1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <limits.h>
13
14 #include "aom_mem/aom_mem.h"
15
16 #include "av1/common/pred_common.h"
17 #include "av1/common/tile_common.h"
18
19 #include "av1/encoder/cost.h"
20 #include "av1/encoder/segmentation.h"
21
av1_enable_segmentation(struct segmentation * seg)22 void av1_enable_segmentation(struct segmentation *seg) {
23 seg->enabled = 1;
24 seg->update_map = 1;
25 seg->update_data = 1;
26 seg->temporal_update = 0;
27 }
28
av1_disable_segmentation(struct segmentation * seg)29 void av1_disable_segmentation(struct segmentation *seg) {
30 seg->enabled = 0;
31 seg->update_map = 0;
32 seg->update_data = 0;
33 seg->temporal_update = 0;
34 }
35
av1_disable_segfeature(struct segmentation * seg,int segment_id,SEG_LVL_FEATURES feature_id)36 void av1_disable_segfeature(struct segmentation *seg, int segment_id,
37 SEG_LVL_FEATURES feature_id) {
38 seg->feature_mask[segment_id] &= ~(1 << feature_id);
39 }
40
av1_clear_segdata(struct segmentation * seg,int segment_id,SEG_LVL_FEATURES feature_id)41 void av1_clear_segdata(struct segmentation *seg, int segment_id,
42 SEG_LVL_FEATURES feature_id) {
43 seg->feature_data[segment_id][feature_id] = 0;
44 }
45
count_segs(const AV1_COMMON * cm,MACROBLOCKD * xd,const TileInfo * tile,MB_MODE_INFO ** mi,unsigned * no_pred_segcounts,unsigned (* temporal_predictor_count)[2],unsigned * t_unpred_seg_counts,int bw,int bh,int mi_row,int mi_col)46 static void count_segs(const AV1_COMMON *cm, MACROBLOCKD *xd,
47 const TileInfo *tile, MB_MODE_INFO **mi,
48 unsigned *no_pred_segcounts,
49 unsigned (*temporal_predictor_count)[2],
50 unsigned *t_unpred_seg_counts, int bw, int bh,
51 int mi_row, int mi_col) {
52 const CommonModeInfoParams *const mi_params = &cm->mi_params;
53 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
54
55 xd->mi = mi;
56 set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
57 mi_params->mi_cols);
58
59 // Count the number of hits on each segment with no prediction
60 const int segment_id = xd->mi[0]->segment_id;
61 no_pred_segcounts[segment_id]++;
62
63 // Temporal prediction not allowed on key frames
64 if (cm->current_frame.frame_type != KEY_FRAME) {
65 const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
66 // Test to see if the segment id matches the predicted value.
67 const int pred_segment_id =
68 cm->last_frame_seg_map
69 ? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row,
70 mi_col)
71 : 0;
72 const int pred_flag = pred_segment_id == segment_id;
73 const int pred_context = av1_get_pred_context_seg_id(xd);
74
75 // Store the prediction status for this mb and update counts
76 // as appropriate
77 xd->mi[0]->seg_id_predicted = pred_flag;
78 temporal_predictor_count[pred_context][pred_flag]++;
79
80 // Update the "unpredicted" segment count
81 if (!pred_flag) t_unpred_seg_counts[segment_id]++;
82 }
83 }
84
count_segs_sb(const AV1_COMMON * cm,MACROBLOCKD * xd,const TileInfo * tile,MB_MODE_INFO ** mi,unsigned * no_pred_segcounts,unsigned (* temporal_predictor_count)[2],unsigned * t_unpred_seg_counts,int mi_row,int mi_col,BLOCK_SIZE bsize)85 static void count_segs_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
86 const TileInfo *tile, MB_MODE_INFO **mi,
87 unsigned *no_pred_segcounts,
88 unsigned (*temporal_predictor_count)[2],
89 unsigned *t_unpred_seg_counts, int mi_row, int mi_col,
90 BLOCK_SIZE bsize) {
91 const CommonModeInfoParams *const mi_params = &cm->mi_params;
92 const int mis = mi_params->mi_stride;
93 const int bs = mi_size_wide[bsize], hbs = bs / 2;
94 PARTITION_TYPE partition;
95 const int qbs = bs / 4;
96
97 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
98
99 #define CSEGS(cs_bw, cs_bh, cs_rowoff, cs_coloff) \
100 count_segs(cm, xd, tile, mi + mis * (cs_rowoff) + (cs_coloff), \
101 no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, \
102 (cs_bw), (cs_bh), mi_row + (cs_rowoff), mi_col + (cs_coloff));
103
104 if (bsize == BLOCK_8X8)
105 partition = PARTITION_NONE;
106 else
107 partition = get_partition(cm, mi_row, mi_col, bsize);
108 switch (partition) {
109 case PARTITION_NONE: CSEGS(bs, bs, 0, 0); break;
110 case PARTITION_HORZ:
111 CSEGS(bs, hbs, 0, 0);
112 CSEGS(bs, hbs, hbs, 0);
113 break;
114 case PARTITION_VERT:
115 CSEGS(hbs, bs, 0, 0);
116 CSEGS(hbs, bs, 0, hbs);
117 break;
118 case PARTITION_HORZ_A:
119 CSEGS(hbs, hbs, 0, 0);
120 CSEGS(hbs, hbs, 0, hbs);
121 CSEGS(bs, hbs, hbs, 0);
122 break;
123 case PARTITION_HORZ_B:
124 CSEGS(bs, hbs, 0, 0);
125 CSEGS(hbs, hbs, hbs, 0);
126 CSEGS(hbs, hbs, hbs, hbs);
127 break;
128 case PARTITION_VERT_A:
129 CSEGS(hbs, hbs, 0, 0);
130 CSEGS(hbs, hbs, hbs, 0);
131 CSEGS(hbs, bs, 0, hbs);
132 break;
133 case PARTITION_VERT_B:
134 CSEGS(hbs, bs, 0, 0);
135 CSEGS(hbs, hbs, 0, hbs);
136 CSEGS(hbs, hbs, hbs, hbs);
137 break;
138 case PARTITION_HORZ_4:
139 CSEGS(bs, qbs, 0, 0);
140 CSEGS(bs, qbs, qbs, 0);
141 CSEGS(bs, qbs, 2 * qbs, 0);
142 if (mi_row + 3 * qbs < mi_params->mi_rows) CSEGS(bs, qbs, 3 * qbs, 0);
143 break;
144
145 case PARTITION_VERT_4:
146 CSEGS(qbs, bs, 0, 0);
147 CSEGS(qbs, bs, 0, qbs);
148 CSEGS(qbs, bs, 0, 2 * qbs);
149 if (mi_col + 3 * qbs < mi_params->mi_cols) CSEGS(qbs, bs, 0, 3 * qbs);
150 break;
151
152 case PARTITION_SPLIT: {
153 const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
154 int n;
155 assert(subsize < BLOCK_SIZES_ALL);
156
157 for (n = 0; n < 4; n++) {
158 const int mi_dc = hbs * (n & 1);
159 const int mi_dr = hbs * (n >> 1);
160
161 count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts,
162 temporal_predictor_count, t_unpred_seg_counts,
163 mi_row + mi_dr, mi_col + mi_dc, subsize);
164 }
165 } break;
166 default: assert(0);
167 }
168
169 #undef CSEGS
170 }
171
av1_choose_segmap_coding_method(AV1_COMMON * cm,MACROBLOCKD * xd)172 void av1_choose_segmap_coding_method(AV1_COMMON *cm, MACROBLOCKD *xd) {
173 struct segmentation *seg = &cm->seg;
174 struct segmentation_probs *segp = &cm->fc->seg;
175 int no_pred_cost;
176 int t_pred_cost = INT_MAX;
177 int tile_col, tile_row, mi_row, mi_col;
178 unsigned temporal_predictor_count[SEG_TEMPORAL_PRED_CTXS][2] = { { 0 } };
179 unsigned no_pred_segcounts[MAX_SEGMENTS] = { 0 };
180 unsigned t_unpred_seg_counts[MAX_SEGMENTS] = { 0 };
181 (void)xd;
182 int scale_up = cm->prev_frame && (cm->width > cm->prev_frame->width ||
183 cm->height > cm->prev_frame->height);
184 // First of all generate stats regarding how well the last segment map
185 // predicts this one
186 if (!scale_up) {
187 for (tile_row = 0; tile_row < cm->tiles.rows; tile_row++) {
188 TileInfo tile_info;
189 av1_tile_set_row(&tile_info, cm, tile_row);
190 for (tile_col = 0; tile_col < cm->tiles.cols; tile_col++) {
191 MB_MODE_INFO **mi_ptr;
192 av1_tile_set_col(&tile_info, cm, tile_col);
193 mi_ptr = cm->mi_params.mi_grid_base +
194 tile_info.mi_row_start * cm->mi_params.mi_stride +
195 tile_info.mi_col_start;
196 for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
197 mi_row += cm->seq_params.mib_size,
198 mi_ptr += cm->seq_params.mib_size * cm->mi_params.mi_stride) {
199 MB_MODE_INFO **mi = mi_ptr;
200 for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
201 mi_col += cm->seq_params.mib_size,
202 mi += cm->seq_params.mib_size) {
203 count_segs_sb(cm, xd, &tile_info, mi, no_pred_segcounts,
204 temporal_predictor_count, t_unpred_seg_counts, mi_row,
205 mi_col, cm->seq_params.sb_size);
206 }
207 }
208 }
209 }
210 }
211
212 int seg_id_cost[MAX_SEGMENTS];
213 av1_cost_tokens_from_cdf(seg_id_cost, segp->tree_cdf, NULL);
214 no_pred_cost = 0;
215 for (int i = 0; i < MAX_SEGMENTS; ++i)
216 no_pred_cost += no_pred_segcounts[i] * seg_id_cost[i];
217
218 // Frames without past dependency cannot use temporal prediction
219 if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) {
220 int pred_flag_cost[SEG_TEMPORAL_PRED_CTXS][2];
221 for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i)
222 av1_cost_tokens_from_cdf(pred_flag_cost[i], segp->pred_cdf[i], NULL);
223 t_pred_cost = 0;
224 // Cost for signaling the prediction flag.
225 for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) {
226 for (int j = 0; j < 2; ++j)
227 t_pred_cost += temporal_predictor_count[i][j] * pred_flag_cost[i][j];
228 }
229 // Cost for signaling the unpredicted segment id.
230 for (int i = 0; i < MAX_SEGMENTS; ++i)
231 t_pred_cost += t_unpred_seg_counts[i] * seg_id_cost[i];
232 }
233
234 // Now choose which coding method to use.
235 if (t_pred_cost < no_pred_cost) {
236 assert(!cm->features.error_resilient_mode);
237 seg->temporal_update = 1;
238 } else {
239 seg->temporal_update = 0;
240 }
241 }
242
av1_reset_segment_features(AV1_COMMON * cm)243 void av1_reset_segment_features(AV1_COMMON *cm) {
244 struct segmentation *seg = &cm->seg;
245
246 // Set up default state for MB feature flags
247 seg->enabled = 0;
248 seg->update_map = 0;
249 seg->update_data = 0;
250 av1_clearall_segfeatures(seg);
251 }
252