1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //
18 // Definitions of resource data structures.
19 //
20 #ifndef _LIBS_UTILS_RESOURCE_TYPES_H
21 #define _LIBS_UTILS_RESOURCE_TYPES_H
22
23 #include <android-base/expected.h>
24
25 #include <androidfw/Asset.h>
26 #include <androidfw/Errors.h>
27 #include <androidfw/LocaleData.h>
28 #include <androidfw/StringPiece.h>
29 #include <utils/Errors.h>
30 #include <utils/String16.h>
31 #include <utils/Vector.h>
32 #include <utils/KeyedVector.h>
33
34 #include <utils/threads.h>
35
36 #include <stdint.h>
37 #include <sys/types.h>
38
39 #include <android/configuration.h>
40
41 #include <array>
42 #include <map>
43 #include <memory>
44
45 namespace android {
46
47 constexpr const uint32_t kIdmapMagic = 0x504D4449u;
48 constexpr const uint32_t kIdmapCurrentVersion = 0x00000008u;
49
50 // This must never change.
51 constexpr const uint32_t kFabricatedOverlayMagic = 0x4f525246; // FRRO (big endian)
52
53 // The version should only be changed when a backwards-incompatible change must be made to the
54 // fabricated overlay file format. Old fabricated overlays must be migrated to the new file format
55 // to prevent losing fabricated overlay data.
56 constexpr const uint32_t kFabricatedOverlayCurrentVersion = 1;
57
58 // Returns whether or not the path represents a fabricated overlay.
59 bool IsFabricatedOverlay(const std::string& path);
60
61 /**
62 * In C++11, char16_t is defined as *at least* 16 bits. We do a lot of
63 * casting on raw data and expect char16_t to be exactly 16 bits.
64 */
65 #if __cplusplus >= 201103L
66 struct __assertChar16Size {
67 static_assert(sizeof(char16_t) == sizeof(uint16_t), "char16_t is not 16 bits");
68 static_assert(alignof(char16_t) == alignof(uint16_t), "char16_t is not 16-bit aligned");
69 };
70 #endif
71
72 /** ********************************************************************
73 * PNG Extensions
74 *
75 * New private chunks that may be placed in PNG images.
76 *
77 *********************************************************************** */
78
79 /**
80 * This chunk specifies how to split an image into segments for
81 * scaling.
82 *
83 * There are J horizontal and K vertical segments. These segments divide
84 * the image into J*K regions as follows (where J=4 and K=3):
85 *
86 * F0 S0 F1 S1
87 * +-----+----+------+-------+
88 * S2| 0 | 1 | 2 | 3 |
89 * +-----+----+------+-------+
90 * | | | | |
91 * | | | | |
92 * F2| 4 | 5 | 6 | 7 |
93 * | | | | |
94 * | | | | |
95 * +-----+----+------+-------+
96 * S3| 8 | 9 | 10 | 11 |
97 * +-----+----+------+-------+
98 *
99 * Each horizontal and vertical segment is considered to by either
100 * stretchable (marked by the Sx labels) or fixed (marked by the Fy
101 * labels), in the horizontal or vertical axis, respectively. In the
102 * above example, the first is horizontal segment (F0) is fixed, the
103 * next is stretchable and then they continue to alternate. Note that
104 * the segment list for each axis can begin or end with a stretchable
105 * or fixed segment.
106 *
107 * The relative sizes of the stretchy segments indicates the relative
108 * amount of stretchiness of the regions bordered by the segments. For
109 * example, regions 3, 7 and 11 above will take up more horizontal space
110 * than regions 1, 5 and 9 since the horizontal segment associated with
111 * the first set of regions is larger than the other set of regions. The
112 * ratios of the amount of horizontal (or vertical) space taken by any
113 * two stretchable slices is exactly the ratio of their corresponding
114 * segment lengths.
115 *
116 * xDivs and yDivs are arrays of horizontal and vertical pixel
117 * indices. The first pair of Divs (in either array) indicate the
118 * starting and ending points of the first stretchable segment in that
119 * axis. The next pair specifies the next stretchable segment, etc. So
120 * in the above example xDiv[0] and xDiv[1] specify the horizontal
121 * coordinates for the regions labeled 1, 5 and 9. xDiv[2] and
122 * xDiv[3] specify the coordinates for regions 3, 7 and 11. Note that
123 * the leftmost slices always start at x=0 and the rightmost slices
124 * always end at the end of the image. So, for example, the regions 0,
125 * 4 and 8 (which are fixed along the X axis) start at x value 0 and
126 * go to xDiv[0] and slices 2, 6 and 10 start at xDiv[1] and end at
127 * xDiv[2].
128 *
129 * The colors array contains hints for each of the regions. They are
130 * ordered according left-to-right and top-to-bottom as indicated above.
131 * For each segment that is a solid color the array entry will contain
132 * that color value; otherwise it will contain NO_COLOR. Segments that
133 * are completely transparent will always have the value TRANSPARENT_COLOR.
134 *
135 * The PNG chunk type is "npTc".
136 */
137 struct alignas(uintptr_t) Res_png_9patch
138 {
Res_png_9patchRes_png_9patch139 Res_png_9patch() : wasDeserialized(false), xDivsOffset(0),
140 yDivsOffset(0), colorsOffset(0) { }
141
142 int8_t wasDeserialized;
143 uint8_t numXDivs;
144 uint8_t numYDivs;
145 uint8_t numColors;
146
147 // The offset (from the start of this structure) to the xDivs & yDivs
148 // array for this 9patch. To get a pointer to this array, call
149 // getXDivs or getYDivs. Note that the serialized form for 9patches places
150 // the xDivs, yDivs and colors arrays immediately after the location
151 // of the Res_png_9patch struct.
152 uint32_t xDivsOffset;
153 uint32_t yDivsOffset;
154
155 int32_t paddingLeft, paddingRight;
156 int32_t paddingTop, paddingBottom;
157
158 enum {
159 // The 9 patch segment is not a solid color.
160 NO_COLOR = 0x00000001,
161
162 // The 9 patch segment is completely transparent.
163 TRANSPARENT_COLOR = 0x00000000
164 };
165
166 // The offset (from the start of this structure) to the colors array
167 // for this 9patch.
168 uint32_t colorsOffset;
169
170 // Convert data from device representation to PNG file representation.
171 void deviceToFile();
172 // Convert data from PNG file representation to device representation.
173 void fileToDevice();
174
175 // Serialize/Marshall the patch data into a newly malloc-ed block.
176 static void* serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs,
177 const int32_t* yDivs, const uint32_t* colors);
178 // Serialize/Marshall the patch data into |outData|.
179 static void serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs,
180 const int32_t* yDivs, const uint32_t* colors, void* outData);
181 // Deserialize/Unmarshall the patch data
182 static Res_png_9patch* deserialize(void* data);
183 // Compute the size of the serialized data structure
184 size_t serializedSize() const;
185
186 // These tell where the next section of a patch starts.
187 // For example, the first patch includes the pixels from
188 // 0 to xDivs[0]-1 and the second patch includes the pixels
189 // from xDivs[0] to xDivs[1]-1.
getXDivsRes_png_9patch190 inline int32_t* getXDivs() const {
191 return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + xDivsOffset);
192 }
getYDivsRes_png_9patch193 inline int32_t* getYDivs() const {
194 return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + yDivsOffset);
195 }
getColorsRes_png_9patch196 inline uint32_t* getColors() const {
197 return reinterpret_cast<uint32_t*>(reinterpret_cast<uintptr_t>(this) + colorsOffset);
198 }
199
200 } __attribute__((packed));
201
202 /** ********************************************************************
203 * Base Types
204 *
205 * These are standard types that are shared between multiple specific
206 * resource types.
207 *
208 *********************************************************************** */
209
210 /**
211 * Header that appears at the front of every data chunk in a resource.
212 */
213 struct ResChunk_header
214 {
215 // Type identifier for this chunk. The meaning of this value depends
216 // on the containing chunk.
217 uint16_t type;
218
219 // Size of the chunk header (in bytes). Adding this value to
220 // the address of the chunk allows you to find its associated data
221 // (if any).
222 uint16_t headerSize;
223
224 // Total size of this chunk (in bytes). This is the chunkSize plus
225 // the size of any data associated with the chunk. Adding this value
226 // to the chunk allows you to completely skip its contents (including
227 // any child chunks). If this value is the same as chunkSize, there is
228 // no data associated with the chunk.
229 uint32_t size;
230 };
231
232 enum {
233 RES_NULL_TYPE = 0x0000,
234 RES_STRING_POOL_TYPE = 0x0001,
235 RES_TABLE_TYPE = 0x0002,
236 RES_XML_TYPE = 0x0003,
237
238 // Chunk types in RES_XML_TYPE
239 RES_XML_FIRST_CHUNK_TYPE = 0x0100,
240 RES_XML_START_NAMESPACE_TYPE = 0x0100,
241 RES_XML_END_NAMESPACE_TYPE = 0x0101,
242 RES_XML_START_ELEMENT_TYPE = 0x0102,
243 RES_XML_END_ELEMENT_TYPE = 0x0103,
244 RES_XML_CDATA_TYPE = 0x0104,
245 RES_XML_LAST_CHUNK_TYPE = 0x017f,
246 // This contains a uint32_t array mapping strings in the string
247 // pool back to resource identifiers. It is optional.
248 RES_XML_RESOURCE_MAP_TYPE = 0x0180,
249
250 // Chunk types in RES_TABLE_TYPE
251 RES_TABLE_PACKAGE_TYPE = 0x0200,
252 RES_TABLE_TYPE_TYPE = 0x0201,
253 RES_TABLE_TYPE_SPEC_TYPE = 0x0202,
254 RES_TABLE_LIBRARY_TYPE = 0x0203,
255 RES_TABLE_OVERLAYABLE_TYPE = 0x0204,
256 RES_TABLE_OVERLAYABLE_POLICY_TYPE = 0x0205,
257 RES_TABLE_STAGED_ALIAS_TYPE = 0x0206,
258 };
259
260 /**
261 * Macros for building/splitting resource identifiers.
262 */
263 #define Res_VALIDID(resid) (resid != 0)
264 #define Res_CHECKID(resid) ((resid&0xFFFF0000) != 0)
265 #define Res_MAKEID(package, type, entry) \
266 (((package+1)<<24) | (((type+1)&0xFF)<<16) | (entry&0xFFFF))
267 #define Res_GETPACKAGE(id) ((id>>24)-1)
268 #define Res_GETTYPE(id) (((id>>16)&0xFF)-1)
269 #define Res_GETENTRY(id) (id&0xFFFF)
270
271 #define Res_INTERNALID(resid) ((resid&0xFFFF0000) != 0 && (resid&0xFF0000) == 0)
272 #define Res_MAKEINTERNAL(entry) (0x01000000 | (entry&0xFFFF))
273 #define Res_MAKEARRAY(entry) (0x02000000 | (entry&0xFFFF))
274
275 static const size_t Res_MAXPACKAGE = 255;
276 static const size_t Res_MAXTYPE = 255;
277
278 /**
279 * Representation of a value in a resource, supplying type
280 * information.
281 */
282 struct Res_value
283 {
284 // Number of bytes in this structure.
285 uint16_t size;
286
287 // Always set to 0.
288 uint8_t res0;
289
290 // Type of the data value.
291 enum : uint8_t {
292 // The 'data' is either 0 or 1, specifying this resource is either
293 // undefined or empty, respectively.
294 TYPE_NULL = 0x00,
295 // The 'data' holds a ResTable_ref, a reference to another resource
296 // table entry.
297 TYPE_REFERENCE = 0x01,
298 // The 'data' holds an attribute resource identifier.
299 TYPE_ATTRIBUTE = 0x02,
300 // The 'data' holds an index into the containing resource table's
301 // global value string pool.
302 TYPE_STRING = 0x03,
303 // The 'data' holds a single-precision floating point number.
304 TYPE_FLOAT = 0x04,
305 // The 'data' holds a complex number encoding a dimension value,
306 // such as "100in".
307 TYPE_DIMENSION = 0x05,
308 // The 'data' holds a complex number encoding a fraction of a
309 // container.
310 TYPE_FRACTION = 0x06,
311 // The 'data' holds a dynamic ResTable_ref, which needs to be
312 // resolved before it can be used like a TYPE_REFERENCE.
313 TYPE_DYNAMIC_REFERENCE = 0x07,
314 // The 'data' holds an attribute resource identifier, which needs to be resolved
315 // before it can be used like a TYPE_ATTRIBUTE.
316 TYPE_DYNAMIC_ATTRIBUTE = 0x08,
317
318 // Beginning of integer flavors...
319 TYPE_FIRST_INT = 0x10,
320
321 // The 'data' is a raw integer value of the form n..n.
322 TYPE_INT_DEC = 0x10,
323 // The 'data' is a raw integer value of the form 0xn..n.
324 TYPE_INT_HEX = 0x11,
325 // The 'data' is either 0 or 1, for input "false" or "true" respectively.
326 TYPE_INT_BOOLEAN = 0x12,
327
328 // Beginning of color integer flavors...
329 TYPE_FIRST_COLOR_INT = 0x1c,
330
331 // The 'data' is a raw integer value of the form #aarrggbb.
332 TYPE_INT_COLOR_ARGB8 = 0x1c,
333 // The 'data' is a raw integer value of the form #rrggbb.
334 TYPE_INT_COLOR_RGB8 = 0x1d,
335 // The 'data' is a raw integer value of the form #argb.
336 TYPE_INT_COLOR_ARGB4 = 0x1e,
337 // The 'data' is a raw integer value of the form #rgb.
338 TYPE_INT_COLOR_RGB4 = 0x1f,
339
340 // ...end of integer flavors.
341 TYPE_LAST_COLOR_INT = 0x1f,
342
343 // ...end of integer flavors.
344 TYPE_LAST_INT = 0x1f
345 };
346 uint8_t dataType;
347
348 // Structure of complex data values (TYPE_UNIT and TYPE_FRACTION)
349 enum {
350 // Where the unit type information is. This gives us 16 possible
351 // types, as defined below.
352 COMPLEX_UNIT_SHIFT = 0,
353 COMPLEX_UNIT_MASK = 0xf,
354
355 // TYPE_DIMENSION: Value is raw pixels.
356 COMPLEX_UNIT_PX = 0,
357 // TYPE_DIMENSION: Value is Device Independent Pixels.
358 COMPLEX_UNIT_DIP = 1,
359 // TYPE_DIMENSION: Value is a Scaled device independent Pixels.
360 COMPLEX_UNIT_SP = 2,
361 // TYPE_DIMENSION: Value is in points.
362 COMPLEX_UNIT_PT = 3,
363 // TYPE_DIMENSION: Value is in inches.
364 COMPLEX_UNIT_IN = 4,
365 // TYPE_DIMENSION: Value is in millimeters.
366 COMPLEX_UNIT_MM = 5,
367
368 // TYPE_FRACTION: A basic fraction of the overall size.
369 COMPLEX_UNIT_FRACTION = 0,
370 // TYPE_FRACTION: A fraction of the parent size.
371 COMPLEX_UNIT_FRACTION_PARENT = 1,
372
373 // Where the radix information is, telling where the decimal place
374 // appears in the mantissa. This give us 4 possible fixed point
375 // representations as defined below.
376 COMPLEX_RADIX_SHIFT = 4,
377 COMPLEX_RADIX_MASK = 0x3,
378
379 // The mantissa is an integral number -- i.e., 0xnnnnnn.0
380 COMPLEX_RADIX_23p0 = 0,
381 // The mantissa magnitude is 16 bits -- i.e, 0xnnnn.nn
382 COMPLEX_RADIX_16p7 = 1,
383 // The mantissa magnitude is 8 bits -- i.e, 0xnn.nnnn
384 COMPLEX_RADIX_8p15 = 2,
385 // The mantissa magnitude is 0 bits -- i.e, 0x0.nnnnnn
386 COMPLEX_RADIX_0p23 = 3,
387
388 // Where the actual value is. This gives us 23 bits of
389 // precision. The top bit is the sign.
390 COMPLEX_MANTISSA_SHIFT = 8,
391 COMPLEX_MANTISSA_MASK = 0xffffff
392 };
393
394 // Possible data values for TYPE_NULL.
395 enum {
396 // The value is not defined.
397 DATA_NULL_UNDEFINED = 0,
398 // The value is explicitly defined as empty.
399 DATA_NULL_EMPTY = 1
400 };
401
402 // The data for this item, as interpreted according to dataType.
403 typedef uint32_t data_type;
404 data_type data;
405
406 void copyFrom_dtoh(const Res_value& src);
407 };
408
409 /**
410 * This is a reference to a unique entry (a ResTable_entry structure)
411 * in a resource table. The value is structured as: 0xpptteeee,
412 * where pp is the package index, tt is the type index in that
413 * package, and eeee is the entry index in that type. The package
414 * and type values start at 1 for the first item, to help catch cases
415 * where they have not been supplied.
416 */
417 struct ResTable_ref
418 {
419 uint32_t ident;
420 };
421
422 /**
423 * Reference to a string in a string pool.
424 */
425 struct ResStringPool_ref
426 {
427 // Index into the string pool table (uint32_t-offset from the indices
428 // immediately after ResStringPool_header) at which to find the location
429 // of the string data in the pool.
430 uint32_t index;
431 };
432
433 /** ********************************************************************
434 * String Pool
435 *
436 * A set of strings that can be references by others through a
437 * ResStringPool_ref.
438 *
439 *********************************************************************** */
440
441 /**
442 * Definition for a pool of strings. The data of this chunk is an
443 * array of uint32_t providing indices into the pool, relative to
444 * stringsStart. At stringsStart are all of the UTF-16 strings
445 * concatenated together; each starts with a uint16_t of the string's
446 * length and each ends with a 0x0000 terminator. If a string is >
447 * 32767 characters, the high bit of the length is set meaning to take
448 * those 15 bits as a high word and it will be followed by another
449 * uint16_t containing the low word.
450 *
451 * If styleCount is not zero, then immediately following the array of
452 * uint32_t indices into the string table is another array of indices
453 * into a style table starting at stylesStart. Each entry in the
454 * style table is an array of ResStringPool_span structures.
455 */
456 struct ResStringPool_header
457 {
458 struct ResChunk_header header;
459
460 // Number of strings in this pool (number of uint32_t indices that follow
461 // in the data).
462 uint32_t stringCount;
463
464 // Number of style span arrays in the pool (number of uint32_t indices
465 // follow the string indices).
466 uint32_t styleCount;
467
468 // Flags.
469 enum {
470 // If set, the string index is sorted by the string values (based
471 // on strcmp16()).
472 SORTED_FLAG = 1<<0,
473
474 // String pool is encoded in UTF-8
475 UTF8_FLAG = 1<<8
476 };
477 uint32_t flags;
478
479 // Index from header of the string data.
480 uint32_t stringsStart;
481
482 // Index from header of the style data.
483 uint32_t stylesStart;
484 };
485
486 /**
487 * This structure defines a span of style information associated with
488 * a string in the pool.
489 */
490 struct ResStringPool_span
491 {
492 enum {
493 END = 0xFFFFFFFF
494 };
495
496 // This is the name of the span -- that is, the name of the XML
497 // tag that defined it. The special value END (0xFFFFFFFF) indicates
498 // the end of an array of spans.
499 ResStringPool_ref name;
500
501 // The range of characters in the string that this span applies to.
502 uint32_t firstChar, lastChar;
503 };
504
505 /**
506 * Convenience class for accessing data in a ResStringPool resource.
507 */
508 class ResStringPool
509 {
510 public:
511 ResStringPool();
512 ResStringPool(const void* data, size_t size, bool copyData=false);
513 virtual ~ResStringPool();
514
515 void setToEmpty();
516 status_t setTo(incfs::map_ptr<void> data, size_t size, bool copyData=false);
517
518 status_t getError() const;
519
520 void uninit();
521
522 // Return string entry as UTF16; if the pool is UTF8, the string will
523 // be converted before returning.
stringAt(const ResStringPool_ref & ref)524 inline base::expected<StringPiece16, NullOrIOError> stringAt(
525 const ResStringPool_ref& ref) const {
526 return stringAt(ref.index);
527 }
528 virtual base::expected<StringPiece16, NullOrIOError> stringAt(size_t idx) const;
529
530 // Note: returns null if the string pool is not UTF8.
531 virtual base::expected<StringPiece, NullOrIOError> string8At(size_t idx) const;
532
533 // Return string whether the pool is UTF8 or UTF16. Does not allow you
534 // to distinguish null.
535 base::expected<String8, IOError> string8ObjectAt(size_t idx) const;
536
537 base::expected<incfs::map_ptr<ResStringPool_span>, NullOrIOError> styleAt(
538 const ResStringPool_ref& ref) const;
539 base::expected<incfs::map_ptr<ResStringPool_span>, NullOrIOError> styleAt(size_t idx) const;
540
541 base::expected<size_t, NullOrIOError> indexOfString(const char16_t* str, size_t strLen) const;
542
543 virtual size_t size() const;
544 size_t styleCount() const;
545 size_t bytes() const;
546 incfs::map_ptr<void> data() const;
547
548 bool isSorted() const;
549 bool isUTF8() const;
550
551 private:
552 status_t mError;
553 void* mOwnedData;
554 incfs::verified_map_ptr<ResStringPool_header> mHeader;
555 size_t mSize;
556 mutable Mutex mDecodeLock;
557 incfs::map_ptr<uint32_t> mEntries;
558 incfs::map_ptr<uint32_t> mEntryStyles;
559 incfs::map_ptr<void> mStrings;
560 char16_t mutable** mCache;
561 uint32_t mStringPoolSize; // number of uint16_t
562 incfs::map_ptr<uint32_t> mStyles;
563 uint32_t mStylePoolSize; // number of uint32_t
564
565 base::expected<StringPiece, NullOrIOError> stringDecodeAt(
566 size_t idx, incfs::map_ptr<uint8_t> str, size_t encLen) const;
567 };
568
569 /**
570 * Wrapper class that allows the caller to retrieve a string from
571 * a string pool without knowing which string pool to look.
572 */
573 class StringPoolRef {
574 public:
575 StringPoolRef() = default;
576 StringPoolRef(const ResStringPool* pool, uint32_t index);
577
578 base::expected<StringPiece, NullOrIOError> string8() const;
579 base::expected<StringPiece16, NullOrIOError> string16() const;
580
581 private:
582 const ResStringPool* mPool = nullptr;
583 uint32_t mIndex = 0u;
584 };
585
586 /** ********************************************************************
587 * XML Tree
588 *
589 * Binary representation of an XML document. This is designed to
590 * express everything in an XML document, in a form that is much
591 * easier to parse on the device.
592 *
593 *********************************************************************** */
594
595 /**
596 * XML tree header. This appears at the front of an XML tree,
597 * describing its content. It is followed by a flat array of
598 * ResXMLTree_node structures; the hierarchy of the XML document
599 * is described by the occurrance of RES_XML_START_ELEMENT_TYPE
600 * and corresponding RES_XML_END_ELEMENT_TYPE nodes in the array.
601 */
602 struct ResXMLTree_header
603 {
604 struct ResChunk_header header;
605 };
606
607 /**
608 * Basic XML tree node. A single item in the XML document. Extended info
609 * about the node can be found after header.headerSize.
610 */
611 struct ResXMLTree_node
612 {
613 struct ResChunk_header header;
614
615 // Line number in original source file at which this element appeared.
616 uint32_t lineNumber;
617
618 // Optional XML comment that was associated with this element; -1 if none.
619 struct ResStringPool_ref comment;
620 };
621
622 /**
623 * Extended XML tree node for CDATA tags -- includes the CDATA string.
624 * Appears header.headerSize bytes after a ResXMLTree_node.
625 */
626 struct ResXMLTree_cdataExt
627 {
628 // The raw CDATA character data.
629 struct ResStringPool_ref data;
630
631 // The typed value of the character data if this is a CDATA node.
632 struct Res_value typedData;
633 };
634
635 /**
636 * Extended XML tree node for namespace start/end nodes.
637 * Appears header.headerSize bytes after a ResXMLTree_node.
638 */
639 struct ResXMLTree_namespaceExt
640 {
641 // The prefix of the namespace.
642 struct ResStringPool_ref prefix;
643
644 // The URI of the namespace.
645 struct ResStringPool_ref uri;
646 };
647
648 /**
649 * Extended XML tree node for element start/end nodes.
650 * Appears header.headerSize bytes after a ResXMLTree_node.
651 */
652 struct ResXMLTree_endElementExt
653 {
654 // String of the full namespace of this element.
655 struct ResStringPool_ref ns;
656
657 // String name of this node if it is an ELEMENT; the raw
658 // character data if this is a CDATA node.
659 struct ResStringPool_ref name;
660 };
661
662 /**
663 * Extended XML tree node for start tags -- includes attribute
664 * information.
665 * Appears header.headerSize bytes after a ResXMLTree_node.
666 */
667 struct ResXMLTree_attrExt
668 {
669 // String of the full namespace of this element.
670 struct ResStringPool_ref ns;
671
672 // String name of this node if it is an ELEMENT; the raw
673 // character data if this is a CDATA node.
674 struct ResStringPool_ref name;
675
676 // Byte offset from the start of this structure where the attributes start.
677 uint16_t attributeStart;
678
679 // Size of the ResXMLTree_attribute structures that follow.
680 uint16_t attributeSize;
681
682 // Number of attributes associated with an ELEMENT. These are
683 // available as an array of ResXMLTree_attribute structures
684 // immediately following this node.
685 uint16_t attributeCount;
686
687 // Index (1-based) of the "id" attribute. 0 if none.
688 uint16_t idIndex;
689
690 // Index (1-based) of the "class" attribute. 0 if none.
691 uint16_t classIndex;
692
693 // Index (1-based) of the "style" attribute. 0 if none.
694 uint16_t styleIndex;
695 };
696
697 struct ResXMLTree_attribute
698 {
699 // Namespace of this attribute.
700 struct ResStringPool_ref ns;
701
702 // Name of this attribute.
703 struct ResStringPool_ref name;
704
705 // The original raw string value of this attribute.
706 struct ResStringPool_ref rawValue;
707
708 // Processesd typed value of this attribute.
709 struct Res_value typedValue;
710 };
711
712 class ResXMLTree;
713
714 class ResXMLParser
715 {
716 public:
717 explicit ResXMLParser(const ResXMLTree& tree);
718
719 enum event_code_t {
720 BAD_DOCUMENT = -1,
721 START_DOCUMENT = 0,
722 END_DOCUMENT = 1,
723
724 FIRST_CHUNK_CODE = RES_XML_FIRST_CHUNK_TYPE,
725
726 START_NAMESPACE = RES_XML_START_NAMESPACE_TYPE,
727 END_NAMESPACE = RES_XML_END_NAMESPACE_TYPE,
728 START_TAG = RES_XML_START_ELEMENT_TYPE,
729 END_TAG = RES_XML_END_ELEMENT_TYPE,
730 TEXT = RES_XML_CDATA_TYPE
731 };
732
733 struct ResXMLPosition
734 {
735 event_code_t eventCode;
736 const ResXMLTree_node* curNode;
737 const void* curExt;
738 };
739
740 void restart();
741
742 const ResStringPool& getStrings() const;
743
744 event_code_t getEventType() const;
745 // Note, unlike XmlPullParser, the first call to next() will return
746 // START_TAG of the first element.
747 event_code_t next();
748
749 // These are available for all nodes:
750 int32_t getCommentID() const;
751 const char16_t* getComment(size_t* outLen) const;
752 uint32_t getLineNumber() const;
753
754 // This is available for TEXT:
755 int32_t getTextID() const;
756 const char16_t* getText(size_t* outLen) const;
757 ssize_t getTextValue(Res_value* outValue) const;
758
759 // These are available for START_NAMESPACE and END_NAMESPACE:
760 int32_t getNamespacePrefixID() const;
761 const char16_t* getNamespacePrefix(size_t* outLen) const;
762 int32_t getNamespaceUriID() const;
763 const char16_t* getNamespaceUri(size_t* outLen) const;
764
765 // These are available for START_TAG and END_TAG:
766 int32_t getElementNamespaceID() const;
767 const char16_t* getElementNamespace(size_t* outLen) const;
768 int32_t getElementNameID() const;
769 const char16_t* getElementName(size_t* outLen) const;
770
771 // Remaining methods are for retrieving information about attributes
772 // associated with a START_TAG:
773
774 size_t getAttributeCount() const;
775
776 // Returns -1 if no namespace, -2 if idx out of range.
777 int32_t getAttributeNamespaceID(size_t idx) const;
778 const char16_t* getAttributeNamespace(size_t idx, size_t* outLen) const;
779
780 int32_t getAttributeNameID(size_t idx) const;
781 const char16_t* getAttributeName(size_t idx, size_t* outLen) const;
782 uint32_t getAttributeNameResID(size_t idx) const;
783
784 // These will work only if the underlying string pool is UTF-8.
785 const char* getAttributeNamespace8(size_t idx, size_t* outLen) const;
786 const char* getAttributeName8(size_t idx, size_t* outLen) const;
787
788 int32_t getAttributeValueStringID(size_t idx) const;
789 const char16_t* getAttributeStringValue(size_t idx, size_t* outLen) const;
790
791 int32_t getAttributeDataType(size_t idx) const;
792 int32_t getAttributeData(size_t idx) const;
793 ssize_t getAttributeValue(size_t idx, Res_value* outValue) const;
794
795 ssize_t indexOfAttribute(const char* ns, const char* attr) const;
796 ssize_t indexOfAttribute(const char16_t* ns, size_t nsLen,
797 const char16_t* attr, size_t attrLen) const;
798
799 ssize_t indexOfID() const;
800 ssize_t indexOfClass() const;
801 ssize_t indexOfStyle() const;
802
803 void getPosition(ResXMLPosition* pos) const;
804 void setPosition(const ResXMLPosition& pos);
805
806 void setSourceResourceId(const uint32_t resId);
807 uint32_t getSourceResourceId() const;
808
809 private:
810 friend class ResXMLTree;
811
812 event_code_t nextNode();
813
814 const ResXMLTree& mTree;
815 event_code_t mEventCode;
816 const ResXMLTree_node* mCurNode;
817 const void* mCurExt;
818 uint32_t mSourceResourceId;
819 };
820
821 static inline bool operator==(const android::ResXMLParser::ResXMLPosition& lhs,
822 const android::ResXMLParser::ResXMLPosition& rhs) {
823 return lhs.curNode == rhs.curNode;
824 }
825
826 class DynamicRefTable;
827
828 /**
829 * Convenience class for accessing data in a ResXMLTree resource.
830 */
831 class ResXMLTree : public ResXMLParser
832 {
833 public:
834 /**
835 * Creates a ResXMLTree with the specified DynamicRefTable for run-time package id translation.
836 * The tree stores a clone of the specified DynamicRefTable, so any changes to the original
837 * DynamicRefTable will not affect this tree after instantiation.
838 **/
839 explicit ResXMLTree(std::shared_ptr<const DynamicRefTable> dynamicRefTable);
840 ResXMLTree();
841 ~ResXMLTree();
842
843 status_t setTo(const void* data, size_t size, bool copyData=false);
844
845 status_t getError() const;
846
847 void uninit();
848
849 private:
850 friend class ResXMLParser;
851
852 status_t validateNode(const ResXMLTree_node* node) const;
853
854 std::shared_ptr<const DynamicRefTable> mDynamicRefTable;
855
856 status_t mError;
857 void* mOwnedData;
858 const ResXMLTree_header* mHeader;
859 size_t mSize;
860 const uint8_t* mDataEnd;
861 ResStringPool mStrings;
862 const uint32_t* mResIds;
863 size_t mNumResIds;
864 const ResXMLTree_node* mRootNode;
865 const void* mRootExt;
866 event_code_t mRootCode;
867 };
868
869 /** ********************************************************************
870 * RESOURCE TABLE
871 *
872 *********************************************************************** */
873
874 /**
875 * Header for a resource table. Its data contains a series of
876 * additional chunks:
877 * * A ResStringPool_header containing all table values. This string pool
878 * contains all of the string values in the entire resource table (not
879 * the names of entries or type identifiers however).
880 * * One or more ResTable_package chunks.
881 *
882 * Specific entries within a resource table can be uniquely identified
883 * with a single integer as defined by the ResTable_ref structure.
884 */
885 struct ResTable_header
886 {
887 struct ResChunk_header header;
888
889 // The number of ResTable_package structures.
890 uint32_t packageCount;
891 };
892
893 /**
894 * A collection of resource data types within a package. Followed by
895 * one or more ResTable_type and ResTable_typeSpec structures containing the
896 * entry values for each resource type.
897 */
898 struct ResTable_package
899 {
900 struct ResChunk_header header;
901
902 // If this is a base package, its ID. Package IDs start
903 // at 1 (corresponding to the value of the package bits in a
904 // resource identifier). 0 means this is not a base package.
905 uint32_t id;
906
907 // Actual name of this package, \0-terminated.
908 uint16_t name[128];
909
910 // Offset to a ResStringPool_header defining the resource
911 // type symbol table. If zero, this package is inheriting from
912 // another base package (overriding specific values in it).
913 uint32_t typeStrings;
914
915 // Last index into typeStrings that is for public use by others.
916 uint32_t lastPublicType;
917
918 // Offset to a ResStringPool_header defining the resource
919 // key symbol table. If zero, this package is inheriting from
920 // another base package (overriding specific values in it).
921 uint32_t keyStrings;
922
923 // Last index into keyStrings that is for public use by others.
924 uint32_t lastPublicKey;
925
926 uint32_t typeIdOffset;
927 };
928
929 // The most specific locale can consist of:
930 //
931 // - a 3 char language code
932 // - a 3 char region code prefixed by a 'r'
933 // - a 4 char script code prefixed by a 's'
934 // - a 8 char variant code prefixed by a 'v'
935 //
936 // each separated by a single char separator, which sums up to a total of 24
937 // chars, (25 include the string terminator). Numbering system specificator,
938 // if present, can add up to 14 bytes (-u-nu-xxxxxxxx), giving 39 bytes,
939 // or 40 bytes to make it 4 bytes aligned.
940 #define RESTABLE_MAX_LOCALE_LEN 40
941
942
943 /**
944 * Describes a particular resource configuration.
945 */
946 struct ResTable_config
947 {
948 // Number of bytes in this structure.
949 uint32_t size;
950
951 union {
952 struct {
953 // Mobile country code (from SIM). 0 means "any".
954 uint16_t mcc;
955 // Mobile network code (from SIM). 0 means "any".
956 uint16_t mnc;
957 };
958 uint32_t imsi;
959 };
960
961 union {
962 struct {
963 // This field can take three different forms:
964 // - \0\0 means "any".
965 //
966 // - Two 7 bit ascii values interpreted as ISO-639-1 language
967 // codes ('fr', 'en' etc. etc.). The high bit for both bytes is
968 // zero.
969 //
970 // - A single 16 bit little endian packed value representing an
971 // ISO-639-2 3 letter language code. This will be of the form:
972 //
973 // {1, t, t, t, t, t, s, s, s, s, s, f, f, f, f, f}
974 //
975 // bit[0, 4] = first letter of the language code
976 // bit[5, 9] = second letter of the language code
977 // bit[10, 14] = third letter of the language code.
978 // bit[15] = 1 always
979 //
980 // For backwards compatibility, languages that have unambiguous
981 // two letter codes are represented in that format.
982 //
983 // The layout is always bigendian irrespective of the runtime
984 // architecture.
985 char language[2];
986
987 // This field can take three different forms:
988 // - \0\0 means "any".
989 //
990 // - Two 7 bit ascii values interpreted as 2 letter region
991 // codes ('US', 'GB' etc.). The high bit for both bytes is zero.
992 //
993 // - An UN M.49 3 digit region code. For simplicity, these are packed
994 // in the same manner as the language codes, though we should need
995 // only 10 bits to represent them, instead of the 15.
996 //
997 // The layout is always bigendian irrespective of the runtime
998 // architecture.
999 char country[2];
1000 };
1001 uint32_t locale;
1002 };
1003
1004 enum {
1005 ORIENTATION_ANY = ACONFIGURATION_ORIENTATION_ANY,
1006 ORIENTATION_PORT = ACONFIGURATION_ORIENTATION_PORT,
1007 ORIENTATION_LAND = ACONFIGURATION_ORIENTATION_LAND,
1008 ORIENTATION_SQUARE = ACONFIGURATION_ORIENTATION_SQUARE,
1009 };
1010
1011 enum {
1012 TOUCHSCREEN_ANY = ACONFIGURATION_TOUCHSCREEN_ANY,
1013 TOUCHSCREEN_NOTOUCH = ACONFIGURATION_TOUCHSCREEN_NOTOUCH,
1014 TOUCHSCREEN_STYLUS = ACONFIGURATION_TOUCHSCREEN_STYLUS,
1015 TOUCHSCREEN_FINGER = ACONFIGURATION_TOUCHSCREEN_FINGER,
1016 };
1017
1018 enum {
1019 DENSITY_DEFAULT = ACONFIGURATION_DENSITY_DEFAULT,
1020 DENSITY_LOW = ACONFIGURATION_DENSITY_LOW,
1021 DENSITY_MEDIUM = ACONFIGURATION_DENSITY_MEDIUM,
1022 DENSITY_TV = ACONFIGURATION_DENSITY_TV,
1023 DENSITY_HIGH = ACONFIGURATION_DENSITY_HIGH,
1024 DENSITY_XHIGH = ACONFIGURATION_DENSITY_XHIGH,
1025 DENSITY_XXHIGH = ACONFIGURATION_DENSITY_XXHIGH,
1026 DENSITY_XXXHIGH = ACONFIGURATION_DENSITY_XXXHIGH,
1027 DENSITY_ANY = ACONFIGURATION_DENSITY_ANY,
1028 DENSITY_NONE = ACONFIGURATION_DENSITY_NONE
1029 };
1030
1031 union {
1032 struct {
1033 uint8_t orientation;
1034 uint8_t touchscreen;
1035 uint16_t density;
1036 };
1037 uint32_t screenType;
1038 };
1039
1040 enum {
1041 KEYBOARD_ANY = ACONFIGURATION_KEYBOARD_ANY,
1042 KEYBOARD_NOKEYS = ACONFIGURATION_KEYBOARD_NOKEYS,
1043 KEYBOARD_QWERTY = ACONFIGURATION_KEYBOARD_QWERTY,
1044 KEYBOARD_12KEY = ACONFIGURATION_KEYBOARD_12KEY,
1045 };
1046
1047 enum {
1048 NAVIGATION_ANY = ACONFIGURATION_NAVIGATION_ANY,
1049 NAVIGATION_NONAV = ACONFIGURATION_NAVIGATION_NONAV,
1050 NAVIGATION_DPAD = ACONFIGURATION_NAVIGATION_DPAD,
1051 NAVIGATION_TRACKBALL = ACONFIGURATION_NAVIGATION_TRACKBALL,
1052 NAVIGATION_WHEEL = ACONFIGURATION_NAVIGATION_WHEEL,
1053 };
1054
1055 enum {
1056 MASK_KEYSHIDDEN = 0x0003,
1057 KEYSHIDDEN_ANY = ACONFIGURATION_KEYSHIDDEN_ANY,
1058 KEYSHIDDEN_NO = ACONFIGURATION_KEYSHIDDEN_NO,
1059 KEYSHIDDEN_YES = ACONFIGURATION_KEYSHIDDEN_YES,
1060 KEYSHIDDEN_SOFT = ACONFIGURATION_KEYSHIDDEN_SOFT,
1061 };
1062
1063 enum {
1064 MASK_NAVHIDDEN = 0x000c,
1065 SHIFT_NAVHIDDEN = 2,
1066 NAVHIDDEN_ANY = ACONFIGURATION_NAVHIDDEN_ANY << SHIFT_NAVHIDDEN,
1067 NAVHIDDEN_NO = ACONFIGURATION_NAVHIDDEN_NO << SHIFT_NAVHIDDEN,
1068 NAVHIDDEN_YES = ACONFIGURATION_NAVHIDDEN_YES << SHIFT_NAVHIDDEN,
1069 };
1070
1071 union {
1072 struct {
1073 uint8_t keyboard;
1074 uint8_t navigation;
1075 uint8_t inputFlags;
1076 uint8_t inputPad0;
1077 };
1078 uint32_t input;
1079 };
1080
1081 enum {
1082 SCREENWIDTH_ANY = 0
1083 };
1084
1085 enum {
1086 SCREENHEIGHT_ANY = 0
1087 };
1088
1089 union {
1090 struct {
1091 uint16_t screenWidth;
1092 uint16_t screenHeight;
1093 };
1094 uint32_t screenSize;
1095 };
1096
1097 enum {
1098 SDKVERSION_ANY = 0
1099 };
1100
1101 enum {
1102 MINORVERSION_ANY = 0
1103 };
1104
1105 union {
1106 struct {
1107 uint16_t sdkVersion;
1108 // For now minorVersion must always be 0!!! Its meaning
1109 // is currently undefined.
1110 uint16_t minorVersion;
1111 };
1112 uint32_t version;
1113 };
1114
1115 enum {
1116 // screenLayout bits for screen size class.
1117 MASK_SCREENSIZE = 0x0f,
1118 SCREENSIZE_ANY = ACONFIGURATION_SCREENSIZE_ANY,
1119 SCREENSIZE_SMALL = ACONFIGURATION_SCREENSIZE_SMALL,
1120 SCREENSIZE_NORMAL = ACONFIGURATION_SCREENSIZE_NORMAL,
1121 SCREENSIZE_LARGE = ACONFIGURATION_SCREENSIZE_LARGE,
1122 SCREENSIZE_XLARGE = ACONFIGURATION_SCREENSIZE_XLARGE,
1123
1124 // screenLayout bits for wide/long screen variation.
1125 MASK_SCREENLONG = 0x30,
1126 SHIFT_SCREENLONG = 4,
1127 SCREENLONG_ANY = ACONFIGURATION_SCREENLONG_ANY << SHIFT_SCREENLONG,
1128 SCREENLONG_NO = ACONFIGURATION_SCREENLONG_NO << SHIFT_SCREENLONG,
1129 SCREENLONG_YES = ACONFIGURATION_SCREENLONG_YES << SHIFT_SCREENLONG,
1130
1131 // screenLayout bits for layout direction.
1132 MASK_LAYOUTDIR = 0xC0,
1133 SHIFT_LAYOUTDIR = 6,
1134 LAYOUTDIR_ANY = ACONFIGURATION_LAYOUTDIR_ANY << SHIFT_LAYOUTDIR,
1135 LAYOUTDIR_LTR = ACONFIGURATION_LAYOUTDIR_LTR << SHIFT_LAYOUTDIR,
1136 LAYOUTDIR_RTL = ACONFIGURATION_LAYOUTDIR_RTL << SHIFT_LAYOUTDIR,
1137 };
1138
1139 enum {
1140 // uiMode bits for the mode type.
1141 MASK_UI_MODE_TYPE = 0x0f,
1142 UI_MODE_TYPE_ANY = ACONFIGURATION_UI_MODE_TYPE_ANY,
1143 UI_MODE_TYPE_NORMAL = ACONFIGURATION_UI_MODE_TYPE_NORMAL,
1144 UI_MODE_TYPE_DESK = ACONFIGURATION_UI_MODE_TYPE_DESK,
1145 UI_MODE_TYPE_CAR = ACONFIGURATION_UI_MODE_TYPE_CAR,
1146 UI_MODE_TYPE_TELEVISION = ACONFIGURATION_UI_MODE_TYPE_TELEVISION,
1147 UI_MODE_TYPE_APPLIANCE = ACONFIGURATION_UI_MODE_TYPE_APPLIANCE,
1148 UI_MODE_TYPE_WATCH = ACONFIGURATION_UI_MODE_TYPE_WATCH,
1149 UI_MODE_TYPE_VR_HEADSET = ACONFIGURATION_UI_MODE_TYPE_VR_HEADSET,
1150
1151 // uiMode bits for the night switch.
1152 MASK_UI_MODE_NIGHT = 0x30,
1153 SHIFT_UI_MODE_NIGHT = 4,
1154 UI_MODE_NIGHT_ANY = ACONFIGURATION_UI_MODE_NIGHT_ANY << SHIFT_UI_MODE_NIGHT,
1155 UI_MODE_NIGHT_NO = ACONFIGURATION_UI_MODE_NIGHT_NO << SHIFT_UI_MODE_NIGHT,
1156 UI_MODE_NIGHT_YES = ACONFIGURATION_UI_MODE_NIGHT_YES << SHIFT_UI_MODE_NIGHT,
1157 };
1158
1159 union {
1160 struct {
1161 uint8_t screenLayout;
1162 uint8_t uiMode;
1163 uint16_t smallestScreenWidthDp;
1164 };
1165 uint32_t screenConfig;
1166 };
1167
1168 union {
1169 struct {
1170 uint16_t screenWidthDp;
1171 uint16_t screenHeightDp;
1172 };
1173 uint32_t screenSizeDp;
1174 };
1175
1176 // The ISO-15924 short name for the script corresponding to this
1177 // configuration. (eg. Hant, Latn, etc.). Interpreted in conjunction with
1178 // the locale field.
1179 char localeScript[4];
1180
1181 // A single BCP-47 variant subtag. Will vary in length between 4 and 8
1182 // chars. Interpreted in conjunction with the locale field.
1183 char localeVariant[8];
1184
1185 enum {
1186 // screenLayout2 bits for round/notround.
1187 MASK_SCREENROUND = 0x03,
1188 SCREENROUND_ANY = ACONFIGURATION_SCREENROUND_ANY,
1189 SCREENROUND_NO = ACONFIGURATION_SCREENROUND_NO,
1190 SCREENROUND_YES = ACONFIGURATION_SCREENROUND_YES,
1191 };
1192
1193 enum {
1194 // colorMode bits for wide-color gamut/narrow-color gamut.
1195 MASK_WIDE_COLOR_GAMUT = 0x03,
1196 WIDE_COLOR_GAMUT_ANY = ACONFIGURATION_WIDE_COLOR_GAMUT_ANY,
1197 WIDE_COLOR_GAMUT_NO = ACONFIGURATION_WIDE_COLOR_GAMUT_NO,
1198 WIDE_COLOR_GAMUT_YES = ACONFIGURATION_WIDE_COLOR_GAMUT_YES,
1199
1200 // colorMode bits for HDR/LDR.
1201 MASK_HDR = 0x0c,
1202 SHIFT_COLOR_MODE_HDR = 2,
1203 HDR_ANY = ACONFIGURATION_HDR_ANY << SHIFT_COLOR_MODE_HDR,
1204 HDR_NO = ACONFIGURATION_HDR_NO << SHIFT_COLOR_MODE_HDR,
1205 HDR_YES = ACONFIGURATION_HDR_YES << SHIFT_COLOR_MODE_HDR,
1206 };
1207
1208 // An extension of screenConfig.
1209 union {
1210 struct {
1211 uint8_t screenLayout2; // Contains round/notround qualifier.
1212 uint8_t colorMode; // Wide-gamut, HDR, etc.
1213 uint16_t screenConfigPad2; // Reserved padding.
1214 };
1215 uint32_t screenConfig2;
1216 };
1217
1218 // If false and localeScript is set, it means that the script of the locale
1219 // was explicitly provided.
1220 //
1221 // If true, it means that localeScript was automatically computed.
1222 // localeScript may still not be set in this case, which means that we
1223 // tried but could not compute a script.
1224 bool localeScriptWasComputed;
1225
1226 // The value of BCP 47 Unicode extension for key 'nu' (numbering system).
1227 // Varies in length from 3 to 8 chars. Zero-filled value.
1228 char localeNumberingSystem[8];
1229
1230 void copyFromDeviceNoSwap(const ResTable_config& o);
1231
1232 void copyFromDtoH(const ResTable_config& o);
1233
1234 void swapHtoD();
1235
1236 int compare(const ResTable_config& o) const;
1237 int compareLogical(const ResTable_config& o) const;
1238
1239 inline bool operator<(const ResTable_config& o) const { return compare(o) < 0; }
1240
1241 // Flags indicating a set of config values. These flag constants must
1242 // match the corresponding ones in android.content.pm.ActivityInfo and
1243 // attrs_manifest.xml.
1244 enum {
1245 CONFIG_MCC = ACONFIGURATION_MCC,
1246 CONFIG_MNC = ACONFIGURATION_MNC,
1247 CONFIG_LOCALE = ACONFIGURATION_LOCALE,
1248 CONFIG_TOUCHSCREEN = ACONFIGURATION_TOUCHSCREEN,
1249 CONFIG_KEYBOARD = ACONFIGURATION_KEYBOARD,
1250 CONFIG_KEYBOARD_HIDDEN = ACONFIGURATION_KEYBOARD_HIDDEN,
1251 CONFIG_NAVIGATION = ACONFIGURATION_NAVIGATION,
1252 CONFIG_ORIENTATION = ACONFIGURATION_ORIENTATION,
1253 CONFIG_DENSITY = ACONFIGURATION_DENSITY,
1254 CONFIG_SCREEN_SIZE = ACONFIGURATION_SCREEN_SIZE,
1255 CONFIG_SMALLEST_SCREEN_SIZE = ACONFIGURATION_SMALLEST_SCREEN_SIZE,
1256 CONFIG_VERSION = ACONFIGURATION_VERSION,
1257 CONFIG_SCREEN_LAYOUT = ACONFIGURATION_SCREEN_LAYOUT,
1258 CONFIG_UI_MODE = ACONFIGURATION_UI_MODE,
1259 CONFIG_LAYOUTDIR = ACONFIGURATION_LAYOUTDIR,
1260 CONFIG_SCREEN_ROUND = ACONFIGURATION_SCREEN_ROUND,
1261 CONFIG_COLOR_MODE = ACONFIGURATION_COLOR_MODE,
1262 };
1263
1264 // Compare two configuration, returning CONFIG_* flags set for each value
1265 // that is different.
1266 int diff(const ResTable_config& o) const;
1267
1268 // Return true if 'this' is more specific than 'o'.
1269 bool isMoreSpecificThan(const ResTable_config& o) const;
1270
1271 // Return true if 'this' is a better match than 'o' for the 'requested'
1272 // configuration. This assumes that match() has already been used to
1273 // remove any configurations that don't match the requested configuration
1274 // at all; if they are not first filtered, non-matching results can be
1275 // considered better than matching ones.
1276 // The general rule per attribute: if the request cares about an attribute
1277 // (it normally does), if the two (this and o) are equal it's a tie. If
1278 // they are not equal then one must be generic because only generic and
1279 // '==requested' will pass the match() call. So if this is not generic,
1280 // it wins. If this IS generic, o wins (return false).
1281 bool isBetterThan(const ResTable_config& o, const ResTable_config* requested) const;
1282
1283 // Return true if 'this' can be considered a match for the parameters in
1284 // 'settings'.
1285 // Note this is asymetric. A default piece of data will match every request
1286 // but a request for the default should not match odd specifics
1287 // (ie, request with no mcc should not match a particular mcc's data)
1288 // settings is the requested settings
1289 bool match(const ResTable_config& settings) const;
1290
1291 // Get the string representation of the locale component of this
1292 // Config. The maximum size of this representation will be
1293 // |RESTABLE_MAX_LOCALE_LEN| (including a terminating '\0').
1294 //
1295 // Example: en-US, en-Latn-US, en-POSIX.
1296 //
1297 // If canonicalize is set, Tagalog (tl) locales get converted
1298 // to Filipino (fil).
1299 void getBcp47Locale(char* out, bool canonicalize=false) const;
1300
1301 // Append to str the resource-qualifer string representation of the
1302 // locale component of this Config. If the locale is only country
1303 // and language, it will look like en-rUS. If it has scripts and
1304 // variants, it will be a modified bcp47 tag: b+en+Latn+US.
1305 void appendDirLocale(String8& str) const;
1306
1307 // Sets the values of language, region, script, variant and numbering
1308 // system to the well formed BCP 47 locale contained in |in|.
1309 // The input locale is assumed to be valid and no validation is performed.
1310 void setBcp47Locale(const char* in);
1311
clearLocaleResTable_config1312 inline void clearLocale() {
1313 locale = 0;
1314 localeScriptWasComputed = false;
1315 memset(localeScript, 0, sizeof(localeScript));
1316 memset(localeVariant, 0, sizeof(localeVariant));
1317 memset(localeNumberingSystem, 0, sizeof(localeNumberingSystem));
1318 }
1319
computeScriptResTable_config1320 inline void computeScript() {
1321 localeDataComputeScript(localeScript, language, country);
1322 }
1323
1324 // Get the 2 or 3 letter language code of this configuration. Trailing
1325 // bytes are set to '\0'.
1326 size_t unpackLanguage(char language[4]) const;
1327 // Get the 2 or 3 letter language code of this configuration. Trailing
1328 // bytes are set to '\0'.
1329 size_t unpackRegion(char region[4]) const;
1330
1331 // Sets the language code of this configuration to the first three
1332 // chars at |language|.
1333 //
1334 // If |language| is a 2 letter code, the trailing byte must be '\0' or
1335 // the BCP-47 separator '-'.
1336 void packLanguage(const char* language);
1337 // Sets the region code of this configuration to the first three bytes
1338 // at |region|. If |region| is a 2 letter code, the trailing byte must be '\0'
1339 // or the BCP-47 separator '-'.
1340 void packRegion(const char* region);
1341
1342 // Returns a positive integer if this config is more specific than |o|
1343 // with respect to their locales, a negative integer if |o| is more specific
1344 // and 0 if they're equally specific.
1345 int isLocaleMoreSpecificThan(const ResTable_config &o) const;
1346
1347 // Returns an integer representng the imporance score of the configuration locale.
1348 int getImportanceScoreOfLocale() const;
1349
1350 // Return true if 'this' is a better locale match than 'o' for the
1351 // 'requested' configuration. Similar to isBetterThan(), this assumes that
1352 // match() has already been used to remove any configurations that don't
1353 // match the requested configuration at all.
1354 bool isLocaleBetterThan(const ResTable_config& o, const ResTable_config* requested) const;
1355
1356 String8 toString() const;
1357 };
1358
1359 /**
1360 * A specification of the resources defined by a particular type.
1361 *
1362 * There should be one of these chunks for each resource type.
1363 *
1364 * This structure is followed by an array of integers providing the set of
1365 * configuration change flags (ResTable_config::CONFIG_*) that have multiple
1366 * resources for that configuration. In addition, the high bit is set if that
1367 * resource has been made public.
1368 */
1369 struct ResTable_typeSpec
1370 {
1371 struct ResChunk_header header;
1372
1373 // The type identifier this chunk is holding. Type IDs start
1374 // at 1 (corresponding to the value of the type bits in a
1375 // resource identifier). 0 is invalid.
1376 uint8_t id;
1377
1378 // Must be 0.
1379 uint8_t res0;
1380 // Must be 0.
1381 uint16_t res1;
1382
1383 // Number of uint32_t entry configuration masks that follow.
1384 uint32_t entryCount;
1385
1386 enum : uint32_t {
1387 // Additional flag indicating an entry is public.
1388 SPEC_PUBLIC = 0x40000000u,
1389
1390 // Additional flag indicating the resource id for this resource may change in a future
1391 // build. If this flag is set, the SPEC_PUBLIC flag is also set since the resource must be
1392 // public to be exposed as an API to other applications.
1393 SPEC_STAGED_API = 0x20000000u,
1394 };
1395 };
1396
1397 /**
1398 * A collection of resource entries for a particular resource data
1399 * type.
1400 *
1401 * If the flag FLAG_SPARSE is not set in `flags`, then this struct is
1402 * followed by an array of uint32_t defining the resource
1403 * values, corresponding to the array of type strings in the
1404 * ResTable_package::typeStrings string block. Each of these hold an
1405 * index from entriesStart; a value of NO_ENTRY means that entry is
1406 * not defined.
1407 *
1408 * If the flag FLAG_SPARSE is set in `flags`, then this struct is followed
1409 * by an array of ResTable_sparseTypeEntry defining only the entries that
1410 * have values for this type. Each entry is sorted by their entry ID such
1411 * that a binary search can be performed over the entries. The ID and offset
1412 * are encoded in a uint32_t. See ResTabe_sparseTypeEntry.
1413 *
1414 * There may be multiple of these chunks for a particular resource type,
1415 * supply different configuration variations for the resource values of
1416 * that type.
1417 *
1418 * It would be nice to have an additional ordered index of entries, so
1419 * we can do a binary search if trying to find a resource by string name.
1420 */
1421 struct ResTable_type
1422 {
1423 struct ResChunk_header header;
1424
1425 enum {
1426 NO_ENTRY = 0xFFFFFFFF
1427 };
1428
1429 // The type identifier this chunk is holding. Type IDs start
1430 // at 1 (corresponding to the value of the type bits in a
1431 // resource identifier). 0 is invalid.
1432 uint8_t id;
1433
1434 enum {
1435 // If set, the entry is sparse, and encodes both the entry ID and offset into each entry,
1436 // and a binary search is used to find the key. Only available on platforms >= O.
1437 // Mark any types that use this with a v26 qualifier to prevent runtime issues on older
1438 // platforms.
1439 FLAG_SPARSE = 0x01,
1440 };
1441 uint8_t flags;
1442
1443 // Must be 0.
1444 uint16_t reserved;
1445
1446 // Number of uint32_t entry indices that follow.
1447 uint32_t entryCount;
1448
1449 // Offset from header where ResTable_entry data starts.
1450 uint32_t entriesStart;
1451
1452 // Configuration this collection of entries is designed for. This must always be last.
1453 ResTable_config config;
1454 };
1455
1456 // The minimum size required to read any version of ResTable_type.
1457 constexpr size_t kResTableTypeMinSize =
1458 sizeof(ResTable_type) - sizeof(ResTable_config) + sizeof(ResTable_config::size);
1459
1460 // Assert that the ResTable_config is always the last field. This poses a problem for extending
1461 // ResTable_type in the future, as ResTable_config is variable (over different releases).
1462 static_assert(sizeof(ResTable_type) == offsetof(ResTable_type, config) + sizeof(ResTable_config),
1463 "ResTable_config must be last field in ResTable_type");
1464
1465 /**
1466 * An entry in a ResTable_type with the flag `FLAG_SPARSE` set.
1467 */
1468 union ResTable_sparseTypeEntry {
1469 // Holds the raw uint32_t encoded value. Do not read this.
1470 uint32_t entry;
1471 struct {
1472 // The index of the entry.
1473 uint16_t idx;
1474
1475 // The offset from ResTable_type::entriesStart, divided by 4.
1476 uint16_t offset;
1477 };
1478 };
1479
1480 static_assert(sizeof(ResTable_sparseTypeEntry) == sizeof(uint32_t),
1481 "ResTable_sparseTypeEntry must be 4 bytes in size");
1482
1483 /**
1484 * This is the beginning of information about an entry in the resource
1485 * table. It holds the reference to the name of this entry, and is
1486 * immediately followed by one of:
1487 * * A Res_value structure, if FLAG_COMPLEX is -not- set.
1488 * * An array of ResTable_map structures, if FLAG_COMPLEX is set.
1489 * These supply a set of name/value mappings of data.
1490 */
1491 struct ResTable_entry
1492 {
1493 // Number of bytes in this structure.
1494 uint16_t size;
1495
1496 enum {
1497 // If set, this is a complex entry, holding a set of name/value
1498 // mappings. It is followed by an array of ResTable_map structures.
1499 FLAG_COMPLEX = 0x0001,
1500 // If set, this resource has been declared public, so libraries
1501 // are allowed to reference it.
1502 FLAG_PUBLIC = 0x0002,
1503 // If set, this is a weak resource and may be overriden by strong
1504 // resources of the same name/type. This is only useful during
1505 // linking with other resource tables.
1506 FLAG_WEAK = 0x0004,
1507 };
1508 uint16_t flags;
1509
1510 // Reference into ResTable_package::keyStrings identifying this entry.
1511 struct ResStringPool_ref key;
1512 };
1513
1514 /**
1515 * Extended form of a ResTable_entry for map entries, defining a parent map
1516 * resource from which to inherit values.
1517 */
1518 struct ResTable_map_entry : public ResTable_entry
1519 {
1520 // Resource identifier of the parent mapping, or 0 if there is none.
1521 // This is always treated as a TYPE_DYNAMIC_REFERENCE.
1522 ResTable_ref parent;
1523 // Number of name/value pairs that follow for FLAG_COMPLEX.
1524 uint32_t count;
1525 };
1526
1527 /**
1528 * A single name/value mapping that is part of a complex resource
1529 * entry.
1530 */
1531 struct ResTable_map
1532 {
1533 // The resource identifier defining this mapping's name. For attribute
1534 // resources, 'name' can be one of the following special resource types
1535 // to supply meta-data about the attribute; for all other resource types
1536 // it must be an attribute resource.
1537 ResTable_ref name;
1538
1539 // Special values for 'name' when defining attribute resources.
1540 enum {
1541 // This entry holds the attribute's type code.
1542 ATTR_TYPE = Res_MAKEINTERNAL(0),
1543
1544 // For integral attributes, this is the minimum value it can hold.
1545 ATTR_MIN = Res_MAKEINTERNAL(1),
1546
1547 // For integral attributes, this is the maximum value it can hold.
1548 ATTR_MAX = Res_MAKEINTERNAL(2),
1549
1550 // Localization of this resource is can be encouraged or required with
1551 // an aapt flag if this is set
1552 ATTR_L10N = Res_MAKEINTERNAL(3),
1553
1554 // for plural support, see android.content.res.PluralRules#attrForQuantity(int)
1555 ATTR_OTHER = Res_MAKEINTERNAL(4),
1556 ATTR_ZERO = Res_MAKEINTERNAL(5),
1557 ATTR_ONE = Res_MAKEINTERNAL(6),
1558 ATTR_TWO = Res_MAKEINTERNAL(7),
1559 ATTR_FEW = Res_MAKEINTERNAL(8),
1560 ATTR_MANY = Res_MAKEINTERNAL(9)
1561
1562 };
1563
1564 // Bit mask of allowed types, for use with ATTR_TYPE.
1565 enum {
1566 // No type has been defined for this attribute, use generic
1567 // type handling. The low 16 bits are for types that can be
1568 // handled generically; the upper 16 require additional information
1569 // in the bag so can not be handled generically for TYPE_ANY.
1570 TYPE_ANY = 0x0000FFFF,
1571
1572 // Attribute holds a references to another resource.
1573 TYPE_REFERENCE = 1<<0,
1574
1575 // Attribute holds a generic string.
1576 TYPE_STRING = 1<<1,
1577
1578 // Attribute holds an integer value. ATTR_MIN and ATTR_MIN can
1579 // optionally specify a constrained range of possible integer values.
1580 TYPE_INTEGER = 1<<2,
1581
1582 // Attribute holds a boolean integer.
1583 TYPE_BOOLEAN = 1<<3,
1584
1585 // Attribute holds a color value.
1586 TYPE_COLOR = 1<<4,
1587
1588 // Attribute holds a floating point value.
1589 TYPE_FLOAT = 1<<5,
1590
1591 // Attribute holds a dimension value, such as "20px".
1592 TYPE_DIMENSION = 1<<6,
1593
1594 // Attribute holds a fraction value, such as "20%".
1595 TYPE_FRACTION = 1<<7,
1596
1597 // Attribute holds an enumeration. The enumeration values are
1598 // supplied as additional entries in the map.
1599 TYPE_ENUM = 1<<16,
1600
1601 // Attribute holds a bitmaks of flags. The flag bit values are
1602 // supplied as additional entries in the map.
1603 TYPE_FLAGS = 1<<17
1604 };
1605
1606 // Enum of localization modes, for use with ATTR_L10N.
1607 enum {
1608 L10N_NOT_REQUIRED = 0,
1609 L10N_SUGGESTED = 1
1610 };
1611
1612 // This mapping's value.
1613 Res_value value;
1614 };
1615
1616 /**
1617 * A package-id to package name mapping for any shared libraries used
1618 * in this resource table. The package-id's encoded in this resource
1619 * table may be different than the id's assigned at runtime. We must
1620 * be able to translate the package-id's based on the package name.
1621 */
1622 struct ResTable_lib_header
1623 {
1624 struct ResChunk_header header;
1625
1626 // The number of shared libraries linked in this resource table.
1627 uint32_t count;
1628 };
1629
1630 /**
1631 * A shared library package-id to package name entry.
1632 */
1633 struct ResTable_lib_entry
1634 {
1635 // The package-id this shared library was assigned at build time.
1636 // We use a uint32 to keep the structure aligned on a uint32 boundary.
1637 uint32_t packageId;
1638
1639 // The package name of the shared library. \0 terminated.
1640 uint16_t packageName[128];
1641 };
1642
1643 /**
1644 * A map that allows rewriting staged (non-finalized) resource ids to their finalized counterparts.
1645 */
1646 struct ResTable_staged_alias_header
1647 {
1648 struct ResChunk_header header;
1649
1650 // The number of ResTable_staged_alias_entry that follow this header.
1651 uint32_t count;
1652 };
1653
1654 /**
1655 * Maps the staged (non-finalized) resource id to its finalized resource id.
1656 */
1657 struct ResTable_staged_alias_entry
1658 {
1659 // The compile-time staged resource id to rewrite.
1660 uint32_t stagedResId;
1661
1662 // The compile-time finalized resource id to which the staged resource id should be rewritten.
1663 uint32_t finalizedResId;
1664 };
1665
1666 /**
1667 * Specifies the set of resources that are explicitly allowed to be overlaid by RROs.
1668 */
1669 struct ResTable_overlayable_header
1670 {
1671 struct ResChunk_header header;
1672
1673 // The name of the overlayable set of resources that overlays target.
1674 uint16_t name[256];
1675
1676 // The component responsible for enabling and disabling overlays targeting this chunk.
1677 uint16_t actor[256];
1678 };
1679
1680 /**
1681 * Holds a list of resource ids that are protected from being overlaid by a set of policies. If
1682 * the overlay fulfils at least one of the policies, then the overlay can overlay the list of
1683 * resources.
1684 */
1685 struct ResTable_overlayable_policy_header
1686 {
1687 /**
1688 * Flags for a bitmask for all possible overlayable policy options.
1689 *
1690 * Any changes to this set should also update aidl/android/os/OverlayablePolicy.aidl
1691 */
1692 enum PolicyFlags : uint32_t {
1693 // Base
1694 NONE = 0x00000000,
1695
1696 // Any overlay can overlay these resources.
1697 PUBLIC = 0x00000001,
1698
1699 // The overlay must reside of the system partition or must have existed on the system partition
1700 // before an upgrade to overlay these resources.
1701 SYSTEM_PARTITION = 0x00000002,
1702
1703 // The overlay must reside of the vendor partition or must have existed on the vendor partition
1704 // before an upgrade to overlay these resources.
1705 VENDOR_PARTITION = 0x00000004,
1706
1707 // The overlay must reside of the product partition or must have existed on the product
1708 // partition before an upgrade to overlay these resources.
1709 PRODUCT_PARTITION = 0x00000008,
1710
1711 // The overlay must be signed with the same signature as the package containing the target
1712 // resource
1713 SIGNATURE = 0x00000010,
1714
1715 // The overlay must reside of the odm partition or must have existed on the odm
1716 // partition before an upgrade to overlay these resources.
1717 ODM_PARTITION = 0x00000020,
1718
1719 // The overlay must reside of the oem partition or must have existed on the oem
1720 // partition before an upgrade to overlay these resources.
1721 OEM_PARTITION = 0x00000040,
1722
1723 // The overlay must be signed with the same signature as the actor declared for the target
1724 // resource
1725 ACTOR_SIGNATURE = 0x00000080,
1726
1727 // The overlay must be signed with the same signature as the reference package declared
1728 // in the SystemConfig
1729 CONFIG_SIGNATURE = 0x00000100,
1730 };
1731
1732 using PolicyBitmask = uint32_t;
1733
1734 struct ResChunk_header header;
1735
1736 PolicyFlags policy_flags;
1737
1738 // The number of ResTable_ref that follow this header.
1739 uint32_t entry_count;
1740 };
1741
1742 inline ResTable_overlayable_policy_header::PolicyFlags& operator |=(
1743 ResTable_overlayable_policy_header::PolicyFlags& first,
1744 ResTable_overlayable_policy_header::PolicyFlags second) {
1745 first = static_cast<ResTable_overlayable_policy_header::PolicyFlags>(first | second);
1746 return first;
1747 }
1748
1749 class AssetManager2;
1750
1751 /**
1752 * Holds the shared library ID table. Shared libraries are assigned package IDs at
1753 * build time, but they may be loaded in a different order, so we need to maintain
1754 * a mapping of build-time package ID to run-time assigned package ID.
1755 *
1756 * Dynamic references are not currently supported in overlays. Only the base package
1757 * may have dynamic references.
1758 */
1759 class DynamicRefTable
1760 {
1761 friend class AssetManager2;
1762 public:
1763 DynamicRefTable();
1764 DynamicRefTable(uint8_t packageId, bool appAsLib);
1765 virtual ~DynamicRefTable() = default;
1766
1767 // Loads an unmapped reference table from the package.
1768 status_t load(const ResTable_lib_header* const header);
1769
1770 // Adds mappings from the other DynamicRefTable
1771 status_t addMappings(const DynamicRefTable& other);
1772
1773 // Creates a mapping from build-time package ID to run-time package ID for
1774 // the given package.
1775 status_t addMapping(const String16& packageName, uint8_t packageId);
1776
1777 void addMapping(uint8_t buildPackageId, uint8_t runtimePackageId);
1778
1779 void addAlias(uint32_t stagedId, uint32_t finalizedId);
1780
1781 // Returns whether or not the value must be looked up.
1782 bool requiresLookup(const Res_value* value) const;
1783
1784 // Performs the actual conversion of build-time resource ID to run-time
1785 // resource ID.
1786 virtual status_t lookupResourceId(uint32_t* resId) const;
1787 status_t lookupResourceValue(Res_value* value) const;
1788
entries()1789 inline const KeyedVector<String16, uint8_t>& entries() const {
1790 return mEntries;
1791 }
1792
1793 private:
1794 uint8_t mAssignedPackageId;
1795 uint8_t mLookupTable[256];
1796 KeyedVector<String16, uint8_t> mEntries;
1797 bool mAppAsLib;
1798 std::map<uint32_t, uint32_t> mAliasId;
1799 };
1800
1801 bool U16StringToInt(const char16_t* s, size_t len, Res_value* outValue);
1802
1803 template<typename TChar, typename E>
UnpackOptionalString(base::expected<BasicStringPiece<TChar>,E> && result,size_t * outLen)1804 static const TChar* UnpackOptionalString(base::expected<BasicStringPiece<TChar>, E>&& result,
1805 size_t* outLen) {
1806 if (result.has_value()) {
1807 *outLen = result->size();
1808 return result->data();
1809 }
1810 return NULL;
1811 }
1812
1813 /**
1814 * Convenience class for accessing data in a ResTable resource.
1815 */
1816 class ResTable
1817 {
1818 public:
1819 ResTable();
1820 ResTable(const void* data, size_t size, const int32_t cookie,
1821 bool copyData=false);
1822 ~ResTable();
1823
1824 status_t add(const void* data, size_t size, const int32_t cookie=-1, bool copyData=false);
1825 status_t add(const void* data, size_t size, const void* idmapData, size_t idmapDataSize,
1826 const int32_t cookie=-1, bool copyData=false, bool appAsLib=false);
1827
1828 status_t add(Asset* asset, const int32_t cookie=-1, bool copyData=false);
1829 status_t add(Asset* asset, Asset* idmapAsset, const int32_t cookie=-1, bool copyData=false,
1830 bool appAsLib=false, bool isSystemAsset=false);
1831
1832 status_t add(ResTable* src, bool isSystemAsset=false);
1833 status_t addEmpty(const int32_t cookie);
1834
1835 status_t getError() const;
1836
1837 void uninit();
1838
1839 struct resource_name
1840 {
1841 const char16_t* package = NULL;
1842 size_t packageLen;
1843 const char16_t* type = NULL;
1844 const char* type8 = NULL;
1845 size_t typeLen;
1846 const char16_t* name = NULL;
1847 const char* name8 = NULL;
1848 size_t nameLen;
1849 };
1850
1851 bool getResourceName(uint32_t resID, bool allowUtf8, resource_name* outName) const;
1852
1853 bool getResourceFlags(uint32_t resID, uint32_t* outFlags) const;
1854
1855 /**
1856 * Returns whether or not the package for the given resource has been dynamically assigned.
1857 * If the resource can't be found, returns 'false'.
1858 */
1859 bool isResourceDynamic(uint32_t resID) const;
1860
1861 /**
1862 * Returns whether or not the given package has been dynamically assigned.
1863 * If the package can't be found, returns 'false'.
1864 */
1865 bool isPackageDynamic(uint8_t packageID) const;
1866
1867 /**
1868 * Retrieve the value of a resource. If the resource is found, returns a
1869 * value >= 0 indicating the table it is in (for use with
1870 * getTableStringBlock() and getTableCookie()) and fills in 'outValue'. If
1871 * not found, returns a negative error code.
1872 *
1873 * Note that this function does not do reference traversal. If you want
1874 * to follow references to other resources to get the "real" value to
1875 * use, you need to call resolveReference() after this function.
1876 *
1877 * @param resID The desired resoruce identifier.
1878 * @param outValue Filled in with the resource data that was found.
1879 *
1880 * @return ssize_t Either a >= 0 table index or a negative error code.
1881 */
1882 ssize_t getResource(uint32_t resID, Res_value* outValue, bool mayBeBag = false,
1883 uint16_t density = 0,
1884 uint32_t* outSpecFlags = NULL,
1885 ResTable_config* outConfig = NULL) const;
1886
1887 inline ssize_t getResource(const ResTable_ref& res, Res_value* outValue,
1888 uint32_t* outSpecFlags=NULL) const {
1889 return getResource(res.ident, outValue, false, 0, outSpecFlags, NULL);
1890 }
1891
1892 ssize_t resolveReference(Res_value* inOutValue,
1893 ssize_t blockIndex,
1894 uint32_t* outLastRef = NULL,
1895 uint32_t* inoutTypeSpecFlags = NULL,
1896 ResTable_config* outConfig = NULL) const;
1897
1898 enum {
1899 TMP_BUFFER_SIZE = 16
1900 };
1901 const char16_t* valueToString(const Res_value* value, size_t stringBlock,
1902 char16_t tmpBuffer[TMP_BUFFER_SIZE],
1903 size_t* outLen) const;
1904
1905 struct bag_entry {
1906 ssize_t stringBlock;
1907 ResTable_map map;
1908 };
1909
1910 /**
1911 * Retrieve the bag of a resource. If the resoruce is found, returns the
1912 * number of bags it contains and 'outBag' points to an array of their
1913 * values. If not found, a negative error code is returned.
1914 *
1915 * Note that this function -does- do reference traversal of the bag data.
1916 *
1917 * @param resID The desired resource identifier.
1918 * @param outBag Filled inm with a pointer to the bag mappings.
1919 *
1920 * @return ssize_t Either a >= 0 bag count of negative error code.
1921 */
1922 ssize_t lockBag(uint32_t resID, const bag_entry** outBag) const;
1923
1924 void unlockBag(const bag_entry* bag) const;
1925
1926 void lock() const;
1927
1928 ssize_t getBagLocked(uint32_t resID, const bag_entry** outBag,
1929 uint32_t* outTypeSpecFlags=NULL) const;
1930
1931 void unlock() const;
1932
1933 class Theme {
1934 public:
1935 explicit Theme(const ResTable& table);
1936 ~Theme();
1937
getResTable()1938 inline const ResTable& getResTable() const { return mTable; }
1939
1940 status_t applyStyle(uint32_t resID, bool force=false);
1941 status_t setTo(const Theme& other);
1942 status_t clear();
1943
1944 /**
1945 * Retrieve a value in the theme. If the theme defines this
1946 * value, returns a value >= 0 indicating the table it is in
1947 * (for use with getTableStringBlock() and getTableCookie) and
1948 * fills in 'outValue'. If not found, returns a negative error
1949 * code.
1950 *
1951 * Note that this function does not do reference traversal. If you want
1952 * to follow references to other resources to get the "real" value to
1953 * use, you need to call resolveReference() after this function.
1954 *
1955 * @param resID A resource identifier naming the desired theme
1956 * attribute.
1957 * @param outValue Filled in with the theme value that was
1958 * found.
1959 *
1960 * @return ssize_t Either a >= 0 table index or a negative error code.
1961 */
1962 ssize_t getAttribute(uint32_t resID, Res_value* outValue,
1963 uint32_t* outTypeSpecFlags = NULL) const;
1964
1965 /**
1966 * This is like ResTable::resolveReference(), but also takes
1967 * care of resolving attribute references to the theme.
1968 */
1969 ssize_t resolveAttributeReference(Res_value* inOutValue,
1970 ssize_t blockIndex, uint32_t* outLastRef = NULL,
1971 uint32_t* inoutTypeSpecFlags = NULL,
1972 ResTable_config* inoutConfig = NULL) const;
1973
1974 /**
1975 * Returns a bit mask of configuration changes that will impact this
1976 * theme (and thus require completely reloading it).
1977 */
1978 uint32_t getChangingConfigurations() const;
1979
1980 void dumpToLog() const;
1981
1982 private:
1983 Theme(const Theme&);
1984 Theme& operator=(const Theme&);
1985
1986 struct theme_entry {
1987 ssize_t stringBlock;
1988 uint32_t typeSpecFlags;
1989 Res_value value;
1990 };
1991
1992 struct type_info {
1993 size_t numEntries;
1994 theme_entry* entries;
1995 };
1996
1997 struct package_info {
1998 type_info types[Res_MAXTYPE + 1];
1999 };
2000
2001 void free_package(package_info* pi);
2002 package_info* copy_package(package_info* pi);
2003
2004 const ResTable& mTable;
2005 package_info* mPackages[Res_MAXPACKAGE];
2006 uint32_t mTypeSpecFlags;
2007 };
2008
2009 void setParameters(const ResTable_config* params);
2010 void getParameters(ResTable_config* params) const;
2011
2012 // Retrieve an identifier (which can be passed to getResource)
2013 // for a given resource name. The 'name' can be fully qualified
2014 // (<package>:<type>.<basename>) or the package or type components
2015 // can be dropped if default values are supplied here.
2016 //
2017 // Returns 0 if no such resource was found, else a valid resource ID.
2018 uint32_t identifierForName(const char16_t* name, size_t nameLen,
2019 const char16_t* type = 0, size_t typeLen = 0,
2020 const char16_t* defPackage = 0,
2021 size_t defPackageLen = 0,
2022 uint32_t* outTypeSpecFlags = NULL) const;
2023
2024 static bool expandResourceRef(const char16_t* refStr, size_t refLen,
2025 String16* outPackage,
2026 String16* outType,
2027 String16* outName,
2028 const String16* defType = NULL,
2029 const String16* defPackage = NULL,
2030 const char** outErrorMsg = NULL,
2031 bool* outPublicOnly = NULL);
2032
2033 static bool stringToInt(const char16_t* s, size_t len, Res_value* outValue);
2034 static bool stringToFloat(const char16_t* s, size_t len, Res_value* outValue);
2035
2036 // Used with stringToValue.
2037 class Accessor
2038 {
2039 public:
~Accessor()2040 inline virtual ~Accessor() { }
2041
2042 virtual const String16& getAssetsPackage() const = 0;
2043
2044 virtual uint32_t getCustomResource(const String16& package,
2045 const String16& type,
2046 const String16& name) const = 0;
2047 virtual uint32_t getCustomResourceWithCreation(const String16& package,
2048 const String16& type,
2049 const String16& name,
2050 const bool createIfNeeded = false) = 0;
2051 virtual uint32_t getRemappedPackage(uint32_t origPackage) const = 0;
2052 virtual bool getAttributeType(uint32_t attrID, uint32_t* outType) = 0;
2053 virtual bool getAttributeMin(uint32_t attrID, uint32_t* outMin) = 0;
2054 virtual bool getAttributeMax(uint32_t attrID, uint32_t* outMax) = 0;
2055 virtual bool getAttributeEnum(uint32_t attrID,
2056 const char16_t* name, size_t nameLen,
2057 Res_value* outValue) = 0;
2058 virtual bool getAttributeFlags(uint32_t attrID,
2059 const char16_t* name, size_t nameLen,
2060 Res_value* outValue) = 0;
2061 virtual uint32_t getAttributeL10N(uint32_t attrID) = 0;
2062 virtual bool getLocalizationSetting() = 0;
2063 virtual void reportError(void* accessorCookie, const char* fmt, ...) = 0;
2064 };
2065
2066 // Convert a string to a resource value. Handles standard "@res",
2067 // "#color", "123", and "0x1bd" types; performs escaping of strings.
2068 // The resulting value is placed in 'outValue'; if it is a string type,
2069 // 'outString' receives the string. If 'attrID' is supplied, the value is
2070 // type checked against this attribute and it is used to perform enum
2071 // evaluation. If 'acccessor' is supplied, it will be used to attempt to
2072 // resolve resources that do not exist in this ResTable. If 'attrType' is
2073 // supplied, the value will be type checked for this format if 'attrID'
2074 // is not supplied or found.
2075 bool stringToValue(Res_value* outValue, String16* outString,
2076 const char16_t* s, size_t len,
2077 bool preserveSpaces, bool coerceType,
2078 uint32_t attrID = 0,
2079 const String16* defType = NULL,
2080 const String16* defPackage = NULL,
2081 Accessor* accessor = NULL,
2082 void* accessorCookie = NULL,
2083 uint32_t attrType = ResTable_map::TYPE_ANY,
2084 bool enforcePrivate = true) const;
2085
2086 // Perform processing of escapes and quotes in a string.
2087 static bool collectString(String16* outString,
2088 const char16_t* s, size_t len,
2089 bool preserveSpaces,
2090 const char** outErrorMsg = NULL,
2091 bool append = false);
2092
2093 size_t getBasePackageCount() const;
2094 const String16 getBasePackageName(size_t idx) const;
2095 uint32_t getBasePackageId(size_t idx) const;
2096 uint32_t getLastTypeIdForPackage(size_t idx) const;
2097
2098 // Return the number of resource tables that the object contains.
2099 size_t getTableCount() const;
2100 // Return the values string pool for the resource table at the given
2101 // index. This string pool contains all of the strings for values
2102 // contained in the resource table -- that is the item values themselves,
2103 // but not the names their entries or types.
2104 const ResStringPool* getTableStringBlock(size_t index) const;
2105 // Return unique cookie identifier for the given resource table.
2106 int32_t getTableCookie(size_t index) const;
2107
2108 const DynamicRefTable* getDynamicRefTableForCookie(int32_t cookie) const;
2109
2110 // Return the configurations (ResTable_config) that we know about
2111 void getConfigurations(Vector<ResTable_config>* configs, bool ignoreMipmap=false,
2112 bool ignoreAndroidPackage=false, bool includeSystemConfigs=true) const;
2113
2114 void getLocales(Vector<String8>* locales, bool includeSystemLocales=true,
2115 bool mergeEquivalentLangs=false) const;
2116
2117 // Generate an idmap.
2118 //
2119 // Return value: on success: NO_ERROR; caller is responsible for free-ing
2120 // outData (using free(3)). On failure, any status_t value other than
2121 // NO_ERROR; the caller should not free outData.
2122 status_t createIdmap(const ResTable& targetResTable,
2123 uint32_t targetCrc, uint32_t overlayCrc,
2124 const char* targetPath, const char* overlayPath,
2125 void** outData, size_t* outSize) const;
2126
2127 static const size_t IDMAP_HEADER_SIZE_BYTES = 4 * sizeof(uint32_t) + 2 * 256;
2128 static const uint32_t IDMAP_CURRENT_VERSION = 0x00000001;
2129
2130 // Retrieve idmap meta-data.
2131 //
2132 // This function only requires the idmap header (the first
2133 // IDMAP_HEADER_SIZE_BYTES) bytes of an idmap file.
2134 static bool getIdmapInfo(const void* idmap, size_t size,
2135 uint32_t* pVersion,
2136 uint32_t* pTargetCrc, uint32_t* pOverlayCrc,
2137 String8* pTargetPath, String8* pOverlayPath);
2138
2139 void print(bool inclValues) const;
2140 static String8 normalizeForOutput(const char* input);
2141
2142 private:
2143 struct Header;
2144 struct Type;
2145 struct Entry;
2146 struct Package;
2147 struct PackageGroup;
2148 typedef Vector<Type*> TypeList;
2149
2150 struct bag_set {
2151 size_t numAttrs; // number in array
2152 size_t availAttrs; // total space in array
2153 uint32_t typeSpecFlags;
2154 // Followed by 'numAttr' bag_entry structures.
2155 };
2156
2157 /**
2158 * Configuration dependent cached data. This must be cleared when the configuration is
2159 * changed (setParameters).
2160 */
2161 struct TypeCacheEntry {
TypeCacheEntryTypeCacheEntry2162 TypeCacheEntry() : cachedBags(NULL) {}
2163
2164 // Computed attribute bags for this type.
2165 bag_set** cachedBags;
2166
2167 // Pre-filtered list of configurations (per asset path) that match the parameters set on this
2168 // ResTable.
2169 Vector<std::shared_ptr<Vector<const ResTable_type*>>> filteredConfigs;
2170 };
2171
2172 status_t addInternal(const void* data, size_t size, const void* idmapData, size_t idmapDataSize,
2173 bool appAsLib, const int32_t cookie, bool copyData, bool isSystemAsset=false);
2174
2175 ssize_t getResourcePackageIndex(uint32_t resID) const;
2176 ssize_t getResourcePackageIndexFromPackage(uint8_t packageID) const;
2177
2178 status_t getEntry(
2179 const PackageGroup* packageGroup, int typeIndex, int entryIndex,
2180 const ResTable_config* config,
2181 Entry* outEntry) const;
2182
2183 uint32_t findEntry(const PackageGroup* group, ssize_t typeIndex, const char16_t* name,
2184 size_t nameLen, uint32_t* outTypeSpecFlags) const;
2185
2186 status_t parsePackage(
2187 const ResTable_package* const pkg, const Header* const header,
2188 bool appAsLib, bool isSystemAsset);
2189
2190 void print_value(const Package* pkg, const Res_value& value) const;
2191
2192 template <typename Func>
2193 void forEachConfiguration(bool ignoreMipmap, bool ignoreAndroidPackage,
2194 bool includeSystemConfigs, const Func& f) const;
2195
2196 mutable Mutex mLock;
2197
2198 // Mutex that controls access to the list of pre-filtered configurations
2199 // to check when looking up entries.
2200 // When iterating over a bag, the mLock mutex is locked. While mLock is locked,
2201 // we do resource lookups.
2202 // Mutex is not reentrant, so we must use a different lock than mLock.
2203 mutable Mutex mFilteredConfigLock;
2204
2205 status_t mError;
2206
2207 ResTable_config mParams;
2208
2209 // Array of all resource tables.
2210 Vector<Header*> mHeaders;
2211
2212 // Array of packages in all resource tables.
2213 Vector<PackageGroup*> mPackageGroups;
2214
2215 // Mapping from resource package IDs to indices into the internal
2216 // package array.
2217 uint8_t mPackageMap[256];
2218
2219 uint8_t mNextPackageId;
2220 };
2221
2222 } // namespace android
2223
2224 #endif // _LIBS_UTILS_RESOURCE_TYPES_H
2225