• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <DisplayHardware/Hal.h>
18 #include <android-base/stringprintf.h>
19 #include <compositionengine/DisplayColorProfile.h>
20 #include <compositionengine/LayerFECompositionState.h>
21 #include <compositionengine/Output.h>
22 #include <compositionengine/impl/HwcBufferCache.h>
23 #include <compositionengine/impl/OutputCompositionState.h>
24 #include <compositionengine/impl/OutputLayer.h>
25 #include <compositionengine/impl/OutputLayerCompositionState.h>
26 #include <cstdint>
27 
28 // TODO(b/129481165): remove the #pragma below and fix conversion issues
29 #pragma clang diagnostic push
30 #pragma clang diagnostic ignored "-Wconversion"
31 
32 #include "DisplayHardware/HWComposer.h"
33 
34 // TODO(b/129481165): remove the #pragma below and fix conversion issues
35 #pragma clang diagnostic pop // ignored "-Wconversion"
36 
37 namespace android::compositionengine {
38 
39 OutputLayer::~OutputLayer() = default;
40 
41 namespace impl {
42 
43 namespace {
44 
reduce(const FloatRect & win,const Region & exclude)45 FloatRect reduce(const FloatRect& win, const Region& exclude) {
46     if (CC_LIKELY(exclude.isEmpty())) {
47         return win;
48     }
49     // Convert through Rect (by rounding) for lack of FloatRegion
50     return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
51 }
52 
53 } // namespace
54 
createOutputLayer(const compositionengine::Output & output,const sp<compositionengine::LayerFE> & layerFE)55 std::unique_ptr<OutputLayer> createOutputLayer(const compositionengine::Output& output,
56                                                const sp<compositionengine::LayerFE>& layerFE) {
57     return createOutputLayerTemplated<OutputLayer>(output, layerFE);
58 }
59 
60 OutputLayer::~OutputLayer() = default;
61 
setHwcLayer(std::shared_ptr<HWC2::Layer> hwcLayer)62 void OutputLayer::setHwcLayer(std::shared_ptr<HWC2::Layer> hwcLayer) {
63     auto& state = editState();
64     if (hwcLayer) {
65         state.hwc.emplace(std::move(hwcLayer));
66     } else {
67         state.hwc.reset();
68     }
69 }
70 
calculateInitialCrop() const71 Rect OutputLayer::calculateInitialCrop() const {
72     const auto& layerState = *getLayerFE().getCompositionState();
73 
74     // apply the projection's clipping to the window crop in
75     // layerstack space, and convert-back to layer space.
76     // if there are no window scaling involved, this operation will map to full
77     // pixels in the buffer.
78 
79     FloatRect activeCropFloat =
80             reduce(layerState.geomLayerBounds, layerState.transparentRegionHint);
81 
82     const Rect& viewport = getOutput().getState().layerStackSpace.content;
83     const ui::Transform& layerTransform = layerState.geomLayerTransform;
84     const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform;
85     // Transform to screen space.
86     activeCropFloat = layerTransform.transform(activeCropFloat);
87     activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect());
88     // Back to layer space to work with the content crop.
89     activeCropFloat = inverseLayerTransform.transform(activeCropFloat);
90 
91     // This needs to be here as transform.transform(Rect) computes the
92     // transformed rect and then takes the bounding box of the result before
93     // returning. This means
94     // transform.inverse().transform(transform.transform(Rect)) != Rect
95     // in which case we need to make sure the final rect is clipped to the
96     // display bounds.
97     Rect activeCrop{activeCropFloat};
98     if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) {
99         activeCrop.clear();
100     }
101     return activeCrop;
102 }
103 
calculateOutputSourceCrop() const104 FloatRect OutputLayer::calculateOutputSourceCrop() const {
105     const auto& layerState = *getLayerFE().getCompositionState();
106     const auto& outputState = getOutput().getState();
107 
108     if (!layerState.geomUsesSourceCrop) {
109         return {};
110     }
111 
112     // the content crop is the area of the content that gets scaled to the
113     // layer's size. This is in buffer space.
114     FloatRect crop = layerState.geomContentCrop.toFloatRect();
115 
116     // In addition there is a WM-specified crop we pull from our drawing state.
117     Rect activeCrop = calculateInitialCrop();
118     const Rect& bufferSize = layerState.geomBufferSize;
119 
120     int winWidth = bufferSize.getWidth();
121     int winHeight = bufferSize.getHeight();
122 
123     // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1])
124     // if display frame hasn't been set and the parent is an unbounded layer.
125     if (winWidth < 0 && winHeight < 0) {
126         return crop;
127     }
128 
129     // Transform the window crop to match the buffer coordinate system,
130     // which means using the inverse of the current transform set on the
131     // SurfaceFlingerConsumer.
132     uint32_t invTransform = layerState.geomBufferTransform;
133     if (layerState.geomBufferUsesDisplayInverseTransform) {
134         /*
135          * the code below applies the primary display's inverse transform to the
136          * buffer
137          */
138         uint32_t invTransformOrient =
139                 ui::Transform::toRotationFlags(outputState.displaySpace.orientation);
140         // calculate the inverse transform
141         if (invTransformOrient & HAL_TRANSFORM_ROT_90) {
142             invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
143         }
144         // and apply to the current transform
145         invTransform =
146                 (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation();
147     }
148 
149     if (invTransform & HAL_TRANSFORM_ROT_90) {
150         // If the activeCrop has been rotate the ends are rotated but not
151         // the space itself so when transforming ends back we can't rely on
152         // a modification of the axes of rotation. To account for this we
153         // need to reorient the inverse rotation in terms of the current
154         // axes of rotation.
155         bool isHFlipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0;
156         bool isVFlipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0;
157         if (isHFlipped == isVFlipped) {
158             invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
159         }
160         std::swap(winWidth, winHeight);
161     }
162     const Rect winCrop =
163             activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight());
164 
165     // below, crop is intersected with winCrop expressed in crop's coordinate space
166     const float xScale = crop.getWidth() / float(winWidth);
167     const float yScale = crop.getHeight() / float(winHeight);
168 
169     const float insetLeft = winCrop.left * xScale;
170     const float insetTop = winCrop.top * yScale;
171     const float insetRight = (winWidth - winCrop.right) * xScale;
172     const float insetBottom = (winHeight - winCrop.bottom) * yScale;
173 
174     crop.left += insetLeft;
175     crop.top += insetTop;
176     crop.right -= insetRight;
177     crop.bottom -= insetBottom;
178 
179     return crop;
180 }
181 
calculateOutputDisplayFrame() const182 Rect OutputLayer::calculateOutputDisplayFrame() const {
183     const auto& layerState = *getLayerFE().getCompositionState();
184     const auto& outputState = getOutput().getState();
185 
186     // apply the layer's transform, followed by the display's global transform
187     // here we're guaranteed that the layer's transform preserves rects
188     Region activeTransparentRegion = layerState.transparentRegionHint;
189     const ui::Transform& layerTransform = layerState.geomLayerTransform;
190     const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform;
191     const Rect& bufferSize = layerState.geomBufferSize;
192     Rect activeCrop = layerState.geomCrop;
193     if (!activeCrop.isEmpty() && bufferSize.isValid()) {
194         activeCrop = layerTransform.transform(activeCrop);
195         if (!activeCrop.intersect(outputState.layerStackSpace.content, &activeCrop)) {
196             activeCrop.clear();
197         }
198         activeCrop = inverseLayerTransform.transform(activeCrop, true);
199         // This needs to be here as transform.transform(Rect) computes the
200         // transformed rect and then takes the bounding box of the result before
201         // returning. This means
202         // transform.inverse().transform(transform.transform(Rect)) != Rect
203         // in which case we need to make sure the final rect is clipped to the
204         // display bounds.
205         if (!activeCrop.intersect(bufferSize, &activeCrop)) {
206             activeCrop.clear();
207         }
208         // mark regions outside the crop as transparent
209         activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top));
210         activeTransparentRegion.orSelf(
211                 Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight()));
212         activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom));
213         activeTransparentRegion.orSelf(
214                 Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom));
215     }
216 
217     // reduce uses a FloatRect to provide more accuracy during the
218     // transformation. We then round upon constructing 'frame'.
219     FloatRect geomLayerBounds = layerState.geomLayerBounds;
220 
221     // Some HWCs may clip client composited input to its displayFrame. Make sure
222     // that this does not cut off the shadow.
223     if (layerState.forceClientComposition && layerState.shadowRadius > 0.0f) {
224         const auto outset = layerState.shadowRadius;
225         geomLayerBounds.left -= outset;
226         geomLayerBounds.top -= outset;
227         geomLayerBounds.right += outset;
228         geomLayerBounds.bottom += outset;
229     }
230     Rect frame{layerTransform.transform(reduce(geomLayerBounds, activeTransparentRegion))};
231     if (!frame.intersect(outputState.layerStackSpace.content, &frame)) {
232         frame.clear();
233     }
234     const ui::Transform displayTransform{outputState.transform};
235 
236     return displayTransform.transform(frame);
237 }
238 
calculateOutputRelativeBufferTransform(uint32_t internalDisplayRotationFlags) const239 uint32_t OutputLayer::calculateOutputRelativeBufferTransform(
240         uint32_t internalDisplayRotationFlags) const {
241     const auto& layerState = *getLayerFE().getCompositionState();
242     const auto& outputState = getOutput().getState();
243 
244     /*
245      * Transformations are applied in this order:
246      * 1) buffer orientation/flip/mirror
247      * 2) state transformation (window manager)
248      * 3) layer orientation (screen orientation)
249      * (NOTE: the matrices are multiplied in reverse order)
250      */
251     const ui::Transform& layerTransform = layerState.geomLayerTransform;
252     const ui::Transform displayTransform{outputState.transform};
253     const ui::Transform bufferTransform{layerState.geomBufferTransform};
254     ui::Transform transform(displayTransform * layerTransform * bufferTransform);
255 
256     if (layerState.geomBufferUsesDisplayInverseTransform) {
257         /*
258          * We must apply the internal display's inverse transform to the buffer
259          * transform, and not the one for the output this layer is on.
260          */
261         uint32_t invTransform = internalDisplayRotationFlags;
262 
263         // calculate the inverse transform
264         if (invTransform & HAL_TRANSFORM_ROT_90) {
265             invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
266         }
267 
268         /*
269          * Here we cancel out the orientation component of the WM transform.
270          * The scaling and translate components are already included in our bounds
271          * computation so it's enough to just omit it in the composition.
272          * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why.
273          */
274         transform = ui::Transform(invTransform) * displayTransform * bufferTransform;
275     }
276 
277     // this gives us only the "orientation" component of the transform
278     return transform.getOrientation();
279 }
280 
updateCompositionState(bool includeGeometry,bool forceClientComposition,ui::Transform::RotationFlags internalDisplayRotationFlags)281 void OutputLayer::updateCompositionState(
282         bool includeGeometry, bool forceClientComposition,
283         ui::Transform::RotationFlags internalDisplayRotationFlags) {
284     const auto* layerFEState = getLayerFE().getCompositionState();
285     if (!layerFEState) {
286         return;
287     }
288 
289     const auto& outputState = getOutput().getState();
290     const auto& profile = *getOutput().getDisplayColorProfile();
291     auto& state = editState();
292 
293     if (includeGeometry) {
294         // Clear the forceClientComposition flag before it is set for any
295         // reason. Note that since it can be set by some checks below when
296         // updating the geometry state, we only clear it when updating the
297         // geometry since those conditions for forcing client composition won't
298         // go away otherwise.
299         state.forceClientComposition = false;
300 
301         state.displayFrame = calculateOutputDisplayFrame();
302         state.sourceCrop = calculateOutputSourceCrop();
303         state.bufferTransform = static_cast<Hwc2::Transform>(
304                 calculateOutputRelativeBufferTransform(internalDisplayRotationFlags));
305 
306         if ((layerFEState->isSecure && !outputState.isSecure) ||
307             (state.bufferTransform & ui::Transform::ROT_INVALID)) {
308             state.forceClientComposition = true;
309         }
310     }
311 
312     // Determine the output dependent dataspace for this layer. If it is
313     // colorspace agnostic, it just uses the dataspace chosen for the output to
314     // avoid the need for color conversion.
315     state.dataspace = layerFEState->isColorspaceAgnostic &&
316                     outputState.targetDataspace != ui::Dataspace::UNKNOWN
317             ? outputState.targetDataspace
318             : layerFEState->dataspace;
319 
320     // These are evaluated every frame as they can potentially change at any
321     // time.
322     if (layerFEState->forceClientComposition || !profile.isDataspaceSupported(state.dataspace) ||
323         forceClientComposition) {
324         state.forceClientComposition = true;
325     }
326 }
327 
writeStateToHWC(bool includeGeometry,bool skipLayer,uint32_t z,bool zIsOverridden,bool isPeekingThrough)328 void OutputLayer::writeStateToHWC(bool includeGeometry, bool skipLayer, uint32_t z,
329                                   bool zIsOverridden, bool isPeekingThrough) {
330     const auto& state = getState();
331     // Skip doing this if there is no HWC interface
332     if (!state.hwc) {
333         return;
334     }
335 
336     auto& hwcLayer = (*state.hwc).hwcLayer;
337     if (!hwcLayer) {
338         ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s",
339               getLayerFE().getDebugName(), getOutput().getName().c_str());
340         return;
341     }
342 
343     const auto* outputIndependentState = getLayerFE().getCompositionState();
344     if (!outputIndependentState) {
345         return;
346     }
347 
348     auto requestedCompositionType = outputIndependentState->compositionType;
349 
350     // TODO(b/181172795): We now update geometry for all flattened layers. We should update it
351     // only when the geometry actually changes
352     const bool isOverridden =
353             state.overrideInfo.buffer != nullptr || isPeekingThrough || zIsOverridden;
354     const bool prevOverridden = state.hwc->stateOverridden;
355     if (isOverridden || prevOverridden || skipLayer || includeGeometry) {
356         writeOutputDependentGeometryStateToHWC(hwcLayer.get(), requestedCompositionType, z);
357         writeOutputIndependentGeometryStateToHWC(hwcLayer.get(), *outputIndependentState,
358                                                  skipLayer);
359     }
360 
361     writeOutputDependentPerFrameStateToHWC(hwcLayer.get());
362     writeOutputIndependentPerFrameStateToHWC(hwcLayer.get(), *outputIndependentState, skipLayer);
363 
364     writeCompositionTypeToHWC(hwcLayer.get(), requestedCompositionType, isPeekingThrough,
365                               skipLayer);
366 
367     // Always set the layer color after setting the composition type.
368     writeSolidColorStateToHWC(hwcLayer.get(), *outputIndependentState);
369 
370     editState().hwc->stateOverridden = isOverridden;
371     editState().hwc->layerSkipped = skipLayer;
372 }
373 
writeOutputDependentGeometryStateToHWC(HWC2::Layer * hwcLayer,hal::Composition requestedCompositionType,uint32_t z)374 void OutputLayer::writeOutputDependentGeometryStateToHWC(HWC2::Layer* hwcLayer,
375                                                          hal::Composition requestedCompositionType,
376                                                          uint32_t z) {
377     const auto& outputDependentState = getState();
378 
379     Rect displayFrame = outputDependentState.displayFrame;
380     FloatRect sourceCrop = outputDependentState.sourceCrop;
381 
382     if (outputDependentState.overrideInfo.buffer != nullptr) {
383         displayFrame = outputDependentState.overrideInfo.displayFrame;
384         sourceCrop =
385                 FloatRect(0.f, 0.f,
386                           static_cast<float>(outputDependentState.overrideInfo.buffer->getBuffer()
387                                                      ->getWidth()),
388                           static_cast<float>(outputDependentState.overrideInfo.buffer->getBuffer()
389                                                      ->getHeight()));
390     }
391 
392     ALOGV("Writing display frame [%d, %d, %d, %d]", displayFrame.left, displayFrame.top,
393           displayFrame.right, displayFrame.bottom);
394 
395     if (auto error = hwcLayer->setDisplayFrame(displayFrame); error != hal::Error::NONE) {
396         ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)",
397               getLayerFE().getDebugName(), displayFrame.left, displayFrame.top, displayFrame.right,
398               displayFrame.bottom, to_string(error).c_str(), static_cast<int32_t>(error));
399     }
400 
401     if (auto error = hwcLayer->setSourceCrop(sourceCrop); error != hal::Error::NONE) {
402         ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: "
403               "%s (%d)",
404               getLayerFE().getDebugName(), sourceCrop.left, sourceCrop.top, sourceCrop.right,
405               sourceCrop.bottom, to_string(error).c_str(), static_cast<int32_t>(error));
406     }
407 
408     if (auto error = hwcLayer->setZOrder(z); error != hal::Error::NONE) {
409         ALOGE("[%s] Failed to set Z %u: %s (%d)", getLayerFE().getDebugName(), z,
410               to_string(error).c_str(), static_cast<int32_t>(error));
411     }
412 
413     // Solid-color layers and overridden buffers should always use an identity transform.
414     const auto bufferTransform = (requestedCompositionType != hal::Composition::SOLID_COLOR &&
415                                   getState().overrideInfo.buffer == nullptr)
416             ? outputDependentState.bufferTransform
417             : static_cast<hal::Transform>(0);
418     if (auto error = hwcLayer->setTransform(static_cast<hal::Transform>(bufferTransform));
419         error != hal::Error::NONE) {
420         ALOGE("[%s] Failed to set transform %s: %s (%d)", getLayerFE().getDebugName(),
421               toString(outputDependentState.bufferTransform).c_str(), to_string(error).c_str(),
422               static_cast<int32_t>(error));
423     }
424 }
425 
writeOutputIndependentGeometryStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState,bool skipLayer)426 void OutputLayer::writeOutputIndependentGeometryStateToHWC(
427         HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState,
428         bool skipLayer) {
429     // If there is a peekThroughLayer, then this layer has a hole in it. We need to use
430     // PREMULTIPLIED so it will peek through.
431     const auto& overrideInfo = getState().overrideInfo;
432     const auto blendMode = overrideInfo.buffer || overrideInfo.peekThroughLayer
433             ? hardware::graphics::composer::hal::BlendMode::PREMULTIPLIED
434             : outputIndependentState.blendMode;
435     if (auto error = hwcLayer->setBlendMode(blendMode); error != hal::Error::NONE) {
436         ALOGE("[%s] Failed to set blend mode %s: %s (%d)", getLayerFE().getDebugName(),
437               toString(blendMode).c_str(), to_string(error).c_str(), static_cast<int32_t>(error));
438     }
439 
440     const float alpha = skipLayer
441             ? 0.0f
442             : (getState().overrideInfo.buffer ? 1.0f : outputIndependentState.alpha);
443     ALOGV("Writing alpha %f", alpha);
444 
445     if (auto error = hwcLayer->setPlaneAlpha(alpha); error != hal::Error::NONE) {
446         ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", getLayerFE().getDebugName(), alpha,
447               to_string(error).c_str(), static_cast<int32_t>(error));
448     }
449 
450     for (const auto& [name, entry] : outputIndependentState.metadata) {
451         if (auto error = hwcLayer->setLayerGenericMetadata(name, entry.mandatory, entry.value);
452             error != hal::Error::NONE) {
453             ALOGE("[%s] Failed to set generic metadata %s %s (%d)", getLayerFE().getDebugName(),
454                   name.c_str(), to_string(error).c_str(), static_cast<int32_t>(error));
455         }
456     }
457 }
458 
writeOutputDependentPerFrameStateToHWC(HWC2::Layer * hwcLayer)459 void OutputLayer::writeOutputDependentPerFrameStateToHWC(HWC2::Layer* hwcLayer) {
460     const auto& outputDependentState = getState();
461 
462     // TODO(lpique): b/121291683 outputSpaceVisibleRegion is output-dependent geometry
463     // state and should not change every frame.
464     Region visibleRegion = outputDependentState.overrideInfo.buffer
465             ? Region(outputDependentState.overrideInfo.visibleRegion)
466             : outputDependentState.outputSpaceVisibleRegion;
467     if (auto error = hwcLayer->setVisibleRegion(visibleRegion); error != hal::Error::NONE) {
468         ALOGE("[%s] Failed to set visible region: %s (%d)", getLayerFE().getDebugName(),
469               to_string(error).c_str(), static_cast<int32_t>(error));
470         outputDependentState.outputSpaceVisibleRegion.dump(LOG_TAG);
471     }
472 
473     const auto dataspace = outputDependentState.overrideInfo.buffer
474             ? outputDependentState.overrideInfo.dataspace
475             : outputDependentState.dataspace;
476 
477     if (auto error = hwcLayer->setDataspace(dataspace); error != hal::Error::NONE) {
478         ALOGE("[%s] Failed to set dataspace %d: %s (%d)", getLayerFE().getDebugName(), dataspace,
479               to_string(error).c_str(), static_cast<int32_t>(error));
480     }
481 }
482 
writeOutputIndependentPerFrameStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState,bool skipLayer)483 void OutputLayer::writeOutputIndependentPerFrameStateToHWC(
484         HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState,
485         bool skipLayer) {
486     switch (auto error = hwcLayer->setColorTransform(outputIndependentState.colorTransform)) {
487         case hal::Error::NONE:
488             break;
489         case hal::Error::UNSUPPORTED:
490             editState().forceClientComposition = true;
491             break;
492         default:
493             ALOGE("[%s] Failed to set color transform: %s (%d)", getLayerFE().getDebugName(),
494                   to_string(error).c_str(), static_cast<int32_t>(error));
495     }
496 
497     const Region& surfaceDamage = getState().overrideInfo.buffer
498             ? getState().overrideInfo.damageRegion
499             : (getState().hwc->stateOverridden ? Region::INVALID_REGION
500                                                : outputIndependentState.surfaceDamage);
501 
502     if (auto error = hwcLayer->setSurfaceDamage(surfaceDamage); error != hal::Error::NONE) {
503         ALOGE("[%s] Failed to set surface damage: %s (%d)", getLayerFE().getDebugName(),
504               to_string(error).c_str(), static_cast<int32_t>(error));
505         outputIndependentState.surfaceDamage.dump(LOG_TAG);
506     }
507 
508     // Content-specific per-frame state
509     switch (outputIndependentState.compositionType) {
510         case hal::Composition::SOLID_COLOR:
511             // For compatibility, should be written AFTER the composition type.
512             break;
513         case hal::Composition::SIDEBAND:
514             writeSidebandStateToHWC(hwcLayer, outputIndependentState);
515             break;
516         case hal::Composition::CURSOR:
517         case hal::Composition::DEVICE:
518             writeBufferStateToHWC(hwcLayer, outputIndependentState, skipLayer);
519             break;
520         case hal::Composition::INVALID:
521         case hal::Composition::CLIENT:
522             // Ignored
523             break;
524     }
525 }
526 
writeSolidColorStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)527 void OutputLayer::writeSolidColorStateToHWC(HWC2::Layer* hwcLayer,
528                                             const LayerFECompositionState& outputIndependentState) {
529     if (outputIndependentState.compositionType != hal::Composition::SOLID_COLOR) {
530         return;
531     }
532 
533     hal::Color color = {static_cast<uint8_t>(std::round(255.0f * outputIndependentState.color.r)),
534                         static_cast<uint8_t>(std::round(255.0f * outputIndependentState.color.g)),
535                         static_cast<uint8_t>(std::round(255.0f * outputIndependentState.color.b)),
536                         255};
537 
538     if (auto error = hwcLayer->setColor(color); error != hal::Error::NONE) {
539         ALOGE("[%s] Failed to set color: %s (%d)", getLayerFE().getDebugName(),
540               to_string(error).c_str(), static_cast<int32_t>(error));
541     }
542 }
543 
writeSidebandStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)544 void OutputLayer::writeSidebandStateToHWC(HWC2::Layer* hwcLayer,
545                                           const LayerFECompositionState& outputIndependentState) {
546     if (auto error = hwcLayer->setSidebandStream(outputIndependentState.sidebandStream->handle());
547         error != hal::Error::NONE) {
548         ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", getLayerFE().getDebugName(),
549               outputIndependentState.sidebandStream->handle(), to_string(error).c_str(),
550               static_cast<int32_t>(error));
551     }
552 }
553 
writeBufferStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState,bool skipLayer)554 void OutputLayer::writeBufferStateToHWC(HWC2::Layer* hwcLayer,
555                                         const LayerFECompositionState& outputIndependentState,
556                                         bool skipLayer) {
557     auto supportedPerFrameMetadata =
558             getOutput().getDisplayColorProfile()->getSupportedPerFrameMetadata();
559     if (auto error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata,
560                                                    outputIndependentState.hdrMetadata);
561         error != hal::Error::NONE && error != hal::Error::UNSUPPORTED) {
562         ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", getLayerFE().getDebugName(),
563               to_string(error).c_str(), static_cast<int32_t>(error));
564     }
565 
566     sp<GraphicBuffer> buffer = outputIndependentState.buffer;
567     sp<Fence> acquireFence = outputIndependentState.acquireFence;
568     int slot = outputIndependentState.bufferSlot;
569     if (getState().overrideInfo.buffer != nullptr && !skipLayer) {
570         buffer = getState().overrideInfo.buffer->getBuffer();
571         acquireFence = getState().overrideInfo.acquireFence;
572         slot = HwcBufferCache::FLATTENER_CACHING_SLOT;
573     }
574 
575     ALOGV("Writing buffer %p", buffer.get());
576 
577     uint32_t hwcSlot = 0;
578     sp<GraphicBuffer> hwcBuffer;
579     // We need access to the output-dependent state for the buffer cache there,
580     // though otherwise the buffer is not output-dependent.
581     editState().hwc->hwcBufferCache.getHwcBuffer(slot, buffer, &hwcSlot, &hwcBuffer);
582 
583     if (auto error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence);
584         error != hal::Error::NONE) {
585         ALOGE("[%s] Failed to set buffer %p: %s (%d)", getLayerFE().getDebugName(), buffer->handle,
586               to_string(error).c_str(), static_cast<int32_t>(error));
587     }
588 }
589 
writeCompositionTypeToHWC(HWC2::Layer * hwcLayer,hal::Composition requestedCompositionType,bool isPeekingThrough,bool skipLayer)590 void OutputLayer::writeCompositionTypeToHWC(HWC2::Layer* hwcLayer,
591                                             hal::Composition requestedCompositionType,
592                                             bool isPeekingThrough, bool skipLayer) {
593     auto& outputDependentState = editState();
594 
595     if (isClientCompositionForced(isPeekingThrough)) {
596         // If we are forcing client composition, we need to tell the HWC
597         requestedCompositionType = hal::Composition::CLIENT;
598     }
599 
600     // Set the requested composition type with the HWC whenever it changes
601     // We also resend the composition type when this layer was previously skipped, to ensure that
602     // the composition type is up-to-date.
603     if (outputDependentState.hwc->hwcCompositionType != requestedCompositionType ||
604         (outputDependentState.hwc->layerSkipped && !skipLayer)) {
605         outputDependentState.hwc->hwcCompositionType = requestedCompositionType;
606 
607         if (auto error = hwcLayer->setCompositionType(requestedCompositionType);
608             error != hal::Error::NONE) {
609             ALOGE("[%s] Failed to set composition type %s: %s (%d)", getLayerFE().getDebugName(),
610                   toString(requestedCompositionType).c_str(), to_string(error).c_str(),
611                   static_cast<int32_t>(error));
612         }
613     }
614 }
615 
writeCursorPositionToHWC() const616 void OutputLayer::writeCursorPositionToHWC() const {
617     // Skip doing this if there is no HWC interface
618     auto hwcLayer = getHwcLayer();
619     if (!hwcLayer) {
620         return;
621     }
622 
623     const auto* layerFEState = getLayerFE().getCompositionState();
624     if (!layerFEState) {
625         return;
626     }
627 
628     const auto& outputState = getOutput().getState();
629 
630     Rect frame = layerFEState->cursorFrame;
631     frame.intersect(outputState.layerStackSpace.content, &frame);
632     Rect position = outputState.transform.transform(frame);
633 
634     if (auto error = hwcLayer->setCursorPosition(position.left, position.top);
635         error != hal::Error::NONE) {
636         ALOGE("[%s] Failed to set cursor position to (%d, %d): %s (%d)",
637               getLayerFE().getDebugName(), position.left, position.top, to_string(error).c_str(),
638               static_cast<int32_t>(error));
639     }
640 }
641 
getHwcLayer() const642 HWC2::Layer* OutputLayer::getHwcLayer() const {
643     const auto& state = getState();
644     return state.hwc ? state.hwc->hwcLayer.get() : nullptr;
645 }
646 
requiresClientComposition() const647 bool OutputLayer::requiresClientComposition() const {
648     const auto& state = getState();
649     return !state.hwc || state.hwc->hwcCompositionType == hal::Composition::CLIENT;
650 }
651 
isHardwareCursor() const652 bool OutputLayer::isHardwareCursor() const {
653     const auto& state = getState();
654     return state.hwc && state.hwc->hwcCompositionType == hal::Composition::CURSOR;
655 }
656 
detectDisallowedCompositionTypeChange(hal::Composition from,hal::Composition to) const657 void OutputLayer::detectDisallowedCompositionTypeChange(hal::Composition from,
658                                                         hal::Composition to) const {
659     bool result = false;
660     switch (from) {
661         case hal::Composition::INVALID:
662         case hal::Composition::CLIENT:
663             result = false;
664             break;
665 
666         case hal::Composition::DEVICE:
667         case hal::Composition::SOLID_COLOR:
668             result = (to == hal::Composition::CLIENT);
669             break;
670 
671         case hal::Composition::CURSOR:
672         case hal::Composition::SIDEBAND:
673             result = (to == hal::Composition::CLIENT || to == hal::Composition::DEVICE);
674             break;
675     }
676 
677     if (!result) {
678         ALOGE("[%s] Invalid device requested composition type change: %s (%d) --> %s (%d)",
679               getLayerFE().getDebugName(), toString(from).c_str(), static_cast<int>(from),
680               toString(to).c_str(), static_cast<int>(to));
681     }
682 }
683 
isClientCompositionForced(bool isPeekingThrough) const684 bool OutputLayer::isClientCompositionForced(bool isPeekingThrough) const {
685     return getState().forceClientComposition ||
686             (!isPeekingThrough && getLayerFE().hasRoundedCorners());
687 }
688 
applyDeviceCompositionTypeChange(hal::Composition compositionType)689 void OutputLayer::applyDeviceCompositionTypeChange(hal::Composition compositionType) {
690     auto& state = editState();
691     LOG_FATAL_IF(!state.hwc);
692     auto& hwcState = *state.hwc;
693 
694     // Only detected disallowed changes if this was not a skip layer, because the
695     // validated composition type may be arbitrary (usually DEVICE, to reflect that there were
696     // fewer GPU layers)
697     if (!hwcState.layerSkipped) {
698         detectDisallowedCompositionTypeChange(hwcState.hwcCompositionType, compositionType);
699     }
700 
701     hwcState.hwcCompositionType = compositionType;
702 }
703 
prepareForDeviceLayerRequests()704 void OutputLayer::prepareForDeviceLayerRequests() {
705     auto& state = editState();
706     state.clearClientTarget = false;
707 }
708 
applyDeviceLayerRequest(hal::LayerRequest request)709 void OutputLayer::applyDeviceLayerRequest(hal::LayerRequest request) {
710     auto& state = editState();
711     switch (request) {
712         case hal::LayerRequest::CLEAR_CLIENT_TARGET:
713             state.clearClientTarget = true;
714             break;
715 
716         default:
717             ALOGE("[%s] Unknown device layer request %s (%d)", getLayerFE().getDebugName(),
718                   toString(request).c_str(), static_cast<int>(request));
719             break;
720     }
721 }
722 
needsFiltering() const723 bool OutputLayer::needsFiltering() const {
724     const auto& state = getState();
725     const auto& displayFrame = state.displayFrame;
726     const auto& sourceCrop = state.sourceCrop;
727     return sourceCrop.getHeight() != displayFrame.getHeight() ||
728             sourceCrop.getWidth() != displayFrame.getWidth();
729 }
730 
getOverrideCompositionList() const731 std::vector<LayerFE::LayerSettings> OutputLayer::getOverrideCompositionList() const {
732     if (getState().overrideInfo.buffer == nullptr) {
733         return {};
734     }
735 
736     // Compute the geometry boundaries in layer stack space: we need to transform from the
737     // framebuffer space of the override buffer to layer space.
738     const ProjectionSpace& layerSpace = getOutput().getState().layerStackSpace;
739     const ui::Transform transform = getState().overrideInfo.displaySpace.getTransform(layerSpace);
740     const Rect boundaries = transform.transform(getState().overrideInfo.displayFrame);
741 
742     LayerFE::LayerSettings settings;
743     settings.geometry = renderengine::Geometry{
744             .boundaries = boundaries.toFloatRect(),
745     };
746     settings.bufferId = getState().overrideInfo.buffer->getBuffer()->getId();
747     settings.source = renderengine::PixelSource{
748             .buffer = renderengine::Buffer{
749                     .buffer = getState().overrideInfo.buffer,
750                     .fence = getState().overrideInfo.acquireFence,
751                     // If the transform from layer space to display space contains a rotation, we
752                     // need to undo the rotation in the texture transform
753                     .textureTransform =
754                             ui::Transform(transform.inverse().getOrientation(), 1, 1).asMatrix4(),
755             }};
756     settings.sourceDataspace = getState().overrideInfo.dataspace;
757     settings.alpha = 1.0f;
758 
759     return {static_cast<LayerFE::LayerSettings>(settings)};
760 }
761 
dump(std::string & out) const762 void OutputLayer::dump(std::string& out) const {
763     using android::base::StringAppendF;
764 
765     StringAppendF(&out, "  - Output Layer %p(%s)\n", this, getLayerFE().getDebugName());
766     dumpState(out);
767 }
768 
769 } // namespace impl
770 } // namespace android::compositionengine
771