
1603 for (img = 0; img < dstDepthNB; img++) {
1604 /* first source image pointer, skipping border */
1605 const GLubyte *imgSrcA = srcPtr[img * 2 + border]
1606 + srcRowStride * border + bpt * border;
1607 /* second source image pointer, skipping border */
1608 const GLubyte *imgSrcB = srcPtr[img * 2 + srcImageOffset + border]
1609 + srcRowStride * border + bpt * border;
1610
1611 /* address of the dest image, skipping border */
1612 GLubyte *imgDst = dstPtr[img + border]
1613 + dstRowStride * border + bpt * border;
1614
1615 /* setup the four source row pointers and the dest row pointer */
1616 const GLubyte *srcImgARowA = imgSrcA;
1617 const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
1618 const GLubyte *srcImgBRowA = imgSrcB;
1619 const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1620 GLubyte *dstImgRow = imgDst;
1621
1622 for (row = 0; row < dstHeightNB; row++) {
1623 do_row_3D(datatype, comps, srcWidthNB,
1624 srcImgARowA, srcImgARowB,
1625 srcImgBRowA, srcImgBRowB,
1626 dstWidthNB, dstImgRow);
1627
1628 /* advance to next rows */
1629 srcImgARowA += srcRowStride + srcRowOffset;
1630 srcImgARowB += srcRowStride + srcRowOffset;
1631 srcImgBRowA += srcRowStride + srcRowOffset;
1632 srcImgBRowB += srcRowStride + srcRowOffset;
1633 dstImgRow += dstRowStride;
1634 }
1635 }
1636
1637
1638 /* Luckily we can leverage the make_2d_mipmap() function here! */
1639 if (border > 0) {
1640 /* do front border image */
1641 make_2d_mipmap(datatype, comps, 1,
1642 srcWidth, srcHeight, srcPtr[0], srcRowStride,
1643 dstWidth, dstHeight, dstPtr[0], dstRowStride);
1644 /* do back border image */
1645 make_2d_mipmap(datatype, comps, 1,
1646 srcWidth, srcHeight, srcPtr[srcDepth - 1], srcRowStride,
1647 dstWidth, dstHeight, dstPtr[dstDepth - 1], dstRowStride);
1648
1649 /* do four remaining border edges that span the image slices */
1650 if (srcDepth == dstDepth) {
1651 /* just copy border pixels from src to dst */
1652 for (img = 0; img < dstDepthNB; img++) {
1653 const GLubyte *src;
1654 GLubyte *dst;
1655
1656 /* do border along [img][row=0][col=0] */
1657 src = srcPtr[img * 2];
1658 dst = dstPtr[img];
1659 memcpy(dst, src, bpt);
1660
1661 /* do border along [img][row=dstHeight-1][col=0] */
1662 src = srcPtr[img * 2] + (srcHeight - 1) * srcRowStride;
1663 dst = dstPtr[img] + (dstHeight - 1) * dstRowStride;
1664 memcpy(dst, src, bpt);
1665
1666 /* do border along [img][row=0][col=dstWidth-1] */
1667 src = srcPtr[img * 2] + (srcWidth - 1) * bpt;
1668 dst = dstPtr[img] + (dstWidth - 1) * bpt;
1669 memcpy(dst, src, bpt);
1670
1671 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1672 src = srcPtr[img * 2] + (bytesPerSrcImage - bpt);
1673 dst = dstPtr[img] + (bytesPerDstImage - bpt);
1674 memcpy(dst, src, bpt);
1675 }
1676 }
1677 else {
1678 /* average border pixels from adjacent src image pairs */
1679 assert(srcDepthNB == 2 * dstDepthNB);
1680 for (img = 0; img < dstDepthNB; img++) {
1681 const GLubyte *srcA, *srcB;
1682 GLubyte *dst;
1683
1684 /* do border along [img][row=0][col=0] */
1685 srcA = srcPtr[img * 2 + 0];
1686 srcB = srcPtr[img * 2 + srcImageOffset];
1687 dst = dstPtr[img];
1688 do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1689
1690 /* do border along [img][row=dstHeight-1][col=0] */
1691 srcA = srcPtr[img * 2 + 0]
1692 + (srcHeight - 1) * srcRowStride;
1693 srcB = srcPtr[img * 2 + srcImageOffset]
1694 + (srcHeight - 1) * srcRowStride;
1695 dst = dstPtr[img] + (dstHeight - 1) * dstRowStride;
1696 do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1697
1698 /* do border along [img][row=0][col=dstWidth-1] */
1699 srcA = srcPtr[img * 2 + 0] + (srcWidth - 1) * bpt;
1700 srcB = srcPtr[img * 2 + srcImageOffset] + (srcWidth - 1) * bpt;
1701 dst = dstPtr[img] + (dstWidth - 1) * bpt;
1702 do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1703
1704 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1705 srcA = srcPtr[img * 2 + 0] + (bytesPerSrcImage - bpt);
1706 srcB = srcPtr[img * 2 + srcImageOffset] + (bytesPerSrcImage - bpt);
1707 dst = dstPtr[img] + (bytesPerDstImage - bpt);
1708 do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1709 }
1710 }
1711 }
1712 }
1713
1714
1715 /**
1716 * Down-sample a texture image to produce the next lower mipmap level.
1717 * \param comps components per texel (1, 2, 3 or 4)
1718 * \param srcData array[slice] of pointers to source image slices
1719 * \param dstData array[slice] of pointers to dest image slices
1720 * \param srcRowStride stride between source rows, in bytes
1721 * \param dstRowStride stride between destination rows, in bytes
1722 */
1723 void
_mesa_generate_mipmap_level(GLenum target,GLenum datatype,GLuint comps,GLint border,GLint srcWidth,GLint srcHeight,GLint srcDepth,const GLubyte ** srcData,GLint srcRowStride,GLint dstWidth,GLint dstHeight,GLint dstDepth,GLubyte ** dstData,GLint dstRowStride)1724 _mesa_generate_mipmap_level(GLenum target,
1725 GLenum datatype, GLuint comps,
1726 GLint border,
1727 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1728 const GLubyte **srcData,
1729 GLint srcRowStride,
1730 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1731 GLubyte **dstData,
1732 GLint dstRowStride)
1733 {
1734 int i;
1735
1736 switch (target) {
1737 case GL_TEXTURE_1D:
1738 make_1d_mipmap(datatype, comps, border,
1739 srcWidth, srcData[0],
1740 dstWidth, dstData[0]);
1741 break;
1742 case GL_TEXTURE_2D:
1743 case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
1744 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
1745 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
1746 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
1747 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
1748 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
1749 make_2d_mipmap(datatype, comps, border,
1750 srcWidth, srcHeight, srcData[0], srcRowStride,
1751 dstWidth, dstHeight, dstData[0], dstRowStride);
1752 break;
1753 case GL_TEXTURE_3D:
1754 make_3d_mipmap(datatype, comps, border,
1755 srcWidth, srcHeight, srcDepth,
1756 srcData, srcRowStride,
1757 dstWidth, dstHeight, dstDepth,
1758 dstData, dstRowStride);
1759 break;
1760 case GL_TEXTURE_1D_ARRAY_EXT:
1761 assert(srcHeight == 1);
1762 assert(dstHeight == 1);
1763 for (i = 0; i < dstDepth; i++) {
1764 make_1d_mipmap(datatype, comps, border,
1765 srcWidth, srcData[i],
1766 dstWidth, dstData[i]);
1767 }
1768 break;
1769 case GL_TEXTURE_2D_ARRAY_EXT:
1770 case GL_TEXTURE_CUBE_MAP_ARRAY:
1771 for (i = 0; i < dstDepth; i++) {
1772 make_2d_mipmap(datatype, comps, border,
1773 srcWidth, srcHeight, srcData[i], srcRowStride,
1774 dstWidth, dstHeight, dstData[i], dstRowStride);
1775 }
1776 break;
1777 case GL_TEXTURE_RECTANGLE_NV:
1778 case GL_TEXTURE_EXTERNAL_OES:
1779 /* no mipmaps, do nothing */
1780 break;
1781 default:
1782 unreachable("bad tex target in _mesa_generate_mipmaps");
1783 }
1784 }
1785
1786
1787 /**
1788 * compute next (level+1) image size
1789 * \return GL_FALSE if no smaller size can be generated (eg. src is 1x1x1 size)
1790 */
1791 GLboolean
_mesa_next_mipmap_level_size(GLenum target,GLint border,GLint srcWidth,GLint srcHeight,GLint srcDepth,GLint * dstWidth,GLint * dstHeight,GLint * dstDepth)1792 _mesa_next_mipmap_level_size(GLenum target, GLint border,
1793 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1794 GLint *dstWidth, GLint *dstHeight, GLint *dstDepth)
1795 {
1796 if (srcWidth - 2 * border > 1) {
1797 *dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
1798 }
1799 else {
1800 *dstWidth = srcWidth; /* can't go smaller */
1801 }
1802
1803 if ((srcHeight - 2 * border > 1) &&
1804 target != GL_TEXTURE_1D_ARRAY_EXT &&
1805 target != GL_PROXY_TEXTURE_1D_ARRAY_EXT) {
1806 *dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
1807 }
1808 else {
1809 *dstHeight = srcHeight; /* can't go smaller */
1810 }
1811
1812 if ((srcDepth - 2 * border > 1) &&
1813 target != GL_TEXTURE_2D_ARRAY_EXT &&
1814 target != GL_PROXY_TEXTURE_2D_ARRAY_EXT &&
1815 target != GL_TEXTURE_CUBE_MAP_ARRAY &&
1816 target != GL_PROXY_TEXTURE_CUBE_MAP_ARRAY) {
1817 *dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
1818 }
1819 else {
1820 *dstDepth = srcDepth; /* can't go smaller */
1821 }
1822
1823 if (*dstWidth == srcWidth &&
1824 *dstHeight == srcHeight &&
1825 *dstDepth == srcDepth) {
1826 return GL_FALSE;
1827 }
1828 else {
1829 return GL_TRUE;
1830 }
1831 }
1832
1833
1834 /**
1835 * Helper function for mipmap generation.
1836 * Make sure the specified destination mipmap level is the right size/format
1837 * for mipmap generation. If not, (re) allocate it.
1838 * \return GL_TRUE if successful, GL_FALSE if mipmap generation should stop
1839 */
1840 static GLboolean
prepare_mipmap_level(struct gl_context * ctx,struct gl_texture_object * texObj,GLuint level,GLsizei width,GLsizei height,GLsizei depth,GLsizei border,GLenum intFormat,mesa_format format)1841 prepare_mipmap_level(struct gl_context *ctx,
1842 struct gl_texture_object *texObj, GLuint level,
1843 GLsizei width, GLsizei height, GLsizei depth,
1844 GLsizei border, GLenum intFormat, mesa_format format)
1845 {
1846 const GLuint numFaces = _mesa_num_tex_faces(texObj->Target);
1847 GLuint face;
1848
1849 if (texObj->Immutable) {
1850 /* The texture was created with glTexStorage() so the number/size of
1851 * mipmap levels is fixed and the storage for all images is already
1852 * allocated.
1853 */
1854 if (!texObj->Image[0][level]) {
1855 /* No more levels to create - we're done */
1856 return GL_FALSE;
1857 }
1858 else {
1859 /* Nothing to do - the texture memory must have already been
1860 * allocated to the right size so we're all set.
1861 */
1862 return GL_TRUE;
1863 }
1864 }
1865
1866 for (face = 0; face < numFaces; face++) {
1867 struct gl_texture_image *dstImage;
1868 const GLenum target = _mesa_cube_face_target(texObj->Target, face);
1869
1870 dstImage = _mesa_get_tex_image(ctx, texObj, target, level);
1871 if (!dstImage) {
1872 /* out of memory */
1873 return GL_FALSE;
1874 }
1875
1876 if (dstImage->Width != width ||
1877 dstImage->Height != height ||
1878 dstImage->Depth != depth ||
1879 dstImage->Border != border ||
1880 dstImage->InternalFormat != intFormat ||
1881 dstImage->TexFormat != format) {
1882 /* need to (re)allocate image */
1883 ctx->Driver.FreeTextureImageBuffer(ctx, dstImage);
1884
1885 _mesa_init_teximage_fields(ctx, dstImage,
1886 width, height, depth,
1887 border, intFormat, format);
1888
1889 ctx->Driver.AllocTextureImageBuffer(ctx, dstImage);
1890
1891 /* in case the mipmap level is part of an FBO: */
1892 _mesa_update_fbo_texture(ctx, texObj, face, level);
1893
1894 ctx->NewState |= _NEW_TEXTURE_OBJECT;
1895 }
1896 }
1897
1898 return GL_TRUE;
1899 }
1900
1901
1902 /**
1903 * Prepare all mipmap levels beyond 'baseLevel' for mipmap generation.
1904 * When finished, all the gl_texture_image structures for the smaller
1905 * mipmap levels will be consistent with the base level (in terms of
1906 * dimensions, format, etc).
1907 */
1908 void
_mesa_prepare_mipmap_levels(struct gl_context * ctx,struct gl_texture_object * texObj,unsigned baseLevel,unsigned maxLevel)1909 _mesa_prepare_mipmap_levels(struct gl_context *ctx,
1910 struct gl_texture_object *texObj,
1911 unsigned baseLevel, unsigned maxLevel)
1912 {
1913 const struct gl_texture_image *baseImage =
1914 _mesa_select_tex_image(texObj, texObj->Target, baseLevel);
1915 const GLint border = 0;
1916 GLint width = baseImage->Width;
1917 GLint height = baseImage->Height;
1918 GLint depth = baseImage->Depth;
1919 const GLenum intFormat = baseImage->InternalFormat;
1920 const mesa_format texFormat = baseImage->TexFormat;
1921 GLint newWidth, newHeight, newDepth;
1922
1923 /* Prepare baseLevel + 1, baseLevel + 2, ... */
1924 for (unsigned level = baseLevel + 1; level <= maxLevel; level++) {
1925 if (!_mesa_next_mipmap_level_size(texObj->Target, border,
1926 width, height, depth,
1927 &newWidth, &newHeight, &newDepth)) {
1928 /* all done */
1929 break;
1930 }
1931
1932 if (!prepare_mipmap_level(ctx, texObj, level,
1933 newWidth, newHeight, newDepth,
1934 border, intFormat, texFormat)) {
1935 break;
1936 }
1937
1938 width = newWidth;
1939 height = newHeight;
1940 depth = newDepth;
1941 }
1942 }
1943
1944
1945 static void
generate_mipmap_uncompressed(struct gl_context * ctx,GLenum target,struct gl_texture_object * texObj,const struct gl_texture_image * srcImage,GLuint maxLevel)1946 generate_mipmap_uncompressed(struct gl_context *ctx, GLenum target,
1947 struct gl_texture_object *texObj,
1948 const struct gl_texture_image *srcImage,
1949 GLuint maxLevel)
1950 {
1951 GLuint level;
1952 GLenum datatype;
1953 GLuint comps;
1954
1955 _mesa_uncompressed_format_to_type_and_comps(srcImage->TexFormat, &datatype, &comps);
1956
1957 for (level = texObj->BaseLevel; level < maxLevel; level++) {
1958 /* generate image[level+1] from image[level] */
1959 struct gl_texture_image *srcImage, *dstImage;
1960 GLint srcRowStride, dstRowStride;
1961 GLint srcWidth, srcHeight, srcDepth;
1962 GLint dstWidth, dstHeight, dstDepth;
1963 GLint border;
1964 GLint slice;
1965 GLubyte **srcMaps, **dstMaps;
1966 GLboolean success = GL_TRUE;
1967
1968 /* get src image parameters */
1969 srcImage = _mesa_select_tex_image(texObj, target, level);
1970 assert(srcImage);
1971 srcWidth = srcImage->Width;
1972 srcHeight = srcImage->Height;
1973 srcDepth = srcImage->Depth;
1974 border = srcImage->Border;
1975
1976 /* get dest gl_texture_image */
1977 dstImage = _mesa_select_tex_image(texObj, target, level + 1);
1978 if (!dstImage) {
1979 break;
1980 }
1981 dstWidth = dstImage->Width;
1982 dstHeight = dstImage->Height;
1983 dstDepth = dstImage->Depth;
1984
1985 if (target == GL_TEXTURE_1D_ARRAY) {
1986 srcDepth = srcHeight;
1987 dstDepth = dstHeight;
1988 srcHeight = 1;
1989 dstHeight = 1;
1990 }
1991
1992 /* Map src texture image slices */
1993 srcMaps = calloc(srcDepth, sizeof(GLubyte *));
1994 if (srcMaps) {
1995 for (slice = 0; slice < srcDepth; slice++) {
1996 ctx->Driver.MapTextureImage(ctx, srcImage, slice,
1997 0, 0, srcWidth, srcHeight,
1998 GL_MAP_READ_BIT,
1999 &srcMaps[slice], &srcRowStride);
2000 if (!srcMaps[slice]) {
2001 success = GL_FALSE;
2002 break;
2003 }
2004 }
2005 }
2006 else {
2007 success = GL_FALSE;
2008 }
2009
2010 /* Map dst texture image slices */
2011 dstMaps = calloc(dstDepth, sizeof(GLubyte *));
2012 if (dstMaps) {
2013 for (slice = 0; slice < dstDepth; slice++) {
2014 ctx->Driver.MapTextureImage(ctx, dstImage, slice,
2015 0, 0, dstWidth, dstHeight,
2016 GL_MAP_WRITE_BIT,
2017 &dstMaps[slice], &dstRowStride);
2018 if (!dstMaps[slice]) {
2019 success = GL_FALSE;
2020 break;
2021 }
2022 }
2023 }
2024 else {
2025 success = GL_FALSE;
2026 }
2027
2028 if (success) {
2029 /* generate one mipmap level (for 1D/2D/3D/array/etc texture) */
2030 _mesa_generate_mipmap_level(target, datatype, comps, border,
2031 srcWidth, srcHeight, srcDepth,
2032 (const GLubyte **) srcMaps, srcRowStride,
2033 dstWidth, dstHeight, dstDepth,
2034 dstMaps, dstRowStride);
2035 }
2036
2037 /* Unmap src image slices */
2038 if (srcMaps) {
2039 for (slice = 0; slice < srcDepth; slice++) {
2040 if (srcMaps[slice]) {
2041 ctx->Driver.UnmapTextureImage(ctx, srcImage, slice);
2042 }
2043 }
2044 free(srcMaps);
2045 }
2046
2047 /* Unmap dst image slices */
2048 if (dstMaps) {
2049 for (slice = 0; slice < dstDepth; slice++) {
2050 if (dstMaps[slice]) {
2051 ctx->Driver.UnmapTextureImage(ctx, dstImage, slice);
2052 }
2053 }
2054 free(dstMaps);
2055 }
2056
2057 if (!success) {
2058 _mesa_error(ctx, GL_OUT_OF_MEMORY, "mipmap generation");
2059 break;
2060 }
2061 } /* loop over mipmap levels */
2062 }
2063
2064
2065 static void
generate_mipmap_compressed(struct gl_context * ctx,GLenum target,struct gl_texture_object * texObj,struct gl_texture_image * srcImage,GLuint maxLevel)2066 generate_mipmap_compressed(struct gl_context *ctx, GLenum target,
2067 struct gl_texture_object *texObj,
2068 struct gl_texture_image *srcImage,
2069 GLuint maxLevel)
2070 {
2071 GLuint level;
2072 mesa_format temp_format;
2073 GLint components;
2074 GLuint temp_src_row_stride, temp_src_img_stride; /* in bytes */
2075 GLubyte *temp_src = NULL, *temp_dst = NULL;
2076 GLenum temp_datatype;
2077 GLenum temp_base_format;
2078 GLubyte **temp_src_slices = NULL, **temp_dst_slices = NULL;
2079
2080 /* only two types of compressed textures at this time */
2081 assert(texObj->Target == GL_TEXTURE_2D ||
2082 texObj->Target == GL_TEXTURE_2D_ARRAY ||
2083 texObj->Target == GL_TEXTURE_CUBE_MAP ||
2084 texObj->Target == GL_TEXTURE_CUBE_MAP_ARRAY);
2085
2086 /*
2087 * Choose a format for the temporary, uncompressed base image.
2088 * Then, get number of components, choose temporary image datatype,
2089 * and get base format.
2090 */
2091 temp_format = _mesa_get_uncompressed_format(srcImage->TexFormat);
2092
2093 components = _mesa_format_num_components(temp_format);
2094
2095 switch (_mesa_get_format_datatype(srcImage->TexFormat)) {
2096 case GL_FLOAT:
2097 temp_datatype = GL_FLOAT;
2098 break;
2099 case GL_SIGNED_NORMALIZED:
2100 /* Revisit this if we get compressed formats with >8 bits per component */
2101 temp_datatype = GL_BYTE;
2102 break;
2103 default:
2104 temp_datatype = GL_UNSIGNED_BYTE;
2105 }
2106
2107 temp_base_format = _mesa_get_format_base_format(temp_format);
2108
2109
2110 /* allocate storage for the temporary, uncompressed image */
2111 temp_src_row_stride = _mesa_format_row_stride(temp_format, srcImage->Width);
2112 temp_src_img_stride = _mesa_format_image_size(temp_format, srcImage->Width,
2113 srcImage->Height, 1);
2114 temp_src = malloc(temp_src_img_stride * srcImage->Depth);
2115
2116 /* Allocate storage for arrays of slice pointers */
2117 temp_src_slices = malloc(srcImage->Depth * sizeof(GLubyte *));
2118 temp_dst_slices = malloc(srcImage->Depth * sizeof(GLubyte *));
2119
2120 if (!temp_src || !temp_src_slices || !temp_dst_slices) {
2121 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
2122 goto end;
2123 }
2124
2125 /* decompress base image to the temporary src buffer */
2126 {
2127 /* save pixel packing mode */
2128 struct gl_pixelstore_attrib save = ctx->Pack;
2129 /* use default/tight packing parameters */
2130 ctx->Pack = ctx->DefaultPacking;
2131
2132 /* Get the uncompressed image */
2133 assert(srcImage->Level == texObj->BaseLevel);
2134 ctx->Driver.GetTexSubImage(ctx,
2135 0, 0, 0,
2136 srcImage->Width, srcImage->Height,
2137 srcImage->Depth,
2138 temp_base_format, temp_datatype,
2139 temp_src, srcImage);
2140 /* restore packing mode */
2141 ctx->Pack = save;
2142 }
2143
2144 for (level = texObj->BaseLevel; level < maxLevel; level++) {
2145 /* generate image[level+1] from image[level] */
2146 const struct gl_texture_image *srcImage;
2147 struct gl_texture_image *dstImage;
2148 GLint srcWidth, srcHeight, srcDepth;
2149 GLint dstWidth, dstHeight, dstDepth;
2150 GLint border;
2151 GLuint temp_dst_row_stride, temp_dst_img_stride; /* in bytes */
2152 GLint i;
2153
2154 /* get src image parameters */
2155 srcImage = _mesa_select_tex_image(texObj, target, level);
2156 assert(srcImage);
2157 srcWidth = srcImage->Width;
2158 srcHeight = srcImage->Height;
2159 srcDepth = srcImage->Depth;
2160 border = srcImage->Border;
2161
2162 /* get dest gl_texture_image */
2163 dstImage = _mesa_select_tex_image(texObj, target, level + 1);
2164 if (!dstImage) {
2165 break;
2166 }
2167 dstWidth = dstImage->Width;
2168 dstHeight = dstImage->Height;
2169 dstDepth = dstImage->Depth;
2170
2171 /* Compute dst image strides and alloc memory on first iteration */
2172 temp_dst_row_stride = _mesa_format_row_stride(temp_format, dstWidth);
2173 temp_dst_img_stride = _mesa_format_image_size(temp_format, dstWidth,
2174 dstHeight, 1);
2175 if (!temp_dst) {
2176 temp_dst = malloc(temp_dst_img_stride * dstDepth);
2177 if (!temp_dst) {
2178 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
2179 goto end;
2180 }
2181 }
2182
2183 /* for 2D arrays, setup array[depth] of slice pointers */
2184 for (i = 0; i < srcDepth; i++) {
2185 temp_src_slices[i] = temp_src + temp_src_img_stride * i;
2186 }
2187 for (i = 0; i < dstDepth; i++) {
2188 temp_dst_slices[i] = temp_dst + temp_dst_img_stride * i;
2189 }
2190
2191 /* Rescale src image to dest image.
2192 * This will loop over the slices of a 2D array.
2193 */
2194 _mesa_generate_mipmap_level(target, temp_datatype, components, border,
2195 srcWidth, srcHeight, srcDepth,
2196 (const GLubyte **) temp_src_slices,
2197 temp_src_row_stride,
2198 dstWidth, dstHeight, dstDepth,
2199 temp_dst_slices, temp_dst_row_stride);
2200
2201 /* The image space was allocated above so use glTexSubImage now */
2202 ctx->Driver.TexSubImage(ctx, 2, dstImage,
2203 0, 0, 0, dstWidth, dstHeight, dstDepth,
2204 temp_base_format, temp_datatype,
2205 temp_dst, &ctx->DefaultPacking);
2206
2207 /* swap src and dest pointers */
2208 {
2209 GLubyte *temp = temp_src;
2210 temp_src = temp_dst;
2211 temp_dst = temp;
2212 temp_src_row_stride = temp_dst_row_stride;
2213 temp_src_img_stride = temp_dst_img_stride;
2214 }
2215 } /* loop over mipmap levels */
2216
2217 end:
2218 free(temp_src);
2219 free(temp_dst);
2220 free(temp_src_slices);
2221 free(temp_dst_slices);
2222 }
2223
2224 /**
2225 * Automatic mipmap generation.
2226 * This is the fallback/default function for ctx->Driver.GenerateMipmap().
2227 * Generate a complete set of mipmaps from texObj's BaseLevel image.
2228 * Stop at texObj's MaxLevel or when we get to the 1x1 texture.
2229 * For cube maps, target will be one of
2230 * GL_TEXTURE_CUBE_MAP_POSITIVE/NEGATIVE_X/Y/Z; never GL_TEXTURE_CUBE_MAP.
2231 */
2232 void
_mesa_generate_mipmap(struct gl_context * ctx,GLenum target,struct gl_texture_object * texObj)2233 _mesa_generate_mipmap(struct gl_context *ctx, GLenum target,
2234 struct gl_texture_object *texObj)
2235 {
2236 struct gl_texture_image *srcImage;
2237 GLint maxLevel;
2238
2239 assert(texObj);
2240 srcImage = _mesa_select_tex_image(texObj, target, texObj->BaseLevel);
2241 assert(srcImage);
2242
2243 maxLevel = _mesa_max_texture_levels(ctx, texObj->Target) - 1;
2244 assert(maxLevel >= 0); /* bad target */
2245
2246 maxLevel = MIN2(maxLevel, texObj->MaxLevel);
2247
2248 _mesa_prepare_mipmap_levels(ctx, texObj, texObj->BaseLevel, maxLevel);
2249
2250 if (_mesa_is_format_compressed(srcImage->TexFormat)) {
2251 generate_mipmap_compressed(ctx, target, texObj, srcImage, maxLevel);
2252 } else {
2253 generate_mipmap_uncompressed(ctx, target, texObj, srcImage, maxLevel);
2254 }
2255 }
2256