1 /*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wconversion"
20
21 //#define LOG_NDEBUG 0
22 #undef LOG_TAG
23 #define LOG_TAG "Layer"
24 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
25
26 #include "Layer.h"
27
28 #include <android-base/properties.h>
29 #include <android-base/stringprintf.h>
30 #include <android/native_window.h>
31 #include <binder/IPCThreadState.h>
32 #include <compositionengine/Display.h>
33 #include <compositionengine/LayerFECompositionState.h>
34 #include <compositionengine/OutputLayer.h>
35 #include <compositionengine/impl/OutputLayerCompositionState.h>
36 #include <cutils/compiler.h>
37 #include <cutils/native_handle.h>
38 #include <cutils/properties.h>
39 #include <gui/BufferItem.h>
40 #include <gui/LayerDebugInfo.h>
41 #include <gui/Surface.h>
42 #include <math.h>
43 #include <private/android_filesystem_config.h>
44 #include <renderengine/RenderEngine.h>
45 #include <stdint.h>
46 #include <stdlib.h>
47 #include <sys/types.h>
48 #include <ui/DebugUtils.h>
49 #include <ui/GraphicBuffer.h>
50 #include <ui/PixelFormat.h>
51 #include <utils/Errors.h>
52 #include <utils/Log.h>
53 #include <utils/NativeHandle.h>
54 #include <utils/StopWatch.h>
55 #include <utils/Trace.h>
56
57 #include <algorithm>
58 #include <mutex>
59 #include <sstream>
60
61 #include "BufferLayer.h"
62 #include "Colorizer.h"
63 #include "DisplayDevice.h"
64 #include "DisplayHardware/HWComposer.h"
65 #include "EffectLayer.h"
66 #include "FrameTimeline.h"
67 #include "FrameTracer/FrameTracer.h"
68 #include "LayerProtoHelper.h"
69 #include "LayerRejecter.h"
70 #include "MonitoredProducer.h"
71 #include "SurfaceFlinger.h"
72 #include "TimeStats/TimeStats.h"
73 #include "TunnelModeEnabledReporter.h"
74 #include "input/InputWindow.h"
75
76 #define DEBUG_RESIZE 0
77
78 namespace android {
79 namespace {
80 constexpr int kDumpTableRowLength = 159;
81 } // namespace
82
83 using base::StringAppendF;
84 using namespace android::flag_operators;
85 using PresentState = frametimeline::SurfaceFrame::PresentState;
86
87 std::atomic<int32_t> Layer::sSequence{1};
88
Layer(const LayerCreationArgs & args)89 Layer::Layer(const LayerCreationArgs& args)
90 : mFlinger(args.flinger),
91 mName(args.name),
92 mClientRef(args.client),
93 mWindowType(static_cast<InputWindowInfo::Type>(
94 args.metadata.getInt32(METADATA_WINDOW_TYPE, 0))) {
95 uint32_t layerFlags = 0;
96 if (args.flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden;
97 if (args.flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque;
98 if (args.flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure;
99 if (args.flags & ISurfaceComposerClient::eSkipScreenshot)
100 layerFlags |= layer_state_t::eLayerSkipScreenshot;
101
102 mDrawingState.active_legacy.w = args.w;
103 mDrawingState.active_legacy.h = args.h;
104 mDrawingState.flags = layerFlags;
105 mDrawingState.active_legacy.transform.set(0, 0);
106 mDrawingState.crop.makeInvalid();
107 mDrawingState.requestedCrop = mDrawingState.crop;
108 mDrawingState.z = 0;
109 mDrawingState.color.a = 1.0f;
110 mDrawingState.layerStack = 0;
111 mDrawingState.sequence = 0;
112 mDrawingState.requested_legacy = mDrawingState.active_legacy;
113 mDrawingState.width = UINT32_MAX;
114 mDrawingState.height = UINT32_MAX;
115 mDrawingState.transform.set(0, 0);
116 mDrawingState.frameNumber = 0;
117 mDrawingState.bufferTransform = 0;
118 mDrawingState.transformToDisplayInverse = false;
119 mDrawingState.crop.makeInvalid();
120 mDrawingState.acquireFence = sp<Fence>::make(-1);
121 mDrawingState.acquireFenceTime = std::make_shared<FenceTime>(mDrawingState.acquireFence);
122 mDrawingState.dataspace = ui::Dataspace::UNKNOWN;
123 mDrawingState.hdrMetadata.validTypes = 0;
124 mDrawingState.surfaceDamageRegion = Region::INVALID_REGION;
125 mDrawingState.cornerRadius = 0.0f;
126 mDrawingState.backgroundBlurRadius = 0;
127 mDrawingState.api = -1;
128 mDrawingState.hasColorTransform = false;
129 mDrawingState.colorSpaceAgnostic = false;
130 mDrawingState.frameRateSelectionPriority = PRIORITY_UNSET;
131 mDrawingState.metadata = args.metadata;
132 mDrawingState.shadowRadius = 0.f;
133 mDrawingState.fixedTransformHint = ui::Transform::ROT_INVALID;
134 mDrawingState.frameTimelineInfo = {};
135 mDrawingState.postTime = -1;
136 mDrawingState.destinationFrame.makeInvalid();
137
138 if (args.flags & ISurfaceComposerClient::eNoColorFill) {
139 // Set an invalid color so there is no color fill.
140 mDrawingState.color.r = -1.0_hf;
141 mDrawingState.color.g = -1.0_hf;
142 mDrawingState.color.b = -1.0_hf;
143 }
144
145 CompositorTiming compositorTiming;
146 args.flinger->getCompositorTiming(&compositorTiming);
147 mFrameEventHistory.initializeCompositorTiming(compositorTiming);
148 mFrameTracker.setDisplayRefreshPeriod(compositorTiming.interval);
149
150 mCallingPid = args.callingPid;
151 mCallingUid = args.callingUid;
152
153 if (mCallingUid == AID_GRAPHICS || mCallingUid == AID_SYSTEM) {
154 // If the system didn't send an ownerUid, use the callingUid for the ownerUid.
155 mOwnerUid = args.metadata.getInt32(METADATA_OWNER_UID, mCallingUid);
156 mOwnerPid = args.metadata.getInt32(METADATA_OWNER_PID, mCallingPid);
157 } else {
158 // A create layer request from a non system request cannot specify the owner uid
159 mOwnerUid = mCallingUid;
160 mOwnerPid = mCallingPid;
161 }
162 }
163
onFirstRef()164 void Layer::onFirstRef() {
165 mFlinger->onLayerFirstRef(this);
166 }
167
~Layer()168 Layer::~Layer() {
169 sp<Client> c(mClientRef.promote());
170 if (c != 0) {
171 c->detachLayer(this);
172 }
173
174 mFrameTracker.logAndResetStats(mName);
175 mFlinger->onLayerDestroyed(this);
176
177 if (mDrawingState.sidebandStream != nullptr) {
178 mFlinger->mTunnelModeEnabledReporter->decrementTunnelModeCount();
179 }
180 if (mHadClonedChild) {
181 mFlinger->mNumClones--;
182 }
183 }
184
LayerCreationArgs(SurfaceFlinger * flinger,sp<Client> client,std::string name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata)185 LayerCreationArgs::LayerCreationArgs(SurfaceFlinger* flinger, sp<Client> client, std::string name,
186 uint32_t w, uint32_t h, uint32_t flags, LayerMetadata metadata)
187 : flinger(flinger),
188 client(std::move(client)),
189 name(std::move(name)),
190 w(w),
191 h(h),
192 flags(flags),
193 metadata(std::move(metadata)) {
194 IPCThreadState* ipc = IPCThreadState::self();
195 callingPid = ipc->getCallingPid();
196 callingUid = ipc->getCallingUid();
197 }
198
199 // ---------------------------------------------------------------------------
200 // callbacks
201 // ---------------------------------------------------------------------------
202
203 /*
204 * onLayerDisplayed is only meaningful for BufferLayer, but, is called through
205 * Layer. So, the implementation is done in BufferLayer. When called on a
206 * EffectLayer object, it's essentially a NOP.
207 */
onLayerDisplayed(const sp<Fence> &)208 void Layer::onLayerDisplayed(const sp<Fence>& /*releaseFence*/) {}
209
removeRelativeZ(const std::vector<Layer * > & layersInTree)210 void Layer::removeRelativeZ(const std::vector<Layer*>& layersInTree) {
211 if (mDrawingState.zOrderRelativeOf == nullptr) {
212 return;
213 }
214
215 sp<Layer> strongRelative = mDrawingState.zOrderRelativeOf.promote();
216 if (strongRelative == nullptr) {
217 setZOrderRelativeOf(nullptr);
218 return;
219 }
220
221 if (!std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
222 strongRelative->removeZOrderRelative(this);
223 mFlinger->setTransactionFlags(eTraversalNeeded);
224 setZOrderRelativeOf(nullptr);
225 }
226 }
227
removeFromCurrentState()228 void Layer::removeFromCurrentState() {
229 if (!mRemovedFromDrawingState) {
230 mRemovedFromDrawingState = true;
231 mFlinger->mScheduler->deregisterLayer(this);
232 }
233
234 mFlinger->markLayerPendingRemovalLocked(this);
235 }
236
getRootLayer()237 sp<Layer> Layer::getRootLayer() {
238 sp<Layer> parent = getParent();
239 if (parent == nullptr) {
240 return this;
241 }
242 return parent->getRootLayer();
243 }
244
onRemovedFromCurrentState()245 void Layer::onRemovedFromCurrentState() {
246 // Use the root layer since we want to maintain the hierarchy for the entire subtree.
247 auto layersInTree = getRootLayer()->getLayersInTree(LayerVector::StateSet::Current);
248 std::sort(layersInTree.begin(), layersInTree.end());
249
250 traverse(LayerVector::StateSet::Current, [&](Layer* layer) {
251 layer->removeFromCurrentState();
252 layer->removeRelativeZ(layersInTree);
253 });
254 }
255
addToCurrentState()256 void Layer::addToCurrentState() {
257 if (mRemovedFromDrawingState) {
258 mRemovedFromDrawingState = false;
259 mFlinger->mScheduler->registerLayer(this);
260 mFlinger->removeFromOffscreenLayers(this);
261 }
262
263 for (const auto& child : mCurrentChildren) {
264 child->addToCurrentState();
265 }
266 }
267
268 // ---------------------------------------------------------------------------
269 // set-up
270 // ---------------------------------------------------------------------------
271
getPremultipledAlpha() const272 bool Layer::getPremultipledAlpha() const {
273 return mPremultipliedAlpha;
274 }
275
getHandle()276 sp<IBinder> Layer::getHandle() {
277 Mutex::Autolock _l(mLock);
278 if (mGetHandleCalled) {
279 ALOGE("Get handle called twice" );
280 return nullptr;
281 }
282 mGetHandleCalled = true;
283 return new Handle(mFlinger, this);
284 }
285
286 // ---------------------------------------------------------------------------
287 // h/w composer set-up
288 // ---------------------------------------------------------------------------
289
reduce(const Rect & win,const Region & exclude)290 static Rect reduce(const Rect& win, const Region& exclude) {
291 if (CC_LIKELY(exclude.isEmpty())) {
292 return win;
293 }
294 if (exclude.isRect()) {
295 return win.reduce(exclude.getBounds());
296 }
297 return Region(win).subtract(exclude).getBounds();
298 }
299
reduce(const FloatRect & win,const Region & exclude)300 static FloatRect reduce(const FloatRect& win, const Region& exclude) {
301 if (CC_LIKELY(exclude.isEmpty())) {
302 return win;
303 }
304 // Convert through Rect (by rounding) for lack of FloatRegion
305 return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
306 }
307
getScreenBounds(bool reduceTransparentRegion) const308 Rect Layer::getScreenBounds(bool reduceTransparentRegion) const {
309 if (!reduceTransparentRegion) {
310 return Rect{mScreenBounds};
311 }
312
313 FloatRect bounds = getBounds();
314 ui::Transform t = getTransform();
315 // Transform to screen space.
316 bounds = t.transform(bounds);
317 return Rect{bounds};
318 }
319
getBounds() const320 FloatRect Layer::getBounds() const {
321 const State& s(getDrawingState());
322 return getBounds(getActiveTransparentRegion(s));
323 }
324
getBounds(const Region & activeTransparentRegion) const325 FloatRect Layer::getBounds(const Region& activeTransparentRegion) const {
326 // Subtract the transparent region and snap to the bounds.
327 return reduce(mBounds, activeTransparentRegion);
328 }
329
computeBounds(FloatRect parentBounds,ui::Transform parentTransform,float parentShadowRadius)330 void Layer::computeBounds(FloatRect parentBounds, ui::Transform parentTransform,
331 float parentShadowRadius) {
332 const State& s(getDrawingState());
333
334 // Calculate effective layer transform
335 mEffectiveTransform = parentTransform * getActiveTransform(s);
336
337 // Transform parent bounds to layer space
338 parentBounds = getActiveTransform(s).inverse().transform(parentBounds);
339
340 // Calculate source bounds
341 mSourceBounds = computeSourceBounds(parentBounds);
342
343 // Calculate bounds by croping diplay frame with layer crop and parent bounds
344 FloatRect bounds = mSourceBounds;
345 const Rect layerCrop = getCrop(s);
346 if (!layerCrop.isEmpty()) {
347 bounds = mSourceBounds.intersect(layerCrop.toFloatRect());
348 }
349 bounds = bounds.intersect(parentBounds);
350
351 mBounds = bounds;
352 mScreenBounds = mEffectiveTransform.transform(mBounds);
353
354 // Use the layer's own shadow radius if set. Otherwise get the radius from
355 // parent.
356 if (s.shadowRadius > 0.f) {
357 mEffectiveShadowRadius = s.shadowRadius;
358 } else {
359 mEffectiveShadowRadius = parentShadowRadius;
360 }
361
362 // Shadow radius is passed down to only one layer so if the layer can draw shadows,
363 // don't pass it to its children.
364 const float childShadowRadius = canDrawShadows() ? 0.f : mEffectiveShadowRadius;
365
366 for (const sp<Layer>& child : mDrawingChildren) {
367 child->computeBounds(mBounds, mEffectiveTransform, childShadowRadius);
368 }
369 }
370
getCroppedBufferSize(const State & s) const371 Rect Layer::getCroppedBufferSize(const State& s) const {
372 Rect size = getBufferSize(s);
373 Rect crop = getCrop(s);
374 if (!crop.isEmpty() && size.isValid()) {
375 size.intersect(crop, &size);
376 } else if (!crop.isEmpty()) {
377 size = crop;
378 }
379 return size;
380 }
381
setupRoundedCornersCropCoordinates(Rect win,const FloatRect & roundedCornersCrop) const382 void Layer::setupRoundedCornersCropCoordinates(Rect win,
383 const FloatRect& roundedCornersCrop) const {
384 // Translate win by the rounded corners rect coordinates, to have all values in
385 // layer coordinate space.
386 win.left -= roundedCornersCrop.left;
387 win.right -= roundedCornersCrop.left;
388 win.top -= roundedCornersCrop.top;
389 win.bottom -= roundedCornersCrop.top;
390 }
391
prepareBasicGeometryCompositionState()392 void Layer::prepareBasicGeometryCompositionState() {
393 const auto& drawingState{getDrawingState()};
394 const uint32_t layerStack = getLayerStack();
395 const auto alpha = static_cast<float>(getAlpha());
396 const bool opaque = isOpaque(drawingState);
397 const bool usesRoundedCorners = getRoundedCornerState().radius != 0.f;
398
399 auto blendMode = Hwc2::IComposerClient::BlendMode::NONE;
400 if (!opaque || alpha != 1.0f) {
401 blendMode = mPremultipliedAlpha ? Hwc2::IComposerClient::BlendMode::PREMULTIPLIED
402 : Hwc2::IComposerClient::BlendMode::COVERAGE;
403 }
404
405 auto* compositionState = editCompositionState();
406 compositionState->layerStackId =
407 (layerStack != ~0u) ? std::make_optional(layerStack) : std::nullopt;
408 compositionState->internalOnly = getPrimaryDisplayOnly();
409 compositionState->isVisible = isVisible();
410 compositionState->isOpaque = opaque && !usesRoundedCorners && alpha == 1.f;
411 compositionState->shadowRadius = mEffectiveShadowRadius;
412
413 compositionState->contentDirty = contentDirty;
414 contentDirty = false;
415
416 compositionState->geomLayerBounds = mBounds;
417 compositionState->geomLayerTransform = getTransform();
418 compositionState->geomInverseLayerTransform = compositionState->geomLayerTransform.inverse();
419 compositionState->transparentRegionHint = getActiveTransparentRegion(drawingState);
420
421 compositionState->blendMode = static_cast<Hwc2::IComposerClient::BlendMode>(blendMode);
422 compositionState->alpha = alpha;
423 compositionState->backgroundBlurRadius = drawingState.backgroundBlurRadius;
424 compositionState->blurRegions = drawingState.blurRegions;
425 compositionState->stretchEffect = getStretchEffect();
426 }
427
prepareGeometryCompositionState()428 void Layer::prepareGeometryCompositionState() {
429 const auto& drawingState{getDrawingState()};
430
431 int type = drawingState.metadata.getInt32(METADATA_WINDOW_TYPE, 0);
432 int appId = drawingState.metadata.getInt32(METADATA_OWNER_UID, 0);
433 sp<Layer> parent = mDrawingParent.promote();
434 if (parent.get()) {
435 auto& parentState = parent->getDrawingState();
436 const int parentType = parentState.metadata.getInt32(METADATA_WINDOW_TYPE, 0);
437 const int parentAppId = parentState.metadata.getInt32(METADATA_OWNER_UID, 0);
438 if (parentType > 0 && parentAppId > 0) {
439 type = parentType;
440 appId = parentAppId;
441 }
442 }
443
444 auto* compositionState = editCompositionState();
445
446 compositionState->geomBufferSize = getBufferSize(drawingState);
447 compositionState->geomContentCrop = getBufferCrop();
448 compositionState->geomCrop = getCrop(drawingState);
449 compositionState->geomBufferTransform = getBufferTransform();
450 compositionState->geomBufferUsesDisplayInverseTransform = getTransformToDisplayInverse();
451 compositionState->geomUsesSourceCrop = usesSourceCrop();
452 compositionState->isSecure = isSecure();
453
454 compositionState->metadata.clear();
455 const auto& supportedMetadata = mFlinger->getHwComposer().getSupportedLayerGenericMetadata();
456 for (const auto& [key, mandatory] : supportedMetadata) {
457 const auto& genericLayerMetadataCompatibilityMap =
458 mFlinger->getGenericLayerMetadataKeyMap();
459 auto compatIter = genericLayerMetadataCompatibilityMap.find(key);
460 if (compatIter == std::end(genericLayerMetadataCompatibilityMap)) {
461 continue;
462 }
463 const uint32_t id = compatIter->second;
464
465 auto it = drawingState.metadata.mMap.find(id);
466 if (it == std::end(drawingState.metadata.mMap)) {
467 continue;
468 }
469
470 compositionState->metadata
471 .emplace(key, compositionengine::GenericLayerMetadataEntry{mandatory, it->second});
472 }
473 }
474
preparePerFrameCompositionState()475 void Layer::preparePerFrameCompositionState() {
476 const auto& drawingState{getDrawingState()};
477 auto* compositionState = editCompositionState();
478
479 compositionState->forceClientComposition = false;
480
481 compositionState->isColorspaceAgnostic = isColorSpaceAgnostic();
482 compositionState->dataspace = getDataSpace();
483 compositionState->colorTransform = getColorTransform();
484 compositionState->colorTransformIsIdentity = !hasColorTransform();
485 compositionState->surfaceDamage = surfaceDamageRegion;
486 compositionState->hasProtectedContent = isProtected();
487
488 const bool usesRoundedCorners = getRoundedCornerState().radius != 0.f;
489
490 compositionState->isOpaque =
491 isOpaque(drawingState) && !usesRoundedCorners && getAlpha() == 1.0_hf;
492
493 // Force client composition for special cases known only to the front-end.
494 // Rounded corners no longer force client composition, since we may use a
495 // hole punch so that the layer will appear to have rounded corners.
496 if (isHdrY410() || drawShadows() || drawingState.blurRegions.size() > 0 ||
497 compositionState->stretchEffect.hasEffect()) {
498 compositionState->forceClientComposition = true;
499 }
500 }
501
prepareCursorCompositionState()502 void Layer::prepareCursorCompositionState() {
503 const State& drawingState{getDrawingState()};
504 auto* compositionState = editCompositionState();
505
506 // Apply the layer's transform, followed by the display's global transform
507 // Here we're guaranteed that the layer's transform preserves rects
508 Rect win = getCroppedBufferSize(drawingState);
509 // Subtract the transparent region and snap to the bounds
510 Rect bounds = reduce(win, getActiveTransparentRegion(drawingState));
511 Rect frame(getTransform().transform(bounds));
512
513 compositionState->cursorFrame = frame;
514 }
515
asLayerFE() const516 sp<compositionengine::LayerFE> Layer::asLayerFE() const {
517 return const_cast<compositionengine::LayerFE*>(
518 static_cast<const compositionengine::LayerFE*>(this));
519 }
520
getCompositionEngineLayerFE() const521 sp<compositionengine::LayerFE> Layer::getCompositionEngineLayerFE() const {
522 return nullptr;
523 }
524
editCompositionState()525 compositionengine::LayerFECompositionState* Layer::editCompositionState() {
526 return nullptr;
527 }
528
getCompositionState() const529 const compositionengine::LayerFECompositionState* Layer::getCompositionState() const {
530 return nullptr;
531 }
532
onPreComposition(nsecs_t)533 bool Layer::onPreComposition(nsecs_t) {
534 return false;
535 }
536
prepareCompositionState(compositionengine::LayerFE::StateSubset subset)537 void Layer::prepareCompositionState(compositionengine::LayerFE::StateSubset subset) {
538 using StateSubset = compositionengine::LayerFE::StateSubset;
539
540 switch (subset) {
541 case StateSubset::BasicGeometry:
542 prepareBasicGeometryCompositionState();
543 break;
544
545 case StateSubset::GeometryAndContent:
546 prepareBasicGeometryCompositionState();
547 prepareGeometryCompositionState();
548 preparePerFrameCompositionState();
549 break;
550
551 case StateSubset::Content:
552 preparePerFrameCompositionState();
553 break;
554
555 case StateSubset::Cursor:
556 prepareCursorCompositionState();
557 break;
558 }
559 }
560
getDebugName() const561 const char* Layer::getDebugName() const {
562 return mName.c_str();
563 }
564
565 // ---------------------------------------------------------------------------
566 // drawing...
567 // ---------------------------------------------------------------------------
568
prepareClientComposition(compositionengine::LayerFE::ClientCompositionTargetSettings & targetSettings)569 std::optional<compositionengine::LayerFE::LayerSettings> Layer::prepareClientComposition(
570 compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
571 if (!getCompositionState()) {
572 return {};
573 }
574
575 FloatRect bounds = getBounds();
576 half alpha = getAlpha();
577
578 compositionengine::LayerFE::LayerSettings layerSettings;
579 layerSettings.geometry.boundaries = bounds;
580 layerSettings.geometry.positionTransform = getTransform().asMatrix4();
581
582 // skip drawing content if the targetSettings indicate the content will be occluded
583 const bool drawContent = targetSettings.realContentIsVisible || targetSettings.clearContent;
584 layerSettings.skipContentDraw = !drawContent;
585
586 if (hasColorTransform()) {
587 layerSettings.colorTransform = getColorTransform();
588 }
589
590 const auto roundedCornerState = getRoundedCornerState();
591 layerSettings.geometry.roundedCornersRadius = roundedCornerState.radius;
592 layerSettings.geometry.roundedCornersCrop = roundedCornerState.cropRect;
593
594 layerSettings.alpha = alpha;
595 layerSettings.sourceDataspace = getDataSpace();
596 switch (targetSettings.blurSetting) {
597 case LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled:
598 layerSettings.backgroundBlurRadius = getBackgroundBlurRadius();
599 layerSettings.blurRegions = getBlurRegions();
600 layerSettings.blurRegionTransform =
601 getActiveTransform(getDrawingState()).inverse().asMatrix4();
602 break;
603 case LayerFE::ClientCompositionTargetSettings::BlurSetting::BackgroundBlurOnly:
604 layerSettings.backgroundBlurRadius = getBackgroundBlurRadius();
605 break;
606 case LayerFE::ClientCompositionTargetSettings::BlurSetting::BlurRegionsOnly:
607 layerSettings.blurRegions = getBlurRegions();
608 layerSettings.blurRegionTransform =
609 getActiveTransform(getDrawingState()).inverse().asMatrix4();
610 break;
611 case LayerFE::ClientCompositionTargetSettings::BlurSetting::Disabled:
612 default:
613 break;
614 }
615 layerSettings.stretchEffect = getStretchEffect();
616 // Record the name of the layer for debugging further down the stack.
617 layerSettings.name = getName();
618 return layerSettings;
619 }
620
prepareClearClientComposition(LayerFE::LayerSettings & layerSettings,bool blackout) const621 void Layer::prepareClearClientComposition(LayerFE::LayerSettings& layerSettings,
622 bool blackout) const {
623 layerSettings.source.buffer.buffer = nullptr;
624 layerSettings.source.solidColor = half3(0.0, 0.0, 0.0);
625 layerSettings.disableBlending = true;
626 layerSettings.bufferId = 0;
627 layerSettings.frameNumber = 0;
628
629 // If layer is blacked out, force alpha to 1 so that we draw a black color layer.
630 layerSettings.alpha = blackout ? 1.0f : 0.0f;
631 layerSettings.name = getName();
632 }
633
634 // TODO(b/188891810): This method now only ever returns 0 or 1 layers so we should return
635 // std::optional instead of a vector. Additionally, we should consider removing
636 // this method entirely in favor of calling prepareClientComposition directly.
prepareClientCompositionList(compositionengine::LayerFE::ClientCompositionTargetSettings & targetSettings)637 std::vector<compositionengine::LayerFE::LayerSettings> Layer::prepareClientCompositionList(
638 compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
639 std::optional<compositionengine::LayerFE::LayerSettings> layerSettings =
640 prepareClientComposition(targetSettings);
641 // Nothing to render.
642 if (!layerSettings) {
643 return {};
644 }
645
646 // HWC requests to clear this layer.
647 if (targetSettings.clearContent) {
648 prepareClearClientComposition(*layerSettings, false /* blackout */);
649 return {*layerSettings};
650 }
651
652 // set the shadow for the layer if needed
653 prepareShadowClientComposition(*layerSettings, targetSettings.viewport);
654
655 return {*layerSettings};
656 }
657
getCompositionType(const DisplayDevice & display) const658 Hwc2::IComposerClient::Composition Layer::getCompositionType(const DisplayDevice& display) const {
659 const auto outputLayer = findOutputLayerForDisplay(&display);
660 if (outputLayer == nullptr) {
661 return Hwc2::IComposerClient::Composition::INVALID;
662 }
663 if (outputLayer->getState().hwc) {
664 return (*outputLayer->getState().hwc).hwcCompositionType;
665 } else {
666 return Hwc2::IComposerClient::Composition::CLIENT;
667 }
668 }
669
670 // ----------------------------------------------------------------------------
671 // local state
672 // ----------------------------------------------------------------------------
673
isSecure() const674 bool Layer::isSecure() const {
675 const State& s(mDrawingState);
676 if (s.flags & layer_state_t::eLayerSecure) {
677 return true;
678 }
679
680 const auto p = mDrawingParent.promote();
681 return (p != nullptr) ? p->isSecure() : false;
682 }
683
684 // ----------------------------------------------------------------------------
685 // transaction
686 // ----------------------------------------------------------------------------
687
doTransaction(uint32_t flags)688 uint32_t Layer::doTransaction(uint32_t flags) {
689 ATRACE_CALL();
690
691 // TODO: This is unfortunate.
692 mDrawingStateModified = mDrawingState.modified;
693 mDrawingState.modified = false;
694
695 const State& s(getDrawingState());
696
697 if (updateGeometry()) {
698 // invalidate and recompute the visible regions if needed
699 flags |= Layer::eVisibleRegion;
700 }
701
702 if (s.sequence != mLastCommittedTxSequence) {
703 // invalidate and recompute the visible regions if needed
704 mLastCommittedTxSequence = s.sequence;
705 flags |= eVisibleRegion;
706 this->contentDirty = true;
707
708 // we may use linear filtering, if the matrix scales us
709 mNeedsFiltering = getActiveTransform(s).needsBilinearFiltering();
710 }
711
712 commitTransaction(mDrawingState);
713
714 return flags;
715 }
716
commitTransaction(State &)717 void Layer::commitTransaction(State&) {
718 // Set the present state for all bufferlessSurfaceFramesTX to Presented. The
719 // bufferSurfaceFrameTX will be presented in latchBuffer.
720 for (auto& [token, surfaceFrame] : mDrawingState.bufferlessSurfaceFramesTX) {
721 if (surfaceFrame->getPresentState() != PresentState::Presented) {
722 // With applyPendingStates, we could end up having presented surfaceframes from previous
723 // states
724 surfaceFrame->setPresentState(PresentState::Presented);
725 mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame);
726 }
727 }
728 mDrawingState.bufferlessSurfaceFramesTX.clear();
729 }
730
getTransactionFlags(uint32_t flags)731 uint32_t Layer::getTransactionFlags(uint32_t flags) {
732 auto ret = mTransactionFlags & flags;
733 mTransactionFlags &= ~flags;
734 return ret;
735 }
736
setTransactionFlags(uint32_t flags)737 uint32_t Layer::setTransactionFlags(uint32_t flags) {
738 return mTransactionFlags |= flags;
739 }
740
setPosition(float x,float y)741 bool Layer::setPosition(float x, float y) {
742 if (mDrawingState.transform.tx() == x && mDrawingState.transform.ty() == y) return false;
743 mDrawingState.sequence++;
744 mDrawingState.transform.set(x, y);
745
746 mDrawingState.modified = true;
747 setTransactionFlags(eTransactionNeeded);
748 return true;
749 }
750
setChildLayer(const sp<Layer> & childLayer,int32_t z)751 bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) {
752 ssize_t idx = mCurrentChildren.indexOf(childLayer);
753 if (idx < 0) {
754 return false;
755 }
756 if (childLayer->setLayer(z)) {
757 mCurrentChildren.removeAt(idx);
758 mCurrentChildren.add(childLayer);
759 return true;
760 }
761 return false;
762 }
763
setChildRelativeLayer(const sp<Layer> & childLayer,const sp<IBinder> & relativeToHandle,int32_t relativeZ)764 bool Layer::setChildRelativeLayer(const sp<Layer>& childLayer,
765 const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
766 ssize_t idx = mCurrentChildren.indexOf(childLayer);
767 if (idx < 0) {
768 return false;
769 }
770 if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) {
771 mCurrentChildren.removeAt(idx);
772 mCurrentChildren.add(childLayer);
773 return true;
774 }
775 return false;
776 }
777
setLayer(int32_t z)778 bool Layer::setLayer(int32_t z) {
779 if (mDrawingState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false;
780 mDrawingState.sequence++;
781 mDrawingState.z = z;
782 mDrawingState.modified = true;
783
784 mFlinger->mSomeChildrenChanged = true;
785
786 // Discard all relative layering.
787 if (mDrawingState.zOrderRelativeOf != nullptr) {
788 sp<Layer> strongRelative = mDrawingState.zOrderRelativeOf.promote();
789 if (strongRelative != nullptr) {
790 strongRelative->removeZOrderRelative(this);
791 }
792 setZOrderRelativeOf(nullptr);
793 }
794 setTransactionFlags(eTransactionNeeded);
795 return true;
796 }
797
removeZOrderRelative(const wp<Layer> & relative)798 void Layer::removeZOrderRelative(const wp<Layer>& relative) {
799 mDrawingState.zOrderRelatives.remove(relative);
800 mDrawingState.sequence++;
801 mDrawingState.modified = true;
802 setTransactionFlags(eTransactionNeeded);
803 }
804
addZOrderRelative(const wp<Layer> & relative)805 void Layer::addZOrderRelative(const wp<Layer>& relative) {
806 mDrawingState.zOrderRelatives.add(relative);
807 mDrawingState.modified = true;
808 mDrawingState.sequence++;
809 setTransactionFlags(eTransactionNeeded);
810 }
811
setZOrderRelativeOf(const wp<Layer> & relativeOf)812 void Layer::setZOrderRelativeOf(const wp<Layer>& relativeOf) {
813 mDrawingState.zOrderRelativeOf = relativeOf;
814 mDrawingState.sequence++;
815 mDrawingState.modified = true;
816 mDrawingState.isRelativeOf = relativeOf != nullptr;
817
818 setTransactionFlags(eTransactionNeeded);
819 }
820
setRelativeLayer(const sp<IBinder> & relativeToHandle,int32_t relativeZ)821 bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
822 sp<Handle> handle = static_cast<Handle*>(relativeToHandle.get());
823 if (handle == nullptr) {
824 return false;
825 }
826 sp<Layer> relative = handle->owner.promote();
827 if (relative == nullptr) {
828 return false;
829 }
830
831 if (mDrawingState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) &&
832 mDrawingState.zOrderRelativeOf == relative) {
833 return false;
834 }
835
836 mFlinger->mSomeChildrenChanged = true;
837
838 mDrawingState.sequence++;
839 mDrawingState.modified = true;
840 mDrawingState.z = relativeZ;
841
842 auto oldZOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote();
843 if (oldZOrderRelativeOf != nullptr) {
844 oldZOrderRelativeOf->removeZOrderRelative(this);
845 }
846 setZOrderRelativeOf(relative);
847 relative->addZOrderRelative(this);
848
849 setTransactionFlags(eTransactionNeeded);
850
851 return true;
852 }
853
setTrustedOverlay(bool isTrustedOverlay)854 bool Layer::setTrustedOverlay(bool isTrustedOverlay) {
855 if (mDrawingState.isTrustedOverlay == isTrustedOverlay) return false;
856 mDrawingState.isTrustedOverlay = isTrustedOverlay;
857 mDrawingState.modified = true;
858 mFlinger->mInputInfoChanged = true;
859 setTransactionFlags(eTransactionNeeded);
860 return true;
861 }
862
isTrustedOverlay() const863 bool Layer::isTrustedOverlay() const {
864 if (getDrawingState().isTrustedOverlay) {
865 return true;
866 }
867 const auto& p = mDrawingParent.promote();
868 return (p != nullptr) && p->isTrustedOverlay();
869 }
870
setSize(uint32_t w,uint32_t h)871 bool Layer::setSize(uint32_t w, uint32_t h) {
872 if (mDrawingState.requested_legacy.w == w && mDrawingState.requested_legacy.h == h)
873 return false;
874 mDrawingState.requested_legacy.w = w;
875 mDrawingState.requested_legacy.h = h;
876 mDrawingState.modified = true;
877 setTransactionFlags(eTransactionNeeded);
878
879 // record the new size, from this point on, when the client request
880 // a buffer, it'll get the new size.
881 setDefaultBufferSize(mDrawingState.requested_legacy.w, mDrawingState.requested_legacy.h);
882 return true;
883 }
884
setAlpha(float alpha)885 bool Layer::setAlpha(float alpha) {
886 if (mDrawingState.color.a == alpha) return false;
887 mDrawingState.sequence++;
888 mDrawingState.color.a = alpha;
889 mDrawingState.modified = true;
890 setTransactionFlags(eTransactionNeeded);
891 return true;
892 }
893
setBackgroundColor(const half3 & color,float alpha,ui::Dataspace dataspace)894 bool Layer::setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace) {
895 if (!mDrawingState.bgColorLayer && alpha == 0) {
896 return false;
897 }
898 mDrawingState.sequence++;
899 mDrawingState.modified = true;
900 setTransactionFlags(eTransactionNeeded);
901
902 if (!mDrawingState.bgColorLayer && alpha != 0) {
903 // create background color layer if one does not yet exist
904 uint32_t flags = ISurfaceComposerClient::eFXSurfaceEffect;
905 std::string name = mName + "BackgroundColorLayer";
906 mDrawingState.bgColorLayer = mFlinger->getFactory().createEffectLayer(
907 LayerCreationArgs(mFlinger.get(), nullptr, std::move(name), 0, 0, flags,
908 LayerMetadata()));
909
910 // add to child list
911 addChild(mDrawingState.bgColorLayer);
912 mFlinger->mLayersAdded = true;
913 // set up SF to handle added color layer
914 if (isRemovedFromCurrentState()) {
915 mDrawingState.bgColorLayer->onRemovedFromCurrentState();
916 }
917 mFlinger->setTransactionFlags(eTransactionNeeded);
918 } else if (mDrawingState.bgColorLayer && alpha == 0) {
919 mDrawingState.bgColorLayer->reparent(nullptr);
920 mDrawingState.bgColorLayer = nullptr;
921 return true;
922 }
923
924 mDrawingState.bgColorLayer->setColor(color);
925 mDrawingState.bgColorLayer->setLayer(std::numeric_limits<int32_t>::min());
926 mDrawingState.bgColorLayer->setAlpha(alpha);
927 mDrawingState.bgColorLayer->setDataspace(dataspace);
928
929 return true;
930 }
931
setCornerRadius(float cornerRadius)932 bool Layer::setCornerRadius(float cornerRadius) {
933 if (mDrawingState.cornerRadius == cornerRadius) return false;
934
935 mDrawingState.sequence++;
936 mDrawingState.cornerRadius = cornerRadius;
937 mDrawingState.modified = true;
938 setTransactionFlags(eTransactionNeeded);
939 return true;
940 }
941
setBackgroundBlurRadius(int backgroundBlurRadius)942 bool Layer::setBackgroundBlurRadius(int backgroundBlurRadius) {
943 if (mDrawingState.backgroundBlurRadius == backgroundBlurRadius) return false;
944
945 mDrawingState.sequence++;
946 mDrawingState.backgroundBlurRadius = backgroundBlurRadius;
947 mDrawingState.modified = true;
948 setTransactionFlags(eTransactionNeeded);
949 return true;
950 }
951
setMatrix(const layer_state_t::matrix22_t & matrix,bool allowNonRectPreservingTransforms)952 bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix,
953 bool allowNonRectPreservingTransforms) {
954 ui::Transform t;
955 t.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy);
956
957 if (!allowNonRectPreservingTransforms && !t.preserveRects()) {
958 ALOGW("Attempt to set rotation matrix without permission ACCESS_SURFACE_FLINGER nor "
959 "ROTATE_SURFACE_FLINGER ignored");
960 return false;
961 }
962 mDrawingState.sequence++;
963 mDrawingState.transform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy);
964 mDrawingState.modified = true;
965
966 setTransactionFlags(eTransactionNeeded);
967 return true;
968 }
969
setTransparentRegionHint(const Region & transparent)970 bool Layer::setTransparentRegionHint(const Region& transparent) {
971 mDrawingState.requestedTransparentRegion_legacy = transparent;
972 mDrawingState.modified = true;
973 setTransactionFlags(eTransactionNeeded);
974 return true;
975 }
976
setBlurRegions(const std::vector<BlurRegion> & blurRegions)977 bool Layer::setBlurRegions(const std::vector<BlurRegion>& blurRegions) {
978 mDrawingState.blurRegions = blurRegions;
979 mDrawingState.modified = true;
980 setTransactionFlags(eTransactionNeeded);
981 return true;
982 }
983
setFlags(uint32_t flags,uint32_t mask)984 bool Layer::setFlags(uint32_t flags, uint32_t mask) {
985 const uint32_t newFlags = (mDrawingState.flags & ~mask) | (flags & mask);
986 if (mDrawingState.flags == newFlags) return false;
987 mDrawingState.sequence++;
988 mDrawingState.flags = newFlags;
989 mDrawingState.modified = true;
990 setTransactionFlags(eTransactionNeeded);
991 return true;
992 }
993
setCrop(const Rect & crop)994 bool Layer::setCrop(const Rect& crop) {
995 if (mDrawingState.requestedCrop == crop) return false;
996 mDrawingState.sequence++;
997 mDrawingState.requestedCrop = crop;
998 mDrawingState.crop = crop;
999
1000 mDrawingState.modified = true;
1001 setTransactionFlags(eTransactionNeeded);
1002 return true;
1003 }
1004
setMetadata(const LayerMetadata & data)1005 bool Layer::setMetadata(const LayerMetadata& data) {
1006 if (!mDrawingState.metadata.merge(data, true /* eraseEmpty */)) return false;
1007 mDrawingState.modified = true;
1008 setTransactionFlags(eTransactionNeeded);
1009 return true;
1010 }
1011
setLayerStack(uint32_t layerStack)1012 bool Layer::setLayerStack(uint32_t layerStack) {
1013 if (mDrawingState.layerStack == layerStack) return false;
1014 mDrawingState.sequence++;
1015 mDrawingState.layerStack = layerStack;
1016 mDrawingState.modified = true;
1017 setTransactionFlags(eTransactionNeeded);
1018 return true;
1019 }
1020
setColorSpaceAgnostic(const bool agnostic)1021 bool Layer::setColorSpaceAgnostic(const bool agnostic) {
1022 if (mDrawingState.colorSpaceAgnostic == agnostic) {
1023 return false;
1024 }
1025 mDrawingState.sequence++;
1026 mDrawingState.colorSpaceAgnostic = agnostic;
1027 mDrawingState.modified = true;
1028 setTransactionFlags(eTransactionNeeded);
1029 return true;
1030 }
1031
setFrameRateSelectionPriority(int32_t priority)1032 bool Layer::setFrameRateSelectionPriority(int32_t priority) {
1033 if (mDrawingState.frameRateSelectionPriority == priority) return false;
1034 mDrawingState.frameRateSelectionPriority = priority;
1035 mDrawingState.sequence++;
1036 mDrawingState.modified = true;
1037 setTransactionFlags(eTransactionNeeded);
1038 return true;
1039 }
1040
getFrameRateSelectionPriority() const1041 int32_t Layer::getFrameRateSelectionPriority() const {
1042 // Check if layer has priority set.
1043 if (mDrawingState.frameRateSelectionPriority != PRIORITY_UNSET) {
1044 return mDrawingState.frameRateSelectionPriority;
1045 }
1046 // If not, search whether its parents have it set.
1047 sp<Layer> parent = getParent();
1048 if (parent != nullptr) {
1049 return parent->getFrameRateSelectionPriority();
1050 }
1051
1052 return Layer::PRIORITY_UNSET;
1053 }
1054
isLayerFocusedBasedOnPriority(int32_t priority)1055 bool Layer::isLayerFocusedBasedOnPriority(int32_t priority) {
1056 return priority == PRIORITY_FOCUSED_WITH_MODE || priority == PRIORITY_FOCUSED_WITHOUT_MODE;
1057 };
1058
getLayerStack() const1059 uint32_t Layer::getLayerStack() const {
1060 auto p = mDrawingParent.promote();
1061 if (p == nullptr) {
1062 return getDrawingState().layerStack;
1063 }
1064 return p->getLayerStack();
1065 }
1066
setShadowRadius(float shadowRadius)1067 bool Layer::setShadowRadius(float shadowRadius) {
1068 if (mDrawingState.shadowRadius == shadowRadius) {
1069 return false;
1070 }
1071
1072 mDrawingState.sequence++;
1073 mDrawingState.shadowRadius = shadowRadius;
1074 mDrawingState.modified = true;
1075 setTransactionFlags(eTransactionNeeded);
1076 return true;
1077 }
1078
setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint)1079 bool Layer::setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint) {
1080 if (mDrawingState.fixedTransformHint == fixedTransformHint) {
1081 return false;
1082 }
1083
1084 mDrawingState.sequence++;
1085 mDrawingState.fixedTransformHint = fixedTransformHint;
1086 mDrawingState.modified = true;
1087 setTransactionFlags(eTransactionNeeded);
1088 return true;
1089 }
1090
setStretchEffect(const StretchEffect & effect)1091 bool Layer::setStretchEffect(const StretchEffect& effect) {
1092 StretchEffect temp = effect;
1093 temp.sanitize();
1094 if (mDrawingState.stretchEffect == temp) {
1095 return false;
1096 }
1097 mDrawingState.sequence++;
1098 mDrawingState.stretchEffect = temp;
1099 mDrawingState.modified = true;
1100 setTransactionFlags(eTransactionNeeded);
1101 return true;
1102 }
1103
getStretchEffect() const1104 StretchEffect Layer::getStretchEffect() const {
1105 if (mDrawingState.stretchEffect.hasEffect()) {
1106 return mDrawingState.stretchEffect;
1107 }
1108
1109 sp<Layer> parent = getParent();
1110 if (parent != nullptr) {
1111 auto effect = parent->getStretchEffect();
1112 if (effect.hasEffect()) {
1113 // TODO(b/179047472): Map it? Or do we make the effect be in global space?
1114 return effect;
1115 }
1116 }
1117 return StretchEffect{};
1118 }
1119
propagateFrameRateForLayerTree(FrameRate parentFrameRate,bool * transactionNeeded)1120 bool Layer::propagateFrameRateForLayerTree(FrameRate parentFrameRate, bool* transactionNeeded) {
1121 // The frame rate for layer tree is this layer's frame rate if present, or the parent frame rate
1122 const auto frameRate = [&] {
1123 if (mDrawingState.frameRate.rate.isValid() ||
1124 mDrawingState.frameRate.type == FrameRateCompatibility::NoVote) {
1125 return mDrawingState.frameRate;
1126 }
1127
1128 return parentFrameRate;
1129 }();
1130
1131 *transactionNeeded |= setFrameRateForLayerTree(frameRate);
1132
1133 // The frame rate is propagated to the children
1134 bool childrenHaveFrameRate = false;
1135 for (const sp<Layer>& child : mCurrentChildren) {
1136 childrenHaveFrameRate |=
1137 child->propagateFrameRateForLayerTree(frameRate, transactionNeeded);
1138 }
1139
1140 // If we don't have a valid frame rate, but the children do, we set this
1141 // layer as NoVote to allow the children to control the refresh rate
1142 if (!frameRate.rate.isValid() && frameRate.type != FrameRateCompatibility::NoVote &&
1143 childrenHaveFrameRate) {
1144 *transactionNeeded |=
1145 setFrameRateForLayerTree(FrameRate(Fps(0.0f), FrameRateCompatibility::NoVote));
1146 }
1147
1148 // We return whether this layer ot its children has a vote. We ignore ExactOrMultiple votes for
1149 // the same reason we are allowing touch boost for those layers. See
1150 // RefreshRateConfigs::getBestRefreshRate for more details.
1151 const auto layerVotedWithDefaultCompatibility =
1152 frameRate.rate.isValid() && frameRate.type == FrameRateCompatibility::Default;
1153 const auto layerVotedWithNoVote = frameRate.type == FrameRateCompatibility::NoVote;
1154 const auto layerVotedWithExactCompatibility =
1155 frameRate.rate.isValid() && frameRate.type == FrameRateCompatibility::Exact;
1156 return layerVotedWithDefaultCompatibility || layerVotedWithNoVote ||
1157 layerVotedWithExactCompatibility || childrenHaveFrameRate;
1158 }
1159
updateTreeHasFrameRateVote()1160 void Layer::updateTreeHasFrameRateVote() {
1161 const auto root = [&]() -> sp<Layer> {
1162 sp<Layer> layer = this;
1163 while (auto parent = layer->getParent()) {
1164 layer = parent;
1165 }
1166 return layer;
1167 }();
1168
1169 bool transactionNeeded = false;
1170 root->propagateFrameRateForLayerTree({}, &transactionNeeded);
1171
1172 // TODO(b/195668952): we probably don't need eTraversalNeeded here
1173 if (transactionNeeded) {
1174 mFlinger->setTransactionFlags(eTraversalNeeded);
1175 }
1176 }
1177
setFrameRate(FrameRate frameRate)1178 bool Layer::setFrameRate(FrameRate frameRate) {
1179 if (!mFlinger->useFrameRateApi) {
1180 return false;
1181 }
1182 if (mDrawingState.frameRate == frameRate) {
1183 return false;
1184 }
1185
1186 mDrawingState.sequence++;
1187 mDrawingState.frameRate = frameRate;
1188 mDrawingState.modified = true;
1189
1190 updateTreeHasFrameRateVote();
1191
1192 setTransactionFlags(eTransactionNeeded);
1193 return true;
1194 }
1195
setFrameTimelineVsyncForBufferTransaction(const FrameTimelineInfo & info,nsecs_t postTime)1196 void Layer::setFrameTimelineVsyncForBufferTransaction(const FrameTimelineInfo& info,
1197 nsecs_t postTime) {
1198 mDrawingState.postTime = postTime;
1199
1200 // Check if one of the bufferlessSurfaceFramesTX contains the same vsyncId. This can happen if
1201 // there are two transactions with the same token, the first one without a buffer and the
1202 // second one with a buffer. We promote the bufferlessSurfaceFrame to a bufferSurfaceFrameTX
1203 // in that case.
1204 auto it = mDrawingState.bufferlessSurfaceFramesTX.find(info.vsyncId);
1205 if (it != mDrawingState.bufferlessSurfaceFramesTX.end()) {
1206 // Promote the bufferlessSurfaceFrame to a bufferSurfaceFrameTX
1207 mDrawingState.bufferSurfaceFrameTX = it->second;
1208 mDrawingState.bufferlessSurfaceFramesTX.erase(it);
1209 mDrawingState.bufferSurfaceFrameTX->promoteToBuffer();
1210 mDrawingState.bufferSurfaceFrameTX->setActualQueueTime(postTime);
1211 } else {
1212 mDrawingState.bufferSurfaceFrameTX =
1213 createSurfaceFrameForBuffer(info, postTime, mTransactionName);
1214 }
1215 }
1216
setFrameTimelineVsyncForBufferlessTransaction(const FrameTimelineInfo & info,nsecs_t postTime)1217 void Layer::setFrameTimelineVsyncForBufferlessTransaction(const FrameTimelineInfo& info,
1218 nsecs_t postTime) {
1219 mDrawingState.frameTimelineInfo = info;
1220 mDrawingState.postTime = postTime;
1221 mDrawingState.modified = true;
1222 setTransactionFlags(eTransactionNeeded);
1223
1224 if (const auto& bufferSurfaceFrameTX = mDrawingState.bufferSurfaceFrameTX;
1225 bufferSurfaceFrameTX != nullptr) {
1226 if (bufferSurfaceFrameTX->getToken() == info.vsyncId) {
1227 // BufferSurfaceFrame takes precedence over BufferlessSurfaceFrame. If the same token is
1228 // being used for BufferSurfaceFrame, don't create a new one.
1229 return;
1230 }
1231 }
1232 // For Transactions without a buffer, we create only one SurfaceFrame per vsyncId. If multiple
1233 // transactions use the same vsyncId, we just treat them as one SurfaceFrame (unless they are
1234 // targeting different vsyncs).
1235 auto it = mDrawingState.bufferlessSurfaceFramesTX.find(info.vsyncId);
1236 if (it == mDrawingState.bufferlessSurfaceFramesTX.end()) {
1237 auto surfaceFrame = createSurfaceFrameForTransaction(info, postTime);
1238 mDrawingState.bufferlessSurfaceFramesTX[info.vsyncId] = surfaceFrame;
1239 } else {
1240 if (it->second->getPresentState() == PresentState::Presented) {
1241 // If the SurfaceFrame was already presented, its safe to overwrite it since it must
1242 // have been from previous vsync.
1243 it->second = createSurfaceFrameForTransaction(info, postTime);
1244 }
1245 }
1246 }
1247
addSurfaceFrameDroppedForBuffer(std::shared_ptr<frametimeline::SurfaceFrame> & surfaceFrame)1248 void Layer::addSurfaceFrameDroppedForBuffer(
1249 std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame) {
1250 surfaceFrame->setDropTime(systemTime());
1251 surfaceFrame->setPresentState(PresentState::Dropped);
1252 mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame);
1253 }
1254
addSurfaceFramePresentedForBuffer(std::shared_ptr<frametimeline::SurfaceFrame> & surfaceFrame,nsecs_t acquireFenceTime,nsecs_t currentLatchTime)1255 void Layer::addSurfaceFramePresentedForBuffer(
1256 std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame, nsecs_t acquireFenceTime,
1257 nsecs_t currentLatchTime) {
1258 surfaceFrame->setAcquireFenceTime(acquireFenceTime);
1259 surfaceFrame->setPresentState(PresentState::Presented, mLastLatchTime);
1260 mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame);
1261 mLastLatchTime = currentLatchTime;
1262 }
1263
createSurfaceFrameForTransaction(const FrameTimelineInfo & info,nsecs_t postTime)1264 std::shared_ptr<frametimeline::SurfaceFrame> Layer::createSurfaceFrameForTransaction(
1265 const FrameTimelineInfo& info, nsecs_t postTime) {
1266 auto surfaceFrame =
1267 mFlinger->mFrameTimeline->createSurfaceFrameForToken(info, mOwnerPid, mOwnerUid,
1268 getSequence(), mName,
1269 mTransactionName,
1270 /*isBuffer*/ false, getGameMode());
1271 // For Transactions, the post time is considered to be both queue and acquire fence time.
1272 surfaceFrame->setActualQueueTime(postTime);
1273 surfaceFrame->setAcquireFenceTime(postTime);
1274 const auto fps = mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());
1275 if (fps) {
1276 surfaceFrame->setRenderRate(*fps);
1277 }
1278 onSurfaceFrameCreated(surfaceFrame);
1279 return surfaceFrame;
1280 }
1281
createSurfaceFrameForBuffer(const FrameTimelineInfo & info,nsecs_t queueTime,std::string debugName)1282 std::shared_ptr<frametimeline::SurfaceFrame> Layer::createSurfaceFrameForBuffer(
1283 const FrameTimelineInfo& info, nsecs_t queueTime, std::string debugName) {
1284 auto surfaceFrame =
1285 mFlinger->mFrameTimeline->createSurfaceFrameForToken(info, mOwnerPid, mOwnerUid,
1286 getSequence(), mName, debugName,
1287 /*isBuffer*/ true, getGameMode());
1288 // For buffers, acquire fence time will set during latch.
1289 surfaceFrame->setActualQueueTime(queueTime);
1290 const auto fps = mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());
1291 if (fps) {
1292 surfaceFrame->setRenderRate(*fps);
1293 }
1294 // TODO(b/178542907): Implement onSurfaceFrameCreated for BQLayer as well.
1295 onSurfaceFrameCreated(surfaceFrame);
1296 return surfaceFrame;
1297 }
1298
setFrameRateForLayerTree(FrameRate frameRate)1299 bool Layer::setFrameRateForLayerTree(FrameRate frameRate) {
1300 if (mDrawingState.frameRateForLayerTree == frameRate) {
1301 return false;
1302 }
1303
1304 mDrawingState.frameRateForLayerTree = frameRate;
1305
1306 // TODO(b/195668952): we probably don't need to dirty visible regions here
1307 // or even store frameRateForLayerTree in mDrawingState
1308 mDrawingState.sequence++;
1309 mDrawingState.modified = true;
1310 setTransactionFlags(eTransactionNeeded);
1311
1312 mFlinger->mScheduler->recordLayerHistory(this, systemTime(),
1313 LayerHistory::LayerUpdateType::SetFrameRate);
1314
1315 return true;
1316 }
1317
getFrameRateForLayerTree() const1318 Layer::FrameRate Layer::getFrameRateForLayerTree() const {
1319 return getDrawingState().frameRateForLayerTree;
1320 }
1321
isHiddenByPolicy() const1322 bool Layer::isHiddenByPolicy() const {
1323 const State& s(mDrawingState);
1324 const auto& parent = mDrawingParent.promote();
1325 if (parent != nullptr && parent->isHiddenByPolicy()) {
1326 return true;
1327 }
1328 if (usingRelativeZ(LayerVector::StateSet::Drawing)) {
1329 auto zOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote();
1330 if (zOrderRelativeOf != nullptr) {
1331 if (zOrderRelativeOf->isHiddenByPolicy()) {
1332 return true;
1333 }
1334 }
1335 }
1336 return s.flags & layer_state_t::eLayerHidden;
1337 }
1338
getEffectiveUsage(uint32_t usage) const1339 uint32_t Layer::getEffectiveUsage(uint32_t usage) const {
1340 // TODO: should we do something special if mSecure is set?
1341 if (mProtectedByApp) {
1342 // need a hardware-protected path to external video sink
1343 usage |= GraphicBuffer::USAGE_PROTECTED;
1344 }
1345 if (mPotentialCursor) {
1346 usage |= GraphicBuffer::USAGE_CURSOR;
1347 }
1348 usage |= GraphicBuffer::USAGE_HW_COMPOSER;
1349 return usage;
1350 }
1351
updateTransformHint(ui::Transform::RotationFlags transformHint)1352 void Layer::updateTransformHint(ui::Transform::RotationFlags transformHint) {
1353 if (mFlinger->mDebugDisableTransformHint || transformHint & ui::Transform::ROT_INVALID) {
1354 transformHint = ui::Transform::ROT_0;
1355 }
1356
1357 setTransformHint(transformHint);
1358 }
1359
1360 // ----------------------------------------------------------------------------
1361 // debugging
1362 // ----------------------------------------------------------------------------
1363
1364 // TODO(marissaw): add new layer state info to layer debugging
getLayerDebugInfo(const DisplayDevice * display) const1365 LayerDebugInfo Layer::getLayerDebugInfo(const DisplayDevice* display) const {
1366 using namespace std::string_literals;
1367
1368 LayerDebugInfo info;
1369 const State& ds = getDrawingState();
1370 info.mName = getName();
1371 sp<Layer> parent = mDrawingParent.promote();
1372 info.mParentName = parent ? parent->getName() : "none"s;
1373 info.mType = getType();
1374 info.mTransparentRegion = ds.activeTransparentRegion_legacy;
1375
1376 info.mVisibleRegion = getVisibleRegion(display);
1377 info.mSurfaceDamageRegion = surfaceDamageRegion;
1378 info.mLayerStack = getLayerStack();
1379 info.mX = ds.transform.tx();
1380 info.mY = ds.transform.ty();
1381 info.mZ = ds.z;
1382 info.mWidth = ds.width;
1383 info.mHeight = ds.height;
1384 info.mCrop = ds.crop;
1385 info.mColor = ds.color;
1386 info.mFlags = ds.flags;
1387 info.mPixelFormat = getPixelFormat();
1388 info.mDataSpace = static_cast<android_dataspace>(getDataSpace());
1389 info.mMatrix[0][0] = ds.transform[0][0];
1390 info.mMatrix[0][1] = ds.transform[0][1];
1391 info.mMatrix[1][0] = ds.transform[1][0];
1392 info.mMatrix[1][1] = ds.transform[1][1];
1393 {
1394 sp<const GraphicBuffer> buffer = getBuffer();
1395 if (buffer != 0) {
1396 info.mActiveBufferWidth = buffer->getWidth();
1397 info.mActiveBufferHeight = buffer->getHeight();
1398 info.mActiveBufferStride = buffer->getStride();
1399 info.mActiveBufferFormat = buffer->format;
1400 } else {
1401 info.mActiveBufferWidth = 0;
1402 info.mActiveBufferHeight = 0;
1403 info.mActiveBufferStride = 0;
1404 info.mActiveBufferFormat = 0;
1405 }
1406 }
1407 info.mNumQueuedFrames = getQueuedFrameCount();
1408 info.mRefreshPending = isBufferLatched();
1409 info.mIsOpaque = isOpaque(ds);
1410 info.mContentDirty = contentDirty;
1411 info.mStretchEffect = getStretchEffect();
1412 return info;
1413 }
1414
miniDumpHeader(std::string & result)1415 void Layer::miniDumpHeader(std::string& result) {
1416 result.append(kDumpTableRowLength, '-');
1417 result.append("\n");
1418 result.append(" Layer name\n");
1419 result.append(" Z | ");
1420 result.append(" Window Type | ");
1421 result.append(" Comp Type | ");
1422 result.append(" Transform | ");
1423 result.append(" Disp Frame (LTRB) | ");
1424 result.append(" Source Crop (LTRB) | ");
1425 result.append(" Frame Rate (Explicit) (Seamlessness) [Focused]\n");
1426 result.append(kDumpTableRowLength, '-');
1427 result.append("\n");
1428 }
1429
frameRateCompatibilityString(Layer::FrameRateCompatibility compatibility)1430 std::string Layer::frameRateCompatibilityString(Layer::FrameRateCompatibility compatibility) {
1431 switch (compatibility) {
1432 case FrameRateCompatibility::Default:
1433 return "Default";
1434 case FrameRateCompatibility::ExactOrMultiple:
1435 return "ExactOrMultiple";
1436 case FrameRateCompatibility::NoVote:
1437 return "NoVote";
1438 case FrameRateCompatibility::Exact:
1439 return "Exact";
1440 }
1441 }
1442
miniDump(std::string & result,const DisplayDevice & display) const1443 void Layer::miniDump(std::string& result, const DisplayDevice& display) const {
1444 const auto outputLayer = findOutputLayerForDisplay(&display);
1445 if (!outputLayer) {
1446 return;
1447 }
1448
1449 std::string name;
1450 if (mName.length() > 77) {
1451 std::string shortened;
1452 shortened.append(mName, 0, 36);
1453 shortened.append("[...]");
1454 shortened.append(mName, mName.length() - 36);
1455 name = std::move(shortened);
1456 } else {
1457 name = mName;
1458 }
1459
1460 StringAppendF(&result, " %s\n", name.c_str());
1461
1462 const State& layerState(getDrawingState());
1463 const auto& outputLayerState = outputLayer->getState();
1464
1465 if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) {
1466 StringAppendF(&result, " rel %6d | ", layerState.z);
1467 } else {
1468 StringAppendF(&result, " %10d | ", layerState.z);
1469 }
1470 StringAppendF(&result, " %10d | ", mWindowType);
1471 StringAppendF(&result, "%10s | ", toString(getCompositionType(display)).c_str());
1472 StringAppendF(&result, "%10s | ", toString(outputLayerState.bufferTransform).c_str());
1473 const Rect& frame = outputLayerState.displayFrame;
1474 StringAppendF(&result, "%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom);
1475 const FloatRect& crop = outputLayerState.sourceCrop;
1476 StringAppendF(&result, "%6.1f %6.1f %6.1f %6.1f | ", crop.left, crop.top, crop.right,
1477 crop.bottom);
1478 const auto frameRate = getFrameRateForLayerTree();
1479 if (frameRate.rate.isValid() || frameRate.type != FrameRateCompatibility::Default) {
1480 StringAppendF(&result, "%s %15s %17s", to_string(frameRate.rate).c_str(),
1481 frameRateCompatibilityString(frameRate.type).c_str(),
1482 toString(frameRate.seamlessness).c_str());
1483 } else {
1484 result.append(41, ' ');
1485 }
1486
1487 const auto focused = isLayerFocusedBasedOnPriority(getFrameRateSelectionPriority());
1488 StringAppendF(&result, " [%s]\n", focused ? "*" : " ");
1489
1490 result.append(kDumpTableRowLength, '-');
1491 result.append("\n");
1492 }
1493
dumpFrameStats(std::string & result) const1494 void Layer::dumpFrameStats(std::string& result) const {
1495 mFrameTracker.dumpStats(result);
1496 }
1497
clearFrameStats()1498 void Layer::clearFrameStats() {
1499 mFrameTracker.clearStats();
1500 }
1501
logFrameStats()1502 void Layer::logFrameStats() {
1503 mFrameTracker.logAndResetStats(mName);
1504 }
1505
getFrameStats(FrameStats * outStats) const1506 void Layer::getFrameStats(FrameStats* outStats) const {
1507 mFrameTracker.getStats(outStats);
1508 }
1509
dumpFrameEvents(std::string & result)1510 void Layer::dumpFrameEvents(std::string& result) {
1511 StringAppendF(&result, "- Layer %s (%s, %p)\n", getName().c_str(), getType(), this);
1512 Mutex::Autolock lock(mFrameEventHistoryMutex);
1513 mFrameEventHistory.checkFencesForCompletion();
1514 mFrameEventHistory.dump(result);
1515 }
1516
dumpCallingUidPid(std::string & result) const1517 void Layer::dumpCallingUidPid(std::string& result) const {
1518 StringAppendF(&result, "Layer %s (%s) callingPid:%d callingUid:%d ownerUid:%d\n",
1519 getName().c_str(), getType(), mCallingPid, mCallingUid, mOwnerUid);
1520 }
1521
onDisconnect()1522 void Layer::onDisconnect() {
1523 Mutex::Autolock lock(mFrameEventHistoryMutex);
1524 mFrameEventHistory.onDisconnect();
1525 const int32_t layerId = getSequence();
1526 mFlinger->mTimeStats->onDestroy(layerId);
1527 mFlinger->mFrameTracer->onDestroy(layerId);
1528 }
1529
addAndGetFrameTimestamps(const NewFrameEventsEntry * newTimestamps,FrameEventHistoryDelta * outDelta)1530 void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps,
1531 FrameEventHistoryDelta* outDelta) {
1532 if (newTimestamps) {
1533 mFlinger->mTimeStats->setPostTime(getSequence(), newTimestamps->frameNumber,
1534 getName().c_str(), mOwnerUid, newTimestamps->postedTime,
1535 getGameMode());
1536 mFlinger->mTimeStats->setAcquireFence(getSequence(), newTimestamps->frameNumber,
1537 newTimestamps->acquireFence);
1538 }
1539
1540 Mutex::Autolock lock(mFrameEventHistoryMutex);
1541 if (newTimestamps) {
1542 // If there are any unsignaled fences in the aquire timeline at this
1543 // point, the previously queued frame hasn't been latched yet. Go ahead
1544 // and try to get the signal time here so the syscall is taken out of
1545 // the main thread's critical path.
1546 mAcquireTimeline.updateSignalTimes();
1547 // Push the new fence after updating since it's likely still pending.
1548 mAcquireTimeline.push(newTimestamps->acquireFence);
1549 mFrameEventHistory.addQueue(*newTimestamps);
1550 }
1551
1552 if (outDelta) {
1553 mFrameEventHistory.getAndResetDelta(outDelta);
1554 }
1555 }
1556
getChildrenCount() const1557 size_t Layer::getChildrenCount() const {
1558 size_t count = 0;
1559 for (const sp<Layer>& child : mCurrentChildren) {
1560 count += 1 + child->getChildrenCount();
1561 }
1562 return count;
1563 }
1564
setGameModeForTree(int parentGameMode)1565 void Layer::setGameModeForTree(int parentGameMode) {
1566 int gameMode = parentGameMode;
1567 auto& currentState = getDrawingState();
1568 if (currentState.metadata.has(METADATA_GAME_MODE)) {
1569 gameMode = currentState.metadata.getInt32(METADATA_GAME_MODE, 0);
1570 }
1571 setGameMode(gameMode);
1572 for (const sp<Layer>& child : mCurrentChildren) {
1573 child->setGameModeForTree(gameMode);
1574 }
1575 }
1576
addChild(const sp<Layer> & layer)1577 void Layer::addChild(const sp<Layer>& layer) {
1578 mFlinger->mSomeChildrenChanged = true;
1579 setTransactionFlags(eTransactionNeeded);
1580
1581 mCurrentChildren.add(layer);
1582 layer->setParent(this);
1583 layer->setGameModeForTree(mGameMode);
1584 updateTreeHasFrameRateVote();
1585 }
1586
removeChild(const sp<Layer> & layer)1587 ssize_t Layer::removeChild(const sp<Layer>& layer) {
1588 mFlinger->mSomeChildrenChanged = true;
1589 setTransactionFlags(eTransactionNeeded);
1590
1591 layer->setParent(nullptr);
1592 const auto removeResult = mCurrentChildren.remove(layer);
1593
1594 updateTreeHasFrameRateVote();
1595 layer->setGameModeForTree(0);
1596 layer->updateTreeHasFrameRateVote();
1597
1598 return removeResult;
1599 }
1600
setChildrenDrawingParent(const sp<Layer> & newParent)1601 void Layer::setChildrenDrawingParent(const sp<Layer>& newParent) {
1602 for (const sp<Layer>& child : mDrawingChildren) {
1603 child->mDrawingParent = newParent;
1604 child->computeBounds(newParent->mBounds, newParent->mEffectiveTransform,
1605 newParent->mEffectiveShadowRadius);
1606 }
1607 }
1608
reparent(const sp<IBinder> & newParentHandle)1609 bool Layer::reparent(const sp<IBinder>& newParentHandle) {
1610 sp<Layer> newParent;
1611 if (newParentHandle != nullptr) {
1612 auto handle = static_cast<Handle*>(newParentHandle.get());
1613 newParent = handle->owner.promote();
1614 if (newParent == nullptr) {
1615 ALOGE("Unable to promote Layer handle");
1616 return false;
1617 }
1618 if (newParent == this) {
1619 ALOGE("Invalid attempt to reparent Layer (%s) to itself", getName().c_str());
1620 return false;
1621 }
1622 }
1623
1624 sp<Layer> parent = getParent();
1625 if (parent != nullptr) {
1626 parent->removeChild(this);
1627 }
1628
1629 if (newParentHandle != nullptr) {
1630 newParent->addChild(this);
1631 if (!newParent->isRemovedFromCurrentState()) {
1632 addToCurrentState();
1633 } else {
1634 onRemovedFromCurrentState();
1635 }
1636 } else {
1637 onRemovedFromCurrentState();
1638 }
1639
1640 return true;
1641 }
1642
setColorTransform(const mat4 & matrix)1643 bool Layer::setColorTransform(const mat4& matrix) {
1644 static const mat4 identityMatrix = mat4();
1645
1646 if (mDrawingState.colorTransform == matrix) {
1647 return false;
1648 }
1649 ++mDrawingState.sequence;
1650 mDrawingState.colorTransform = matrix;
1651 mDrawingState.hasColorTransform = matrix != identityMatrix;
1652 mDrawingState.modified = true;
1653 setTransactionFlags(eTransactionNeeded);
1654 return true;
1655 }
1656
getColorTransform() const1657 mat4 Layer::getColorTransform() const {
1658 mat4 colorTransform = mat4(getDrawingState().colorTransform);
1659 if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) {
1660 colorTransform = parent->getColorTransform() * colorTransform;
1661 }
1662 return colorTransform;
1663 }
1664
hasColorTransform() const1665 bool Layer::hasColorTransform() const {
1666 bool hasColorTransform = getDrawingState().hasColorTransform;
1667 if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) {
1668 hasColorTransform = hasColorTransform || parent->hasColorTransform();
1669 }
1670 return hasColorTransform;
1671 }
1672
isLegacyDataSpace() const1673 bool Layer::isLegacyDataSpace() const {
1674 // return true when no higher bits are set
1675 return !(getDataSpace() &
1676 (ui::Dataspace::STANDARD_MASK | ui::Dataspace::TRANSFER_MASK |
1677 ui::Dataspace::RANGE_MASK));
1678 }
1679
setParent(const sp<Layer> & layer)1680 void Layer::setParent(const sp<Layer>& layer) {
1681 mCurrentParent = layer;
1682 }
1683
getZ(LayerVector::StateSet) const1684 int32_t Layer::getZ(LayerVector::StateSet) const {
1685 return mDrawingState.z;
1686 }
1687
usingRelativeZ(LayerVector::StateSet stateSet) const1688 bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) const {
1689 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
1690 const State& state = useDrawing ? mDrawingState : mDrawingState;
1691 return state.isRelativeOf;
1692 }
1693
makeTraversalList(LayerVector::StateSet stateSet,bool * outSkipRelativeZUsers)1694 __attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList(
1695 LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) {
1696 LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
1697 "makeTraversalList received invalid stateSet");
1698 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
1699 const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
1700 const State& state = useDrawing ? mDrawingState : mDrawingState;
1701
1702 if (state.zOrderRelatives.size() == 0) {
1703 *outSkipRelativeZUsers = true;
1704 return children;
1705 }
1706
1707 LayerVector traverse(stateSet);
1708 for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
1709 sp<Layer> strongRelative = weakRelative.promote();
1710 if (strongRelative != nullptr) {
1711 traverse.add(strongRelative);
1712 }
1713 }
1714
1715 for (const sp<Layer>& child : children) {
1716 if (child->usingRelativeZ(stateSet)) {
1717 continue;
1718 }
1719 traverse.add(child);
1720 }
1721
1722 return traverse;
1723 }
1724
1725 /**
1726 * Negatively signed relatives are before 'this' in Z-order.
1727 */
traverseInZOrder(LayerVector::StateSet stateSet,const LayerVector::Visitor & visitor)1728 void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) {
1729 // In the case we have other layers who are using a relative Z to us, makeTraversalList will
1730 // produce a new list for traversing, including our relatives, and not including our children
1731 // who are relatives of another surface. In the case that there are no relative Z,
1732 // makeTraversalList returns our children directly to avoid significant overhead.
1733 // However in this case we need to take the responsibility for filtering children which
1734 // are relatives of another surface here.
1735 bool skipRelativeZUsers = false;
1736 const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
1737
1738 size_t i = 0;
1739 for (; i < list.size(); i++) {
1740 const auto& relative = list[i];
1741 if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
1742 continue;
1743 }
1744
1745 if (relative->getZ(stateSet) >= 0) {
1746 break;
1747 }
1748 relative->traverseInZOrder(stateSet, visitor);
1749 }
1750
1751 visitor(this);
1752 for (; i < list.size(); i++) {
1753 const auto& relative = list[i];
1754
1755 if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
1756 continue;
1757 }
1758 relative->traverseInZOrder(stateSet, visitor);
1759 }
1760 }
1761
1762 /**
1763 * Positively signed relatives are before 'this' in reverse Z-order.
1764 */
traverseInReverseZOrder(LayerVector::StateSet stateSet,const LayerVector::Visitor & visitor)1765 void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet,
1766 const LayerVector::Visitor& visitor) {
1767 // See traverseInZOrder for documentation.
1768 bool skipRelativeZUsers = false;
1769 LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
1770
1771 int32_t i = 0;
1772 for (i = int32_t(list.size()) - 1; i >= 0; i--) {
1773 const auto& relative = list[i];
1774
1775 if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
1776 continue;
1777 }
1778
1779 if (relative->getZ(stateSet) < 0) {
1780 break;
1781 }
1782 relative->traverseInReverseZOrder(stateSet, visitor);
1783 }
1784 visitor(this);
1785 for (; i >= 0; i--) {
1786 const auto& relative = list[i];
1787
1788 if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
1789 continue;
1790 }
1791
1792 relative->traverseInReverseZOrder(stateSet, visitor);
1793 }
1794 }
1795
traverse(LayerVector::StateSet state,const LayerVector::Visitor & visitor)1796 void Layer::traverse(LayerVector::StateSet state, const LayerVector::Visitor& visitor) {
1797 visitor(this);
1798 const LayerVector& children =
1799 state == LayerVector::StateSet::Drawing ? mDrawingChildren : mCurrentChildren;
1800 for (const sp<Layer>& child : children) {
1801 child->traverse(state, visitor);
1802 }
1803 }
1804
makeChildrenTraversalList(LayerVector::StateSet stateSet,const std::vector<Layer * > & layersInTree)1805 LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet,
1806 const std::vector<Layer*>& layersInTree) {
1807 LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
1808 "makeTraversalList received invalid stateSet");
1809 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
1810 const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
1811 const State& state = useDrawing ? mDrawingState : mDrawingState;
1812
1813 LayerVector traverse(stateSet);
1814 for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
1815 sp<Layer> strongRelative = weakRelative.promote();
1816 // Only add relative layers that are also descendents of the top most parent of the tree.
1817 // If a relative layer is not a descendent, then it should be ignored.
1818 if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
1819 traverse.add(strongRelative);
1820 }
1821 }
1822
1823 for (const sp<Layer>& child : children) {
1824 const State& childState = useDrawing ? child->mDrawingState : child->mDrawingState;
1825 // If a layer has a relativeOf layer, only ignore if the layer it's relative to is a
1826 // descendent of the top most parent of the tree. If it's not a descendent, then just add
1827 // the child here since it won't be added later as a relative.
1828 if (std::binary_search(layersInTree.begin(), layersInTree.end(),
1829 childState.zOrderRelativeOf.promote().get())) {
1830 continue;
1831 }
1832 traverse.add(child);
1833 }
1834
1835 return traverse;
1836 }
1837
traverseChildrenInZOrderInner(const std::vector<Layer * > & layersInTree,LayerVector::StateSet stateSet,const LayerVector::Visitor & visitor)1838 void Layer::traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
1839 LayerVector::StateSet stateSet,
1840 const LayerVector::Visitor& visitor) {
1841 const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree);
1842
1843 size_t i = 0;
1844 for (; i < list.size(); i++) {
1845 const auto& relative = list[i];
1846 if (relative->getZ(stateSet) >= 0) {
1847 break;
1848 }
1849 relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
1850 }
1851
1852 visitor(this);
1853 for (; i < list.size(); i++) {
1854 const auto& relative = list[i];
1855 relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
1856 }
1857 }
1858
getLayersInTree(LayerVector::StateSet stateSet)1859 std::vector<Layer*> Layer::getLayersInTree(LayerVector::StateSet stateSet) {
1860 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
1861 const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
1862
1863 std::vector<Layer*> layersInTree = {this};
1864 for (size_t i = 0; i < children.size(); i++) {
1865 const auto& child = children[i];
1866 std::vector<Layer*> childLayers = child->getLayersInTree(stateSet);
1867 layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend());
1868 }
1869
1870 return layersInTree;
1871 }
1872
traverseChildrenInZOrder(LayerVector::StateSet stateSet,const LayerVector::Visitor & visitor)1873 void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet,
1874 const LayerVector::Visitor& visitor) {
1875 std::vector<Layer*> layersInTree = getLayersInTree(stateSet);
1876 std::sort(layersInTree.begin(), layersInTree.end());
1877 traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
1878 }
1879
getTransform() const1880 ui::Transform Layer::getTransform() const {
1881 return mEffectiveTransform;
1882 }
1883
getAlpha() const1884 half Layer::getAlpha() const {
1885 const auto& p = mDrawingParent.promote();
1886
1887 half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf;
1888 return parentAlpha * getDrawingState().color.a;
1889 }
1890
getFixedTransformHint() const1891 ui::Transform::RotationFlags Layer::getFixedTransformHint() const {
1892 ui::Transform::RotationFlags fixedTransformHint = mDrawingState.fixedTransformHint;
1893 if (fixedTransformHint != ui::Transform::ROT_INVALID) {
1894 return fixedTransformHint;
1895 }
1896 const auto& p = mCurrentParent.promote();
1897 if (!p) return fixedTransformHint;
1898 return p->getFixedTransformHint();
1899 }
1900
getColor() const1901 half4 Layer::getColor() const {
1902 const half4 color(getDrawingState().color);
1903 return half4(color.r, color.g, color.b, getAlpha());
1904 }
1905
getBackgroundBlurRadius() const1906 int32_t Layer::getBackgroundBlurRadius() const {
1907 const auto& p = mDrawingParent.promote();
1908
1909 half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf;
1910 return parentAlpha * getDrawingState().backgroundBlurRadius;
1911 }
1912
getBlurRegions() const1913 const std::vector<BlurRegion> Layer::getBlurRegions() const {
1914 auto regionsCopy(getDrawingState().blurRegions);
1915 float layerAlpha = getAlpha();
1916 for (auto& region : regionsCopy) {
1917 region.alpha = region.alpha * layerAlpha;
1918 }
1919 return regionsCopy;
1920 }
1921
getRoundedCornerState() const1922 Layer::RoundedCornerState Layer::getRoundedCornerState() const {
1923 const auto& p = mDrawingParent.promote();
1924 if (p != nullptr) {
1925 RoundedCornerState parentState = p->getRoundedCornerState();
1926 if (parentState.radius > 0) {
1927 ui::Transform t = getActiveTransform(getDrawingState());
1928 t = t.inverse();
1929 parentState.cropRect = t.transform(parentState.cropRect);
1930 // The rounded corners shader only accepts 1 corner radius for performance reasons,
1931 // but a transform matrix can define horizontal and vertical scales.
1932 // Let's take the average between both of them and pass into the shader, practically we
1933 // never do this type of transformation on windows anyway.
1934 auto scaleX = sqrtf(t[0][0] * t[0][0] + t[0][1] * t[0][1]);
1935 auto scaleY = sqrtf(t[1][0] * t[1][0] + t[1][1] * t[1][1]);
1936 parentState.radius *= (scaleX + scaleY) / 2.0f;
1937 return parentState;
1938 }
1939 }
1940 const float radius = getDrawingState().cornerRadius;
1941 return radius > 0 && getCroppedBufferSize(getDrawingState()).isValid()
1942 ? RoundedCornerState(getCroppedBufferSize(getDrawingState()).toFloatRect(), radius)
1943 : RoundedCornerState();
1944 }
1945
prepareShadowClientComposition(LayerFE::LayerSettings & caster,const Rect & layerStackRect)1946 void Layer::prepareShadowClientComposition(LayerFE::LayerSettings& caster,
1947 const Rect& layerStackRect) {
1948 renderengine::ShadowSettings state = mFlinger->mDrawingState.globalShadowSettings;
1949
1950 // Note: this preserves existing behavior of shadowing the entire layer and not cropping it if
1951 // transparent regions are present. This may not be necessary since shadows are only cast by
1952 // SurfaceFlinger's EffectLayers, which do not typically use transparent regions.
1953 state.boundaries = mBounds;
1954
1955 // Shift the spot light x-position to the middle of the display and then
1956 // offset it by casting layer's screen pos.
1957 state.lightPos.x = (layerStackRect.width() / 2.f) - mScreenBounds.left;
1958 state.lightPos.y -= mScreenBounds.top;
1959
1960 state.length = mEffectiveShadowRadius;
1961
1962 if (state.length > 0.f) {
1963 const float casterAlpha = caster.alpha;
1964 const bool casterIsOpaque =
1965 ((caster.source.buffer.buffer != nullptr) && caster.source.buffer.isOpaque);
1966
1967 // If the casting layer is translucent, we need to fill in the shadow underneath the layer.
1968 // Otherwise the generated shadow will only be shown around the casting layer.
1969 state.casterIsTranslucent = !casterIsOpaque || (casterAlpha < 1.0f);
1970 state.ambientColor *= casterAlpha;
1971 state.spotColor *= casterAlpha;
1972
1973 if (state.ambientColor.a > 0.f && state.spotColor.a > 0.f) {
1974 caster.shadow = state;
1975 }
1976 }
1977 }
1978
commitChildList()1979 void Layer::commitChildList() {
1980 for (size_t i = 0; i < mCurrentChildren.size(); i++) {
1981 const auto& child = mCurrentChildren[i];
1982 child->commitChildList();
1983 }
1984 mDrawingChildren = mCurrentChildren;
1985 mDrawingParent = mCurrentParent;
1986 }
1987
extractLayerFromBinder(const wp<IBinder> & weakBinderHandle)1988 static wp<Layer> extractLayerFromBinder(const wp<IBinder>& weakBinderHandle) {
1989 if (weakBinderHandle == nullptr) {
1990 return nullptr;
1991 }
1992 sp<IBinder> binderHandle = weakBinderHandle.promote();
1993 if (binderHandle == nullptr) {
1994 return nullptr;
1995 }
1996 sp<Layer::Handle> handle = static_cast<Layer::Handle*>(binderHandle.get());
1997 if (handle == nullptr) {
1998 return nullptr;
1999 }
2000 return handle->owner;
2001 }
2002
setInputInfo(const InputWindowInfo & info)2003 void Layer::setInputInfo(const InputWindowInfo& info) {
2004 mDrawingState.inputInfo = info;
2005 mDrawingState.touchableRegionCrop = extractLayerFromBinder(info.touchableRegionCropHandle);
2006 mDrawingState.modified = true;
2007 mFlinger->mInputInfoChanged = true;
2008 setTransactionFlags(eTransactionNeeded);
2009 }
2010
writeToProto(LayersProto & layersProto,uint32_t traceFlags,const DisplayDevice * display)2011 LayerProto* Layer::writeToProto(LayersProto& layersProto, uint32_t traceFlags,
2012 const DisplayDevice* display) {
2013 LayerProto* layerProto = layersProto.add_layers();
2014 writeToProtoDrawingState(layerProto, traceFlags, display);
2015 writeToProtoCommonState(layerProto, LayerVector::StateSet::Drawing, traceFlags);
2016
2017 if (traceFlags & SurfaceTracing::TRACE_COMPOSITION) {
2018 // Only populate for the primary display.
2019 if (display) {
2020 const Hwc2::IComposerClient::Composition compositionType = getCompositionType(*display);
2021 layerProto->set_hwc_composition_type(static_cast<HwcCompositionType>(compositionType));
2022 }
2023 }
2024
2025 for (const sp<Layer>& layer : mDrawingChildren) {
2026 layer->writeToProto(layersProto, traceFlags, display);
2027 }
2028
2029 return layerProto;
2030 }
2031
writeToProtoDrawingState(LayerProto * layerInfo,uint32_t traceFlags,const DisplayDevice * display)2032 void Layer::writeToProtoDrawingState(LayerProto* layerInfo, uint32_t traceFlags,
2033 const DisplayDevice* display) {
2034 const ui::Transform transform = getTransform();
2035
2036 if (traceFlags & SurfaceTracing::TRACE_CRITICAL) {
2037
2038 auto buffer = getBuffer();
2039 if (buffer != nullptr) {
2040 LayerProtoHelper::writeToProto(buffer,
2041 [&]() { return layerInfo->mutable_active_buffer(); });
2042 LayerProtoHelper::writeToProto(ui::Transform(getBufferTransform()),
2043 layerInfo->mutable_buffer_transform());
2044 }
2045 layerInfo->set_invalidate(contentDirty);
2046 layerInfo->set_is_protected(isProtected());
2047 layerInfo->set_dataspace(dataspaceDetails(static_cast<android_dataspace>(getDataSpace())));
2048 layerInfo->set_queued_frames(getQueuedFrameCount());
2049 layerInfo->set_refresh_pending(isBufferLatched());
2050 layerInfo->set_curr_frame(mCurrentFrameNumber);
2051 layerInfo->set_effective_scaling_mode(getEffectiveScalingMode());
2052
2053 layerInfo->set_corner_radius(getRoundedCornerState().radius);
2054 layerInfo->set_background_blur_radius(getBackgroundBlurRadius());
2055 layerInfo->set_is_trusted_overlay(isTrustedOverlay());
2056 LayerProtoHelper::writeToProto(transform, layerInfo->mutable_transform());
2057 LayerProtoHelper::writePositionToProto(transform.tx(), transform.ty(),
2058 [&]() { return layerInfo->mutable_position(); });
2059 LayerProtoHelper::writeToProto(mBounds, [&]() { return layerInfo->mutable_bounds(); });
2060 if (traceFlags & SurfaceTracing::TRACE_COMPOSITION) {
2061 LayerProtoHelper::writeToProto(getVisibleRegion(display),
2062 [&]() { return layerInfo->mutable_visible_region(); });
2063 }
2064 LayerProtoHelper::writeToProto(surfaceDamageRegion,
2065 [&]() { return layerInfo->mutable_damage_region(); });
2066
2067 if (hasColorTransform()) {
2068 LayerProtoHelper::writeToProto(getColorTransform(),
2069 layerInfo->mutable_color_transform());
2070 }
2071 }
2072
2073 LayerProtoHelper::writeToProto(mSourceBounds,
2074 [&]() { return layerInfo->mutable_source_bounds(); });
2075 LayerProtoHelper::writeToProto(mScreenBounds,
2076 [&]() { return layerInfo->mutable_screen_bounds(); });
2077 LayerProtoHelper::writeToProto(getRoundedCornerState().cropRect,
2078 [&]() { return layerInfo->mutable_corner_radius_crop(); });
2079 layerInfo->set_shadow_radius(mEffectiveShadowRadius);
2080 }
2081
writeToProtoCommonState(LayerProto * layerInfo,LayerVector::StateSet stateSet,uint32_t traceFlags)2082 void Layer::writeToProtoCommonState(LayerProto* layerInfo, LayerVector::StateSet stateSet,
2083 uint32_t traceFlags) {
2084 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
2085 const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
2086 const State& state = useDrawing ? mDrawingState : mDrawingState;
2087
2088 ui::Transform requestedTransform = state.transform;
2089
2090 if (traceFlags & SurfaceTracing::TRACE_CRITICAL) {
2091 layerInfo->set_id(sequence);
2092 layerInfo->set_name(getName().c_str());
2093 layerInfo->set_type(getType());
2094
2095 for (const auto& child : children) {
2096 layerInfo->add_children(child->sequence);
2097 }
2098
2099 for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
2100 sp<Layer> strongRelative = weakRelative.promote();
2101 if (strongRelative != nullptr) {
2102 layerInfo->add_relatives(strongRelative->sequence);
2103 }
2104 }
2105
2106 LayerProtoHelper::writeToProto(state.activeTransparentRegion_legacy,
2107 [&]() { return layerInfo->mutable_transparent_region(); });
2108
2109 layerInfo->set_layer_stack(getLayerStack());
2110 layerInfo->set_z(state.z);
2111
2112 LayerProtoHelper::writePositionToProto(requestedTransform.tx(), requestedTransform.ty(),
2113 [&]() {
2114 return layerInfo->mutable_requested_position();
2115 });
2116
2117 LayerProtoHelper::writeSizeToProto(state.width, state.height,
2118 [&]() { return layerInfo->mutable_size(); });
2119
2120 LayerProtoHelper::writeToProto(state.crop, [&]() { return layerInfo->mutable_crop(); });
2121
2122 layerInfo->set_is_opaque(isOpaque(state));
2123
2124
2125 layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat()));
2126 LayerProtoHelper::writeToProto(getColor(), [&]() { return layerInfo->mutable_color(); });
2127 LayerProtoHelper::writeToProto(state.color,
2128 [&]() { return layerInfo->mutable_requested_color(); });
2129 layerInfo->set_flags(state.flags);
2130
2131 LayerProtoHelper::writeToProto(requestedTransform,
2132 layerInfo->mutable_requested_transform());
2133
2134 auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote();
2135 if (parent != nullptr) {
2136 layerInfo->set_parent(parent->sequence);
2137 } else {
2138 layerInfo->set_parent(-1);
2139 }
2140
2141 auto zOrderRelativeOf = state.zOrderRelativeOf.promote();
2142 if (zOrderRelativeOf != nullptr) {
2143 layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence);
2144 } else {
2145 layerInfo->set_z_order_relative_of(-1);
2146 }
2147
2148 layerInfo->set_is_relative_of(state.isRelativeOf);
2149
2150 layerInfo->set_owner_uid(mOwnerUid);
2151 }
2152
2153 if (traceFlags & SurfaceTracing::TRACE_INPUT) {
2154 InputWindowInfo info;
2155 if (useDrawing) {
2156 info = fillInputInfo({nullptr});
2157 } else {
2158 info = state.inputInfo;
2159 }
2160
2161 LayerProtoHelper::writeToProto(info, state.touchableRegionCrop,
2162 [&]() { return layerInfo->mutable_input_window_info(); });
2163 }
2164
2165 if (traceFlags & SurfaceTracing::TRACE_EXTRA) {
2166 auto protoMap = layerInfo->mutable_metadata();
2167 for (const auto& entry : state.metadata.mMap) {
2168 (*protoMap)[entry.first] = std::string(entry.second.cbegin(), entry.second.cend());
2169 }
2170 }
2171 }
2172
isRemovedFromCurrentState() const2173 bool Layer::isRemovedFromCurrentState() const {
2174 return mRemovedFromDrawingState;
2175 }
2176
getInputTransform() const2177 ui::Transform Layer::getInputTransform() const {
2178 return getTransform();
2179 }
2180
getInputBounds() const2181 Rect Layer::getInputBounds() const {
2182 return getCroppedBufferSize(getDrawingState());
2183 }
2184
fillInputFrameInfo(InputWindowInfo & info,const ui::Transform & toPhysicalDisplay)2185 void Layer::fillInputFrameInfo(InputWindowInfo& info, const ui::Transform& toPhysicalDisplay) {
2186 // Transform layer size to screen space and inset it by surface insets.
2187 // If this is a portal window, set the touchableRegion to the layerBounds.
2188 Rect layerBounds = info.portalToDisplayId == ADISPLAY_ID_NONE
2189 ? getInputBounds()
2190 : info.touchableRegion.getBounds();
2191 if (!layerBounds.isValid()) {
2192 layerBounds = getInputBounds();
2193 }
2194
2195 if (!layerBounds.isValid()) {
2196 // If the layer bounds is empty, set the frame to empty and clear the transform
2197 info.frameLeft = 0;
2198 info.frameTop = 0;
2199 info.frameRight = 0;
2200 info.frameBottom = 0;
2201 info.transform.reset();
2202 return;
2203 }
2204
2205 ui::Transform layerToDisplay = getInputTransform();
2206 // Transform that takes window coordinates to unrotated display coordinates
2207 ui::Transform t = toPhysicalDisplay * layerToDisplay;
2208 int32_t xSurfaceInset = info.surfaceInset;
2209 int32_t ySurfaceInset = info.surfaceInset;
2210 // Bring screenBounds into unrotated space
2211 Rect screenBounds = toPhysicalDisplay.transform(Rect{mScreenBounds});
2212
2213 const float xScale = t.getScaleX();
2214 const float yScale = t.getScaleY();
2215 if (xScale != 1.0f || yScale != 1.0f) {
2216 xSurfaceInset = std::round(xSurfaceInset * xScale);
2217 ySurfaceInset = std::round(ySurfaceInset * yScale);
2218 }
2219
2220 // Transform the layer bounds from layer coordinate space to display coordinate space.
2221 Rect transformedLayerBounds = t.transform(layerBounds);
2222
2223 // clamp inset to layer bounds
2224 xSurfaceInset = (xSurfaceInset >= 0)
2225 ? std::min(xSurfaceInset, transformedLayerBounds.getWidth() / 2)
2226 : 0;
2227 ySurfaceInset = (ySurfaceInset >= 0)
2228 ? std::min(ySurfaceInset, transformedLayerBounds.getHeight() / 2)
2229 : 0;
2230
2231 // inset while protecting from overflow TODO(b/161235021): What is going wrong
2232 // in the overflow scenario?
2233 {
2234 int32_t tmp;
2235 if (!__builtin_add_overflow(transformedLayerBounds.left, xSurfaceInset, &tmp))
2236 transformedLayerBounds.left = tmp;
2237 if (!__builtin_sub_overflow(transformedLayerBounds.right, xSurfaceInset, &tmp))
2238 transformedLayerBounds.right = tmp;
2239 if (!__builtin_add_overflow(transformedLayerBounds.top, ySurfaceInset, &tmp))
2240 transformedLayerBounds.top = tmp;
2241 if (!__builtin_sub_overflow(transformedLayerBounds.bottom, ySurfaceInset, &tmp))
2242 transformedLayerBounds.bottom = tmp;
2243 }
2244
2245 // Compute the correct transform to send to input. This will allow it to transform the
2246 // input coordinates from display space into window space. Therefore, it needs to use the
2247 // final layer frame to create the inverse transform. Since surface insets are added later,
2248 // along with the overflow, the best way to ensure we get the correct transform is to use
2249 // the final frame calculated.
2250 // 1. Take the original transform set on the window and get the inverse transform. This is
2251 // used to get the final bounds in display space (ignorning the transform). Apply the
2252 // inverse transform on the layerBounds to get the untransformed frame (in layer space)
2253 // 2. Take the top and left of the untransformed frame to get the real position on screen.
2254 // Apply the layer transform on top/left so it includes any scale or rotation. These will
2255 // be the new translation values for the transform.
2256 // 3. Update the translation of the original transform to the new translation values.
2257 // 4. Send the inverse transform to input so the coordinates can be transformed back into
2258 // window space.
2259 ui::Transform inverseTransform = t.inverse();
2260 Rect nonTransformedBounds = inverseTransform.transform(transformedLayerBounds);
2261 vec2 translation = t.transform(nonTransformedBounds.left, nonTransformedBounds.top);
2262 ui::Transform inputTransform(t);
2263 inputTransform.set(translation.x, translation.y);
2264 info.transform = inputTransform.inverse();
2265
2266 // We need to send the layer bounds cropped to the screenbounds since the layer can be cropped.
2267 // The frame should be the area the user sees on screen since it's used for occlusion
2268 // detection.
2269 transformedLayerBounds.intersect(screenBounds, &transformedLayerBounds);
2270 info.frameLeft = transformedLayerBounds.left;
2271 info.frameTop = transformedLayerBounds.top;
2272 info.frameRight = transformedLayerBounds.right;
2273 info.frameBottom = transformedLayerBounds.bottom;
2274
2275 // Position the touchable region relative to frame screen location and restrict it to frame
2276 // bounds.
2277 info.touchableRegion = inputTransform.transform(info.touchableRegion);
2278 }
2279
fillTouchOcclusionMode(InputWindowInfo & info)2280 void Layer::fillTouchOcclusionMode(InputWindowInfo& info) {
2281 sp<Layer> p = this;
2282 while (p != nullptr && !p->hasInputInfo()) {
2283 p = p->mDrawingParent.promote();
2284 }
2285 if (p != nullptr) {
2286 info.touchOcclusionMode = p->mDrawingState.inputInfo.touchOcclusionMode;
2287 }
2288 }
2289
fillInputInfo(const sp<DisplayDevice> & display)2290 InputWindowInfo Layer::fillInputInfo(const sp<DisplayDevice>& display) {
2291 if (!hasInputInfo()) {
2292 mDrawingState.inputInfo.name = getName();
2293 mDrawingState.inputInfo.ownerUid = mOwnerUid;
2294 mDrawingState.inputInfo.ownerPid = mOwnerPid;
2295 mDrawingState.inputInfo.inputFeatures = InputWindowInfo::Feature::NO_INPUT_CHANNEL;
2296 mDrawingState.inputInfo.flags = InputWindowInfo::Flag::NOT_TOUCH_MODAL;
2297 mDrawingState.inputInfo.displayId = getLayerStack();
2298 }
2299
2300 InputWindowInfo info = mDrawingState.inputInfo;
2301 info.id = sequence;
2302
2303 if (info.displayId == ADISPLAY_ID_NONE) {
2304 info.displayId = getLayerStack();
2305 }
2306
2307 // Transform that goes from "logical(rotated)" display to physical/unrotated display.
2308 // This is for when inputflinger operates in physical display-space.
2309 ui::Transform toPhysicalDisplay;
2310 if (display) {
2311 toPhysicalDisplay = display->getTransform();
2312 info.displayWidth = display->getWidth();
2313 info.displayHeight = display->getHeight();
2314 }
2315 fillInputFrameInfo(info, toPhysicalDisplay);
2316
2317 // For compatibility reasons we let layers which can receive input
2318 // receive input before they have actually submitted a buffer. Because
2319 // of this we use canReceiveInput instead of isVisible to check the
2320 // policy-visibility, ignoring the buffer state. However for layers with
2321 // hasInputInfo()==false we can use the real visibility state.
2322 // We are just using these layers for occlusion detection in
2323 // InputDispatcher, and obviously if they aren't visible they can't occlude
2324 // anything.
2325 info.visible = hasInputInfo() ? canReceiveInput() : isVisible();
2326 info.alpha = getAlpha();
2327 fillTouchOcclusionMode(info);
2328
2329 auto cropLayer = mDrawingState.touchableRegionCrop.promote();
2330 if (info.replaceTouchableRegionWithCrop) {
2331 if (cropLayer == nullptr) {
2332 info.touchableRegion = Region(toPhysicalDisplay.transform(Rect{mScreenBounds}));
2333 } else {
2334 info.touchableRegion =
2335 Region(toPhysicalDisplay.transform(Rect{cropLayer->mScreenBounds}));
2336 }
2337 } else if (cropLayer != nullptr) {
2338 info.touchableRegion = info.touchableRegion.intersect(
2339 toPhysicalDisplay.transform(Rect{cropLayer->mScreenBounds}));
2340 }
2341
2342 // Inherit the trusted state from the parent hierarchy, but don't clobber the trusted state
2343 // if it was set by WM for a known system overlay
2344 info.trustedOverlay = info.trustedOverlay || isTrustedOverlay();
2345
2346
2347 // If the layer is a clone, we need to crop the input region to cloned root to prevent
2348 // touches from going outside the cloned area.
2349 if (isClone()) {
2350 sp<Layer> clonedRoot = getClonedRoot();
2351 if (clonedRoot != nullptr) {
2352 Rect rect = toPhysicalDisplay.transform(Rect{clonedRoot->mScreenBounds});
2353 info.touchableRegion = info.touchableRegion.intersect(rect);
2354 }
2355 }
2356
2357 return info;
2358 }
2359
getClonedRoot()2360 sp<Layer> Layer::getClonedRoot() {
2361 if (mClonedChild != nullptr) {
2362 return this;
2363 }
2364 if (mDrawingParent == nullptr || mDrawingParent.promote() == nullptr) {
2365 return nullptr;
2366 }
2367 return mDrawingParent.promote()->getClonedRoot();
2368 }
2369
hasInputInfo() const2370 bool Layer::hasInputInfo() const {
2371 return mDrawingState.inputInfo.token != nullptr;
2372 }
2373
canReceiveInput() const2374 bool Layer::canReceiveInput() const {
2375 return !isHiddenByPolicy();
2376 }
2377
findOutputLayerForDisplay(const DisplayDevice * display) const2378 compositionengine::OutputLayer* Layer::findOutputLayerForDisplay(
2379 const DisplayDevice* display) const {
2380 if (!display) return nullptr;
2381 return display->getCompositionDisplay()->getOutputLayerForLayer(getCompositionEngineLayerFE());
2382 }
2383
getVisibleRegion(const DisplayDevice * display) const2384 Region Layer::getVisibleRegion(const DisplayDevice* display) const {
2385 const auto outputLayer = findOutputLayerForDisplay(display);
2386 return outputLayer ? outputLayer->getState().visibleRegion : Region();
2387 }
2388
setInitialValuesForClone(const sp<Layer> & clonedFrom)2389 void Layer::setInitialValuesForClone(const sp<Layer>& clonedFrom) {
2390 // copy drawing state from cloned layer
2391 mDrawingState = clonedFrom->mDrawingState;
2392 mClonedFrom = clonedFrom;
2393 }
2394
updateMirrorInfo()2395 void Layer::updateMirrorInfo() {
2396 if (mClonedChild == nullptr || !mClonedChild->isClonedFromAlive()) {
2397 // If mClonedChild is null, there is nothing to mirror. If isClonedFromAlive returns false,
2398 // it means that there is a clone, but the layer it was cloned from has been destroyed. In
2399 // that case, we want to delete the reference to the clone since we want it to get
2400 // destroyed. The root, this layer, will still be around since the client can continue
2401 // to hold a reference, but no cloned layers will be displayed.
2402 mClonedChild = nullptr;
2403 return;
2404 }
2405
2406 std::map<sp<Layer>, sp<Layer>> clonedLayersMap;
2407 // If the real layer exists and is in current state, add the clone as a child of the root.
2408 // There's no need to remove from drawingState when the layer is offscreen since currentState is
2409 // copied to drawingState for the root layer. So the clonedChild is always removed from
2410 // drawingState and then needs to be added back each traversal.
2411 if (!mClonedChild->getClonedFrom()->isRemovedFromCurrentState()) {
2412 addChildToDrawing(mClonedChild);
2413 }
2414
2415 mClonedChild->updateClonedDrawingState(clonedLayersMap);
2416 mClonedChild->updateClonedChildren(this, clonedLayersMap);
2417 mClonedChild->updateClonedRelatives(clonedLayersMap);
2418 }
2419
updateClonedDrawingState(std::map<sp<Layer>,sp<Layer>> & clonedLayersMap)2420 void Layer::updateClonedDrawingState(std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
2421 // If the layer the clone was cloned from is alive, copy the content of the drawingState
2422 // to the clone. If the real layer is no longer alive, continue traversing the children
2423 // since we may be able to pull out other children that are still alive.
2424 if (isClonedFromAlive()) {
2425 sp<Layer> clonedFrom = getClonedFrom();
2426 mDrawingState = clonedFrom->mDrawingState;
2427 clonedLayersMap.emplace(clonedFrom, this);
2428 }
2429
2430 // The clone layer may have children in drawingState since they may have been created and
2431 // added from a previous request to updateMirorInfo. This is to ensure we don't recreate clones
2432 // that already exist, since we can just re-use them.
2433 // The drawingChildren will not get overwritten by the currentChildren since the clones are
2434 // not updated in the regular traversal. They are skipped since the root will lose the
2435 // reference to them when it copies its currentChildren to drawing.
2436 for (sp<Layer>& child : mDrawingChildren) {
2437 child->updateClonedDrawingState(clonedLayersMap);
2438 }
2439 }
2440
updateClonedChildren(const sp<Layer> & mirrorRoot,std::map<sp<Layer>,sp<Layer>> & clonedLayersMap)2441 void Layer::updateClonedChildren(const sp<Layer>& mirrorRoot,
2442 std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
2443 mDrawingChildren.clear();
2444
2445 if (!isClonedFromAlive()) {
2446 return;
2447 }
2448
2449 sp<Layer> clonedFrom = getClonedFrom();
2450 for (sp<Layer>& child : clonedFrom->mDrawingChildren) {
2451 if (child == mirrorRoot) {
2452 // This is to avoid cyclical mirroring.
2453 continue;
2454 }
2455 sp<Layer> clonedChild = clonedLayersMap[child];
2456 if (clonedChild == nullptr) {
2457 clonedChild = child->createClone();
2458 clonedLayersMap[child] = clonedChild;
2459 }
2460 addChildToDrawing(clonedChild);
2461 clonedChild->updateClonedChildren(mirrorRoot, clonedLayersMap);
2462 }
2463 }
2464
updateClonedInputInfo(const std::map<sp<Layer>,sp<Layer>> & clonedLayersMap)2465 void Layer::updateClonedInputInfo(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
2466 auto cropLayer = mDrawingState.touchableRegionCrop.promote();
2467 if (cropLayer != nullptr) {
2468 if (clonedLayersMap.count(cropLayer) == 0) {
2469 // Real layer had a crop layer but it's not in the cloned hierarchy. Just set to
2470 // self as crop layer to avoid going outside bounds.
2471 mDrawingState.touchableRegionCrop = this;
2472 } else {
2473 const sp<Layer>& clonedCropLayer = clonedLayersMap.at(cropLayer);
2474 mDrawingState.touchableRegionCrop = clonedCropLayer;
2475 }
2476 }
2477 // Cloned layers shouldn't handle watch outside since their z order is not determined by
2478 // WM or the client.
2479 mDrawingState.inputInfo.flags &= ~InputWindowInfo::Flag::WATCH_OUTSIDE_TOUCH;
2480 }
2481
updateClonedRelatives(const std::map<sp<Layer>,sp<Layer>> & clonedLayersMap)2482 void Layer::updateClonedRelatives(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
2483 mDrawingState.zOrderRelativeOf = nullptr;
2484 mDrawingState.zOrderRelatives.clear();
2485
2486 if (!isClonedFromAlive()) {
2487 return;
2488 }
2489
2490 const sp<Layer>& clonedFrom = getClonedFrom();
2491 for (wp<Layer>& relativeWeak : clonedFrom->mDrawingState.zOrderRelatives) {
2492 const sp<Layer>& relative = relativeWeak.promote();
2493 if (clonedLayersMap.count(relative) > 0) {
2494 auto& clonedRelative = clonedLayersMap.at(relative);
2495 mDrawingState.zOrderRelatives.add(clonedRelative);
2496 }
2497 }
2498
2499 // Check if the relativeLayer for the real layer is part of the cloned hierarchy.
2500 // It's possible that the layer it's relative to is outside the requested cloned hierarchy.
2501 // In that case, we treat the layer as if the relativeOf has been removed. This way, it will
2502 // still traverse the children, but the layer with the missing relativeOf will not be shown
2503 // on screen.
2504 const sp<Layer>& relativeOf = clonedFrom->mDrawingState.zOrderRelativeOf.promote();
2505 if (clonedLayersMap.count(relativeOf) > 0) {
2506 const sp<Layer>& clonedRelativeOf = clonedLayersMap.at(relativeOf);
2507 mDrawingState.zOrderRelativeOf = clonedRelativeOf;
2508 }
2509
2510 updateClonedInputInfo(clonedLayersMap);
2511
2512 for (sp<Layer>& child : mDrawingChildren) {
2513 child->updateClonedRelatives(clonedLayersMap);
2514 }
2515 }
2516
addChildToDrawing(const sp<Layer> & layer)2517 void Layer::addChildToDrawing(const sp<Layer>& layer) {
2518 mDrawingChildren.add(layer);
2519 layer->mDrawingParent = this;
2520 }
2521
convertCompatibility(int8_t compatibility)2522 Layer::FrameRateCompatibility Layer::FrameRate::convertCompatibility(int8_t compatibility) {
2523 switch (compatibility) {
2524 case ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_DEFAULT:
2525 return FrameRateCompatibility::Default;
2526 case ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_FIXED_SOURCE:
2527 return FrameRateCompatibility::ExactOrMultiple;
2528 case ANATIVEWINDOW_FRAME_RATE_EXACT:
2529 return FrameRateCompatibility::Exact;
2530 default:
2531 LOG_ALWAYS_FATAL("Invalid frame rate compatibility value %d", compatibility);
2532 return FrameRateCompatibility::Default;
2533 }
2534 }
2535
convertChangeFrameRateStrategy(int8_t strategy)2536 scheduler::Seamlessness Layer::FrameRate::convertChangeFrameRateStrategy(int8_t strategy) {
2537 switch (strategy) {
2538 case ANATIVEWINDOW_CHANGE_FRAME_RATE_ONLY_IF_SEAMLESS:
2539 return Seamlessness::OnlySeamless;
2540 case ANATIVEWINDOW_CHANGE_FRAME_RATE_ALWAYS:
2541 return Seamlessness::SeamedAndSeamless;
2542 default:
2543 LOG_ALWAYS_FATAL("Invalid change frame sate strategy value %d", strategy);
2544 return Seamlessness::Default;
2545 }
2546 }
2547
getPrimaryDisplayOnly() const2548 bool Layer::getPrimaryDisplayOnly() const {
2549 const State& s(mDrawingState);
2550 if (s.flags & layer_state_t::eLayerSkipScreenshot) {
2551 return true;
2552 }
2553
2554 sp<Layer> parent = mDrawingParent.promote();
2555 return parent == nullptr ? false : parent->getPrimaryDisplayOnly();
2556 }
2557
setClonedChild(const sp<Layer> & clonedChild)2558 void Layer::setClonedChild(const sp<Layer>& clonedChild) {
2559 mClonedChild = clonedChild;
2560 mHadClonedChild = true;
2561 mFlinger->mNumClones++;
2562 }
2563
2564 // ---------------------------------------------------------------------------
2565
operator <<(std::ostream & stream,const Layer::FrameRate & rate)2566 std::ostream& operator<<(std::ostream& stream, const Layer::FrameRate& rate) {
2567 return stream << "{rate=" << rate.rate
2568 << " type=" << Layer::frameRateCompatibilityString(rate.type)
2569 << " seamlessness=" << toString(rate.seamlessness) << "}";
2570 }
2571
2572 }; // namespace android
2573
2574 #if defined(__gl_h_)
2575 #error "don't include gl/gl.h in this file"
2576 #endif
2577
2578 #if defined(__gl2_h_)
2579 #error "don't include gl2/gl2.h in this file"
2580 #endif
2581
2582 // TODO(b/129481165): remove the #pragma below and fix conversion issues
2583 #pragma clang diagnostic pop // ignored "-Wconversion"
2584