• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the IslNodeBuilder, a class to translate an isl AST into
10 // a LLVM-IR AST.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "polly/CodeGen/IslNodeBuilder.h"
15 #include "polly/CodeGen/BlockGenerators.h"
16 #include "polly/CodeGen/CodeGeneration.h"
17 #include "polly/CodeGen/IslAst.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/CodeGen/LoopGeneratorsGOMP.h"
20 #include "polly/CodeGen/LoopGeneratorsKMP.h"
21 #include "polly/CodeGen/RuntimeDebugBuilder.h"
22 #include "polly/Options.h"
23 #include "polly/ScopInfo.h"
24 #include "polly/Support/ISLTools.h"
25 #include "polly/Support/SCEVValidator.h"
26 #include "polly/Support/ScopHelper.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/PostOrderIterator.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/RegionInfo.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "isl/aff.h"
53 #include "isl/aff_type.h"
54 #include "isl/ast.h"
55 #include "isl/ast_build.h"
56 #include "isl/isl-noexceptions.h"
57 #include "isl/map.h"
58 #include "isl/set.h"
59 #include "isl/union_map.h"
60 #include "isl/union_set.h"
61 #include "isl/val.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <cstring>
66 #include <string>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 using namespace polly;
72 
73 #define DEBUG_TYPE "polly-codegen"
74 
75 STATISTIC(VersionedScops, "Number of SCoPs that required versioning.");
76 
77 STATISTIC(SequentialLoops, "Number of generated sequential for-loops");
78 STATISTIC(ParallelLoops, "Number of generated parallel for-loops");
79 STATISTIC(VectorLoops, "Number of generated vector for-loops");
80 STATISTIC(IfConditions, "Number of generated if-conditions");
81 
82 /// OpenMP backend options
83 enum class OpenMPBackend { GNU, LLVM };
84 
85 static cl::opt<bool> PollyGenerateRTCPrint(
86     "polly-codegen-emit-rtc-print",
87     cl::desc("Emit code that prints the runtime check result dynamically."),
88     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
89 
90 // If this option is set we always use the isl AST generator to regenerate
91 // memory accesses. Without this option set we regenerate expressions using the
92 // original SCEV expressions and only generate new expressions in case the
93 // access relation has been changed and consequently must be regenerated.
94 static cl::opt<bool> PollyGenerateExpressions(
95     "polly-codegen-generate-expressions",
96     cl::desc("Generate AST expressions for unmodified and modified accesses"),
97     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
98 
99 static cl::opt<int> PollyTargetFirstLevelCacheLineSize(
100     "polly-target-first-level-cache-line-size",
101     cl::desc("The size of the first level cache line size specified in bytes."),
102     cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory));
103 
104 static cl::opt<OpenMPBackend> PollyOmpBackend(
105     "polly-omp-backend", cl::desc("Choose the OpenMP library to use:"),
106     cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"),
107                clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")),
108     cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory));
109 
getUpperBound(isl::ast_node For,ICmpInst::Predicate & Predicate)110 isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node For,
111                                             ICmpInst::Predicate &Predicate) {
112   isl::ast_expr Cond = For.for_get_cond();
113   isl::ast_expr Iterator = For.for_get_iterator();
114   assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op &&
115          "conditional expression is not an atomic upper bound");
116 
117   isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get());
118 
119   switch (OpType) {
120   case isl_ast_op_le:
121     Predicate = ICmpInst::ICMP_SLE;
122     break;
123   case isl_ast_op_lt:
124     Predicate = ICmpInst::ICMP_SLT;
125     break;
126   default:
127     llvm_unreachable("Unexpected comparison type in loop condition");
128   }
129 
130   isl::ast_expr Arg0 = Cond.get_op_arg(0);
131 
132   assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id &&
133          "conditional expression is not an atomic upper bound");
134 
135   isl::id UBID = Arg0.get_id();
136 
137   assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id &&
138          "Could not get the iterator");
139 
140   isl::id IteratorID = Iterator.get_id();
141 
142   assert(UBID.get() == IteratorID.get() &&
143          "conditional expression is not an atomic upper bound");
144 
145   return Cond.get_op_arg(1);
146 }
147 
148 /// Return true if a return value of Predicate is true for the value represented
149 /// by passed isl_ast_expr_int.
checkIslAstExprInt(__isl_take isl_ast_expr * Expr,isl_bool (* Predicate)(__isl_keep isl_val *))150 static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr,
151                                isl_bool (*Predicate)(__isl_keep isl_val *)) {
152   if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) {
153     isl_ast_expr_free(Expr);
154     return false;
155   }
156   auto ExprVal = isl_ast_expr_get_val(Expr);
157   isl_ast_expr_free(Expr);
158   if (Predicate(ExprVal) != isl_bool_true) {
159     isl_val_free(ExprVal);
160     return false;
161   }
162   isl_val_free(ExprVal);
163   return true;
164 }
165 
getNumberOfIterations(isl::ast_node For)166 int IslNodeBuilder::getNumberOfIterations(isl::ast_node For) {
167   assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for);
168   isl::ast_node Body = For.for_get_body();
169 
170   // First, check if we can actually handle this code.
171   switch (isl_ast_node_get_type(Body.get())) {
172   case isl_ast_node_user:
173     break;
174   case isl_ast_node_block: {
175     isl::ast_node_list List = Body.block_get_children();
176     for (isl::ast_node Node : List) {
177       isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get());
178       if (NodeType != isl_ast_node_user)
179         return -1;
180     }
181     break;
182   }
183   default:
184     return -1;
185   }
186 
187   isl::ast_expr Init = For.for_get_init();
188   if (!checkIslAstExprInt(Init.release(), isl_val_is_zero))
189     return -1;
190   isl::ast_expr Inc = For.for_get_inc();
191   if (!checkIslAstExprInt(Inc.release(), isl_val_is_one))
192     return -1;
193   CmpInst::Predicate Predicate;
194   isl::ast_expr UB = getUpperBound(For, Predicate);
195   if (isl_ast_expr_get_type(UB.get()) != isl_ast_expr_int)
196     return -1;
197   isl::val UpVal = UB.get_val();
198   int NumberIterations = UpVal.get_num_si();
199   if (NumberIterations < 0)
200     return -1;
201   if (Predicate == CmpInst::ICMP_SLT)
202     return NumberIterations;
203   else
204     return NumberIterations + 1;
205 }
206 
207 /// Extract the values and SCEVs needed to generate code for a block.
findReferencesInBlock(struct SubtreeReferences & References,const ScopStmt * Stmt,BasicBlock * BB)208 static int findReferencesInBlock(struct SubtreeReferences &References,
209                                  const ScopStmt *Stmt, BasicBlock *BB) {
210   for (Instruction &Inst : *BB) {
211     // Include invariant loads
212     if (isa<LoadInst>(Inst))
213       if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst))
214         References.Values.insert(InvariantLoad);
215 
216     for (Value *SrcVal : Inst.operands()) {
217       auto *Scope = References.LI.getLoopFor(BB);
218       if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) {
219         References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope));
220         continue;
221       } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal))
222         References.Values.insert(NewVal);
223     }
224   }
225   return 0;
226 }
227 
addReferencesFromStmt(const ScopStmt * Stmt,void * UserPtr,bool CreateScalarRefs)228 void addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr,
229                            bool CreateScalarRefs) {
230   auto &References = *static_cast<struct SubtreeReferences *>(UserPtr);
231 
232   if (Stmt->isBlockStmt())
233     findReferencesInBlock(References, Stmt, Stmt->getBasicBlock());
234   else if (Stmt->isRegionStmt()) {
235     for (BasicBlock *BB : Stmt->getRegion()->blocks())
236       findReferencesInBlock(References, Stmt, BB);
237   } else {
238     assert(Stmt->isCopyStmt());
239     // Copy Stmts have no instructions that we need to consider.
240   }
241 
242   for (auto &Access : *Stmt) {
243     if (References.ParamSpace) {
244       isl::space ParamSpace = Access->getLatestAccessRelation().get_space();
245       (*References.ParamSpace) =
246           References.ParamSpace->align_params(ParamSpace);
247     }
248 
249     if (Access->isLatestArrayKind()) {
250       auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr();
251       if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr))
252         if (Stmt->getParent()->contains(OpInst))
253           continue;
254 
255       References.Values.insert(BasePtr);
256       continue;
257     }
258 
259     if (CreateScalarRefs)
260       References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access));
261   }
262 }
263 
264 /// Extract the out-of-scop values and SCEVs referenced from a set describing
265 /// a ScopStmt.
266 ///
267 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
268 /// statement and the base pointers of the memory accesses. For scalar
269 /// statements we force the generation of alloca memory locations and list
270 /// these locations in the set of out-of-scop values as well.
271 ///
272 /// @param Set     A set which references the ScopStmt we are interested in.
273 /// @param UserPtr A void pointer that can be casted to a SubtreeReferences
274 ///                structure.
addReferencesFromStmtSet(isl::set Set,struct SubtreeReferences * UserPtr)275 static void addReferencesFromStmtSet(isl::set Set,
276                                      struct SubtreeReferences *UserPtr) {
277   isl::id Id = Set.get_tuple_id();
278   auto *Stmt = static_cast<const ScopStmt *>(Id.get_user());
279   return addReferencesFromStmt(Stmt, UserPtr);
280 }
281 
282 /// Extract the out-of-scop values and SCEVs referenced from a union set
283 /// referencing multiple ScopStmts.
284 ///
285 /// This includes the SCEVUnknowns referenced by the SCEVs used in the
286 /// statement and the base pointers of the memory accesses. For scalar
287 /// statements we force the generation of alloca memory locations and list
288 /// these locations in the set of out-of-scop values as well.
289 ///
290 /// @param USet       A union set referencing the ScopStmts we are interested
291 ///                   in.
292 /// @param References The SubtreeReferences data structure through which
293 ///                   results are returned and further information is
294 ///                   provided.
295 static void
addReferencesFromStmtUnionSet(isl::union_set USet,struct SubtreeReferences & References)296 addReferencesFromStmtUnionSet(isl::union_set USet,
297                               struct SubtreeReferences &References) {
298 
299   for (isl::set Set : USet.get_set_list())
300     addReferencesFromStmtSet(Set, &References);
301 }
302 
303 __isl_give isl_union_map *
getScheduleForAstNode(__isl_keep isl_ast_node * For)304 IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) {
305   return IslAstInfo::getSchedule(For);
306 }
307 
getReferencesInSubtree(__isl_keep isl_ast_node * For,SetVector<Value * > & Values,SetVector<const Loop * > & Loops)308 void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For,
309                                             SetVector<Value *> &Values,
310                                             SetVector<const Loop *> &Loops) {
311   SetVector<const SCEV *> SCEVs;
312   struct SubtreeReferences References = {
313       LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr};
314 
315   for (const auto &I : IDToValue)
316     Values.insert(I.second);
317 
318   // NOTE: this is populated in IslNodeBuilder::addParameters
319   for (const auto &I : OutsideLoopIterations)
320     Values.insert(cast<SCEVUnknown>(I.second)->getValue());
321 
322   isl::union_set Schedule =
323       isl::manage(isl_union_map_domain(getScheduleForAstNode(For)));
324   addReferencesFromStmtUnionSet(Schedule, References);
325 
326   for (const SCEV *Expr : SCEVs) {
327     findValues(Expr, SE, Values);
328     findLoops(Expr, Loops);
329   }
330 
331   Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); });
332 
333   /// Note: Code generation of induction variables of loops outside Scops
334   ///
335   /// Remove loops that contain the scop or that are part of the scop, as they
336   /// are considered local. This leaves only loops that are before the scop, but
337   /// do not contain the scop itself.
338   /// We ignore loops perfectly contained in the Scop because these are already
339   /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops
340   /// whose induction variables are referred to by the Scop, but the Scop is not
341   /// fully contained in these Loops. Since there can be many of these,
342   /// we choose to codegen these on-demand.
343   /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable.
344   Loops.remove_if([this](const Loop *L) {
345     return S.contains(L) || L->contains(S.getEntry());
346   });
347 
348   // Contains Values that may need to be replaced with other values
349   // due to replacements from the ValueMap. We should make sure
350   // that we return correctly remapped values.
351   // NOTE: this code path is tested by:
352   //     1.  test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
353   //     2.  test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
354   SetVector<Value *> ReplacedValues;
355   for (Value *V : Values) {
356     ReplacedValues.insert(getLatestValue(V));
357   }
358   Values = ReplacedValues;
359 }
360 
updateValues(ValueMapT & NewValues)361 void IslNodeBuilder::updateValues(ValueMapT &NewValues) {
362   SmallPtrSet<Value *, 5> Inserted;
363 
364   for (const auto &I : IDToValue) {
365     IDToValue[I.first] = NewValues[I.second];
366     Inserted.insert(I.second);
367   }
368 
369   for (const auto &I : NewValues) {
370     if (Inserted.count(I.first))
371       continue;
372 
373     ValueMap[I.first] = I.second;
374   }
375 }
376 
getLatestValue(Value * Original) const377 Value *IslNodeBuilder::getLatestValue(Value *Original) const {
378   auto It = ValueMap.find(Original);
379   if (It == ValueMap.end())
380     return Original;
381   return It->second;
382 }
383 
createUserVector(__isl_take isl_ast_node * User,std::vector<Value * > & IVS,__isl_take isl_id * IteratorID,__isl_take isl_union_map * Schedule)384 void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User,
385                                       std::vector<Value *> &IVS,
386                                       __isl_take isl_id *IteratorID,
387                                       __isl_take isl_union_map *Schedule) {
388   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
389   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
390   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
391   isl_ast_expr_free(StmtExpr);
392   ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id);
393   std::vector<LoopToScevMapT> VLTS(IVS.size());
394 
395   isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release());
396   Schedule = isl_union_map_intersect_domain(Schedule, Domain);
397   isl_map *S = isl_map_from_union_map(Schedule);
398 
399   auto *NewAccesses = createNewAccesses(Stmt, User);
400   createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID);
401   VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses);
402   isl_id_to_ast_expr_free(NewAccesses);
403   isl_map_free(S);
404   isl_id_free(Id);
405   isl_ast_node_free(User);
406 }
407 
createMark(__isl_take isl_ast_node * Node)408 void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) {
409   auto *Id = isl_ast_node_mark_get_id(Node);
410   auto Child = isl_ast_node_mark_get_node(Node);
411   isl_ast_node_free(Node);
412   // If a child node of a 'SIMD mark' is a loop that has a single iteration,
413   // it will be optimized away and we should skip it.
414   if (strcmp(isl_id_get_name(Id), "SIMD") == 0 &&
415       isl_ast_node_get_type(Child) == isl_ast_node_for) {
416     bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
417     int VectorWidth = getNumberOfIterations(isl::manage_copy(Child));
418     if (Vector && 1 < VectorWidth && VectorWidth <= 16)
419       createForVector(Child, VectorWidth);
420     else
421       createForSequential(isl::manage(Child), true);
422     isl_id_free(Id);
423     return;
424   }
425   if (strcmp(isl_id_get_name(Id), "Inter iteration alias-free") == 0) {
426     auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id));
427     Annotator.addInterIterationAliasFreeBasePtr(BasePtr);
428   }
429   create(Child);
430   isl_id_free(Id);
431 }
432 
createForVector(__isl_take isl_ast_node * For,int VectorWidth)433 void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For,
434                                      int VectorWidth) {
435   isl_ast_node *Body = isl_ast_node_for_get_body(For);
436   isl_ast_expr *Init = isl_ast_node_for_get_init(For);
437   isl_ast_expr *Inc = isl_ast_node_for_get_inc(For);
438   isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For);
439   isl_id *IteratorID = isl_ast_expr_get_id(Iterator);
440 
441   Value *ValueLB = ExprBuilder.create(Init);
442   Value *ValueInc = ExprBuilder.create(Inc);
443 
444   Type *MaxType = ExprBuilder.getType(Iterator);
445   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
446   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
447 
448   if (MaxType != ValueLB->getType())
449     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
450   if (MaxType != ValueInc->getType())
451     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
452 
453   std::vector<Value *> IVS(VectorWidth);
454   IVS[0] = ValueLB;
455 
456   for (int i = 1; i < VectorWidth; i++)
457     IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv");
458 
459   isl_union_map *Schedule = getScheduleForAstNode(For);
460   assert(Schedule && "For statement annotation does not contain its schedule");
461 
462   IDToValue[IteratorID] = ValueLB;
463 
464   switch (isl_ast_node_get_type(Body)) {
465   case isl_ast_node_user:
466     createUserVector(Body, IVS, isl_id_copy(IteratorID),
467                      isl_union_map_copy(Schedule));
468     break;
469   case isl_ast_node_block: {
470     isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
471 
472     for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
473       createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS,
474                        isl_id_copy(IteratorID), isl_union_map_copy(Schedule));
475 
476     isl_ast_node_free(Body);
477     isl_ast_node_list_free(List);
478     break;
479   }
480   default:
481     isl_ast_node_dump(Body);
482     llvm_unreachable("Unhandled isl_ast_node in vectorizer");
483   }
484 
485   IDToValue.erase(IDToValue.find(IteratorID));
486   isl_id_free(IteratorID);
487   isl_union_map_free(Schedule);
488 
489   isl_ast_node_free(For);
490   isl_ast_expr_free(Iterator);
491 
492   VectorLoops++;
493 }
494 
495 /// Restore the initial ordering of dimensions of the band node
496 ///
497 /// In case the band node represents all the dimensions of the iteration
498 /// domain, recreate the band node to restore the initial ordering of the
499 /// dimensions.
500 ///
501 /// @param Node The band node to be modified.
502 /// @return The modified schedule node.
IsLoopVectorizerDisabled(isl::ast_node Node)503 static bool IsLoopVectorizerDisabled(isl::ast_node Node) {
504   assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for);
505   auto Body = Node.for_get_body();
506   if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark)
507     return false;
508   auto Id = Body.mark_get_id();
509   if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0)
510     return true;
511   return false;
512 }
513 
createForSequential(isl::ast_node For,bool MarkParallel)514 void IslNodeBuilder::createForSequential(isl::ast_node For, bool MarkParallel) {
515   Value *ValueLB, *ValueUB, *ValueInc;
516   Type *MaxType;
517   BasicBlock *ExitBlock;
518   Value *IV;
519   CmpInst::Predicate Predicate;
520 
521   bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For);
522 
523   isl::ast_node Body = For.for_get_body();
524 
525   // isl_ast_node_for_is_degenerate(For)
526   //
527   // TODO: For degenerated loops we could generate a plain assignment.
528   //       However, for now we just reuse the logic for normal loops, which will
529   //       create a loop with a single iteration.
530 
531   isl::ast_expr Init = For.for_get_init();
532   isl::ast_expr Inc = For.for_get_inc();
533   isl::ast_expr Iterator = For.for_get_iterator();
534   isl::id IteratorID = Iterator.get_id();
535   isl::ast_expr UB = getUpperBound(For, Predicate);
536 
537   ValueLB = ExprBuilder.create(Init.release());
538   ValueUB = ExprBuilder.create(UB.release());
539   ValueInc = ExprBuilder.create(Inc.release());
540 
541   MaxType = ExprBuilder.getType(Iterator.get());
542   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
543   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
544   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
545 
546   if (MaxType != ValueLB->getType())
547     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
548   if (MaxType != ValueUB->getType())
549     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
550   if (MaxType != ValueInc->getType())
551     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
552 
553   // If we can show that LB <Predicate> UB holds at least once, we can
554   // omit the GuardBB in front of the loop.
555   bool UseGuardBB =
556       !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
557   IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock,
558                   Predicate, &Annotator, MarkParallel, UseGuardBB,
559                   LoopVectorizerDisabled);
560   IDToValue[IteratorID.get()] = IV;
561 
562   create(Body.release());
563 
564   Annotator.popLoop(MarkParallel);
565 
566   IDToValue.erase(IDToValue.find(IteratorID.get()));
567 
568   Builder.SetInsertPoint(&ExitBlock->front());
569 
570   SequentialLoops++;
571 }
572 
573 /// Remove the BBs contained in a (sub)function from the dominator tree.
574 ///
575 /// This function removes the basic blocks that are part of a subfunction from
576 /// the dominator tree. Specifically, when generating code it may happen that at
577 /// some point the code generation continues in a new sub-function (e.g., when
578 /// generating OpenMP code). The basic blocks that are created in this
579 /// sub-function are then still part of the dominator tree of the original
580 /// function, such that the dominator tree reaches over function boundaries.
581 /// This is not only incorrect, but also causes crashes. This function now
582 /// removes from the dominator tree all basic blocks that are dominated (and
583 /// consequently reachable) from the entry block of this (sub)function.
584 ///
585 /// FIXME: A LLVM (function or region) pass should not touch anything outside of
586 /// the function/region it runs on. Hence, the pure need for this function shows
587 /// that we do not comply to this rule. At the moment, this does not cause any
588 /// issues, but we should be aware that such issues may appear. Unfortunately
589 /// the current LLVM pass infrastructure does not allow to make Polly a module
590 /// or call-graph pass to solve this issue, as such a pass would not have access
591 /// to the per-function analyses passes needed by Polly. A future pass manager
592 /// infrastructure is supposed to enable such kind of access possibly allowing
593 /// us to create a cleaner solution here.
594 ///
595 /// FIXME: Instead of adding the dominance information and then dropping it
596 /// later on, we should try to just not add it in the first place. This requires
597 /// some careful testing to make sure this does not break in interaction with
598 /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or
599 /// which may try to update it.
600 ///
601 /// @param F The function which contains the BBs to removed.
602 /// @param DT The dominator tree from which to remove the BBs.
removeSubFuncFromDomTree(Function * F,DominatorTree & DT)603 static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) {
604   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
605   std::vector<BasicBlock *> Nodes;
606 
607   // We can only remove an element from the dominator tree, if all its children
608   // have been removed. To ensure this we obtain the list of nodes to remove
609   // using a post-order tree traversal.
610   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
611     Nodes.push_back(I->getBlock());
612 
613   for (BasicBlock *BB : Nodes)
614     DT.eraseNode(BB);
615 }
616 
createForParallel(__isl_take isl_ast_node * For)617 void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) {
618   isl_ast_node *Body;
619   isl_ast_expr *Init, *Inc, *Iterator, *UB;
620   isl_id *IteratorID;
621   Value *ValueLB, *ValueUB, *ValueInc;
622   Type *MaxType;
623   Value *IV;
624   CmpInst::Predicate Predicate;
625 
626   // The preamble of parallel code interacts different than normal code with
627   // e.g., scalar initialization. Therefore, we ensure the parallel code is
628   // separated from the last basic block.
629   BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(),
630                                  &*Builder.GetInsertPoint(), &DT, &LI);
631   ParBB->setName("polly.parallel.for");
632   Builder.SetInsertPoint(&ParBB->front());
633 
634   Body = isl_ast_node_for_get_body(For);
635   Init = isl_ast_node_for_get_init(For);
636   Inc = isl_ast_node_for_get_inc(For);
637   Iterator = isl_ast_node_for_get_iterator(For);
638   IteratorID = isl_ast_expr_get_id(Iterator);
639   UB = getUpperBound(isl::manage_copy(For), Predicate).release();
640 
641   ValueLB = ExprBuilder.create(Init);
642   ValueUB = ExprBuilder.create(UB);
643   ValueInc = ExprBuilder.create(Inc);
644 
645   // OpenMP always uses SLE. In case the isl generated AST uses a SLT
646   // expression, we need to adjust the loop bound by one.
647   if (Predicate == CmpInst::ICMP_SLT)
648     ValueUB = Builder.CreateAdd(
649         ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType()));
650 
651   MaxType = ExprBuilder.getType(Iterator);
652   MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
653   MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
654   MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
655 
656   if (MaxType != ValueLB->getType())
657     ValueLB = Builder.CreateSExt(ValueLB, MaxType);
658   if (MaxType != ValueUB->getType())
659     ValueUB = Builder.CreateSExt(ValueUB, MaxType);
660   if (MaxType != ValueInc->getType())
661     ValueInc = Builder.CreateSExt(ValueInc, MaxType);
662 
663   BasicBlock::iterator LoopBody;
664 
665   SetVector<Value *> SubtreeValues;
666   SetVector<const Loop *> Loops;
667 
668   getReferencesInSubtree(For, SubtreeValues, Loops);
669 
670   // Create for all loops we depend on values that contain the current loop
671   // iteration. These values are necessary to generate code for SCEVs that
672   // depend on such loops. As a result we need to pass them to the subfunction.
673   // See [Code generation of induction variables of loops outside Scops]
674   for (const Loop *L : Loops) {
675     Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L);
676     SubtreeValues.insert(LoopInductionVar);
677   }
678 
679   ValueMapT NewValues;
680 
681   std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr;
682 
683   switch (PollyOmpBackend) {
684   case OpenMPBackend::GNU:
685     ParallelLoopGenPtr.reset(
686         new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL));
687     break;
688   case OpenMPBackend::LLVM:
689     ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL));
690     break;
691   }
692 
693   IV = ParallelLoopGenPtr->createParallelLoop(
694       ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody);
695   BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
696   Builder.SetInsertPoint(&*LoopBody);
697 
698   // Remember the parallel subfunction
699   ParallelSubfunctions.push_back(LoopBody->getFunction());
700 
701   // Save the current values.
702   auto ValueMapCopy = ValueMap;
703   IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue;
704 
705   updateValues(NewValues);
706   IDToValue[IteratorID] = IV;
707 
708   ValueMapT NewValuesReverse;
709 
710   for (auto P : NewValues)
711     NewValuesReverse[P.second] = P.first;
712 
713   Annotator.addAlternativeAliasBases(NewValuesReverse);
714 
715   create(Body);
716 
717   Annotator.resetAlternativeAliasBases();
718   // Restore the original values.
719   ValueMap = ValueMapCopy;
720   IDToValue = IDToValueCopy;
721 
722   Builder.SetInsertPoint(&*AfterLoop);
723   removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT);
724 
725   for (const Loop *L : Loops)
726     OutsideLoopIterations.erase(L);
727 
728   isl_ast_node_free(For);
729   isl_ast_expr_free(Iterator);
730   isl_id_free(IteratorID);
731 
732   ParallelLoops++;
733 }
734 
735 /// Return whether any of @p Node's statements contain partial accesses.
736 ///
737 /// Partial accesses are not supported by Polly's vector code generator.
hasPartialAccesses(__isl_take isl_ast_node * Node)738 static bool hasPartialAccesses(__isl_take isl_ast_node *Node) {
739   return isl_ast_node_foreach_descendant_top_down(
740              Node,
741              [](isl_ast_node *Node, void *User) -> isl_bool {
742                if (isl_ast_node_get_type(Node) != isl_ast_node_user)
743                  return isl_bool_true;
744 
745                isl::ast_expr Expr =
746                    isl::manage(isl_ast_node_user_get_expr(Node));
747                isl::ast_expr StmtExpr = Expr.get_op_arg(0);
748                isl::id Id = StmtExpr.get_id();
749 
750                ScopStmt *Stmt =
751                    static_cast<ScopStmt *>(isl_id_get_user(Id.get()));
752                isl::set StmtDom = Stmt->getDomain();
753                for (auto *MA : *Stmt) {
754                  if (MA->isLatestPartialAccess())
755                    return isl_bool_error;
756                }
757                return isl_bool_true;
758              },
759              nullptr) == isl_stat_error;
760 }
761 
createFor(__isl_take isl_ast_node * For)762 void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
763   bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
764 
765   if (Vector && IslAstInfo::isInnermostParallel(For) &&
766       !IslAstInfo::isReductionParallel(For)) {
767     int VectorWidth = getNumberOfIterations(isl::manage_copy(For));
768     if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) {
769       createForVector(For, VectorWidth);
770       return;
771     }
772   }
773 
774   if (IslAstInfo::isExecutedInParallel(For)) {
775     createForParallel(For);
776     return;
777   }
778   bool Parallel =
779       (IslAstInfo::isParallel(For) && !IslAstInfo::isReductionParallel(For));
780   createForSequential(isl::manage(For), Parallel);
781 }
782 
createIf(__isl_take isl_ast_node * If)783 void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
784   isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);
785 
786   Function *F = Builder.GetInsertBlock()->getParent();
787   LLVMContext &Context = F->getContext();
788 
789   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
790                                   &*Builder.GetInsertPoint(), &DT, &LI);
791   CondBB->setName("polly.cond");
792   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
793   MergeBB->setName("polly.merge");
794   BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
795   BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);
796 
797   DT.addNewBlock(ThenBB, CondBB);
798   DT.addNewBlock(ElseBB, CondBB);
799   DT.changeImmediateDominator(MergeBB, CondBB);
800 
801   Loop *L = LI.getLoopFor(CondBB);
802   if (L) {
803     L->addBasicBlockToLoop(ThenBB, LI);
804     L->addBasicBlockToLoop(ElseBB, LI);
805   }
806 
807   CondBB->getTerminator()->eraseFromParent();
808 
809   Builder.SetInsertPoint(CondBB);
810   Value *Predicate = ExprBuilder.create(Cond);
811   Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
812   Builder.SetInsertPoint(ThenBB);
813   Builder.CreateBr(MergeBB);
814   Builder.SetInsertPoint(ElseBB);
815   Builder.CreateBr(MergeBB);
816   Builder.SetInsertPoint(&ThenBB->front());
817 
818   create(isl_ast_node_if_get_then(If));
819 
820   Builder.SetInsertPoint(&ElseBB->front());
821 
822   if (isl_ast_node_if_has_else(If))
823     create(isl_ast_node_if_get_else(If));
824 
825   Builder.SetInsertPoint(&MergeBB->front());
826 
827   isl_ast_node_free(If);
828 
829   IfConditions++;
830 }
831 
832 __isl_give isl_id_to_ast_expr *
createNewAccesses(ScopStmt * Stmt,__isl_keep isl_ast_node * Node)833 IslNodeBuilder::createNewAccesses(ScopStmt *Stmt,
834                                   __isl_keep isl_ast_node *Node) {
835   isl_id_to_ast_expr *NewAccesses =
836       isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx().get(), 0);
837 
838   auto *Build = IslAstInfo::getBuild(Node);
839   assert(Build && "Could not obtain isl_ast_build from user node");
840   Stmt->setAstBuild(isl::manage_copy(Build));
841 
842   for (auto *MA : *Stmt) {
843     if (!MA->hasNewAccessRelation()) {
844       if (PollyGenerateExpressions) {
845         if (!MA->isAffine())
846           continue;
847         if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI())
848           continue;
849 
850         auto *BasePtr =
851             dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr());
852         if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr))
853           continue;
854       } else {
855         continue;
856       }
857     }
858     assert(MA->isAffine() &&
859            "Only affine memory accesses can be code generated");
860 
861     auto Schedule = isl_ast_build_get_schedule(Build);
862 
863 #ifndef NDEBUG
864     if (MA->isRead()) {
865       auto Dom = Stmt->getDomain().release();
866       auto SchedDom = isl_set_from_union_set(
867           isl_union_map_domain(isl_union_map_copy(Schedule)));
868       auto AccDom = isl_map_domain(MA->getAccessRelation().release());
869       Dom = isl_set_intersect_params(Dom,
870                                      Stmt->getParent()->getContext().release());
871       SchedDom = isl_set_intersect_params(
872           SchedDom, Stmt->getParent()->getContext().release());
873       assert(isl_set_is_subset(SchedDom, AccDom) &&
874              "Access relation not defined on full schedule domain");
875       assert(isl_set_is_subset(Dom, AccDom) &&
876              "Access relation not defined on full domain");
877       isl_set_free(AccDom);
878       isl_set_free(SchedDom);
879       isl_set_free(Dom);
880     }
881 #endif
882 
883     auto PWAccRel =
884         MA->applyScheduleToAccessRelation(isl::manage(Schedule)).release();
885 
886     // isl cannot generate an index expression for access-nothing accesses.
887     isl::set AccDomain =
888         isl::manage(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel)));
889     isl::set Context = S.getContext();
890     AccDomain = AccDomain.intersect_params(Context);
891     if (AccDomain.is_empty()) {
892       isl_pw_multi_aff_free(PWAccRel);
893       continue;
894     }
895 
896     auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
897     NewAccesses =
898         isl_id_to_ast_expr_set(NewAccesses, MA->getId().release(), AccessExpr);
899   }
900 
901   return NewAccesses;
902 }
903 
createSubstitutions(__isl_take isl_ast_expr * Expr,ScopStmt * Stmt,LoopToScevMapT & LTS)904 void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr,
905                                          ScopStmt *Stmt, LoopToScevMapT &LTS) {
906   assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
907          "Expression of type 'op' expected");
908   assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
909          "Operation of type 'call' expected");
910   for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
911     isl_ast_expr *SubExpr;
912     Value *V;
913 
914     SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
915     V = ExprBuilder.create(SubExpr);
916     ScalarEvolution *SE = Stmt->getParent()->getSE();
917     LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
918   }
919 
920   isl_ast_expr_free(Expr);
921 }
922 
createSubstitutionsVector(__isl_take isl_ast_expr * Expr,ScopStmt * Stmt,std::vector<LoopToScevMapT> & VLTS,std::vector<Value * > & IVS,__isl_take isl_id * IteratorID)923 void IslNodeBuilder::createSubstitutionsVector(
924     __isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
925     std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
926     __isl_take isl_id *IteratorID) {
927   int i = 0;
928 
929   Value *OldValue = IDToValue[IteratorID];
930   for (Value *IV : IVS) {
931     IDToValue[IteratorID] = IV;
932     createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]);
933     i++;
934   }
935 
936   IDToValue[IteratorID] = OldValue;
937   isl_id_free(IteratorID);
938   isl_ast_expr_free(Expr);
939 }
940 
generateCopyStmt(ScopStmt * Stmt,__isl_keep isl_id_to_ast_expr * NewAccesses)941 void IslNodeBuilder::generateCopyStmt(
942     ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
943   assert(Stmt->size() == 2);
944   auto ReadAccess = Stmt->begin();
945   auto WriteAccess = ReadAccess++;
946   assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite());
947   assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() &&
948          "Accesses use the same data type");
949   assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind());
950   auto *AccessExpr =
951       isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release());
952   auto *LoadValue = ExprBuilder.create(AccessExpr);
953   AccessExpr =
954       isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release());
955   auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr);
956   Builder.CreateStore(LoadValue, StoreAddr);
957 }
958 
materializeNonScopLoopInductionVariable(const Loop * L)959 Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) {
960   assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() &&
961          "trying to materialize loop induction variable twice");
962   const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
963                                           SE.getUnknown(Builder.getInt64(1)), L,
964                                           SCEV::FlagAnyWrap);
965   Value *V = generateSCEV(OuterLIV);
966   OutsideLoopIterations[L] = SE.getUnknown(V);
967   return V;
968 }
969 
createUser(__isl_take isl_ast_node * User)970 void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
971   LoopToScevMapT LTS;
972   isl_id *Id;
973   ScopStmt *Stmt;
974 
975   isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
976   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
977   Id = isl_ast_expr_get_id(StmtExpr);
978   isl_ast_expr_free(StmtExpr);
979 
980   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
981 
982   Stmt = (ScopStmt *)isl_id_get_user(Id);
983   auto *NewAccesses = createNewAccesses(Stmt, User);
984   if (Stmt->isCopyStmt()) {
985     generateCopyStmt(Stmt, NewAccesses);
986     isl_ast_expr_free(Expr);
987   } else {
988     createSubstitutions(Expr, Stmt, LTS);
989 
990     if (Stmt->isBlockStmt())
991       BlockGen.copyStmt(*Stmt, LTS, NewAccesses);
992     else
993       RegionGen.copyStmt(*Stmt, LTS, NewAccesses);
994   }
995 
996   isl_id_to_ast_expr_free(NewAccesses);
997   isl_ast_node_free(User);
998   isl_id_free(Id);
999 }
1000 
createBlock(__isl_take isl_ast_node * Block)1001 void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
1002   isl_ast_node_list *List = isl_ast_node_block_get_children(Block);
1003 
1004   for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
1005     create(isl_ast_node_list_get_ast_node(List, i));
1006 
1007   isl_ast_node_free(Block);
1008   isl_ast_node_list_free(List);
1009 }
1010 
create(__isl_take isl_ast_node * Node)1011 void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
1012   switch (isl_ast_node_get_type(Node)) {
1013   case isl_ast_node_error:
1014     llvm_unreachable("code generation error");
1015   case isl_ast_node_mark:
1016     createMark(Node);
1017     return;
1018   case isl_ast_node_for:
1019     createFor(Node);
1020     return;
1021   case isl_ast_node_if:
1022     createIf(Node);
1023     return;
1024   case isl_ast_node_user:
1025     createUser(Node);
1026     return;
1027   case isl_ast_node_block:
1028     createBlock(Node);
1029     return;
1030   }
1031 
1032   llvm_unreachable("Unknown isl_ast_node type");
1033 }
1034 
materializeValue(isl_id * Id)1035 bool IslNodeBuilder::materializeValue(isl_id *Id) {
1036   // If the Id is already mapped, skip it.
1037   if (!IDToValue.count(Id)) {
1038     auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id);
1039     Value *V = nullptr;
1040 
1041     // Parameters could refer to invariant loads that need to be
1042     // preloaded before we can generate code for the parameter. Thus,
1043     // check if any value referred to in ParamSCEV is an invariant load
1044     // and if so make sure its equivalence class is preloaded.
1045     SetVector<Value *> Values;
1046     findValues(ParamSCEV, SE, Values);
1047     for (auto *Val : Values) {
1048       // Check if the value is an instruction in a dead block within the SCoP
1049       // and if so do not code generate it.
1050       if (auto *Inst = dyn_cast<Instruction>(Val)) {
1051         if (S.contains(Inst)) {
1052           bool IsDead = true;
1053 
1054           // Check for "undef" loads first, then if there is a statement for
1055           // the parent of Inst and lastly if the parent of Inst has an empty
1056           // domain. In the first and last case the instruction is dead but if
1057           // there is a statement or the domain is not empty Inst is not dead.
1058           auto MemInst = MemAccInst::dyn_cast(Inst);
1059           auto Address = MemInst ? MemInst.getPointerOperand() : nullptr;
1060           if (Address && SE.getUnknown(UndefValue::get(Address->getType())) ==
1061                              SE.getPointerBase(SE.getSCEV(Address))) {
1062           } else if (S.getStmtFor(Inst)) {
1063             IsDead = false;
1064           } else {
1065             auto *Domain = S.getDomainConditions(Inst->getParent()).release();
1066             IsDead = isl_set_is_empty(Domain);
1067             isl_set_free(Domain);
1068           }
1069 
1070           if (IsDead) {
1071             V = UndefValue::get(ParamSCEV->getType());
1072             break;
1073           }
1074         }
1075       }
1076 
1077       if (auto *IAClass = S.lookupInvariantEquivClass(Val)) {
1078         // Check if this invariant access class is empty, hence if we never
1079         // actually added a loads instruction to it. In that case it has no
1080         // (meaningful) users and we should not try to code generate it.
1081         if (IAClass->InvariantAccesses.empty())
1082           V = UndefValue::get(ParamSCEV->getType());
1083 
1084         if (!preloadInvariantEquivClass(*IAClass)) {
1085           isl_id_free(Id);
1086           return false;
1087         }
1088       }
1089     }
1090 
1091     V = V ? V : generateSCEV(ParamSCEV);
1092     IDToValue[Id] = V;
1093   }
1094 
1095   isl_id_free(Id);
1096   return true;
1097 }
1098 
materializeParameters(isl_set * Set)1099 bool IslNodeBuilder::materializeParameters(isl_set *Set) {
1100   for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) {
1101     if (!isl_set_involves_dims(Set, isl_dim_param, i, 1))
1102       continue;
1103     isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i);
1104     if (!materializeValue(Id))
1105       return false;
1106   }
1107   return true;
1108 }
1109 
materializeParameters()1110 bool IslNodeBuilder::materializeParameters() {
1111   for (const SCEV *Param : S.parameters()) {
1112     isl_id *Id = S.getIdForParam(Param).release();
1113     if (!materializeValue(Id))
1114       return false;
1115   }
1116   return true;
1117 }
1118 
1119 /// Generate the computation of the size of the outermost dimension from the
1120 /// Fortran array descriptor (in this case, `@g_arr`). The final `%size`
1121 /// contains the size of the array.
1122 ///
1123 /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] }
1124 /// %desc.dimensionty = type { i64, i64, i64 }
1125 /// @g_arr = global %arrty zeroinitializer, align 32
1126 /// ...
1127 /// %0 = load i64, i64* getelementptr inbounds
1128 ///                       (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2)
1129 /// %1 = load i64, i64* getelementptr inbounds
1130 ///                      (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1)
1131 /// %2 = sub nsw i64 %0, %1
1132 /// %size = add nsw i64 %2, 1
buildFADOutermostDimensionLoad(Value * GlobalDescriptor,PollyIRBuilder & Builder,std::string ArrayName)1133 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor,
1134                                              PollyIRBuilder &Builder,
1135                                              std::string ArrayName) {
1136   assert(GlobalDescriptor && "invalid global descriptor given");
1137 
1138   Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
1139                       Builder.getInt64(0), Builder.getInt32(2)};
1140   Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx,
1141                                             ArrayName + "_end_ptr");
1142   Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end");
1143 
1144   Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
1145                         Builder.getInt64(0), Builder.getInt32(1)};
1146   Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx,
1147                                               ArrayName + "_begin_ptr");
1148   Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin");
1149 
1150   Value *size =
1151       Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta");
1152   Type *endType = dyn_cast<IntegerType>(end->getType());
1153   assert(endType && "expected type of end to be integral");
1154 
1155   size = Builder.CreateNSWAdd(end,
1156                               ConstantInt::get(endType, 1, /* signed = */ true),
1157                               ArrayName + "_size");
1158 
1159   return size;
1160 }
1161 
materializeFortranArrayOutermostDimension()1162 bool IslNodeBuilder::materializeFortranArrayOutermostDimension() {
1163   for (ScopArrayInfo *Array : S.arrays()) {
1164     if (Array->getNumberOfDimensions() == 0)
1165       continue;
1166 
1167     Value *FAD = Array->getFortranArrayDescriptor();
1168     if (!FAD)
1169       continue;
1170 
1171     isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release();
1172     assert(ParametricPwAff && "parametric pw_aff corresponding "
1173                               "to outermost dimension does not "
1174                               "exist");
1175 
1176     isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0);
1177     isl_pw_aff_free(ParametricPwAff);
1178 
1179     assert(Id && "pw_aff is not parametric");
1180 
1181     if (IDToValue.count(Id)) {
1182       isl_id_free(Id);
1183       continue;
1184     }
1185 
1186     Value *FinalValue =
1187         buildFADOutermostDimensionLoad(FAD, Builder, Array->getName());
1188     assert(FinalValue && "unable to build Fortran array "
1189                          "descriptor load of outermost dimension");
1190     IDToValue[Id] = FinalValue;
1191     isl_id_free(Id);
1192   }
1193   return true;
1194 }
1195 
preloadUnconditionally(isl_set * AccessRange,isl_ast_build * Build,Instruction * AccInst)1196 Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange,
1197                                               isl_ast_build *Build,
1198                                               Instruction *AccInst) {
1199   isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange);
1200   isl_ast_expr *Access =
1201       isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
1202   auto *Address = isl_ast_expr_address_of(Access);
1203   auto *AddressValue = ExprBuilder.create(Address);
1204   Value *PreloadVal;
1205 
1206   // Correct the type as the SAI might have a different type than the user
1207   // expects, especially if the base pointer is a struct.
1208   Type *Ty = AccInst->getType();
1209 
1210   auto *Ptr = AddressValue;
1211   auto Name = Ptr->getName();
1212   auto AS = Ptr->getType()->getPointerAddressSpace();
1213   Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast");
1214   PreloadVal = Builder.CreateLoad(Ptr, Name + ".load");
1215   if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal))
1216     PreloadInst->setAlignment(cast<LoadInst>(AccInst)->getAlign());
1217 
1218   // TODO: This is only a hot fix for SCoP sequences that use the same load
1219   //       instruction contained and hoisted by one of the SCoPs.
1220   if (SE.isSCEVable(Ty))
1221     SE.forgetValue(AccInst);
1222 
1223   return PreloadVal;
1224 }
1225 
preloadInvariantLoad(const MemoryAccess & MA,isl_set * Domain)1226 Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA,
1227                                             isl_set *Domain) {
1228   isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release());
1229   AccessRange = isl_set_gist_params(AccessRange, S.getContext().release());
1230 
1231   if (!materializeParameters(AccessRange)) {
1232     isl_set_free(AccessRange);
1233     isl_set_free(Domain);
1234     return nullptr;
1235   }
1236 
1237   auto *Build =
1238       isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release()));
1239   isl_set *Universe = isl_set_universe(isl_set_get_space(Domain));
1240   bool AlwaysExecuted = isl_set_is_equal(Domain, Universe);
1241   isl_set_free(Universe);
1242 
1243   Instruction *AccInst = MA.getAccessInstruction();
1244   Type *AccInstTy = AccInst->getType();
1245 
1246   Value *PreloadVal = nullptr;
1247   if (AlwaysExecuted) {
1248     PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst);
1249     isl_ast_build_free(Build);
1250     isl_set_free(Domain);
1251     return PreloadVal;
1252   }
1253 
1254   if (!materializeParameters(Domain)) {
1255     isl_ast_build_free(Build);
1256     isl_set_free(AccessRange);
1257     isl_set_free(Domain);
1258     return nullptr;
1259   }
1260 
1261   isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain);
1262   Domain = nullptr;
1263 
1264   ExprBuilder.setTrackOverflow(true);
1265   Value *Cond = ExprBuilder.create(DomainCond);
1266   Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(),
1267                                               "polly.preload.cond.overflown");
1268   Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result");
1269   ExprBuilder.setTrackOverflow(false);
1270 
1271   if (!Cond->getType()->isIntegerTy(1))
1272     Cond = Builder.CreateIsNotNull(Cond);
1273 
1274   BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
1275                                   &*Builder.GetInsertPoint(), &DT, &LI);
1276   CondBB->setName("polly.preload.cond");
1277 
1278   BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
1279   MergeBB->setName("polly.preload.merge");
1280 
1281   Function *F = Builder.GetInsertBlock()->getParent();
1282   LLVMContext &Context = F->getContext();
1283   BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F);
1284 
1285   DT.addNewBlock(ExecBB, CondBB);
1286   if (Loop *L = LI.getLoopFor(CondBB))
1287     L->addBasicBlockToLoop(ExecBB, LI);
1288 
1289   auto *CondBBTerminator = CondBB->getTerminator();
1290   Builder.SetInsertPoint(CondBBTerminator);
1291   Builder.CreateCondBr(Cond, ExecBB, MergeBB);
1292   CondBBTerminator->eraseFromParent();
1293 
1294   Builder.SetInsertPoint(ExecBB);
1295   Builder.CreateBr(MergeBB);
1296 
1297   Builder.SetInsertPoint(ExecBB->getTerminator());
1298   Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst);
1299   Builder.SetInsertPoint(MergeBB->getTerminator());
1300   auto *MergePHI = Builder.CreatePHI(
1301       AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge");
1302   PreloadVal = MergePHI;
1303 
1304   if (!PreAccInst) {
1305     PreloadVal = nullptr;
1306     PreAccInst = UndefValue::get(AccInstTy);
1307   }
1308 
1309   MergePHI->addIncoming(PreAccInst, ExecBB);
1310   MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB);
1311 
1312   isl_ast_build_free(Build);
1313   return PreloadVal;
1314 }
1315 
preloadInvariantEquivClass(InvariantEquivClassTy & IAClass)1316 bool IslNodeBuilder::preloadInvariantEquivClass(
1317     InvariantEquivClassTy &IAClass) {
1318   // For an equivalence class of invariant loads we pre-load the representing
1319   // element with the unified execution context. However, we have to map all
1320   // elements of the class to the one preloaded load as they are referenced
1321   // during the code generation and therefor need to be mapped.
1322   const MemoryAccessList &MAs = IAClass.InvariantAccesses;
1323   if (MAs.empty())
1324     return true;
1325 
1326   MemoryAccess *MA = MAs.front();
1327   assert(MA->isArrayKind() && MA->isRead());
1328 
1329   // If the access function was already mapped, the preload of this equivalence
1330   // class was triggered earlier already and doesn't need to be done again.
1331   if (ValueMap.count(MA->getAccessInstruction()))
1332     return true;
1333 
1334   // Check for recursion which can be caused by additional constraints, e.g.,
1335   // non-finite loop constraints. In such a case we have to bail out and insert
1336   // a "false" runtime check that will cause the original code to be executed.
1337   auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType);
1338   if (!PreloadedPtrs.insert(PtrId).second)
1339     return false;
1340 
1341   // The execution context of the IAClass.
1342   isl::set &ExecutionCtx = IAClass.ExecutionContext;
1343 
1344   // If the base pointer of this class is dependent on another one we have to
1345   // make sure it was preloaded already.
1346   auto *SAI = MA->getScopArrayInfo();
1347   if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) {
1348     if (!preloadInvariantEquivClass(*BaseIAClass))
1349       return false;
1350 
1351     // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and
1352     // we need to refine the ExecutionCtx.
1353     isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
1354     ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
1355   }
1356 
1357   // If the size of a dimension is dependent on another class, make sure it is
1358   // preloaded.
1359   for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) {
1360     const SCEV *Dim = SAI->getDimensionSize(i);
1361     SetVector<Value *> Values;
1362     findValues(Dim, SE, Values);
1363     for (auto *Val : Values) {
1364       if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) {
1365         if (!preloadInvariantEquivClass(*BaseIAClass))
1366           return false;
1367 
1368         // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx
1369         // and we need to refine the ExecutionCtx.
1370         isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
1371         ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
1372       }
1373     }
1374   }
1375 
1376   Instruction *AccInst = MA->getAccessInstruction();
1377   Type *AccInstTy = AccInst->getType();
1378 
1379   Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy());
1380   if (!PreloadVal)
1381     return false;
1382 
1383   for (const MemoryAccess *MA : MAs) {
1384     Instruction *MAAccInst = MA->getAccessInstruction();
1385     assert(PreloadVal->getType() == MAAccInst->getType());
1386     ValueMap[MAAccInst] = PreloadVal;
1387   }
1388 
1389   if (SE.isSCEVable(AccInstTy)) {
1390     isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release();
1391     if (ParamId)
1392       IDToValue[ParamId] = PreloadVal;
1393     isl_id_free(ParamId);
1394   }
1395 
1396   BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1397   auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(),
1398                                 AccInst->getName() + ".preload.s2a",
1399                                 &*EntryBB->getFirstInsertionPt());
1400   Builder.CreateStore(PreloadVal, Alloca);
1401   ValueMapT PreloadedPointer;
1402   PreloadedPointer[PreloadVal] = AccInst;
1403   Annotator.addAlternativeAliasBases(PreloadedPointer);
1404 
1405   for (auto *DerivedSAI : SAI->getDerivedSAIs()) {
1406     Value *BasePtr = DerivedSAI->getBasePtr();
1407 
1408     for (const MemoryAccess *MA : MAs) {
1409       // As the derived SAI information is quite coarse, any load from the
1410       // current SAI could be the base pointer of the derived SAI, however we
1411       // should only change the base pointer of the derived SAI if we actually
1412       // preloaded it.
1413       if (BasePtr == MA->getOriginalBaseAddr()) {
1414         assert(BasePtr->getType() == PreloadVal->getType());
1415         DerivedSAI->setBasePtr(PreloadVal);
1416       }
1417 
1418       // For scalar derived SAIs we remap the alloca used for the derived value.
1419       if (BasePtr == MA->getAccessInstruction())
1420         ScalarMap[DerivedSAI] = Alloca;
1421     }
1422   }
1423 
1424   for (const MemoryAccess *MA : MAs) {
1425     Instruction *MAAccInst = MA->getAccessInstruction();
1426     // Use the escape system to get the correct value to users outside the SCoP.
1427     BlockGenerator::EscapeUserVectorTy EscapeUsers;
1428     for (auto *U : MAAccInst->users())
1429       if (Instruction *UI = dyn_cast<Instruction>(U))
1430         if (!S.contains(UI))
1431           EscapeUsers.push_back(UI);
1432 
1433     if (EscapeUsers.empty())
1434       continue;
1435 
1436     EscapeMap[MA->getAccessInstruction()] =
1437         std::make_pair(Alloca, std::move(EscapeUsers));
1438   }
1439 
1440   return true;
1441 }
1442 
allocateNewArrays(BBPair StartExitBlocks)1443 void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) {
1444   for (auto &SAI : S.arrays()) {
1445     if (SAI->getBasePtr())
1446       continue;
1447 
1448     assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) &&
1449            "The size of the outermost dimension is used to declare newly "
1450            "created arrays that require memory allocation.");
1451 
1452     Type *NewArrayType = nullptr;
1453 
1454     // Get the size of the array = size(dim_1)*...*size(dim_n)
1455     uint64_t ArraySizeInt = 1;
1456     for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) {
1457       auto *DimSize = SAI->getDimensionSize(i);
1458       unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize)
1459                                      ->getAPInt()
1460                                      .getLimitedValue();
1461 
1462       if (!NewArrayType)
1463         NewArrayType = SAI->getElementType();
1464 
1465       NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize);
1466       ArraySizeInt *= UnsignedDimSize;
1467     }
1468 
1469     if (SAI->isOnHeap()) {
1470       LLVMContext &Ctx = NewArrayType->getContext();
1471 
1472       // Get the IntPtrTy from the Datalayout
1473       auto IntPtrTy = DL.getIntPtrType(Ctx);
1474 
1475       // Get the size of the element type in bits
1476       unsigned Size = SAI->getElemSizeInBytes();
1477 
1478       // Insert the malloc call at polly.start
1479       auto InstIt = std::get<0>(StartExitBlocks)->getTerminator();
1480       auto *CreatedArray = CallInst::CreateMalloc(
1481           &*InstIt, IntPtrTy, SAI->getElementType(),
1482           ConstantInt::get(Type::getInt64Ty(Ctx), Size),
1483           ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr,
1484           SAI->getName());
1485 
1486       SAI->setBasePtr(CreatedArray);
1487 
1488       // Insert the free call at polly.exiting
1489       CallInst::CreateFree(CreatedArray,
1490                            std::get<1>(StartExitBlocks)->getTerminator());
1491     } else {
1492       auto InstIt = Builder.GetInsertBlock()
1493                         ->getParent()
1494                         ->getEntryBlock()
1495                         .getTerminator();
1496 
1497       auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(),
1498                                           SAI->getName(), &*InstIt);
1499       if (PollyTargetFirstLevelCacheLineSize)
1500         CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize));
1501       SAI->setBasePtr(CreatedArray);
1502     }
1503   }
1504 }
1505 
preloadInvariantLoads()1506 bool IslNodeBuilder::preloadInvariantLoads() {
1507   auto &InvariantEquivClasses = S.getInvariantAccesses();
1508   if (InvariantEquivClasses.empty())
1509     return true;
1510 
1511   BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(),
1512                                      &*Builder.GetInsertPoint(), &DT, &LI);
1513   PreLoadBB->setName("polly.preload.begin");
1514   Builder.SetInsertPoint(&PreLoadBB->front());
1515 
1516   for (auto &IAClass : InvariantEquivClasses)
1517     if (!preloadInvariantEquivClass(IAClass))
1518       return false;
1519 
1520   return true;
1521 }
1522 
addParameters(__isl_take isl_set * Context)1523 void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
1524   // Materialize values for the parameters of the SCoP.
1525   materializeParameters();
1526 
1527   // materialize the outermost dimension parameters for a Fortran array.
1528   // NOTE: materializeParameters() does not work since it looks through
1529   // the SCEVs. We don't have a corresponding SCEV for the array size
1530   // parameter
1531   materializeFortranArrayOutermostDimension();
1532 
1533   // Generate values for the current loop iteration for all surrounding loops.
1534   //
1535   // We may also reference loops outside of the scop which do not contain the
1536   // scop itself, but as the number of such scops may be arbitrarily large we do
1537   // not generate code for them here, but only at the point of code generation
1538   // where these values are needed.
1539   Loop *L = LI.getLoopFor(S.getEntry());
1540 
1541   while (L != nullptr && S.contains(L))
1542     L = L->getParentLoop();
1543 
1544   while (L != nullptr) {
1545     materializeNonScopLoopInductionVariable(L);
1546     L = L->getParentLoop();
1547   }
1548 
1549   isl_set_free(Context);
1550 }
1551 
generateSCEV(const SCEV * Expr)1552 Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) {
1553   /// We pass the insert location of our Builder, as Polly ensures during IR
1554   /// generation that there is always a valid CFG into which instructions are
1555   /// inserted. As a result, the insertpoint is known to be always followed by a
1556   /// terminator instruction. This means the insert point may be specified by a
1557   /// terminator instruction, but it can never point to an ->end() iterator
1558   /// which does not have a corresponding instruction. Hence, dereferencing
1559   /// the insertpoint to obtain an instruction is known to be save.
1560   ///
1561   /// We also do not need to update the Builder here, as new instructions are
1562   /// always inserted _before_ the given InsertLocation. As a result, the
1563   /// insert location remains valid.
1564   assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() &&
1565          "Insert location points after last valid instruction");
1566   Instruction *InsertLocation = &*Builder.GetInsertPoint();
1567   return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(),
1568                        InsertLocation, &ValueMap,
1569                        StartBlock->getSinglePredecessor());
1570 }
1571 
1572 /// The AST expression we generate to perform the run-time check assumes
1573 /// computations on integer types of infinite size. As we only use 64-bit
1574 /// arithmetic we check for overflows, in case of which we set the result
1575 /// of this run-time check to false to be conservatively correct,
createRTC(isl_ast_expr * Condition)1576 Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) {
1577   auto ExprBuilder = getExprBuilder();
1578 
1579   // In case the AST expression has integers larger than 64 bit, bail out. The
1580   // resulting LLVM-IR will contain operations on types that use more than 64
1581   // bits. These are -- in case wrapping intrinsics are used -- translated to
1582   // runtime library calls that are not available on all systems (e.g., Android)
1583   // and consequently will result in linker errors.
1584   if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) {
1585     isl_ast_expr_free(Condition);
1586     return Builder.getFalse();
1587   }
1588 
1589   ExprBuilder.setTrackOverflow(true);
1590   Value *RTC = ExprBuilder.create(Condition);
1591   if (!RTC->getType()->isIntegerTy(1))
1592     RTC = Builder.CreateIsNotNull(RTC);
1593   Value *OverflowHappened =
1594       Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown");
1595 
1596   if (PollyGenerateRTCPrint) {
1597     auto *F = Builder.GetInsertBlock()->getParent();
1598     RuntimeDebugBuilder::createCPUPrinter(
1599         Builder,
1600         "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() +
1601             "RTC: ",
1602         RTC, " Overflow: ", OverflowHappened,
1603         "\n"
1604         "  (0 failed, -1 succeeded)\n"
1605         "  (if one or both are 0 falling back to original code, if both are -1 "
1606         "executing Polly code)\n");
1607   }
1608 
1609   RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result");
1610   ExprBuilder.setTrackOverflow(false);
1611 
1612   if (!isa<ConstantInt>(RTC))
1613     VersionedScops++;
1614 
1615   return RTC;
1616 }
1617