1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <math.h>
14
15 #include "config/aom_dsp_rtcd.h"
16
17 #include "aom_dsp/ssim.h"
18 #include "aom_ports/mem.h"
19 #include "aom_ports/system_state.h"
20
aom_ssim_parms_16x16_c(const uint8_t * s,int sp,const uint8_t * r,int rp,uint32_t * sum_s,uint32_t * sum_r,uint32_t * sum_sq_s,uint32_t * sum_sq_r,uint32_t * sum_sxr)21 void aom_ssim_parms_16x16_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
22 uint32_t *sum_s, uint32_t *sum_r,
23 uint32_t *sum_sq_s, uint32_t *sum_sq_r,
24 uint32_t *sum_sxr) {
25 int i, j;
26 for (i = 0; i < 16; i++, s += sp, r += rp) {
27 for (j = 0; j < 16; j++) {
28 *sum_s += s[j];
29 *sum_r += r[j];
30 *sum_sq_s += s[j] * s[j];
31 *sum_sq_r += r[j] * r[j];
32 *sum_sxr += s[j] * r[j];
33 }
34 }
35 }
36
aom_ssim_parms_8x8_c(const uint8_t * s,int sp,const uint8_t * r,int rp,uint32_t * sum_s,uint32_t * sum_r,uint32_t * sum_sq_s,uint32_t * sum_sq_r,uint32_t * sum_sxr)37 void aom_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
38 uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s,
39 uint32_t *sum_sq_r, uint32_t *sum_sxr) {
40 int i, j;
41 for (i = 0; i < 8; i++, s += sp, r += rp) {
42 for (j = 0; j < 8; j++) {
43 *sum_s += s[j];
44 *sum_r += r[j];
45 *sum_sq_s += s[j] * s[j];
46 *sum_sq_r += r[j] * r[j];
47 *sum_sxr += s[j] * r[j];
48 }
49 }
50 }
51
52 #if CONFIG_AV1_HIGHBITDEPTH
aom_highbd_ssim_parms_8x8_c(const uint16_t * s,int sp,const uint16_t * r,int rp,uint32_t * sum_s,uint32_t * sum_r,uint32_t * sum_sq_s,uint32_t * sum_sq_r,uint32_t * sum_sxr)53 void aom_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp, const uint16_t *r,
54 int rp, uint32_t *sum_s, uint32_t *sum_r,
55 uint32_t *sum_sq_s, uint32_t *sum_sq_r,
56 uint32_t *sum_sxr) {
57 int i, j;
58 for (i = 0; i < 8; i++, s += sp, r += rp) {
59 for (j = 0; j < 8; j++) {
60 *sum_s += s[j];
61 *sum_r += r[j];
62 *sum_sq_s += s[j] * s[j];
63 *sum_sq_r += r[j] * r[j];
64 *sum_sxr += s[j] * r[j];
65 }
66 }
67 }
68 #endif
69
70 static const int64_t cc1 = 26634; // (64^2*(.01*255)^2
71 static const int64_t cc2 = 239708; // (64^2*(.03*255)^2
72 static const int64_t cc1_10 = 428658; // (64^2*(.01*1023)^2
73 static const int64_t cc2_10 = 3857925; // (64^2*(.03*1023)^2
74 static const int64_t cc1_12 = 6868593; // (64^2*(.01*4095)^2
75 static const int64_t cc2_12 = 61817334; // (64^2*(.03*4095)^2
76
similarity(uint32_t sum_s,uint32_t sum_r,uint32_t sum_sq_s,uint32_t sum_sq_r,uint32_t sum_sxr,int count,uint32_t bd)77 static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s,
78 uint32_t sum_sq_r, uint32_t sum_sxr, int count,
79 uint32_t bd) {
80 int64_t ssim_n, ssim_d;
81 int64_t c1, c2;
82 if (bd == 8) {
83 // scale the constants by number of pixels
84 c1 = (cc1 * count * count) >> 12;
85 c2 = (cc2 * count * count) >> 12;
86 } else if (bd == 10) {
87 c1 = (cc1_10 * count * count) >> 12;
88 c2 = (cc2_10 * count * count) >> 12;
89 } else if (bd == 12) {
90 c1 = (cc1_12 * count * count) >> 12;
91 c2 = (cc2_12 * count * count) >> 12;
92 } else {
93 c1 = c2 = 0;
94 assert(0);
95 }
96
97 ssim_n = (2 * sum_s * sum_r + c1) *
98 ((int64_t)2 * count * sum_sxr - (int64_t)2 * sum_s * sum_r + c2);
99
100 ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) *
101 ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s +
102 (int64_t)count * sum_sq_r - (int64_t)sum_r * sum_r + c2);
103
104 return ssim_n * 1.0 / ssim_d;
105 }
106
ssim_8x8(const uint8_t * s,int sp,const uint8_t * r,int rp)107 static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) {
108 uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
109 aom_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
110 &sum_sxr);
111 return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64, 8);
112 }
113
highbd_ssim_8x8(const uint16_t * s,int sp,const uint16_t * r,int rp,uint32_t bd,uint32_t shift)114 static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r,
115 int rp, uint32_t bd, uint32_t shift) {
116 uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
117 aom_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
118 &sum_sxr);
119 return similarity(sum_s >> shift, sum_r >> shift, sum_sq_s >> (2 * shift),
120 sum_sq_r >> (2 * shift), sum_sxr >> (2 * shift), 64, bd);
121 }
122
123 // We are using a 8x8 moving window with starting location of each 8x8 window
124 // on the 4x4 pixel grid. Such arrangement allows the windows to overlap
125 // block boundaries to penalize blocking artifacts.
aom_ssim2(const uint8_t * img1,const uint8_t * img2,int stride_img1,int stride_img2,int width,int height)126 static double aom_ssim2(const uint8_t *img1, const uint8_t *img2,
127 int stride_img1, int stride_img2, int width,
128 int height) {
129 int i, j;
130 int samples = 0;
131 double ssim_total = 0;
132
133 // sample point start with each 4x4 location
134 for (i = 0; i <= height - 8;
135 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
136 for (j = 0; j <= width - 8; j += 4) {
137 double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
138 ssim_total += v;
139 samples++;
140 }
141 }
142 ssim_total /= samples;
143 return ssim_total;
144 }
145
aom_highbd_ssim2(const uint8_t * img1,const uint8_t * img2,int stride_img1,int stride_img2,int width,int height,uint32_t bd,uint32_t shift)146 static double aom_highbd_ssim2(const uint8_t *img1, const uint8_t *img2,
147 int stride_img1, int stride_img2, int width,
148 int height, uint32_t bd, uint32_t shift) {
149 int i, j;
150 int samples = 0;
151 double ssim_total = 0;
152
153 // sample point start with each 4x4 location
154 for (i = 0; i <= height - 8;
155 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
156 for (j = 0; j <= width - 8; j += 4) {
157 double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1,
158 CONVERT_TO_SHORTPTR(img2 + j), stride_img2, bd,
159 shift);
160 ssim_total += v;
161 samples++;
162 }
163 }
164 ssim_total /= samples;
165 return ssim_total;
166 }
167
aom_calc_ssim(const YV12_BUFFER_CONFIG * source,const YV12_BUFFER_CONFIG * dest,double * weight)168 double aom_calc_ssim(const YV12_BUFFER_CONFIG *source,
169 const YV12_BUFFER_CONFIG *dest, double *weight) {
170 double abc[3];
171 for (int i = 0; i < 3; ++i) {
172 const int is_uv = i > 0;
173 abc[i] = aom_ssim2(source->buffers[i], dest->buffers[i],
174 source->strides[is_uv], dest->strides[is_uv],
175 source->crop_widths[is_uv], source->crop_heights[is_uv]);
176 }
177
178 *weight = 1;
179 return abc[0] * .8 + .1 * (abc[1] + abc[2]);
180 }
181
182 // traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity
183 //
184 // Re working out the math ->
185 //
186 // ssim(x,y) = (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) /
187 // ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2))
188 //
189 // mean(x) = sum(x) / n
190 //
191 // cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n)
192 //
193 // var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n)
194 //
195 // ssim(x,y) =
196 // (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) /
197 // (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) *
198 // ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+
199 // (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2)))
200 //
201 // factoring out n*n
202 //
203 // ssim(x,y) =
204 // (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) /
205 // (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) *
206 // (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2))
207 //
208 // Replace c1 with n*n * c1 for the final step that leads to this code:
209 // The final step scales by 12 bits so we don't lose precision in the constants.
210
ssimv_similarity(const Ssimv * sv,int64_t n)211 static double ssimv_similarity(const Ssimv *sv, int64_t n) {
212 // Scale the constants by number of pixels.
213 const int64_t c1 = (cc1 * n * n) >> 12;
214 const int64_t c2 = (cc2 * n * n) >> 12;
215
216 const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) /
217 (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1);
218
219 // Since these variables are unsigned sums, convert to double so
220 // math is done in double arithmetic.
221 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
222 (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
223 n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
224
225 return l * v;
226 }
227
228 // The first term of the ssim metric is a luminance factor.
229 //
230 // (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1)
231 //
232 // This luminance factor is super sensitive to the dark side of luminance
233 // values and completely insensitive on the white side. check out 2 sets
234 // (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60
235 // 2*250*252/ (250^2+252^2) => .99999997
236 //
237 // As a result in this tweaked version of the calculation in which the
238 // luminance is taken as percentage off from peak possible.
239 //
240 // 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count
241 //
ssimv_similarity2(const Ssimv * sv,int64_t n)242 static double ssimv_similarity2(const Ssimv *sv, int64_t n) {
243 // Scale the constants by number of pixels.
244 const int64_t c1 = (cc1 * n * n) >> 12;
245 const int64_t c2 = (cc2 * n * n) >> 12;
246
247 const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n;
248 const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1);
249
250 // Since these variables are unsigned, sums convert to double so
251 // math is done in double arithmetic.
252 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
253 (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
254 n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
255
256 return l * v;
257 }
ssimv_parms(uint8_t * img1,int img1_pitch,uint8_t * img2,int img2_pitch,Ssimv * sv)258 static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2,
259 int img2_pitch, Ssimv *sv) {
260 aom_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, &sv->sum_s, &sv->sum_r,
261 &sv->sum_sq_s, &sv->sum_sq_r, &sv->sum_sxr);
262 }
263
aom_get_ssim_metrics(uint8_t * img1,int img1_pitch,uint8_t * img2,int img2_pitch,int width,int height,Ssimv * sv2,Metrics * m,int do_inconsistency)264 double aom_get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2,
265 int img2_pitch, int width, int height, Ssimv *sv2,
266 Metrics *m, int do_inconsistency) {
267 double dssim_total = 0;
268 double ssim_total = 0;
269 double ssim2_total = 0;
270 double inconsistency_total = 0;
271 int i, j;
272 int c = 0;
273 double norm;
274 double old_ssim_total = 0;
275 aom_clear_system_state();
276 // We can sample points as frequently as we like start with 1 per 4x4.
277 for (i = 0; i < height;
278 i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
279 for (j = 0; j < width; j += 4, ++c) {
280 Ssimv sv = { 0, 0, 0, 0, 0, 0 };
281 double ssim;
282 double ssim2;
283 double dssim;
284 uint32_t var_new;
285 uint32_t var_old;
286 uint32_t mean_new;
287 uint32_t mean_old;
288 double ssim_new;
289 double ssim_old;
290
291 // Not sure there's a great way to handle the edge pixels
292 // in ssim when using a window. Seems biased against edge pixels
293 // however you handle this. This uses only samples that are
294 // fully in the frame.
295 if (j + 8 <= width && i + 8 <= height) {
296 ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv);
297 }
298
299 ssim = ssimv_similarity(&sv, 64);
300 ssim2 = ssimv_similarity2(&sv, 64);
301
302 sv.ssim = ssim2;
303
304 // dssim is calculated to use as an actual error metric and
305 // is scaled up to the same range as sum square error.
306 // Since we are subsampling every 16th point maybe this should be
307 // *16 ?
308 dssim = 255 * 255 * (1 - ssim2) / 2;
309
310 // Here I introduce a new error metric: consistency-weighted
311 // SSIM-inconsistency. This metric isolates frames where the
312 // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much
313 // sharper or blurrier than the others. Higher values indicate a
314 // temporally inconsistent SSIM. There are two ideas at work:
315 //
316 // 1) 'SSIM-inconsistency': the total inconsistency value
317 // reflects how much SSIM values are changing between this
318 // source / reference frame pair and the previous pair.
319 //
320 // 2) 'consistency-weighted': weights de-emphasize areas in the
321 // frame where the scene content has changed. Changes in scene
322 // content are detected via changes in local variance and local
323 // mean.
324 //
325 // Thus the overall measure reflects how inconsistent the SSIM
326 // values are, over consistent regions of the frame.
327 //
328 // The metric has three terms:
329 //
330 // term 1 -> uses change in scene Variance to weight error score
331 // 2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2)
332 // larger changes from one frame to the next mean we care
333 // less about consistency.
334 //
335 // term 2 -> uses change in local scene luminance to weight error
336 // 2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2)
337 // larger changes from one frame to the next mean we care
338 // less about consistency.
339 //
340 // term3 -> measures inconsistency in ssim scores between frames
341 // 1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2).
342 //
343 // This term compares the ssim score for the same location in 2
344 // subsequent frames.
345 var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64;
346 var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64;
347 mean_new = sv.sum_s;
348 mean_old = sv2[c].sum_s;
349 ssim_new = sv.ssim;
350 ssim_old = sv2[c].ssim;
351
352 if (do_inconsistency) {
353 // We do the metric once for every 4x4 block in the image. Since
354 // we are scaling the error to SSE for use in a psnr calculation
355 // 1.0 = 4x4x255x255 the worst error we can possibly have.
356 static const double kScaling = 4. * 4 * 255 * 255;
357
358 // The constants have to be non 0 to avoid potential divide by 0
359 // issues other than that they affect kind of a weighting between
360 // the terms. No testing of what the right terms should be has been
361 // done.
362 static const double c1 = 1, c2 = 1, c3 = 1;
363
364 // This measures how much consistent variance is in two consecutive
365 // source frames. 1.0 means they have exactly the same variance.
366 const double variance_term =
367 (2.0 * var_old * var_new + c1) /
368 (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1);
369
370 // This measures how consistent the local mean are between two
371 // consecutive frames. 1.0 means they have exactly the same mean.
372 const double mean_term =
373 (2.0 * mean_old * mean_new + c2) /
374 (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2);
375
376 // This measures how consistent the ssims of two
377 // consecutive frames is. 1.0 means they are exactly the same.
378 double ssim_term =
379 pow((2.0 * ssim_old * ssim_new + c3) /
380 (ssim_old * ssim_old + ssim_new * ssim_new + c3),
381 5);
382
383 double this_inconsistency;
384
385 // Floating point math sometimes makes this > 1 by a tiny bit.
386 // We want the metric to scale between 0 and 1.0 so we can convert
387 // it to an snr scaled value.
388 if (ssim_term > 1) ssim_term = 1;
389
390 // This converts the consistency metric to an inconsistency metric
391 // ( so we can scale it like psnr to something like sum square error.
392 // The reason for the variance and mean terms is the assumption that
393 // if there are big changes in the source we shouldn't penalize
394 // inconsistency in ssim scores a bit less as it will be less visible
395 // to the user.
396 this_inconsistency = (1 - ssim_term) * variance_term * mean_term;
397
398 this_inconsistency *= kScaling;
399 inconsistency_total += this_inconsistency;
400 }
401 sv2[c] = sv;
402 ssim_total += ssim;
403 ssim2_total += ssim2;
404 dssim_total += dssim;
405
406 old_ssim_total += ssim_old;
407 }
408 old_ssim_total += 0;
409 }
410
411 norm = 1. / (width / 4) / (height / 4);
412 ssim_total *= norm;
413 ssim2_total *= norm;
414 m->ssim2 = ssim2_total;
415 m->ssim = ssim_total;
416 if (old_ssim_total == 0) inconsistency_total = 0;
417
418 m->ssimc = inconsistency_total;
419
420 m->dssim = dssim_total;
421 return inconsistency_total;
422 }
423
aom_highbd_calc_ssim(const YV12_BUFFER_CONFIG * source,const YV12_BUFFER_CONFIG * dest,double * weight,uint32_t bd,uint32_t in_bd)424 double aom_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source,
425 const YV12_BUFFER_CONFIG *dest, double *weight,
426 uint32_t bd, uint32_t in_bd) {
427 assert(bd >= in_bd);
428 const uint32_t shift = bd - in_bd;
429
430 double abc[3];
431 for (int i = 0; i < 3; ++i) {
432 const int is_uv = i > 0;
433 abc[i] = aom_highbd_ssim2(source->buffers[i], dest->buffers[i],
434 source->strides[is_uv], dest->strides[is_uv],
435 source->crop_widths[is_uv],
436 source->crop_heights[is_uv], in_bd, shift);
437 }
438
439 *weight = 1;
440 return abc[0] * .8 + .1 * (abc[1] + abc[2]);
441 }
442