1 /*
2 * Copyright 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <ui/FenceTime.h>
18
19 #define LOG_TAG "FenceTime"
20
21 #include <cutils/compiler.h> // For CC_[UN]LIKELY
22 #include <utils/Log.h>
23 #include <inttypes.h>
24 #include <stdlib.h>
25
26 #include <memory>
27
28 namespace android {
29
30 // ============================================================================
31 // FenceTime
32 // ============================================================================
33
34 const auto FenceTime::NO_FENCE = std::make_shared<FenceTime>(Fence::NO_FENCE);
35
FenceTime(const sp<Fence> & fence)36 FenceTime::FenceTime(const sp<Fence>& fence)
37 : mState(((fence.get() != nullptr) && fence->isValid()) ?
38 State::VALID : State::INVALID),
39 mFence(fence),
40 mSignalTime(mState == State::INVALID ?
41 Fence::SIGNAL_TIME_INVALID : Fence::SIGNAL_TIME_PENDING) {
42 }
43
FenceTime(sp<Fence> && fence)44 FenceTime::FenceTime(sp<Fence>&& fence)
45 : mState(((fence.get() != nullptr) && fence->isValid()) ?
46 State::VALID : State::INVALID),
47 mFence(std::move(fence)),
48 mSignalTime(mState == State::INVALID ?
49 Fence::SIGNAL_TIME_INVALID : Fence::SIGNAL_TIME_PENDING) {
50 }
51
FenceTime(nsecs_t signalTime)52 FenceTime::FenceTime(nsecs_t signalTime)
53 : mState(Fence::isValidTimestamp(signalTime) ? State::VALID : State::INVALID),
54 mFence(nullptr),
55 mSignalTime(signalTime) {
56 if (CC_UNLIKELY(mSignalTime == Fence::SIGNAL_TIME_PENDING)) {
57 ALOGE("Pending signal time not allowed after signal.");
58 mSignalTime = Fence::SIGNAL_TIME_INVALID;
59 }
60 }
61
applyTrustedSnapshot(const Snapshot & src)62 void FenceTime::applyTrustedSnapshot(const Snapshot& src) {
63 if (CC_UNLIKELY(src.state != Snapshot::State::SIGNAL_TIME)) {
64 // Applying Snapshot::State::FENCE, could change the valid state of the
65 // FenceTime, which is not allowed. Callers should create a new
66 // FenceTime from the snapshot instead.
67 ALOGE("applyTrustedSnapshot: Unexpected fence.");
68 return;
69 }
70
71 if (src.state == Snapshot::State::EMPTY) {
72 return;
73 }
74
75 nsecs_t signalTime = mSignalTime.load(std::memory_order_relaxed);
76 if (signalTime != Fence::SIGNAL_TIME_PENDING) {
77 // We should always get the same signalTime here that we did in
78 // getSignalTime(). This check races with getSignalTime(), but it is
79 // only a sanity check so that's okay.
80 if (CC_UNLIKELY(signalTime != src.signalTime)) {
81 ALOGE("FenceTime::applyTrustedSnapshot: signalTime mismatch. "
82 "(%" PRId64 " (old) != %" PRId64 " (new))",
83 signalTime, src.signalTime);
84 }
85 return;
86 }
87
88 std::lock_guard<std::mutex> lock(mMutex);
89 mFence.clear();
90 mSignalTime.store(src.signalTime, std::memory_order_relaxed);
91 }
92
isValid() const93 bool FenceTime::isValid() const {
94 // We store the valid state in the constructors and return it here.
95 // This lets release code remember the valid state even after the
96 // underlying fence is destroyed.
97 return mState != State::INVALID;
98 }
99
wait(int timeout)100 status_t FenceTime::wait(int timeout) {
101 // See if we already have a cached value we can return.
102 nsecs_t signalTime = mSignalTime.load(std::memory_order_relaxed);
103 if (signalTime != Fence::SIGNAL_TIME_PENDING) {
104 return NO_ERROR;
105 }
106
107 // Hold a reference to the fence on the stack in case the class'
108 // reference is removed by another thread. This prevents the
109 // fence from being destroyed until the end of this method, where
110 // we conveniently do not have the lock held.
111 sp<Fence> fence;
112 {
113 // With the lock acquired this time, see if we have the cached
114 // value or if we need to poll the fence.
115 std::lock_guard<std::mutex> lock(mMutex);
116 if (!mFence.get()) {
117 // Another thread set the signal time just before we added the
118 // reference to mFence.
119 return NO_ERROR;
120 }
121 fence = mFence;
122 }
123
124 // Make the system call without the lock held.
125 return fence->wait(timeout);
126 }
127
getSignalTime()128 nsecs_t FenceTime::getSignalTime() {
129 // See if we already have a cached value we can return.
130 nsecs_t signalTime = mSignalTime.load(std::memory_order_relaxed);
131 if (signalTime != Fence::SIGNAL_TIME_PENDING) {
132 return signalTime;
133 }
134
135 // Hold a reference to the fence on the stack in case the class'
136 // reference is removed by another thread. This prevents the
137 // fence from being destroyed until the end of this method, where
138 // we conveniently do not have the lock held.
139 sp<Fence> fence;
140 {
141 // With the lock acquired this time, see if we have the cached
142 // value or if we need to poll the fence.
143 std::lock_guard<std::mutex> lock(mMutex);
144 if (!mFence.get()) {
145 // Another thread set the signal time just before we added the
146 // reference to mFence.
147 return mSignalTime.load(std::memory_order_relaxed);
148 }
149 fence = mFence;
150 }
151
152 // Make the system call without the lock held.
153 signalTime = fence->getSignalTime();
154
155 // Allow tests to override SIGNAL_TIME_INVALID behavior, since tests
156 // use invalid underlying Fences without real file descriptors.
157 if (CC_UNLIKELY(mState == State::FORCED_VALID_FOR_TEST)) {
158 if (signalTime == Fence::SIGNAL_TIME_INVALID) {
159 signalTime = Fence::SIGNAL_TIME_PENDING;
160 }
161 }
162
163 // Make the signal time visible to everyone if it is no longer pending
164 // and remove the class' reference to the fence.
165 if (signalTime != Fence::SIGNAL_TIME_PENDING) {
166 std::lock_guard<std::mutex> lock(mMutex);
167 mFence.clear();
168 mSignalTime.store(signalTime, std::memory_order_relaxed);
169 }
170
171 return signalTime;
172 }
173
getCachedSignalTime() const174 nsecs_t FenceTime::getCachedSignalTime() const {
175 // memory_order_acquire since we don't have a lock fallback path
176 // that will do an acquire.
177 return mSignalTime.load(std::memory_order_acquire);
178 }
179
getSnapshot() const180 FenceTime::Snapshot FenceTime::getSnapshot() const {
181 // Quick check without the lock.
182 nsecs_t signalTime = mSignalTime.load(std::memory_order_relaxed);
183 if (signalTime != Fence::SIGNAL_TIME_PENDING) {
184 return Snapshot(signalTime);
185 }
186
187 // Do the full check with the lock.
188 std::lock_guard<std::mutex> lock(mMutex);
189 signalTime = mSignalTime.load(std::memory_order_relaxed);
190 if (signalTime != Fence::SIGNAL_TIME_PENDING) {
191 return Snapshot(signalTime);
192 }
193 return Snapshot(mFence);
194 }
195
196 // For tests only. If forceValidForTest is true, then getSignalTime will
197 // never return SIGNAL_TIME_INVALID and isValid will always return true.
FenceTime(const sp<Fence> & fence,bool forceValidForTest)198 FenceTime::FenceTime(const sp<Fence>& fence, bool forceValidForTest)
199 : mState(forceValidForTest ?
200 State::FORCED_VALID_FOR_TEST : State::INVALID),
201 mFence(fence),
202 mSignalTime(mState == State::INVALID ?
203 Fence::SIGNAL_TIME_INVALID : Fence::SIGNAL_TIME_PENDING) {
204 }
205
signalForTest(nsecs_t signalTime)206 void FenceTime::signalForTest(nsecs_t signalTime) {
207 // To be realistic, this should really set a hidden value that
208 // gets picked up in the next call to getSignalTime, but this should
209 // be good enough.
210 std::lock_guard<std::mutex> lock(mMutex);
211 mFence.clear();
212 mSignalTime.store(signalTime, std::memory_order_relaxed);
213 }
214
215 // ============================================================================
216 // FenceTime::Snapshot
217 // ============================================================================
Snapshot(const sp<Fence> & srcFence)218 FenceTime::Snapshot::Snapshot(const sp<Fence>& srcFence)
219 : state(State::FENCE), fence(srcFence) {
220 }
221
Snapshot(nsecs_t srcSignalTime)222 FenceTime::Snapshot::Snapshot(nsecs_t srcSignalTime)
223 : state(State::SIGNAL_TIME), signalTime(srcSignalTime) {
224 }
225
getFlattenedSize() const226 size_t FenceTime::Snapshot::getFlattenedSize() const {
227 constexpr size_t min = sizeof(state);
228 switch (state) {
229 case State::EMPTY:
230 return min;
231 case State::FENCE:
232 return min + fence->getFlattenedSize();
233 case State::SIGNAL_TIME:
234 return min + sizeof(signalTime);
235 }
236 return 0;
237 }
238
getFdCount() const239 size_t FenceTime::Snapshot::getFdCount() const {
240 return state == State::FENCE ? fence->getFdCount() : 0u;
241 }
242
flatten(void * & buffer,size_t & size,int * & fds,size_t & count) const243 status_t FenceTime::Snapshot::flatten(
244 void*& buffer, size_t& size, int*& fds, size_t& count) const {
245 if (size < getFlattenedSize()) {
246 return NO_MEMORY;
247 }
248
249 FlattenableUtils::write(buffer, size, state);
250 switch (state) {
251 case State::EMPTY:
252 return NO_ERROR;
253 case State::FENCE:
254 return fence->flatten(buffer, size, fds, count);
255 case State::SIGNAL_TIME:
256 FlattenableUtils::write(buffer, size, signalTime);
257 return NO_ERROR;
258 }
259
260 return NO_ERROR;
261 }
262
unflatten(void const * & buffer,size_t & size,int const * & fds,size_t & count)263 status_t FenceTime::Snapshot::unflatten(
264 void const*& buffer, size_t& size, int const*& fds, size_t& count) {
265 if (size < sizeof(state)) {
266 return NO_MEMORY;
267 }
268
269 FlattenableUtils::read(buffer, size, state);
270 switch (state) {
271 case State::EMPTY:
272 return NO_ERROR;
273 case State::FENCE:
274 fence = new Fence;
275 return fence->unflatten(buffer, size, fds, count);
276 case State::SIGNAL_TIME:
277 if (size < sizeof(signalTime)) {
278 return NO_MEMORY;
279 }
280 FlattenableUtils::read(buffer, size, signalTime);
281 return NO_ERROR;
282 }
283
284 return NO_ERROR;
285 }
286
287 // ============================================================================
288 // FenceTimeline
289 // ============================================================================
push(const std::shared_ptr<FenceTime> & fence)290 void FenceTimeline::push(const std::shared_ptr<FenceTime>& fence) {
291 std::lock_guard<std::mutex> lock(mMutex);
292 while (mQueue.size() >= MAX_ENTRIES) {
293 // This is a sanity check to make sure the queue doesn't grow unbounded.
294 // MAX_ENTRIES should be big enough not to trigger this path.
295 // In case this path is taken though, users of FenceTime must make sure
296 // not to rely solely on FenceTimeline to get the final timestamp and
297 // should eventually call Fence::getSignalTime on their own.
298 std::shared_ptr<FenceTime> front = mQueue.front().lock();
299 if (front) {
300 // Make a last ditch effort to get the signalTime here since
301 // we are removing it from the timeline.
302 front->getSignalTime();
303 }
304 mQueue.pop();
305 }
306 mQueue.push(fence);
307 }
308
updateSignalTimes()309 void FenceTimeline::updateSignalTimes() {
310 std::lock_guard<std::mutex> lock(mMutex);
311 while (!mQueue.empty()) {
312 std::shared_ptr<FenceTime> fence = mQueue.front().lock();
313 if (!fence) {
314 // The shared_ptr no longer exists and no one cares about the
315 // timestamp anymore.
316 mQueue.pop();
317 continue;
318 } else if (fence->getSignalTime() != Fence::SIGNAL_TIME_PENDING) {
319 // The fence has signaled and we've removed the sp<Fence> ref.
320 mQueue.pop();
321 continue;
322 } else {
323 // The fence didn't signal yet. Break since the later ones
324 // shouldn't have signaled either.
325 break;
326 }
327 }
328 }
329
330 // ============================================================================
331 // FenceToFenceTimeMap
332 // ============================================================================
createFenceTimeForTest(const sp<Fence> & fence)333 std::shared_ptr<FenceTime> FenceToFenceTimeMap::createFenceTimeForTest(
334 const sp<Fence>& fence) {
335 std::lock_guard<std::mutex> lock(mMutex);
336 // Always garbage collecting isn't efficient, but this is only for testing.
337 garbageCollectLocked();
338 std::shared_ptr<FenceTime> fenceTime(new FenceTime(fence, true));
339 mMap[fence.get()].push_back(fenceTime);
340 return fenceTime;
341 }
342
signalAllForTest(const sp<Fence> & fence,nsecs_t signalTime)343 void FenceToFenceTimeMap::signalAllForTest(
344 const sp<Fence>& fence, nsecs_t signalTime) {
345 bool signaled = false;
346
347 std::lock_guard<std::mutex> lock(mMutex);
348 auto it = mMap.find(fence.get());
349 if (it != mMap.end()) {
350 for (auto& weakFenceTime : it->second) {
351 std::shared_ptr<FenceTime> fenceTime = weakFenceTime.lock();
352 if (!fenceTime) {
353 continue;
354 }
355 ALOGE_IF(!fenceTime->isValid(),
356 "signalAllForTest: Signaling invalid fence.");
357 fenceTime->signalForTest(signalTime);
358 signaled = true;
359 }
360 }
361
362 ALOGE_IF(!signaled, "signalAllForTest: Nothing to signal.");
363 }
364
garbageCollectLocked()365 void FenceToFenceTimeMap::garbageCollectLocked() {
366 for (auto& it : mMap) {
367 // Erase all expired weak pointers from the vector.
368 auto& vect = it.second;
369 vect.erase(
370 std::remove_if(vect.begin(), vect.end(),
371 [](const std::weak_ptr<FenceTime>& ft) {
372 return ft.expired();
373 }),
374 vect.end());
375
376 // Also erase the map entry if the vector is now empty.
377 if (vect.empty()) {
378 mMap.erase(it.first);
379 }
380 }
381 }
382
383 } // namespace android
384