• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "config/aom_config.h"
13 #include "config/aom_scale_rtcd.h"
14 
15 #include "aom_dsp/aom_dsp_common.h"
16 #include "aom_mem/aom_mem.h"
17 #include "av1/common/av1_loopfilter.h"
18 #include "av1/common/entropymode.h"
19 #include "av1/common/thread_common.h"
20 #include "av1/common/reconinter.h"
21 
22 // Set up nsync by width.
get_sync_range(int width)23 static INLINE int get_sync_range(int width) {
24   // nsync numbers are picked by testing. For example, for 4k
25   // video, using 4 gives best performance.
26   if (width < 640)
27     return 1;
28   else if (width <= 1280)
29     return 2;
30   else if (width <= 4096)
31     return 4;
32   else
33     return 8;
34 }
35 
get_lr_sync_range(int width)36 static INLINE int get_lr_sync_range(int width) {
37 #if 0
38   // nsync numbers are picked by testing. For example, for 4k
39   // video, using 4 gives best performance.
40   if (width < 640)
41     return 1;
42   else if (width <= 1280)
43     return 2;
44   else if (width <= 4096)
45     return 4;
46   else
47     return 8;
48 #else
49   (void)width;
50   return 1;
51 #endif
52 }
53 
54 // Allocate memory for lf row synchronization
loop_filter_alloc(AV1LfSync * lf_sync,AV1_COMMON * cm,int rows,int width,int num_workers)55 static void loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows,
56                               int width, int num_workers) {
57   lf_sync->rows = rows;
58 #if CONFIG_MULTITHREAD
59   {
60     int i, j;
61 
62     for (j = 0; j < MAX_MB_PLANE; j++) {
63       CHECK_MEM_ERROR(cm, lf_sync->mutex_[j],
64                       aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows));
65       if (lf_sync->mutex_[j]) {
66         for (i = 0; i < rows; ++i) {
67           pthread_mutex_init(&lf_sync->mutex_[j][i], NULL);
68         }
69       }
70 
71       CHECK_MEM_ERROR(cm, lf_sync->cond_[j],
72                       aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows));
73       if (lf_sync->cond_[j]) {
74         for (i = 0; i < rows; ++i) {
75           pthread_cond_init(&lf_sync->cond_[j][i], NULL);
76         }
77       }
78     }
79 
80     CHECK_MEM_ERROR(cm, lf_sync->job_mutex,
81                     aom_malloc(sizeof(*(lf_sync->job_mutex))));
82     if (lf_sync->job_mutex) {
83       pthread_mutex_init(lf_sync->job_mutex, NULL);
84     }
85   }
86 #endif  // CONFIG_MULTITHREAD
87   CHECK_MEM_ERROR(cm, lf_sync->lfdata,
88                   aom_malloc(num_workers * sizeof(*(lf_sync->lfdata))));
89   lf_sync->num_workers = num_workers;
90 
91   for (int j = 0; j < MAX_MB_PLANE; j++) {
92     CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j],
93                     aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows));
94   }
95   CHECK_MEM_ERROR(
96       cm, lf_sync->job_queue,
97       aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2));
98   // Set up nsync.
99   lf_sync->sync_range = get_sync_range(width);
100 }
101 
102 // Deallocate lf synchronization related mutex and data
av1_loop_filter_dealloc(AV1LfSync * lf_sync)103 void av1_loop_filter_dealloc(AV1LfSync *lf_sync) {
104   if (lf_sync != NULL) {
105     int j;
106 #if CONFIG_MULTITHREAD
107     int i;
108     for (j = 0; j < MAX_MB_PLANE; j++) {
109       if (lf_sync->mutex_[j] != NULL) {
110         for (i = 0; i < lf_sync->rows; ++i) {
111           pthread_mutex_destroy(&lf_sync->mutex_[j][i]);
112         }
113         aom_free(lf_sync->mutex_[j]);
114       }
115       if (lf_sync->cond_[j] != NULL) {
116         for (i = 0; i < lf_sync->rows; ++i) {
117           pthread_cond_destroy(&lf_sync->cond_[j][i]);
118         }
119         aom_free(lf_sync->cond_[j]);
120       }
121     }
122     if (lf_sync->job_mutex != NULL) {
123       pthread_mutex_destroy(lf_sync->job_mutex);
124       aom_free(lf_sync->job_mutex);
125     }
126 #endif  // CONFIG_MULTITHREAD
127     aom_free(lf_sync->lfdata);
128     for (j = 0; j < MAX_MB_PLANE; j++) {
129       aom_free(lf_sync->cur_sb_col[j]);
130     }
131 
132     aom_free(lf_sync->job_queue);
133     // clear the structure as the source of this call may be a resize in which
134     // case this call will be followed by an _alloc() which may fail.
135     av1_zero(*lf_sync);
136   }
137 }
138 
loop_filter_data_reset(LFWorkerData * lf_data,YV12_BUFFER_CONFIG * frame_buffer,struct AV1Common * cm,MACROBLOCKD * xd)139 static void loop_filter_data_reset(LFWorkerData *lf_data,
140                                    YV12_BUFFER_CONFIG *frame_buffer,
141                                    struct AV1Common *cm, MACROBLOCKD *xd) {
142   struct macroblockd_plane *pd = xd->plane;
143   lf_data->frame_buffer = frame_buffer;
144   lf_data->cm = cm;
145   lf_data->xd = xd;
146   for (int i = 0; i < MAX_MB_PLANE; i++) {
147     memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst));
148     lf_data->planes[i].subsampling_x = pd[i].subsampling_x;
149     lf_data->planes[i].subsampling_y = pd[i].subsampling_y;
150   }
151 }
152 
sync_read(AV1LfSync * const lf_sync,int r,int c,int plane)153 static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c,
154                              int plane) {
155 #if CONFIG_MULTITHREAD
156   const int nsync = lf_sync->sync_range;
157 
158   if (r && !(c & (nsync - 1))) {
159     pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1];
160     pthread_mutex_lock(mutex);
161 
162     while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) {
163       pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex);
164     }
165     pthread_mutex_unlock(mutex);
166   }
167 #else
168   (void)lf_sync;
169   (void)r;
170   (void)c;
171   (void)plane;
172 #endif  // CONFIG_MULTITHREAD
173 }
174 
sync_write(AV1LfSync * const lf_sync,int r,int c,const int sb_cols,int plane)175 static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c,
176                               const int sb_cols, int plane) {
177 #if CONFIG_MULTITHREAD
178   const int nsync = lf_sync->sync_range;
179   int cur;
180   // Only signal when there are enough filtered SB for next row to run.
181   int sig = 1;
182 
183   if (c < sb_cols - 1) {
184     cur = c;
185     if (c % nsync) sig = 0;
186   } else {
187     cur = sb_cols + nsync;
188   }
189 
190   if (sig) {
191     pthread_mutex_lock(&lf_sync->mutex_[plane][r]);
192 
193     lf_sync->cur_sb_col[plane][r] = cur;
194 
195     pthread_cond_broadcast(&lf_sync->cond_[plane][r]);
196     pthread_mutex_unlock(&lf_sync->mutex_[plane][r]);
197   }
198 #else
199   (void)lf_sync;
200   (void)r;
201   (void)c;
202   (void)sb_cols;
203   (void)plane;
204 #endif  // CONFIG_MULTITHREAD
205 }
206 
enqueue_lf_jobs(AV1LfSync * lf_sync,AV1_COMMON * cm,int start,int stop,int is_decoding,int plane_start,int plane_end)207 static void enqueue_lf_jobs(AV1LfSync *lf_sync, AV1_COMMON *cm, int start,
208                             int stop,
209 #if CONFIG_LPF_MASK
210                             int is_decoding,
211 #endif
212                             int plane_start, int plane_end) {
213   int mi_row, plane, dir;
214   AV1LfMTInfo *lf_job_queue = lf_sync->job_queue;
215   lf_sync->jobs_enqueued = 0;
216   lf_sync->jobs_dequeued = 0;
217 
218   for (dir = 0; dir < 2; dir++) {
219     for (plane = plane_start; plane < plane_end; plane++) {
220       if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
221         break;
222       else if (plane == 1 && !(cm->lf.filter_level_u))
223         continue;
224       else if (plane == 2 && !(cm->lf.filter_level_v))
225         continue;
226 #if CONFIG_LPF_MASK
227       int step = MAX_MIB_SIZE;
228       if (is_decoding) {
229         step = MI_SIZE_64X64;
230       }
231       for (mi_row = start; mi_row < stop; mi_row += step)
232 #else
233       for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE)
234 #endif
235       {
236         lf_job_queue->mi_row = mi_row;
237         lf_job_queue->plane = plane;
238         lf_job_queue->dir = dir;
239         lf_job_queue++;
240         lf_sync->jobs_enqueued++;
241       }
242     }
243   }
244 }
245 
get_lf_job_info(AV1LfSync * lf_sync)246 static AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) {
247   AV1LfMTInfo *cur_job_info = NULL;
248 
249 #if CONFIG_MULTITHREAD
250   pthread_mutex_lock(lf_sync->job_mutex);
251 
252   if (lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) {
253     cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued;
254     lf_sync->jobs_dequeued++;
255   }
256 
257   pthread_mutex_unlock(lf_sync->job_mutex);
258 #else
259   (void)lf_sync;
260 #endif
261 
262   return cur_job_info;
263 }
264 
265 // Implement row loopfiltering for each thread.
thread_loop_filter_rows(const YV12_BUFFER_CONFIG * const frame_buffer,AV1_COMMON * const cm,struct macroblockd_plane * planes,MACROBLOCKD * xd,AV1LfSync * const lf_sync)266 static INLINE void thread_loop_filter_rows(
267     const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
268     struct macroblockd_plane *planes, MACROBLOCKD *xd,
269     AV1LfSync *const lf_sync) {
270   const int sb_cols =
271       ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, MAX_MIB_SIZE_LOG2) >>
272       MAX_MIB_SIZE_LOG2;
273   int mi_row, mi_col, plane, dir;
274   int r, c;
275 
276   while (1) {
277     AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync);
278 
279     if (cur_job_info != NULL) {
280       mi_row = cur_job_info->mi_row;
281       plane = cur_job_info->plane;
282       dir = cur_job_info->dir;
283       r = mi_row >> MAX_MIB_SIZE_LOG2;
284 
285       if (dir == 0) {
286         for (mi_col = 0; mi_col < cm->mi_params.mi_cols;
287              mi_col += MAX_MIB_SIZE) {
288           c = mi_col >> MAX_MIB_SIZE_LOG2;
289 
290           av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer,
291                                mi_row, mi_col, plane, plane + 1);
292 
293           av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row,
294                                       mi_col);
295           sync_write(lf_sync, r, c, sb_cols, plane);
296         }
297       } else if (dir == 1) {
298         for (mi_col = 0; mi_col < cm->mi_params.mi_cols;
299              mi_col += MAX_MIB_SIZE) {
300           c = mi_col >> MAX_MIB_SIZE_LOG2;
301 
302           // Wait for vertical edge filtering of the top-right block to be
303           // completed
304           sync_read(lf_sync, r, c, plane);
305 
306           // Wait for vertical edge filtering of the right block to be
307           // completed
308           sync_read(lf_sync, r + 1, c, plane);
309 
310           av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer,
311                                mi_row, mi_col, plane, plane + 1);
312           av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row,
313                                       mi_col);
314         }
315       }
316     } else {
317       break;
318     }
319   }
320 }
321 
322 // Row-based multi-threaded loopfilter hook
loop_filter_row_worker(void * arg1,void * arg2)323 static int loop_filter_row_worker(void *arg1, void *arg2) {
324   AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
325   LFWorkerData *const lf_data = (LFWorkerData *)arg2;
326   thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
327                           lf_data->xd, lf_sync);
328   return 1;
329 }
330 
331 #if CONFIG_LPF_MASK
thread_loop_filter_bitmask_rows(const YV12_BUFFER_CONFIG * const frame_buffer,AV1_COMMON * const cm,struct macroblockd_plane * planes,MACROBLOCKD * xd,AV1LfSync * const lf_sync)332 static INLINE void thread_loop_filter_bitmask_rows(
333     const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
334     struct macroblockd_plane *planes, MACROBLOCKD *xd,
335     AV1LfSync *const lf_sync) {
336   const int sb_cols =
337       ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, MIN_MIB_SIZE_LOG2) >>
338       MIN_MIB_SIZE_LOG2;
339   int mi_row, mi_col, plane, dir;
340   int r, c;
341   (void)xd;
342 
343   while (1) {
344     AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync);
345 
346     if (cur_job_info != NULL) {
347       mi_row = cur_job_info->mi_row;
348       plane = cur_job_info->plane;
349       dir = cur_job_info->dir;
350       r = mi_row >> MIN_MIB_SIZE_LOG2;
351 
352       if (dir == 0) {
353         for (mi_col = 0; mi_col < cm->mi_params.mi_cols;
354              mi_col += MI_SIZE_64X64) {
355           c = mi_col >> MIN_MIB_SIZE_LOG2;
356 
357           av1_setup_dst_planes(planes, BLOCK_64X64, frame_buffer, mi_row,
358                                mi_col, plane, plane + 1);
359 
360           av1_filter_block_plane_bitmask_vert(cm, &planes[plane], plane, mi_row,
361                                               mi_col);
362           sync_write(lf_sync, r, c, sb_cols, plane);
363         }
364       } else if (dir == 1) {
365         for (mi_col = 0; mi_col < cm->mi_params.mi_cols;
366              mi_col += MI_SIZE_64X64) {
367           c = mi_col >> MIN_MIB_SIZE_LOG2;
368 
369           // Wait for vertical edge filtering of the top-right block to be
370           // completed
371           sync_read(lf_sync, r, c, plane);
372 
373           // Wait for vertical edge filtering of the right block to be
374           // completed
375           sync_read(lf_sync, r + 1, c, plane);
376 
377           av1_setup_dst_planes(planes, BLOCK_64X64, frame_buffer, mi_row,
378                                mi_col, plane, plane + 1);
379           av1_filter_block_plane_bitmask_horz(cm, &planes[plane], plane, mi_row,
380                                               mi_col);
381         }
382       }
383     } else {
384       break;
385     }
386   }
387 }
388 
389 // Row-based multi-threaded loopfilter hook
loop_filter_bitmask_row_worker(void * arg1,void * arg2)390 static int loop_filter_bitmask_row_worker(void *arg1, void *arg2) {
391   AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
392   LFWorkerData *const lf_data = (LFWorkerData *)arg2;
393   thread_loop_filter_bitmask_rows(lf_data->frame_buffer, lf_data->cm,
394                                   lf_data->planes, lf_data->xd, lf_sync);
395   return 1;
396 }
397 #endif  // CONFIG_LPF_MASK
398 
loop_filter_rows_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int start,int stop,int plane_start,int plane_end,int is_decoding,AVxWorker * workers,int nworkers,AV1LfSync * lf_sync)399 static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
400                                 MACROBLOCKD *xd, int start, int stop,
401                                 int plane_start, int plane_end,
402 #if CONFIG_LPF_MASK
403                                 int is_decoding,
404 #endif
405                                 AVxWorker *workers, int nworkers,
406                                 AV1LfSync *lf_sync) {
407   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
408 #if CONFIG_LPF_MASK
409   int sb_rows;
410   if (is_decoding) {
411     sb_rows = ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, MIN_MIB_SIZE_LOG2) >>
412               MIN_MIB_SIZE_LOG2;
413   } else {
414     sb_rows = ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, MAX_MIB_SIZE_LOG2) >>
415               MAX_MIB_SIZE_LOG2;
416   }
417 #else
418   // Number of superblock rows and cols
419   const int sb_rows =
420       ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, MAX_MIB_SIZE_LOG2) >>
421       MAX_MIB_SIZE_LOG2;
422 #endif
423   const int num_workers = nworkers;
424   int i;
425 
426   if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
427       num_workers > lf_sync->num_workers) {
428     av1_loop_filter_dealloc(lf_sync);
429     loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
430   }
431 
432   // Initialize cur_sb_col to -1 for all SB rows.
433   for (i = 0; i < MAX_MB_PLANE; i++) {
434     memset(lf_sync->cur_sb_col[i], -1,
435            sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows);
436   }
437 
438   enqueue_lf_jobs(lf_sync, cm, start, stop,
439 #if CONFIG_LPF_MASK
440                   is_decoding,
441 #endif
442                   plane_start, plane_end);
443 
444   // Set up loopfilter thread data.
445   for (i = 0; i < num_workers; ++i) {
446     AVxWorker *const worker = &workers[i];
447     LFWorkerData *const lf_data = &lf_sync->lfdata[i];
448 
449 #if CONFIG_LPF_MASK
450     if (is_decoding) {
451       worker->hook = loop_filter_bitmask_row_worker;
452     } else {
453       worker->hook = loop_filter_row_worker;
454     }
455 #else
456     worker->hook = loop_filter_row_worker;
457 #endif
458     worker->data1 = lf_sync;
459     worker->data2 = lf_data;
460 
461     // Loopfilter data
462     loop_filter_data_reset(lf_data, frame, cm, xd);
463 
464     // Start loopfiltering
465     if (i == num_workers - 1) {
466       winterface->execute(worker);
467     } else {
468       winterface->launch(worker);
469     }
470   }
471 
472   // Wait till all rows are finished
473   for (i = 0; i < num_workers; ++i) {
474     winterface->sync(&workers[i]);
475   }
476 }
477 
av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int plane_start,int plane_end,int partial_frame,int is_decoding,AVxWorker * workers,int num_workers,AV1LfSync * lf_sync)478 void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
479                               MACROBLOCKD *xd, int plane_start, int plane_end,
480                               int partial_frame,
481 #if CONFIG_LPF_MASK
482                               int is_decoding,
483 #endif
484                               AVxWorker *workers, int num_workers,
485                               AV1LfSync *lf_sync) {
486   int start_mi_row, end_mi_row, mi_rows_to_filter;
487 
488   start_mi_row = 0;
489   mi_rows_to_filter = cm->mi_params.mi_rows;
490   if (partial_frame && cm->mi_params.mi_rows > 8) {
491     start_mi_row = cm->mi_params.mi_rows >> 1;
492     start_mi_row &= 0xfffffff8;
493     mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8);
494   }
495   end_mi_row = start_mi_row + mi_rows_to_filter;
496   av1_loop_filter_frame_init(cm, plane_start, plane_end);
497 
498 #if CONFIG_LPF_MASK
499   if (is_decoding) {
500     cm->is_decoding = is_decoding;
501     // TODO(chengchen): currently use one thread to build bitmasks for the
502     // frame. Make it support multi-thread later.
503     for (int plane = plane_start; plane < plane_end; plane++) {
504       if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
505         break;
506       else if (plane == 1 && !(cm->lf.filter_level_u))
507         continue;
508       else if (plane == 2 && !(cm->lf.filter_level_v))
509         continue;
510 
511       // TODO(chengchen): can we remove this?
512       struct macroblockd_plane *pd = xd->plane;
513       av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame, 0, 0, plane,
514                            plane + 1);
515 
516       av1_build_bitmask_vert_info(cm, &pd[plane], plane);
517       av1_build_bitmask_horz_info(cm, &pd[plane], plane);
518     }
519     loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
520                         plane_end, 1, workers, num_workers, lf_sync);
521   } else {
522     loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
523                         plane_end, 0, workers, num_workers, lf_sync);
524   }
525 #else
526   loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
527                       plane_end, workers, num_workers, lf_sync);
528 #endif
529 }
530 
lr_sync_read(void * const lr_sync,int r,int c,int plane)531 static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) {
532 #if CONFIG_MULTITHREAD
533   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
534   const int nsync = loop_res_sync->sync_range;
535 
536   if (r && !(c & (nsync - 1))) {
537     pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1];
538     pthread_mutex_lock(mutex);
539 
540     while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) {
541       pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex);
542     }
543     pthread_mutex_unlock(mutex);
544   }
545 #else
546   (void)lr_sync;
547   (void)r;
548   (void)c;
549   (void)plane;
550 #endif  // CONFIG_MULTITHREAD
551 }
552 
lr_sync_write(void * const lr_sync,int r,int c,const int sb_cols,int plane)553 static INLINE void lr_sync_write(void *const lr_sync, int r, int c,
554                                  const int sb_cols, int plane) {
555 #if CONFIG_MULTITHREAD
556   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
557   const int nsync = loop_res_sync->sync_range;
558   int cur;
559   // Only signal when there are enough filtered SB for next row to run.
560   int sig = 1;
561 
562   if (c < sb_cols - 1) {
563     cur = c;
564     if (c % nsync) sig = 0;
565   } else {
566     cur = sb_cols + nsync;
567   }
568 
569   if (sig) {
570     pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]);
571 
572     loop_res_sync->cur_sb_col[plane][r] = cur;
573 
574     pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]);
575     pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]);
576   }
577 #else
578   (void)lr_sync;
579   (void)r;
580   (void)c;
581   (void)sb_cols;
582   (void)plane;
583 #endif  // CONFIG_MULTITHREAD
584 }
585 
586 // Allocate memory for loop restoration row synchronization
loop_restoration_alloc(AV1LrSync * lr_sync,AV1_COMMON * cm,int num_workers,int num_rows_lr,int num_planes,int width)587 static void loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm,
588                                    int num_workers, int num_rows_lr,
589                                    int num_planes, int width) {
590   lr_sync->rows = num_rows_lr;
591   lr_sync->num_planes = num_planes;
592 #if CONFIG_MULTITHREAD
593   {
594     int i, j;
595 
596     for (j = 0; j < num_planes; j++) {
597       CHECK_MEM_ERROR(cm, lr_sync->mutex_[j],
598                       aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr));
599       if (lr_sync->mutex_[j]) {
600         for (i = 0; i < num_rows_lr; ++i) {
601           pthread_mutex_init(&lr_sync->mutex_[j][i], NULL);
602         }
603       }
604 
605       CHECK_MEM_ERROR(cm, lr_sync->cond_[j],
606                       aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr));
607       if (lr_sync->cond_[j]) {
608         for (i = 0; i < num_rows_lr; ++i) {
609           pthread_cond_init(&lr_sync->cond_[j][i], NULL);
610         }
611       }
612     }
613 
614     CHECK_MEM_ERROR(cm, lr_sync->job_mutex,
615                     aom_malloc(sizeof(*(lr_sync->job_mutex))));
616     if (lr_sync->job_mutex) {
617       pthread_mutex_init(lr_sync->job_mutex, NULL);
618     }
619   }
620 #endif  // CONFIG_MULTITHREAD
621   CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata,
622                   aom_malloc(num_workers * sizeof(*(lr_sync->lrworkerdata))));
623 
624   for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
625     if (worker_idx < num_workers - 1) {
626       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf,
627                       (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
628       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs,
629                       aom_malloc(sizeof(RestorationLineBuffers)));
630 
631     } else {
632       lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf;
633       lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs;
634     }
635   }
636 
637   lr_sync->num_workers = num_workers;
638 
639   for (int j = 0; j < num_planes; j++) {
640     CHECK_MEM_ERROR(
641         cm, lr_sync->cur_sb_col[j],
642         aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr));
643   }
644   CHECK_MEM_ERROR(
645       cm, lr_sync->job_queue,
646       aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes));
647   // Set up nsync.
648   lr_sync->sync_range = get_lr_sync_range(width);
649 }
650 
651 // Deallocate loop restoration synchronization related mutex and data
av1_loop_restoration_dealloc(AV1LrSync * lr_sync,int num_workers)652 void av1_loop_restoration_dealloc(AV1LrSync *lr_sync, int num_workers) {
653   if (lr_sync != NULL) {
654     int j;
655 #if CONFIG_MULTITHREAD
656     int i;
657     for (j = 0; j < MAX_MB_PLANE; j++) {
658       if (lr_sync->mutex_[j] != NULL) {
659         for (i = 0; i < lr_sync->rows; ++i) {
660           pthread_mutex_destroy(&lr_sync->mutex_[j][i]);
661         }
662         aom_free(lr_sync->mutex_[j]);
663       }
664       if (lr_sync->cond_[j] != NULL) {
665         for (i = 0; i < lr_sync->rows; ++i) {
666           pthread_cond_destroy(&lr_sync->cond_[j][i]);
667         }
668         aom_free(lr_sync->cond_[j]);
669       }
670     }
671     if (lr_sync->job_mutex != NULL) {
672       pthread_mutex_destroy(lr_sync->job_mutex);
673       aom_free(lr_sync->job_mutex);
674     }
675 #endif  // CONFIG_MULTITHREAD
676     for (j = 0; j < MAX_MB_PLANE; j++) {
677       aom_free(lr_sync->cur_sb_col[j]);
678     }
679 
680     aom_free(lr_sync->job_queue);
681 
682     if (lr_sync->lrworkerdata) {
683       for (int worker_idx = 0; worker_idx < num_workers - 1; worker_idx++) {
684         LRWorkerData *const workerdata_data =
685             lr_sync->lrworkerdata + worker_idx;
686 
687         aom_free(workerdata_data->rst_tmpbuf);
688         aom_free(workerdata_data->rlbs);
689       }
690       aom_free(lr_sync->lrworkerdata);
691     }
692 
693     // clear the structure as the source of this call may be a resize in which
694     // case this call will be followed by an _alloc() which may fail.
695     av1_zero(*lr_sync);
696   }
697 }
698 
enqueue_lr_jobs(AV1LrSync * lr_sync,AV1LrStruct * lr_ctxt,AV1_COMMON * cm)699 static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt,
700                             AV1_COMMON *cm) {
701   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
702 
703   const int num_planes = av1_num_planes(cm);
704   AV1LrMTInfo *lr_job_queue = lr_sync->job_queue;
705   int32_t lr_job_counter[2], num_even_lr_jobs = 0;
706   lr_sync->jobs_enqueued = 0;
707   lr_sync->jobs_dequeued = 0;
708 
709   for (int plane = 0; plane < num_planes; plane++) {
710     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
711     num_even_lr_jobs =
712         num_even_lr_jobs + ((ctxt[plane].rsi->vert_units_per_tile + 1) >> 1);
713   }
714   lr_job_counter[0] = 0;
715   lr_job_counter[1] = num_even_lr_jobs;
716 
717   for (int plane = 0; plane < num_planes; plane++) {
718     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
719     const int is_uv = plane > 0;
720     const int ss_y = is_uv && cm->seq_params.subsampling_y;
721 
722     AV1PixelRect tile_rect = ctxt[plane].tile_rect;
723     const int unit_size = ctxt[plane].rsi->restoration_unit_size;
724 
725     const int tile_h = tile_rect.bottom - tile_rect.top;
726     const int ext_size = unit_size * 3 / 2;
727 
728     int y0 = 0, i = 0;
729     while (y0 < tile_h) {
730       int remaining_h = tile_h - y0;
731       int h = (remaining_h < ext_size) ? remaining_h : unit_size;
732 
733       RestorationTileLimits limits;
734       limits.v_start = tile_rect.top + y0;
735       limits.v_end = tile_rect.top + y0 + h;
736       assert(limits.v_end <= tile_rect.bottom);
737       // Offset the tile upwards to align with the restoration processing stripe
738       const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
739       limits.v_start = AOMMAX(tile_rect.top, limits.v_start - voffset);
740       if (limits.v_end < tile_rect.bottom) limits.v_end -= voffset;
741 
742       assert(lr_job_counter[0] <= num_even_lr_jobs);
743 
744       lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i;
745       lr_job_queue[lr_job_counter[i & 1]].plane = plane;
746       lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start;
747       lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end;
748       lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1;
749       if ((i & 1) == 0) {
750         lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
751             limits.v_start + RESTORATION_BORDER;
752         lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
753             limits.v_end - RESTORATION_BORDER;
754         if (i == 0) {
755           assert(limits.v_start == tile_rect.top);
756           lr_job_queue[lr_job_counter[i & 1]].v_copy_start = tile_rect.top;
757         }
758         if (i == (ctxt[plane].rsi->vert_units_per_tile - 1)) {
759           assert(limits.v_end == tile_rect.bottom);
760           lr_job_queue[lr_job_counter[i & 1]].v_copy_end = tile_rect.bottom;
761         }
762       } else {
763         lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
764             AOMMAX(limits.v_start - RESTORATION_BORDER, tile_rect.top);
765         lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
766             AOMMIN(limits.v_end + RESTORATION_BORDER, tile_rect.bottom);
767       }
768       lr_job_counter[i & 1]++;
769       lr_sync->jobs_enqueued++;
770 
771       y0 += h;
772       ++i;
773     }
774   }
775 }
776 
get_lr_job_info(AV1LrSync * lr_sync)777 static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) {
778   AV1LrMTInfo *cur_job_info = NULL;
779 
780 #if CONFIG_MULTITHREAD
781   pthread_mutex_lock(lr_sync->job_mutex);
782 
783   if (lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) {
784     cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued;
785     lr_sync->jobs_dequeued++;
786   }
787 
788   pthread_mutex_unlock(lr_sync->job_mutex);
789 #else
790   (void)lr_sync;
791 #endif
792 
793   return cur_job_info;
794 }
795 
796 // Implement row loop restoration for each thread.
loop_restoration_row_worker(void * arg1,void * arg2)797 static int loop_restoration_row_worker(void *arg1, void *arg2) {
798   AV1LrSync *const lr_sync = (AV1LrSync *)arg1;
799   LRWorkerData *lrworkerdata = (LRWorkerData *)arg2;
800   AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt;
801   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
802   int lr_unit_row;
803   int plane;
804   const int tile_row = LR_TILE_ROW;
805   const int tile_col = LR_TILE_COL;
806   const int tile_cols = LR_TILE_COLS;
807   const int tile_idx = tile_col + tile_row * tile_cols;
808   typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
809                            YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
810                            int vstart, int vend);
811   static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
812                                          aom_yv12_partial_coloc_copy_u,
813                                          aom_yv12_partial_coloc_copy_v };
814 
815   while (1) {
816     AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync);
817     if (cur_job_info != NULL) {
818       RestorationTileLimits limits;
819       sync_read_fn_t on_sync_read;
820       sync_write_fn_t on_sync_write;
821       limits.v_start = cur_job_info->v_start;
822       limits.v_end = cur_job_info->v_end;
823       lr_unit_row = cur_job_info->lr_unit_row;
824       plane = cur_job_info->plane;
825       const int unit_idx0 = tile_idx * ctxt[plane].rsi->units_per_tile;
826 
827       // sync_mode == 1 implies only sync read is required in LR Multi-threading
828       // sync_mode == 0 implies only sync write is required.
829       on_sync_read =
830           cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy;
831       on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write
832                                                    : av1_lr_sync_write_dummy;
833 
834       av1_foreach_rest_unit_in_row(
835           &limits, &(ctxt[plane].tile_rect), lr_ctxt->on_rest_unit, lr_unit_row,
836           ctxt[plane].rsi->restoration_unit_size, unit_idx0,
837           ctxt[plane].rsi->horz_units_per_tile,
838           ctxt[plane].rsi->vert_units_per_tile, plane, &ctxt[plane],
839           lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read,
840           on_sync_write, lr_sync);
841 
842       copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, ctxt[plane].tile_rect.left,
843                        ctxt[plane].tile_rect.right, cur_job_info->v_copy_start,
844                        cur_job_info->v_copy_end);
845     } else {
846       break;
847     }
848   }
849   return 1;
850 }
851 
foreach_rest_unit_in_planes_mt(AV1LrStruct * lr_ctxt,AVxWorker * workers,int nworkers,AV1LrSync * lr_sync,AV1_COMMON * cm)852 static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt,
853                                            AVxWorker *workers, int nworkers,
854                                            AV1LrSync *lr_sync, AV1_COMMON *cm) {
855   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
856 
857   const int num_planes = av1_num_planes(cm);
858 
859   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
860   int num_rows_lr = 0;
861 
862   for (int plane = 0; plane < num_planes; plane++) {
863     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
864 
865     const AV1PixelRect tile_rect = ctxt[plane].tile_rect;
866     const int max_tile_h = tile_rect.bottom - tile_rect.top;
867 
868     const int unit_size = cm->rst_info[plane].restoration_unit_size;
869 
870     num_rows_lr =
871         AOMMAX(num_rows_lr, av1_lr_count_units_in_tile(unit_size, max_tile_h));
872   }
873 
874   const int num_workers = nworkers;
875   int i;
876   assert(MAX_MB_PLANE == 3);
877 
878   if (!lr_sync->sync_range || num_rows_lr != lr_sync->rows ||
879       num_workers > lr_sync->num_workers || num_planes != lr_sync->num_planes) {
880     av1_loop_restoration_dealloc(lr_sync, num_workers);
881     loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr, num_planes,
882                            cm->width);
883   }
884 
885   // Initialize cur_sb_col to -1 for all SB rows.
886   for (i = 0; i < num_planes; i++) {
887     memset(lr_sync->cur_sb_col[i], -1,
888            sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr);
889   }
890 
891   enqueue_lr_jobs(lr_sync, lr_ctxt, cm);
892 
893   // Set up looprestoration thread data.
894   for (i = 0; i < num_workers; ++i) {
895     AVxWorker *const worker = &workers[i];
896     lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt;
897     worker->hook = loop_restoration_row_worker;
898     worker->data1 = lr_sync;
899     worker->data2 = &lr_sync->lrworkerdata[i];
900 
901     // Start loopfiltering
902     if (i == num_workers - 1) {
903       winterface->execute(worker);
904     } else {
905       winterface->launch(worker);
906     }
907   }
908 
909   // Wait till all rows are finished
910   for (i = 0; i < num_workers; ++i) {
911     winterface->sync(&workers[i]);
912   }
913 }
914 
av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,int optimized_lr,AVxWorker * workers,int num_workers,AV1LrSync * lr_sync,void * lr_ctxt)915 void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
916                                           AV1_COMMON *cm, int optimized_lr,
917                                           AVxWorker *workers, int num_workers,
918                                           AV1LrSync *lr_sync, void *lr_ctxt) {
919   assert(!cm->features.all_lossless);
920 
921   const int num_planes = av1_num_planes(cm);
922 
923   AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
924 
925   av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
926                                          optimized_lr, num_planes);
927 
928   foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync,
929                                  cm);
930 }
931