• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "brw_nir.h"
25 #include "brw_vec4.h"
26 #include "brw_vec4_builder.h"
27 #include "brw_vec4_surface_builder.h"
28 #include "brw_eu.h"
29 
30 using namespace brw;
31 using namespace brw::surface_access;
32 
33 namespace brw {
34 
35 void
emit_nir_code()36 vec4_visitor::emit_nir_code()
37 {
38    if (nir->num_uniforms > 0)
39       nir_setup_uniforms();
40 
41    nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
42 }
43 
44 void
nir_setup_uniforms()45 vec4_visitor::nir_setup_uniforms()
46 {
47    uniforms = nir->num_uniforms / 16;
48 }
49 
50 void
nir_emit_impl(nir_function_impl * impl)51 vec4_visitor::nir_emit_impl(nir_function_impl *impl)
52 {
53    nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
54    for (unsigned i = 0; i < impl->reg_alloc; i++) {
55       nir_locals[i] = dst_reg();
56    }
57 
58    foreach_list_typed(nir_register, reg, node, &impl->registers) {
59       unsigned array_elems =
60          reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
61       const unsigned num_regs = array_elems * DIV_ROUND_UP(reg->bit_size, 32);
62       nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(num_regs));
63 
64       if (reg->bit_size == 64)
65          nir_locals[reg->index].type = BRW_REGISTER_TYPE_DF;
66    }
67 
68    nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
69 
70    nir_emit_cf_list(&impl->body);
71 }
72 
73 void
nir_emit_cf_list(exec_list * list)74 vec4_visitor::nir_emit_cf_list(exec_list *list)
75 {
76    exec_list_validate(list);
77    foreach_list_typed(nir_cf_node, node, node, list) {
78       switch (node->type) {
79       case nir_cf_node_if:
80          nir_emit_if(nir_cf_node_as_if(node));
81          break;
82 
83       case nir_cf_node_loop:
84          nir_emit_loop(nir_cf_node_as_loop(node));
85          break;
86 
87       case nir_cf_node_block:
88          nir_emit_block(nir_cf_node_as_block(node));
89          break;
90 
91       default:
92          unreachable("Invalid CFG node block");
93       }
94    }
95 }
96 
97 void
nir_emit_if(nir_if * if_stmt)98 vec4_visitor::nir_emit_if(nir_if *if_stmt)
99 {
100    /* First, put the condition in f0 */
101    src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
102    vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
103    inst->conditional_mod = BRW_CONDITIONAL_NZ;
104 
105    /* We can just predicate based on the X channel, as the condition only
106     * goes on its own line */
107    emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
108 
109    nir_emit_cf_list(&if_stmt->then_list);
110 
111    /* note: if the else is empty, dead CF elimination will remove it */
112    emit(BRW_OPCODE_ELSE);
113 
114    nir_emit_cf_list(&if_stmt->else_list);
115 
116    emit(BRW_OPCODE_ENDIF);
117 }
118 
119 void
nir_emit_loop(nir_loop * loop)120 vec4_visitor::nir_emit_loop(nir_loop *loop)
121 {
122    emit(BRW_OPCODE_DO);
123 
124    nir_emit_cf_list(&loop->body);
125 
126    emit(BRW_OPCODE_WHILE);
127 }
128 
129 void
nir_emit_block(nir_block * block)130 vec4_visitor::nir_emit_block(nir_block *block)
131 {
132    nir_foreach_instr(instr, block) {
133       nir_emit_instr(instr);
134    }
135 }
136 
137 void
nir_emit_instr(nir_instr * instr)138 vec4_visitor::nir_emit_instr(nir_instr *instr)
139 {
140    base_ir = instr;
141 
142    switch (instr->type) {
143    case nir_instr_type_load_const:
144       nir_emit_load_const(nir_instr_as_load_const(instr));
145       break;
146 
147    case nir_instr_type_intrinsic:
148       nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
149       break;
150 
151    case nir_instr_type_alu:
152       nir_emit_alu(nir_instr_as_alu(instr));
153       break;
154 
155    case nir_instr_type_jump:
156       nir_emit_jump(nir_instr_as_jump(instr));
157       break;
158 
159    case nir_instr_type_tex:
160       nir_emit_texture(nir_instr_as_tex(instr));
161       break;
162 
163    case nir_instr_type_ssa_undef:
164       nir_emit_undef(nir_instr_as_ssa_undef(instr));
165       break;
166 
167    default:
168       unreachable("VS instruction not yet implemented by NIR->vec4");
169    }
170 }
171 
172 static dst_reg
dst_reg_for_nir_reg(vec4_visitor * v,nir_register * nir_reg,unsigned base_offset,nir_src * indirect)173 dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
174                     unsigned base_offset, nir_src *indirect)
175 {
176    dst_reg reg;
177 
178    reg = v->nir_locals[nir_reg->index];
179    if (nir_reg->bit_size == 64)
180       reg.type = BRW_REGISTER_TYPE_DF;
181    reg = offset(reg, 8, base_offset);
182    if (indirect) {
183       reg.reladdr =
184          new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
185                                                 BRW_REGISTER_TYPE_D,
186                                                 1));
187    }
188    return reg;
189 }
190 
191 dst_reg
get_nir_dest(const nir_dest & dest)192 vec4_visitor::get_nir_dest(const nir_dest &dest)
193 {
194    if (dest.is_ssa) {
195       dst_reg dst =
196          dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(dest.ssa.bit_size, 32)));
197       if (dest.ssa.bit_size == 64)
198          dst.type = BRW_REGISTER_TYPE_DF;
199       nir_ssa_values[dest.ssa.index] = dst;
200       return dst;
201    } else {
202       return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
203                                  dest.reg.indirect);
204    }
205 }
206 
207 dst_reg
get_nir_dest(const nir_dest & dest,enum brw_reg_type type)208 vec4_visitor::get_nir_dest(const nir_dest &dest, enum brw_reg_type type)
209 {
210    return retype(get_nir_dest(dest), type);
211 }
212 
213 dst_reg
get_nir_dest(const nir_dest & dest,nir_alu_type type)214 vec4_visitor::get_nir_dest(const nir_dest &dest, nir_alu_type type)
215 {
216    return get_nir_dest(dest, brw_type_for_nir_type(devinfo, type));
217 }
218 
219 src_reg
get_nir_src(const nir_src & src,enum brw_reg_type type,unsigned num_components)220 vec4_visitor::get_nir_src(const nir_src &src, enum brw_reg_type type,
221                           unsigned num_components)
222 {
223    dst_reg reg;
224 
225    if (src.is_ssa) {
226       assert(src.ssa != NULL);
227       reg = nir_ssa_values[src.ssa->index];
228    }
229    else {
230       reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
231                                 src.reg.indirect);
232    }
233 
234    reg = retype(reg, type);
235 
236    src_reg reg_as_src = src_reg(reg);
237    reg_as_src.swizzle = brw_swizzle_for_size(num_components);
238    return reg_as_src;
239 }
240 
241 src_reg
get_nir_src(const nir_src & src,nir_alu_type type,unsigned num_components)242 vec4_visitor::get_nir_src(const nir_src &src, nir_alu_type type,
243                           unsigned num_components)
244 {
245    return get_nir_src(src, brw_type_for_nir_type(devinfo, type),
246                       num_components);
247 }
248 
249 src_reg
get_nir_src(const nir_src & src,unsigned num_components)250 vec4_visitor::get_nir_src(const nir_src &src, unsigned num_components)
251 {
252    /* if type is not specified, default to signed int */
253    return get_nir_src(src, nir_type_int32, num_components);
254 }
255 
256 src_reg
get_nir_src_imm(const nir_src & src)257 vec4_visitor::get_nir_src_imm(const nir_src &src)
258 {
259    assert(nir_src_num_components(src) == 1);
260    assert(nir_src_bit_size(src) == 32);
261    return nir_src_is_const(src) ? src_reg(brw_imm_d(nir_src_as_int(src))) :
262                                   get_nir_src(src, 1);
263 }
264 
265 src_reg
get_indirect_offset(nir_intrinsic_instr * instr)266 vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
267 {
268    nir_src *offset_src = nir_get_io_offset_src(instr);
269 
270    if (nir_src_is_const(*offset_src)) {
271       /* The only constant offset we should find is 0.  brw_nir.c's
272        * add_const_offset_to_base() will fold other constant offsets
273        * into instr->const_index[0].
274        */
275       assert(nir_src_as_uint(*offset_src) == 0);
276       return src_reg();
277    }
278 
279    return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
280 }
281 
282 static src_reg
setup_imm_df(const vec4_builder & bld,double v)283 setup_imm_df(const vec4_builder &bld, double v)
284 {
285    const gen_device_info *devinfo = bld.shader->devinfo;
286    assert(devinfo->gen == 7);
287 
288    /* gen7.5 does not support DF immediates straighforward but the DIM
289     * instruction allows to set the 64-bit immediate value.
290     */
291    if (devinfo->is_haswell) {
292       const vec4_builder ubld = bld.exec_all();
293       const dst_reg dst = bld.vgrf(BRW_REGISTER_TYPE_DF);
294       ubld.DIM(dst, brw_imm_df(v));
295       return swizzle(src_reg(dst), BRW_SWIZZLE_XXXX);
296    }
297 
298    /* gen7 does not support DF immediates */
299    union {
300       double d;
301       struct {
302          uint32_t i1;
303          uint32_t i2;
304       };
305    } di;
306 
307    di.d = v;
308 
309    /* Write the low 32-bit of the constant to the X:UD channel and the
310     * high 32-bit to the Y:UD channel to build the constant in a VGRF.
311     * We have to do this twice (offset 0 and offset 1), since a DF VGRF takes
312     * two SIMD8 registers in SIMD4x2 execution. Finally, return a swizzle
313     * XXXX so any access to the VGRF only reads the constant data in these
314     * channels.
315     */
316    const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
317    for (unsigned n = 0; n < 2; n++) {
318       const vec4_builder ubld = bld.exec_all().group(4, n);
319       ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_X), brw_imm_ud(di.i1));
320       ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_Y), brw_imm_ud(di.i2));
321    }
322 
323    return swizzle(src_reg(retype(tmp, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
324 }
325 
326 void
nir_emit_load_const(nir_load_const_instr * instr)327 vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
328 {
329    dst_reg reg;
330 
331    if (instr->def.bit_size == 64) {
332       reg = dst_reg(VGRF, alloc.allocate(2));
333       reg.type = BRW_REGISTER_TYPE_DF;
334    } else {
335       reg = dst_reg(VGRF, alloc.allocate(1));
336       reg.type = BRW_REGISTER_TYPE_D;
337    }
338 
339    const vec4_builder ibld = vec4_builder(this).at_end();
340    unsigned remaining = brw_writemask_for_size(instr->def.num_components);
341 
342    /* @FIXME: consider emitting vector operations to save some MOVs in
343     * cases where the components are representable in 8 bits.
344     * For now, we emit a MOV for each distinct value.
345     */
346    for (unsigned i = 0; i < instr->def.num_components; i++) {
347       unsigned writemask = 1 << i;
348 
349       if ((remaining & writemask) == 0)
350          continue;
351 
352       for (unsigned j = i; j < instr->def.num_components; j++) {
353          if ((instr->def.bit_size == 32 &&
354               instr->value[i].u32 == instr->value[j].u32) ||
355              (instr->def.bit_size == 64 &&
356               instr->value[i].f64 == instr->value[j].f64)) {
357             writemask |= 1 << j;
358          }
359       }
360 
361       reg.writemask = writemask;
362       if (instr->def.bit_size == 64) {
363          emit(MOV(reg, setup_imm_df(ibld, instr->value[i].f64)));
364       } else {
365          emit(MOV(reg, brw_imm_d(instr->value[i].i32)));
366       }
367 
368       remaining &= ~writemask;
369    }
370 
371    /* Set final writemask */
372    reg.writemask = brw_writemask_for_size(instr->def.num_components);
373 
374    nir_ssa_values[instr->def.index] = reg;
375 }
376 
377 src_reg
get_nir_ssbo_intrinsic_index(nir_intrinsic_instr * instr)378 vec4_visitor::get_nir_ssbo_intrinsic_index(nir_intrinsic_instr *instr)
379 {
380    /* SSBO stores are weird in that their index is in src[1] */
381    const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
382 
383    src_reg surf_index;
384    if (nir_src_is_const(instr->src[src])) {
385       unsigned index = prog_data->base.binding_table.ssbo_start +
386                        nir_src_as_uint(instr->src[src]);
387       surf_index = brw_imm_ud(index);
388    } else {
389       surf_index = src_reg(this, glsl_type::uint_type);
390       emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[src], 1),
391                brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
392       surf_index = emit_uniformize(surf_index);
393    }
394 
395    return surf_index;
396 }
397 
398 void
nir_emit_intrinsic(nir_intrinsic_instr * instr)399 vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
400 {
401    dst_reg dest;
402    src_reg src;
403 
404    switch (instr->intrinsic) {
405 
406    case nir_intrinsic_load_input: {
407       assert(nir_dest_bit_size(instr->dest) == 32);
408       /* We set EmitNoIndirectInput for VS */
409       unsigned load_offset = nir_src_as_uint(instr->src[0]);
410 
411       dest = get_nir_dest(instr->dest);
412       dest.writemask = brw_writemask_for_size(instr->num_components);
413 
414       src = src_reg(ATTR, instr->const_index[0] + load_offset,
415                     glsl_type::uvec4_type);
416       src = retype(src, dest.type);
417 
418       /* Swizzle source based on component layout qualifier */
419       src.swizzle = BRW_SWZ_COMP_INPUT(nir_intrinsic_component(instr));
420       emit(MOV(dest, src));
421       break;
422    }
423 
424    case nir_intrinsic_store_output: {
425       assert(nir_src_bit_size(instr->src[0]) == 32);
426       unsigned store_offset = nir_src_as_uint(instr->src[1]);
427       int varying = instr->const_index[0] + store_offset;
428       src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
429                         instr->num_components);
430 
431       unsigned c = nir_intrinsic_component(instr);
432       output_reg[varying][c] = dst_reg(src);
433       output_num_components[varying][c] = instr->num_components;
434       break;
435    }
436 
437    case nir_intrinsic_get_ssbo_size: {
438       assert(nir_src_num_components(instr->src[0]) == 1);
439       unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
440                             nir_src_as_uint(instr->src[0]) : 0;
441 
442       const unsigned index =
443          prog_data->base.binding_table.ssbo_start + ssbo_index;
444       dst_reg result_dst = get_nir_dest(instr->dest);
445       vec4_instruction *inst = new(mem_ctx)
446          vec4_instruction(SHADER_OPCODE_GET_BUFFER_SIZE, result_dst);
447 
448       inst->base_mrf = 2;
449       inst->mlen = 1; /* always at least one */
450       inst->src[1] = brw_imm_ud(index);
451 
452       /* MRF for the first parameter */
453       src_reg lod = brw_imm_d(0);
454       int param_base = inst->base_mrf;
455       int writemask = WRITEMASK_X;
456       emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
457 
458       emit(inst);
459       break;
460    }
461 
462    case nir_intrinsic_store_ssbo: {
463       assert(devinfo->gen == 7);
464 
465       /* brw_nir_lower_mem_access_bit_sizes takes care of this */
466       assert(nir_src_bit_size(instr->src[0]) == 32);
467       assert(nir_intrinsic_write_mask(instr) ==
468              (1u << instr->num_components) - 1);
469 
470       src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
471       src_reg offset_reg = retype(get_nir_src_imm(instr->src[2]),
472                                   BRW_REGISTER_TYPE_UD);
473 
474       /* Value */
475       src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
476 
477       /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
478        * writes will use SIMD8 mode. In order to hide this and keep symmetry across
479        * typed and untyped messages and across hardware platforms, the
480        * current implementation of the untyped messages will transparently convert
481        * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
482        * and enabling only channel X on the SEND instruction.
483        *
484        * The above, works well for full vector writes, but not for partial writes
485        * where we want to write some channels and not others, like when we have
486        * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
487        * quite restrictive with regards to the channel enables we can configure in
488        * the message descriptor (not all combinations are allowed) we cannot simply
489        * implement these scenarios with a single message while keeping the
490        * aforementioned symmetry in the implementation. For now we de decided that
491        * it is better to keep the symmetry to reduce complexity, so in situations
492        * such as the one described we end up emitting two untyped write messages
493        * (one for xy and another for w).
494        *
495        * The code below packs consecutive channels into a single write message,
496        * detects gaps in the vector write and if needed, sends a second message
497        * with the remaining channels. If in the future we decide that we want to
498        * emit a single message at the expense of losing the symmetry in the
499        * implementation we can:
500        *
501        * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
502        *    message payload. In this mode we can write up to 8 offsets and dwords
503        *    to the red channel only (for the two vec4s in the SIMD4x2 execution)
504        *    and select which of the 8 channels carry data to write by setting the
505        *    appropriate writemask in the dst register of the SEND instruction.
506        *    It would require to write a new generator opcode specifically for
507        *    IvyBridge since we would need to prepare a SIMD8 payload that could
508        *    use any channel, not just X.
509        *
510        * 2) For Haswell+: Simply send a single write message but set the writemask
511        *    on the dst of the SEND instruction to select the channels we want to
512        *    write. It would require to modify the current messages to receive
513        *    and honor the writemask provided.
514        */
515       const vec4_builder bld = vec4_builder(this).at_end()
516                                .annotate(current_annotation, base_ir);
517 
518       emit_untyped_write(bld, surf_index, offset_reg, val_reg,
519                          1 /* dims */, instr->num_components /* size */,
520                          BRW_PREDICATE_NONE);
521       break;
522    }
523 
524    case nir_intrinsic_load_ssbo: {
525       assert(devinfo->gen == 7);
526 
527       /* brw_nir_lower_mem_access_bit_sizes takes care of this */
528       assert(nir_dest_bit_size(instr->dest) == 32);
529 
530       src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
531       src_reg offset_reg = retype(get_nir_src_imm(instr->src[1]),
532                                   BRW_REGISTER_TYPE_UD);
533 
534       /* Read the vector */
535       const vec4_builder bld = vec4_builder(this).at_end()
536          .annotate(current_annotation, base_ir);
537 
538       src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
539                                               1 /* dims */, 4 /* size*/,
540                                               BRW_PREDICATE_NONE);
541       dst_reg dest = get_nir_dest(instr->dest);
542       read_result.type = dest.type;
543       read_result.swizzle = brw_swizzle_for_size(instr->num_components);
544       emit(MOV(dest, read_result));
545       break;
546    }
547 
548    case nir_intrinsic_ssbo_atomic_add:
549    case nir_intrinsic_ssbo_atomic_imin:
550    case nir_intrinsic_ssbo_atomic_umin:
551    case nir_intrinsic_ssbo_atomic_imax:
552    case nir_intrinsic_ssbo_atomic_umax:
553    case nir_intrinsic_ssbo_atomic_and:
554    case nir_intrinsic_ssbo_atomic_or:
555    case nir_intrinsic_ssbo_atomic_xor:
556    case nir_intrinsic_ssbo_atomic_exchange:
557    case nir_intrinsic_ssbo_atomic_comp_swap:
558       nir_emit_ssbo_atomic(brw_aop_for_nir_intrinsic(instr), instr);
559       break;
560 
561    case nir_intrinsic_load_vertex_id:
562       unreachable("should be lowered by lower_vertex_id()");
563 
564    case nir_intrinsic_load_vertex_id_zero_base:
565    case nir_intrinsic_load_base_vertex:
566    case nir_intrinsic_load_instance_id:
567    case nir_intrinsic_load_base_instance:
568    case nir_intrinsic_load_draw_id:
569    case nir_intrinsic_load_invocation_id:
570       unreachable("should be lowered by brw_nir_lower_vs_inputs()");
571 
572    case nir_intrinsic_load_uniform: {
573       /* Offsets are in bytes but they should always be multiples of 4 */
574       assert(nir_intrinsic_base(instr) % 4 == 0);
575 
576       dest = get_nir_dest(instr->dest);
577 
578       src = src_reg(dst_reg(UNIFORM, nir_intrinsic_base(instr) / 16));
579       src.type = dest.type;
580 
581       /* Uniforms don't actually have to be vec4 aligned.  In the case that
582        * it isn't, we have to use a swizzle to shift things around.  They
583        * do still have the std140 alignment requirement that vec2's have to
584        * be vec2-aligned and vec3's and vec4's have to be vec4-aligned.
585        *
586        * The swizzle also works in the indirect case as the generator adds
587        * the swizzle to the offset for us.
588        */
589       const int type_size = type_sz(src.type);
590       unsigned shift = (nir_intrinsic_base(instr) % 16) / type_size;
591       assert(shift + instr->num_components <= 4);
592 
593       if (nir_src_is_const(instr->src[0])) {
594          const unsigned load_offset = nir_src_as_uint(instr->src[0]);
595          /* Offsets are in bytes but they should always be multiples of 4 */
596          assert(load_offset % 4 == 0);
597 
598          src.swizzle = brw_swizzle_for_size(instr->num_components);
599          dest.writemask = brw_writemask_for_size(instr->num_components);
600          unsigned offset = load_offset + shift * type_size;
601          src.offset = ROUND_DOWN_TO(offset, 16);
602          shift = (offset % 16) / type_size;
603          assert(shift + instr->num_components <= 4);
604          src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
605 
606          emit(MOV(dest, src));
607       } else {
608          /* Uniform arrays are vec4 aligned, because of std140 alignment
609           * rules.
610           */
611          assert(shift == 0);
612 
613          src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
614 
615          /* MOV_INDIRECT is going to stomp the whole thing anyway */
616          dest.writemask = WRITEMASK_XYZW;
617 
618          emit(SHADER_OPCODE_MOV_INDIRECT, dest, src,
619               indirect, brw_imm_ud(instr->const_index[1]));
620       }
621       break;
622    }
623 
624    case nir_intrinsic_load_ubo: {
625       src_reg surf_index;
626 
627       prog_data->base.has_ubo_pull = true;
628 
629       dest = get_nir_dest(instr->dest);
630 
631       if (nir_src_is_const(instr->src[0])) {
632          /* The block index is a constant, so just emit the binding table entry
633           * as an immediate.
634           */
635          const unsigned index = prog_data->base.binding_table.ubo_start +
636                                 nir_src_as_uint(instr->src[0]);
637          surf_index = brw_imm_ud(index);
638       } else {
639          /* The block index is not a constant. Evaluate the index expression
640           * per-channel and add the base UBO index; we have to select a value
641           * from any live channel.
642           */
643          surf_index = src_reg(this, glsl_type::uint_type);
644          emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int32,
645                                                    instr->num_components),
646                   brw_imm_ud(prog_data->base.binding_table.ubo_start)));
647          surf_index = emit_uniformize(surf_index);
648       }
649 
650       src_reg offset_reg;
651       if (nir_src_is_const(instr->src[1])) {
652          unsigned load_offset = nir_src_as_uint(instr->src[1]);
653          offset_reg = brw_imm_ud(load_offset & ~15);
654       } else {
655          offset_reg = src_reg(this, glsl_type::uint_type);
656          emit(MOV(dst_reg(offset_reg),
657                   get_nir_src(instr->src[1], nir_type_uint32, 1)));
658       }
659 
660       src_reg packed_consts;
661       if (nir_dest_bit_size(instr->dest) == 32) {
662          packed_consts = src_reg(this, glsl_type::vec4_type);
663          emit_pull_constant_load_reg(dst_reg(packed_consts),
664                                      surf_index,
665                                      offset_reg,
666                                      NULL, NULL /* before_block/inst */);
667       } else {
668          src_reg temp = src_reg(this, glsl_type::dvec4_type);
669          src_reg temp_float = retype(temp, BRW_REGISTER_TYPE_F);
670 
671          emit_pull_constant_load_reg(dst_reg(temp_float),
672                                      surf_index, offset_reg, NULL, NULL);
673          if (offset_reg.file == IMM)
674             offset_reg.ud += 16;
675          else
676             emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16u)));
677          emit_pull_constant_load_reg(dst_reg(byte_offset(temp_float, REG_SIZE)),
678                                      surf_index, offset_reg, NULL, NULL);
679 
680          packed_consts = src_reg(this, glsl_type::dvec4_type);
681          shuffle_64bit_data(dst_reg(packed_consts), temp, false);
682       }
683 
684       packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
685       if (nir_src_is_const(instr->src[1])) {
686          unsigned load_offset = nir_src_as_uint(instr->src[1]);
687          unsigned type_size = type_sz(dest.type);
688          packed_consts.swizzle +=
689             BRW_SWIZZLE4(load_offset % 16 / type_size,
690                          load_offset % 16 / type_size,
691                          load_offset % 16 / type_size,
692                          load_offset % 16 / type_size);
693       }
694 
695       emit(MOV(dest, retype(packed_consts, dest.type)));
696 
697       break;
698    }
699 
700    case nir_intrinsic_scoped_barrier:
701       assert(nir_intrinsic_execution_scope(instr) == NIR_SCOPE_NONE);
702       /* Fall through. */
703    case nir_intrinsic_memory_barrier: {
704       const vec4_builder bld =
705          vec4_builder(this).at_end().annotate(current_annotation, base_ir);
706       const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
707       vec4_instruction *fence =
708          bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp, brw_vec8_grf(0, 0));
709       fence->sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
710       break;
711    }
712 
713    case nir_intrinsic_shader_clock: {
714       /* We cannot do anything if there is an event, so ignore it for now */
715       const src_reg shader_clock = get_timestamp();
716       const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
717 
718       dest = get_nir_dest(instr->dest, type);
719       emit(MOV(dest, shader_clock));
720       break;
721    }
722 
723    default:
724       unreachable("Unknown intrinsic");
725    }
726 }
727 
728 void
nir_emit_ssbo_atomic(int op,nir_intrinsic_instr * instr)729 vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
730 {
731    dst_reg dest;
732    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
733       dest = get_nir_dest(instr->dest);
734 
735    src_reg surface = get_nir_ssbo_intrinsic_index(instr);
736    src_reg offset = get_nir_src(instr->src[1], 1);
737    src_reg data1;
738    if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
739       data1 = get_nir_src(instr->src[2], 1);
740    src_reg data2;
741    if (op == BRW_AOP_CMPWR)
742       data2 = get_nir_src(instr->src[3], 1);
743 
744    /* Emit the actual atomic operation operation */
745    const vec4_builder bld =
746       vec4_builder(this).at_end().annotate(current_annotation, base_ir);
747 
748    src_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
749                                                data1, data2,
750                                                1 /* dims */, 1 /* rsize */,
751                                                op,
752                                                BRW_PREDICATE_NONE);
753    dest.type = atomic_result.type;
754    bld.MOV(dest, atomic_result);
755 }
756 
757 static unsigned
brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])758 brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
759 {
760    return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
761 }
762 
763 bool
optimize_predicate(nir_alu_instr * instr,enum brw_predicate * predicate)764 vec4_visitor::optimize_predicate(nir_alu_instr *instr,
765                                  enum brw_predicate *predicate)
766 {
767    if (!instr->src[0].src.is_ssa ||
768        instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
769       return false;
770 
771    nir_alu_instr *cmp_instr =
772       nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
773 
774    switch (cmp_instr->op) {
775    case nir_op_b32any_fnequal2:
776    case nir_op_b32any_inequal2:
777    case nir_op_b32any_fnequal3:
778    case nir_op_b32any_inequal3:
779    case nir_op_b32any_fnequal4:
780    case nir_op_b32any_inequal4:
781       *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
782       break;
783    case nir_op_b32all_fequal2:
784    case nir_op_b32all_iequal2:
785    case nir_op_b32all_fequal3:
786    case nir_op_b32all_iequal3:
787    case nir_op_b32all_fequal4:
788    case nir_op_b32all_iequal4:
789       *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
790       break;
791    default:
792       return false;
793    }
794 
795    unsigned size_swizzle =
796       brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
797 
798    src_reg op[2];
799    assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
800    for (unsigned i = 0; i < 2; i++) {
801       nir_alu_type type = nir_op_infos[cmp_instr->op].input_types[i];
802       unsigned bit_size = nir_src_bit_size(cmp_instr->src[i].src);
803       type = (nir_alu_type) (((unsigned) type) | bit_size);
804       op[i] = get_nir_src(cmp_instr->src[i].src, type, 4);
805       unsigned base_swizzle =
806          brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
807       op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
808    }
809 
810    emit(CMP(dst_null_d(), op[0], op[1],
811             brw_cmod_for_nir_comparison(cmp_instr->op)));
812 
813    return true;
814 }
815 
816 static void
emit_find_msb_using_lzd(const vec4_builder & bld,const dst_reg & dst,const src_reg & src,bool is_signed)817 emit_find_msb_using_lzd(const vec4_builder &bld,
818                         const dst_reg &dst,
819                         const src_reg &src,
820                         bool is_signed)
821 {
822    vec4_instruction *inst;
823    src_reg temp = src;
824 
825    if (is_signed) {
826       /* LZD of an absolute value source almost always does the right
827        * thing.  There are two problem values:
828        *
829        * * 0x80000000.  Since abs(0x80000000) == 0x80000000, LZD returns
830        *   0.  However, findMSB(int(0x80000000)) == 30.
831        *
832        * * 0xffffffff.  Since abs(0xffffffff) == 1, LZD returns
833        *   31.  Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
834        *
835        *    For a value of zero or negative one, -1 will be returned.
836        *
837        * * Negative powers of two.  LZD(abs(-(1<<x))) returns x, but
838        *   findMSB(-(1<<x)) should return x-1.
839        *
840        * For all negative number cases, including 0x80000000 and
841        * 0xffffffff, the correct value is obtained from LZD if instead of
842        * negating the (already negative) value the logical-not is used.  A
843        * conditonal logical-not can be achieved in two instructions.
844        */
845       temp = src_reg(bld.vgrf(BRW_REGISTER_TYPE_D));
846 
847       bld.ASR(dst_reg(temp), src, brw_imm_d(31));
848       bld.XOR(dst_reg(temp), temp, src);
849    }
850 
851    bld.LZD(retype(dst, BRW_REGISTER_TYPE_UD),
852            retype(temp, BRW_REGISTER_TYPE_UD));
853 
854    /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
855     * from the LSB side. Subtract the result from 31 to convert the MSB count
856     * into an LSB count.  If no bits are set, LZD will return 32.  31-32 = -1,
857     * which is exactly what findMSB() is supposed to return.
858     */
859    inst = bld.ADD(dst, retype(src_reg(dst), BRW_REGISTER_TYPE_D),
860                   brw_imm_d(31));
861    inst->src[0].negate = true;
862 }
863 
864 void
emit_conversion_from_double(dst_reg dst,src_reg src)865 vec4_visitor::emit_conversion_from_double(dst_reg dst, src_reg src)
866 {
867    enum opcode op;
868    switch (dst.type) {
869    case BRW_REGISTER_TYPE_D:
870       op = VEC4_OPCODE_DOUBLE_TO_D32;
871       break;
872    case BRW_REGISTER_TYPE_UD:
873       op = VEC4_OPCODE_DOUBLE_TO_U32;
874       break;
875    case BRW_REGISTER_TYPE_F:
876       op = VEC4_OPCODE_DOUBLE_TO_F32;
877       break;
878    default:
879       unreachable("Unknown conversion");
880    }
881 
882    dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
883    emit(MOV(temp, src));
884    dst_reg temp2 = dst_reg(this, glsl_type::dvec4_type);
885    emit(op, temp2, src_reg(temp));
886 
887    emit(VEC4_OPCODE_PICK_LOW_32BIT, retype(temp2, dst.type), src_reg(temp2));
888    emit(MOV(dst, src_reg(retype(temp2, dst.type))));
889 }
890 
891 void
emit_conversion_to_double(dst_reg dst,src_reg src)892 vec4_visitor::emit_conversion_to_double(dst_reg dst, src_reg src)
893 {
894    dst_reg tmp_dst = dst_reg(src_reg(this, glsl_type::dvec4_type));
895    src_reg tmp_src = retype(src_reg(this, glsl_type::vec4_type), src.type);
896    emit(MOV(dst_reg(tmp_src), src));
897    emit(VEC4_OPCODE_TO_DOUBLE, tmp_dst, tmp_src);
898    emit(MOV(dst, src_reg(tmp_dst)));
899 }
900 
901 /**
902  * Try to use an immediate value for a source
903  *
904  * In cases of flow control, constant propagation is sometimes unable to
905  * determine that a register contains a constant value.  To work around this,
906  * try to emit a literal as one of the sources.  If \c try_src0_also is set,
907  * \c op[0] will also be tried for an immediate value.
908  *
909  * If \c op[0] is modified, the operands will be exchanged so that \c op[1]
910  * will always be the immediate value.
911  *
912  * \return The index of the source that was modified, 0 or 1, if successful.
913  * Otherwise, -1.
914  *
915  * \param op - Operands to the instruction
916  * \param try_src0_also - True if \c op[0] should also be a candidate for
917  *                        getting an immediate value.  This should only be set
918  *                        for commutative operations.
919  */
920 static int
try_immediate_source(const nir_alu_instr * instr,src_reg * op,bool try_src0_also)921 try_immediate_source(const nir_alu_instr *instr, src_reg *op,
922                      bool try_src0_also)
923 {
924    unsigned idx;
925 
926    /* MOV should be the only single-source instruction passed to this
927     * function.  Any other unary instruction with a constant source should
928     * have been constant-folded away!
929     */
930    assert(nir_op_infos[instr->op].num_inputs > 1 ||
931           instr->op == nir_op_mov);
932 
933    if (instr->op != nir_op_mov &&
934        nir_src_bit_size(instr->src[1].src) == 32 &&
935        nir_src_is_const(instr->src[1].src)) {
936       idx = 1;
937    } else if (try_src0_also &&
938          nir_src_bit_size(instr->src[0].src) == 32 &&
939          nir_src_is_const(instr->src[0].src)) {
940       idx = 0;
941    } else {
942       return -1;
943    }
944 
945    const enum brw_reg_type old_type = op[idx].type;
946 
947    switch (old_type) {
948    case BRW_REGISTER_TYPE_D:
949    case BRW_REGISTER_TYPE_UD: {
950       int first_comp = -1;
951       int d = 0;
952 
953       for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
954          if (nir_alu_instr_channel_used(instr, idx, i)) {
955             if (first_comp < 0) {
956                first_comp = i;
957                d = nir_src_comp_as_int(instr->src[idx].src,
958                                        instr->src[idx].swizzle[i]);
959             } else if (d != nir_src_comp_as_int(instr->src[idx].src,
960                                                 instr->src[idx].swizzle[i])) {
961                return -1;
962             }
963          }
964       }
965 
966       assert(first_comp >= 0);
967 
968       if (op[idx].abs)
969          d = MAX2(-d, d);
970 
971       if (op[idx].negate)
972          d = -d;
973 
974       op[idx] = retype(src_reg(brw_imm_d(d)), old_type);
975       break;
976    }
977 
978    case BRW_REGISTER_TYPE_F: {
979       int first_comp = -1;
980       float f[NIR_MAX_VEC_COMPONENTS] = { 0.0f };
981       bool is_scalar = true;
982 
983       for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
984          if (nir_alu_instr_channel_used(instr, idx, i)) {
985             f[i] = nir_src_comp_as_float(instr->src[idx].src,
986                                          instr->src[idx].swizzle[i]);
987             if (first_comp < 0) {
988                first_comp = i;
989             } else if (f[first_comp] != f[i]) {
990                is_scalar = false;
991             }
992          }
993       }
994 
995       if (is_scalar) {
996          if (op[idx].abs)
997             f[first_comp] = fabs(f[first_comp]);
998 
999          if (op[idx].negate)
1000             f[first_comp] = -f[first_comp];
1001 
1002          op[idx] = src_reg(brw_imm_f(f[first_comp]));
1003          assert(op[idx].type == old_type);
1004       } else {
1005          uint8_t vf_values[4] = { 0, 0, 0, 0 };
1006 
1007          for (unsigned i = 0; i < ARRAY_SIZE(vf_values); i++) {
1008 
1009             if (op[idx].abs)
1010                f[i] = fabs(f[i]);
1011 
1012             if (op[idx].negate)
1013                f[i] = -f[i];
1014 
1015             const int vf = brw_float_to_vf(f[i]);
1016             if (vf == -1)
1017                return -1;
1018 
1019             vf_values[i] = vf;
1020          }
1021 
1022          op[idx] = src_reg(brw_imm_vf4(vf_values[0], vf_values[1],
1023                                        vf_values[2], vf_values[3]));
1024       }
1025       break;
1026    }
1027 
1028    default:
1029       unreachable("Non-32bit type.");
1030    }
1031 
1032    /* If the instruction has more than one source, the instruction format only
1033     * allows source 1 to be an immediate value.  If the immediate value was
1034     * source 0, then the sources must be exchanged.
1035     */
1036    if (idx == 0 && instr->op != nir_op_mov) {
1037       src_reg tmp = op[0];
1038       op[0] = op[1];
1039       op[1] = tmp;
1040    }
1041 
1042    return idx;
1043 }
1044 
1045 void
fix_float_operands(src_reg op[3],nir_alu_instr * instr)1046 vec4_visitor::fix_float_operands(src_reg op[3], nir_alu_instr *instr)
1047 {
1048    bool fixed[3] = { false, false, false };
1049 
1050    for (unsigned i = 0; i < 2; i++) {
1051       if (!nir_src_is_const(instr->src[i].src))
1052          continue;
1053 
1054       for (unsigned j = i + 1; j < 3; j++) {
1055          if (fixed[j])
1056             continue;
1057 
1058          if (!nir_src_is_const(instr->src[j].src))
1059             continue;
1060 
1061          if (nir_alu_srcs_equal(instr, instr, i, j)) {
1062             if (!fixed[i])
1063                op[i] = fix_3src_operand(op[i]);
1064 
1065             op[j] = op[i];
1066 
1067             fixed[i] = true;
1068             fixed[j] = true;
1069          } else if (nir_alu_srcs_negative_equal(instr, instr, i, j)) {
1070             if (!fixed[i])
1071                op[i] = fix_3src_operand(op[i]);
1072 
1073             op[j] = op[i];
1074             op[j].negate = !op[j].negate;
1075 
1076             fixed[i] = true;
1077             fixed[j] = true;
1078          }
1079       }
1080    }
1081 
1082    for (unsigned i = 0; i < 3; i++) {
1083       if (!fixed[i])
1084          op[i] = fix_3src_operand(op[i]);
1085    }
1086 }
1087 
1088 static bool
const_src_fits_in_16_bits(const nir_src & src,brw_reg_type type)1089 const_src_fits_in_16_bits(const nir_src &src, brw_reg_type type)
1090 {
1091    assert(nir_src_is_const(src));
1092    if (type_is_unsigned_int(type)) {
1093       return nir_src_comp_as_uint(src, 0) <= UINT16_MAX;
1094    } else {
1095       const int64_t c = nir_src_comp_as_int(src, 0);
1096       return c <= INT16_MAX && c >= INT16_MIN;
1097    }
1098 }
1099 
1100 void
nir_emit_alu(nir_alu_instr * instr)1101 vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
1102 {
1103    vec4_instruction *inst;
1104 
1105    nir_alu_type dst_type = (nir_alu_type) (nir_op_infos[instr->op].output_type |
1106                                            nir_dest_bit_size(instr->dest.dest));
1107    dst_reg dst = get_nir_dest(instr->dest.dest, dst_type);
1108    dst.writemask = instr->dest.write_mask;
1109 
1110    assert(!instr->dest.saturate);
1111 
1112    src_reg op[4];
1113    for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1114       /* We don't lower to source modifiers, so they shouldn't exist. */
1115       assert(!instr->src[i].abs);
1116       assert(!instr->src[i].negate);
1117 
1118       nir_alu_type src_type = (nir_alu_type)
1119          (nir_op_infos[instr->op].input_types[i] |
1120           nir_src_bit_size(instr->src[i].src));
1121       op[i] = get_nir_src(instr->src[i].src, src_type, 4);
1122       op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
1123    }
1124 
1125    switch (instr->op) {
1126    case nir_op_mov:
1127       try_immediate_source(instr, &op[0], true);
1128       inst = emit(MOV(dst, op[0]));
1129       break;
1130 
1131    case nir_op_vec2:
1132    case nir_op_vec3:
1133    case nir_op_vec4:
1134       unreachable("not reached: should be handled by lower_vec_to_movs()");
1135 
1136    case nir_op_i2f32:
1137    case nir_op_u2f32:
1138       inst = emit(MOV(dst, op[0]));
1139       break;
1140 
1141    case nir_op_f2f32:
1142    case nir_op_f2i32:
1143    case nir_op_f2u32:
1144       if (nir_src_bit_size(instr->src[0].src) == 64)
1145          emit_conversion_from_double(dst, op[0]);
1146       else
1147          inst = emit(MOV(dst, op[0]));
1148       break;
1149 
1150    case nir_op_f2f64:
1151    case nir_op_i2f64:
1152    case nir_op_u2f64:
1153       emit_conversion_to_double(dst, op[0]);
1154       break;
1155 
1156    case nir_op_fsat:
1157       inst = emit(MOV(dst, op[0]));
1158       inst->saturate = true;
1159       break;
1160 
1161    case nir_op_fneg:
1162    case nir_op_ineg:
1163       op[0].negate = true;
1164       inst = emit(MOV(dst, op[0]));
1165       break;
1166 
1167    case nir_op_fabs:
1168    case nir_op_iabs:
1169       op[0].negate = false;
1170       op[0].abs = true;
1171       inst = emit(MOV(dst, op[0]));
1172       break;
1173 
1174    case nir_op_iadd:
1175       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1176       /* fall through */
1177    case nir_op_fadd:
1178       try_immediate_source(instr, op, true);
1179       inst = emit(ADD(dst, op[0], op[1]));
1180       break;
1181 
1182    case nir_op_uadd_sat:
1183       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1184       inst = emit(ADD(dst, op[0], op[1]));
1185       inst->saturate = true;
1186       break;
1187 
1188    case nir_op_fmul:
1189       try_immediate_source(instr, op, true);
1190       inst = emit(MUL(dst, op[0], op[1]));
1191       break;
1192 
1193    case nir_op_imul: {
1194       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1195 
1196       /* For integer multiplication, the MUL uses the low 16 bits of one of
1197        * the operands (src0 through SNB, src1 on IVB and later). The MACH
1198        * accumulates in the contribution of the upper 16 bits of that
1199        * operand. If we can determine that one of the args is in the low
1200        * 16 bits, though, we can just emit a single MUL.
1201        */
1202       if (nir_src_is_const(instr->src[0].src) &&
1203           nir_alu_instr_src_read_mask(instr, 0) == 1 &&
1204           const_src_fits_in_16_bits(instr->src[0].src, op[0].type)) {
1205          if (devinfo->gen < 7)
1206             emit(MUL(dst, op[0], op[1]));
1207          else
1208             emit(MUL(dst, op[1], op[0]));
1209       } else if (nir_src_is_const(instr->src[1].src) &&
1210                  nir_alu_instr_src_read_mask(instr, 1) == 1 &&
1211                  const_src_fits_in_16_bits(instr->src[1].src, op[1].type)) {
1212          if (devinfo->gen < 7)
1213             emit(MUL(dst, op[1], op[0]));
1214          else
1215             emit(MUL(dst, op[0], op[1]));
1216       } else {
1217          struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1218 
1219          emit(MUL(acc, op[0], op[1]));
1220          emit(MACH(dst_null_d(), op[0], op[1]));
1221          emit(MOV(dst, src_reg(acc)));
1222       }
1223       break;
1224    }
1225 
1226    case nir_op_imul_high:
1227    case nir_op_umul_high: {
1228       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1229       struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1230 
1231       emit(MUL(acc, op[0], op[1]));
1232       emit(MACH(dst, op[0], op[1]));
1233       break;
1234    }
1235 
1236    case nir_op_frcp:
1237       inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1238       break;
1239 
1240    case nir_op_fexp2:
1241       inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1242       break;
1243 
1244    case nir_op_flog2:
1245       inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1246       break;
1247 
1248    case nir_op_fsin:
1249       inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1250       break;
1251 
1252    case nir_op_fcos:
1253       inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1254       break;
1255 
1256    case nir_op_idiv:
1257    case nir_op_udiv:
1258       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1259       emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1260       break;
1261 
1262    case nir_op_umod:
1263    case nir_op_irem:
1264       /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1265        * appears that our hardware just does the right thing for signed
1266        * remainder.
1267        */
1268       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1269       emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1270       break;
1271 
1272    case nir_op_imod: {
1273       /* Get a regular C-style remainder.  If a % b == 0, set the predicate. */
1274       inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1275 
1276       /* Math instructions don't support conditional mod */
1277       inst = emit(MOV(dst_null_d(), src_reg(dst)));
1278       inst->conditional_mod = BRW_CONDITIONAL_NZ;
1279 
1280       /* Now, we need to determine if signs of the sources are different.
1281        * When we XOR the sources, the top bit is 0 if they are the same and 1
1282        * if they are different.  We can then use a conditional modifier to
1283        * turn that into a predicate.  This leads us to an XOR.l instruction.
1284        *
1285        * Technically, according to the PRM, you're not allowed to use .l on a
1286        * XOR instruction.  However, emperical experiments and Curro's reading
1287        * of the simulator source both indicate that it's safe.
1288        */
1289       src_reg tmp = src_reg(this, glsl_type::ivec4_type);
1290       inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
1291       inst->predicate = BRW_PREDICATE_NORMAL;
1292       inst->conditional_mod = BRW_CONDITIONAL_L;
1293 
1294       /* If the result of the initial remainder operation is non-zero and the
1295        * two sources have different signs, add in a copy of op[1] to get the
1296        * final integer modulus value.
1297        */
1298       inst = emit(ADD(dst, src_reg(dst), op[1]));
1299       inst->predicate = BRW_PREDICATE_NORMAL;
1300       break;
1301    }
1302 
1303    case nir_op_ldexp:
1304       unreachable("not reached: should be handled by ldexp_to_arith()");
1305 
1306    case nir_op_fsqrt:
1307       inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1308       break;
1309 
1310    case nir_op_frsq:
1311       inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1312       break;
1313 
1314    case nir_op_fpow:
1315       inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1316       break;
1317 
1318    case nir_op_uadd_carry: {
1319       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1320       struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1321 
1322       emit(ADDC(dst_null_ud(), op[0], op[1]));
1323       emit(MOV(dst, src_reg(acc)));
1324       break;
1325    }
1326 
1327    case nir_op_usub_borrow: {
1328       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1329       struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1330 
1331       emit(SUBB(dst_null_ud(), op[0], op[1]));
1332       emit(MOV(dst, src_reg(acc)));
1333       break;
1334    }
1335 
1336    case nir_op_ftrunc:
1337       inst = emit(RNDZ(dst, op[0]));
1338       if (devinfo->gen < 6) {
1339          inst->conditional_mod = BRW_CONDITIONAL_R;
1340          inst = emit(ADD(dst, src_reg(dst), brw_imm_f(1.0f)));
1341          inst->predicate = BRW_PREDICATE_NORMAL;
1342          inst = emit(MOV(dst, src_reg(dst))); /* for potential saturation */
1343       }
1344       break;
1345 
1346    case nir_op_fceil: {
1347       src_reg tmp = src_reg(this, glsl_type::float_type);
1348       tmp.swizzle =
1349          brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1350                               instr->src[0].src.ssa->num_components :
1351                               instr->src[0].src.reg.reg->num_components);
1352 
1353       op[0].negate = !op[0].negate;
1354       emit(RNDD(dst_reg(tmp), op[0]));
1355       tmp.negate = true;
1356       inst = emit(MOV(dst, tmp));
1357       break;
1358    }
1359 
1360    case nir_op_ffloor:
1361       inst = emit(RNDD(dst, op[0]));
1362       break;
1363 
1364    case nir_op_ffract:
1365       inst = emit(FRC(dst, op[0]));
1366       break;
1367 
1368    case nir_op_fround_even:
1369       inst = emit(RNDE(dst, op[0]));
1370       if (devinfo->gen < 6) {
1371          inst->conditional_mod = BRW_CONDITIONAL_R;
1372          inst = emit(ADD(dst, src_reg(dst), brw_imm_f(1.0f)));
1373          inst->predicate = BRW_PREDICATE_NORMAL;
1374          inst = emit(MOV(dst, src_reg(dst))); /* for potential saturation */
1375       }
1376       break;
1377 
1378    case nir_op_fquantize2f16: {
1379       /* See also vec4_visitor::emit_pack_half_2x16() */
1380       src_reg tmp16 = src_reg(this, glsl_type::uvec4_type);
1381       src_reg tmp32 = src_reg(this, glsl_type::vec4_type);
1382       src_reg zero = src_reg(this, glsl_type::vec4_type);
1383 
1384       /* Check for denormal */
1385       src_reg abs_src0 = op[0];
1386       abs_src0.abs = true;
1387       emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1388                BRW_CONDITIONAL_L));
1389       /* Get the appropriately signed zero */
1390       emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD),
1391                retype(op[0], BRW_REGISTER_TYPE_UD),
1392                brw_imm_ud(0x80000000)));
1393       /* Do the actual F32 -> F16 -> F32 conversion */
1394       emit(F32TO16(dst_reg(tmp16), op[0]));
1395       emit(F16TO32(dst_reg(tmp32), tmp16));
1396       /* Select that or zero based on normal status */
1397       inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32);
1398       inst->predicate = BRW_PREDICATE_NORMAL;
1399       break;
1400    }
1401 
1402    case nir_op_imin:
1403    case nir_op_umin:
1404       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1405       /* fall through */
1406    case nir_op_fmin:
1407       try_immediate_source(instr, op, true);
1408       inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1409       break;
1410 
1411    case nir_op_imax:
1412    case nir_op_umax:
1413       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1414       /* fall through */
1415    case nir_op_fmax:
1416       try_immediate_source(instr, op, true);
1417       inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1418       break;
1419 
1420    case nir_op_fddx:
1421    case nir_op_fddx_coarse:
1422    case nir_op_fddx_fine:
1423    case nir_op_fddy:
1424    case nir_op_fddy_coarse:
1425    case nir_op_fddy_fine:
1426       unreachable("derivatives are not valid in vertex shaders");
1427 
1428    case nir_op_ilt32:
1429    case nir_op_ult32:
1430    case nir_op_ige32:
1431    case nir_op_uge32:
1432    case nir_op_ieq32:
1433    case nir_op_ine32:
1434       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1435       /* Fallthrough */
1436    case nir_op_flt32:
1437    case nir_op_fge32:
1438    case nir_op_feq32:
1439    case nir_op_fneu32: {
1440       enum brw_conditional_mod conditional_mod =
1441          brw_cmod_for_nir_comparison(instr->op);
1442 
1443       if (nir_src_bit_size(instr->src[0].src) < 64) {
1444          /* If the order of the sources is changed due to an immediate value,
1445           * then the condition must also be changed.
1446           */
1447          if (try_immediate_source(instr, op, true) == 0)
1448             conditional_mod = brw_swap_cmod(conditional_mod);
1449 
1450          emit(CMP(dst, op[0], op[1], conditional_mod));
1451       } else {
1452          /* Produce a 32-bit boolean result from the DF comparison by selecting
1453           * only the low 32-bit in each DF produced. Do this in a temporary
1454           * so we can then move from there to the result using align16 again
1455           * to honor the original writemask.
1456           */
1457          dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1458          emit(CMP(temp, op[0], op[1], conditional_mod));
1459          dst_reg result = dst_reg(this, glsl_type::bvec4_type);
1460          emit(VEC4_OPCODE_PICK_LOW_32BIT, result, src_reg(temp));
1461          emit(MOV(dst, src_reg(result)));
1462       }
1463       break;
1464    }
1465 
1466    case nir_op_b32all_iequal2:
1467    case nir_op_b32all_iequal3:
1468    case nir_op_b32all_iequal4:
1469       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1470       /* Fallthrough */
1471    case nir_op_b32all_fequal2:
1472    case nir_op_b32all_fequal3:
1473    case nir_op_b32all_fequal4: {
1474       unsigned swiz =
1475          brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1476 
1477       emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1478                brw_cmod_for_nir_comparison(instr->op)));
1479       emit(MOV(dst, brw_imm_d(0)));
1480       inst = emit(MOV(dst, brw_imm_d(~0)));
1481       inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1482       break;
1483    }
1484 
1485    case nir_op_b32any_inequal2:
1486    case nir_op_b32any_inequal3:
1487    case nir_op_b32any_inequal4:
1488       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1489       /* Fallthrough */
1490    case nir_op_b32any_fnequal2:
1491    case nir_op_b32any_fnequal3:
1492    case nir_op_b32any_fnequal4: {
1493       unsigned swiz =
1494          brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1495 
1496       emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1497                brw_cmod_for_nir_comparison(instr->op)));
1498 
1499       emit(MOV(dst, brw_imm_d(0)));
1500       inst = emit(MOV(dst, brw_imm_d(~0)));
1501       inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1502       break;
1503    }
1504 
1505    case nir_op_inot:
1506       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1507       emit(NOT(dst, op[0]));
1508       break;
1509 
1510    case nir_op_ixor:
1511       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1512       try_immediate_source(instr, op, true);
1513       emit(XOR(dst, op[0], op[1]));
1514       break;
1515 
1516    case nir_op_ior:
1517       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1518       try_immediate_source(instr, op, true);
1519       emit(OR(dst, op[0], op[1]));
1520       break;
1521 
1522    case nir_op_iand:
1523       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1524       try_immediate_source(instr, op, true);
1525       emit(AND(dst, op[0], op[1]));
1526       break;
1527 
1528    case nir_op_b2i32:
1529    case nir_op_b2f32:
1530    case nir_op_b2f64:
1531       if (nir_dest_bit_size(instr->dest.dest) > 32) {
1532          assert(dst.type == BRW_REGISTER_TYPE_DF);
1533          emit_conversion_to_double(dst, negate(op[0]));
1534       } else {
1535          emit(MOV(dst, negate(op[0])));
1536       }
1537       break;
1538 
1539    case nir_op_f2b32:
1540       if (nir_src_bit_size(instr->src[0].src) == 64) {
1541          /* We use a MOV with conditional_mod to check if the provided value is
1542           * 0.0. We want this to flush denormalized numbers to zero, so we set a
1543           * source modifier on the source operand to trigger this, as source
1544           * modifiers don't affect the result of the testing against 0.0.
1545           */
1546          src_reg value = op[0];
1547          value.abs = true;
1548          vec4_instruction *inst = emit(MOV(dst_null_df(), value));
1549          inst->conditional_mod = BRW_CONDITIONAL_NZ;
1550 
1551          src_reg one = src_reg(this, glsl_type::ivec4_type);
1552          emit(MOV(dst_reg(one), brw_imm_d(~0)));
1553          inst = emit(BRW_OPCODE_SEL, dst, one, brw_imm_d(0));
1554          inst->predicate = BRW_PREDICATE_NORMAL;
1555       } else {
1556          emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1557       }
1558       break;
1559 
1560    case nir_op_i2b32:
1561       emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1562       break;
1563 
1564    case nir_op_unpack_half_2x16_split_x:
1565    case nir_op_unpack_half_2x16_split_y:
1566    case nir_op_pack_half_2x16_split:
1567       unreachable("not reached: should not occur in vertex shader");
1568 
1569    case nir_op_unpack_snorm_2x16:
1570    case nir_op_unpack_unorm_2x16:
1571    case nir_op_pack_snorm_2x16:
1572    case nir_op_pack_unorm_2x16:
1573       unreachable("not reached: should be handled by lower_packing_builtins");
1574 
1575    case nir_op_pack_uvec4_to_uint:
1576       unreachable("not reached");
1577 
1578    case nir_op_pack_uvec2_to_uint: {
1579       dst_reg tmp1 = dst_reg(this, glsl_type::uint_type);
1580       tmp1.writemask = WRITEMASK_X;
1581       op[0].swizzle = BRW_SWIZZLE_YYYY;
1582       emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u))));
1583 
1584       dst_reg tmp2 = dst_reg(this, glsl_type::uint_type);
1585       tmp2.writemask = WRITEMASK_X;
1586       op[0].swizzle = BRW_SWIZZLE_XXXX;
1587       emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu))));
1588 
1589       emit(OR(dst, src_reg(tmp1), src_reg(tmp2)));
1590       break;
1591    }
1592 
1593    case nir_op_pack_64_2x32_split: {
1594       dst_reg result = dst_reg(this, glsl_type::dvec4_type);
1595       dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1596       emit(MOV(tmp, retype(op[0], BRW_REGISTER_TYPE_UD)));
1597       emit(VEC4_OPCODE_SET_LOW_32BIT, result, src_reg(tmp));
1598       emit(MOV(tmp, retype(op[1], BRW_REGISTER_TYPE_UD)));
1599       emit(VEC4_OPCODE_SET_HIGH_32BIT, result, src_reg(tmp));
1600       emit(MOV(dst, src_reg(result)));
1601       break;
1602    }
1603 
1604    case nir_op_unpack_64_2x32_split_x:
1605    case nir_op_unpack_64_2x32_split_y: {
1606       enum opcode oper = (instr->op == nir_op_unpack_64_2x32_split_x) ?
1607          VEC4_OPCODE_PICK_LOW_32BIT : VEC4_OPCODE_PICK_HIGH_32BIT;
1608       dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
1609       emit(MOV(tmp, op[0]));
1610       dst_reg tmp2 = dst_reg(this, glsl_type::uvec4_type);
1611       emit(oper, tmp2, src_reg(tmp));
1612       emit(MOV(dst, src_reg(tmp2)));
1613       break;
1614    }
1615 
1616    case nir_op_unpack_half_2x16:
1617       /* As NIR does not guarantee that we have a correct swizzle outside the
1618        * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1619        * uses the source operand in an operation with WRITEMASK_Y while our
1620        * source operand has only size 1, it accessed incorrect data producing
1621        * regressions in Piglit. We repeat the swizzle of the first component on the
1622        * rest of components to avoid regressions. In the vec4_visitor IR code path
1623        * this is not needed because the operand has already the correct swizzle.
1624        */
1625       op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1626       emit_unpack_half_2x16(dst, op[0]);
1627       break;
1628 
1629    case nir_op_pack_half_2x16:
1630       emit_pack_half_2x16(dst, op[0]);
1631       break;
1632 
1633    case nir_op_unpack_unorm_4x8:
1634       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1635       emit_unpack_unorm_4x8(dst, op[0]);
1636       break;
1637 
1638    case nir_op_pack_unorm_4x8:
1639       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1640       emit_pack_unorm_4x8(dst, op[0]);
1641       break;
1642 
1643    case nir_op_unpack_snorm_4x8:
1644       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1645       emit_unpack_snorm_4x8(dst, op[0]);
1646       break;
1647 
1648    case nir_op_pack_snorm_4x8:
1649       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1650       emit_pack_snorm_4x8(dst, op[0]);
1651       break;
1652 
1653    case nir_op_bitfield_reverse:
1654       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1655       emit(BFREV(dst, op[0]));
1656       break;
1657 
1658    case nir_op_bit_count:
1659       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1660       emit(CBIT(dst, op[0]));
1661       break;
1662 
1663    case nir_op_ufind_msb:
1664       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1665       emit_find_msb_using_lzd(vec4_builder(this).at_end(), dst, op[0], false);
1666       break;
1667 
1668    case nir_op_ifind_msb: {
1669       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1670       vec4_builder bld = vec4_builder(this).at_end();
1671       src_reg src(dst);
1672 
1673       if (devinfo->gen < 7) {
1674          emit_find_msb_using_lzd(bld, dst, op[0], true);
1675       } else {
1676          emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1677 
1678          /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1679           * count from the LSB side. If FBH didn't return an error
1680           * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1681           * count into an LSB count.
1682           */
1683          bld.CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1684 
1685          inst = bld.ADD(dst, src, brw_imm_d(31));
1686          inst->predicate = BRW_PREDICATE_NORMAL;
1687          inst->src[0].negate = true;
1688       }
1689       break;
1690    }
1691 
1692    case nir_op_find_lsb: {
1693       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1694       vec4_builder bld = vec4_builder(this).at_end();
1695 
1696       if (devinfo->gen < 7) {
1697          dst_reg temp = bld.vgrf(BRW_REGISTER_TYPE_D);
1698 
1699          /* (x & -x) generates a value that consists of only the LSB of x.
1700           * For all powers of 2, findMSB(y) == findLSB(y).
1701           */
1702          src_reg src = src_reg(retype(op[0], BRW_REGISTER_TYPE_D));
1703          src_reg negated_src = src;
1704 
1705          /* One must be negated, and the other must be non-negated.  It
1706           * doesn't matter which is which.
1707           */
1708          negated_src.negate = true;
1709          src.negate = false;
1710 
1711          bld.AND(temp, src, negated_src);
1712          emit_find_msb_using_lzd(bld, dst, src_reg(temp), false);
1713       } else {
1714          bld.FBL(dst, op[0]);
1715       }
1716       break;
1717    }
1718 
1719    case nir_op_ubitfield_extract:
1720    case nir_op_ibitfield_extract:
1721       unreachable("should have been lowered");
1722    case nir_op_ubfe:
1723    case nir_op_ibfe:
1724       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1725       op[0] = fix_3src_operand(op[0]);
1726       op[1] = fix_3src_operand(op[1]);
1727       op[2] = fix_3src_operand(op[2]);
1728 
1729       emit(BFE(dst, op[2], op[1], op[0]));
1730       break;
1731 
1732    case nir_op_bfm:
1733       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1734       emit(BFI1(dst, op[0], op[1]));
1735       break;
1736 
1737    case nir_op_bfi:
1738       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1739       op[0] = fix_3src_operand(op[0]);
1740       op[1] = fix_3src_operand(op[1]);
1741       op[2] = fix_3src_operand(op[2]);
1742 
1743       emit(BFI2(dst, op[0], op[1], op[2]));
1744       break;
1745 
1746    case nir_op_bitfield_insert:
1747       unreachable("not reached: should have been lowered");
1748 
1749    case nir_op_fsign:
1750        if (type_sz(op[0].type) < 8) {
1751          /* AND(val, 0x80000000) gives the sign bit.
1752           *
1753           * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1754           * zero.
1755           */
1756          emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1757 
1758          op[0].type = BRW_REGISTER_TYPE_UD;
1759          dst.type = BRW_REGISTER_TYPE_UD;
1760          emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1761 
1762          inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1763          inst->predicate = BRW_PREDICATE_NORMAL;
1764          dst.type = BRW_REGISTER_TYPE_F;
1765       } else {
1766          /* For doubles we do the same but we need to consider:
1767           *
1768           * - We use a MOV with conditional_mod instead of a CMP so that we can
1769           *   skip loading a 0.0 immediate. We use a source modifier on the
1770           *   source of the MOV so that we flush denormalized values to 0.
1771           *   Since we want to compare against 0, this won't alter the result.
1772           * - We need to extract the high 32-bit of each DF where the sign
1773           *   is stored.
1774           * - We need to produce a DF result.
1775           */
1776 
1777          /* Check for zero */
1778          src_reg value = op[0];
1779          value.abs = true;
1780          inst = emit(MOV(dst_null_df(), value));
1781          inst->conditional_mod = BRW_CONDITIONAL_NZ;
1782 
1783          /* AND each high 32-bit channel with 0x80000000u */
1784          dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1785          emit(VEC4_OPCODE_PICK_HIGH_32BIT, tmp, op[0]);
1786          emit(AND(tmp, src_reg(tmp), brw_imm_ud(0x80000000u)));
1787 
1788          /* Add 1.0 to each channel, predicated to skip the cases where the
1789           * channel's value was 0
1790           */
1791          inst = emit(OR(tmp, src_reg(tmp), brw_imm_ud(0x3f800000u)));
1792          inst->predicate = BRW_PREDICATE_NORMAL;
1793 
1794          /* Now convert the result from float to double */
1795          emit_conversion_to_double(dst, retype(src_reg(tmp),
1796                                                BRW_REGISTER_TYPE_F));
1797       }
1798       break;
1799 
1800    case nir_op_ishl:
1801       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1802       try_immediate_source(instr, op, false);
1803       emit(SHL(dst, op[0], op[1]));
1804       break;
1805 
1806    case nir_op_ishr:
1807       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1808       try_immediate_source(instr, op, false);
1809       emit(ASR(dst, op[0], op[1]));
1810       break;
1811 
1812    case nir_op_ushr:
1813       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1814       try_immediate_source(instr, op, false);
1815       emit(SHR(dst, op[0], op[1]));
1816       break;
1817 
1818    case nir_op_ffma:
1819       if (type_sz(dst.type) == 8) {
1820          dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
1821          emit(MUL(mul_dst, op[1], op[0]));
1822          inst = emit(ADD(dst, src_reg(mul_dst), op[2]));
1823       } else {
1824          fix_float_operands(op, instr);
1825          inst = emit(MAD(dst, op[2], op[1], op[0]));
1826       }
1827       break;
1828 
1829    case nir_op_flrp:
1830       fix_float_operands(op, instr);
1831       inst = emit(LRP(dst, op[2], op[1], op[0]));
1832       break;
1833 
1834    case nir_op_b32csel:
1835       enum brw_predicate predicate;
1836       if (!optimize_predicate(instr, &predicate)) {
1837          emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1838          switch (dst.writemask) {
1839          case WRITEMASK_X:
1840             predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
1841             break;
1842          case WRITEMASK_Y:
1843             predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1844             break;
1845          case WRITEMASK_Z:
1846             predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1847             break;
1848          case WRITEMASK_W:
1849             predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
1850             break;
1851          default:
1852             predicate = BRW_PREDICATE_NORMAL;
1853             break;
1854          }
1855       }
1856       inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
1857       inst->predicate = predicate;
1858       break;
1859 
1860    case nir_op_fdot2_replicated:
1861       try_immediate_source(instr, op, true);
1862       inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
1863       break;
1864 
1865    case nir_op_fdot3_replicated:
1866       try_immediate_source(instr, op, true);
1867       inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
1868       break;
1869 
1870    case nir_op_fdot4_replicated:
1871       try_immediate_source(instr, op, true);
1872       inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
1873       break;
1874 
1875    case nir_op_fdph_replicated:
1876       try_immediate_source(instr, op, false);
1877       inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
1878       break;
1879 
1880    case nir_op_fdiv:
1881       unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
1882 
1883    case nir_op_fmod:
1884       unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
1885 
1886    case nir_op_fsub:
1887    case nir_op_isub:
1888       unreachable("not reached: should be handled by ir_sub_to_add_neg");
1889 
1890    default:
1891       unreachable("Unimplemented ALU operation");
1892    }
1893 
1894    /* If we need to do a boolean resolve, replace the result with -(x & 1)
1895     * to sign extend the low bit to 0/~0
1896     */
1897    if (devinfo->gen <= 5 &&
1898        (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
1899        BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1900       dst_reg masked = dst_reg(this, glsl_type::int_type);
1901       masked.writemask = dst.writemask;
1902       emit(AND(masked, src_reg(dst), brw_imm_d(1)));
1903       src_reg masked_neg = src_reg(masked);
1904       masked_neg.negate = true;
1905       emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
1906    }
1907 }
1908 
1909 void
nir_emit_jump(nir_jump_instr * instr)1910 vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
1911 {
1912    switch (instr->type) {
1913    case nir_jump_break:
1914       emit(BRW_OPCODE_BREAK);
1915       break;
1916 
1917    case nir_jump_continue:
1918       emit(BRW_OPCODE_CONTINUE);
1919       break;
1920 
1921    case nir_jump_return:
1922       /* fall through */
1923    default:
1924       unreachable("unknown jump");
1925    }
1926 }
1927 
1928 static enum ir_texture_opcode
ir_texture_opcode_for_nir_texop(nir_texop texop)1929 ir_texture_opcode_for_nir_texop(nir_texop texop)
1930 {
1931    enum ir_texture_opcode op;
1932 
1933    switch (texop) {
1934    case nir_texop_lod: op = ir_lod; break;
1935    case nir_texop_query_levels: op = ir_query_levels; break;
1936    case nir_texop_texture_samples: op = ir_texture_samples; break;
1937    case nir_texop_tex: op = ir_tex; break;
1938    case nir_texop_tg4: op = ir_tg4; break;
1939    case nir_texop_txb: op = ir_txb; break;
1940    case nir_texop_txd: op = ir_txd; break;
1941    case nir_texop_txf: op = ir_txf; break;
1942    case nir_texop_txf_ms: op = ir_txf_ms; break;
1943    case nir_texop_txl: op = ir_txl; break;
1944    case nir_texop_txs: op = ir_txs; break;
1945    case nir_texop_samples_identical: op = ir_samples_identical; break;
1946    default:
1947       unreachable("unknown texture opcode");
1948    }
1949 
1950    return op;
1951 }
1952 
1953 static const glsl_type *
glsl_type_for_nir_alu_type(nir_alu_type alu_type,unsigned components)1954 glsl_type_for_nir_alu_type(nir_alu_type alu_type,
1955                            unsigned components)
1956 {
1957    return glsl_type::get_instance(brw_glsl_base_type_for_nir_type(alu_type),
1958                                   components, 1);
1959 }
1960 
1961 void
nir_emit_texture(nir_tex_instr * instr)1962 vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
1963 {
1964    unsigned texture = instr->texture_index;
1965    unsigned sampler = instr->sampler_index;
1966    src_reg texture_reg = brw_imm_ud(texture);
1967    src_reg sampler_reg = brw_imm_ud(sampler);
1968    src_reg coordinate;
1969    const glsl_type *coord_type = NULL;
1970    src_reg shadow_comparator;
1971    src_reg offset_value;
1972    src_reg lod, lod2;
1973    src_reg sample_index;
1974    src_reg mcs;
1975 
1976    const glsl_type *dest_type =
1977       glsl_type_for_nir_alu_type(instr->dest_type,
1978                                  nir_tex_instr_dest_size(instr));
1979    dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
1980 
1981    /* The hardware requires a LOD for buffer textures */
1982    if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
1983       lod = brw_imm_d(0);
1984 
1985    /* Load the texture operation sources */
1986    uint32_t constant_offset = 0;
1987    for (unsigned i = 0; i < instr->num_srcs; i++) {
1988       switch (instr->src[i].src_type) {
1989       case nir_tex_src_comparator:
1990          shadow_comparator = get_nir_src(instr->src[i].src,
1991                                          BRW_REGISTER_TYPE_F, 1);
1992          break;
1993 
1994       case nir_tex_src_coord: {
1995          unsigned src_size = nir_tex_instr_src_size(instr, i);
1996 
1997          switch (instr->op) {
1998          case nir_texop_txf:
1999          case nir_texop_txf_ms:
2000          case nir_texop_samples_identical:
2001             coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
2002                                      src_size);
2003             coord_type = glsl_type::ivec(src_size);
2004             break;
2005 
2006          default:
2007             coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2008                                      src_size);
2009             coord_type = glsl_type::vec(src_size);
2010             break;
2011          }
2012          break;
2013       }
2014 
2015       case nir_tex_src_ddx:
2016          lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2017                            nir_tex_instr_src_size(instr, i));
2018          break;
2019 
2020       case nir_tex_src_ddy:
2021          lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2022                            nir_tex_instr_src_size(instr, i));
2023          break;
2024 
2025       case nir_tex_src_lod:
2026          switch (instr->op) {
2027          case nir_texop_txs:
2028          case nir_texop_txf:
2029             lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2030             break;
2031 
2032          default:
2033             lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
2034             break;
2035          }
2036          break;
2037 
2038       case nir_tex_src_ms_index: {
2039          sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2040          break;
2041       }
2042 
2043       case nir_tex_src_offset:
2044          if (!brw_texture_offset(instr, i, &constant_offset)) {
2045             offset_value =
2046                get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
2047          }
2048          break;
2049 
2050       case nir_tex_src_texture_offset: {
2051          /* Emit code to evaluate the actual indexing expression */
2052          src_reg src = get_nir_src(instr->src[i].src, 1);
2053          src_reg temp(this, glsl_type::uint_type);
2054          emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
2055          texture_reg = emit_uniformize(temp);
2056          break;
2057       }
2058 
2059       case nir_tex_src_sampler_offset: {
2060          /* Emit code to evaluate the actual indexing expression */
2061          src_reg src = get_nir_src(instr->src[i].src, 1);
2062          src_reg temp(this, glsl_type::uint_type);
2063          emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
2064          sampler_reg = emit_uniformize(temp);
2065          break;
2066       }
2067 
2068       case nir_tex_src_projector:
2069          unreachable("Should be lowered by do_lower_texture_projection");
2070 
2071       case nir_tex_src_bias:
2072          unreachable("LOD bias is not valid for vertex shaders.\n");
2073 
2074       default:
2075          unreachable("unknown texture source");
2076       }
2077    }
2078 
2079    if (instr->op == nir_texop_txf_ms ||
2080        instr->op == nir_texop_samples_identical) {
2081       assert(coord_type != NULL);
2082       if (devinfo->gen >= 7 &&
2083           key_tex->compressed_multisample_layout_mask & (1 << texture)) {
2084          mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg);
2085       } else {
2086          mcs = brw_imm_ud(0u);
2087       }
2088    }
2089 
2090    /* Stuff the channel select bits in the top of the texture offset */
2091    if (instr->op == nir_texop_tg4) {
2092       if (instr->component == 1 &&
2093           (key_tex->gather_channel_quirk_mask & (1 << texture))) {
2094          /* gather4 sampler is broken for green channel on RG32F --
2095           * we must ask for blue instead.
2096           */
2097          constant_offset |= 2 << 16;
2098       } else {
2099          constant_offset |= instr->component << 16;
2100       }
2101    }
2102 
2103    ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
2104 
2105    emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
2106                 shadow_comparator,
2107                 lod, lod2, sample_index,
2108                 constant_offset, offset_value, mcs,
2109                 texture, texture_reg, sampler_reg);
2110 }
2111 
2112 void
nir_emit_undef(nir_ssa_undef_instr * instr)2113 vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
2114 {
2115    nir_ssa_values[instr->def.index] =
2116       dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(instr->def.bit_size, 32)));
2117 }
2118 
2119 /* SIMD4x2 64bit data is stored in register space like this:
2120  *
2121  * r0.0:DF  x0 y0 z0 w0
2122  * r1.0:DF  x1 y1 z1 w1
2123  *
2124  * When we need to write data such as this to memory using 32-bit write
2125  * messages we need to shuffle it in this fashion:
2126  *
2127  * r0.0:DF  x0 y0 x1 y1 (to be written at base offset)
2128  * r0.0:DF  z0 w0 z1 w1 (to be written at base offset + 16)
2129  *
2130  * We need to do the inverse operation when we read using 32-bit messages,
2131  * which we can do by applying the same exact shuffling on the 64-bit data
2132  * read, only that because the data for each vertex is positioned differently
2133  * we need to apply different channel enables.
2134  *
2135  * This function takes 64bit data and shuffles it as explained above.
2136  *
2137  * The @for_write parameter is used to specify if the shuffling is being done
2138  * for proper SIMD4x2 64-bit data that needs to be shuffled prior to a 32-bit
2139  * write message (for_write = true), or instead we are doing the inverse
2140  * operation and we have just read 64-bit data using a 32-bit messages that we
2141  * need to shuffle to create valid SIMD4x2 64-bit data (for_write = false).
2142  *
2143  * If @block and @ref are non-NULL, then the shuffling is done after @ref,
2144  * otherwise the instructions are emitted normally at the end. The function
2145  * returns the last instruction inserted.
2146  *
2147  * Notice that @src and @dst cannot be the same register.
2148  */
2149 vec4_instruction *
shuffle_64bit_data(dst_reg dst,src_reg src,bool for_write,bblock_t * block,vec4_instruction * ref)2150 vec4_visitor::shuffle_64bit_data(dst_reg dst, src_reg src, bool for_write,
2151                                  bblock_t *block, vec4_instruction *ref)
2152 {
2153    assert(type_sz(src.type) == 8);
2154    assert(type_sz(dst.type) == 8);
2155    assert(!regions_overlap(dst, 2 * REG_SIZE, src, 2 * REG_SIZE));
2156    assert(!ref == !block);
2157 
2158    const vec4_builder bld = !ref ? vec4_builder(this).at_end() :
2159                                    vec4_builder(this).at(block, ref->next);
2160 
2161    /* Resolve swizzle in src */
2162    if (src.swizzle != BRW_SWIZZLE_XYZW) {
2163       dst_reg data = dst_reg(this, glsl_type::dvec4_type);
2164       bld.MOV(data, src);
2165       src = src_reg(data);
2166    }
2167 
2168    /* dst+0.XY = src+0.XY */
2169    bld.group(4, 0).MOV(writemask(dst, WRITEMASK_XY), src);
2170 
2171    /* dst+0.ZW = src+1.XY */
2172    bld.group(4, for_write ? 1 : 0)
2173              .MOV(writemask(dst, WRITEMASK_ZW),
2174                   swizzle(byte_offset(src, REG_SIZE), BRW_SWIZZLE_XYXY));
2175 
2176    /* dst+1.XY = src+0.ZW */
2177    bld.group(4, for_write ? 0 : 1)
2178             .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_XY),
2179                  swizzle(src, BRW_SWIZZLE_ZWZW));
2180 
2181    /* dst+1.ZW = src+1.ZW */
2182    return bld.group(4, 1)
2183              .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_ZW),
2184                  byte_offset(src, REG_SIZE));
2185 }
2186 
2187 }
2188