1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "av1/common/common.h"
13 #include "av1/common/pred_common.h"
14 #include "av1/common/reconinter.h"
15 #include "av1/common/reconintra.h"
16 #include "av1/common/seg_common.h"
17
18 // Returns a context number for the given MB prediction signal
get_ref_filter_type(const MB_MODE_INFO * ref_mbmi,const MACROBLOCKD * xd,int dir,MV_REFERENCE_FRAME ref_frame)19 static InterpFilter get_ref_filter_type(const MB_MODE_INFO *ref_mbmi,
20 const MACROBLOCKD *xd, int dir,
21 MV_REFERENCE_FRAME ref_frame) {
22 (void)xd;
23
24 return ((ref_mbmi->ref_frame[0] == ref_frame ||
25 ref_mbmi->ref_frame[1] == ref_frame)
26 ? av1_extract_interp_filter(ref_mbmi->interp_filters, dir & 0x01)
27 : SWITCHABLE_FILTERS);
28 }
29
av1_get_pred_context_switchable_interp(const MACROBLOCKD * xd,int dir)30 int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) {
31 const MB_MODE_INFO *const mbmi = xd->mi[0];
32 const int ctx_offset =
33 (mbmi->ref_frame[1] > INTRA_FRAME) * INTER_FILTER_COMP_OFFSET;
34 assert(dir == 0 || dir == 1);
35 const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0];
36 // Note:
37 // The mode info data structure has a one element border above and to the
38 // left of the entries corresponding to real macroblocks.
39 // The prediction flags in these dummy entries are initialized to 0.
40 int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET;
41 int left_type = SWITCHABLE_FILTERS;
42 int above_type = SWITCHABLE_FILTERS;
43
44 if (xd->left_available)
45 left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame);
46
47 if (xd->up_available)
48 above_type =
49 get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame);
50
51 if (left_type == above_type) {
52 filter_type_ctx += left_type;
53 } else if (left_type == SWITCHABLE_FILTERS) {
54 assert(above_type != SWITCHABLE_FILTERS);
55 filter_type_ctx += above_type;
56 } else if (above_type == SWITCHABLE_FILTERS) {
57 assert(left_type != SWITCHABLE_FILTERS);
58 filter_type_ctx += left_type;
59 } else {
60 filter_type_ctx += SWITCHABLE_FILTERS;
61 }
62
63 return filter_type_ctx;
64 }
65
palette_add_to_cache(uint16_t * cache,int * n,uint16_t val)66 static void palette_add_to_cache(uint16_t *cache, int *n, uint16_t val) {
67 // Do not add an already existing value
68 if (*n > 0 && val == cache[*n - 1]) return;
69
70 cache[(*n)++] = val;
71 }
72
av1_get_palette_cache(const MACROBLOCKD * const xd,int plane,uint16_t * cache)73 int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane,
74 uint16_t *cache) {
75 const int row = -xd->mb_to_top_edge >> 3;
76 // Do not refer to above SB row when on SB boundary.
77 const MB_MODE_INFO *const above_mi =
78 (row % (1 << MIN_SB_SIZE_LOG2)) ? xd->above_mbmi : NULL;
79 const MB_MODE_INFO *const left_mi = xd->left_mbmi;
80 int above_n = 0, left_n = 0;
81 if (above_mi) above_n = above_mi->palette_mode_info.palette_size[plane != 0];
82 if (left_mi) left_n = left_mi->palette_mode_info.palette_size[plane != 0];
83 if (above_n == 0 && left_n == 0) return 0;
84 int above_idx = plane * PALETTE_MAX_SIZE;
85 int left_idx = plane * PALETTE_MAX_SIZE;
86 int n = 0;
87 const uint16_t *above_colors =
88 above_mi ? above_mi->palette_mode_info.palette_colors : NULL;
89 const uint16_t *left_colors =
90 left_mi ? left_mi->palette_mode_info.palette_colors : NULL;
91 // Merge the sorted lists of base colors from above and left to get
92 // combined sorted color cache.
93 while (above_n > 0 && left_n > 0) {
94 uint16_t v_above = above_colors[above_idx];
95 uint16_t v_left = left_colors[left_idx];
96 if (v_left < v_above) {
97 palette_add_to_cache(cache, &n, v_left);
98 ++left_idx, --left_n;
99 } else {
100 palette_add_to_cache(cache, &n, v_above);
101 ++above_idx, --above_n;
102 if (v_left == v_above) ++left_idx, --left_n;
103 }
104 }
105 while (above_n-- > 0) {
106 uint16_t val = above_colors[above_idx++];
107 palette_add_to_cache(cache, &n, val);
108 }
109 while (left_n-- > 0) {
110 uint16_t val = left_colors[left_idx++];
111 palette_add_to_cache(cache, &n, val);
112 }
113 assert(n <= 2 * PALETTE_MAX_SIZE);
114 return n;
115 }
116
117 // The mode info data structure has a one element border above and to the
118 // left of the entries corresponding to real macroblocks.
119 // The prediction flags in these dummy entries are initialized to 0.
120 // 0 - inter/inter, inter/--, --/inter, --/--
121 // 1 - intra/inter, inter/intra
122 // 2 - intra/--, --/intra
123 // 3 - intra/intra
av1_get_intra_inter_context(const MACROBLOCKD * xd)124 int av1_get_intra_inter_context(const MACROBLOCKD *xd) {
125 const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
126 const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
127 const int has_above = xd->up_available;
128 const int has_left = xd->left_available;
129
130 if (has_above && has_left) { // both edges available
131 const int above_intra = !is_inter_block(above_mbmi);
132 const int left_intra = !is_inter_block(left_mbmi);
133 return left_intra && above_intra ? 3 : left_intra || above_intra;
134 } else if (has_above || has_left) { // one edge available
135 return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi);
136 } else {
137 return 0;
138 }
139 }
140
141 #define CHECK_BACKWARD_REFS(ref_frame) \
142 (((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME))
143 #define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame)
144
av1_get_reference_mode_context(const MACROBLOCKD * xd)145 int av1_get_reference_mode_context(const MACROBLOCKD *xd) {
146 int ctx;
147 const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
148 const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
149 const int has_above = xd->up_available;
150 const int has_left = xd->left_available;
151
152 // Note:
153 // The mode info data structure has a one element border above and to the
154 // left of the entries corresponding to real macroblocks.
155 // The prediction flags in these dummy entries are initialized to 0.
156 if (has_above && has_left) { // both edges available
157 if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi))
158 // neither edge uses comp pred (0/1)
159 ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^
160 IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]);
161 else if (!has_second_ref(above_mbmi))
162 // one of two edges uses comp pred (2/3)
163 ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ||
164 !is_inter_block(above_mbmi));
165 else if (!has_second_ref(left_mbmi))
166 // one of two edges uses comp pred (2/3)
167 ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) ||
168 !is_inter_block(left_mbmi));
169 else // both edges use comp pred (4)
170 ctx = 4;
171 } else if (has_above || has_left) { // one edge available
172 const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi;
173
174 if (!has_second_ref(edge_mbmi))
175 // edge does not use comp pred (0/1)
176 ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]);
177 else
178 // edge uses comp pred (3)
179 ctx = 3;
180 } else { // no edges available (1)
181 ctx = 1;
182 }
183 assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS);
184 return ctx;
185 }
186
av1_get_comp_reference_type_context(const MACROBLOCKD * xd)187 int av1_get_comp_reference_type_context(const MACROBLOCKD *xd) {
188 int pred_context;
189 const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
190 const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
191 const int above_in_image = xd->up_available;
192 const int left_in_image = xd->left_available;
193
194 if (above_in_image && left_in_image) { // both edges available
195 const int above_intra = !is_inter_block(above_mbmi);
196 const int left_intra = !is_inter_block(left_mbmi);
197
198 if (above_intra && left_intra) { // intra/intra
199 pred_context = 2;
200 } else if (above_intra || left_intra) { // intra/inter
201 const MB_MODE_INFO *inter_mbmi = above_intra ? left_mbmi : above_mbmi;
202
203 if (!has_second_ref(inter_mbmi)) // single pred
204 pred_context = 2;
205 else // comp pred
206 pred_context = 1 + 2 * has_uni_comp_refs(inter_mbmi);
207 } else { // inter/inter
208 const int a_sg = !has_second_ref(above_mbmi);
209 const int l_sg = !has_second_ref(left_mbmi);
210 const MV_REFERENCE_FRAME frfa = above_mbmi->ref_frame[0];
211 const MV_REFERENCE_FRAME frfl = left_mbmi->ref_frame[0];
212
213 if (a_sg && l_sg) { // single/single
214 pred_context = 1 + 2 * (!(IS_BACKWARD_REF_FRAME(frfa) ^
215 IS_BACKWARD_REF_FRAME(frfl)));
216 } else if (l_sg || a_sg) { // single/comp
217 const int uni_rfc =
218 a_sg ? has_uni_comp_refs(left_mbmi) : has_uni_comp_refs(above_mbmi);
219
220 if (!uni_rfc) // comp bidir
221 pred_context = 1;
222 else // comp unidir
223 pred_context = 3 + (!(IS_BACKWARD_REF_FRAME(frfa) ^
224 IS_BACKWARD_REF_FRAME(frfl)));
225 } else { // comp/comp
226 const int a_uni_rfc = has_uni_comp_refs(above_mbmi);
227 const int l_uni_rfc = has_uni_comp_refs(left_mbmi);
228
229 if (!a_uni_rfc && !l_uni_rfc) // bidir/bidir
230 pred_context = 0;
231 else if (!a_uni_rfc || !l_uni_rfc) // unidir/bidir
232 pred_context = 2;
233 else // unidir/unidir
234 pred_context =
235 3 + (!((frfa == BWDREF_FRAME) ^ (frfl == BWDREF_FRAME)));
236 }
237 }
238 } else if (above_in_image || left_in_image) { // one edge available
239 const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
240
241 if (!is_inter_block(edge_mbmi)) { // intra
242 pred_context = 2;
243 } else { // inter
244 if (!has_second_ref(edge_mbmi)) // single pred
245 pred_context = 2;
246 else // comp pred
247 pred_context = 4 * has_uni_comp_refs(edge_mbmi);
248 }
249 } else { // no edges available
250 pred_context = 2;
251 }
252
253 assert(pred_context >= 0 && pred_context < COMP_REF_TYPE_CONTEXTS);
254 return pred_context;
255 }
256
257 // Returns a context number for the given MB prediction signal
258 //
259 // Signal the uni-directional compound reference frame pair as either
260 // (BWDREF, ALTREF), or (LAST, LAST2) / (LAST, LAST3) / (LAST, GOLDEN),
261 // conditioning on the pair is known as uni-directional.
262 //
263 // 3 contexts: Voting is used to compare the count of forward references with
264 // that of backward references from the spatial neighbors.
av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD * xd)265 int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd) {
266 const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
267
268 // Count of forward references (L, L2, L3, or G)
269 const int frf_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] +
270 ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
271 // Count of backward references (B or A)
272 const int brf_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] +
273 ref_counts[ALTREF_FRAME];
274
275 const int pred_context =
276 (frf_count == brf_count) ? 1 : ((frf_count < brf_count) ? 0 : 2);
277
278 assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
279 return pred_context;
280 }
281
282 // Returns a context number for the given MB prediction signal
283 //
284 // Signal the uni-directional compound reference frame pair as
285 // either (LAST, LAST2), or (LAST, LAST3) / (LAST, GOLDEN),
286 // conditioning on the pair is known as one of the above three.
287 //
288 // 3 contexts: Voting is used to compare the count of LAST2_FRAME with the
289 // total count of LAST3/GOLDEN from the spatial neighbors.
av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD * xd)290 int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd) {
291 const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
292
293 // Count of LAST2
294 const int last2_count = ref_counts[LAST2_FRAME];
295 // Count of LAST3 or GOLDEN
296 const int last3_or_gld_count =
297 ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
298
299 const int pred_context = (last2_count == last3_or_gld_count)
300 ? 1
301 : ((last2_count < last3_or_gld_count) ? 0 : 2);
302
303 assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
304 return pred_context;
305 }
306
307 // Returns a context number for the given MB prediction signal
308 //
309 // Signal the uni-directional compound reference frame pair as
310 // either (LAST, LAST3) or (LAST, GOLDEN),
311 // conditioning on the pair is known as one of the above two.
312 //
313 // 3 contexts: Voting is used to compare the count of LAST3_FRAME with the
314 // total count of GOLDEN_FRAME from the spatial neighbors.
av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD * xd)315 int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd) {
316 const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
317
318 // Count of LAST3
319 const int last3_count = ref_counts[LAST3_FRAME];
320 // Count of GOLDEN
321 const int gld_count = ref_counts[GOLDEN_FRAME];
322
323 const int pred_context =
324 (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2);
325
326 assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
327 return pred_context;
328 }
329
330 // == Common context functions for both comp and single ref ==
331 //
332 // Obtain contexts to signal a reference frame to be either LAST/LAST2 or
333 // LAST3/GOLDEN.
get_pred_context_ll2_or_l3gld(const MACROBLOCKD * xd)334 static int get_pred_context_ll2_or_l3gld(const MACROBLOCKD *xd) {
335 const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
336
337 // Count of LAST + LAST2
338 const int last_last2_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME];
339 // Count of LAST3 + GOLDEN
340 const int last3_gld_count =
341 ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
342
343 const int pred_context = (last_last2_count == last3_gld_count)
344 ? 1
345 : ((last_last2_count < last3_gld_count) ? 0 : 2);
346
347 assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
348 return pred_context;
349 }
350
351 // Obtain contexts to signal a reference frame to be either LAST or LAST2.
get_pred_context_last_or_last2(const MACROBLOCKD * xd)352 static int get_pred_context_last_or_last2(const MACROBLOCKD *xd) {
353 const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
354
355 // Count of LAST
356 const int last_count = ref_counts[LAST_FRAME];
357 // Count of LAST2
358 const int last2_count = ref_counts[LAST2_FRAME];
359
360 const int pred_context =
361 (last_count == last2_count) ? 1 : ((last_count < last2_count) ? 0 : 2);
362
363 assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
364 return pred_context;
365 }
366
367 // Obtain contexts to signal a reference frame to be either LAST3 or GOLDEN.
get_pred_context_last3_or_gld(const MACROBLOCKD * xd)368 static int get_pred_context_last3_or_gld(const MACROBLOCKD *xd) {
369 const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
370
371 // Count of LAST3
372 const int last3_count = ref_counts[LAST3_FRAME];
373 // Count of GOLDEN
374 const int gld_count = ref_counts[GOLDEN_FRAME];
375
376 const int pred_context =
377 (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2);
378
379 assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
380 return pred_context;
381 }
382
383 // Obtain contexts to signal a reference frame be either BWDREF/ALTREF2, or
384 // ALTREF.
get_pred_context_brfarf2_or_arf(const MACROBLOCKD * xd)385 static int get_pred_context_brfarf2_or_arf(const MACROBLOCKD *xd) {
386 const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
387
388 // Counts of BWDREF, ALTREF2, or ALTREF frames (B, A2, or A)
389 const int brfarf2_count =
390 ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME];
391 const int arf_count = ref_counts[ALTREF_FRAME];
392
393 const int pred_context =
394 (brfarf2_count == arf_count) ? 1 : ((brfarf2_count < arf_count) ? 0 : 2);
395
396 assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
397 return pred_context;
398 }
399
400 // Obtain contexts to signal a reference frame be either BWDREF or ALTREF2.
get_pred_context_brf_or_arf2(const MACROBLOCKD * xd)401 static int get_pred_context_brf_or_arf2(const MACROBLOCKD *xd) {
402 const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
403
404 // Count of BWDREF frames (B)
405 const int brf_count = ref_counts[BWDREF_FRAME];
406 // Count of ALTREF2 frames (A2)
407 const int arf2_count = ref_counts[ALTREF2_FRAME];
408
409 const int pred_context =
410 (brf_count == arf2_count) ? 1 : ((brf_count < arf2_count) ? 0 : 2);
411
412 assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
413 return pred_context;
414 }
415
416 // == Context functions for comp ref ==
417 //
418 // Returns a context number for the given MB prediction signal
419 // Signal the first reference frame for a compound mode be either
420 // GOLDEN/LAST3, or LAST/LAST2.
av1_get_pred_context_comp_ref_p(const MACROBLOCKD * xd)421 int av1_get_pred_context_comp_ref_p(const MACROBLOCKD *xd) {
422 return get_pred_context_ll2_or_l3gld(xd);
423 }
424
425 // Returns a context number for the given MB prediction signal
426 // Signal the first reference frame for a compound mode be LAST,
427 // conditioning on that it is known either LAST/LAST2.
av1_get_pred_context_comp_ref_p1(const MACROBLOCKD * xd)428 int av1_get_pred_context_comp_ref_p1(const MACROBLOCKD *xd) {
429 return get_pred_context_last_or_last2(xd);
430 }
431
432 // Returns a context number for the given MB prediction signal
433 // Signal the first reference frame for a compound mode be GOLDEN,
434 // conditioning on that it is known either GOLDEN or LAST3.
av1_get_pred_context_comp_ref_p2(const MACROBLOCKD * xd)435 int av1_get_pred_context_comp_ref_p2(const MACROBLOCKD *xd) {
436 return get_pred_context_last3_or_gld(xd);
437 }
438
439 // Signal the 2nd reference frame for a compound mode be either
440 // ALTREF, or ALTREF2/BWDREF.
av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD * xd)441 int av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD *xd) {
442 return get_pred_context_brfarf2_or_arf(xd);
443 }
444
445 // Signal the 2nd reference frame for a compound mode be either
446 // ALTREF2 or BWDREF.
av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD * xd)447 int av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD *xd) {
448 return get_pred_context_brf_or_arf2(xd);
449 }
450
451 // == Context functions for single ref ==
452 //
453 // For the bit to signal whether the single reference is a forward reference
454 // frame or a backward reference frame.
av1_get_pred_context_single_ref_p1(const MACROBLOCKD * xd)455 int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) {
456 const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
457
458 // Count of forward reference frames
459 const int fwd_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] +
460 ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
461 // Count of backward reference frames
462 const int bwd_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] +
463 ref_counts[ALTREF_FRAME];
464
465 const int pred_context =
466 (fwd_count == bwd_count) ? 1 : ((fwd_count < bwd_count) ? 0 : 2);
467
468 assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
469 return pred_context;
470 }
471
472 // For the bit to signal whether the single reference is ALTREF_FRAME or
473 // non-ALTREF backward reference frame, knowing that it shall be either of
474 // these 2 choices.
av1_get_pred_context_single_ref_p2(const MACROBLOCKD * xd)475 int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) {
476 return get_pred_context_brfarf2_or_arf(xd);
477 }
478
479 // For the bit to signal whether the single reference is LAST3/GOLDEN or
480 // LAST2/LAST, knowing that it shall be either of these 2 choices.
av1_get_pred_context_single_ref_p3(const MACROBLOCKD * xd)481 int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) {
482 return get_pred_context_ll2_or_l3gld(xd);
483 }
484
485 // For the bit to signal whether the single reference is LAST2_FRAME or
486 // LAST_FRAME, knowing that it shall be either of these 2 choices.
av1_get_pred_context_single_ref_p4(const MACROBLOCKD * xd)487 int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) {
488 return get_pred_context_last_or_last2(xd);
489 }
490
491 // For the bit to signal whether the single reference is GOLDEN_FRAME or
492 // LAST3_FRAME, knowing that it shall be either of these 2 choices.
av1_get_pred_context_single_ref_p5(const MACROBLOCKD * xd)493 int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) {
494 return get_pred_context_last3_or_gld(xd);
495 }
496
497 // For the bit to signal whether the single reference is ALTREF2_FRAME or
498 // BWDREF_FRAME, knowing that it shall be either of these 2 choices.
av1_get_pred_context_single_ref_p6(const MACROBLOCKD * xd)499 int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd) {
500 return get_pred_context_brf_or_arf2(xd);
501 }
502