1 /*
2 * Copyright 2019 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/geometry/GrQuadUtils.h"
9
10 #include "include/core/SkRect.h"
11 #include "include/private/GrTypesPriv.h"
12 #include "include/private/SkVx.h"
13 #include "src/core/SkPathPriv.h"
14 #include "src/gpu/geometry/GrQuad.h"
15
16 using V4f = skvx::Vec<4, float>;
17 using M4f = skvx::Vec<4, int32_t>;
18
19 #define AI SK_ALWAYS_INLINE
20
21 // General tolerance used for denominators, checking div-by-0
22 static constexpr float kTolerance = 1e-9f;
23 // Increased slop when comparing signed distances / lengths
24 static constexpr float kDistTolerance = 1e-2f;
25 static constexpr float kDist2Tolerance = kDistTolerance * kDistTolerance;
26 static constexpr float kInvDistTolerance = 1.f / kDistTolerance;
27
28 // These rotate the points/edge values either clockwise or counterclockwise assuming tri strip
29 // order.
30 template<typename T>
next_cw(const skvx::Vec<4,T> & v)31 static AI skvx::Vec<4, T> next_cw(const skvx::Vec<4, T>& v) {
32 return skvx::shuffle<2, 0, 3, 1>(v);
33 }
34
35 template<typename T>
next_ccw(const skvx::Vec<4,T> & v)36 static AI skvx::Vec<4, T> next_ccw(const skvx::Vec<4, T>& v) {
37 return skvx::shuffle<1, 3, 0, 2>(v);
38 }
39
next_diag(const V4f & v)40 static AI V4f next_diag(const V4f& v) {
41 // Same as next_ccw(next_ccw(v)), or next_cw(next_cw(v)), e.g. two rotations either direction.
42 return skvx::shuffle<3, 2, 1, 0>(v);
43 }
44
45 // Replaces zero-length 'bad' edge vectors with the reversed opposite edge vector.
46 // e3 may be null if only 2D edges need to be corrected for.
correct_bad_edges(const M4f & bad,V4f * e1,V4f * e2,V4f * e3)47 static AI void correct_bad_edges(const M4f& bad, V4f* e1, V4f* e2, V4f* e3) {
48 if (any(bad)) {
49 // Want opposite edges, L B T R -> R T B L but with flipped sign to preserve winding
50 *e1 = if_then_else(bad, -next_diag(*e1), *e1);
51 *e2 = if_then_else(bad, -next_diag(*e2), *e2);
52 if (e3) {
53 *e3 = if_then_else(bad, -next_diag(*e3), *e3);
54 }
55 }
56 }
57
58 // Replace 'bad' coordinates by rotating CCW to get the next point. c3 may be null for 2D points.
correct_bad_coords(const M4f & bad,V4f * c1,V4f * c2,V4f * c3)59 static AI void correct_bad_coords(const M4f& bad, V4f* c1, V4f* c2, V4f* c3) {
60 if (any(bad)) {
61 *c1 = if_then_else(bad, next_ccw(*c1), *c1);
62 *c2 = if_then_else(bad, next_ccw(*c2), *c2);
63 if (c3) {
64 *c3 = if_then_else(bad, next_ccw(*c3), *c3);
65 }
66 }
67 }
68
69 // Since the local quad may not be type kRect, this uses the opposites for each vertex when
70 // interpolating, and calculates new ws in addition to new xs, ys.
interpolate_local(float alpha,int v0,int v1,int v2,int v3,float lx[4],float ly[4],float lw[4])71 static void interpolate_local(float alpha, int v0, int v1, int v2, int v3,
72 float lx[4], float ly[4], float lw[4]) {
73 SkASSERT(v0 >= 0 && v0 < 4);
74 SkASSERT(v1 >= 0 && v1 < 4);
75 SkASSERT(v2 >= 0 && v2 < 4);
76 SkASSERT(v3 >= 0 && v3 < 4);
77
78 float beta = 1.f - alpha;
79 lx[v0] = alpha * lx[v0] + beta * lx[v2];
80 ly[v0] = alpha * ly[v0] + beta * ly[v2];
81 lw[v0] = alpha * lw[v0] + beta * lw[v2];
82
83 lx[v1] = alpha * lx[v1] + beta * lx[v3];
84 ly[v1] = alpha * ly[v1] + beta * ly[v3];
85 lw[v1] = alpha * lw[v1] + beta * lw[v3];
86 }
87
88 // Crops v0 to v1 based on the clipDevRect. v2 is opposite of v0, v3 is opposite of v1.
89 // It is written to not modify coordinates if there's no intersection along the edge.
90 // Ideally this would have been detected earlier and the entire draw is skipped.
crop_rect_edge(const SkRect & clipDevRect,int v0,int v1,int v2,int v3,float x[4],float y[4],float lx[4],float ly[4],float lw[4])91 static bool crop_rect_edge(const SkRect& clipDevRect, int v0, int v1, int v2, int v3,
92 float x[4], float y[4], float lx[4], float ly[4], float lw[4]) {
93 SkASSERT(v0 >= 0 && v0 < 4);
94 SkASSERT(v1 >= 0 && v1 < 4);
95 SkASSERT(v2 >= 0 && v2 < 4);
96 SkASSERT(v3 >= 0 && v3 < 4);
97
98 if (SkScalarNearlyEqual(x[v0], x[v1])) {
99 // A vertical edge
100 if (x[v0] < clipDevRect.fLeft && x[v2] >= clipDevRect.fLeft) {
101 // Overlapping with left edge of clipDevRect
102 if (lx) {
103 float alpha = (x[v2] - clipDevRect.fLeft) / (x[v2] - x[v0]);
104 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
105 }
106 x[v0] = clipDevRect.fLeft;
107 x[v1] = clipDevRect.fLeft;
108 return true;
109 } else if (x[v0] > clipDevRect.fRight && x[v2] <= clipDevRect.fRight) {
110 // Overlapping with right edge of clipDevRect
111 if (lx) {
112 float alpha = (clipDevRect.fRight - x[v2]) / (x[v0] - x[v2]);
113 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
114 }
115 x[v0] = clipDevRect.fRight;
116 x[v1] = clipDevRect.fRight;
117 return true;
118 }
119 } else {
120 // A horizontal edge
121 SkASSERT(SkScalarNearlyEqual(y[v0], y[v1]));
122 if (y[v0] < clipDevRect.fTop && y[v2] >= clipDevRect.fTop) {
123 // Overlapping with top edge of clipDevRect
124 if (lx) {
125 float alpha = (y[v2] - clipDevRect.fTop) / (y[v2] - y[v0]);
126 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
127 }
128 y[v0] = clipDevRect.fTop;
129 y[v1] = clipDevRect.fTop;
130 return true;
131 } else if (y[v0] > clipDevRect.fBottom && y[v2] <= clipDevRect.fBottom) {
132 // Overlapping with bottom edge of clipDevRect
133 if (lx) {
134 float alpha = (clipDevRect.fBottom - y[v2]) / (y[v0] - y[v2]);
135 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
136 }
137 y[v0] = clipDevRect.fBottom;
138 y[v1] = clipDevRect.fBottom;
139 return true;
140 }
141 }
142
143 // No overlap so don't crop it
144 return false;
145 }
146
147 // Updates x and y to intersect with clipDevRect. lx, ly, and lw are updated appropriately and may
148 // be null to skip calculations. Returns bit mask of edges that were clipped.
crop_rect(const SkRect & clipDevRect,float x[4],float y[4],float lx[4],float ly[4],float lw[4])149 static GrQuadAAFlags crop_rect(const SkRect& clipDevRect, float x[4], float y[4],
150 float lx[4], float ly[4], float lw[4]) {
151 GrQuadAAFlags clipEdgeFlags = GrQuadAAFlags::kNone;
152
153 // The quad's left edge may not align with the SkRect notion of left due to 90 degree rotations
154 // or mirrors. So, this processes the logical edges of the quad and clamps it to the 4 sides of
155 // clipDevRect.
156
157 // Quad's left is v0 to v1 (op. v2 and v3)
158 if (crop_rect_edge(clipDevRect, 0, 1, 2, 3, x, y, lx, ly, lw)) {
159 clipEdgeFlags |= GrQuadAAFlags::kLeft;
160 }
161 // Quad's top edge is v0 to v2 (op. v1 and v3)
162 if (crop_rect_edge(clipDevRect, 0, 2, 1, 3, x, y, lx, ly, lw)) {
163 clipEdgeFlags |= GrQuadAAFlags::kTop;
164 }
165 // Quad's right edge is v2 to v3 (op. v0 and v1)
166 if (crop_rect_edge(clipDevRect, 2, 3, 0, 1, x, y, lx, ly, lw)) {
167 clipEdgeFlags |= GrQuadAAFlags::kRight;
168 }
169 // Quad's bottom edge is v1 to v3 (op. v0 and v2)
170 if (crop_rect_edge(clipDevRect, 1, 3, 0, 2, x, y, lx, ly, lw)) {
171 clipEdgeFlags |= GrQuadAAFlags::kBottom;
172 }
173
174 return clipEdgeFlags;
175 }
176
177 // Similar to crop_rect, but assumes that both the device coordinates and optional local coordinates
178 // geometrically match the TL, BL, TR, BR vertex ordering, i.e. axis-aligned but not flipped, etc.
crop_simple_rect(const SkRect & clipDevRect,float x[4],float y[4],float lx[4],float ly[4])179 static GrQuadAAFlags crop_simple_rect(const SkRect& clipDevRect, float x[4], float y[4],
180 float lx[4], float ly[4]) {
181 GrQuadAAFlags clipEdgeFlags = GrQuadAAFlags::kNone;
182
183 // Update local coordinates proportionately to how much the device rect edge was clipped
184 const SkScalar dx = lx ? (lx[2] - lx[0]) / (x[2] - x[0]) : 0.f;
185 const SkScalar dy = ly ? (ly[1] - ly[0]) / (y[1] - y[0]) : 0.f;
186 if (clipDevRect.fLeft > x[0]) {
187 if (lx) {
188 lx[0] += (clipDevRect.fLeft - x[0]) * dx;
189 lx[1] = lx[0];
190 }
191 x[0] = clipDevRect.fLeft;
192 x[1] = clipDevRect.fLeft;
193 clipEdgeFlags |= GrQuadAAFlags::kLeft;
194 }
195 if (clipDevRect.fTop > y[0]) {
196 if (ly) {
197 ly[0] += (clipDevRect.fTop - y[0]) * dy;
198 ly[2] = ly[0];
199 }
200 y[0] = clipDevRect.fTop;
201 y[2] = clipDevRect.fTop;
202 clipEdgeFlags |= GrQuadAAFlags::kTop;
203 }
204 if (clipDevRect.fRight < x[2]) {
205 if (lx) {
206 lx[2] -= (x[2] - clipDevRect.fRight) * dx;
207 lx[3] = lx[2];
208 }
209 x[2] = clipDevRect.fRight;
210 x[3] = clipDevRect.fRight;
211 clipEdgeFlags |= GrQuadAAFlags::kRight;
212 }
213 if (clipDevRect.fBottom < y[1]) {
214 if (ly) {
215 ly[1] -= (y[1] - clipDevRect.fBottom) * dy;
216 ly[3] = ly[1];
217 }
218 y[1] = clipDevRect.fBottom;
219 y[3] = clipDevRect.fBottom;
220 clipEdgeFlags |= GrQuadAAFlags::kBottom;
221 }
222
223 return clipEdgeFlags;
224 }
225 // Consistent with GrQuad::asRect()'s return value but requires fewer operations since we don't need
226 // to calculate the bounds of the quad.
is_simple_rect(const GrQuad & quad)227 static bool is_simple_rect(const GrQuad& quad) {
228 if (quad.quadType() != GrQuad::Type::kAxisAligned) {
229 return false;
230 }
231 // v0 at the geometric top-left is unique, so we only need to compare x[0] < x[2] for left
232 // and y[0] < y[1] for top, but add a little padding to protect against numerical precision
233 // on R90 and R270 transforms tricking this check.
234 return ((quad.x(0) + SK_ScalarNearlyZero) < quad.x(2)) &&
235 ((quad.y(0) + SK_ScalarNearlyZero) < quad.y(1));
236 }
237
238 // Calculates barycentric coordinates for each point in (testX, testY) in the triangle formed by
239 // (x0,y0) - (x1,y1) - (x2, y2) and stores them in u, v, w.
barycentric_coords(float x0,float y0,float x1,float y1,float x2,float y2,const V4f & testX,const V4f & testY,V4f * u,V4f * v,V4f * w)240 static bool barycentric_coords(float x0, float y0, float x1, float y1, float x2, float y2,
241 const V4f& testX, const V4f& testY,
242 V4f* u, V4f* v, V4f* w) {
243 // The 32-bit calculations can have catastrophic cancellation if the device-space coordinates
244 // are really big, and this code needs to handle that because we evaluate barycentric coords
245 // pre-cropping to the render target bounds. This preserves some precision by shrinking the
246 // coordinate space if the bounds are large.
247 static constexpr float kCoordLimit = 1e7f; // Big but somewhat arbitrary, fixes crbug:10141204
248 float scaleX = std::max(std::max(x0, x1), x2) - std::min(std::min(x0, x1), x2);
249 float scaleY = std::max(std::max(y0, y1), y2) - std::min(std::min(y0, y1), y2);
250 if (scaleX > kCoordLimit) {
251 scaleX = kCoordLimit / scaleX;
252 x0 *= scaleX;
253 x1 *= scaleX;
254 x2 *= scaleX;
255 } else {
256 // Don't scale anything
257 scaleX = 1.f;
258 }
259 if (scaleY > kCoordLimit) {
260 scaleY = kCoordLimit / scaleY;
261 y0 *= scaleY;
262 y1 *= scaleY;
263 y2 *= scaleY;
264 } else {
265 scaleY = 1.f;
266 }
267
268 // Modeled after SkPathOpsQuad::pointInTriangle() but uses float instead of double, is
269 // vectorized and outputs normalized barycentric coordinates instead of inside/outside test
270 float v0x = x2 - x0;
271 float v0y = y2 - y0;
272 float v1x = x1 - x0;
273 float v1y = y1 - y0;
274
275 float dot00 = v0x * v0x + v0y * v0y;
276 float dot01 = v0x * v1x + v0y * v1y;
277 float dot11 = v1x * v1x + v1y * v1y;
278
279 // Not yet 1/d, first check d != 0 with a healthy tolerance (worst case is we end up not
280 // cropping something we could have, which is better than cropping something we shouldn't have).
281 // The tolerance is partly so large because these comparisons operate in device px^4 units,
282 // with plenty of subtractions thrown in. The SkPathOpsQuad code's use of doubles helped, and
283 // because it only needed to return "inside triangle", it could compare against [0, denom] and
284 // skip the normalization entirely.
285 float invDenom = dot00 * dot11 - dot01 * dot01;
286 static constexpr SkScalar kEmptyTriTolerance = SK_Scalar1 / (1 << 5);
287 if (SkScalarNearlyZero(invDenom, kEmptyTriTolerance)) {
288 // The triangle was degenerate/empty, which can cause the following UVW calculations to
289 // return (0,0,1) for every test point. This in turn makes the cropping code think that the
290 // empty triangle contains the crop rect and we turn the draw into a fullscreen clear, which
291 // is definitely the utter opposite of what we'd expect for an empty shape.
292 return false;
293 } else {
294 // Safe to divide
295 invDenom = sk_ieee_float_divide(1.f, invDenom);
296 }
297
298 V4f v2x = (scaleX * testX) - x0;
299 V4f v2y = (scaleY * testY) - y0;
300
301 V4f dot02 = v0x * v2x + v0y * v2y;
302 V4f dot12 = v1x * v2x + v1y * v2y;
303
304 // These are relative to the vertices, so there's no need to undo the scale factor
305 *u = (dot11 * dot02 - dot01 * dot12) * invDenom;
306 *v = (dot00 * dot12 - dot01 * dot02) * invDenom;
307 *w = 1.f - *u - *v;
308
309 return true;
310 }
311
inside_triangle(const V4f & u,const V4f & v,const V4f & w)312 static M4f inside_triangle(const V4f& u, const V4f& v, const V4f& w) {
313 return ((u >= 0.f) & (u <= 1.f)) & ((v >= 0.f) & (v <= 1.f)) & ((w >= 0.f) & (w <= 1.f));
314 }
315
316 ///////////////////////////////////////////////////////////////////////////////////////////////////
317
projectedBounds() const318 SkRect GrQuad::projectedBounds() const {
319 V4f xs = this->x4f();
320 V4f ys = this->y4f();
321 V4f ws = this->w4f();
322 M4f clipW = ws < SkPathPriv::kW0PlaneDistance;
323 if (any(clipW)) {
324 V4f x2d = xs / ws;
325 V4f y2d = ys / ws;
326 // Bounds of just the projected points in front of w = epsilon
327 SkRect frontBounds = {
328 min(if_then_else(clipW, V4f(SK_ScalarInfinity), x2d)),
329 min(if_then_else(clipW, V4f(SK_ScalarInfinity), y2d)),
330 max(if_then_else(clipW, V4f(SK_ScalarNegativeInfinity), x2d)),
331 max(if_then_else(clipW, V4f(SK_ScalarNegativeInfinity), y2d))
332 };
333 // Calculate clipped coordinates by following CCW edges, only keeping points where the w
334 // actually changes sign between the vertices.
335 V4f t = (SkPathPriv::kW0PlaneDistance - ws) / (next_ccw(ws) - ws);
336 x2d = (t * next_ccw(xs) + (1.f - t) * xs) / SkPathPriv::kW0PlaneDistance;
337 y2d = (t * next_ccw(ys) + (1.f - t) * ys) / SkPathPriv::kW0PlaneDistance;
338 // True if (w < e) xor (ccw(w) < e), i.e. crosses the w = epsilon plane
339 clipW = clipW ^ (next_ccw(ws) < SkPathPriv::kW0PlaneDistance);
340 return {
341 min(if_then_else(clipW, x2d, V4f(frontBounds.fLeft))),
342 min(if_then_else(clipW, y2d, V4f(frontBounds.fTop))),
343 max(if_then_else(clipW, x2d, V4f(frontBounds.fRight))),
344 max(if_then_else(clipW, y2d, V4f(frontBounds.fBottom)))
345 };
346 } else {
347 // Nothing is behind the viewer, so the projection is straight forward and valid
348 ws = 1.f / ws;
349 V4f x2d = xs * ws;
350 V4f y2d = ys * ws;
351 return {min(x2d), min(y2d), max(x2d), max(y2d)};
352 }
353 }
354
355 ///////////////////////////////////////////////////////////////////////////////////////////////////
356
357 namespace GrQuadUtils {
358
ResolveAAType(GrAAType requestedAAType,GrQuadAAFlags requestedEdgeFlags,const GrQuad & quad,GrAAType * outAAType,GrQuadAAFlags * outEdgeFlags)359 void ResolveAAType(GrAAType requestedAAType, GrQuadAAFlags requestedEdgeFlags, const GrQuad& quad,
360 GrAAType* outAAType, GrQuadAAFlags* outEdgeFlags) {
361 // Most cases will keep the requested types unchanged
362 *outAAType = requestedAAType;
363 *outEdgeFlags = requestedEdgeFlags;
364
365 switch (requestedAAType) {
366 // When aa type is coverage, disable AA if the edge configuration doesn't actually need it
367 case GrAAType::kCoverage:
368 if (requestedEdgeFlags == GrQuadAAFlags::kNone) {
369 // Turn off anti-aliasing
370 *outAAType = GrAAType::kNone;
371 } else {
372 // For coverage AA, if the quad is a rect and it lines up with pixel boundaries
373 // then overall aa and per-edge aa can be completely disabled
374 if (quad.quadType() == GrQuad::Type::kAxisAligned && !quad.aaHasEffectOnRect()) {
375 *outAAType = GrAAType::kNone;
376 *outEdgeFlags = GrQuadAAFlags::kNone;
377 }
378 }
379 break;
380 // For no or msaa anti aliasing, override the edge flags since edge flags only make sense
381 // when coverage aa is being used.
382 case GrAAType::kNone:
383 *outEdgeFlags = GrQuadAAFlags::kNone;
384 break;
385 case GrAAType::kMSAA:
386 *outEdgeFlags = GrQuadAAFlags::kAll;
387 break;
388 }
389 }
390
ClipToW0(DrawQuad * quad,DrawQuad * extraVertices)391 int ClipToW0(DrawQuad* quad, DrawQuad* extraVertices) {
392 using Vertices = TessellationHelper::Vertices;
393
394 SkASSERT(quad && extraVertices);
395
396 if (quad->fDevice.quadType() < GrQuad::Type::kPerspective) {
397 // W implicitly 1s for each vertex, so nothing to do but draw unmodified 'quad'
398 return 1;
399 }
400
401 M4f validW = quad->fDevice.w4f() >= SkPathPriv::kW0PlaneDistance;
402 if (all(validW)) {
403 // Nothing to clip, can proceed normally drawing just 'quad'
404 return 1;
405 } else if (!any(validW)) {
406 // Everything is clipped, so draw nothing
407 return 0;
408 }
409
410 // The clipped local coordinates will most likely not remain rectilinear
411 GrQuad::Type localType = quad->fLocal.quadType();
412 if (localType < GrQuad::Type::kGeneral) {
413 localType = GrQuad::Type::kGeneral;
414 }
415
416 // If we got here, there are 1, 2, or 3 points behind the w = 0 plane. If 2 or 3 points are
417 // clipped we can define a new quad that covers the clipped shape directly. If there's 1 clipped
418 // out, the new geometry is a pentagon.
419 Vertices v;
420 v.reset(quad->fDevice, &quad->fLocal);
421
422 int clipCount = (validW[0] ? 0 : 1) + (validW[1] ? 0 : 1) +
423 (validW[2] ? 0 : 1) + (validW[3] ? 0 : 1);
424 SkASSERT(clipCount >= 1 && clipCount <= 3);
425
426 // FIXME de-duplicate from the projectedBounds() calculations.
427 V4f t = (SkPathPriv::kW0PlaneDistance - v.fW) / (next_ccw(v.fW) - v.fW);
428
429 Vertices clip;
430 clip.fX = (t * next_ccw(v.fX) + (1.f - t) * v.fX);
431 clip.fY = (t * next_ccw(v.fY) + (1.f - t) * v.fY);
432 clip.fW = SkPathPriv::kW0PlaneDistance;
433
434 clip.fU = (t * next_ccw(v.fU) + (1.f - t) * v.fU);
435 clip.fV = (t * next_ccw(v.fV) + (1.f - t) * v.fV);
436 clip.fR = (t * next_ccw(v.fR) + (1.f - t) * v.fR);
437
438 M4f ccwValid = next_ccw(v.fW) >= SkPathPriv::kW0PlaneDistance;
439 M4f cwValid = next_cw(v.fW) >= SkPathPriv::kW0PlaneDistance;
440
441 if (clipCount != 1) {
442 // Simplest case, replace behind-w0 points with their clipped points by following CCW edge
443 // or CW edge, depending on if the edge crosses from neg. to pos. w or pos. to neg.
444 SkASSERT(clipCount == 2 || clipCount == 3);
445
446 // NOTE: when 3 vertices are clipped, this results in a degenerate quad where one vertex
447 // is replicated. This is preferably to inserting a 3rd vertex on the w = 0 intersection
448 // line because two parallel edges make inset/outset math unstable for large quads.
449 v.fX = if_then_else(validW, v.fX,
450 if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fX),
451 if_then_else(ccwValid, clip.fX, /* cwValid */ next_cw(clip.fX))));
452 v.fY = if_then_else(validW, v.fY,
453 if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fY),
454 if_then_else(ccwValid, clip.fY, /* cwValid */ next_cw(clip.fY))));
455 v.fW = if_then_else(validW, v.fW, clip.fW);
456
457 v.fU = if_then_else(validW, v.fU,
458 if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fU),
459 if_then_else(ccwValid, clip.fU, /* cwValid */ next_cw(clip.fU))));
460 v.fV = if_then_else(validW, v.fV,
461 if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fV),
462 if_then_else(ccwValid, clip.fV, /* cwValid */ next_cw(clip.fV))));
463 v.fR = if_then_else(validW, v.fR,
464 if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fR),
465 if_then_else(ccwValid, clip.fR, /* cwValid */ next_cw(clip.fR))));
466
467 // For 2 or 3 clipped vertices, the resulting shape is a quad or a triangle, so it can be
468 // entirely represented in 'quad'.
469 v.asGrQuads(&quad->fDevice, GrQuad::Type::kPerspective,
470 &quad->fLocal, localType);
471 return 1;
472 } else {
473 // The clipped geometry is a pentagon, so it will be represented as two quads connected by
474 // a new non-AA edge. Use the midpoint along one of the unclipped edges as a split vertex.
475 Vertices mid;
476 mid.fX = 0.5f * (v.fX + next_ccw(v.fX));
477 mid.fY = 0.5f * (v.fY + next_ccw(v.fY));
478 mid.fW = 0.5f * (v.fW + next_ccw(v.fW));
479
480 mid.fU = 0.5f * (v.fU + next_ccw(v.fU));
481 mid.fV = 0.5f * (v.fV + next_ccw(v.fV));
482 mid.fR = 0.5f * (v.fR + next_ccw(v.fR));
483
484 // Make a quad formed by the 2 clipped points, the inserted mid point, and the good vertex
485 // that is CCW rotated from the clipped vertex.
486 Vertices v2;
487 v2.fUVRCount = v.fUVRCount;
488 v2.fX = if_then_else((!validW) | (!ccwValid), clip.fX,
489 if_then_else(cwValid, next_cw(mid.fX), v.fX));
490 v2.fY = if_then_else((!validW) | (!ccwValid), clip.fY,
491 if_then_else(cwValid, next_cw(mid.fY), v.fY));
492 v2.fW = if_then_else((!validW) | (!ccwValid), clip.fW,
493 if_then_else(cwValid, next_cw(mid.fW), v.fW));
494
495 v2.fU = if_then_else((!validW) | (!ccwValid), clip.fU,
496 if_then_else(cwValid, next_cw(mid.fU), v.fU));
497 v2.fV = if_then_else((!validW) | (!ccwValid), clip.fV,
498 if_then_else(cwValid, next_cw(mid.fV), v.fV));
499 v2.fR = if_then_else((!validW) | (!ccwValid), clip.fR,
500 if_then_else(cwValid, next_cw(mid.fR), v.fR));
501 // The non-AA edge for this quad is the opposite of the clipped vertex's edge
502 GrQuadAAFlags v2EdgeFlag = (!validW[0] ? GrQuadAAFlags::kRight : // left clipped -> right
503 (!validW[1] ? GrQuadAAFlags::kTop : // bottom clipped -> top
504 (!validW[2] ? GrQuadAAFlags::kBottom : // top clipped -> bottom
505 GrQuadAAFlags::kLeft))); // right clipped -> left
506 extraVertices->fEdgeFlags = quad->fEdgeFlags & ~v2EdgeFlag;
507
508 // Make a quad formed by the remaining two good vertices, one clipped point, and the
509 // inserted mid point.
510 v.fX = if_then_else(!validW, next_cw(clip.fX),
511 if_then_else(!cwValid, mid.fX, v.fX));
512 v.fY = if_then_else(!validW, next_cw(clip.fY),
513 if_then_else(!cwValid, mid.fY, v.fY));
514 v.fW = if_then_else(!validW, clip.fW,
515 if_then_else(!cwValid, mid.fW, v.fW));
516
517 v.fU = if_then_else(!validW, next_cw(clip.fU),
518 if_then_else(!cwValid, mid.fU, v.fU));
519 v.fV = if_then_else(!validW, next_cw(clip.fV),
520 if_then_else(!cwValid, mid.fV, v.fV));
521 v.fR = if_then_else(!validW, next_cw(clip.fR),
522 if_then_else(!cwValid, mid.fR, v.fR));
523 // The non-AA edge for this quad is the clipped vertex's edge
524 GrQuadAAFlags v1EdgeFlag = (!validW[0] ? GrQuadAAFlags::kLeft :
525 (!validW[1] ? GrQuadAAFlags::kBottom :
526 (!validW[2] ? GrQuadAAFlags::kTop :
527 GrQuadAAFlags::kRight)));
528
529 v.asGrQuads(&quad->fDevice, GrQuad::Type::kPerspective,
530 &quad->fLocal, localType);
531 quad->fEdgeFlags &= ~v1EdgeFlag;
532
533 v2.asGrQuads(&extraVertices->fDevice, GrQuad::Type::kPerspective,
534 &extraVertices->fLocal, localType);
535 // Caller must draw both 'quad' and 'extraVertices' to cover the clipped geometry
536 return 2;
537 }
538 }
539
CropToRect(const SkRect & cropRect,GrAA cropAA,DrawQuad * quad,bool computeLocal)540 bool CropToRect(const SkRect& cropRect, GrAA cropAA, DrawQuad* quad, bool computeLocal) {
541 SkASSERT(quad->fDevice.isFinite());
542
543 if (quad->fDevice.quadType() == GrQuad::Type::kAxisAligned) {
544 // crop_rect and crop_rect_simple keep the rectangles as rectangles, so the intersection
545 // of the crop and quad can be calculated exactly. Some care must be taken if the quad
546 // is axis-aligned but does not satisfy asRect() due to flips, etc.
547 GrQuadAAFlags clippedEdges;
548 if (computeLocal) {
549 if (is_simple_rect(quad->fDevice) && is_simple_rect(quad->fLocal)) {
550 clippedEdges = crop_simple_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
551 quad->fLocal.xs(), quad->fLocal.ys());
552 } else {
553 clippedEdges = crop_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
554 quad->fLocal.xs(), quad->fLocal.ys(), quad->fLocal.ws());
555 }
556 } else {
557 if (is_simple_rect(quad->fDevice)) {
558 clippedEdges = crop_simple_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
559 nullptr, nullptr);
560 } else {
561 clippedEdges = crop_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
562 nullptr, nullptr, nullptr);
563 }
564 }
565
566 // Apply the clipped edge updates to the original edge flags
567 if (cropAA == GrAA::kYes) {
568 // Turn on all edges that were clipped
569 quad->fEdgeFlags |= clippedEdges;
570 } else {
571 // Turn off all edges that were clipped
572 quad->fEdgeFlags &= ~clippedEdges;
573 }
574 return true;
575 }
576
577 if (computeLocal) {
578 // FIXME (michaelludwig) Calculate cropped local coordinates when not kAxisAligned
579 return false;
580 }
581
582 V4f devX = quad->fDevice.x4f();
583 V4f devY = quad->fDevice.y4f();
584 // Project the 3D coordinates to 2D
585 if (quad->fDevice.quadType() == GrQuad::Type::kPerspective) {
586 V4f devW = quad->fDevice.w4f();
587 if (any(devW < SkPathPriv::kW0PlaneDistance)) {
588 // The rest of this function assumes the quad is in front of w = 0
589 return false;
590 }
591 devW = 1.f / devW;
592 devX *= devW;
593 devY *= devW;
594 }
595
596 V4f clipX = {cropRect.fLeft, cropRect.fLeft, cropRect.fRight, cropRect.fRight};
597 V4f clipY = {cropRect.fTop, cropRect.fBottom, cropRect.fTop, cropRect.fBottom};
598
599 // Calculate barycentric coordinates for the 4 rect corners in the 2 triangles that the quad
600 // is tessellated into when drawn.
601 V4f u1, v1, w1;
602 V4f u2, v2, w2;
603 if (!barycentric_coords(devX[0], devY[0], devX[1], devY[1], devX[2], devY[2], clipX, clipY,
604 &u1, &v1, &w1) ||
605 !barycentric_coords(devX[1], devY[1], devX[3], devY[3], devX[2], devY[2], clipX, clipY,
606 &u2, &v2, &w2)) {
607 // Bad triangles, skip cropping
608 return false;
609 }
610
611 // clipDevRect is completely inside this quad if each corner is in at least one of two triangles
612 M4f inTri1 = inside_triangle(u1, v1, w1);
613 M4f inTri2 = inside_triangle(u2, v2, w2);
614 if (all(inTri1 | inTri2)) {
615 // We can crop to exactly the clipDevRect.
616 // FIXME (michaelludwig) - there are other ways to have determined quad covering the clip
617 // rect, but the barycentric coords will be useful to derive local coordinates in the future
618
619 // Since we are cropped to exactly clipDevRect, we have discarded any perspective and the
620 // type becomes kRect. If updated locals were requested, they will incorporate perspective.
621 // FIXME (michaelludwig) - once we have local coordinates handled, it may be desirable to
622 // keep the draw as perspective so that the hardware does perspective interpolation instead
623 // of pushing it into a local coord w and having the shader do an extra divide.
624 clipX.store(quad->fDevice.xs());
625 clipY.store(quad->fDevice.ys());
626 quad->fDevice.setQuadType(GrQuad::Type::kAxisAligned);
627
628 // Update the edge flags to match the clip setting since all 4 edges have been clipped
629 quad->fEdgeFlags = cropAA == GrAA::kYes ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone;
630
631 return true;
632 }
633
634 // FIXME (michaelludwig) - use TessellationHelper's inset/outset math to move
635 // edges to the closest clip corner they are outside of
636
637 return false;
638 }
639
640 ///////////////////////////////////////////////////////////////////////////////////////////////////
641 // TessellationHelper implementation and helper struct implementations
642 ///////////////////////////////////////////////////////////////////////////////////////////////////
643
644 //** EdgeVectors implementation
645
reset(const skvx::Vec<4,float> & xs,const skvx::Vec<4,float> & ys,const skvx::Vec<4,float> & ws,GrQuad::Type quadType)646 void TessellationHelper::EdgeVectors::reset(const skvx::Vec<4, float>& xs,
647 const skvx::Vec<4, float>& ys,
648 const skvx::Vec<4, float>& ws,
649 GrQuad::Type quadType) {
650 // Calculate all projected edge vector values for this quad.
651 if (quadType == GrQuad::Type::kPerspective) {
652 V4f iw = 1.f / ws;
653 fX2D = xs * iw;
654 fY2D = ys * iw;
655 } else {
656 fX2D = xs;
657 fY2D = ys;
658 }
659
660 fDX = next_ccw(fX2D) - fX2D;
661 fDY = next_ccw(fY2D) - fY2D;
662 fInvLengths = 1.f / sqrt(fDX*fDX + fDY*fDY);
663
664 // Normalize edge vectors
665 fDX *= fInvLengths;
666 fDY *= fInvLengths;
667
668 // Calculate angles between vectors
669 if (quadType <= GrQuad::Type::kRectilinear) {
670 fCosTheta = 0.f;
671 fInvSinTheta = 1.f;
672 } else {
673 fCosTheta = fDX*next_cw(fDX) + fDY*next_cw(fDY);
674 // NOTE: if cosTheta is close to 1, inset/outset math will avoid the fast paths that rely
675 // on thefInvSinTheta since it will approach infinity.
676 fInvSinTheta = 1.f / sqrt(1.f - fCosTheta * fCosTheta);
677 }
678 }
679
680 //** EdgeEquations implementation
681
reset(const EdgeVectors & edgeVectors)682 void TessellationHelper::EdgeEquations::reset(const EdgeVectors& edgeVectors) {
683 V4f dx = edgeVectors.fDX;
684 V4f dy = edgeVectors.fDY;
685 // Correct for bad edges by copying adjacent edge information into the bad component
686 correct_bad_edges(edgeVectors.fInvLengths >= kInvDistTolerance, &dx, &dy, nullptr);
687
688 V4f c = dx*edgeVectors.fY2D - dy*edgeVectors.fX2D;
689 // Make sure normals point into the shape
690 V4f test = dy * next_cw(edgeVectors.fX2D) + (-dx * next_cw(edgeVectors.fY2D) + c);
691 if (any(test < -kDistTolerance)) {
692 fA = -dy;
693 fB = dx;
694 fC = -c;
695 } else {
696 fA = dy;
697 fB = -dx;
698 fC = c;
699 }
700 }
701
estimateCoverage(const V4f & x2d,const V4f & y2d) const702 V4f TessellationHelper::EdgeEquations::estimateCoverage(const V4f& x2d, const V4f& y2d) const {
703 // Calculate distance of the 4 inset points (px, py) to the 4 edges
704 V4f d0 = fA[0]*x2d + (fB[0]*y2d + fC[0]);
705 V4f d1 = fA[1]*x2d + (fB[1]*y2d + fC[1]);
706 V4f d2 = fA[2]*x2d + (fB[2]*y2d + fC[2]);
707 V4f d3 = fA[3]*x2d + (fB[3]*y2d + fC[3]);
708
709 // For each point, pretend that there's a rectangle that touches e0 and e3 on the horizontal
710 // axis, so its width is "approximately" d0 + d3, and it touches e1 and e2 on the vertical axis
711 // so its height is d1 + d2. Pin each of these dimensions to [0, 1] and approximate the coverage
712 // at each point as clamp(d0+d3, 0, 1) x clamp(d1+d2, 0, 1). For rectilinear quads this is an
713 // accurate calculation of its area clipped to an aligned pixel. For arbitrary quads it is not
714 // mathematically accurate but qualitatively provides a stable value proportional to the size of
715 // the shape.
716 V4f w = max(0.f, min(1.f, d0 + d3));
717 V4f h = max(0.f, min(1.f, d1 + d2));
718 return w * h;
719 }
720
computeDegenerateQuad(const V4f & signedEdgeDistances,V4f * x2d,V4f * y2d,M4f * aaMask) const721 int TessellationHelper::EdgeEquations::computeDegenerateQuad(const V4f& signedEdgeDistances,
722 V4f* x2d, V4f* y2d,
723 M4f* aaMask) const {
724 // If the original points form a line in the 2D projection then give up on antialiasing.
725 for (int i = 0; i < 4; ++i) {
726 V4f d = (*x2d)*fA[i] + (*y2d)*fB[i] + fC[i];
727 if (all(abs(d) < kDistTolerance)) {
728 *aaMask = M4f(0);
729 return 4;
730 }
731 }
732
733 *aaMask = signedEdgeDistances != 0.f;
734
735 // Move the edge by the signed edge adjustment.
736 V4f oc = fC + signedEdgeDistances;
737
738 // There are 6 points that we care about to determine the final shape of the polygon, which
739 // are the intersections between (e0,e2), (e1,e0), (e2,e3), (e3,e1) (corresponding to the
740 // 4 corners), and (e1, e2), (e0, e3) (representing the intersections of opposite edges).
741 V4f denom = fA * next_cw(fB) - fB * next_cw(fA);
742 V4f px = (fB * next_cw(oc) - oc * next_cw(fB)) / denom;
743 V4f py = (oc * next_cw(fA) - fA * next_cw(oc)) / denom;
744 correct_bad_coords(abs(denom) < kTolerance, &px, &py, nullptr);
745
746 // Calculate the signed distances from these 4 corners to the other two edges that did not
747 // define the intersection. So p(0) is compared to e3,e1, p(1) to e3,e2 , p(2) to e0,e1, and
748 // p(3) to e0,e2
749 V4f dists1 = px * skvx::shuffle<3, 3, 0, 0>(fA) +
750 py * skvx::shuffle<3, 3, 0, 0>(fB) +
751 skvx::shuffle<3, 3, 0, 0>(oc);
752 V4f dists2 = px * skvx::shuffle<1, 2, 1, 2>(fA) +
753 py * skvx::shuffle<1, 2, 1, 2>(fB) +
754 skvx::shuffle<1, 2, 1, 2>(oc);
755
756 // If all the distances are >= 0, the 4 corners form a valid quadrilateral, so use them as
757 // the 4 points. If any point is on the wrong side of both edges, the interior has collapsed
758 // and we need to use a central point to represent it. If all four points are only on the
759 // wrong side of 1 edge, one edge has crossed over another and we use a line to represent it.
760 // Otherwise, use a triangle that replaces the bad points with the intersections of
761 // (e1, e2) or (e0, e3) as needed.
762 M4f d1v0 = dists1 < kDistTolerance;
763 M4f d2v0 = dists2 < kDistTolerance;
764 M4f d1And2 = d1v0 & d2v0;
765 M4f d1Or2 = d1v0 | d2v0;
766
767 if (!any(d1Or2)) {
768 // Every dists1 and dists2 >= kTolerance so it's not degenerate, use all 4 corners as-is
769 // and use full coverage
770 *x2d = px;
771 *y2d = py;
772 return 4;
773 } else if (any(d1And2)) {
774 // A point failed against two edges, so reduce the shape to a single point, which we take as
775 // the center of the original quad to ensure it is contained in the intended geometry. Since
776 // it has collapsed, we know the shape cannot cover a pixel so update the coverage.
777 SkPoint center = {0.25f * ((*x2d)[0] + (*x2d)[1] + (*x2d)[2] + (*x2d)[3]),
778 0.25f * ((*y2d)[0] + (*y2d)[1] + (*y2d)[2] + (*y2d)[3])};
779 *x2d = center.fX;
780 *y2d = center.fY;
781 *aaMask = any(*aaMask);
782 return 1;
783 } else if (all(d1Or2)) {
784 // Degenerates to a line. Compare p[2] and p[3] to edge 0. If they are on the wrong side,
785 // that means edge 0 and 3 crossed, and otherwise edge 1 and 2 crossed.
786 if (dists1[2] < kDistTolerance && dists1[3] < kDistTolerance) {
787 // Edges 0 and 3 have crossed over, so make the line from average of (p0,p2) and (p1,p3)
788 *x2d = 0.5f * (skvx::shuffle<0, 1, 0, 1>(px) + skvx::shuffle<2, 3, 2, 3>(px));
789 *y2d = 0.5f * (skvx::shuffle<0, 1, 0, 1>(py) + skvx::shuffle<2, 3, 2, 3>(py));
790 // If edges 0 and 3 crossed then one must have AA but we moved both 2D points on the
791 // edge so we need moveTo() to be able to move both 3D points along the shared edge. So
792 // ensure both have AA.
793 *aaMask = *aaMask | M4f({1, 0, 0, 1});
794 } else {
795 // Edges 1 and 2 have crossed over, so make the line from average of (p0,p1) and (p2,p3)
796 *x2d = 0.5f * (skvx::shuffle<0, 0, 2, 2>(px) + skvx::shuffle<1, 1, 3, 3>(px));
797 *y2d = 0.5f * (skvx::shuffle<0, 0, 2, 2>(py) + skvx::shuffle<1, 1, 3, 3>(py));
798 *aaMask = *aaMask | M4f({0, 1, 1, 0});
799 }
800 return 2;
801 } else {
802 // This turns into a triangle. Replace corners as needed with the intersections between
803 // (e0,e3) and (e1,e2), which must now be calculated. Because of kDistTolarance we can
804 // have cases where the intersection lies far outside the quad. For example, consider top
805 // and bottom edges that are nearly parallel and their intersections with the right edge are
806 // nearly but not quite swapped (top edge intersection is barely above bottom edge
807 // intersection). In this case we replace the point with the average of itself and the point
808 // calculated using the edge equation it failed (in the example case this would be the
809 // average of the points calculated by the top and bottom edges intersected with the right
810 // edge.)
811 using V2f = skvx::Vec<2, float>;
812 V2f eDenom = skvx::shuffle<0, 1>(fA) * skvx::shuffle<3, 2>(fB) -
813 skvx::shuffle<0, 1>(fB) * skvx::shuffle<3, 2>(fA);
814 V2f ex = (skvx::shuffle<0, 1>(fB) * skvx::shuffle<3, 2>(oc) -
815 skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(fB)) / eDenom;
816 V2f ey = (skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(fA) -
817 skvx::shuffle<0, 1>(fA) * skvx::shuffle<3, 2>(oc)) / eDenom;
818
819 V4f avgX = 0.5f * (skvx::shuffle<0, 1, 0, 2>(px) + skvx::shuffle<2, 3, 1, 3>(px));
820 V4f avgY = 0.5f * (skvx::shuffle<0, 1, 0, 2>(py) + skvx::shuffle<2, 3, 1, 3>(py));
821 for (int i = 0; i < 4; ++i) {
822 // Note that we would not have taken this branch if any point failed both of its edges
823 // tests. That is, it can't be the case that d1v0[i] and d2v0[i] are both true.
824 if (dists1[i] < -kDistTolerance && abs(eDenom[0]) > kTolerance) {
825 px[i] = ex[0];
826 py[i] = ey[0];
827 } else if (d1v0[i]) {
828 px[i] = avgX[i % 2];
829 py[i] = avgY[i % 2];
830 } else if (dists2[i] < -kDistTolerance && abs(eDenom[1]) > kTolerance) {
831 px[i] = ex[1];
832 py[i] = ey[1];
833 } else if (d2v0[i]) {
834 px[i] = avgX[i / 2 + 2];
835 py[i] = avgY[i / 2 + 2];
836 }
837 }
838
839 // If we replace a vertex with an intersection then it will not fall along the
840 // edges that intersect at the original vertex. When we apply AA later to the
841 // original points we move along the original 3d edges to move towards the 2d
842 // points we're computing here. If we have an AA edge and a non-AA edge we
843 // can only move along 1 edge, but now the point we're moving toward isn't
844 // on that edge. Thus, we provide an additional degree of freedom by turning
845 // AA on for both edges if either edge is AA at each point.
846 *aaMask = *aaMask | (d1Or2 & next_cw(*aaMask)) | (next_ccw(d1Or2) & next_ccw(*aaMask));
847 *x2d = px;
848 *y2d = py;
849 return 3;
850 }
851 }
852
853 //** OutsetRequest implementation
854
reset(const EdgeVectors & edgeVectors,GrQuad::Type quadType,const skvx::Vec<4,float> & edgeDistances)855 void TessellationHelper::OutsetRequest::reset(const EdgeVectors& edgeVectors, GrQuad::Type quadType,
856 const skvx::Vec<4, float>& edgeDistances) {
857 fEdgeDistances = edgeDistances;
858
859 // Based on the edge distances, determine if it's acceptable to use fInvSinTheta to
860 // calculate the inset or outset geometry.
861 if (quadType <= GrQuad::Type::kRectilinear) {
862 // Since it's rectangular, the width (edge[1] or edge[2]) collapses if subtracting
863 // (dist[0] + dist[3]) makes the new width negative (minus for inset, outsetting will
864 // never be degenerate in this case). The same applies for height (edge[0] or edge[3])
865 // and (dist[1] + dist[2]).
866 fOutsetDegenerate = false;
867 float widthChange = edgeDistances[0] + edgeDistances[3];
868 float heightChange = edgeDistances[1] + edgeDistances[2];
869 // (1/len > 1/(edge sum) implies len - edge sum < 0.
870 fInsetDegenerate =
871 (widthChange > 0.f && edgeVectors.fInvLengths[1] > 1.f / widthChange) ||
872 (heightChange > 0.f && edgeVectors.fInvLengths[0] > 1.f / heightChange);
873 } else if (any(edgeVectors.fInvLengths >= kInvDistTolerance)) {
874 // Have an edge that is effectively length 0, so we're dealing with a triangle, which
875 // must always go through the degenerate code path.
876 fOutsetDegenerate = true;
877 fInsetDegenerate = true;
878 } else {
879 // If possible, the corners will move +/-edgeDistances * 1/sin(theta). The entire
880 // request is degenerate if 1/sin(theta) -> infinity (or cos(theta) -> 1).
881 if (any(abs(edgeVectors.fCosTheta) >= 0.9f)) {
882 fOutsetDegenerate = true;
883 fInsetDegenerate = true;
884 } else {
885 // With an edge-centric view, an edge's length changes by
886 // edgeDistance * cos(pi - theta) / sin(theta) for each of its corners (the second
887 // corner uses ccw theta value). An edge's length also changes when its adjacent
888 // edges move, in which case it's updated by edgeDistance / sin(theta)
889 // (or cos(theta) for the other edge).
890
891 // cos(pi - theta) = -cos(theta)
892 V4f halfTanTheta = -edgeVectors.fCosTheta * edgeVectors.fInvSinTheta;
893 V4f edgeAdjust = edgeDistances * (halfTanTheta + next_ccw(halfTanTheta)) +
894 next_ccw(edgeDistances) * next_ccw(edgeVectors.fInvSinTheta) +
895 next_cw(edgeDistances) * edgeVectors.fInvSinTheta;
896
897 // If either outsetting (plus edgeAdjust) or insetting (minus edgeAdjust) make
898 // the edge lengths negative, then it's degenerate.
899 V4f threshold = 0.1f - (1.f / edgeVectors.fInvLengths);
900 fOutsetDegenerate = any(edgeAdjust < threshold);
901 fInsetDegenerate = any(edgeAdjust > -threshold);
902 }
903 }
904 }
905
906 //** Vertices implementation
907
reset(const GrQuad & deviceQuad,const GrQuad * localQuad)908 void TessellationHelper::Vertices::reset(const GrQuad& deviceQuad, const GrQuad* localQuad) {
909 // Set vertices to match the device and local quad
910 fX = deviceQuad.x4f();
911 fY = deviceQuad.y4f();
912 fW = deviceQuad.w4f();
913
914 if (localQuad) {
915 fU = localQuad->x4f();
916 fV = localQuad->y4f();
917 fR = localQuad->w4f();
918 fUVRCount = localQuad->hasPerspective() ? 3 : 2;
919 } else {
920 fUVRCount = 0;
921 }
922 }
923
asGrQuads(GrQuad * deviceOut,GrQuad::Type deviceType,GrQuad * localOut,GrQuad::Type localType) const924 void TessellationHelper::Vertices::asGrQuads(GrQuad* deviceOut, GrQuad::Type deviceType,
925 GrQuad* localOut, GrQuad::Type localType) const {
926 SkASSERT(deviceOut);
927 SkASSERT(fUVRCount == 0 || localOut);
928
929 fX.store(deviceOut->xs());
930 fY.store(deviceOut->ys());
931 if (deviceType == GrQuad::Type::kPerspective) {
932 fW.store(deviceOut->ws());
933 }
934 deviceOut->setQuadType(deviceType); // This sets ws == 1 when device type != perspective
935
936 if (fUVRCount > 0) {
937 fU.store(localOut->xs());
938 fV.store(localOut->ys());
939 if (fUVRCount == 3) {
940 fR.store(localOut->ws());
941 }
942 localOut->setQuadType(localType);
943 }
944 }
945
moveAlong(const EdgeVectors & edgeVectors,const V4f & signedEdgeDistances)946 void TessellationHelper::Vertices::moveAlong(const EdgeVectors& edgeVectors,
947 const V4f& signedEdgeDistances) {
948 // This shouldn't be called if fInvSinTheta is close to infinity (cosTheta close to 1).
949 // FIXME (michaelludwig) - Temporarily allow NaNs on debug builds here, for crbug:224618's GM
950 // Once W clipping is implemented, shouldn't see NaNs unless it's actually time to fail.
951 SkASSERT(all(abs(edgeVectors.fCosTheta) < 0.9f) ||
952 any(edgeVectors.fCosTheta != edgeVectors.fCosTheta));
953
954 // When the projected device quad is not degenerate, the vertex corners can move
955 // cornerOutsetLen along their edge and their cw-rotated edge. The vertex's edge points
956 // inwards and the cw-rotated edge points outwards, hence the minus-sign.
957 // The edge distances are rotated compared to the corner outsets and (dx, dy), since if
958 // the edge is "on" both its corners need to be moved along their other edge vectors.
959 V4f signedOutsets = -edgeVectors.fInvSinTheta * next_cw(signedEdgeDistances);
960 V4f signedOutsetsCW = edgeVectors.fInvSinTheta * signedEdgeDistances;
961
962 // x = x + outset * mask * next_cw(xdiff) - outset * next_cw(mask) * xdiff
963 fX += signedOutsetsCW * next_cw(edgeVectors.fDX) + signedOutsets * edgeVectors.fDX;
964 fY += signedOutsetsCW * next_cw(edgeVectors.fDY) + signedOutsets * edgeVectors.fDY;
965 if (fUVRCount > 0) {
966 // We want to extend the texture coords by the same proportion as the positions.
967 signedOutsets *= edgeVectors.fInvLengths;
968 signedOutsetsCW *= next_cw(edgeVectors.fInvLengths);
969 V4f du = next_ccw(fU) - fU;
970 V4f dv = next_ccw(fV) - fV;
971 fU += signedOutsetsCW * next_cw(du) + signedOutsets * du;
972 fV += signedOutsetsCW * next_cw(dv) + signedOutsets * dv;
973 if (fUVRCount == 3) {
974 V4f dr = next_ccw(fR) - fR;
975 fR += signedOutsetsCW * next_cw(dr) + signedOutsets * dr;
976 }
977 }
978 }
979
moveTo(const V4f & x2d,const V4f & y2d,const M4f & mask)980 void TessellationHelper::Vertices::moveTo(const V4f& x2d, const V4f& y2d, const M4f& mask) {
981 // Left to right, in device space, for each point
982 V4f e1x = skvx::shuffle<2, 3, 2, 3>(fX) - skvx::shuffle<0, 1, 0, 1>(fX);
983 V4f e1y = skvx::shuffle<2, 3, 2, 3>(fY) - skvx::shuffle<0, 1, 0, 1>(fY);
984 V4f e1w = skvx::shuffle<2, 3, 2, 3>(fW) - skvx::shuffle<0, 1, 0, 1>(fW);
985 M4f e1Bad = e1x*e1x + e1y*e1y < kDist2Tolerance;
986 correct_bad_edges(e1Bad, &e1x, &e1y, &e1w);
987
988 // // Top to bottom, in device space, for each point
989 V4f e2x = skvx::shuffle<1, 1, 3, 3>(fX) - skvx::shuffle<0, 0, 2, 2>(fX);
990 V4f e2y = skvx::shuffle<1, 1, 3, 3>(fY) - skvx::shuffle<0, 0, 2, 2>(fY);
991 V4f e2w = skvx::shuffle<1, 1, 3, 3>(fW) - skvx::shuffle<0, 0, 2, 2>(fW);
992 M4f e2Bad = e2x*e2x + e2y*e2y < kDist2Tolerance;
993 correct_bad_edges(e2Bad, &e2x, &e2y, &e2w);
994
995 // Can only move along e1 and e2 to reach the new 2D point, so we have
996 // x2d = (x + a*e1x + b*e2x) / (w + a*e1w + b*e2w) and
997 // y2d = (y + a*e1y + b*e2y) / (w + a*e1w + b*e2w) for some a, b
998 // This can be rewritten to a*c1x + b*c2x + c3x = 0; a * c1y + b*c2y + c3y = 0, where
999 // the cNx and cNy coefficients are:
1000 V4f c1x = e1w * x2d - e1x;
1001 V4f c1y = e1w * y2d - e1y;
1002 V4f c2x = e2w * x2d - e2x;
1003 V4f c2y = e2w * y2d - e2y;
1004 V4f c3x = fW * x2d - fX;
1005 V4f c3y = fW * y2d - fY;
1006
1007 // Solve for a and b
1008 V4f a, b, denom;
1009 if (all(mask)) {
1010 // When every edge is outset/inset, each corner can use both edge vectors
1011 denom = c1x * c2y - c2x * c1y;
1012 a = (c2x * c3y - c3x * c2y) / denom;
1013 b = (c3x * c1y - c1x * c3y) / denom;
1014 } else {
1015 // Force a or b to be 0 if that edge cannot be used due to non-AA
1016 M4f aMask = skvx::shuffle<0, 0, 3, 3>(mask);
1017 M4f bMask = skvx::shuffle<2, 1, 2, 1>(mask);
1018
1019 // When aMask[i]&bMask[i], then a[i], b[i], denom[i] match the kAll case.
1020 // When aMask[i]&!bMask[i], then b[i] = 0, a[i] = -c3x/c1x or -c3y/c1y, using better denom
1021 // When !aMask[i]&bMask[i], then a[i] = 0, b[i] = -c3x/c2x or -c3y/c2y, ""
1022 // When !aMask[i]&!bMask[i], then both a[i] = 0 and b[i] = 0
1023 M4f useC1x = abs(c1x) > abs(c1y);
1024 M4f useC2x = abs(c2x) > abs(c2y);
1025
1026 denom = if_then_else(aMask,
1027 if_then_else(bMask,
1028 c1x * c2y - c2x * c1y, /* A & B */
1029 if_then_else(useC1x, c1x, c1y)), /* A & !B */
1030 if_then_else(bMask,
1031 if_then_else(useC2x, c2x, c2y), /* !A & B */
1032 V4f(1.f))); /* !A & !B */
1033
1034 a = if_then_else(aMask,
1035 if_then_else(bMask,
1036 c2x * c3y - c3x * c2y, /* A & B */
1037 if_then_else(useC1x, -c3x, -c3y)), /* A & !B */
1038 V4f(0.f)) / denom; /* !A */
1039 b = if_then_else(bMask,
1040 if_then_else(aMask,
1041 c3x * c1y - c1x * c3y, /* A & B */
1042 if_then_else(useC2x, -c3x, -c3y)), /* !A & B */
1043 V4f(0.f)) / denom; /* !B */
1044 }
1045
1046 fX += a * e1x + b * e2x;
1047 fY += a * e1y + b * e2y;
1048 fW += a * e1w + b * e2w;
1049
1050 // If fW has gone negative, flip the point to the other side of w=0. This only happens if the
1051 // edge was approaching a vanishing point and it was physically impossible to outset 1/2px in
1052 // screen space w/o going behind the viewer and being mirrored. Scaling by -1 preserves the
1053 // computed screen space position but moves the 3D point off of the original quad. So far, this
1054 // seems to be a reasonable compromise.
1055 if (any(fW < 0.f)) {
1056 V4f scale = if_then_else(fW < 0.f, V4f(-1.f), V4f(1.f));
1057 fX *= scale;
1058 fY *= scale;
1059 fW *= scale;
1060 }
1061
1062 correct_bad_coords(abs(denom) < kTolerance, &fX, &fY, &fW);
1063
1064 if (fUVRCount > 0) {
1065 // Calculate R here so it can be corrected with U and V in case it's needed later
1066 V4f e1u = skvx::shuffle<2, 3, 2, 3>(fU) - skvx::shuffle<0, 1, 0, 1>(fU);
1067 V4f e1v = skvx::shuffle<2, 3, 2, 3>(fV) - skvx::shuffle<0, 1, 0, 1>(fV);
1068 V4f e1r = skvx::shuffle<2, 3, 2, 3>(fR) - skvx::shuffle<0, 1, 0, 1>(fR);
1069 correct_bad_edges(e1Bad, &e1u, &e1v, &e1r);
1070
1071 V4f e2u = skvx::shuffle<1, 1, 3, 3>(fU) - skvx::shuffle<0, 0, 2, 2>(fU);
1072 V4f e2v = skvx::shuffle<1, 1, 3, 3>(fV) - skvx::shuffle<0, 0, 2, 2>(fV);
1073 V4f e2r = skvx::shuffle<1, 1, 3, 3>(fR) - skvx::shuffle<0, 0, 2, 2>(fR);
1074 correct_bad_edges(e2Bad, &e2u, &e2v, &e2r);
1075
1076 fU += a * e1u + b * e2u;
1077 fV += a * e1v + b * e2v;
1078 if (fUVRCount == 3) {
1079 fR += a * e1r + b * e2r;
1080 correct_bad_coords(abs(denom) < kTolerance, &fU, &fV, &fR);
1081 } else {
1082 correct_bad_coords(abs(denom) < kTolerance, &fU, &fV, nullptr);
1083 }
1084 }
1085 }
1086
1087 //** TessellationHelper implementation
1088
reset(const GrQuad & deviceQuad,const GrQuad * localQuad)1089 void TessellationHelper::reset(const GrQuad& deviceQuad, const GrQuad* localQuad) {
1090 // Record basic state that isn't recorded on the Vertices struct itself
1091 fDeviceType = deviceQuad.quadType();
1092 fLocalType = localQuad ? localQuad->quadType() : GrQuad::Type::kAxisAligned;
1093
1094 // Reset metadata validity
1095 fOutsetRequestValid = false;
1096 fEdgeEquationsValid = false;
1097
1098 // Compute vertex properties that are always needed for a quad, so no point in doing it lazily.
1099 fOriginal.reset(deviceQuad, localQuad);
1100 fEdgeVectors.reset(fOriginal.fX, fOriginal.fY, fOriginal.fW, fDeviceType);
1101
1102 fVerticesValid = true;
1103 }
1104
inset(const skvx::Vec<4,float> & edgeDistances,GrQuad * deviceInset,GrQuad * localInset)1105 V4f TessellationHelper::inset(const skvx::Vec<4, float>& edgeDistances,
1106 GrQuad* deviceInset, GrQuad* localInset) {
1107 SkASSERT(fVerticesValid);
1108
1109 Vertices inset = fOriginal;
1110 const OutsetRequest& request = this->getOutsetRequest(edgeDistances);
1111 int vertexCount;
1112 if (request.fInsetDegenerate) {
1113 vertexCount = this->adjustDegenerateVertices(-request.fEdgeDistances, &inset);
1114 } else {
1115 this->adjustVertices(-request.fEdgeDistances, &inset);
1116 vertexCount = 4;
1117 }
1118
1119 inset.asGrQuads(deviceInset, fDeviceType, localInset, fLocalType);
1120 if (vertexCount < 3) {
1121 // The interior has less than a full pixel's area so estimate reduced coverage using
1122 // the distance of the inset's projected corners to the original edges.
1123 return this->getEdgeEquations().estimateCoverage(inset.fX / inset.fW,
1124 inset.fY / inset.fW);
1125 } else {
1126 return 1.f;
1127 }
1128 }
1129
outset(const skvx::Vec<4,float> & edgeDistances,GrQuad * deviceOutset,GrQuad * localOutset)1130 void TessellationHelper::outset(const skvx::Vec<4, float>& edgeDistances,
1131 GrQuad* deviceOutset, GrQuad* localOutset) {
1132 SkASSERT(fVerticesValid);
1133
1134 Vertices outset = fOriginal;
1135 const OutsetRequest& request = this->getOutsetRequest(edgeDistances);
1136 if (request.fOutsetDegenerate) {
1137 this->adjustDegenerateVertices(request.fEdgeDistances, &outset);
1138 } else {
1139 this->adjustVertices(request.fEdgeDistances, &outset);
1140 }
1141
1142 outset.asGrQuads(deviceOutset, fDeviceType, localOutset, fLocalType);
1143 }
1144
getEdgeEquations(skvx::Vec<4,float> * a,skvx::Vec<4,float> * b,skvx::Vec<4,float> * c)1145 void TessellationHelper::getEdgeEquations(skvx::Vec<4, float>* a,
1146 skvx::Vec<4, float>* b,
1147 skvx::Vec<4, float>* c) {
1148 SkASSERT(a && b && c);
1149 SkASSERT(fVerticesValid);
1150 const EdgeEquations& eq = this->getEdgeEquations();
1151 *a = eq.fA;
1152 *b = eq.fB;
1153 *c = eq.fC;
1154 }
1155
getEdgeLengths()1156 skvx::Vec<4, float> TessellationHelper::getEdgeLengths() {
1157 SkASSERT(fVerticesValid);
1158 return 1.f / fEdgeVectors.fInvLengths;
1159 }
1160
getOutsetRequest(const skvx::Vec<4,float> & edgeDistances)1161 const TessellationHelper::OutsetRequest& TessellationHelper::getOutsetRequest(
1162 const skvx::Vec<4, float>& edgeDistances) {
1163 // Much of the code assumes that we start from positive distances and apply it unmodified to
1164 // create an outset; knowing that it's outset simplifies degeneracy checking.
1165 SkASSERT(all(edgeDistances >= 0.f));
1166
1167 // Rebuild outset request if invalid or if the edge distances have changed.
1168 if (!fOutsetRequestValid || any(edgeDistances != fOutsetRequest.fEdgeDistances)) {
1169 fOutsetRequest.reset(fEdgeVectors, fDeviceType, edgeDistances);
1170 fOutsetRequestValid = true;
1171 }
1172 return fOutsetRequest;
1173 }
1174
getEdgeEquations()1175 const TessellationHelper::EdgeEquations& TessellationHelper::getEdgeEquations() {
1176 if (!fEdgeEquationsValid) {
1177 fEdgeEquations.reset(fEdgeVectors);
1178 fEdgeEquationsValid = true;
1179 }
1180 return fEdgeEquations;
1181 }
1182
adjustVertices(const skvx::Vec<4,float> & signedEdgeDistances,Vertices * vertices)1183 void TessellationHelper::adjustVertices(const skvx::Vec<4, float>& signedEdgeDistances,
1184 Vertices* vertices) {
1185 SkASSERT(vertices);
1186 SkASSERT(vertices->fUVRCount == 0 || vertices->fUVRCount == 2 || vertices->fUVRCount == 3);
1187
1188 if (fDeviceType < GrQuad::Type::kPerspective) {
1189 // For non-perspective, non-degenerate quads, moveAlong is correct and most efficient
1190 vertices->moveAlong(fEdgeVectors, signedEdgeDistances);
1191 } else {
1192 // For perspective, non-degenerate quads, use moveAlong for the projected points and then
1193 // reconstruct Ws with moveTo.
1194 Vertices projected = { fEdgeVectors.fX2D, fEdgeVectors.fY2D, /*w*/ 1.f, 0.f, 0.f, 0.f, 0 };
1195 projected.moveAlong(fEdgeVectors, signedEdgeDistances);
1196 vertices->moveTo(projected.fX, projected.fY, signedEdgeDistances != 0.f);
1197 }
1198 }
1199
adjustDegenerateVertices(const skvx::Vec<4,float> & signedEdgeDistances,Vertices * vertices)1200 int TessellationHelper::adjustDegenerateVertices(const skvx::Vec<4, float>& signedEdgeDistances,
1201 Vertices* vertices) {
1202 SkASSERT(vertices);
1203 SkASSERT(vertices->fUVRCount == 0 || vertices->fUVRCount == 2 || vertices->fUVRCount == 3);
1204
1205 if (fDeviceType <= GrQuad::Type::kRectilinear) {
1206 // For rectilinear, degenerate quads, can use moveAlong if the edge distances are adjusted
1207 // to not cross over each other.
1208 SkASSERT(all(signedEdgeDistances <= 0.f)); // Only way rectilinear can degenerate is insets
1209 V4f halfLengths = -0.5f / next_cw(fEdgeVectors.fInvLengths); // Negate to inset
1210 M4f crossedEdges = halfLengths > signedEdgeDistances;
1211 V4f safeInsets = if_then_else(crossedEdges, halfLengths, signedEdgeDistances);
1212 vertices->moveAlong(fEdgeVectors, safeInsets);
1213
1214 // A degenerate rectilinear quad is either a point (both w and h crossed), or a line
1215 return all(crossedEdges) ? 1 : 2;
1216 } else {
1217 // Degenerate non-rectangular shape, must go through slowest path (which automatically
1218 // handles perspective).
1219 V4f x2d = fEdgeVectors.fX2D;
1220 V4f y2d = fEdgeVectors.fY2D;
1221
1222 M4f aaMask;
1223 int vertexCount = this->getEdgeEquations().computeDegenerateQuad(signedEdgeDistances,
1224 &x2d, &y2d, &aaMask);
1225 vertices->moveTo(x2d, y2d, aaMask);
1226 return vertexCount;
1227 }
1228 }
1229
1230 }; // namespace GrQuadUtils
1231