• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Operations that generate constants.
16
17See the [constants guide](https://tensorflow.org/api_guides/python/constant_op).
18"""
19
20# Must be separate from array_ops to avoid a cyclic dependency.
21
22from __future__ import absolute_import
23from __future__ import division
24from __future__ import print_function
25
26from tensorflow.core.framework import attr_value_pb2
27from tensorflow.core.framework import types_pb2
28from tensorflow.python.eager import context
29from tensorflow.python.eager import execute
30from tensorflow.python.framework import dtypes
31from tensorflow.python.framework import op_callbacks
32from tensorflow.python.framework import ops
33from tensorflow.python.framework import tensor_shape
34from tensorflow.python.framework import tensor_util
35from tensorflow.python.profiler import trace
36from tensorflow.python.util.tf_export import tf_export
37
38
39def _eager_reshape(tensor, shape, ctx):
40  """Eager-only version of Reshape op; requires tensor is an eager Tensor."""
41  attr_t = tensor._datatype_enum()  # pylint: disable=protected-access
42  attr_tshape, (shape,) = execute.args_to_matching_eager(
43      [shape], ctx, [dtypes.int32, dtypes.int64], dtypes.int32)
44  inputs_flat = [tensor, shape]
45  attrs = ("T", attr_t, "Tshape", attr_tshape)
46  result, = execute.execute(
47      b"Reshape", 1, inputs=inputs_flat, attrs=attrs, ctx=ctx)
48  return result
49
50
51def _eager_fill(dims, value, ctx):
52  """Eager-only version of Fill op; requires value is an eager Tensor."""
53  attr_t = value.dtype.as_datatype_enum
54  dims = convert_to_eager_tensor(dims, ctx, dtypes.int32)
55  inputs_flat = [dims, value]
56  attrs = ("T", attr_t, "index_type", types_pb2.DT_INT32)
57  result, = execute.execute(
58      b"Fill", 1, inputs=inputs_flat, attrs=attrs, ctx=ctx)
59  return result
60
61
62def _eager_identity(tensor, ctx):
63  """Eager-only version of Identity op; requires tensor is an eager Tensor."""
64  attrs = ("T", tensor.dtype.as_datatype_enum)
65  result, = execute.execute(
66      b"Identity", 1, inputs=[tensor], attrs=attrs, ctx=ctx)
67  return result
68
69
70def convert_to_eager_tensor(value, ctx, dtype=None):
71  """Converts the given `value` to an `EagerTensor`.
72
73  Note that this function could return cached copies of created constants for
74  performance reasons.
75
76  Args:
77    value: value to convert to EagerTensor.
78    ctx: value of context.context().
79    dtype: optional desired dtype of the converted EagerTensor.
80
81  Returns:
82    EagerTensor created from value.
83
84  Raises:
85    TypeError: if `dtype` is not compatible with the type of t.
86  """
87  if isinstance(value, ops.EagerTensor):
88    if dtype is not None and value.dtype != dtype:
89      raise TypeError("Expected tensor with type %r not %r" % (
90          dtype, value.dtype))
91    return value
92  if dtype is not None:
93    try:
94      dtype = dtype.as_datatype_enum
95    except AttributeError:
96      dtype = dtypes.as_dtype(dtype).as_datatype_enum
97  ctx.ensure_initialized()
98  return ops.EagerTensor(value, ctx.device_name, dtype)
99
100
101@tf_export(v1=["constant"])
102def constant_v1(
103    value, dtype=None, shape=None, name="Const", verify_shape=False):
104  """Creates a constant tensor.
105
106  The resulting tensor is populated with values of type `dtype`, as
107  specified by arguments `value` and (optionally) `shape` (see examples
108  below).
109
110  The argument `value` can be a constant value, or a list of values of type
111  `dtype`. If `value` is a list, then the length of the list must be less
112  than or equal to the number of elements implied by the `shape` argument (if
113  specified). In the case where the list length is less than the number of
114  elements specified by `shape`, the last element in the list will be used
115  to fill the remaining entries.
116
117  The argument `shape` is optional. If present, it specifies the dimensions of
118  the resulting tensor. If not present, the shape of `value` is used.
119
120  If the argument `dtype` is not specified, then the type is inferred from
121  the type of `value`.
122
123  For example:
124
125  ```python
126  # Constant 1-D Tensor populated with value list.
127  tensor = tf.constant([1, 2, 3, 4, 5, 6, 7]) => [1 2 3 4 5 6 7]
128
129  # Constant 2-D tensor populated with scalar value -1.
130  tensor = tf.constant(-1.0, shape=[2, 3]) => [[-1. -1. -1.]
131                                               [-1. -1. -1.]]
132  ```
133
134  `tf.constant` differs from `tf.fill` in a few ways:
135
136  *   `tf.constant` supports arbitrary constants, not just uniform scalar
137      Tensors like `tf.fill`.
138  *   `tf.constant` creates a `Const` node in the computation graph with the
139      exact value at graph construction time. On the other hand, `tf.fill`
140      creates an Op in the graph that is expanded at runtime.
141  *   Because `tf.constant` only embeds constant values in the graph, it does
142      not support dynamic shapes based on other runtime Tensors, whereas
143      `tf.fill` does.
144
145  Args:
146    value:          A constant value (or list) of output type `dtype`.
147
148    dtype:          The type of the elements of the resulting tensor.
149
150    shape:          Optional dimensions of resulting tensor.
151
152    name:           Optional name for the tensor.
153
154    verify_shape:   Boolean that enables verification of a shape of values.
155
156  Returns:
157    A Constant Tensor.
158
159  Raises:
160    TypeError: if shape is incorrectly specified or unsupported.
161  """
162  return _constant_impl(value, dtype, shape, name, verify_shape=verify_shape,
163                        allow_broadcast=False)
164
165
166@tf_export("constant", v1=[])
167def constant(value, dtype=None, shape=None, name="Const"):
168  """Creates a constant tensor from a tensor-like object.
169
170  Note: All eager `tf.Tensor` values are immutable (in contrast to
171  `tf.Variable`). There is nothing especially _constant_ about the value
172  returned from `tf.constant`. This function is not fundamentally different from
173  `tf.convert_to_tensor`. The name `tf.constant` comes from the `value` being
174  embedded in a `Const` node in the `tf.Graph`. `tf.constant` is useful
175  for asserting that the value can be embedded that way.
176
177  If the argument `dtype` is not specified, then the type is inferred from
178  the type of `value`.
179
180  >>> # Constant 1-D Tensor from a python list.
181  >>> tf.constant([1, 2, 3, 4, 5, 6])
182  <tf.Tensor: shape=(6,), dtype=int32,
183      numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
184  >>> # Or a numpy array
185  >>> a = np.array([[1, 2, 3], [4, 5, 6]])
186  >>> tf.constant(a)
187  <tf.Tensor: shape=(2, 3), dtype=int64, numpy=
188    array([[1, 2, 3],
189           [4, 5, 6]])>
190
191  If `dtype` is specified, the resulting tensor values are cast to the requested
192  `dtype`.
193
194  >>> tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.float64)
195  <tf.Tensor: shape=(6,), dtype=float64,
196      numpy=array([1., 2., 3., 4., 5., 6.])>
197
198  If `shape` is set, the `value` is reshaped to match. Scalars are expanded to
199  fill the `shape`:
200
201  >>> tf.constant(0, shape=(2, 3))
202    <tf.Tensor: shape=(2, 3), dtype=int32, numpy=
203    array([[0, 0, 0],
204           [0, 0, 0]], dtype=int32)>
205  >>> tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
206  <tf.Tensor: shape=(2, 3), dtype=int32, numpy=
207    array([[1, 2, 3],
208           [4, 5, 6]], dtype=int32)>
209
210  `tf.constant` has no effect if an eager Tensor is passed as the `value`, it
211  even transmits gradients:
212
213  >>> v = tf.Variable([0.0])
214  >>> with tf.GradientTape() as g:
215  ...     loss = tf.constant(v + v)
216  >>> g.gradient(loss, v).numpy()
217  array([2.], dtype=float32)
218
219  But, since `tf.constant` embeds the value in the `tf.Graph` this fails for
220  symbolic tensors:
221
222  >>> with tf.compat.v1.Graph().as_default():
223  ...   i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32)
224  ...   t = tf.constant(i)
225  Traceback (most recent call last):
226  ...
227  TypeError: ...
228
229  `tf.constant` will _always_ create CPU (host) tensors. In order to create
230  tensors on other devices, use `tf.identity`. (If the `value` is an eager
231  Tensor, however, the tensor will be returned unmodified as mentioned above.)
232
233  Related Ops:
234
235  * `tf.convert_to_tensor` is similar but:
236    * It has no `shape` argument.
237    * Symbolic tensors are allowed to pass through.
238
239    >>> with tf.compat.v1.Graph().as_default():
240    ...   i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32)
241    ...   t = tf.convert_to_tensor(i)
242
243  * `tf.fill`: differs in a few ways:
244    *   `tf.constant` supports arbitrary constants, not just uniform scalar
245        Tensors like `tf.fill`.
246    *   `tf.fill` creates an Op in the graph that is expanded at runtime, so it
247        can efficiently represent large tensors.
248    *   Since `tf.fill` does not embed the value, it can produce dynamically
249        sized outputs.
250
251  Args:
252    value: A constant value (or list) of output type `dtype`.
253    dtype: The type of the elements of the resulting tensor.
254    shape: Optional dimensions of resulting tensor.
255    name: Optional name for the tensor.
256
257  Returns:
258    A Constant Tensor.
259
260  Raises:
261    TypeError: if shape is incorrectly specified or unsupported.
262    ValueError: if called on a symbolic tensor.
263  """
264  return _constant_impl(value, dtype, shape, name, verify_shape=False,
265                        allow_broadcast=True)
266
267
268def _constant_impl(
269    value, dtype, shape, name, verify_shape, allow_broadcast):
270  """Implementation of constant."""
271  ctx = context.context()
272  if ctx.executing_eagerly():
273    if trace.enabled:
274      with trace.Trace("tf.constant"):
275        return _constant_eager_impl(ctx, value, dtype, shape, verify_shape)
276    return _constant_eager_impl(ctx, value, dtype, shape, verify_shape)
277
278  g = ops.get_default_graph()
279  tensor_value = attr_value_pb2.AttrValue()
280  tensor_value.tensor.CopyFrom(
281      tensor_util.make_tensor_proto(
282          value, dtype=dtype, shape=shape, verify_shape=verify_shape,
283          allow_broadcast=allow_broadcast))
284  dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)
285  attrs = {"value": tensor_value, "dtype": dtype_value}
286  const_tensor = g._create_op_internal(  # pylint: disable=protected-access
287      "Const", [], [dtype_value.type], attrs=attrs, name=name).outputs[0]
288
289  if op_callbacks.should_invoke_op_callbacks():
290    # TODO(b/147670703): Once the special-op creation code paths
291    # are unified. Remove this `if` block.
292    callback_outputs = op_callbacks.invoke_op_callbacks(
293        "Const", tuple(), attrs, (const_tensor,), op_name=name, graph=g)
294    if callback_outputs is not None:
295      const_tensor, = callback_outputs
296  return const_tensor
297
298
299def _constant_eager_impl(ctx, value, dtype, shape, verify_shape):
300  """Implementation of eager constant."""
301  t = convert_to_eager_tensor(value, ctx, dtype)
302  if shape is None:
303    return t
304  shape = tensor_shape.as_shape(shape)
305  if shape == t.shape:
306    return t
307  if verify_shape:
308    raise TypeError("Expected Tensor's shape: %s, got %s." %
309                    (tuple(shape), tuple(t.shape)))
310  num_t = t.shape.num_elements()
311  # TODO(josh11b): Implement shape -> eager tensor conversion.
312  if num_t == shape.num_elements():
313    return _eager_reshape(t, shape.as_list(), ctx)
314  if num_t == 1:
315    if t.dtype == dtypes.bool:
316      # We don't have a Fill kernel for bool dtype on GPU. So we first run
317      # Fill on CPU and then copy to GPU if needed.
318      with ops.device("/device:CPU:0"):
319        x = _eager_fill(shape.as_list(), _eager_identity(t, ctx), ctx)
320      return _eager_identity(x, ctx)
321    else:
322      return _eager_fill(shape.as_list(), t, ctx)
323  raise TypeError("Eager execution of tf.constant with unsupported shape "
324                  "(value has %d elements, shape is %s with %d elements)." %
325                  (num_t, shape, shape.num_elements()))
326
327
328def is_constant(tensor_or_op):
329  if isinstance(tensor_or_op, ops.Tensor):
330    op = tensor_or_op.op
331  else:
332    op = tensor_or_op
333  return op.type == "Const"
334
335
336def _constant_tensor_conversion_function(v, dtype=None, name=None,
337                                         as_ref=False):
338  _ = as_ref
339  return constant(v, dtype=dtype, name=name)
340
341
342ops.register_tensor_conversion_function(
343    (list, tuple), _constant_tensor_conversion_function, 100)
344ops.register_tensor_conversion_function(
345    object, _constant_tensor_conversion_function, 200)
346
347
348def _tensor_shape_tensor_conversion_function(s,
349                                             dtype=None,
350                                             name=None,
351                                             as_ref=False):
352  """Function to convert TensorShape to Tensor."""
353  _ = as_ref
354  if not s.is_fully_defined():
355    raise ValueError(
356        "Cannot convert a partially known TensorShape to a Tensor: %s" % s)
357  s_list = s.as_list()
358  int64_value = 0
359  for dim in s_list:
360    if dim >= 2**31:
361      int64_value = dim
362      break
363
364  if dtype is not None:
365    if dtype not in (dtypes.int32, dtypes.int64):
366      raise TypeError("Cannot convert a TensorShape to dtype: %s" % dtype)
367    if dtype == dtypes.int32 and int64_value:
368      raise ValueError("Cannot convert a TensorShape to dtype int32; "
369                       "a dimension is too large (%s)" % int64_value)
370  else:
371    dtype = dtypes.int64 if int64_value else dtypes.int32
372  if name is None:
373    name = "shape_as_tensor"
374  return constant(s_list, dtype=dtype, name=name)
375
376
377ops.register_tensor_conversion_function(
378    tensor_shape.TensorShape, _tensor_shape_tensor_conversion_function, 100)
379
380
381def _dimension_tensor_conversion_function(d,
382                                          dtype=None,
383                                          name=None,
384                                          as_ref=False):
385  """Function to convert Dimension to Tensor."""
386  _ = as_ref
387  if d.value is None:
388    raise ValueError("Cannot convert an unknown Dimension to a Tensor: %s" % d)
389  if dtype is not None:
390    if dtype not in (dtypes.int32, dtypes.int64):
391      raise TypeError("Cannot convert a TensorShape to dtype: %s" % dtype)
392  else:
393    dtype = dtypes.int32
394  if name is None:
395    name = "shape_as_tensor"
396  return constant(d.value, dtype=dtype, name=name)
397
398
399ops.register_tensor_conversion_function(
400    tensor_shape.Dimension, _dimension_tensor_conversion_function, 100)
401