1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 * Copyright (C) 2009-2014, International Business Machines
7 * Corporation and others. All Rights Reserved.
8 *
9 *******************************************************************************
10 * file name: normalizer2impl.cpp
11 * encoding: UTF-8
12 * tab size: 8 (not used)
13 * indentation:4
14 *
15 * created on: 2009nov22
16 * created by: Markus W. Scherer
17 */
18
19 // #define UCPTRIE_DEBUG
20
21 #include "unicode/utypes.h"
22
23 #if !UCONFIG_NO_NORMALIZATION
24
25 #include "unicode/bytestream.h"
26 #include "unicode/edits.h"
27 #include "unicode/normalizer2.h"
28 #include "unicode/stringoptions.h"
29 #include "unicode/ucptrie.h"
30 #include "unicode/udata.h"
31 #include "unicode/umutablecptrie.h"
32 #include "unicode/ustring.h"
33 #include "unicode/utf16.h"
34 #include "unicode/utf8.h"
35 #include "bytesinkutil.h"
36 #include "cmemory.h"
37 #include "mutex.h"
38 #include "normalizer2impl.h"
39 #include "putilimp.h"
40 #include "uassert.h"
41 #include "ucptrie_impl.h"
42 #include "uset_imp.h"
43 #include "uvector.h"
44
45 U_NAMESPACE_BEGIN
46
47 namespace {
48
49 /**
50 * UTF-8 lead byte for minNoMaybeCP.
51 * Can be lower than the actual lead byte for c.
52 * Typically U+0300 for NFC/NFD, U+00A0 for NFKC/NFKD, U+0041 for NFKC_Casefold.
53 */
leadByteForCP(UChar32 c)54 inline uint8_t leadByteForCP(UChar32 c) {
55 if (c <= 0x7f) {
56 return (uint8_t)c;
57 } else if (c <= 0x7ff) {
58 return (uint8_t)(0xc0+(c>>6));
59 } else {
60 // Should not occur because ccc(U+0300)!=0.
61 return 0xe0;
62 }
63 }
64
65 /**
66 * Returns the code point from one single well-formed UTF-8 byte sequence
67 * between cpStart and cpLimit.
68 *
69 * Trie UTF-8 macros do not assemble whole code points (for efficiency).
70 * When we do need the code point, we call this function.
71 * We should not need it for normalization-inert data (norm16==0).
72 * Illegal sequences yield the error value norm16==0 just like real normalization-inert code points.
73 */
codePointFromValidUTF8(const uint8_t * cpStart,const uint8_t * cpLimit)74 UChar32 codePointFromValidUTF8(const uint8_t *cpStart, const uint8_t *cpLimit) {
75 // Similar to U8_NEXT_UNSAFE(s, i, c).
76 U_ASSERT(cpStart < cpLimit);
77 uint8_t c = *cpStart;
78 switch(cpLimit-cpStart) {
79 case 1:
80 return c;
81 case 2:
82 return ((c&0x1f)<<6) | (cpStart[1]&0x3f);
83 case 3:
84 // no need for (c&0xf) because the upper bits are truncated after <<12 in the cast to (UChar)
85 return (UChar)((c<<12) | ((cpStart[1]&0x3f)<<6) | (cpStart[2]&0x3f));
86 case 4:
87 return ((c&7)<<18) | ((cpStart[1]&0x3f)<<12) | ((cpStart[2]&0x3f)<<6) | (cpStart[3]&0x3f);
88 default:
89 UPRV_UNREACHABLE; // Should not occur.
90 }
91 }
92
93 /**
94 * Returns the last code point in [start, p[ if it is valid and in U+1000..U+D7FF.
95 * Otherwise returns a negative value.
96 */
previousHangulOrJamo(const uint8_t * start,const uint8_t * p)97 UChar32 previousHangulOrJamo(const uint8_t *start, const uint8_t *p) {
98 if ((p - start) >= 3) {
99 p -= 3;
100 uint8_t l = *p;
101 uint8_t t1, t2;
102 if (0xe1 <= l && l <= 0xed &&
103 (t1 = (uint8_t)(p[1] - 0x80)) <= 0x3f &&
104 (t2 = (uint8_t)(p[2] - 0x80)) <= 0x3f &&
105 (l < 0xed || t1 <= 0x1f)) {
106 return ((l & 0xf) << 12) | (t1 << 6) | t2;
107 }
108 }
109 return U_SENTINEL;
110 }
111
112 /**
113 * Returns the offset from the Jamo T base if [src, limit[ starts with a single Jamo T code point.
114 * Otherwise returns a negative value.
115 */
getJamoTMinusBase(const uint8_t * src,const uint8_t * limit)116 int32_t getJamoTMinusBase(const uint8_t *src, const uint8_t *limit) {
117 // Jamo T: E1 86 A8..E1 87 82
118 if ((limit - src) >= 3 && *src == 0xe1) {
119 if (src[1] == 0x86) {
120 uint8_t t = src[2];
121 // The first Jamo T is U+11A8 but JAMO_T_BASE is 11A7.
122 // Offset 0 does not correspond to any conjoining Jamo.
123 if (0xa8 <= t && t <= 0xbf) {
124 return t - 0xa7;
125 }
126 } else if (src[1] == 0x87) {
127 uint8_t t = src[2];
128 if ((int8_t)t <= (int8_t)0x82u) {
129 return t - (0xa7 - 0x40);
130 }
131 }
132 }
133 return -1;
134 }
135
136 void
appendCodePointDelta(const uint8_t * cpStart,const uint8_t * cpLimit,int32_t delta,ByteSink & sink,Edits * edits)137 appendCodePointDelta(const uint8_t *cpStart, const uint8_t *cpLimit, int32_t delta,
138 ByteSink &sink, Edits *edits) {
139 char buffer[U8_MAX_LENGTH];
140 int32_t length;
141 int32_t cpLength = (int32_t)(cpLimit - cpStart);
142 if (cpLength == 1) {
143 // The builder makes ASCII map to ASCII.
144 buffer[0] = (uint8_t)(*cpStart + delta);
145 length = 1;
146 } else {
147 int32_t trail = *(cpLimit-1) + delta;
148 if (0x80 <= trail && trail <= 0xbf) {
149 // The delta only changes the last trail byte.
150 --cpLimit;
151 length = 0;
152 do { buffer[length++] = *cpStart++; } while (cpStart < cpLimit);
153 buffer[length++] = (uint8_t)trail;
154 } else {
155 // Decode the code point, add the delta, re-encode.
156 UChar32 c = codePointFromValidUTF8(cpStart, cpLimit) + delta;
157 length = 0;
158 U8_APPEND_UNSAFE(buffer, length, c);
159 }
160 }
161 if (edits != nullptr) {
162 edits->addReplace(cpLength, length);
163 }
164 sink.Append(buffer, length);
165 }
166
167 } // namespace
168
169 // ReorderingBuffer -------------------------------------------------------- ***
170
ReorderingBuffer(const Normalizer2Impl & ni,UnicodeString & dest,UErrorCode & errorCode)171 ReorderingBuffer::ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest,
172 UErrorCode &errorCode) :
173 impl(ni), str(dest),
174 start(str.getBuffer(8)), reorderStart(start), limit(start),
175 remainingCapacity(str.getCapacity()), lastCC(0) {
176 if (start == nullptr && U_SUCCESS(errorCode)) {
177 // getBuffer() already did str.setToBogus()
178 errorCode = U_MEMORY_ALLOCATION_ERROR;
179 }
180 }
181
init(int32_t destCapacity,UErrorCode & errorCode)182 UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) {
183 int32_t length=str.length();
184 start=str.getBuffer(destCapacity);
185 if(start==NULL) {
186 // getBuffer() already did str.setToBogus()
187 errorCode=U_MEMORY_ALLOCATION_ERROR;
188 return FALSE;
189 }
190 limit=start+length;
191 remainingCapacity=str.getCapacity()-length;
192 reorderStart=start;
193 if(start==limit) {
194 lastCC=0;
195 } else {
196 setIterator();
197 lastCC=previousCC();
198 // Set reorderStart after the last code point with cc<=1 if there is one.
199 if(lastCC>1) {
200 while(previousCC()>1) {}
201 }
202 reorderStart=codePointLimit;
203 }
204 return TRUE;
205 }
206
equals(const UChar * otherStart,const UChar * otherLimit) const207 UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const {
208 int32_t length=(int32_t)(limit-start);
209 return
210 length==(int32_t)(otherLimit-otherStart) &&
211 0==u_memcmp(start, otherStart, length);
212 }
213
equals(const uint8_t * otherStart,const uint8_t * otherLimit) const214 UBool ReorderingBuffer::equals(const uint8_t *otherStart, const uint8_t *otherLimit) const {
215 U_ASSERT((otherLimit - otherStart) <= INT32_MAX); // ensured by caller
216 int32_t length = (int32_t)(limit - start);
217 int32_t otherLength = (int32_t)(otherLimit - otherStart);
218 // For equal strings, UTF-8 is at least as long as UTF-16, and at most three times as long.
219 if (otherLength < length || (otherLength / 3) > length) {
220 return FALSE;
221 }
222 // Compare valid strings from between normalization boundaries.
223 // (Invalid sequences are normalization-inert.)
224 for (int32_t i = 0, j = 0;;) {
225 if (i >= length) {
226 return j >= otherLength;
227 } else if (j >= otherLength) {
228 return FALSE;
229 }
230 // Not at the end of either string yet.
231 UChar32 c, other;
232 U16_NEXT_UNSAFE(start, i, c);
233 U8_NEXT_UNSAFE(otherStart, j, other);
234 if (c != other) {
235 return FALSE;
236 }
237 }
238 }
239
appendSupplementary(UChar32 c,uint8_t cc,UErrorCode & errorCode)240 UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
241 if(remainingCapacity<2 && !resize(2, errorCode)) {
242 return FALSE;
243 }
244 if(lastCC<=cc || cc==0) {
245 limit[0]=U16_LEAD(c);
246 limit[1]=U16_TRAIL(c);
247 limit+=2;
248 lastCC=cc;
249 if(cc<=1) {
250 reorderStart=limit;
251 }
252 } else {
253 insert(c, cc);
254 }
255 remainingCapacity-=2;
256 return TRUE;
257 }
258
append(const UChar * s,int32_t length,UBool isNFD,uint8_t leadCC,uint8_t trailCC,UErrorCode & errorCode)259 UBool ReorderingBuffer::append(const UChar *s, int32_t length, UBool isNFD,
260 uint8_t leadCC, uint8_t trailCC,
261 UErrorCode &errorCode) {
262 if(length==0) {
263 return TRUE;
264 }
265 if(remainingCapacity<length && !resize(length, errorCode)) {
266 return FALSE;
267 }
268 remainingCapacity-=length;
269 if(lastCC<=leadCC || leadCC==0) {
270 if(trailCC<=1) {
271 reorderStart=limit+length;
272 } else if(leadCC<=1) {
273 reorderStart=limit+1; // Ok if not a code point boundary.
274 }
275 const UChar *sLimit=s+length;
276 do { *limit++=*s++; } while(s!=sLimit);
277 lastCC=trailCC;
278 } else {
279 int32_t i=0;
280 UChar32 c;
281 U16_NEXT(s, i, length, c);
282 insert(c, leadCC); // insert first code point
283 while(i<length) {
284 U16_NEXT(s, i, length, c);
285 if(i<length) {
286 if (isNFD) {
287 leadCC = Normalizer2Impl::getCCFromYesOrMaybe(impl.getRawNorm16(c));
288 } else {
289 leadCC = impl.getCC(impl.getNorm16(c));
290 }
291 } else {
292 leadCC=trailCC;
293 }
294 append(c, leadCC, errorCode);
295 }
296 }
297 return TRUE;
298 }
299
appendZeroCC(UChar32 c,UErrorCode & errorCode)300 UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) {
301 int32_t cpLength=U16_LENGTH(c);
302 if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) {
303 return FALSE;
304 }
305 remainingCapacity-=cpLength;
306 if(cpLength==1) {
307 *limit++=(UChar)c;
308 } else {
309 limit[0]=U16_LEAD(c);
310 limit[1]=U16_TRAIL(c);
311 limit+=2;
312 }
313 lastCC=0;
314 reorderStart=limit;
315 return TRUE;
316 }
317
appendZeroCC(const UChar * s,const UChar * sLimit,UErrorCode & errorCode)318 UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) {
319 if(s==sLimit) {
320 return TRUE;
321 }
322 int32_t length=(int32_t)(sLimit-s);
323 if(remainingCapacity<length && !resize(length, errorCode)) {
324 return FALSE;
325 }
326 u_memcpy(limit, s, length);
327 limit+=length;
328 remainingCapacity-=length;
329 lastCC=0;
330 reorderStart=limit;
331 return TRUE;
332 }
333
remove()334 void ReorderingBuffer::remove() {
335 reorderStart=limit=start;
336 remainingCapacity=str.getCapacity();
337 lastCC=0;
338 }
339
removeSuffix(int32_t suffixLength)340 void ReorderingBuffer::removeSuffix(int32_t suffixLength) {
341 if(suffixLength<(limit-start)) {
342 limit-=suffixLength;
343 remainingCapacity+=suffixLength;
344 } else {
345 limit=start;
346 remainingCapacity=str.getCapacity();
347 }
348 lastCC=0;
349 reorderStart=limit;
350 }
351
resize(int32_t appendLength,UErrorCode & errorCode)352 UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) {
353 int32_t reorderStartIndex=(int32_t)(reorderStart-start);
354 int32_t length=(int32_t)(limit-start);
355 str.releaseBuffer(length);
356 int32_t newCapacity=length+appendLength;
357 int32_t doubleCapacity=2*str.getCapacity();
358 if(newCapacity<doubleCapacity) {
359 newCapacity=doubleCapacity;
360 }
361 if(newCapacity<256) {
362 newCapacity=256;
363 }
364 start=str.getBuffer(newCapacity);
365 if(start==NULL) {
366 // getBuffer() already did str.setToBogus()
367 errorCode=U_MEMORY_ALLOCATION_ERROR;
368 return FALSE;
369 }
370 reorderStart=start+reorderStartIndex;
371 limit=start+length;
372 remainingCapacity=str.getCapacity()-length;
373 return TRUE;
374 }
375
skipPrevious()376 void ReorderingBuffer::skipPrevious() {
377 codePointLimit=codePointStart;
378 UChar c=*--codePointStart;
379 if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) {
380 --codePointStart;
381 }
382 }
383
previousCC()384 uint8_t ReorderingBuffer::previousCC() {
385 codePointLimit=codePointStart;
386 if(reorderStart>=codePointStart) {
387 return 0;
388 }
389 UChar32 c=*--codePointStart;
390 UChar c2;
391 if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) {
392 --codePointStart;
393 c=U16_GET_SUPPLEMENTARY(c2, c);
394 }
395 return impl.getCCFromYesOrMaybeCP(c);
396 }
397
398 // Inserts c somewhere before the last character.
399 // Requires 0<cc<lastCC which implies reorderStart<limit.
insert(UChar32 c,uint8_t cc)400 void ReorderingBuffer::insert(UChar32 c, uint8_t cc) {
401 for(setIterator(), skipPrevious(); previousCC()>cc;) {}
402 // insert c at codePointLimit, after the character with prevCC<=cc
403 UChar *q=limit;
404 UChar *r=limit+=U16_LENGTH(c);
405 do {
406 *--r=*--q;
407 } while(codePointLimit!=q);
408 writeCodePoint(q, c);
409 if(cc<=1) {
410 reorderStart=r;
411 }
412 }
413
414 // Normalizer2Impl --------------------------------------------------------- ***
415
416 struct CanonIterData : public UMemory {
417 CanonIterData(UErrorCode &errorCode);
418 ~CanonIterData();
419 void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode);
420 UMutableCPTrie *mutableTrie;
421 UCPTrie *trie;
422 UVector canonStartSets; // contains UnicodeSet *
423 };
424
~Normalizer2Impl()425 Normalizer2Impl::~Normalizer2Impl() {
426 delete fCanonIterData;
427 }
428
429 void
init(const int32_t * inIndexes,const UCPTrie * inTrie,const uint16_t * inExtraData,const uint8_t * inSmallFCD)430 Normalizer2Impl::init(const int32_t *inIndexes, const UCPTrie *inTrie,
431 const uint16_t *inExtraData, const uint8_t *inSmallFCD) {
432 minDecompNoCP = static_cast<UChar>(inIndexes[IX_MIN_DECOMP_NO_CP]);
433 minCompNoMaybeCP = static_cast<UChar>(inIndexes[IX_MIN_COMP_NO_MAYBE_CP]);
434 minLcccCP = static_cast<UChar>(inIndexes[IX_MIN_LCCC_CP]);
435
436 minYesNo = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO]);
437 minYesNoMappingsOnly = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]);
438 minNoNo = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO]);
439 minNoNoCompBoundaryBefore = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE]);
440 minNoNoCompNoMaybeCC = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC]);
441 minNoNoEmpty = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_EMPTY]);
442 limitNoNo = static_cast<uint16_t>(inIndexes[IX_LIMIT_NO_NO]);
443 minMaybeYes = static_cast<uint16_t>(inIndexes[IX_MIN_MAYBE_YES]);
444 U_ASSERT((minMaybeYes & 7) == 0); // 8-aligned for noNoDelta bit fields
445 centerNoNoDelta = (minMaybeYes >> DELTA_SHIFT) - MAX_DELTA - 1;
446
447 normTrie=inTrie;
448
449 maybeYesCompositions=inExtraData;
450 extraData=maybeYesCompositions+((MIN_NORMAL_MAYBE_YES-minMaybeYes)>>OFFSET_SHIFT);
451
452 smallFCD=inSmallFCD;
453 }
454
455 U_CDECL_BEGIN
456
457 static uint32_t U_CALLCONV
segmentStarterMapper(const void *,uint32_t value)458 segmentStarterMapper(const void * /*context*/, uint32_t value) {
459 return value&CANON_NOT_SEGMENT_STARTER;
460 }
461
462 U_CDECL_END
463
464 void
addLcccChars(UnicodeSet & set) const465 Normalizer2Impl::addLcccChars(UnicodeSet &set) const {
466 UChar32 start = 0, end;
467 uint32_t norm16;
468 while ((end = ucptrie_getRange(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT,
469 nullptr, nullptr, &norm16)) >= 0) {
470 if (norm16 > Normalizer2Impl::MIN_NORMAL_MAYBE_YES &&
471 norm16 != Normalizer2Impl::JAMO_VT) {
472 set.add(start, end);
473 } else if (minNoNoCompNoMaybeCC <= norm16 && norm16 < limitNoNo) {
474 uint16_t fcd16 = getFCD16(start);
475 if (fcd16 > 0xff) { set.add(start, end); }
476 }
477 start = end + 1;
478 }
479 }
480
481 void
addPropertyStarts(const USetAdder * sa,UErrorCode &) const482 Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const {
483 // Add the start code point of each same-value range of the trie.
484 UChar32 start = 0, end;
485 uint32_t value;
486 while ((end = ucptrie_getRange(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT,
487 nullptr, nullptr, &value)) >= 0) {
488 sa->add(sa->set, start);
489 if (start != end && isAlgorithmicNoNo((uint16_t)value) &&
490 (value & Normalizer2Impl::DELTA_TCCC_MASK) > Normalizer2Impl::DELTA_TCCC_1) {
491 // Range of code points with same-norm16-value algorithmic decompositions.
492 // They might have different non-zero FCD16 values.
493 uint16_t prevFCD16 = getFCD16(start);
494 while (++start <= end) {
495 uint16_t fcd16 = getFCD16(start);
496 if (fcd16 != prevFCD16) {
497 sa->add(sa->set, start);
498 prevFCD16 = fcd16;
499 }
500 }
501 }
502 start = end + 1;
503 }
504
505 /* add Hangul LV syllables and LV+1 because of skippables */
506 for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) {
507 sa->add(sa->set, c);
508 sa->add(sa->set, c+1);
509 }
510 sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */
511 }
512
513 void
addCanonIterPropertyStarts(const USetAdder * sa,UErrorCode & errorCode) const514 Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const {
515 // Add the start code point of each same-value range of the canonical iterator data trie.
516 if (!ensureCanonIterData(errorCode)) { return; }
517 // Currently only used for the SEGMENT_STARTER property.
518 UChar32 start = 0, end;
519 uint32_t value;
520 while ((end = ucptrie_getRange(fCanonIterData->trie, start, UCPMAP_RANGE_NORMAL, 0,
521 segmentStarterMapper, nullptr, &value)) >= 0) {
522 sa->add(sa->set, start);
523 start = end + 1;
524 }
525 }
526
527 const UChar *
copyLowPrefixFromNulTerminated(const UChar * src,UChar32 minNeedDataCP,ReorderingBuffer * buffer,UErrorCode & errorCode) const528 Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src,
529 UChar32 minNeedDataCP,
530 ReorderingBuffer *buffer,
531 UErrorCode &errorCode) const {
532 // Make some effort to support NUL-terminated strings reasonably.
533 // Take the part of the fast quick check loop that does not look up
534 // data and check the first part of the string.
535 // After this prefix, determine the string length to simplify the rest
536 // of the code.
537 const UChar *prevSrc=src;
538 UChar c;
539 while((c=*src++)<minNeedDataCP && c!=0) {}
540 // Back out the last character for full processing.
541 // Copy this prefix.
542 if(--src!=prevSrc) {
543 if(buffer!=NULL) {
544 buffer->appendZeroCC(prevSrc, src, errorCode);
545 }
546 }
547 return src;
548 }
549
550 UnicodeString &
decompose(const UnicodeString & src,UnicodeString & dest,UErrorCode & errorCode) const551 Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest,
552 UErrorCode &errorCode) const {
553 if(U_FAILURE(errorCode)) {
554 dest.setToBogus();
555 return dest;
556 }
557 const UChar *sArray=src.getBuffer();
558 if(&dest==&src || sArray==NULL) {
559 errorCode=U_ILLEGAL_ARGUMENT_ERROR;
560 dest.setToBogus();
561 return dest;
562 }
563 decompose(sArray, sArray+src.length(), dest, src.length(), errorCode);
564 return dest;
565 }
566
567 void
decompose(const UChar * src,const UChar * limit,UnicodeString & dest,int32_t destLengthEstimate,UErrorCode & errorCode) const568 Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
569 UnicodeString &dest,
570 int32_t destLengthEstimate,
571 UErrorCode &errorCode) const {
572 if(destLengthEstimate<0 && limit!=NULL) {
573 destLengthEstimate=(int32_t)(limit-src);
574 }
575 dest.remove();
576 ReorderingBuffer buffer(*this, dest);
577 if(buffer.init(destLengthEstimate, errorCode)) {
578 decompose(src, limit, &buffer, errorCode);
579 }
580 }
581
582 // Dual functionality:
583 // buffer!=NULL: normalize
584 // buffer==NULL: isNormalized/spanQuickCheckYes
585 const UChar *
decompose(const UChar * src,const UChar * limit,ReorderingBuffer * buffer,UErrorCode & errorCode) const586 Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
587 ReorderingBuffer *buffer,
588 UErrorCode &errorCode) const {
589 UChar32 minNoCP=minDecompNoCP;
590 if(limit==NULL) {
591 src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode);
592 if(U_FAILURE(errorCode)) {
593 return src;
594 }
595 limit=u_strchr(src, 0);
596 }
597
598 const UChar *prevSrc;
599 UChar32 c=0;
600 uint16_t norm16=0;
601
602 // only for quick check
603 const UChar *prevBoundary=src;
604 uint8_t prevCC=0;
605
606 for(;;) {
607 // count code units below the minimum or with irrelevant data for the quick check
608 for(prevSrc=src; src!=limit;) {
609 if( (c=*src)<minNoCP ||
610 isMostDecompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c))
611 ) {
612 ++src;
613 } else if(!U16_IS_LEAD(c)) {
614 break;
615 } else {
616 UChar c2;
617 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
618 c=U16_GET_SUPPLEMENTARY(c, c2);
619 norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c);
620 if(isMostDecompYesAndZeroCC(norm16)) {
621 src+=2;
622 } else {
623 break;
624 }
625 } else {
626 ++src; // unpaired lead surrogate: inert
627 }
628 }
629 }
630 // copy these code units all at once
631 if(src!=prevSrc) {
632 if(buffer!=NULL) {
633 if(!buffer->appendZeroCC(prevSrc, src, errorCode)) {
634 break;
635 }
636 } else {
637 prevCC=0;
638 prevBoundary=src;
639 }
640 }
641 if(src==limit) {
642 break;
643 }
644
645 // Check one above-minimum, relevant code point.
646 src+=U16_LENGTH(c);
647 if(buffer!=NULL) {
648 if(!decompose(c, norm16, *buffer, errorCode)) {
649 break;
650 }
651 } else {
652 if(isDecompYes(norm16)) {
653 uint8_t cc=getCCFromYesOrMaybe(norm16);
654 if(prevCC<=cc || cc==0) {
655 prevCC=cc;
656 if(cc<=1) {
657 prevBoundary=src;
658 }
659 continue;
660 }
661 }
662 return prevBoundary; // "no" or cc out of order
663 }
664 }
665 return src;
666 }
667
668 // Decompose a short piece of text which is likely to contain characters that
669 // fail the quick check loop and/or where the quick check loop's overhead
670 // is unlikely to be amortized.
671 // Called by the compose() and makeFCD() implementations.
672 const UChar *
decomposeShort(const UChar * src,const UChar * limit,UBool stopAtCompBoundary,UBool onlyContiguous,ReorderingBuffer & buffer,UErrorCode & errorCode) const673 Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit,
674 UBool stopAtCompBoundary, UBool onlyContiguous,
675 ReorderingBuffer &buffer, UErrorCode &errorCode) const {
676 if (U_FAILURE(errorCode)) {
677 return nullptr;
678 }
679 while(src<limit) {
680 if (stopAtCompBoundary && *src < minCompNoMaybeCP) {
681 return src;
682 }
683 const UChar *prevSrc = src;
684 UChar32 c;
685 uint16_t norm16;
686 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16);
687 if (stopAtCompBoundary && norm16HasCompBoundaryBefore(norm16)) {
688 return prevSrc;
689 }
690 if(!decompose(c, norm16, buffer, errorCode)) {
691 return nullptr;
692 }
693 if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
694 return src;
695 }
696 }
697 return src;
698 }
699
decompose(UChar32 c,uint16_t norm16,ReorderingBuffer & buffer,UErrorCode & errorCode) const700 UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16,
701 ReorderingBuffer &buffer,
702 UErrorCode &errorCode) const {
703 // get the decomposition and the lead and trail cc's
704 if (norm16 >= limitNoNo) {
705 if (isMaybeOrNonZeroCC(norm16)) {
706 return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode);
707 }
708 // Maps to an isCompYesAndZeroCC.
709 c=mapAlgorithmic(c, norm16);
710 norm16=getRawNorm16(c);
711 }
712 if (norm16 < minYesNo) {
713 // c does not decompose
714 return buffer.append(c, 0, errorCode);
715 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
716 // Hangul syllable: decompose algorithmically
717 UChar jamos[3];
718 return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode);
719 }
720 // c decomposes, get everything from the variable-length extra data
721 const uint16_t *mapping=getMapping(norm16);
722 uint16_t firstUnit=*mapping;
723 int32_t length=firstUnit&MAPPING_LENGTH_MASK;
724 uint8_t leadCC, trailCC;
725 trailCC=(uint8_t)(firstUnit>>8);
726 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
727 leadCC=(uint8_t)(*(mapping-1)>>8);
728 } else {
729 leadCC=0;
730 }
731 return buffer.append((const UChar *)mapping+1, length, TRUE, leadCC, trailCC, errorCode);
732 }
733
734 const uint8_t *
decomposeShort(const uint8_t * src,const uint8_t * limit,UBool stopAtCompBoundary,UBool onlyContiguous,ReorderingBuffer & buffer,UErrorCode & errorCode) const735 Normalizer2Impl::decomposeShort(const uint8_t *src, const uint8_t *limit,
736 UBool stopAtCompBoundary, UBool onlyContiguous,
737 ReorderingBuffer &buffer, UErrorCode &errorCode) const {
738 if (U_FAILURE(errorCode)) {
739 return nullptr;
740 }
741 while (src < limit) {
742 const uint8_t *prevSrc = src;
743 uint16_t norm16;
744 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
745 // Get the decomposition and the lead and trail cc's.
746 UChar32 c = U_SENTINEL;
747 if (norm16 >= limitNoNo) {
748 if (isMaybeOrNonZeroCC(norm16)) {
749 // No boundaries around this character.
750 c = codePointFromValidUTF8(prevSrc, src);
751 if (!buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode)) {
752 return nullptr;
753 }
754 continue;
755 }
756 // Maps to an isCompYesAndZeroCC.
757 if (stopAtCompBoundary) {
758 return prevSrc;
759 }
760 c = codePointFromValidUTF8(prevSrc, src);
761 c = mapAlgorithmic(c, norm16);
762 norm16 = getRawNorm16(c);
763 } else if (stopAtCompBoundary && norm16 < minNoNoCompNoMaybeCC) {
764 return prevSrc;
765 }
766 // norm16!=INERT guarantees that [prevSrc, src[ is valid UTF-8.
767 // We do not see invalid UTF-8 here because
768 // its norm16==INERT is normalization-inert,
769 // so it gets copied unchanged in the fast path,
770 // and we stop the slow path where invalid UTF-8 begins.
771 U_ASSERT(norm16 != INERT);
772 if (norm16 < minYesNo) {
773 if (c < 0) {
774 c = codePointFromValidUTF8(prevSrc, src);
775 }
776 // does not decompose
777 if (!buffer.append(c, 0, errorCode)) {
778 return nullptr;
779 }
780 } else if (isHangulLV(norm16) || isHangulLVT(norm16)) {
781 // Hangul syllable: decompose algorithmically
782 if (c < 0) {
783 c = codePointFromValidUTF8(prevSrc, src);
784 }
785 char16_t jamos[3];
786 if (!buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode)) {
787 return nullptr;
788 }
789 } else {
790 // The character decomposes, get everything from the variable-length extra data.
791 const uint16_t *mapping = getMapping(norm16);
792 uint16_t firstUnit = *mapping;
793 int32_t length = firstUnit & MAPPING_LENGTH_MASK;
794 uint8_t trailCC = (uint8_t)(firstUnit >> 8);
795 uint8_t leadCC;
796 if (firstUnit & MAPPING_HAS_CCC_LCCC_WORD) {
797 leadCC = (uint8_t)(*(mapping-1) >> 8);
798 } else {
799 leadCC = 0;
800 }
801 if (!buffer.append((const char16_t *)mapping+1, length, TRUE, leadCC, trailCC, errorCode)) {
802 return nullptr;
803 }
804 }
805 if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
806 return src;
807 }
808 }
809 return src;
810 }
811
812 const UChar *
getDecomposition(UChar32 c,UChar buffer[4],int32_t & length) const813 Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const {
814 uint16_t norm16;
815 if(c<minDecompNoCP || isMaybeOrNonZeroCC(norm16=getNorm16(c))) {
816 // c does not decompose
817 return nullptr;
818 }
819 const UChar *decomp = nullptr;
820 if(isDecompNoAlgorithmic(norm16)) {
821 // Maps to an isCompYesAndZeroCC.
822 c=mapAlgorithmic(c, norm16);
823 decomp=buffer;
824 length=0;
825 U16_APPEND_UNSAFE(buffer, length, c);
826 // The mapping might decompose further.
827 norm16 = getRawNorm16(c);
828 }
829 if (norm16 < minYesNo) {
830 return decomp;
831 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
832 // Hangul syllable: decompose algorithmically
833 length=Hangul::decompose(c, buffer);
834 return buffer;
835 }
836 // c decomposes, get everything from the variable-length extra data
837 const uint16_t *mapping=getMapping(norm16);
838 length=*mapping&MAPPING_LENGTH_MASK;
839 return (const UChar *)mapping+1;
840 }
841
842 // The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1
843 // so that a raw mapping fits that consists of one unit ("rm0")
844 // plus all but the first two code units of the normal mapping.
845 // The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK.
846 const UChar *
getRawDecomposition(UChar32 c,UChar buffer[30],int32_t & length) const847 Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const {
848 uint16_t norm16;
849 if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
850 // c does not decompose
851 return NULL;
852 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
853 // Hangul syllable: decompose algorithmically
854 Hangul::getRawDecomposition(c, buffer);
855 length=2;
856 return buffer;
857 } else if(isDecompNoAlgorithmic(norm16)) {
858 c=mapAlgorithmic(c, norm16);
859 length=0;
860 U16_APPEND_UNSAFE(buffer, length, c);
861 return buffer;
862 }
863 // c decomposes, get everything from the variable-length extra data
864 const uint16_t *mapping=getMapping(norm16);
865 uint16_t firstUnit=*mapping;
866 int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping
867 if(firstUnit&MAPPING_HAS_RAW_MAPPING) {
868 // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word.
869 // Bit 7=MAPPING_HAS_CCC_LCCC_WORD
870 const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1;
871 uint16_t rm0=*rawMapping;
872 if(rm0<=MAPPING_LENGTH_MASK) {
873 length=rm0;
874 return (const UChar *)rawMapping-rm0;
875 } else {
876 // Copy the normal mapping and replace its first two code units with rm0.
877 buffer[0]=(UChar)rm0;
878 u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2);
879 length=mLength-1;
880 return buffer;
881 }
882 } else {
883 length=mLength;
884 return (const UChar *)mapping+1;
885 }
886 }
887
decomposeAndAppend(const UChar * src,const UChar * limit,UBool doDecompose,UnicodeString & safeMiddle,ReorderingBuffer & buffer,UErrorCode & errorCode) const888 void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit,
889 UBool doDecompose,
890 UnicodeString &safeMiddle,
891 ReorderingBuffer &buffer,
892 UErrorCode &errorCode) const {
893 buffer.copyReorderableSuffixTo(safeMiddle);
894 if(doDecompose) {
895 decompose(src, limit, &buffer, errorCode);
896 return;
897 }
898 // Just merge the strings at the boundary.
899 bool isFirst = true;
900 uint8_t firstCC = 0, prevCC = 0, cc;
901 const UChar *p = src;
902 while (p != limit) {
903 const UChar *codePointStart = p;
904 UChar32 c;
905 uint16_t norm16;
906 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
907 if ((cc = getCC(norm16)) == 0) {
908 p = codePointStart;
909 break;
910 }
911 if (isFirst) {
912 firstCC = cc;
913 isFirst = false;
914 }
915 prevCC = cc;
916 }
917 if(limit==NULL) { // appendZeroCC() needs limit!=NULL
918 limit=u_strchr(p, 0);
919 }
920
921 if (buffer.append(src, (int32_t)(p - src), FALSE, firstCC, prevCC, errorCode)) {
922 buffer.appendZeroCC(p, limit, errorCode);
923 }
924 }
925
hasDecompBoundaryBefore(UChar32 c) const926 UBool Normalizer2Impl::hasDecompBoundaryBefore(UChar32 c) const {
927 return c < minLcccCP || (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) ||
928 norm16HasDecompBoundaryBefore(getNorm16(c));
929 }
930
norm16HasDecompBoundaryBefore(uint16_t norm16) const931 UBool Normalizer2Impl::norm16HasDecompBoundaryBefore(uint16_t norm16) const {
932 if (norm16 < minNoNoCompNoMaybeCC) {
933 return TRUE;
934 }
935 if (norm16 >= limitNoNo) {
936 return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
937 }
938 // c decomposes, get everything from the variable-length extra data
939 const uint16_t *mapping=getMapping(norm16);
940 uint16_t firstUnit=*mapping;
941 // TRUE if leadCC==0 (hasFCDBoundaryBefore())
942 return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
943 }
944
hasDecompBoundaryAfter(UChar32 c) const945 UBool Normalizer2Impl::hasDecompBoundaryAfter(UChar32 c) const {
946 if (c < minDecompNoCP) {
947 return TRUE;
948 }
949 if (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) {
950 return TRUE;
951 }
952 return norm16HasDecompBoundaryAfter(getNorm16(c));
953 }
954
norm16HasDecompBoundaryAfter(uint16_t norm16) const955 UBool Normalizer2Impl::norm16HasDecompBoundaryAfter(uint16_t norm16) const {
956 if(norm16 <= minYesNo || isHangulLVT(norm16)) {
957 return TRUE;
958 }
959 if (norm16 >= limitNoNo) {
960 if (isMaybeOrNonZeroCC(norm16)) {
961 return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
962 }
963 // Maps to an isCompYesAndZeroCC.
964 return (norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1;
965 }
966 // c decomposes, get everything from the variable-length extra data
967 const uint16_t *mapping=getMapping(norm16);
968 uint16_t firstUnit=*mapping;
969 // decomp after-boundary: same as hasFCDBoundaryAfter(),
970 // fcd16<=1 || trailCC==0
971 if(firstUnit>0x1ff) {
972 return FALSE; // trailCC>1
973 }
974 if(firstUnit<=0xff) {
975 return TRUE; // trailCC==0
976 }
977 // if(trailCC==1) test leadCC==0, same as checking for before-boundary
978 // TRUE if leadCC==0 (hasFCDBoundaryBefore())
979 return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
980 }
981
982 /*
983 * Finds the recomposition result for
984 * a forward-combining "lead" character,
985 * specified with a pointer to its compositions list,
986 * and a backward-combining "trail" character.
987 *
988 * If the lead and trail characters combine, then this function returns
989 * the following "compositeAndFwd" value:
990 * Bits 21..1 composite character
991 * Bit 0 set if the composite is a forward-combining starter
992 * otherwise it returns -1.
993 *
994 * The compositions list has (trail, compositeAndFwd) pair entries,
995 * encoded as either pairs or triples of 16-bit units.
996 * The last entry has the high bit of its first unit set.
997 *
998 * The list is sorted by ascending trail characters (there are no duplicates).
999 * A linear search is used.
1000 *
1001 * See normalizer2impl.h for a more detailed description
1002 * of the compositions list format.
1003 */
combine(const uint16_t * list,UChar32 trail)1004 int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) {
1005 uint16_t key1, firstUnit;
1006 if(trail<COMP_1_TRAIL_LIMIT) {
1007 // trail character is 0..33FF
1008 // result entry may have 2 or 3 units
1009 key1=(uint16_t)(trail<<1);
1010 while(key1>(firstUnit=*list)) {
1011 list+=2+(firstUnit&COMP_1_TRIPLE);
1012 }
1013 if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
1014 if(firstUnit&COMP_1_TRIPLE) {
1015 return ((int32_t)list[1]<<16)|list[2];
1016 } else {
1017 return list[1];
1018 }
1019 }
1020 } else {
1021 // trail character is 3400..10FFFF
1022 // result entry has 3 units
1023 key1=(uint16_t)(COMP_1_TRAIL_LIMIT+
1024 (((trail>>COMP_1_TRAIL_SHIFT))&
1025 ~COMP_1_TRIPLE));
1026 uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT);
1027 uint16_t secondUnit;
1028 for(;;) {
1029 if(key1>(firstUnit=*list)) {
1030 list+=2+(firstUnit&COMP_1_TRIPLE);
1031 } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
1032 if(key2>(secondUnit=list[1])) {
1033 if(firstUnit&COMP_1_LAST_TUPLE) {
1034 break;
1035 } else {
1036 list+=3;
1037 }
1038 } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) {
1039 return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2];
1040 } else {
1041 break;
1042 }
1043 } else {
1044 break;
1045 }
1046 }
1047 }
1048 return -1;
1049 }
1050
1051 /**
1052 * @param list some character's compositions list
1053 * @param set recursively receives the composites from these compositions
1054 */
addComposites(const uint16_t * list,UnicodeSet & set) const1055 void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const {
1056 uint16_t firstUnit;
1057 int32_t compositeAndFwd;
1058 do {
1059 firstUnit=*list;
1060 if((firstUnit&COMP_1_TRIPLE)==0) {
1061 compositeAndFwd=list[1];
1062 list+=2;
1063 } else {
1064 compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2];
1065 list+=3;
1066 }
1067 UChar32 composite=compositeAndFwd>>1;
1068 if((compositeAndFwd&1)!=0) {
1069 addComposites(getCompositionsListForComposite(getRawNorm16(composite)), set);
1070 }
1071 set.add(composite);
1072 } while((firstUnit&COMP_1_LAST_TUPLE)==0);
1073 }
1074
1075 /*
1076 * Recomposes the buffer text starting at recomposeStartIndex
1077 * (which is in NFD - decomposed and canonically ordered),
1078 * and truncates the buffer contents.
1079 *
1080 * Note that recomposition never lengthens the text:
1081 * Any character consists of either one or two code units;
1082 * a composition may contain at most one more code unit than the original starter,
1083 * while the combining mark that is removed has at least one code unit.
1084 */
recompose(ReorderingBuffer & buffer,int32_t recomposeStartIndex,UBool onlyContiguous) const1085 void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
1086 UBool onlyContiguous) const {
1087 UChar *p=buffer.getStart()+recomposeStartIndex;
1088 UChar *limit=buffer.getLimit();
1089 if(p==limit) {
1090 return;
1091 }
1092
1093 UChar *starter, *pRemove, *q, *r;
1094 const uint16_t *compositionsList;
1095 UChar32 c, compositeAndFwd;
1096 uint16_t norm16;
1097 uint8_t cc, prevCC;
1098 UBool starterIsSupplementary;
1099
1100 // Some of the following variables are not used until we have a forward-combining starter
1101 // and are only initialized now to avoid compiler warnings.
1102 compositionsList=NULL; // used as indicator for whether we have a forward-combining starter
1103 starter=NULL;
1104 starterIsSupplementary=FALSE;
1105 prevCC=0;
1106
1107 for(;;) {
1108 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
1109 cc=getCCFromYesOrMaybe(norm16);
1110 if( // this character combines backward and
1111 isMaybe(norm16) &&
1112 // we have seen a starter that combines forward and
1113 compositionsList!=NULL &&
1114 // the backward-combining character is not blocked
1115 (prevCC<cc || prevCC==0)
1116 ) {
1117 if(isJamoVT(norm16)) {
1118 // c is a Jamo V/T, see if we can compose it with the previous character.
1119 if(c<Hangul::JAMO_T_BASE) {
1120 // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
1121 UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE);
1122 if(prev<Hangul::JAMO_L_COUNT) {
1123 pRemove=p-1;
1124 UChar syllable=(UChar)
1125 (Hangul::HANGUL_BASE+
1126 (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
1127 Hangul::JAMO_T_COUNT);
1128 UChar t;
1129 if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
1130 ++p;
1131 syllable+=t; // The next character was a Jamo T.
1132 }
1133 *starter=syllable;
1134 // remove the Jamo V/T
1135 q=pRemove;
1136 r=p;
1137 while(r<limit) {
1138 *q++=*r++;
1139 }
1140 limit=q;
1141 p=pRemove;
1142 }
1143 }
1144 /*
1145 * No "else" for Jamo T:
1146 * Since the input is in NFD, there are no Hangul LV syllables that
1147 * a Jamo T could combine with.
1148 * All Jamo Ts are combined above when handling Jamo Vs.
1149 */
1150 if(p==limit) {
1151 break;
1152 }
1153 compositionsList=NULL;
1154 continue;
1155 } else if((compositeAndFwd=combine(compositionsList, c))>=0) {
1156 // The starter and the combining mark (c) do combine.
1157 UChar32 composite=compositeAndFwd>>1;
1158
1159 // Replace the starter with the composite, remove the combining mark.
1160 pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark
1161 if(starterIsSupplementary) {
1162 if(U_IS_SUPPLEMENTARY(composite)) {
1163 // both are supplementary
1164 starter[0]=U16_LEAD(composite);
1165 starter[1]=U16_TRAIL(composite);
1166 } else {
1167 *starter=(UChar)composite;
1168 // The composite is shorter than the starter,
1169 // move the intermediate characters forward one.
1170 starterIsSupplementary=FALSE;
1171 q=starter+1;
1172 r=q+1;
1173 while(r<pRemove) {
1174 *q++=*r++;
1175 }
1176 --pRemove;
1177 }
1178 } else if(U_IS_SUPPLEMENTARY(composite)) {
1179 // The composite is longer than the starter,
1180 // move the intermediate characters back one.
1181 starterIsSupplementary=TRUE;
1182 ++starter; // temporarily increment for the loop boundary
1183 q=pRemove;
1184 r=++pRemove;
1185 while(starter<q) {
1186 *--r=*--q;
1187 }
1188 *starter=U16_TRAIL(composite);
1189 *--starter=U16_LEAD(composite); // undo the temporary increment
1190 } else {
1191 // both are on the BMP
1192 *starter=(UChar)composite;
1193 }
1194
1195 /* remove the combining mark by moving the following text over it */
1196 if(pRemove<p) {
1197 q=pRemove;
1198 r=p;
1199 while(r<limit) {
1200 *q++=*r++;
1201 }
1202 limit=q;
1203 p=pRemove;
1204 }
1205 // Keep prevCC because we removed the combining mark.
1206
1207 if(p==limit) {
1208 break;
1209 }
1210 // Is the composite a starter that combines forward?
1211 if(compositeAndFwd&1) {
1212 compositionsList=
1213 getCompositionsListForComposite(getRawNorm16(composite));
1214 } else {
1215 compositionsList=NULL;
1216 }
1217
1218 // We combined; continue with looking for compositions.
1219 continue;
1220 }
1221 }
1222
1223 // no combination this time
1224 prevCC=cc;
1225 if(p==limit) {
1226 break;
1227 }
1228
1229 // If c did not combine, then check if it is a starter.
1230 if(cc==0) {
1231 // Found a new starter.
1232 if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) {
1233 // It may combine with something, prepare for it.
1234 if(U_IS_BMP(c)) {
1235 starterIsSupplementary=FALSE;
1236 starter=p-1;
1237 } else {
1238 starterIsSupplementary=TRUE;
1239 starter=p-2;
1240 }
1241 }
1242 } else if(onlyContiguous) {
1243 // FCC: no discontiguous compositions; any intervening character blocks.
1244 compositionsList=NULL;
1245 }
1246 }
1247 buffer.setReorderingLimit(limit);
1248 }
1249
1250 UChar32
composePair(UChar32 a,UChar32 b) const1251 Normalizer2Impl::composePair(UChar32 a, UChar32 b) const {
1252 uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16
1253 const uint16_t *list;
1254 if(isInert(norm16)) {
1255 return U_SENTINEL;
1256 } else if(norm16<minYesNoMappingsOnly) {
1257 // a combines forward.
1258 if(isJamoL(norm16)) {
1259 b-=Hangul::JAMO_V_BASE;
1260 if(0<=b && b<Hangul::JAMO_V_COUNT) {
1261 return
1262 (Hangul::HANGUL_BASE+
1263 ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)*
1264 Hangul::JAMO_T_COUNT);
1265 } else {
1266 return U_SENTINEL;
1267 }
1268 } else if(isHangulLV(norm16)) {
1269 b-=Hangul::JAMO_T_BASE;
1270 if(0<b && b<Hangul::JAMO_T_COUNT) { // not b==0!
1271 return a+b;
1272 } else {
1273 return U_SENTINEL;
1274 }
1275 } else {
1276 // 'a' has a compositions list in extraData
1277 list=getMapping(norm16);
1278 if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list
1279 list+= // mapping pointer
1280 1+ // +1 to skip the first unit with the mapping length
1281 (*list&MAPPING_LENGTH_MASK); // + mapping length
1282 }
1283 }
1284 } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) {
1285 return U_SENTINEL;
1286 } else {
1287 list=getCompositionsListForMaybe(norm16);
1288 }
1289 if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b
1290 return U_SENTINEL;
1291 }
1292 #if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC
1293 return combine(list, b)>>1;
1294 #else
1295 int32_t compositeAndFwd=combine(list, b);
1296 return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL;
1297 #endif
1298 }
1299
1300 // Very similar to composeQuickCheck(): Make the same changes in both places if relevant.
1301 // doCompose: normalize
1302 // !doCompose: isNormalized (buffer must be empty and initialized)
1303 UBool
compose(const UChar * src,const UChar * limit,UBool onlyContiguous,UBool doCompose,ReorderingBuffer & buffer,UErrorCode & errorCode) const1304 Normalizer2Impl::compose(const UChar *src, const UChar *limit,
1305 UBool onlyContiguous,
1306 UBool doCompose,
1307 ReorderingBuffer &buffer,
1308 UErrorCode &errorCode) const {
1309 const UChar *prevBoundary=src;
1310 UChar32 minNoMaybeCP=minCompNoMaybeCP;
1311 if(limit==NULL) {
1312 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP,
1313 doCompose ? &buffer : NULL,
1314 errorCode);
1315 if(U_FAILURE(errorCode)) {
1316 return FALSE;
1317 }
1318 limit=u_strchr(src, 0);
1319 if (prevBoundary != src) {
1320 if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
1321 prevBoundary = src;
1322 } else {
1323 buffer.removeSuffix(1);
1324 prevBoundary = --src;
1325 }
1326 }
1327 }
1328
1329 for (;;) {
1330 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1331 // or with (compYes && ccc==0) properties.
1332 const UChar *prevSrc;
1333 UChar32 c = 0;
1334 uint16_t norm16 = 0;
1335 for (;;) {
1336 if (src == limit) {
1337 if (prevBoundary != limit && doCompose) {
1338 buffer.appendZeroCC(prevBoundary, limit, errorCode);
1339 }
1340 return TRUE;
1341 }
1342 if( (c=*src)<minNoMaybeCP ||
1343 isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c))
1344 ) {
1345 ++src;
1346 } else {
1347 prevSrc = src++;
1348 if(!U16_IS_LEAD(c)) {
1349 break;
1350 } else {
1351 UChar c2;
1352 if(src!=limit && U16_IS_TRAIL(c2=*src)) {
1353 ++src;
1354 c=U16_GET_SUPPLEMENTARY(c, c2);
1355 norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c);
1356 if(!isCompYesAndZeroCC(norm16)) {
1357 break;
1358 }
1359 }
1360 }
1361 }
1362 }
1363 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1364 // The current character is either a "noNo" (has a mapping)
1365 // or a "maybeYes" (combines backward)
1366 // or a "yesYes" with ccc!=0.
1367 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1368
1369 // Medium-fast path: Handle cases that do not require full decomposition and recomposition.
1370 if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes
1371 if (!doCompose) {
1372 return FALSE;
1373 }
1374 // Fast path for mapping a character that is immediately surrounded by boundaries.
1375 // In this case, we need not decompose around the current character.
1376 if (isDecompNoAlgorithmic(norm16)) {
1377 // Maps to a single isCompYesAndZeroCC character
1378 // which also implies hasCompBoundaryBefore.
1379 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1380 hasCompBoundaryBefore(src, limit)) {
1381 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1382 break;
1383 }
1384 if(!buffer.append(mapAlgorithmic(c, norm16), 0, errorCode)) {
1385 break;
1386 }
1387 prevBoundary = src;
1388 continue;
1389 }
1390 } else if (norm16 < minNoNoCompBoundaryBefore) {
1391 // The mapping is comp-normalized which also implies hasCompBoundaryBefore.
1392 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1393 hasCompBoundaryBefore(src, limit)) {
1394 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1395 break;
1396 }
1397 const UChar *mapping = reinterpret_cast<const UChar *>(getMapping(norm16));
1398 int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
1399 if(!buffer.appendZeroCC(mapping, mapping + length, errorCode)) {
1400 break;
1401 }
1402 prevBoundary = src;
1403 continue;
1404 }
1405 } else if (norm16 >= minNoNoEmpty) {
1406 // The current character maps to nothing.
1407 // Simply omit it from the output if there is a boundary before _or_ after it.
1408 // The character itself implies no boundaries.
1409 if (hasCompBoundaryBefore(src, limit) ||
1410 hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
1411 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1412 break;
1413 }
1414 prevBoundary = src;
1415 continue;
1416 }
1417 }
1418 // Other "noNo" type, or need to examine more text around this character:
1419 // Fall through to the slow path.
1420 } else if (isJamoVT(norm16) && prevBoundary != prevSrc) {
1421 UChar prev=*(prevSrc-1);
1422 if(c<Hangul::JAMO_T_BASE) {
1423 // The current character is a Jamo Vowel,
1424 // compose with previous Jamo L and following Jamo T.
1425 UChar l = (UChar)(prev-Hangul::JAMO_L_BASE);
1426 if(l<Hangul::JAMO_L_COUNT) {
1427 if (!doCompose) {
1428 return FALSE;
1429 }
1430 int32_t t;
1431 if (src != limit &&
1432 0 < (t = ((int32_t)*src - Hangul::JAMO_T_BASE)) &&
1433 t < Hangul::JAMO_T_COUNT) {
1434 // The next character is a Jamo T.
1435 ++src;
1436 } else if (hasCompBoundaryBefore(src, limit)) {
1437 // No Jamo T follows, not even via decomposition.
1438 t = 0;
1439 } else {
1440 t = -1;
1441 }
1442 if (t >= 0) {
1443 UChar32 syllable = Hangul::HANGUL_BASE +
1444 (l*Hangul::JAMO_V_COUNT + (c-Hangul::JAMO_V_BASE)) *
1445 Hangul::JAMO_T_COUNT + t;
1446 --prevSrc; // Replace the Jamo L as well.
1447 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1448 break;
1449 }
1450 if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) {
1451 break;
1452 }
1453 prevBoundary = src;
1454 continue;
1455 }
1456 // If we see L+V+x where x!=T then we drop to the slow path,
1457 // decompose and recompose.
1458 // This is to deal with NFKC finding normal L and V but a
1459 // compatibility variant of a T.
1460 // We need to either fully compose that combination here
1461 // (which would complicate the code and may not work with strange custom data)
1462 // or use the slow path.
1463 }
1464 } else if (Hangul::isHangulLV(prev)) {
1465 // The current character is a Jamo Trailing consonant,
1466 // compose with previous Hangul LV that does not contain a Jamo T.
1467 if (!doCompose) {
1468 return FALSE;
1469 }
1470 UChar32 syllable = prev + c - Hangul::JAMO_T_BASE;
1471 --prevSrc; // Replace the Hangul LV as well.
1472 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1473 break;
1474 }
1475 if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) {
1476 break;
1477 }
1478 prevBoundary = src;
1479 continue;
1480 }
1481 // No matching context, or may need to decompose surrounding text first:
1482 // Fall through to the slow path.
1483 } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
1484 // One or more combining marks that do not combine-back:
1485 // Check for canonical order, copy unchanged if ok and
1486 // if followed by a character with a boundary-before.
1487 uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
1488 if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
1489 // Fails FCD test, need to decompose and contiguously recompose.
1490 if (!doCompose) {
1491 return FALSE;
1492 }
1493 } else {
1494 // If !onlyContiguous (not FCC), then we ignore the tccc of
1495 // the previous character which passed the quick check "yes && ccc==0" test.
1496 const UChar *nextSrc;
1497 uint16_t n16;
1498 for (;;) {
1499 if (src == limit) {
1500 if (doCompose) {
1501 buffer.appendZeroCC(prevBoundary, limit, errorCode);
1502 }
1503 return TRUE;
1504 }
1505 uint8_t prevCC = cc;
1506 nextSrc = src;
1507 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, n16);
1508 if (n16 >= MIN_YES_YES_WITH_CC) {
1509 cc = getCCFromNormalYesOrMaybe(n16);
1510 if (prevCC > cc) {
1511 if (!doCompose) {
1512 return FALSE;
1513 }
1514 break;
1515 }
1516 } else {
1517 break;
1518 }
1519 src = nextSrc;
1520 }
1521 // src is after the last in-order combining mark.
1522 // If there is a boundary here, then we continue with no change.
1523 if (norm16HasCompBoundaryBefore(n16)) {
1524 if (isCompYesAndZeroCC(n16)) {
1525 src = nextSrc;
1526 }
1527 continue;
1528 }
1529 // Use the slow path. There is no boundary in [prevSrc, src[.
1530 }
1531 }
1532
1533 // Slow path: Find the nearest boundaries around the current character,
1534 // decompose and recompose.
1535 if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
1536 const UChar *p = prevSrc;
1537 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, norm16);
1538 if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
1539 prevSrc = p;
1540 }
1541 }
1542 if (doCompose && prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1543 break;
1544 }
1545 int32_t recomposeStartIndex=buffer.length();
1546 // We know there is not a boundary here.
1547 decomposeShort(prevSrc, src, FALSE /* !stopAtCompBoundary */, onlyContiguous,
1548 buffer, errorCode);
1549 // Decompose until the next boundary.
1550 src = decomposeShort(src, limit, TRUE /* stopAtCompBoundary */, onlyContiguous,
1551 buffer, errorCode);
1552 if (U_FAILURE(errorCode)) {
1553 break;
1554 }
1555 if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals()
1556 errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
1557 return TRUE;
1558 }
1559 recompose(buffer, recomposeStartIndex, onlyContiguous);
1560 if(!doCompose) {
1561 if(!buffer.equals(prevSrc, src)) {
1562 return FALSE;
1563 }
1564 buffer.remove();
1565 }
1566 prevBoundary=src;
1567 }
1568 return TRUE;
1569 }
1570
1571 // Very similar to compose(): Make the same changes in both places if relevant.
1572 // pQCResult==NULL: spanQuickCheckYes
1573 // pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES)
1574 const UChar *
composeQuickCheck(const UChar * src,const UChar * limit,UBool onlyContiguous,UNormalizationCheckResult * pQCResult) const1575 Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit,
1576 UBool onlyContiguous,
1577 UNormalizationCheckResult *pQCResult) const {
1578 const UChar *prevBoundary=src;
1579 UChar32 minNoMaybeCP=minCompNoMaybeCP;
1580 if(limit==NULL) {
1581 UErrorCode errorCode=U_ZERO_ERROR;
1582 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode);
1583 limit=u_strchr(src, 0);
1584 if (prevBoundary != src) {
1585 if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
1586 prevBoundary = src;
1587 } else {
1588 prevBoundary = --src;
1589 }
1590 }
1591 }
1592
1593 for(;;) {
1594 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1595 // or with (compYes && ccc==0) properties.
1596 const UChar *prevSrc;
1597 UChar32 c = 0;
1598 uint16_t norm16 = 0;
1599 for (;;) {
1600 if(src==limit) {
1601 return src;
1602 }
1603 if( (c=*src)<minNoMaybeCP ||
1604 isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c))
1605 ) {
1606 ++src;
1607 } else {
1608 prevSrc = src++;
1609 if(!U16_IS_LEAD(c)) {
1610 break;
1611 } else {
1612 UChar c2;
1613 if(src!=limit && U16_IS_TRAIL(c2=*src)) {
1614 ++src;
1615 c=U16_GET_SUPPLEMENTARY(c, c2);
1616 norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c);
1617 if(!isCompYesAndZeroCC(norm16)) {
1618 break;
1619 }
1620 }
1621 }
1622 }
1623 }
1624 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1625 // The current character is either a "noNo" (has a mapping)
1626 // or a "maybeYes" (combines backward)
1627 // or a "yesYes" with ccc!=0.
1628 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1629
1630 uint16_t prevNorm16 = INERT;
1631 if (prevBoundary != prevSrc) {
1632 if (norm16HasCompBoundaryBefore(norm16)) {
1633 prevBoundary = prevSrc;
1634 } else {
1635 const UChar *p = prevSrc;
1636 uint16_t n16;
1637 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, n16);
1638 if (norm16HasCompBoundaryAfter(n16, onlyContiguous)) {
1639 prevBoundary = prevSrc;
1640 } else {
1641 prevBoundary = p;
1642 prevNorm16 = n16;
1643 }
1644 }
1645 }
1646
1647 if(isMaybeOrNonZeroCC(norm16)) {
1648 uint8_t cc=getCCFromYesOrMaybe(norm16);
1649 if (onlyContiguous /* FCC */ && cc != 0 &&
1650 getTrailCCFromCompYesAndZeroCC(prevNorm16) > cc) {
1651 // The [prevBoundary..prevSrc[ character
1652 // passed the quick check "yes && ccc==0" test
1653 // but is out of canonical order with the current combining mark.
1654 } else {
1655 // If !onlyContiguous (not FCC), then we ignore the tccc of
1656 // the previous character which passed the quick check "yes && ccc==0" test.
1657 const UChar *nextSrc;
1658 for (;;) {
1659 if (norm16 < MIN_YES_YES_WITH_CC) {
1660 if (pQCResult != nullptr) {
1661 *pQCResult = UNORM_MAYBE;
1662 } else {
1663 return prevBoundary;
1664 }
1665 }
1666 if (src == limit) {
1667 return src;
1668 }
1669 uint8_t prevCC = cc;
1670 nextSrc = src;
1671 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, norm16);
1672 if (isMaybeOrNonZeroCC(norm16)) {
1673 cc = getCCFromYesOrMaybe(norm16);
1674 if (!(prevCC <= cc || cc == 0)) {
1675 break;
1676 }
1677 } else {
1678 break;
1679 }
1680 src = nextSrc;
1681 }
1682 // src is after the last in-order combining mark.
1683 if (isCompYesAndZeroCC(norm16)) {
1684 prevBoundary = src;
1685 src = nextSrc;
1686 continue;
1687 }
1688 }
1689 }
1690 if(pQCResult!=NULL) {
1691 *pQCResult=UNORM_NO;
1692 }
1693 return prevBoundary;
1694 }
1695 }
1696
composeAndAppend(const UChar * src,const UChar * limit,UBool doCompose,UBool onlyContiguous,UnicodeString & safeMiddle,ReorderingBuffer & buffer,UErrorCode & errorCode) const1697 void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit,
1698 UBool doCompose,
1699 UBool onlyContiguous,
1700 UnicodeString &safeMiddle,
1701 ReorderingBuffer &buffer,
1702 UErrorCode &errorCode) const {
1703 if(!buffer.isEmpty()) {
1704 const UChar *firstStarterInSrc=findNextCompBoundary(src, limit, onlyContiguous);
1705 if(src!=firstStarterInSrc) {
1706 const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(),
1707 buffer.getLimit(), onlyContiguous);
1708 int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest);
1709 UnicodeString middle(lastStarterInDest, destSuffixLength);
1710 buffer.removeSuffix(destSuffixLength);
1711 safeMiddle=middle;
1712 middle.append(src, (int32_t)(firstStarterInSrc-src));
1713 const UChar *middleStart=middle.getBuffer();
1714 compose(middleStart, middleStart+middle.length(), onlyContiguous,
1715 TRUE, buffer, errorCode);
1716 if(U_FAILURE(errorCode)) {
1717 return;
1718 }
1719 src=firstStarterInSrc;
1720 }
1721 }
1722 if(doCompose) {
1723 compose(src, limit, onlyContiguous, TRUE, buffer, errorCode);
1724 } else {
1725 if(limit==NULL) { // appendZeroCC() needs limit!=NULL
1726 limit=u_strchr(src, 0);
1727 }
1728 buffer.appendZeroCC(src, limit, errorCode);
1729 }
1730 }
1731
1732 UBool
composeUTF8(uint32_t options,UBool onlyContiguous,const uint8_t * src,const uint8_t * limit,ByteSink * sink,Edits * edits,UErrorCode & errorCode) const1733 Normalizer2Impl::composeUTF8(uint32_t options, UBool onlyContiguous,
1734 const uint8_t *src, const uint8_t *limit,
1735 ByteSink *sink, Edits *edits, UErrorCode &errorCode) const {
1736 U_ASSERT(limit != nullptr);
1737 UnicodeString s16;
1738 uint8_t minNoMaybeLead = leadByteForCP(minCompNoMaybeCP);
1739 const uint8_t *prevBoundary = src;
1740
1741 for (;;) {
1742 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1743 // or with (compYes && ccc==0) properties.
1744 const uint8_t *prevSrc;
1745 uint16_t norm16 = 0;
1746 for (;;) {
1747 if (src == limit) {
1748 if (prevBoundary != limit && sink != nullptr) {
1749 ByteSinkUtil::appendUnchanged(prevBoundary, limit,
1750 *sink, options, edits, errorCode);
1751 }
1752 return TRUE;
1753 }
1754 if (*src < minNoMaybeLead) {
1755 ++src;
1756 } else {
1757 prevSrc = src;
1758 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
1759 if (!isCompYesAndZeroCC(norm16)) {
1760 break;
1761 }
1762 }
1763 }
1764 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1765 // The current character is either a "noNo" (has a mapping)
1766 // or a "maybeYes" (combines backward)
1767 // or a "yesYes" with ccc!=0.
1768 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1769
1770 // Medium-fast path: Handle cases that do not require full decomposition and recomposition.
1771 if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes
1772 if (sink == nullptr) {
1773 return FALSE;
1774 }
1775 // Fast path for mapping a character that is immediately surrounded by boundaries.
1776 // In this case, we need not decompose around the current character.
1777 if (isDecompNoAlgorithmic(norm16)) {
1778 // Maps to a single isCompYesAndZeroCC character
1779 // which also implies hasCompBoundaryBefore.
1780 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1781 hasCompBoundaryBefore(src, limit)) {
1782 if (prevBoundary != prevSrc &&
1783 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1784 *sink, options, edits, errorCode)) {
1785 break;
1786 }
1787 appendCodePointDelta(prevSrc, src, getAlgorithmicDelta(norm16), *sink, edits);
1788 prevBoundary = src;
1789 continue;
1790 }
1791 } else if (norm16 < minNoNoCompBoundaryBefore) {
1792 // The mapping is comp-normalized which also implies hasCompBoundaryBefore.
1793 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1794 hasCompBoundaryBefore(src, limit)) {
1795 if (prevBoundary != prevSrc &&
1796 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1797 *sink, options, edits, errorCode)) {
1798 break;
1799 }
1800 const uint16_t *mapping = getMapping(norm16);
1801 int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
1802 if (!ByteSinkUtil::appendChange(prevSrc, src, (const UChar *)mapping, length,
1803 *sink, edits, errorCode)) {
1804 break;
1805 }
1806 prevBoundary = src;
1807 continue;
1808 }
1809 } else if (norm16 >= minNoNoEmpty) {
1810 // The current character maps to nothing.
1811 // Simply omit it from the output if there is a boundary before _or_ after it.
1812 // The character itself implies no boundaries.
1813 if (hasCompBoundaryBefore(src, limit) ||
1814 hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
1815 if (prevBoundary != prevSrc &&
1816 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1817 *sink, options, edits, errorCode)) {
1818 break;
1819 }
1820 if (edits != nullptr) {
1821 edits->addReplace((int32_t)(src - prevSrc), 0);
1822 }
1823 prevBoundary = src;
1824 continue;
1825 }
1826 }
1827 // Other "noNo" type, or need to examine more text around this character:
1828 // Fall through to the slow path.
1829 } else if (isJamoVT(norm16)) {
1830 // Jamo L: E1 84 80..92
1831 // Jamo V: E1 85 A1..B5
1832 // Jamo T: E1 86 A8..E1 87 82
1833 U_ASSERT((src - prevSrc) == 3 && *prevSrc == 0xe1);
1834 UChar32 prev = previousHangulOrJamo(prevBoundary, prevSrc);
1835 if (prevSrc[1] == 0x85) {
1836 // The current character is a Jamo Vowel,
1837 // compose with previous Jamo L and following Jamo T.
1838 UChar32 l = prev - Hangul::JAMO_L_BASE;
1839 if ((uint32_t)l < Hangul::JAMO_L_COUNT) {
1840 if (sink == nullptr) {
1841 return FALSE;
1842 }
1843 int32_t t = getJamoTMinusBase(src, limit);
1844 if (t >= 0) {
1845 // The next character is a Jamo T.
1846 src += 3;
1847 } else if (hasCompBoundaryBefore(src, limit)) {
1848 // No Jamo T follows, not even via decomposition.
1849 t = 0;
1850 }
1851 if (t >= 0) {
1852 UChar32 syllable = Hangul::HANGUL_BASE +
1853 (l*Hangul::JAMO_V_COUNT + (prevSrc[2]-0xa1)) *
1854 Hangul::JAMO_T_COUNT + t;
1855 prevSrc -= 3; // Replace the Jamo L as well.
1856 if (prevBoundary != prevSrc &&
1857 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1858 *sink, options, edits, errorCode)) {
1859 break;
1860 }
1861 ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
1862 prevBoundary = src;
1863 continue;
1864 }
1865 // If we see L+V+x where x!=T then we drop to the slow path,
1866 // decompose and recompose.
1867 // This is to deal with NFKC finding normal L and V but a
1868 // compatibility variant of a T.
1869 // We need to either fully compose that combination here
1870 // (which would complicate the code and may not work with strange custom data)
1871 // or use the slow path.
1872 }
1873 } else if (Hangul::isHangulLV(prev)) {
1874 // The current character is a Jamo Trailing consonant,
1875 // compose with previous Hangul LV that does not contain a Jamo T.
1876 if (sink == nullptr) {
1877 return FALSE;
1878 }
1879 UChar32 syllable = prev + getJamoTMinusBase(prevSrc, src);
1880 prevSrc -= 3; // Replace the Hangul LV as well.
1881 if (prevBoundary != prevSrc &&
1882 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1883 *sink, options, edits, errorCode)) {
1884 break;
1885 }
1886 ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
1887 prevBoundary = src;
1888 continue;
1889 }
1890 // No matching context, or may need to decompose surrounding text first:
1891 // Fall through to the slow path.
1892 } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
1893 // One or more combining marks that do not combine-back:
1894 // Check for canonical order, copy unchanged if ok and
1895 // if followed by a character with a boundary-before.
1896 uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
1897 if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
1898 // Fails FCD test, need to decompose and contiguously recompose.
1899 if (sink == nullptr) {
1900 return FALSE;
1901 }
1902 } else {
1903 // If !onlyContiguous (not FCC), then we ignore the tccc of
1904 // the previous character which passed the quick check "yes && ccc==0" test.
1905 const uint8_t *nextSrc;
1906 uint16_t n16;
1907 for (;;) {
1908 if (src == limit) {
1909 if (sink != nullptr) {
1910 ByteSinkUtil::appendUnchanged(prevBoundary, limit,
1911 *sink, options, edits, errorCode);
1912 }
1913 return TRUE;
1914 }
1915 uint8_t prevCC = cc;
1916 nextSrc = src;
1917 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, n16);
1918 if (n16 >= MIN_YES_YES_WITH_CC) {
1919 cc = getCCFromNormalYesOrMaybe(n16);
1920 if (prevCC > cc) {
1921 if (sink == nullptr) {
1922 return FALSE;
1923 }
1924 break;
1925 }
1926 } else {
1927 break;
1928 }
1929 src = nextSrc;
1930 }
1931 // src is after the last in-order combining mark.
1932 // If there is a boundary here, then we continue with no change.
1933 if (norm16HasCompBoundaryBefore(n16)) {
1934 if (isCompYesAndZeroCC(n16)) {
1935 src = nextSrc;
1936 }
1937 continue;
1938 }
1939 // Use the slow path. There is no boundary in [prevSrc, src[.
1940 }
1941 }
1942
1943 // Slow path: Find the nearest boundaries around the current character,
1944 // decompose and recompose.
1945 if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
1946 const uint8_t *p = prevSrc;
1947 UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, prevBoundary, p, norm16);
1948 if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
1949 prevSrc = p;
1950 }
1951 }
1952 ReorderingBuffer buffer(*this, s16, errorCode);
1953 if (U_FAILURE(errorCode)) {
1954 break;
1955 }
1956 // We know there is not a boundary here.
1957 decomposeShort(prevSrc, src, FALSE /* !stopAtCompBoundary */, onlyContiguous,
1958 buffer, errorCode);
1959 // Decompose until the next boundary.
1960 src = decomposeShort(src, limit, TRUE /* stopAtCompBoundary */, onlyContiguous,
1961 buffer, errorCode);
1962 if (U_FAILURE(errorCode)) {
1963 break;
1964 }
1965 if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals()
1966 errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
1967 return TRUE;
1968 }
1969 recompose(buffer, 0, onlyContiguous);
1970 if (!buffer.equals(prevSrc, src)) {
1971 if (sink == nullptr) {
1972 return FALSE;
1973 }
1974 if (prevBoundary != prevSrc &&
1975 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1976 *sink, options, edits, errorCode)) {
1977 break;
1978 }
1979 if (!ByteSinkUtil::appendChange(prevSrc, src, buffer.getStart(), buffer.length(),
1980 *sink, edits, errorCode)) {
1981 break;
1982 }
1983 prevBoundary = src;
1984 }
1985 }
1986 return TRUE;
1987 }
1988
hasCompBoundaryBefore(const UChar * src,const UChar * limit) const1989 UBool Normalizer2Impl::hasCompBoundaryBefore(const UChar *src, const UChar *limit) const {
1990 if (src == limit || *src < minCompNoMaybeCP) {
1991 return TRUE;
1992 }
1993 UChar32 c;
1994 uint16_t norm16;
1995 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16);
1996 return norm16HasCompBoundaryBefore(norm16);
1997 }
1998
hasCompBoundaryBefore(const uint8_t * src,const uint8_t * limit) const1999 UBool Normalizer2Impl::hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const {
2000 if (src == limit) {
2001 return TRUE;
2002 }
2003 uint16_t norm16;
2004 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
2005 return norm16HasCompBoundaryBefore(norm16);
2006 }
2007
hasCompBoundaryAfter(const UChar * start,const UChar * p,UBool onlyContiguous) const2008 UBool Normalizer2Impl::hasCompBoundaryAfter(const UChar *start, const UChar *p,
2009 UBool onlyContiguous) const {
2010 if (start == p) {
2011 return TRUE;
2012 }
2013 UChar32 c;
2014 uint16_t norm16;
2015 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16);
2016 return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
2017 }
2018
hasCompBoundaryAfter(const uint8_t * start,const uint8_t * p,UBool onlyContiguous) const2019 UBool Normalizer2Impl::hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p,
2020 UBool onlyContiguous) const {
2021 if (start == p) {
2022 return TRUE;
2023 }
2024 uint16_t norm16;
2025 UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, start, p, norm16);
2026 return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
2027 }
2028
findPreviousCompBoundary(const UChar * start,const UChar * p,UBool onlyContiguous) const2029 const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p,
2030 UBool onlyContiguous) const {
2031 while (p != start) {
2032 const UChar *codePointLimit = p;
2033 UChar32 c;
2034 uint16_t norm16;
2035 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16);
2036 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
2037 return codePointLimit;
2038 }
2039 if (hasCompBoundaryBefore(c, norm16)) {
2040 return p;
2041 }
2042 }
2043 return p;
2044 }
2045
findNextCompBoundary(const UChar * p,const UChar * limit,UBool onlyContiguous) const2046 const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit,
2047 UBool onlyContiguous) const {
2048 while (p != limit) {
2049 const UChar *codePointStart = p;
2050 UChar32 c;
2051 uint16_t norm16;
2052 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
2053 if (hasCompBoundaryBefore(c, norm16)) {
2054 return codePointStart;
2055 }
2056 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
2057 return p;
2058 }
2059 }
2060 return p;
2061 }
2062
getPreviousTrailCC(const UChar * start,const UChar * p) const2063 uint8_t Normalizer2Impl::getPreviousTrailCC(const UChar *start, const UChar *p) const {
2064 if (start == p) {
2065 return 0;
2066 }
2067 int32_t i = (int32_t)(p - start);
2068 UChar32 c;
2069 U16_PREV(start, 0, i, c);
2070 return (uint8_t)getFCD16(c);
2071 }
2072
getPreviousTrailCC(const uint8_t * start,const uint8_t * p) const2073 uint8_t Normalizer2Impl::getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const {
2074 if (start == p) {
2075 return 0;
2076 }
2077 int32_t i = (int32_t)(p - start);
2078 UChar32 c;
2079 U8_PREV(start, 0, i, c);
2080 return (uint8_t)getFCD16(c);
2081 }
2082
2083 // Note: normalizer2impl.cpp r30982 (2011-nov-27)
2084 // still had getFCDTrie() which built and cached an FCD trie.
2085 // That provided faster access to FCD data than getFCD16FromNormData()
2086 // but required synchronization and consumed some 10kB of heap memory
2087 // in any process that uses FCD (e.g., via collation).
2088 // minDecompNoCP etc. and smallFCD[] are intended to help with any loss of performance,
2089 // at least for ASCII & CJK.
2090
2091 // Ticket 20907 - The optimizer in MSVC/Visual Studio versions below 16.4 has trouble with this
2092 // function on Windows ARM64. As a work-around, we disable optimizations for this function.
2093 // This work-around could/should be removed once the following versions of Visual Studio are no
2094 // longer supported: All versions of VS2017, and versions of VS2019 below 16.4.
2095 #if (defined(_MSC_VER) && (defined(_M_ARM64)) && (_MSC_VER < 1924))
2096 #pragma optimize( "", off )
2097 #endif
2098 // Gets the FCD value from the regular normalization data.
getFCD16FromNormData(UChar32 c) const2099 uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const {
2100 uint16_t norm16=getNorm16(c);
2101 if (norm16 >= limitNoNo) {
2102 if(norm16>=MIN_NORMAL_MAYBE_YES) {
2103 // combining mark
2104 norm16=getCCFromNormalYesOrMaybe(norm16);
2105 return norm16|(norm16<<8);
2106 } else if(norm16>=minMaybeYes) {
2107 return 0;
2108 } else { // isDecompNoAlgorithmic(norm16)
2109 uint16_t deltaTrailCC = norm16 & DELTA_TCCC_MASK;
2110 if (deltaTrailCC <= DELTA_TCCC_1) {
2111 return deltaTrailCC >> OFFSET_SHIFT;
2112 }
2113 // Maps to an isCompYesAndZeroCC.
2114 c=mapAlgorithmic(c, norm16);
2115 norm16=getRawNorm16(c);
2116 }
2117 }
2118 if(norm16<=minYesNo || isHangulLVT(norm16)) {
2119 // no decomposition or Hangul syllable, all zeros
2120 return 0;
2121 }
2122 // c decomposes, get everything from the variable-length extra data
2123 const uint16_t *mapping=getMapping(norm16);
2124 uint16_t firstUnit=*mapping;
2125 norm16=firstUnit>>8; // tccc
2126 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
2127 norm16|=*(mapping-1)&0xff00; // lccc
2128 }
2129 return norm16;
2130 }
2131 #if (defined(_MSC_VER) && (defined(_M_ARM64)) && (_MSC_VER < 1924))
2132 #pragma optimize( "", on )
2133 #endif
2134
2135 // Dual functionality:
2136 // buffer!=NULL: normalize
2137 // buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes
2138 const UChar *
makeFCD(const UChar * src,const UChar * limit,ReorderingBuffer * buffer,UErrorCode & errorCode) const2139 Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit,
2140 ReorderingBuffer *buffer,
2141 UErrorCode &errorCode) const {
2142 // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1.
2143 // Similar to the prevBoundary in the compose() implementation.
2144 const UChar *prevBoundary=src;
2145 int32_t prevFCD16=0;
2146 if(limit==NULL) {
2147 src=copyLowPrefixFromNulTerminated(src, minLcccCP, buffer, errorCode);
2148 if(U_FAILURE(errorCode)) {
2149 return src;
2150 }
2151 if(prevBoundary<src) {
2152 prevBoundary=src;
2153 // We know that the previous character's lccc==0.
2154 // Fetching the fcd16 value was deferred for this below-U+0300 code point.
2155 prevFCD16=getFCD16(*(src-1));
2156 if(prevFCD16>1) {
2157 --prevBoundary;
2158 }
2159 }
2160 limit=u_strchr(src, 0);
2161 }
2162
2163 // Note: In this function we use buffer->appendZeroCC() because we track
2164 // the lead and trail combining classes here, rather than leaving it to
2165 // the ReorderingBuffer.
2166 // The exception is the call to decomposeShort() which uses the buffer
2167 // in the normal way.
2168
2169 const UChar *prevSrc;
2170 UChar32 c=0;
2171 uint16_t fcd16=0;
2172
2173 for(;;) {
2174 // count code units with lccc==0
2175 for(prevSrc=src; src!=limit;) {
2176 if((c=*src)<minLcccCP) {
2177 prevFCD16=~c;
2178 ++src;
2179 } else if(!singleLeadMightHaveNonZeroFCD16(c)) {
2180 prevFCD16=0;
2181 ++src;
2182 } else {
2183 if(U16_IS_LEAD(c)) {
2184 UChar c2;
2185 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
2186 c=U16_GET_SUPPLEMENTARY(c, c2);
2187 }
2188 }
2189 if((fcd16=getFCD16FromNormData(c))<=0xff) {
2190 prevFCD16=fcd16;
2191 src+=U16_LENGTH(c);
2192 } else {
2193 break;
2194 }
2195 }
2196 }
2197 // copy these code units all at once
2198 if(src!=prevSrc) {
2199 if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) {
2200 break;
2201 }
2202 if(src==limit) {
2203 break;
2204 }
2205 prevBoundary=src;
2206 // We know that the previous character's lccc==0.
2207 if(prevFCD16<0) {
2208 // Fetching the fcd16 value was deferred for this below-minLcccCP code point.
2209 UChar32 prev=~prevFCD16;
2210 if(prev<minDecompNoCP) {
2211 prevFCD16=0;
2212 } else {
2213 prevFCD16=getFCD16FromNormData(prev);
2214 if(prevFCD16>1) {
2215 --prevBoundary;
2216 }
2217 }
2218 } else {
2219 const UChar *p=src-1;
2220 if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) {
2221 --p;
2222 // Need to fetch the previous character's FCD value because
2223 // prevFCD16 was just for the trail surrogate code point.
2224 prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1]));
2225 // Still known to have lccc==0 because its lead surrogate unit had lccc==0.
2226 }
2227 if(prevFCD16>1) {
2228 prevBoundary=p;
2229 }
2230 }
2231 // The start of the current character (c).
2232 prevSrc=src;
2233 } else if(src==limit) {
2234 break;
2235 }
2236
2237 src+=U16_LENGTH(c);
2238 // The current character (c) at [prevSrc..src[ has a non-zero lead combining class.
2239 // Check for proper order, and decompose locally if necessary.
2240 if((prevFCD16&0xff)<=(fcd16>>8)) {
2241 // proper order: prev tccc <= current lccc
2242 if((fcd16&0xff)<=1) {
2243 prevBoundary=src;
2244 }
2245 if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) {
2246 break;
2247 }
2248 prevFCD16=fcd16;
2249 continue;
2250 } else if(buffer==NULL) {
2251 return prevBoundary; // quick check "no"
2252 } else {
2253 /*
2254 * Back out the part of the source that we copied or appended
2255 * already but is now going to be decomposed.
2256 * prevSrc is set to after what was copied/appended.
2257 */
2258 buffer->removeSuffix((int32_t)(prevSrc-prevBoundary));
2259 /*
2260 * Find the part of the source that needs to be decomposed,
2261 * up to the next safe boundary.
2262 */
2263 src=findNextFCDBoundary(src, limit);
2264 /*
2265 * The source text does not fulfill the conditions for FCD.
2266 * Decompose and reorder a limited piece of the text.
2267 */
2268 decomposeShort(prevBoundary, src, FALSE, FALSE, *buffer, errorCode);
2269 if (U_FAILURE(errorCode)) {
2270 break;
2271 }
2272 prevBoundary=src;
2273 prevFCD16=0;
2274 }
2275 }
2276 return src;
2277 }
2278
makeFCDAndAppend(const UChar * src,const UChar * limit,UBool doMakeFCD,UnicodeString & safeMiddle,ReorderingBuffer & buffer,UErrorCode & errorCode) const2279 void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit,
2280 UBool doMakeFCD,
2281 UnicodeString &safeMiddle,
2282 ReorderingBuffer &buffer,
2283 UErrorCode &errorCode) const {
2284 if(!buffer.isEmpty()) {
2285 const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit);
2286 if(src!=firstBoundaryInSrc) {
2287 const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(),
2288 buffer.getLimit());
2289 int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest);
2290 UnicodeString middle(lastBoundaryInDest, destSuffixLength);
2291 buffer.removeSuffix(destSuffixLength);
2292 safeMiddle=middle;
2293 middle.append(src, (int32_t)(firstBoundaryInSrc-src));
2294 const UChar *middleStart=middle.getBuffer();
2295 makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode);
2296 if(U_FAILURE(errorCode)) {
2297 return;
2298 }
2299 src=firstBoundaryInSrc;
2300 }
2301 }
2302 if(doMakeFCD) {
2303 makeFCD(src, limit, &buffer, errorCode);
2304 } else {
2305 if(limit==NULL) { // appendZeroCC() needs limit!=NULL
2306 limit=u_strchr(src, 0);
2307 }
2308 buffer.appendZeroCC(src, limit, errorCode);
2309 }
2310 }
2311
findPreviousFCDBoundary(const UChar * start,const UChar * p) const2312 const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const {
2313 while(start<p) {
2314 const UChar *codePointLimit = p;
2315 UChar32 c;
2316 uint16_t norm16;
2317 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16);
2318 if (c < minDecompNoCP || norm16HasDecompBoundaryAfter(norm16)) {
2319 return codePointLimit;
2320 }
2321 if (norm16HasDecompBoundaryBefore(norm16)) {
2322 return p;
2323 }
2324 }
2325 return p;
2326 }
2327
findNextFCDBoundary(const UChar * p,const UChar * limit) const2328 const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const {
2329 while(p<limit) {
2330 const UChar *codePointStart=p;
2331 UChar32 c;
2332 uint16_t norm16;
2333 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
2334 if (c < minLcccCP || norm16HasDecompBoundaryBefore(norm16)) {
2335 return codePointStart;
2336 }
2337 if (norm16HasDecompBoundaryAfter(norm16)) {
2338 return p;
2339 }
2340 }
2341 return p;
2342 }
2343
2344 // CanonicalIterator data -------------------------------------------------- ***
2345
CanonIterData(UErrorCode & errorCode)2346 CanonIterData::CanonIterData(UErrorCode &errorCode) :
2347 mutableTrie(umutablecptrie_open(0, 0, &errorCode)), trie(nullptr),
2348 canonStartSets(uprv_deleteUObject, NULL, errorCode) {}
2349
~CanonIterData()2350 CanonIterData::~CanonIterData() {
2351 umutablecptrie_close(mutableTrie);
2352 ucptrie_close(trie);
2353 }
2354
addToStartSet(UChar32 origin,UChar32 decompLead,UErrorCode & errorCode)2355 void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) {
2356 uint32_t canonValue = umutablecptrie_get(mutableTrie, decompLead);
2357 if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) {
2358 // origin is the first character whose decomposition starts with
2359 // the character for which we are setting the value.
2360 umutablecptrie_set(mutableTrie, decompLead, canonValue|origin, &errorCode);
2361 } else {
2362 // origin is not the first character, or it is U+0000.
2363 UnicodeSet *set;
2364 if((canonValue&CANON_HAS_SET)==0) {
2365 set=new UnicodeSet;
2366 if(set==NULL) {
2367 errorCode=U_MEMORY_ALLOCATION_ERROR;
2368 return;
2369 }
2370 UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK);
2371 canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size();
2372 umutablecptrie_set(mutableTrie, decompLead, canonValue, &errorCode);
2373 canonStartSets.addElement(set, errorCode);
2374 if(firstOrigin!=0) {
2375 set->add(firstOrigin);
2376 }
2377 } else {
2378 set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)];
2379 }
2380 set->add(origin);
2381 }
2382 }
2383
2384 // C++ class for friend access to private Normalizer2Impl members.
2385 class InitCanonIterData {
2386 public:
2387 static void doInit(Normalizer2Impl *impl, UErrorCode &errorCode);
2388 };
2389
2390 U_CDECL_BEGIN
2391
2392 // UInitOnce instantiation function for CanonIterData
2393 static void U_CALLCONV
initCanonIterData(Normalizer2Impl * impl,UErrorCode & errorCode)2394 initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) {
2395 InitCanonIterData::doInit(impl, errorCode);
2396 }
2397
2398 U_CDECL_END
2399
doInit(Normalizer2Impl * impl,UErrorCode & errorCode)2400 void InitCanonIterData::doInit(Normalizer2Impl *impl, UErrorCode &errorCode) {
2401 U_ASSERT(impl->fCanonIterData == NULL);
2402 impl->fCanonIterData = new CanonIterData(errorCode);
2403 if (impl->fCanonIterData == NULL) {
2404 errorCode=U_MEMORY_ALLOCATION_ERROR;
2405 }
2406 if (U_SUCCESS(errorCode)) {
2407 UChar32 start = 0, end;
2408 uint32_t value;
2409 while ((end = ucptrie_getRange(impl->normTrie, start,
2410 UCPMAP_RANGE_FIXED_LEAD_SURROGATES, Normalizer2Impl::INERT,
2411 nullptr, nullptr, &value)) >= 0) {
2412 // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters.
2413 if (value != Normalizer2Impl::INERT) {
2414 impl->makeCanonIterDataFromNorm16(start, end, value, *impl->fCanonIterData, errorCode);
2415 }
2416 start = end + 1;
2417 }
2418 #ifdef UCPTRIE_DEBUG
2419 umutablecptrie_setName(impl->fCanonIterData->mutableTrie, "CanonIterData");
2420 #endif
2421 impl->fCanonIterData->trie = umutablecptrie_buildImmutable(
2422 impl->fCanonIterData->mutableTrie, UCPTRIE_TYPE_SMALL, UCPTRIE_VALUE_BITS_32, &errorCode);
2423 umutablecptrie_close(impl->fCanonIterData->mutableTrie);
2424 impl->fCanonIterData->mutableTrie = nullptr;
2425 }
2426 if (U_FAILURE(errorCode)) {
2427 delete impl->fCanonIterData;
2428 impl->fCanonIterData = NULL;
2429 }
2430 }
2431
makeCanonIterDataFromNorm16(UChar32 start,UChar32 end,const uint16_t norm16,CanonIterData & newData,UErrorCode & errorCode) const2432 void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16,
2433 CanonIterData &newData,
2434 UErrorCode &errorCode) const {
2435 if(isInert(norm16) || (minYesNo<=norm16 && norm16<minNoNo)) {
2436 // Inert, or 2-way mapping (including Hangul syllable).
2437 // We do not write a canonStartSet for any yesNo character.
2438 // Composites from 2-way mappings are added at runtime from the
2439 // starter's compositions list, and the other characters in
2440 // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are
2441 // "maybe" characters.
2442 return;
2443 }
2444 for(UChar32 c=start; c<=end; ++c) {
2445 uint32_t oldValue = umutablecptrie_get(newData.mutableTrie, c);
2446 uint32_t newValue=oldValue;
2447 if(isMaybeOrNonZeroCC(norm16)) {
2448 // not a segment starter if it occurs in a decomposition or has cc!=0
2449 newValue|=CANON_NOT_SEGMENT_STARTER;
2450 if(norm16<MIN_NORMAL_MAYBE_YES) {
2451 newValue|=CANON_HAS_COMPOSITIONS;
2452 }
2453 } else if(norm16<minYesNo) {
2454 newValue|=CANON_HAS_COMPOSITIONS;
2455 } else {
2456 // c has a one-way decomposition
2457 UChar32 c2=c;
2458 // Do not modify the whole-range norm16 value.
2459 uint16_t norm16_2=norm16;
2460 if (isDecompNoAlgorithmic(norm16_2)) {
2461 // Maps to an isCompYesAndZeroCC.
2462 c2 = mapAlgorithmic(c2, norm16_2);
2463 norm16_2 = getRawNorm16(c2);
2464 // No compatibility mappings for the CanonicalIterator.
2465 U_ASSERT(!(isHangulLV(norm16_2) || isHangulLVT(norm16_2)));
2466 }
2467 if (norm16_2 > minYesNo) {
2468 // c decomposes, get everything from the variable-length extra data
2469 const uint16_t *mapping=getMapping(norm16_2);
2470 uint16_t firstUnit=*mapping;
2471 int32_t length=firstUnit&MAPPING_LENGTH_MASK;
2472 if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
2473 if(c==c2 && (*(mapping-1)&0xff)!=0) {
2474 newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0
2475 }
2476 }
2477 // Skip empty mappings (no characters in the decomposition).
2478 if(length!=0) {
2479 ++mapping; // skip over the firstUnit
2480 // add c to first code point's start set
2481 int32_t i=0;
2482 U16_NEXT_UNSAFE(mapping, i, c2);
2483 newData.addToStartSet(c, c2, errorCode);
2484 // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a
2485 // one-way mapping. A 2-way mapping is possible here after
2486 // intermediate algorithmic mapping.
2487 if(norm16_2>=minNoNo) {
2488 while(i<length) {
2489 U16_NEXT_UNSAFE(mapping, i, c2);
2490 uint32_t c2Value = umutablecptrie_get(newData.mutableTrie, c2);
2491 if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) {
2492 umutablecptrie_set(newData.mutableTrie, c2,
2493 c2Value|CANON_NOT_SEGMENT_STARTER, &errorCode);
2494 }
2495 }
2496 }
2497 }
2498 } else {
2499 // c decomposed to c2 algorithmically; c has cc==0
2500 newData.addToStartSet(c, c2, errorCode);
2501 }
2502 }
2503 if(newValue!=oldValue) {
2504 umutablecptrie_set(newData.mutableTrie, c, newValue, &errorCode);
2505 }
2506 }
2507 }
2508
ensureCanonIterData(UErrorCode & errorCode) const2509 UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const {
2510 // Logically const: Synchronized instantiation.
2511 Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this);
2512 umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode);
2513 return U_SUCCESS(errorCode);
2514 }
2515
getCanonValue(UChar32 c) const2516 int32_t Normalizer2Impl::getCanonValue(UChar32 c) const {
2517 return (int32_t)ucptrie_get(fCanonIterData->trie, c);
2518 }
2519
getCanonStartSet(int32_t n) const2520 const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const {
2521 return *(const UnicodeSet *)fCanonIterData->canonStartSets[n];
2522 }
2523
isCanonSegmentStarter(UChar32 c) const2524 UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const {
2525 return getCanonValue(c)>=0;
2526 }
2527
getCanonStartSet(UChar32 c,UnicodeSet & set) const2528 UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const {
2529 int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER;
2530 if(canonValue==0) {
2531 return FALSE;
2532 }
2533 set.clear();
2534 int32_t value=canonValue&CANON_VALUE_MASK;
2535 if((canonValue&CANON_HAS_SET)!=0) {
2536 set.addAll(getCanonStartSet(value));
2537 } else if(value!=0) {
2538 set.add(value);
2539 }
2540 if((canonValue&CANON_HAS_COMPOSITIONS)!=0) {
2541 uint16_t norm16=getRawNorm16(c);
2542 if(norm16==JAMO_L) {
2543 UChar32 syllable=
2544 (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT);
2545 set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1);
2546 } else {
2547 addComposites(getCompositionsList(norm16), set);
2548 }
2549 }
2550 return TRUE;
2551 }
2552
2553 U_NAMESPACE_END
2554
2555 // Normalizer2 data swapping ----------------------------------------------- ***
2556
2557 U_NAMESPACE_USE
2558
2559 U_CAPI int32_t U_EXPORT2
unorm2_swap(const UDataSwapper * ds,const void * inData,int32_t length,void * outData,UErrorCode * pErrorCode)2560 unorm2_swap(const UDataSwapper *ds,
2561 const void *inData, int32_t length, void *outData,
2562 UErrorCode *pErrorCode) {
2563 const UDataInfo *pInfo;
2564 int32_t headerSize;
2565
2566 const uint8_t *inBytes;
2567 uint8_t *outBytes;
2568
2569 const int32_t *inIndexes;
2570 int32_t indexes[Normalizer2Impl::IX_TOTAL_SIZE+1];
2571
2572 int32_t i, offset, nextOffset, size;
2573
2574 /* udata_swapDataHeader checks the arguments */
2575 headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
2576 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
2577 return 0;
2578 }
2579
2580 /* check data format and format version */
2581 pInfo=(const UDataInfo *)((const char *)inData+4);
2582 uint8_t formatVersion0=pInfo->formatVersion[0];
2583 if(!(
2584 pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */
2585 pInfo->dataFormat[1]==0x72 &&
2586 pInfo->dataFormat[2]==0x6d &&
2587 pInfo->dataFormat[3]==0x32 &&
2588 (1<=formatVersion0 && formatVersion0<=4)
2589 )) {
2590 udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n",
2591 pInfo->dataFormat[0], pInfo->dataFormat[1],
2592 pInfo->dataFormat[2], pInfo->dataFormat[3],
2593 pInfo->formatVersion[0]);
2594 *pErrorCode=U_UNSUPPORTED_ERROR;
2595 return 0;
2596 }
2597
2598 inBytes=(const uint8_t *)inData+headerSize;
2599 outBytes=(uint8_t *)outData+headerSize;
2600
2601 inIndexes=(const int32_t *)inBytes;
2602 int32_t minIndexesLength;
2603 if(formatVersion0==1) {
2604 minIndexesLength=Normalizer2Impl::IX_MIN_MAYBE_YES+1;
2605 } else if(formatVersion0==2) {
2606 minIndexesLength=Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY+1;
2607 } else {
2608 minIndexesLength=Normalizer2Impl::IX_MIN_LCCC_CP+1;
2609 }
2610
2611 if(length>=0) {
2612 length-=headerSize;
2613 if(length<minIndexesLength*4) {
2614 udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n",
2615 length);
2616 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2617 return 0;
2618 }
2619 }
2620
2621 /* read the first few indexes */
2622 for(i=0; i<UPRV_LENGTHOF(indexes); ++i) {
2623 indexes[i]=udata_readInt32(ds, inIndexes[i]);
2624 }
2625
2626 /* get the total length of the data */
2627 size=indexes[Normalizer2Impl::IX_TOTAL_SIZE];
2628
2629 if(length>=0) {
2630 if(length<size) {
2631 udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n",
2632 length);
2633 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2634 return 0;
2635 }
2636
2637 /* copy the data for inaccessible bytes */
2638 if(inBytes!=outBytes) {
2639 uprv_memcpy(outBytes, inBytes, size);
2640 }
2641
2642 offset=0;
2643
2644 /* swap the int32_t indexes[] */
2645 nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET];
2646 ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode);
2647 offset=nextOffset;
2648
2649 /* swap the trie */
2650 nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET];
2651 utrie_swapAnyVersion(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
2652 offset=nextOffset;
2653
2654 /* swap the uint16_t extraData[] */
2655 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET];
2656 ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
2657 offset=nextOffset;
2658
2659 /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */
2660 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1];
2661 offset=nextOffset;
2662
2663 U_ASSERT(offset==size);
2664 }
2665
2666 return headerSize+size;
2667 }
2668
2669 #endif // !UCONFIG_NO_NORMALIZATION
2670