1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 * Copyright © 2010-2011 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 **************************************************************************/
29
30 #include "main/glheader.h"
31 #include "main/context.h"
32
33 #include "main/macros.h"
34 #include "main/samplerobj.h"
35 #include "main/shaderobj.h"
36 #include "main/state.h"
37 #include "main/texenvprogram.h"
38 #include "main/texobj.h"
39 #include "main/uniforms.h"
40 #include "compiler/glsl/ir_builder.h"
41 #include "compiler/glsl/ir_optimization.h"
42 #include "compiler/glsl/glsl_parser_extras.h"
43 #include "compiler/glsl/glsl_symbol_table.h"
44 #include "compiler/glsl_types.h"
45 #include "program/ir_to_mesa.h"
46 #include "program/program.h"
47 #include "program/programopt.h"
48 #include "program/prog_cache.h"
49 #include "program/prog_instruction.h"
50 #include "program/prog_parameter.h"
51 #include "program/prog_print.h"
52 #include "program/prog_statevars.h"
53 #include "util/bitscan.h"
54
55 using namespace ir_builder;
56
57 /*
58 * Note on texture units:
59 *
60 * The number of texture units supported by fixed-function fragment
61 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
62 * That's because there's a one-to-one correspondence between texture
63 * coordinates and samplers in fixed-function processing.
64 *
65 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
66 * sets of texcoords, so is fixed-function fragment processing.
67 *
68 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
69 */
70
71
72 static GLboolean
texenv_doing_secondary_color(struct gl_context * ctx)73 texenv_doing_secondary_color(struct gl_context *ctx)
74 {
75 if (ctx->Light.Enabled &&
76 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
77 return GL_TRUE;
78
79 if (ctx->Fog.ColorSumEnabled)
80 return GL_TRUE;
81
82 return GL_FALSE;
83 }
84
85 struct state_key {
86 GLuint nr_enabled_units:4;
87 GLuint separate_specular:1;
88 GLuint fog_mode:2; /**< FOG_x */
89 GLuint inputs_available:12;
90 GLuint num_draw_buffers:4;
91
92 /* NOTE: This array of structs must be last! (see "keySize" below) */
93 struct {
94 GLuint enabled:1;
95 GLuint source_index:4; /**< TEXTURE_x_INDEX */
96 GLuint shadow:1;
97
98 /***
99 * These are taken from struct gl_tex_env_combine_packed
100 * @{
101 */
102 GLuint ModeRGB:4;
103 GLuint ModeA:4;
104 GLuint ScaleShiftRGB:2;
105 GLuint ScaleShiftA:2;
106 GLuint NumArgsRGB:3;
107 GLuint NumArgsA:3;
108 struct gl_tex_env_argument ArgsRGB[MAX_COMBINER_TERMS];
109 struct gl_tex_env_argument ArgsA[MAX_COMBINER_TERMS];
110 /** @} */
111 } unit[MAX_TEXTURE_COORD_UNITS];
112 };
113
114
115 /**
116 * Do we need to clamp the results of the given texture env/combine mode?
117 * If the inputs to the mode are in [0,1] we don't always have to clamp
118 * the results.
119 */
120 static GLboolean
need_saturate(GLuint mode)121 need_saturate( GLuint mode )
122 {
123 switch (mode) {
124 case TEXENV_MODE_REPLACE:
125 case TEXENV_MODE_MODULATE:
126 case TEXENV_MODE_INTERPOLATE:
127 return GL_FALSE;
128 case TEXENV_MODE_ADD:
129 case TEXENV_MODE_ADD_SIGNED:
130 case TEXENV_MODE_SUBTRACT:
131 case TEXENV_MODE_DOT3_RGB:
132 case TEXENV_MODE_DOT3_RGB_EXT:
133 case TEXENV_MODE_DOT3_RGBA:
134 case TEXENV_MODE_DOT3_RGBA_EXT:
135 case TEXENV_MODE_MODULATE_ADD_ATI:
136 case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
137 case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
138 case TEXENV_MODE_ADD_PRODUCTS_NV:
139 case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
140 return GL_TRUE;
141 default:
142 assert(0);
143 return GL_FALSE;
144 }
145 }
146
147 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
148
149 /**
150 * Identify all possible varying inputs. The fragment program will
151 * never reference non-varying inputs, but will track them via state
152 * constants instead.
153 *
154 * This function figures out all the inputs that the fragment program
155 * has access to and filters input bitmask.
156 */
filter_fp_input_mask(GLbitfield fp_inputs,struct gl_context * ctx)157 static GLbitfield filter_fp_input_mask( GLbitfield fp_inputs,
158 struct gl_context *ctx )
159 {
160 if (ctx->VertexProgram._Overriden) {
161 /* Somebody's messing with the vertex program and we don't have
162 * a clue what's happening. Assume that it could be producing
163 * all possible outputs.
164 */
165 return fp_inputs;
166 }
167
168 if (ctx->RenderMode == GL_FEEDBACK) {
169 /* _NEW_RENDERMODE */
170 return fp_inputs & (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
171 }
172
173 /* _NEW_PROGRAM */
174 const GLboolean vertexShader =
175 ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX] != NULL;
176 const GLboolean vertexProgram = _mesa_arb_vertex_program_enabled(ctx);
177
178 if (!(vertexProgram || vertexShader)) {
179 /* Fixed function vertex logic */
180 GLbitfield possible_inputs = 0;
181
182 /* _NEW_VARYING_VP_INPUTS */
183 GLbitfield varying_inputs = ctx->varying_vp_inputs;
184 /* We only update ctx->varying_vp_inputs when in VP_MODE_FF _VPMode */
185 assert(VP_MODE_FF == ctx->VertexProgram._VPMode);
186
187 /* These get generated in the setup routine regardless of the
188 * vertex program:
189 */
190 /* _NEW_POINT */
191 if (ctx->Point.PointSprite) {
192 /* All texture varyings are possible to use */
193 possible_inputs = VARYING_BITS_TEX_ANY;
194 }
195 else {
196 /* _NEW_TEXTURE_STATE */
197 const GLbitfield possible_tex_inputs =
198 ctx->Texture._TexGenEnabled |
199 ctx->Texture._TexMatEnabled |
200 ((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0);
201
202 possible_inputs = (possible_tex_inputs << VARYING_SLOT_TEX0);
203 }
204
205 /* First look at what values may be computed by the generated
206 * vertex program:
207 */
208 /* _NEW_LIGHT */
209 if (ctx->Light.Enabled) {
210 possible_inputs |= VARYING_BIT_COL0;
211
212 if (texenv_doing_secondary_color(ctx))
213 possible_inputs |= VARYING_BIT_COL1;
214 }
215
216 /* Then look at what might be varying as a result of enabled
217 * arrays, etc:
218 */
219 if (varying_inputs & VERT_BIT_COLOR0)
220 possible_inputs |= VARYING_BIT_COL0;
221 if (varying_inputs & VERT_BIT_COLOR1)
222 possible_inputs |= VARYING_BIT_COL1;
223
224 return fp_inputs & possible_inputs;
225 }
226
227 /* calculate from vp->outputs */
228 struct gl_program *vprog;
229
230 /* Choose GLSL vertex shader over ARB vertex program. Need this
231 * since vertex shader state validation comes after fragment state
232 * validation (see additional comments in state.c).
233 */
234 if (ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY] != NULL)
235 vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY];
236 else if (ctx->_Shader->CurrentProgram[MESA_SHADER_TESS_EVAL] != NULL)
237 vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_TESS_EVAL];
238 else if (vertexShader)
239 vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX];
240 else
241 vprog = ctx->VertexProgram.Current;
242
243 GLbitfield possible_inputs = vprog->info.outputs_written;
244
245 /* These get generated in the setup routine regardless of the
246 * vertex program:
247 */
248 /* _NEW_POINT */
249 if (ctx->Point.PointSprite) {
250 /* All texture varyings are possible to use */
251 possible_inputs |= VARYING_BITS_TEX_ANY;
252 }
253
254 return fp_inputs & possible_inputs;
255 }
256
257
258 /**
259 * Examine current texture environment state and generate a unique
260 * key to identify it.
261 */
make_state_key(struct gl_context * ctx,struct state_key * key)262 static GLuint make_state_key( struct gl_context *ctx, struct state_key *key )
263 {
264 GLbitfield inputs_referenced = VARYING_BIT_COL0;
265 GLbitfield mask;
266 GLuint keySize;
267
268 memset(key, 0, sizeof(*key));
269
270 /* _NEW_TEXTURE_OBJECT */
271 mask = ctx->Texture._EnabledCoordUnits;
272 int i = -1;
273 while (mask) {
274 i = u_bit_scan(&mask);
275 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
276 const struct gl_texture_object *texObj = texUnit->_Current;
277 const struct gl_tex_env_combine_packed *comb =
278 &ctx->Texture.FixedFuncUnit[i]._CurrentCombinePacked;
279
280 if (!texObj)
281 continue;
282
283 key->unit[i].enabled = 1;
284 inputs_referenced |= VARYING_BIT_TEX(i);
285
286 key->unit[i].source_index = texObj->TargetIndex;
287
288 const struct gl_sampler_object *samp = _mesa_get_samplerobj(ctx, i);
289 if (samp->CompareMode == GL_COMPARE_R_TO_TEXTURE) {
290 const GLenum format = _mesa_texture_base_format(texObj);
291 key->unit[i].shadow = (format == GL_DEPTH_COMPONENT ||
292 format == GL_DEPTH_STENCIL_EXT);
293 }
294
295 key->unit[i].ModeRGB = comb->ModeRGB;
296 key->unit[i].ModeA = comb->ModeA;
297 key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
298 key->unit[i].ScaleShiftA = comb->ScaleShiftA;
299 key->unit[i].NumArgsRGB = comb->NumArgsRGB;
300 key->unit[i].NumArgsA = comb->NumArgsA;
301
302 memcpy(key->unit[i].ArgsRGB, comb->ArgsRGB, sizeof comb->ArgsRGB);
303 memcpy(key->unit[i].ArgsA, comb->ArgsA, sizeof comb->ArgsA);
304 }
305
306 key->nr_enabled_units = i + 1;
307
308 /* _NEW_LIGHT | _NEW_FOG */
309 if (texenv_doing_secondary_color(ctx)) {
310 key->separate_specular = 1;
311 inputs_referenced |= VARYING_BIT_COL1;
312 }
313
314 /* _NEW_FOG */
315 key->fog_mode = ctx->Fog._PackedEnabledMode;
316
317 /* _NEW_BUFFERS */
318 key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
319
320 /* _NEW_COLOR */
321 if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
322 /* if alpha test is enabled we need to emit at least one color */
323 key->num_draw_buffers = 1;
324 }
325
326 key->inputs_available = filter_fp_input_mask(inputs_referenced, ctx);
327
328 /* compute size of state key, ignoring unused texture units */
329 keySize = sizeof(*key) - sizeof(key->unit)
330 + key->nr_enabled_units * sizeof(key->unit[0]);
331
332 return keySize;
333 }
334
335
336 /** State used to build the fragment program:
337 */
338 class texenv_fragment_program : public ir_factory {
339 public:
340 struct gl_shader_program *shader_program;
341 struct gl_shader *shader;
342 exec_list *top_instructions;
343 struct state_key *state;
344
345 ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
346 /* Reg containing each texture unit's sampled texture color,
347 * else undef.
348 */
349
350 ir_rvalue *src_previous; /**< Reg containing color from previous
351 * stage. May need to be decl'd.
352 */
353 };
354
355 static ir_rvalue *
get_current_attrib(texenv_fragment_program * p,GLuint attrib)356 get_current_attrib(texenv_fragment_program *p, GLuint attrib)
357 {
358 ir_variable *current;
359 ir_rvalue *val;
360
361 current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA");
362 assert(current);
363 current->data.max_array_access = MAX2(current->data.max_array_access, (int)attrib);
364 val = new(p->mem_ctx) ir_dereference_variable(current);
365 ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib);
366 return new(p->mem_ctx) ir_dereference_array(val, index);
367 }
368
369 static ir_rvalue *
get_gl_Color(texenv_fragment_program * p)370 get_gl_Color(texenv_fragment_program *p)
371 {
372 if (p->state->inputs_available & VARYING_BIT_COL0) {
373 ir_variable *var = p->shader->symbols->get_variable("gl_Color");
374 assert(var);
375 return new(p->mem_ctx) ir_dereference_variable(var);
376 } else {
377 return get_current_attrib(p, VERT_ATTRIB_COLOR0);
378 }
379 }
380
381 static ir_rvalue *
get_source(texenv_fragment_program * p,GLuint src,GLuint unit)382 get_source(texenv_fragment_program *p,
383 GLuint src, GLuint unit)
384 {
385 ir_variable *var;
386 ir_dereference *deref;
387
388 switch (src) {
389 case TEXENV_SRC_TEXTURE:
390 return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
391
392 case TEXENV_SRC_TEXTURE0:
393 case TEXENV_SRC_TEXTURE1:
394 case TEXENV_SRC_TEXTURE2:
395 case TEXENV_SRC_TEXTURE3:
396 case TEXENV_SRC_TEXTURE4:
397 case TEXENV_SRC_TEXTURE5:
398 case TEXENV_SRC_TEXTURE6:
399 case TEXENV_SRC_TEXTURE7:
400 return new(p->mem_ctx)
401 ir_dereference_variable(p->src_texture[src - TEXENV_SRC_TEXTURE0]);
402
403 case TEXENV_SRC_CONSTANT:
404 var = p->shader->symbols->get_variable("gl_TextureEnvColor");
405 assert(var);
406 deref = new(p->mem_ctx) ir_dereference_variable(var);
407 var->data.max_array_access = MAX2(var->data.max_array_access, (int)unit);
408 return new(p->mem_ctx) ir_dereference_array(deref,
409 new(p->mem_ctx) ir_constant(unit));
410
411 case TEXENV_SRC_PRIMARY_COLOR:
412 var = p->shader->symbols->get_variable("gl_Color");
413 assert(var);
414 return new(p->mem_ctx) ir_dereference_variable(var);
415
416 case TEXENV_SRC_ZERO:
417 return new(p->mem_ctx) ir_constant(0.0f);
418
419 case TEXENV_SRC_ONE:
420 return new(p->mem_ctx) ir_constant(1.0f);
421
422 case TEXENV_SRC_PREVIOUS:
423 if (!p->src_previous) {
424 return get_gl_Color(p);
425 } else {
426 return p->src_previous->clone(p->mem_ctx, NULL);
427 }
428
429 default:
430 assert(0);
431 return NULL;
432 }
433 }
434
435 static ir_rvalue *
emit_combine_source(texenv_fragment_program * p,GLuint unit,GLuint source,GLuint operand)436 emit_combine_source(texenv_fragment_program *p,
437 GLuint unit,
438 GLuint source,
439 GLuint operand)
440 {
441 ir_rvalue *src;
442
443 src = get_source(p, source, unit);
444
445 switch (operand) {
446 case TEXENV_OPR_ONE_MINUS_COLOR:
447 return sub(new(p->mem_ctx) ir_constant(1.0f), src);
448
449 case TEXENV_OPR_ALPHA:
450 return src->type->is_scalar() ? src : swizzle_w(src);
451
452 case TEXENV_OPR_ONE_MINUS_ALPHA: {
453 ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
454
455 return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
456 }
457
458 case TEXENV_OPR_COLOR:
459 return src;
460
461 default:
462 assert(0);
463 return src;
464 }
465 }
466
467 /**
468 * Check if the RGB and Alpha sources and operands match for the given
469 * texture unit's combinder state. When the RGB and A sources and
470 * operands match, we can emit fewer instructions.
471 */
args_match(const struct state_key * key,GLuint unit)472 static GLboolean args_match( const struct state_key *key, GLuint unit )
473 {
474 GLuint i, numArgs = key->unit[unit].NumArgsRGB;
475
476 for (i = 0; i < numArgs; i++) {
477 if (key->unit[unit].ArgsA[i].Source != key->unit[unit].ArgsRGB[i].Source)
478 return GL_FALSE;
479
480 switch (key->unit[unit].ArgsA[i].Operand) {
481 case TEXENV_OPR_ALPHA:
482 switch (key->unit[unit].ArgsRGB[i].Operand) {
483 case TEXENV_OPR_COLOR:
484 case TEXENV_OPR_ALPHA:
485 break;
486 default:
487 return GL_FALSE;
488 }
489 break;
490 case TEXENV_OPR_ONE_MINUS_ALPHA:
491 switch (key->unit[unit].ArgsRGB[i].Operand) {
492 case TEXENV_OPR_ONE_MINUS_COLOR:
493 case TEXENV_OPR_ONE_MINUS_ALPHA:
494 break;
495 default:
496 return GL_FALSE;
497 }
498 break;
499 default:
500 return GL_FALSE; /* impossible */
501 }
502 }
503
504 return GL_TRUE;
505 }
506
507 static ir_rvalue *
smear(ir_rvalue * val)508 smear(ir_rvalue *val)
509 {
510 if (!val->type->is_scalar())
511 return val;
512
513 return swizzle_xxxx(val);
514 }
515
516 static ir_rvalue *
emit_combine(texenv_fragment_program * p,GLuint unit,GLuint nr,GLuint mode,const struct gl_tex_env_argument * opt)517 emit_combine(texenv_fragment_program *p,
518 GLuint unit,
519 GLuint nr,
520 GLuint mode,
521 const struct gl_tex_env_argument *opt)
522 {
523 ir_rvalue *src[MAX_COMBINER_TERMS];
524 ir_rvalue *tmp0, *tmp1;
525 GLuint i;
526
527 assert(nr <= MAX_COMBINER_TERMS);
528
529 for (i = 0; i < nr; i++)
530 src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
531
532 switch (mode) {
533 case TEXENV_MODE_REPLACE:
534 return src[0];
535
536 case TEXENV_MODE_MODULATE:
537 return mul(src[0], src[1]);
538
539 case TEXENV_MODE_ADD:
540 return add(src[0], src[1]);
541
542 case TEXENV_MODE_ADD_SIGNED:
543 return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
544
545 case TEXENV_MODE_INTERPOLATE:
546 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
547 tmp0 = mul(src[0], src[2]);
548 tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
549 src[2]->clone(p->mem_ctx, NULL)));
550 return add(tmp0, tmp1);
551
552 case TEXENV_MODE_SUBTRACT:
553 return sub(src[0], src[1]);
554
555 case TEXENV_MODE_DOT3_RGBA:
556 case TEXENV_MODE_DOT3_RGBA_EXT:
557 case TEXENV_MODE_DOT3_RGB_EXT:
558 case TEXENV_MODE_DOT3_RGB: {
559 tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
560 tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
561
562 tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
563 tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
564
565 return dot(swizzle_xyz(smear(tmp0)), swizzle_xyz(smear(tmp1)));
566 }
567 case TEXENV_MODE_MODULATE_ADD_ATI:
568 return add(mul(src[0], src[2]), src[1]);
569
570 case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
571 return add(add(mul(src[0], src[2]), src[1]),
572 new(p->mem_ctx) ir_constant(-0.5f));
573
574 case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
575 return sub(mul(src[0], src[2]), src[1]);
576
577 case TEXENV_MODE_ADD_PRODUCTS_NV:
578 return add(mul(src[0], src[1]), mul(src[2], src[3]));
579
580 case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
581 return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
582 new(p->mem_ctx) ir_constant(-0.5f));
583 default:
584 assert(0);
585 return src[0];
586 }
587 }
588
589 /**
590 * Generate instructions for one texture unit's env/combiner mode.
591 */
592 static ir_rvalue *
emit_texenv(texenv_fragment_program * p,GLuint unit)593 emit_texenv(texenv_fragment_program *p, GLuint unit)
594 {
595 const struct state_key *key = p->state;
596 GLboolean rgb_saturate, alpha_saturate;
597 GLuint rgb_shift, alpha_shift;
598
599 if (!key->unit[unit].enabled) {
600 return get_source(p, TEXENV_SRC_PREVIOUS, 0);
601 }
602
603 switch (key->unit[unit].ModeRGB) {
604 case TEXENV_MODE_DOT3_RGB_EXT:
605 alpha_shift = key->unit[unit].ScaleShiftA;
606 rgb_shift = 0;
607 break;
608 case TEXENV_MODE_DOT3_RGBA_EXT:
609 alpha_shift = 0;
610 rgb_shift = 0;
611 break;
612 default:
613 rgb_shift = key->unit[unit].ScaleShiftRGB;
614 alpha_shift = key->unit[unit].ScaleShiftA;
615 break;
616 }
617
618 /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
619 * We don't want to clamp twice.
620 */
621 if (rgb_shift)
622 rgb_saturate = GL_FALSE; /* saturate after rgb shift */
623 else if (need_saturate(key->unit[unit].ModeRGB))
624 rgb_saturate = GL_TRUE;
625 else
626 rgb_saturate = GL_FALSE;
627
628 if (alpha_shift)
629 alpha_saturate = GL_FALSE; /* saturate after alpha shift */
630 else if (need_saturate(key->unit[unit].ModeA))
631 alpha_saturate = GL_TRUE;
632 else
633 alpha_saturate = GL_FALSE;
634
635 ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
636 ir_dereference *deref;
637 ir_rvalue *val;
638
639 /* Emit the RGB and A combine ops
640 */
641 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
642 args_match(key, unit)) {
643 val = emit_combine(p, unit,
644 key->unit[unit].NumArgsRGB,
645 key->unit[unit].ModeRGB,
646 key->unit[unit].ArgsRGB);
647 val = smear(val);
648 if (rgb_saturate)
649 val = saturate(val);
650
651 p->emit(assign(temp_var, val));
652 }
653 else if (key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA_EXT ||
654 key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA) {
655 ir_rvalue *val = emit_combine(p, unit,
656 key->unit[unit].NumArgsRGB,
657 key->unit[unit].ModeRGB,
658 key->unit[unit].ArgsRGB);
659 val = smear(val);
660 if (rgb_saturate)
661 val = saturate(val);
662 p->emit(assign(temp_var, val));
663 }
664 else {
665 /* Need to do something to stop from re-emitting identical
666 * argument calculations here:
667 */
668 val = emit_combine(p, unit,
669 key->unit[unit].NumArgsRGB,
670 key->unit[unit].ModeRGB,
671 key->unit[unit].ArgsRGB);
672 val = swizzle_xyz(smear(val));
673 if (rgb_saturate)
674 val = saturate(val);
675 p->emit(assign(temp_var, val, WRITEMASK_XYZ));
676
677 val = emit_combine(p, unit,
678 key->unit[unit].NumArgsA,
679 key->unit[unit].ModeA,
680 key->unit[unit].ArgsA);
681 val = swizzle_w(smear(val));
682 if (alpha_saturate)
683 val = saturate(val);
684 p->emit(assign(temp_var, val, WRITEMASK_W));
685 }
686
687 deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
688
689 /* Deal with the final shift:
690 */
691 if (alpha_shift || rgb_shift) {
692 ir_constant *shift;
693
694 if (rgb_shift == alpha_shift) {
695 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
696 }
697 else {
698 ir_constant_data const_data;
699
700 const_data.f[0] = float(1 << rgb_shift);
701 const_data.f[1] = float(1 << rgb_shift);
702 const_data.f[2] = float(1 << rgb_shift);
703 const_data.f[3] = float(1 << alpha_shift);
704
705 shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
706 &const_data);
707 }
708
709 return saturate(mul(deref, shift));
710 }
711 else
712 return deref;
713 }
714
715
716 /**
717 * Generate instruction for getting a texture source term.
718 */
load_texture(texenv_fragment_program * p,GLuint unit)719 static void load_texture( texenv_fragment_program *p, GLuint unit )
720 {
721 ir_dereference *deref;
722
723 if (p->src_texture[unit])
724 return;
725
726 const GLuint texTarget = p->state->unit[unit].source_index;
727 ir_rvalue *texcoord;
728
729 if (!(p->state->inputs_available & (VARYING_BIT_TEX0 << unit))) {
730 texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
731 } else {
732 ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
733 assert(tc_array);
734 texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
735 ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
736 texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
737 tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, (int)unit);
738 }
739
740 if (!p->state->unit[unit].enabled) {
741 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
742 "dummy_tex");
743 p->emit(p->src_texture[unit]);
744
745 p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
746 return ;
747 }
748
749 const glsl_type *sampler_type = NULL;
750 int coords = 0;
751
752 switch (texTarget) {
753 case TEXTURE_1D_INDEX:
754 if (p->state->unit[unit].shadow)
755 sampler_type = glsl_type::sampler1DShadow_type;
756 else
757 sampler_type = glsl_type::sampler1D_type;
758 coords = 1;
759 break;
760 case TEXTURE_1D_ARRAY_INDEX:
761 if (p->state->unit[unit].shadow)
762 sampler_type = glsl_type::sampler1DArrayShadow_type;
763 else
764 sampler_type = glsl_type::sampler1DArray_type;
765 coords = 2;
766 break;
767 case TEXTURE_2D_INDEX:
768 if (p->state->unit[unit].shadow)
769 sampler_type = glsl_type::sampler2DShadow_type;
770 else
771 sampler_type = glsl_type::sampler2D_type;
772 coords = 2;
773 break;
774 case TEXTURE_2D_ARRAY_INDEX:
775 if (p->state->unit[unit].shadow)
776 sampler_type = glsl_type::sampler2DArrayShadow_type;
777 else
778 sampler_type = glsl_type::sampler2DArray_type;
779 coords = 3;
780 break;
781 case TEXTURE_RECT_INDEX:
782 if (p->state->unit[unit].shadow)
783 sampler_type = glsl_type::sampler2DRectShadow_type;
784 else
785 sampler_type = glsl_type::sampler2DRect_type;
786 coords = 2;
787 break;
788 case TEXTURE_3D_INDEX:
789 assert(!p->state->unit[unit].shadow);
790 sampler_type = glsl_type::sampler3D_type;
791 coords = 3;
792 break;
793 case TEXTURE_CUBE_INDEX:
794 if (p->state->unit[unit].shadow)
795 sampler_type = glsl_type::samplerCubeShadow_type;
796 else
797 sampler_type = glsl_type::samplerCube_type;
798 coords = 3;
799 break;
800 case TEXTURE_EXTERNAL_INDEX:
801 assert(!p->state->unit[unit].shadow);
802 sampler_type = glsl_type::samplerExternalOES_type;
803 coords = 2;
804 break;
805 }
806
807 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
808 "tex");
809
810 ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
811
812
813 char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
814 ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
815 sampler_name,
816 ir_var_uniform);
817 p->top_instructions->push_head(sampler);
818
819 /* Set the texture unit for this sampler in the same way that
820 * layout(binding=X) would.
821 */
822 sampler->data.explicit_binding = true;
823 sampler->data.binding = unit;
824
825 deref = new(p->mem_ctx) ir_dereference_variable(sampler);
826 tex->set_sampler(deref, glsl_type::vec4_type);
827
828 tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
829
830 if (p->state->unit[unit].shadow) {
831 texcoord = texcoord->clone(p->mem_ctx, NULL);
832 tex->shadow_comparator = new(p->mem_ctx) ir_swizzle(texcoord,
833 coords, 0, 0, 0,
834 1);
835 coords++;
836 }
837
838 texcoord = texcoord->clone(p->mem_ctx, NULL);
839 tex->projector = swizzle_w(texcoord);
840
841 p->emit(assign(p->src_texture[unit], tex));
842 }
843
844 static void
load_texenv_source(texenv_fragment_program * p,GLuint src,GLuint unit)845 load_texenv_source(texenv_fragment_program *p,
846 GLuint src, GLuint unit)
847 {
848 switch (src) {
849 case TEXENV_SRC_TEXTURE:
850 load_texture(p, unit);
851 break;
852
853 case TEXENV_SRC_TEXTURE0:
854 case TEXENV_SRC_TEXTURE1:
855 case TEXENV_SRC_TEXTURE2:
856 case TEXENV_SRC_TEXTURE3:
857 case TEXENV_SRC_TEXTURE4:
858 case TEXENV_SRC_TEXTURE5:
859 case TEXENV_SRC_TEXTURE6:
860 case TEXENV_SRC_TEXTURE7:
861 load_texture(p, src - TEXENV_SRC_TEXTURE0);
862 break;
863
864 default:
865 /* not a texture src - do nothing */
866 break;
867 }
868 }
869
870
871 /**
872 * Generate instructions for loading all texture source terms.
873 */
874 static GLboolean
load_texunit_sources(texenv_fragment_program * p,GLuint unit)875 load_texunit_sources( texenv_fragment_program *p, GLuint unit )
876 {
877 const struct state_key *key = p->state;
878 GLuint i;
879
880 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
881 load_texenv_source( p, key->unit[unit].ArgsRGB[i].Source, unit );
882 }
883
884 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
885 load_texenv_source( p, key->unit[unit].ArgsA[i].Source, unit );
886 }
887
888 return GL_TRUE;
889 }
890
891 /**
892 * Applies the fog calculations.
893 *
894 * This is basically like the ARB_fragment_prorgam fog options. Note
895 * that ffvertex_prog.c produces fogcoord for us when
896 * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
897 */
898 static ir_rvalue *
emit_fog_instructions(texenv_fragment_program * p,ir_rvalue * fragcolor)899 emit_fog_instructions(texenv_fragment_program *p,
900 ir_rvalue *fragcolor)
901 {
902 struct state_key *key = p->state;
903 ir_rvalue *f, *temp;
904 ir_variable *params, *oparams;
905 ir_variable *fogcoord;
906
907 /* Temporary storage for the whole fog result. Fog calculations
908 * only affect rgb so we're hanging on to the .a value of fragcolor
909 * this way.
910 */
911 ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
912 p->emit(assign(fog_result, fragcolor));
913
914 fragcolor = swizzle_xyz(fog_result);
915
916 oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
917 assert(oparams);
918 fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
919 assert(fogcoord);
920 params = p->shader->symbols->get_variable("gl_Fog");
921 assert(params);
922 f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
923
924 ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
925
926 switch (key->fog_mode) {
927 case FOG_LINEAR:
928 /* f = (end - z) / (end - start)
929 *
930 * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
931 * (end / (end - start)) so we can generate a single MAD.
932 */
933 f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
934 break;
935 case FOG_EXP:
936 /* f = e^(-(density * fogcoord))
937 *
938 * gl_MesaFogParamsOptimized gives us density/ln(2) so we can
939 * use EXP2 which is generally the native instruction without
940 * having to do any further math on the fog density uniform.
941 */
942 f = mul(f, swizzle_z(oparams));
943 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
944 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
945 break;
946 case FOG_EXP2:
947 /* f = e^(-(density * fogcoord)^2)
948 *
949 * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
950 * can do this like FOG_EXP but with a squaring after the
951 * multiply by density.
952 */
953 ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
954 p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
955
956 f = mul(temp_var, temp_var);
957 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
958 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
959 break;
960 }
961
962 p->emit(assign(f_var, saturate(f)));
963
964 f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
965 temp = new(p->mem_ctx) ir_dereference_variable(params);
966 temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
967 temp = mul(swizzle_xyz(temp), f);
968
969 p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
970
971 return new(p->mem_ctx) ir_dereference_variable(fog_result);
972 }
973
974 static void
emit_instructions(texenv_fragment_program * p)975 emit_instructions(texenv_fragment_program *p)
976 {
977 struct state_key *key = p->state;
978 GLuint unit;
979
980 if (key->nr_enabled_units) {
981 /* First pass - to support texture_env_crossbar, first identify
982 * all referenced texture sources and emit texld instructions
983 * for each:
984 */
985 for (unit = 0; unit < key->nr_enabled_units; unit++)
986 if (key->unit[unit].enabled) {
987 load_texunit_sources(p, unit);
988 }
989
990 /* Second pass - emit combine instructions to build final color:
991 */
992 for (unit = 0; unit < key->nr_enabled_units; unit++) {
993 if (key->unit[unit].enabled) {
994 p->src_previous = emit_texenv(p, unit);
995 }
996 }
997 }
998
999 ir_rvalue *cf = get_source(p, TEXENV_SRC_PREVIOUS, 0);
1000
1001 if (key->separate_specular) {
1002 ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
1003 "specular_add");
1004 p->emit(assign(spec_result, cf));
1005
1006 ir_rvalue *secondary;
1007 if (p->state->inputs_available & VARYING_BIT_COL1) {
1008 ir_variable *var =
1009 p->shader->symbols->get_variable("gl_SecondaryColor");
1010 assert(var);
1011 secondary = swizzle_xyz(var);
1012 } else {
1013 secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
1014 }
1015
1016 p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
1017 WRITEMASK_XYZ));
1018
1019 cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
1020 }
1021
1022 if (key->fog_mode) {
1023 cf = emit_fog_instructions(p, cf);
1024 }
1025
1026 ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
1027 assert(frag_color);
1028 p->emit(assign(frag_color, cf));
1029 }
1030
1031 /**
1032 * Generate a new fragment program which implements the context's
1033 * current texture env/combine mode.
1034 */
1035 static struct gl_shader_program *
create_new_program(struct gl_context * ctx,struct state_key * key)1036 create_new_program(struct gl_context *ctx, struct state_key *key)
1037 {
1038 texenv_fragment_program p;
1039 unsigned int unit;
1040 _mesa_glsl_parse_state *state;
1041
1042 p.mem_ctx = ralloc_context(NULL);
1043 p.shader = _mesa_new_shader(0, MESA_SHADER_FRAGMENT);
1044 #ifdef DEBUG
1045 p.shader->SourceChecksum = 0xf18ed; /* fixed */
1046 #endif
1047 p.shader->ir = new(p.shader) exec_list;
1048 state = new(p.shader) _mesa_glsl_parse_state(ctx, MESA_SHADER_FRAGMENT,
1049 p.shader);
1050 p.shader->symbols = state->symbols;
1051 p.top_instructions = p.shader->ir;
1052 p.instructions = p.shader->ir;
1053 p.state = key;
1054 p.shader_program = _mesa_new_shader_program(0);
1055
1056 /* Tell the linker to ignore the fact that we're building a
1057 * separate shader, in case we're in a GLES2 context that would
1058 * normally reject that. The real problem is that we're building a
1059 * fixed function program in a GLES2 context at all, but that's a
1060 * big mess to clean up.
1061 */
1062 p.shader_program->SeparateShader = GL_TRUE;
1063
1064 /* The legacy GLSL shadow functions follow the depth texture
1065 * mode and return vec4. The GLSL 1.30 shadow functions return float and
1066 * ignore the depth texture mode. That's a shader and state dependency
1067 * that's difficult to deal with. st/mesa uses a simple but not
1068 * completely correct solution: if the shader declares GLSL >= 1.30 and
1069 * the depth texture mode is GL_ALPHA (000X), it sets the XXXX swizzle
1070 * instead. Thus, the GLSL 1.30 shadow function will get the result in .x
1071 * and legacy shadow functions will get it in .w as expected.
1072 * For the fixed-function fragment shader, use 120 to get correct behavior
1073 * for GL_ALPHA.
1074 */
1075 state->language_version = 120;
1076
1077 state->es_shader = false;
1078 if (_mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external)
1079 state->OES_EGL_image_external_enable = true;
1080 _mesa_glsl_initialize_types(state);
1081 _mesa_glsl_initialize_variables(p.instructions, state);
1082
1083 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++)
1084 p.src_texture[unit] = NULL;
1085
1086 p.src_previous = NULL;
1087
1088 ir_function *main_f = new(p.mem_ctx) ir_function("main");
1089 p.emit(main_f);
1090 state->symbols->add_function(main_f);
1091
1092 ir_function_signature *main_sig =
1093 new(p.mem_ctx) ir_function_signature(glsl_type::void_type);
1094 main_sig->is_defined = true;
1095 main_f->add_signature(main_sig);
1096
1097 p.instructions = &main_sig->body;
1098 if (key->num_draw_buffers)
1099 emit_instructions(&p);
1100
1101 validate_ir_tree(p.shader->ir);
1102
1103 const struct gl_shader_compiler_options *options =
1104 &ctx->Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT];
1105
1106 /* Conservative approach: Don't optimize here, the linker does it too. */
1107 if (!ctx->Const.GLSLOptimizeConservatively) {
1108 while (do_common_optimization(p.shader->ir, false, false, options,
1109 ctx->Const.NativeIntegers))
1110 ;
1111 }
1112
1113 reparent_ir(p.shader->ir, p.shader->ir);
1114
1115 p.shader->CompileStatus = COMPILE_SUCCESS;
1116 p.shader->Version = state->language_version;
1117 p.shader_program->Shaders =
1118 (gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
1119 p.shader_program->Shaders[0] = p.shader;
1120 p.shader_program->NumShaders = 1;
1121
1122 _mesa_glsl_link_shader(ctx, p.shader_program);
1123
1124 if (!p.shader_program->data->LinkStatus)
1125 _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
1126 p.shader_program->data->InfoLog);
1127
1128 ralloc_free(p.mem_ctx);
1129 return p.shader_program;
1130 }
1131
1132 extern "C" {
1133
1134 /**
1135 * Return a fragment program which implements the current
1136 * fixed-function texture, fog and color-sum operations.
1137 */
1138 struct gl_shader_program *
_mesa_get_fixed_func_fragment_program(struct gl_context * ctx)1139 _mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
1140 {
1141 struct gl_shader_program *shader_program;
1142 struct state_key key;
1143 GLuint keySize;
1144
1145 keySize = make_state_key(ctx, &key);
1146
1147 shader_program = (struct gl_shader_program *)
1148 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1149 &key, keySize);
1150
1151 if (!shader_program) {
1152 shader_program = create_new_program(ctx, &key);
1153
1154 _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
1155 &key, keySize, shader_program);
1156 }
1157
1158 return shader_program;
1159 }
1160
1161 }
1162