1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <limits.h>
14 #include <math.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18
19 #include "aom_dsp/aom_dsp_common.h"
20 #include "aom_mem/aom_mem.h"
21 #include "aom_ports/mem.h"
22 #include "aom_ports/system_state.h"
23
24 #include "av1/common/alloccommon.h"
25 #include "av1/encoder/aq_cyclicrefresh.h"
26 #include "av1/common/common.h"
27 #include "av1/common/entropymode.h"
28 #include "av1/common/quant_common.h"
29 #include "av1/common/seg_common.h"
30
31 #include "av1/encoder/encodemv.h"
32 #include "av1/encoder/encode_strategy.h"
33 #include "av1/encoder/gop_structure.h"
34 #include "av1/encoder/random.h"
35 #include "av1/encoder/ratectrl.h"
36
37 #define USE_UNRESTRICTED_Q_IN_CQ_MODE 0
38
39 // Max rate target for 1080P and below encodes under normal circumstances
40 // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
41 #define MAX_MB_RATE 250
42 #define MAXRATE_1080P 2025000
43
44 #define MIN_BPB_FACTOR 0.005
45 #define MAX_BPB_FACTOR 50
46
47 #define SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO 0
48 #define SUPERRES_QADJ_PER_DENOM_KEYFRAME 2
49 #define SUPERRES_QADJ_PER_DENOM_ARFFRAME 0
50
51 #define FRAME_OVERHEAD_BITS 200
52 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
53 do { \
54 switch (bit_depth) { \
55 case AOM_BITS_8: name = name##_8; break; \
56 case AOM_BITS_10: name = name##_10; break; \
57 case AOM_BITS_12: name = name##_12; break; \
58 default: \
59 assert(0 && \
60 "bit_depth should be AOM_BITS_8, AOM_BITS_10" \
61 " or AOM_BITS_12"); \
62 name = NULL; \
63 } \
64 } while (0)
65
66 // Tables relating active max Q to active min Q
67 static int kf_low_motion_minq_8[QINDEX_RANGE];
68 static int kf_high_motion_minq_8[QINDEX_RANGE];
69 static int arfgf_low_motion_minq_8[QINDEX_RANGE];
70 static int arfgf_high_motion_minq_8[QINDEX_RANGE];
71 static int inter_minq_8[QINDEX_RANGE];
72 static int rtc_minq_8[QINDEX_RANGE];
73
74 static int kf_low_motion_minq_10[QINDEX_RANGE];
75 static int kf_high_motion_minq_10[QINDEX_RANGE];
76 static int arfgf_low_motion_minq_10[QINDEX_RANGE];
77 static int arfgf_high_motion_minq_10[QINDEX_RANGE];
78 static int inter_minq_10[QINDEX_RANGE];
79 static int rtc_minq_10[QINDEX_RANGE];
80 static int kf_low_motion_minq_12[QINDEX_RANGE];
81 static int kf_high_motion_minq_12[QINDEX_RANGE];
82 static int arfgf_low_motion_minq_12[QINDEX_RANGE];
83 static int arfgf_high_motion_minq_12[QINDEX_RANGE];
84 static int inter_minq_12[QINDEX_RANGE];
85 static int rtc_minq_12[QINDEX_RANGE];
86
87 static int gf_high = 2400;
88 static int gf_low = 300;
89 #ifdef STRICT_RC
90 static int kf_high = 3200;
91 #else
92 static int kf_high = 5000;
93 #endif
94 static int kf_low = 400;
95
96 // How many times less pixels there are to encode given the current scaling.
97 // Temporary replacement for rcf_mult and rate_thresh_mult.
resize_rate_factor(const AV1_COMP * cpi,int width,int height)98 static double resize_rate_factor(const AV1_COMP *cpi, int width, int height) {
99 return (double)(cpi->oxcf.width * cpi->oxcf.height) / (width * height);
100 }
101
102 // Functions to compute the active minq lookup table entries based on a
103 // formulaic approach to facilitate easier adjustment of the Q tables.
104 // The formulae were derived from computing a 3rd order polynomial best
105 // fit to the original data (after plotting real maxq vs minq (not q index))
get_minq_index(double maxq,double x3,double x2,double x1,aom_bit_depth_t bit_depth)106 static int get_minq_index(double maxq, double x3, double x2, double x1,
107 aom_bit_depth_t bit_depth) {
108 const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
109
110 // Special case handling to deal with the step from q2.0
111 // down to lossless mode represented by q 1.0.
112 if (minqtarget <= 2.0) return 0;
113
114 return av1_find_qindex(minqtarget, bit_depth, 0, QINDEX_RANGE - 1);
115 }
116
init_minq_luts(int * kf_low_m,int * kf_high_m,int * arfgf_low,int * arfgf_high,int * inter,int * rtc,aom_bit_depth_t bit_depth)117 static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
118 int *arfgf_high, int *inter, int *rtc,
119 aom_bit_depth_t bit_depth) {
120 int i;
121 for (i = 0; i < QINDEX_RANGE; i++) {
122 const double maxq = av1_convert_qindex_to_q(i, bit_depth);
123 kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
124 kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth);
125 arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
126 arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
127 inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
128 rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
129 }
130 }
131
av1_rc_init_minq_luts(void)132 void av1_rc_init_minq_luts(void) {
133 init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
134 arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
135 inter_minq_8, rtc_minq_8, AOM_BITS_8);
136 init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
137 arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
138 inter_minq_10, rtc_minq_10, AOM_BITS_10);
139 init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
140 arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
141 inter_minq_12, rtc_minq_12, AOM_BITS_12);
142 }
143
144 // These functions use formulaic calculations to make playing with the
145 // quantizer tables easier. If necessary they can be replaced by lookup
146 // tables if and when things settle down in the experimental bitstream
av1_convert_qindex_to_q(int qindex,aom_bit_depth_t bit_depth)147 double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) {
148 // Convert the index to a real Q value (scaled down to match old Q values)
149 switch (bit_depth) {
150 case AOM_BITS_8: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 4.0;
151 case AOM_BITS_10: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 16.0;
152 case AOM_BITS_12: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 64.0;
153 default:
154 assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
155 return -1.0;
156 }
157 }
158
av1_rc_bits_per_mb(FRAME_TYPE frame_type,int qindex,double correction_factor,aom_bit_depth_t bit_depth)159 int av1_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
160 double correction_factor, aom_bit_depth_t bit_depth) {
161 const double q = av1_convert_qindex_to_q(qindex, bit_depth);
162 int enumerator = frame_type == KEY_FRAME ? 2000000 : 1500000;
163
164 assert(correction_factor <= MAX_BPB_FACTOR &&
165 correction_factor >= MIN_BPB_FACTOR);
166
167 // q based adjustment to baseline enumerator
168 return (int)(enumerator * correction_factor / q);
169 }
170
av1_estimate_bits_at_q(FRAME_TYPE frame_type,int q,int mbs,double correction_factor,aom_bit_depth_t bit_depth)171 int av1_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
172 double correction_factor,
173 aom_bit_depth_t bit_depth) {
174 const int bpm =
175 (int)(av1_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth));
176 return AOMMAX(FRAME_OVERHEAD_BITS,
177 (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
178 }
179
av1_rc_clamp_pframe_target_size(const AV1_COMP * const cpi,int target,FRAME_UPDATE_TYPE frame_update_type)180 int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target,
181 FRAME_UPDATE_TYPE frame_update_type) {
182 const RATE_CONTROL *rc = &cpi->rc;
183 const AV1EncoderConfig *oxcf = &cpi->oxcf;
184 const int min_frame_target =
185 AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
186 // Clip the frame target to the minimum setup value.
187 if (frame_update_type == OVERLAY_UPDATE ||
188 frame_update_type == INTNL_OVERLAY_UPDATE) {
189 // If there is an active ARF at this location use the minimum
190 // bits on this frame even if it is a constructed arf.
191 // The active maximum quantizer insures that an appropriate
192 // number of bits will be spent if needed for constructed ARFs.
193 target = min_frame_target;
194 } else if (target < min_frame_target) {
195 target = min_frame_target;
196 }
197
198 // Clip the frame target to the maximum allowed value.
199 if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
200 if (oxcf->rc_max_inter_bitrate_pct) {
201 const int max_rate =
202 rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
203 target = AOMMIN(target, max_rate);
204 }
205
206 return target;
207 }
208
av1_rc_clamp_iframe_target_size(const AV1_COMP * const cpi,int target)209 int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int target) {
210 const RATE_CONTROL *rc = &cpi->rc;
211 const AV1EncoderConfig *oxcf = &cpi->oxcf;
212 if (oxcf->rc_max_intra_bitrate_pct) {
213 const int max_rate =
214 rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100;
215 target = AOMMIN(target, max_rate);
216 }
217 if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
218 return target;
219 }
220
221 // Update the buffer level for higher temporal layers, given the encoded current
222 // temporal layer.
update_layer_buffer_level(SVC * svc,int encoded_frame_size)223 static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) {
224 const int current_temporal_layer = svc->temporal_layer_id;
225 for (int i = current_temporal_layer + 1; i < svc->number_temporal_layers;
226 ++i) {
227 const int layer =
228 LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
229 LAYER_CONTEXT *lc = &svc->layer_context[layer];
230 RATE_CONTROL *lrc = &lc->rc;
231 lrc->bits_off_target +=
232 (int)(lc->target_bandwidth / lc->framerate) - encoded_frame_size;
233 // Clip buffer level to maximum buffer size for the layer.
234 lrc->bits_off_target =
235 AOMMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
236 lrc->buffer_level = lrc->bits_off_target;
237 }
238 }
239 // Update the buffer level: leaky bucket model.
update_buffer_level(AV1_COMP * cpi,int encoded_frame_size)240 static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) {
241 const AV1_COMMON *const cm = &cpi->common;
242 RATE_CONTROL *const rc = &cpi->rc;
243
244 // Non-viewable frames are a special case and are treated as pure overhead.
245 if (!cm->show_frame)
246 rc->bits_off_target -= encoded_frame_size;
247 else
248 rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
249
250 // Clip the buffer level to the maximum specified buffer size.
251 rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size);
252 rc->buffer_level = rc->bits_off_target;
253
254 if (cpi->use_svc) update_layer_buffer_level(&cpi->svc, encoded_frame_size);
255 }
256
av1_rc_get_default_min_gf_interval(int width,int height,double framerate)257 int av1_rc_get_default_min_gf_interval(int width, int height,
258 double framerate) {
259 // Assume we do not need any constraint lower than 4K 20 fps
260 static const double factor_safe = 3840 * 2160 * 20.0;
261 const double factor = width * height * framerate;
262 const int default_interval =
263 clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
264
265 if (factor <= factor_safe)
266 return default_interval;
267 else
268 return AOMMAX(default_interval,
269 (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
270 // Note this logic makes:
271 // 4K24: 5
272 // 4K30: 6
273 // 4K60: 12
274 }
275
av1_rc_get_default_max_gf_interval(double framerate,int min_gf_interval)276 int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
277 int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
278 interval += (interval & 0x01); // Round to even value
279 interval = AOMMAX(MAX_GF_INTERVAL, interval);
280 return AOMMAX(interval, min_gf_interval);
281 }
282
av1_rc_init(const AV1EncoderConfig * oxcf,int pass,RATE_CONTROL * rc)283 void av1_rc_init(const AV1EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
284 int i;
285
286 if (pass == 0 && oxcf->rc_mode == AOM_CBR) {
287 rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
288 rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
289 } else {
290 rc->avg_frame_qindex[KEY_FRAME] =
291 (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
292 rc->avg_frame_qindex[INTER_FRAME] =
293 (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
294 }
295
296 rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
297 rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
298
299 rc->buffer_level = rc->starting_buffer_level;
300 rc->bits_off_target = rc->starting_buffer_level;
301
302 rc->rolling_target_bits = rc->avg_frame_bandwidth;
303 rc->rolling_actual_bits = rc->avg_frame_bandwidth;
304 rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
305 rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
306
307 rc->total_actual_bits = 0;
308 rc->total_target_bits = 0;
309 rc->total_target_vs_actual = 0;
310
311 rc->frames_since_key = 8; // Sensible default for first frame.
312 rc->this_key_frame_forced = 0;
313 rc->next_key_frame_forced = 0;
314 rc->source_alt_ref_pending = 0;
315 rc->source_alt_ref_active = 0;
316
317 rc->frames_till_gf_update_due = 0;
318 rc->ni_av_qi = oxcf->worst_allowed_q;
319 rc->ni_tot_qi = 0;
320 rc->ni_frames = 0;
321
322 rc->tot_q = 0.0;
323 rc->avg_q = av1_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
324
325 for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
326 rc->rate_correction_factors[i] = 0.7;
327 }
328 rc->rate_correction_factors[KF_STD] = 1.0;
329 rc->min_gf_interval = oxcf->min_gf_interval;
330 rc->max_gf_interval = oxcf->max_gf_interval;
331 if (rc->min_gf_interval == 0)
332 rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
333 oxcf->width, oxcf->height, oxcf->init_framerate);
334 if (rc->max_gf_interval == 0)
335 rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
336 oxcf->init_framerate, rc->min_gf_interval);
337 rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
338 }
339
av1_rc_drop_frame(AV1_COMP * cpi)340 int av1_rc_drop_frame(AV1_COMP *cpi) {
341 const AV1EncoderConfig *oxcf = &cpi->oxcf;
342 RATE_CONTROL *const rc = &cpi->rc;
343
344 if (!oxcf->drop_frames_water_mark) {
345 return 0;
346 } else {
347 if (rc->buffer_level < 0) {
348 // Always drop if buffer is below 0.
349 return 1;
350 } else {
351 // If buffer is below drop_mark, for now just drop every other frame
352 // (starting with the next frame) until it increases back over drop_mark.
353 int drop_mark =
354 (int)(oxcf->drop_frames_water_mark * rc->optimal_buffer_level / 100);
355 if ((rc->buffer_level > drop_mark) && (rc->decimation_factor > 0)) {
356 --rc->decimation_factor;
357 } else if (rc->buffer_level <= drop_mark && rc->decimation_factor == 0) {
358 rc->decimation_factor = 1;
359 }
360 if (rc->decimation_factor > 0) {
361 if (rc->decimation_count > 0) {
362 --rc->decimation_count;
363 return 1;
364 } else {
365 rc->decimation_count = rc->decimation_factor;
366 return 0;
367 }
368 } else {
369 rc->decimation_count = 0;
370 return 0;
371 }
372 }
373 }
374 }
375
adjust_q_cbr(const AV1_COMP * cpi,int q,int active_worst_quality)376 static int adjust_q_cbr(const AV1_COMP *cpi, int q, int active_worst_quality) {
377 const RATE_CONTROL *const rc = &cpi->rc;
378 const AV1_COMMON *const cm = &cpi->common;
379 const int max_delta = 16;
380 const int change_avg_frame_bandwidth =
381 abs(rc->avg_frame_bandwidth - rc->prev_avg_frame_bandwidth) >
382 0.1 * (rc->avg_frame_bandwidth);
383 // If resolution changes or avg_frame_bandwidth significantly changed,
384 // then set this flag to indicate change in target bits per macroblock.
385 const int change_target_bits_mb =
386 cm->prev_frame &&
387 (cm->width != cm->prev_frame->width ||
388 cm->height != cm->prev_frame->height || change_avg_frame_bandwidth);
389 // Apply some control/clamp to QP under certain conditions.
390 if (cm->current_frame.frame_type != KEY_FRAME && !cpi->use_svc &&
391 rc->frames_since_key > 1 && !change_target_bits_mb &&
392 (!cpi->oxcf.gf_cbr_boost_pct ||
393 !(cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame))) {
394 // Make sure q is between oscillating Qs to prevent resonance.
395 if (rc->rc_1_frame * rc->rc_2_frame == -1 &&
396 rc->q_1_frame != rc->q_2_frame) {
397 q = clamp(q, AOMMIN(rc->q_1_frame, rc->q_2_frame),
398 AOMMAX(rc->q_1_frame, rc->q_2_frame));
399 }
400 // Limit the decrease in Q from previous frame.
401 if (rc->q_1_frame - q > max_delta) q = rc->q_1_frame - max_delta;
402 }
403 // For single spatial layer: if resolution has increased push q closer
404 // to the active_worst to avoid excess overshoot.
405 if (cpi->svc.number_spatial_layers <= 1 && cm->prev_frame &&
406 (cm->width * cm->height >
407 1.5 * cm->prev_frame->width * cm->prev_frame->height))
408 q = (q + active_worst_quality) >> 1;
409 return AOMMAX(AOMMIN(q, cpi->rc.worst_quality), cpi->rc.best_quality);
410 }
411
412 static const RATE_FACTOR_LEVEL rate_factor_levels[FRAME_UPDATE_TYPES] = {
413 KF_STD, // KF_UPDATE
414 INTER_NORMAL, // LF_UPDATE
415 GF_ARF_STD, // GF_UPDATE
416 GF_ARF_STD, // ARF_UPDATE
417 INTER_NORMAL, // OVERLAY_UPDATE
418 INTER_NORMAL, // INTNL_OVERLAY_UPDATE
419 GF_ARF_LOW, // INTNL_ARF_UPDATE
420 };
421
get_rate_factor_level(const GF_GROUP * const gf_group)422 static RATE_FACTOR_LEVEL get_rate_factor_level(const GF_GROUP *const gf_group) {
423 const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_group->index];
424 assert(update_type < FRAME_UPDATE_TYPES);
425 return rate_factor_levels[update_type];
426 }
427
get_rate_correction_factor(const AV1_COMP * cpi,int width,int height)428 static double get_rate_correction_factor(const AV1_COMP *cpi, int width,
429 int height) {
430 const RATE_CONTROL *const rc = &cpi->rc;
431 double rcf;
432
433 if (cpi->common.current_frame.frame_type == KEY_FRAME) {
434 rcf = rc->rate_correction_factors[KF_STD];
435 } else if (is_stat_consumption_stage(cpi)) {
436 const RATE_FACTOR_LEVEL rf_lvl = get_rate_factor_level(&cpi->gf_group);
437 rcf = rc->rate_correction_factors[rf_lvl];
438 } else {
439 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
440 !rc->is_src_frame_alt_ref && !cpi->use_svc &&
441 (cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
442 rcf = rc->rate_correction_factors[GF_ARF_STD];
443 else
444 rcf = rc->rate_correction_factors[INTER_NORMAL];
445 }
446 rcf *= resize_rate_factor(cpi, width, height);
447 return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
448 }
449
set_rate_correction_factor(AV1_COMP * cpi,double factor,int width,int height)450 static void set_rate_correction_factor(AV1_COMP *cpi, double factor, int width,
451 int height) {
452 RATE_CONTROL *const rc = &cpi->rc;
453
454 // Normalize RCF to account for the size-dependent scaling factor.
455 factor /= resize_rate_factor(cpi, width, height);
456
457 factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
458
459 if (cpi->common.current_frame.frame_type == KEY_FRAME) {
460 rc->rate_correction_factors[KF_STD] = factor;
461 } else if (is_stat_consumption_stage(cpi)) {
462 const RATE_FACTOR_LEVEL rf_lvl = get_rate_factor_level(&cpi->gf_group);
463 rc->rate_correction_factors[rf_lvl] = factor;
464 } else {
465 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
466 !rc->is_src_frame_alt_ref && !cpi->use_svc &&
467 (cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
468 rc->rate_correction_factors[GF_ARF_STD] = factor;
469 else
470 rc->rate_correction_factors[INTER_NORMAL] = factor;
471 }
472 }
473
av1_rc_update_rate_correction_factors(AV1_COMP * cpi,int width,int height)474 void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int width,
475 int height) {
476 const AV1_COMMON *const cm = &cpi->common;
477 int correction_factor = 100;
478 double rate_correction_factor =
479 get_rate_correction_factor(cpi, width, height);
480 double adjustment_limit;
481 const int MBs = av1_get_MBs(width, height);
482
483 int projected_size_based_on_q = 0;
484
485 // Do not update the rate factors for arf overlay frames.
486 if (cpi->rc.is_src_frame_alt_ref) return;
487
488 // Clear down mmx registers to allow floating point in what follows
489 aom_clear_system_state();
490
491 // Work out how big we would have expected the frame to be at this Q given
492 // the current correction factor.
493 // Stay in double to avoid int overflow when values are large
494 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
495 projected_size_based_on_q =
496 av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
497 } else {
498 projected_size_based_on_q = av1_estimate_bits_at_q(
499 cm->current_frame.frame_type, cm->quant_params.base_qindex, MBs,
500 rate_correction_factor, cm->seq_params.bit_depth);
501 }
502 // Work out a size correction factor.
503 if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
504 correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
505 projected_size_based_on_q);
506
507 // More heavily damped adjustment used if we have been oscillating either side
508 // of target.
509 if (correction_factor > 0) {
510 adjustment_limit =
511 0.25 + 0.5 * AOMMIN(1, fabs(log10(0.01 * correction_factor)));
512 } else {
513 adjustment_limit = 0.75;
514 }
515
516 cpi->rc.q_2_frame = cpi->rc.q_1_frame;
517 cpi->rc.q_1_frame = cm->quant_params.base_qindex;
518 cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
519 if (correction_factor > 110)
520 cpi->rc.rc_1_frame = -1;
521 else if (correction_factor < 90)
522 cpi->rc.rc_1_frame = 1;
523 else
524 cpi->rc.rc_1_frame = 0;
525
526 if (correction_factor > 102) {
527 // We are not already at the worst allowable quality
528 correction_factor =
529 (int)(100 + ((correction_factor - 100) * adjustment_limit));
530 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
531 // Keep rate_correction_factor within limits
532 if (rate_correction_factor > MAX_BPB_FACTOR)
533 rate_correction_factor = MAX_BPB_FACTOR;
534 } else if (correction_factor < 99) {
535 // We are not already at the best allowable quality
536 correction_factor =
537 (int)(100 - ((100 - correction_factor) * adjustment_limit));
538 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
539
540 // Keep rate_correction_factor within limits
541 if (rate_correction_factor < MIN_BPB_FACTOR)
542 rate_correction_factor = MIN_BPB_FACTOR;
543 }
544
545 set_rate_correction_factor(cpi, rate_correction_factor, width, height);
546 }
547
548 // Calculate rate for the given 'q'.
get_bits_per_mb(const AV1_COMP * cpi,int use_cyclic_refresh,double correction_factor,int q)549 static int get_bits_per_mb(const AV1_COMP *cpi, int use_cyclic_refresh,
550 double correction_factor, int q) {
551 const AV1_COMMON *const cm = &cpi->common;
552 return use_cyclic_refresh
553 ? av1_cyclic_refresh_rc_bits_per_mb(cpi, q, correction_factor)
554 : av1_rc_bits_per_mb(cm->current_frame.frame_type, q,
555 correction_factor, cm->seq_params.bit_depth);
556 }
557
558 // Similar to find_qindex_by_rate() function in ratectrl.c, but returns the q
559 // index with rate just above or below the desired rate, depending on which of
560 // the two rates is closer to the desired rate.
561 // Also, respects the selected aq_mode when computing the rate.
find_closest_qindex_by_rate(int desired_bits_per_mb,const AV1_COMP * cpi,double correction_factor,int best_qindex,int worst_qindex)562 static int find_closest_qindex_by_rate(int desired_bits_per_mb,
563 const AV1_COMP *cpi,
564 double correction_factor,
565 int best_qindex, int worst_qindex) {
566 const int use_cyclic_refresh = cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
567 cpi->cyclic_refresh->apply_cyclic_refresh;
568
569 // Find 'qindex' based on 'desired_bits_per_mb'.
570 assert(best_qindex <= worst_qindex);
571 int low = best_qindex;
572 int high = worst_qindex;
573 while (low < high) {
574 const int mid = (low + high) >> 1;
575 const int mid_bits_per_mb =
576 get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, mid);
577 if (mid_bits_per_mb > desired_bits_per_mb) {
578 low = mid + 1;
579 } else {
580 high = mid;
581 }
582 }
583 assert(low == high);
584
585 // Calculate rate difference of this q index from the desired rate.
586 const int curr_q = low;
587 const int curr_bits_per_mb =
588 get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, curr_q);
589 const int curr_bit_diff = (curr_bits_per_mb <= desired_bits_per_mb)
590 ? desired_bits_per_mb - curr_bits_per_mb
591 : INT_MAX;
592 assert((curr_bit_diff != INT_MAX && curr_bit_diff >= 0) ||
593 curr_q == worst_qindex);
594
595 // Calculate rate difference for previous q index too.
596 const int prev_q = curr_q - 1;
597 int prev_bit_diff;
598 if (curr_bit_diff == INT_MAX || curr_q == best_qindex) {
599 prev_bit_diff = INT_MAX;
600 } else {
601 const int prev_bits_per_mb =
602 get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, prev_q);
603 assert(prev_bits_per_mb > desired_bits_per_mb);
604 prev_bit_diff = prev_bits_per_mb - desired_bits_per_mb;
605 }
606
607 // Pick one of the two q indices, depending on which one has rate closer to
608 // the desired rate.
609 return (curr_bit_diff <= prev_bit_diff) ? curr_q : prev_q;
610 }
611
av1_rc_regulate_q(const AV1_COMP * cpi,int target_bits_per_frame,int active_best_quality,int active_worst_quality,int width,int height)612 int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame,
613 int active_best_quality, int active_worst_quality,
614 int width, int height) {
615 const int MBs = av1_get_MBs(width, height);
616 const double correction_factor =
617 get_rate_correction_factor(cpi, width, height);
618 const int target_bits_per_mb =
619 (int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / MBs);
620
621 int q =
622 find_closest_qindex_by_rate(target_bits_per_mb, cpi, correction_factor,
623 active_best_quality, active_worst_quality);
624 if (cpi->oxcf.rc_mode == AOM_CBR && has_no_stats_stage(cpi))
625 return adjust_q_cbr(cpi, q, active_worst_quality);
626
627 return q;
628 }
629
get_active_quality(int q,int gfu_boost,int low,int high,int * low_motion_minq,int * high_motion_minq)630 static int get_active_quality(int q, int gfu_boost, int low, int high,
631 int *low_motion_minq, int *high_motion_minq) {
632 if (gfu_boost > high) {
633 return low_motion_minq[q];
634 } else if (gfu_boost < low) {
635 return high_motion_minq[q];
636 } else {
637 const int gap = high - low;
638 const int offset = high - gfu_boost;
639 const int qdiff = high_motion_minq[q] - low_motion_minq[q];
640 const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
641 return low_motion_minq[q] + adjustment;
642 }
643 }
644
get_kf_active_quality(const RATE_CONTROL * const rc,int q,aom_bit_depth_t bit_depth)645 static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
646 aom_bit_depth_t bit_depth) {
647 int *kf_low_motion_minq;
648 int *kf_high_motion_minq;
649 ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
650 ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
651 return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
652 kf_low_motion_minq, kf_high_motion_minq);
653 }
654
get_gf_active_quality(const RATE_CONTROL * const rc,int q,aom_bit_depth_t bit_depth)655 static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
656 aom_bit_depth_t bit_depth) {
657 int *arfgf_low_motion_minq;
658 int *arfgf_high_motion_minq;
659 ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
660 ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
661 return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
662 arfgf_low_motion_minq, arfgf_high_motion_minq);
663 }
664
get_gf_high_motion_quality(int q,aom_bit_depth_t bit_depth)665 static int get_gf_high_motion_quality(int q, aom_bit_depth_t bit_depth) {
666 int *arfgf_high_motion_minq;
667 ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
668 return arfgf_high_motion_minq[q];
669 }
670
calc_active_worst_quality_one_pass_vbr(const AV1_COMP * cpi)671 static int calc_active_worst_quality_one_pass_vbr(const AV1_COMP *cpi) {
672 const RATE_CONTROL *const rc = &cpi->rc;
673 const unsigned int curr_frame = cpi->common.current_frame.frame_number;
674 int active_worst_quality;
675
676 if (cpi->common.current_frame.frame_type == KEY_FRAME) {
677 active_worst_quality =
678 curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] * 2;
679 } else {
680 if (!rc->is_src_frame_alt_ref &&
681 (cpi->refresh_golden_frame || cpi->refresh_bwd_ref_frame ||
682 cpi->refresh_alt_ref_frame)) {
683 active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
684 : rc->last_q[INTER_FRAME];
685 } else {
686 active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
687 : rc->last_q[INTER_FRAME] * 2;
688 }
689 }
690 return AOMMIN(active_worst_quality, rc->worst_quality);
691 }
692
693 // Adjust active_worst_quality level based on buffer level.
calc_active_worst_quality_one_pass_cbr(const AV1_COMP * cpi)694 static int calc_active_worst_quality_one_pass_cbr(const AV1_COMP *cpi) {
695 // Adjust active_worst_quality: If buffer is above the optimal/target level,
696 // bring active_worst_quality down depending on fullness of buffer.
697 // If buffer is below the optimal level, let the active_worst_quality go from
698 // ambient Q (at buffer = optimal level) to worst_quality level
699 // (at buffer = critical level).
700 const AV1_COMMON *const cm = &cpi->common;
701 const RATE_CONTROL *rc = &cpi->rc;
702 // Buffer level below which we push active_worst to worst_quality.
703 int64_t critical_level = rc->optimal_buffer_level >> 3;
704 int64_t buff_lvl_step = 0;
705 int adjustment = 0;
706 int active_worst_quality;
707 int ambient_qp;
708 if (cm->current_frame.frame_type == KEY_FRAME) return rc->worst_quality;
709 // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
710 // for the first few frames following key frame. These are both initialized
711 // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
712 // So for first few frames following key, the qp of that key frame is weighted
713 // into the active_worst_quality setting.
714 ambient_qp = (cm->current_frame.frame_number < 5)
715 ? AOMMIN(rc->avg_frame_qindex[INTER_FRAME],
716 rc->avg_frame_qindex[KEY_FRAME])
717 : rc->avg_frame_qindex[INTER_FRAME];
718 active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4);
719 if (rc->buffer_level > rc->optimal_buffer_level) {
720 // Adjust down.
721 // Maximum limit for down adjustment, ~30%.
722 int max_adjustment_down = active_worst_quality / 3;
723 if (max_adjustment_down) {
724 buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) /
725 max_adjustment_down);
726 if (buff_lvl_step)
727 adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
728 buff_lvl_step);
729 active_worst_quality -= adjustment;
730 }
731 } else if (rc->buffer_level > critical_level) {
732 // Adjust up from ambient Q.
733 if (critical_level) {
734 buff_lvl_step = (rc->optimal_buffer_level - critical_level);
735 if (buff_lvl_step) {
736 adjustment = (int)((rc->worst_quality - ambient_qp) *
737 (rc->optimal_buffer_level - rc->buffer_level) /
738 buff_lvl_step);
739 }
740 active_worst_quality = ambient_qp + adjustment;
741 }
742 } else {
743 // Set to worst_quality if buffer is below critical level.
744 active_worst_quality = rc->worst_quality;
745 }
746 return active_worst_quality;
747 }
748
rc_pick_q_and_bounds_one_pass_cbr(const AV1_COMP * cpi,int width,int height,int * bottom_index,int * top_index)749 static int rc_pick_q_and_bounds_one_pass_cbr(const AV1_COMP *cpi, int width,
750 int height, int *bottom_index,
751 int *top_index) {
752 const AV1_COMMON *const cm = &cpi->common;
753 const RATE_CONTROL *const rc = &cpi->rc;
754 const CurrentFrame *const current_frame = &cm->current_frame;
755 int active_best_quality;
756 int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
757 int q;
758 int *rtc_minq;
759 const int bit_depth = cm->seq_params.bit_depth;
760 ASSIGN_MINQ_TABLE(bit_depth, rtc_minq);
761
762 if (frame_is_intra_only(cm)) {
763 active_best_quality = rc->best_quality;
764 // Handle the special case for key frames forced when we have reached
765 // the maximum key frame interval. Here force the Q to a range
766 // based on the ambient Q to reduce the risk of popping.
767 if (rc->this_key_frame_forced) {
768 int qindex = rc->last_boosted_qindex;
769 double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
770 int delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
771 (last_boosted_q * 0.75), bit_depth);
772 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
773 } else if (current_frame->frame_number > 0) {
774 // not first frame of one pass and kf_boost is set
775 double q_adj_factor = 1.0;
776 double q_val;
777
778 active_best_quality =
779 get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth);
780
781 // Allow somewhat lower kf minq with small image formats.
782 if ((width * height) <= (352 * 288)) {
783 q_adj_factor -= 0.25;
784 }
785
786 // Convert the adjustment factor to a qindex delta
787 // on active_best_quality.
788 q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
789 active_best_quality +=
790 av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
791 }
792 } else if (!rc->is_src_frame_alt_ref && !cpi->use_svc &&
793 cpi->oxcf.gf_cbr_boost_pct &&
794 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
795 // Use the lower of active_worst_quality and recent
796 // average Q as basis for GF/ARF best Q limit unless last frame was
797 // a key frame.
798 if (rc->frames_since_key > 1 &&
799 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
800 q = rc->avg_frame_qindex[INTER_FRAME];
801 } else {
802 q = active_worst_quality;
803 }
804 active_best_quality = get_gf_active_quality(rc, q, bit_depth);
805 } else {
806 // Use the lower of active_worst_quality and recent/average Q.
807 if (current_frame->frame_number > 1) {
808 if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
809 active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
810 else
811 active_best_quality = rtc_minq[active_worst_quality];
812 } else {
813 if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
814 active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
815 else
816 active_best_quality = rtc_minq[active_worst_quality];
817 }
818 }
819
820 // Clip the active best and worst quality values to limits
821 active_best_quality =
822 clamp(active_best_quality, rc->best_quality, rc->worst_quality);
823 active_worst_quality =
824 clamp(active_worst_quality, active_best_quality, rc->worst_quality);
825
826 *top_index = active_worst_quality;
827 *bottom_index = active_best_quality;
828
829 // Limit Q range for the adaptive loop.
830 if (current_frame->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
831 !(current_frame->frame_number == 0)) {
832 int qdelta = 0;
833 aom_clear_system_state();
834 qdelta = av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type,
835 active_worst_quality, 2.0, bit_depth);
836 *top_index = active_worst_quality + qdelta;
837 *top_index = AOMMAX(*top_index, *bottom_index);
838 }
839
840 // Special case code to try and match quality with forced key frames
841 if (current_frame->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
842 q = rc->last_boosted_qindex;
843 } else {
844 q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
845 active_worst_quality, width, height);
846 if (q > *top_index) {
847 // Special case when we are targeting the max allowed rate
848 if (rc->this_frame_target >= rc->max_frame_bandwidth)
849 *top_index = q;
850 else
851 q = *top_index;
852 }
853 }
854
855 assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
856 assert(*bottom_index <= rc->worst_quality &&
857 *bottom_index >= rc->best_quality);
858 assert(q <= rc->worst_quality && q >= rc->best_quality);
859 return q;
860 }
861
gf_group_pyramid_level(const GF_GROUP * gf_group,int gf_index)862 static int gf_group_pyramid_level(const GF_GROUP *gf_group, int gf_index) {
863 return gf_group->layer_depth[gf_index];
864 }
865
get_active_cq_level(const RATE_CONTROL * rc,const AV1EncoderConfig * const oxcf,int intra_only,SUPERRES_MODE superres_mode,int superres_denom)866 static int get_active_cq_level(const RATE_CONTROL *rc,
867 const AV1EncoderConfig *const oxcf,
868 int intra_only, SUPERRES_MODE superres_mode,
869 int superres_denom) {
870 static const double cq_adjust_threshold = 0.1;
871 int active_cq_level = oxcf->cq_level;
872 (void)intra_only;
873 if (oxcf->rc_mode == AOM_CQ || oxcf->rc_mode == AOM_Q) {
874 // printf("Superres %d %d %d = %d\n", superres_denom, intra_only,
875 // rc->frames_to_key, !(intra_only && rc->frames_to_key <= 1));
876 if ((superres_mode == SUPERRES_QTHRESH || superres_mode == SUPERRES_AUTO) &&
877 superres_denom != SCALE_NUMERATOR) {
878 int mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO;
879 if (intra_only && rc->frames_to_key <= 1) {
880 mult = 0;
881 } else if (intra_only) {
882 mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME;
883 } else {
884 mult = SUPERRES_QADJ_PER_DENOM_ARFFRAME;
885 }
886 active_cq_level = AOMMAX(
887 active_cq_level - ((superres_denom - SCALE_NUMERATOR) * mult), 0);
888 }
889 }
890 if (oxcf->rc_mode == AOM_CQ && rc->total_target_bits > 0) {
891 const double x = (double)rc->total_actual_bits / rc->total_target_bits;
892 if (x < cq_adjust_threshold) {
893 active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
894 }
895 }
896 return active_cq_level;
897 }
898
get_q_using_fixed_offsets(const AV1EncoderConfig * const oxcf,const RATE_CONTROL * const rc,const GF_GROUP * const gf_group,int gf_index,int cq_level,int bit_depth)899 static int get_q_using_fixed_offsets(const AV1EncoderConfig *const oxcf,
900 const RATE_CONTROL *const rc,
901 const GF_GROUP *const gf_group,
902 int gf_index, int cq_level,
903 int bit_depth) {
904 assert(oxcf->use_fixed_qp_offsets);
905 assert(oxcf->rc_mode == AOM_Q);
906 const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_index];
907
908 int offset_idx = -1;
909 if (update_type == KF_UPDATE) {
910 if (rc->frames_to_key == 1) {
911 // Image / intra-only coding: ignore offsets.
912 return cq_level;
913 }
914 offset_idx = 0;
915 } else if (update_type == ARF_UPDATE || update_type == GF_UPDATE) {
916 offset_idx = 1;
917 } else if (update_type == INTNL_ARF_UPDATE) {
918 offset_idx =
919 AOMMIN(gf_group->layer_depth[gf_index], FIXED_QP_OFFSET_COUNT - 1);
920 } else { // Leaf level / overlay frame.
921 assert(update_type == LF_UPDATE || update_type == OVERLAY_UPDATE ||
922 update_type == INTNL_OVERLAY_UPDATE);
923 return cq_level; // Directly Return worst quality allowed.
924 }
925 assert(offset_idx >= 0 && offset_idx < FIXED_QP_OFFSET_COUNT);
926 assert(oxcf->fixed_qp_offsets[offset_idx] >= 0);
927
928 // Get qindex offset, by first converting to 'q' and then back.
929 const double q_val_orig = av1_convert_qindex_to_q(cq_level, bit_depth);
930 const double q_val_target =
931 AOMMAX(q_val_orig - oxcf->fixed_qp_offsets[offset_idx], 0.0);
932 const int delta_qindex =
933 av1_compute_qdelta(rc, q_val_orig, q_val_target, bit_depth);
934 return AOMMAX(cq_level + delta_qindex, 0);
935 }
936
rc_pick_q_and_bounds_one_pass_vbr(const AV1_COMP * cpi,int width,int height,int * bottom_index,int * top_index)937 static int rc_pick_q_and_bounds_one_pass_vbr(const AV1_COMP *cpi, int width,
938 int height, int *bottom_index,
939 int *top_index) {
940 const AV1_COMMON *const cm = &cpi->common;
941 const RATE_CONTROL *const rc = &cpi->rc;
942 const CurrentFrame *const current_frame = &cm->current_frame;
943 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
944 const int cq_level =
945 get_active_cq_level(rc, oxcf, frame_is_intra_only(cm), cpi->superres_mode,
946 cm->superres_scale_denominator);
947 const int bit_depth = cm->seq_params.bit_depth;
948
949 if (oxcf->use_fixed_qp_offsets) {
950 return get_q_using_fixed_offsets(oxcf, rc, &cpi->gf_group,
951 cpi->gf_group.index, cq_level, bit_depth);
952 }
953
954 int active_best_quality;
955 int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
956 int q;
957 int *inter_minq;
958 ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
959
960 if (frame_is_intra_only(cm)) {
961 if (oxcf->rc_mode == AOM_Q) {
962 const int qindex = cq_level;
963 const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
964 const int delta_qindex =
965 av1_compute_qdelta(rc, q_val, q_val * 0.25, bit_depth);
966 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
967 } else if (rc->this_key_frame_forced) {
968 const int qindex = rc->last_boosted_qindex;
969 const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
970 const int delta_qindex = av1_compute_qdelta(
971 rc, last_boosted_q, last_boosted_q * 0.75, bit_depth);
972 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
973 } else { // not first frame of one pass and kf_boost is set
974 double q_adj_factor = 1.0;
975
976 active_best_quality =
977 get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth);
978
979 // Allow somewhat lower kf minq with small image formats.
980 if ((width * height) <= (352 * 288)) {
981 q_adj_factor -= 0.25;
982 }
983
984 // Convert the adjustment factor to a qindex delta on active_best_quality.
985 {
986 const double q_val =
987 av1_convert_qindex_to_q(active_best_quality, bit_depth);
988 active_best_quality +=
989 av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
990 }
991 }
992 } else if (!rc->is_src_frame_alt_ref &&
993 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
994 // Use the lower of active_worst_quality and recent
995 // average Q as basis for GF/ARF best Q limit unless last frame was
996 // a key frame.
997 q = (rc->frames_since_key > 1 &&
998 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
999 ? rc->avg_frame_qindex[INTER_FRAME]
1000 : rc->avg_frame_qindex[KEY_FRAME];
1001 // For constrained quality dont allow Q less than the cq level
1002 if (oxcf->rc_mode == AOM_CQ) {
1003 if (q < cq_level) q = cq_level;
1004 active_best_quality = get_gf_active_quality(rc, q, bit_depth);
1005 // Constrained quality use slightly lower active best.
1006 active_best_quality = active_best_quality * 15 / 16;
1007 } else if (oxcf->rc_mode == AOM_Q) {
1008 const int qindex = cq_level;
1009 const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
1010 const int delta_qindex =
1011 (cpi->refresh_alt_ref_frame)
1012 ? av1_compute_qdelta(rc, q_val, q_val * 0.40, bit_depth)
1013 : av1_compute_qdelta(rc, q_val, q_val * 0.50, bit_depth);
1014 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
1015 } else {
1016 active_best_quality = get_gf_active_quality(rc, q, bit_depth);
1017 }
1018 } else {
1019 if (oxcf->rc_mode == AOM_Q) {
1020 const int qindex = cq_level;
1021 const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
1022 const double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
1023 0.70, 1.0, 0.85, 1.0 };
1024 const int delta_qindex = av1_compute_qdelta(
1025 rc, q_val,
1026 q_val * delta_rate[current_frame->frame_number % FIXED_GF_INTERVAL],
1027 bit_depth);
1028 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
1029 } else {
1030 // Use the lower of active_worst_quality and recent/average Q.
1031 active_best_quality = (current_frame->frame_number > 1)
1032 ? inter_minq[rc->avg_frame_qindex[INTER_FRAME]]
1033 : inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
1034 // For the constrained quality mode we don't want
1035 // q to fall below the cq level.
1036 if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
1037 active_best_quality = cq_level;
1038 }
1039 }
1040 }
1041
1042 // Clip the active best and worst quality values to limits
1043 active_best_quality =
1044 clamp(active_best_quality, rc->best_quality, rc->worst_quality);
1045 active_worst_quality =
1046 clamp(active_worst_quality, active_best_quality, rc->worst_quality);
1047
1048 *top_index = active_worst_quality;
1049 *bottom_index = active_best_quality;
1050
1051 // Limit Q range for the adaptive loop.
1052 {
1053 int qdelta = 0;
1054 aom_clear_system_state();
1055 if (current_frame->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
1056 !(current_frame->frame_number == 0)) {
1057 qdelta = av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type,
1058 active_worst_quality, 2.0, bit_depth);
1059 } else if (!rc->is_src_frame_alt_ref &&
1060 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
1061 qdelta =
1062 av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type,
1063 active_worst_quality, 1.75, bit_depth);
1064 }
1065 *top_index = active_worst_quality + qdelta;
1066 *top_index = AOMMAX(*top_index, *bottom_index);
1067 }
1068
1069 if (oxcf->rc_mode == AOM_Q) {
1070 q = active_best_quality;
1071 // Special case code to try and match quality with forced key frames
1072 } else if ((current_frame->frame_type == KEY_FRAME) &&
1073 rc->this_key_frame_forced) {
1074 q = rc->last_boosted_qindex;
1075 } else {
1076 q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
1077 active_worst_quality, width, height);
1078 if (q > *top_index) {
1079 // Special case when we are targeting the max allowed rate
1080 if (rc->this_frame_target >= rc->max_frame_bandwidth)
1081 *top_index = q;
1082 else
1083 q = *top_index;
1084 }
1085 }
1086
1087 assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
1088 assert(*bottom_index <= rc->worst_quality &&
1089 *bottom_index >= rc->best_quality);
1090 assert(q <= rc->worst_quality && q >= rc->best_quality);
1091 return q;
1092 }
1093
1094 static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
1095 1.00, // INTER_NORMAL
1096 1.50, // GF_ARF_LOW
1097 2.00, // GF_ARF_STD
1098 2.00, // KF_STD
1099 };
1100
av1_frame_type_qdelta(const AV1_COMP * cpi,int q)1101 int av1_frame_type_qdelta(const AV1_COMP *cpi, int q) {
1102 const RATE_FACTOR_LEVEL rf_lvl = get_rate_factor_level(&cpi->gf_group);
1103 const FRAME_TYPE frame_type = (rf_lvl == KF_STD) ? KEY_FRAME : INTER_FRAME;
1104 double rate_factor;
1105
1106 rate_factor = rate_factor_deltas[rf_lvl];
1107 if (rf_lvl == GF_ARF_LOW) {
1108 rate_factor -= (cpi->gf_group.layer_depth[cpi->gf_group.index] - 2) * 0.1;
1109 rate_factor = AOMMAX(rate_factor, 1.0);
1110 }
1111 return av1_compute_qdelta_by_rate(&cpi->rc, frame_type, q, rate_factor,
1112 cpi->common.seq_params.bit_depth);
1113 }
1114
1115 // This unrestricted Q selection on CQ mode is useful when testing new features,
1116 // but may lead to Q being out of range on current RC restrictions
1117 #if USE_UNRESTRICTED_Q_IN_CQ_MODE
rc_pick_q_and_bounds_one_pass_cq(const AV1_COMP * cpi,int width,int height,int * bottom_index,int * top_index)1118 static int rc_pick_q_and_bounds_one_pass_cq(const AV1_COMP *cpi, int width,
1119 int height, int *bottom_index,
1120 int *top_index) {
1121 const AV1_COMMON *const cm = &cpi->common;
1122 const RATE_CONTROL *const rc = &cpi->rc;
1123 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
1124 const int cq_level = get_active_cq_level(rc, oxcf, frame_is_intra_only(cm),
1125 cm->superres_scale_denominator);
1126 const int bit_depth = cm->seq_params.bit_depth;
1127 const int q = (int)av1_convert_qindex_to_q(cq_level, bit_depth);
1128 (void)width;
1129 (void)height;
1130 *top_index = q;
1131 *bottom_index = q;
1132
1133 return q;
1134 }
1135 #endif // USE_UNRESTRICTED_Q_IN_CQ_MODE
1136
1137 #define STATIC_MOTION_THRESH 95
get_intra_q_and_bounds_two_pass(const AV1_COMP * cpi,int width,int height,int * active_best,int * active_worst,int cq_level,int is_fwd_kf)1138 static void get_intra_q_and_bounds_two_pass(const AV1_COMP *cpi, int width,
1139 int height, int *active_best,
1140 int *active_worst, int cq_level,
1141 int is_fwd_kf) {
1142 const AV1_COMMON *const cm = &cpi->common;
1143 const RATE_CONTROL *const rc = &cpi->rc;
1144 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
1145 int active_best_quality;
1146 int active_worst_quality = *active_worst;
1147 const int bit_depth = cm->seq_params.bit_depth;
1148
1149 if (rc->frames_to_key == 1 && oxcf->rc_mode == AOM_Q) {
1150 // If the next frame is also a key frame or the current frame is the
1151 // only frame in the sequence in AOM_Q mode, just use the cq_level
1152 // as q.
1153 active_best_quality = cq_level;
1154 active_worst_quality = cq_level;
1155 } else if (is_fwd_kf) {
1156 // Handle the special case for forward reference key frames.
1157 // Increase the boost because this keyframe is used as a forward and
1158 // backward reference.
1159 const int qindex = rc->last_boosted_qindex;
1160 const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
1161 const int delta_qindex = av1_compute_qdelta(
1162 rc, last_boosted_q, last_boosted_q * 0.25, bit_depth);
1163 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
1164 } else if (rc->this_key_frame_forced) {
1165 // Handle the special case for key frames forced when we have reached
1166 // the maximum key frame interval. Here force the Q to a range
1167 // based on the ambient Q to reduce the risk of popping.
1168 double last_boosted_q;
1169 int delta_qindex;
1170 int qindex;
1171
1172 if (is_stat_consumption_stage_twopass(cpi) &&
1173 cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1174 qindex = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1175 active_best_quality = qindex;
1176 last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
1177 delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
1178 last_boosted_q * 1.25, bit_depth);
1179 active_worst_quality =
1180 AOMMIN(qindex + delta_qindex, active_worst_quality);
1181 } else {
1182 qindex = rc->last_boosted_qindex;
1183 last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
1184 delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
1185 last_boosted_q * 0.50, bit_depth);
1186 active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
1187 }
1188 } else {
1189 // Not forced keyframe.
1190 double q_adj_factor = 1.0;
1191 double q_val;
1192
1193 // Baseline value derived from cpi->active_worst_quality and kf boost.
1194 active_best_quality =
1195 get_kf_active_quality(rc, active_worst_quality, bit_depth);
1196
1197 if (is_stat_consumption_stage_twopass(cpi) &&
1198 cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) {
1199 active_best_quality /= 3;
1200 }
1201
1202 // Allow somewhat lower kf minq with small image formats.
1203 if ((width * height) <= (352 * 288)) {
1204 q_adj_factor -= 0.25;
1205 }
1206
1207 // Make a further adjustment based on the kf zero motion measure.
1208 if (is_stat_consumption_stage_twopass(cpi))
1209 q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
1210
1211 // Convert the adjustment factor to a qindex delta
1212 // on active_best_quality.
1213 q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
1214 active_best_quality +=
1215 av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
1216
1217 // Tweak active_best_quality for AOM_Q mode when superres is on, as this
1218 // will be used directly as 'q' later.
1219 if (oxcf->rc_mode == AOM_Q &&
1220 (cpi->superres_mode == SUPERRES_QTHRESH ||
1221 cpi->superres_mode == SUPERRES_AUTO) &&
1222 cm->superres_scale_denominator != SCALE_NUMERATOR) {
1223 active_best_quality =
1224 AOMMAX(active_best_quality -
1225 ((cm->superres_scale_denominator - SCALE_NUMERATOR) *
1226 SUPERRES_QADJ_PER_DENOM_KEYFRAME),
1227 0);
1228 }
1229 }
1230 *active_best = active_best_quality;
1231 *active_worst = active_worst_quality;
1232 }
1233
adjust_active_best_and_worst_quality(const AV1_COMP * cpi,const int is_intrl_arf_boost,int * active_worst,int * active_best)1234 static void adjust_active_best_and_worst_quality(const AV1_COMP *cpi,
1235 const int is_intrl_arf_boost,
1236 int *active_worst,
1237 int *active_best) {
1238 const AV1_COMMON *const cm = &cpi->common;
1239 const RATE_CONTROL *const rc = &cpi->rc;
1240 const int bit_depth = cpi->common.seq_params.bit_depth;
1241 int active_best_quality = *active_best;
1242 int active_worst_quality = *active_worst;
1243 // Extension to max or min Q if undershoot or overshoot is outside
1244 // the permitted range.
1245 if (cpi->oxcf.rc_mode != AOM_Q) {
1246 if (frame_is_intra_only(cm) ||
1247 (!rc->is_src_frame_alt_ref &&
1248 (cpi->refresh_golden_frame || is_intrl_arf_boost ||
1249 cpi->refresh_alt_ref_frame))) {
1250 active_best_quality -=
1251 (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
1252 active_worst_quality += (cpi->twopass.extend_maxq / 2);
1253 } else {
1254 active_best_quality -=
1255 (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
1256 active_worst_quality += cpi->twopass.extend_maxq;
1257 }
1258 }
1259
1260 aom_clear_system_state();
1261 #ifndef STRICT_RC
1262 // Static forced key frames Q restrictions dealt with elsewhere.
1263 if (!(frame_is_intra_only(cm)) || !rc->this_key_frame_forced ||
1264 (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
1265 const int qdelta = av1_frame_type_qdelta(cpi, active_worst_quality);
1266 active_worst_quality =
1267 AOMMAX(active_worst_quality + qdelta, active_best_quality);
1268 }
1269 #endif
1270
1271 // Modify active_best_quality for downscaled normal frames.
1272 if (av1_frame_scaled(cm) && !frame_is_kf_gf_arf(cpi)) {
1273 int qdelta = av1_compute_qdelta_by_rate(
1274 rc, cm->current_frame.frame_type, active_best_quality, 2.0, bit_depth);
1275 active_best_quality =
1276 AOMMAX(active_best_quality + qdelta, rc->best_quality);
1277 }
1278
1279 active_best_quality =
1280 clamp(active_best_quality, rc->best_quality, rc->worst_quality);
1281 active_worst_quality =
1282 clamp(active_worst_quality, active_best_quality, rc->worst_quality);
1283
1284 *active_best = active_best_quality;
1285 *active_worst = active_worst_quality;
1286 }
1287
get_q(const AV1_COMP * cpi,const int width,const int height,const int active_worst_quality,const int active_best_quality)1288 static int get_q(const AV1_COMP *cpi, const int width, const int height,
1289 const int active_worst_quality,
1290 const int active_best_quality) {
1291 const AV1_COMMON *const cm = &cpi->common;
1292 const RATE_CONTROL *const rc = &cpi->rc;
1293 int q;
1294
1295 if (cpi->oxcf.rc_mode == AOM_Q ||
1296 (frame_is_intra_only(cm) && !rc->this_key_frame_forced &&
1297 cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH &&
1298 rc->frames_to_key > 1)) {
1299 q = active_best_quality;
1300 // Special case code to try and match quality with forced key frames.
1301 } else if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
1302 // If static since last kf use better of last boosted and last kf q.
1303 if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1304 q = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1305 } else {
1306 q = AOMMIN(rc->last_boosted_qindex,
1307 (active_best_quality + active_worst_quality) / 2);
1308 }
1309 q = clamp(q, active_best_quality, active_worst_quality);
1310 } else {
1311 q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
1312 active_worst_quality, width, height);
1313 if (q > active_worst_quality) {
1314 // Special case when we are targeting the max allowed rate.
1315 if (rc->this_frame_target < rc->max_frame_bandwidth) {
1316 q = active_worst_quality;
1317 }
1318 }
1319 q = AOMMAX(q, active_best_quality);
1320 }
1321 return q;
1322 }
1323
1324 // Returns |active_best_quality| for an inter frame.
1325 // The |active_best_quality| depends on different rate control modes:
1326 // VBR, Q, CQ, CBR.
1327 // The returning active_best_quality could further be adjusted in
1328 // adjust_active_best_and_worst_quality().
get_active_best_quality(const AV1_COMP * const cpi,const int active_worst_quality,const int cq_level,const int gf_index)1329 static int get_active_best_quality(const AV1_COMP *const cpi,
1330 const int active_worst_quality,
1331 const int cq_level, const int gf_index) {
1332 const AV1_COMMON *const cm = &cpi->common;
1333 const int bit_depth = cm->seq_params.bit_depth;
1334 const RATE_CONTROL *const rc = &cpi->rc;
1335 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
1336 const GF_GROUP *gf_group = &cpi->gf_group;
1337 const int rc_mode = oxcf->rc_mode;
1338 int *inter_minq;
1339 ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
1340 int active_best_quality = 0;
1341 const int is_intrl_arf_boost =
1342 gf_group->update_type[gf_index] == INTNL_ARF_UPDATE;
1343 const int is_leaf_frame = !(cpi->refresh_golden_frame ||
1344 cpi->refresh_alt_ref_frame || is_intrl_arf_boost);
1345 const int is_overlay_frame = rc->is_src_frame_alt_ref;
1346
1347 if (is_leaf_frame || is_overlay_frame) {
1348 if (rc_mode == AOM_Q) return cq_level;
1349
1350 active_best_quality = inter_minq[active_worst_quality];
1351 // For the constrained quality mode we don't want
1352 // q to fall below the cq level.
1353 if ((rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
1354 active_best_quality = cq_level;
1355 }
1356 return active_best_quality;
1357 }
1358
1359 // TODO(chengchen): can we remove this condition?
1360 if (rc_mode == AOM_Q && !cpi->refresh_alt_ref_frame && !is_intrl_arf_boost) {
1361 return cq_level;
1362 }
1363
1364 // Determine active_best_quality for frames that are not leaf or overlay.
1365 int q = active_worst_quality;
1366 // Use the lower of active_worst_quality and recent
1367 // average Q as basis for GF/ARF best Q limit unless last frame was
1368 // a key frame.
1369 if (rc->frames_since_key > 1 &&
1370 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1371 q = rc->avg_frame_qindex[INTER_FRAME];
1372 }
1373 if (rc_mode == AOM_CQ && q < cq_level) q = cq_level;
1374 active_best_quality = get_gf_active_quality(rc, q, bit_depth);
1375 // Constrained quality use slightly lower active best.
1376 if (rc_mode == AOM_CQ) active_best_quality = active_best_quality * 15 / 16;
1377 const int min_boost = get_gf_high_motion_quality(q, bit_depth);
1378 const int boost = min_boost - active_best_quality;
1379 active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor);
1380 if (!is_intrl_arf_boost) return active_best_quality;
1381
1382 if (rc_mode == AOM_Q || rc_mode == AOM_CQ) active_best_quality = rc->arf_q;
1383 int this_height = gf_group_pyramid_level(gf_group, gf_index);
1384 while (this_height > 1) {
1385 active_best_quality = (active_best_quality + active_worst_quality + 1) / 2;
1386 --this_height;
1387 }
1388 return active_best_quality;
1389 }
1390
rc_pick_q_and_bounds_two_pass(const AV1_COMP * cpi,int width,int height,int gf_index,int * bottom_index,int * top_index)1391 static int rc_pick_q_and_bounds_two_pass(const AV1_COMP *cpi, int width,
1392 int height, int gf_index,
1393 int *bottom_index, int *top_index) {
1394 const AV1_COMMON *const cm = &cpi->common;
1395 const RATE_CONTROL *const rc = &cpi->rc;
1396 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
1397 const GF_GROUP *gf_group = &cpi->gf_group;
1398 const int cq_level =
1399 get_active_cq_level(rc, oxcf, frame_is_intra_only(cm), cpi->superres_mode,
1400 cm->superres_scale_denominator);
1401 const int bit_depth = cm->seq_params.bit_depth;
1402
1403 if (oxcf->use_fixed_qp_offsets) {
1404 return get_q_using_fixed_offsets(oxcf, rc, gf_group, gf_group->index,
1405 cq_level, bit_depth);
1406 }
1407
1408 int active_best_quality = 0;
1409 int active_worst_quality = rc->active_worst_quality;
1410 int q;
1411
1412 const int is_intrl_arf_boost =
1413 gf_group->update_type[gf_index] == INTNL_ARF_UPDATE;
1414
1415 if (frame_is_intra_only(cm)) {
1416 const int is_fwd_kf =
1417 cm->current_frame.frame_type == KEY_FRAME && cm->show_frame == 0;
1418 get_intra_q_and_bounds_two_pass(cpi, width, height, &active_best_quality,
1419 &active_worst_quality, cq_level, is_fwd_kf);
1420 #ifdef STRICT_RC
1421 active_best_quality = 0;
1422 #endif
1423 } else {
1424 #ifdef STRICT_RC
1425 // Active best quality limited by previous layer.
1426 const int pyramid_level = gf_group_pyramid_level(gf_group, gf_index);
1427 active_best_quality =
1428 rc->active_best_quality[pyramid_level - 1] +
1429 AOMMAX((rc->active_best_quality[pyramid_level - 1] / 10), 5);
1430 #else
1431 active_best_quality =
1432 get_active_best_quality(cpi, active_worst_quality, cq_level, gf_index);
1433 #endif
1434
1435 // For alt_ref and GF frames (including internal arf frames) adjust the
1436 // worst allowed quality as well. This insures that even on hard
1437 // sections we dont clamp the Q at the same value for arf frames and
1438 // leaf (non arf) frames. This is important to the TPL model which assumes
1439 // Q drops with each arf level.
1440 if (!(rc->is_src_frame_alt_ref) &&
1441 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame ||
1442 is_intrl_arf_boost)) {
1443 active_worst_quality =
1444 (active_best_quality + (3 * active_worst_quality) + 2) / 4;
1445 }
1446 }
1447
1448 adjust_active_best_and_worst_quality(
1449 cpi, is_intrl_arf_boost, &active_worst_quality, &active_best_quality);
1450 q = get_q(cpi, width, height, active_worst_quality, active_best_quality);
1451
1452 // Special case when we are targeting the max allowed rate.
1453 if (rc->this_frame_target >= rc->max_frame_bandwidth &&
1454 q > active_worst_quality) {
1455 active_worst_quality = q;
1456 }
1457
1458 #ifdef STRICT_RC
1459 *top_index = rc->worst_quality;
1460 #else
1461 *top_index = active_worst_quality;
1462 #endif
1463 *bottom_index = active_best_quality;
1464
1465 assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
1466 assert(*bottom_index <= rc->worst_quality &&
1467 *bottom_index >= rc->best_quality);
1468 assert(q <= rc->worst_quality && q >= rc->best_quality);
1469
1470 return q;
1471 }
1472
av1_rc_pick_q_and_bounds(const AV1_COMP * cpi,RATE_CONTROL * rc,int width,int height,int gf_index,int * bottom_index,int * top_index)1473 int av1_rc_pick_q_and_bounds(const AV1_COMP *cpi, RATE_CONTROL *rc, int width,
1474 int height, int gf_index, int *bottom_index,
1475 int *top_index) {
1476 int q;
1477 // TODO(sarahparker) merge onepass vbr and altref q computation
1478 // with two pass
1479 const GF_GROUP *gf_group = &cpi->gf_group;
1480 if ((cpi->oxcf.rc_mode != AOM_Q ||
1481 gf_group->update_type[gf_index] == ARF_UPDATE) &&
1482 has_no_stats_stage(cpi)) {
1483 if (cpi->oxcf.rc_mode == AOM_CBR)
1484 q = rc_pick_q_and_bounds_one_pass_cbr(cpi, width, height, bottom_index,
1485 top_index);
1486 #if USE_UNRESTRICTED_Q_IN_CQ_MODE
1487 else if (cpi->oxcf.rc_mode == AOM_CQ)
1488 q = rc_pick_q_and_bounds_one_pass_cq(cpi, width, height, bottom_index,
1489 top_index);
1490 #endif // USE_UNRESTRICTED_Q_IN_CQ_MODE
1491 else
1492 q = rc_pick_q_and_bounds_one_pass_vbr(cpi, width, height, bottom_index,
1493 top_index);
1494 } else {
1495 q = rc_pick_q_and_bounds_two_pass(cpi, width, height, gf_index,
1496 bottom_index, top_index);
1497 }
1498 if (gf_group->update_type[gf_index] == ARF_UPDATE) rc->arf_q = q;
1499
1500 return q;
1501 }
1502
av1_rc_compute_frame_size_bounds(const AV1_COMP * cpi,int frame_target,int * frame_under_shoot_limit,int * frame_over_shoot_limit)1503 void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target,
1504 int *frame_under_shoot_limit,
1505 int *frame_over_shoot_limit) {
1506 if (cpi->oxcf.rc_mode == AOM_Q) {
1507 *frame_under_shoot_limit = 0;
1508 *frame_over_shoot_limit = INT_MAX;
1509 } else {
1510 // For very small rate targets where the fractional adjustment
1511 // may be tiny make sure there is at least a minimum range.
1512 const int tolerance =
1513 AOMMAX(100, (cpi->sf.hl_sf.recode_tolerance * frame_target) / 100);
1514 *frame_under_shoot_limit = AOMMAX(frame_target - tolerance, 0);
1515 *frame_over_shoot_limit =
1516 AOMMIN(frame_target + tolerance, cpi->rc.max_frame_bandwidth);
1517 }
1518 }
1519
av1_rc_set_frame_target(AV1_COMP * cpi,int target,int width,int height)1520 void av1_rc_set_frame_target(AV1_COMP *cpi, int target, int width, int height) {
1521 const AV1_COMMON *const cm = &cpi->common;
1522 RATE_CONTROL *const rc = &cpi->rc;
1523
1524 rc->this_frame_target = target;
1525
1526 // Modify frame size target when down-scaled.
1527 if (av1_frame_scaled(cm))
1528 rc->this_frame_target =
1529 (int)(rc->this_frame_target * resize_rate_factor(cpi, width, height));
1530
1531 // Target rate per SB64 (including partial SB64s.
1532 rc->sb64_target_rate =
1533 (int)(((int64_t)rc->this_frame_target << 12) / (width * height));
1534 }
1535
update_alt_ref_frame_stats(AV1_COMP * cpi)1536 static void update_alt_ref_frame_stats(AV1_COMP *cpi) {
1537 // this frame refreshes means next frames don't unless specified by user
1538 RATE_CONTROL *const rc = &cpi->rc;
1539 rc->frames_since_golden = 0;
1540
1541 // Mark the alt ref as done (setting to 0 means no further alt refs pending).
1542 rc->source_alt_ref_pending = 0;
1543
1544 // Set the alternate reference frame active flag
1545 rc->source_alt_ref_active = 1;
1546 }
1547
update_golden_frame_stats(AV1_COMP * cpi)1548 static void update_golden_frame_stats(AV1_COMP *cpi) {
1549 RATE_CONTROL *const rc = &cpi->rc;
1550 const GF_GROUP *const gf_group = &cpi->gf_group;
1551
1552 // Update the Golden frame usage counts.
1553 if (cpi->refresh_golden_frame || rc->is_src_frame_alt_ref) {
1554 rc->frames_since_golden = 0;
1555
1556 // If we are not using alt ref in the up and coming group clear the arf
1557 // active flag. In multi arf group case, if the index is not 0 then
1558 // we are overlaying a mid group arf so should not reset the flag.
1559 if (!rc->source_alt_ref_pending && (gf_group->index == 0))
1560 rc->source_alt_ref_active = 0;
1561 } else if (cpi->common.show_frame) {
1562 rc->frames_since_golden++;
1563 }
1564 }
1565
av1_rc_postencode_update(AV1_COMP * cpi,uint64_t bytes_used)1566 void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) {
1567 const AV1_COMMON *const cm = &cpi->common;
1568 const CurrentFrame *const current_frame = &cm->current_frame;
1569 RATE_CONTROL *const rc = &cpi->rc;
1570 const GF_GROUP *const gf_group = &cpi->gf_group;
1571
1572 const int is_intrnl_arf =
1573 gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE;
1574
1575 const int qindex = cm->quant_params.base_qindex;
1576
1577 // Update rate control heuristics
1578 rc->projected_frame_size = (int)(bytes_used << 3);
1579
1580 // Post encode loop adjustment of Q prediction.
1581 av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
1582
1583 // Keep a record of last Q and ambient average Q.
1584 if (current_frame->frame_type == KEY_FRAME) {
1585 rc->last_q[KEY_FRAME] = qindex;
1586 rc->avg_frame_qindex[KEY_FRAME] =
1587 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
1588 } else {
1589 if ((cpi->use_svc && cpi->oxcf.rc_mode == AOM_CBR) ||
1590 (!rc->is_src_frame_alt_ref &&
1591 !(cpi->refresh_golden_frame || is_intrnl_arf ||
1592 cpi->refresh_alt_ref_frame))) {
1593 rc->last_q[INTER_FRAME] = qindex;
1594 rc->avg_frame_qindex[INTER_FRAME] =
1595 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
1596 rc->ni_frames++;
1597 rc->tot_q += av1_convert_qindex_to_q(qindex, cm->seq_params.bit_depth);
1598 rc->avg_q = rc->tot_q / rc->ni_frames;
1599 // Calculate the average Q for normal inter frames (not key or GFU
1600 // frames).
1601 rc->ni_tot_qi += qindex;
1602 rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
1603 }
1604 }
1605
1606 // Keep record of last boosted (KF/GF/ARF) Q value.
1607 // If the current frame is coded at a lower Q then we also update it.
1608 // If all mbs in this group are skipped only update if the Q value is
1609 // better than that already stored.
1610 // This is used to help set quality in forced key frames to reduce popping
1611 if ((qindex < rc->last_boosted_qindex) ||
1612 (current_frame->frame_type == KEY_FRAME) ||
1613 (!rc->constrained_gf_group &&
1614 (cpi->refresh_alt_ref_frame || is_intrnl_arf ||
1615 (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
1616 rc->last_boosted_qindex = qindex;
1617 }
1618 if (current_frame->frame_type == KEY_FRAME) rc->last_kf_qindex = qindex;
1619
1620 update_buffer_level(cpi, rc->projected_frame_size);
1621 rc->prev_avg_frame_bandwidth = rc->avg_frame_bandwidth;
1622
1623 // Rolling monitors of whether we are over or underspending used to help
1624 // regulate min and Max Q in two pass.
1625 if (av1_frame_scaled(cm))
1626 rc->this_frame_target =
1627 (int)(rc->this_frame_target /
1628 resize_rate_factor(cpi, cm->width, cm->height));
1629 if (current_frame->frame_type != KEY_FRAME) {
1630 rc->rolling_target_bits = (int)ROUND_POWER_OF_TWO_64(
1631 rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
1632 rc->rolling_actual_bits = (int)ROUND_POWER_OF_TWO_64(
1633 rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
1634 rc->long_rolling_target_bits = (int)ROUND_POWER_OF_TWO_64(
1635 rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
1636 rc->long_rolling_actual_bits = (int)ROUND_POWER_OF_TWO_64(
1637 rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
1638 }
1639
1640 // Actual bits spent
1641 rc->total_actual_bits += rc->projected_frame_size;
1642 rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
1643
1644 rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
1645
1646 if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
1647 (current_frame->frame_type != KEY_FRAME))
1648 // Update the alternate reference frame stats as appropriate.
1649 update_alt_ref_frame_stats(cpi);
1650 else
1651 // Update the Golden frame stats as appropriate.
1652 update_golden_frame_stats(cpi);
1653
1654 if (current_frame->frame_type == KEY_FRAME) rc->frames_since_key = 0;
1655 // if (current_frame->frame_number == 1 && cm->show_frame)
1656 /*
1657 rc->this_frame_target =
1658 (int)(rc->this_frame_target / resize_rate_factor(cpi, cm->width,
1659 cm->height));
1660 */
1661 }
1662
av1_rc_postencode_update_drop_frame(AV1_COMP * cpi)1663 void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) {
1664 // Update buffer level with zero size, update frame counters, and return.
1665 update_buffer_level(cpi, 0);
1666 cpi->rc.frames_since_key++;
1667 cpi->rc.frames_to_key--;
1668 cpi->rc.rc_2_frame = 0;
1669 cpi->rc.rc_1_frame = 0;
1670 }
1671
av1_find_qindex(double desired_q,aom_bit_depth_t bit_depth,int best_qindex,int worst_qindex)1672 int av1_find_qindex(double desired_q, aom_bit_depth_t bit_depth,
1673 int best_qindex, int worst_qindex) {
1674 assert(best_qindex <= worst_qindex);
1675 int low = best_qindex;
1676 int high = worst_qindex;
1677 while (low < high) {
1678 const int mid = (low + high) >> 1;
1679 const double mid_q = av1_convert_qindex_to_q(mid, bit_depth);
1680 if (mid_q < desired_q) {
1681 low = mid + 1;
1682 } else {
1683 high = mid;
1684 }
1685 }
1686 assert(low == high);
1687 assert(av1_convert_qindex_to_q(low, bit_depth) >= desired_q ||
1688 low == worst_qindex);
1689 return low;
1690 }
1691
av1_compute_qdelta(const RATE_CONTROL * rc,double qstart,double qtarget,aom_bit_depth_t bit_depth)1692 int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
1693 aom_bit_depth_t bit_depth) {
1694 const int start_index =
1695 av1_find_qindex(qstart, bit_depth, rc->best_quality, rc->worst_quality);
1696 const int target_index =
1697 av1_find_qindex(qtarget, bit_depth, rc->best_quality, rc->worst_quality);
1698 return target_index - start_index;
1699 }
1700
1701 // Find q_index for the desired_bits_per_mb, within [best_qindex, worst_qindex],
1702 // assuming 'correction_factor' is 1.0.
1703 // To be precise, 'q_index' is the smallest integer, for which the corresponding
1704 // bits per mb <= desired_bits_per_mb.
1705 // If no such q index is found, returns 'worst_qindex'.
find_qindex_by_rate(int desired_bits_per_mb,aom_bit_depth_t bit_depth,FRAME_TYPE frame_type,int best_qindex,int worst_qindex)1706 static int find_qindex_by_rate(int desired_bits_per_mb,
1707 aom_bit_depth_t bit_depth, FRAME_TYPE frame_type,
1708 int best_qindex, int worst_qindex) {
1709 assert(best_qindex <= worst_qindex);
1710 int low = best_qindex;
1711 int high = worst_qindex;
1712 while (low < high) {
1713 const int mid = (low + high) >> 1;
1714 const int mid_bits_per_mb =
1715 av1_rc_bits_per_mb(frame_type, mid, 1.0, bit_depth);
1716 if (mid_bits_per_mb > desired_bits_per_mb) {
1717 low = mid + 1;
1718 } else {
1719 high = mid;
1720 }
1721 }
1722 assert(low == high);
1723 assert(av1_rc_bits_per_mb(frame_type, low, 1.0, bit_depth) <=
1724 desired_bits_per_mb ||
1725 low == worst_qindex);
1726 return low;
1727 }
1728
av1_compute_qdelta_by_rate(const RATE_CONTROL * rc,FRAME_TYPE frame_type,int qindex,double rate_target_ratio,aom_bit_depth_t bit_depth)1729 int av1_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
1730 int qindex, double rate_target_ratio,
1731 aom_bit_depth_t bit_depth) {
1732 // Look up the current projected bits per block for the base index
1733 const int base_bits_per_mb =
1734 av1_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth);
1735
1736 // Find the target bits per mb based on the base value and given ratio.
1737 const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
1738
1739 const int target_index =
1740 find_qindex_by_rate(target_bits_per_mb, bit_depth, frame_type,
1741 rc->best_quality, rc->worst_quality);
1742 return target_index - qindex;
1743 }
1744
av1_rc_set_gf_interval_range(const AV1_COMP * const cpi,RATE_CONTROL * const rc)1745 void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi,
1746 RATE_CONTROL *const rc) {
1747 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
1748
1749 // Special case code for 1 pass fixed Q mode tests
1750 if ((has_no_stats_stage(cpi)) && (oxcf->rc_mode == AOM_Q)) {
1751 rc->max_gf_interval = FIXED_GF_INTERVAL;
1752 rc->min_gf_interval = FIXED_GF_INTERVAL;
1753 rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
1754 } else {
1755 // Set Maximum gf/arf interval
1756 rc->max_gf_interval = oxcf->max_gf_interval;
1757 rc->min_gf_interval = oxcf->min_gf_interval;
1758 if (rc->min_gf_interval == 0)
1759 rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
1760 oxcf->width, oxcf->height, cpi->framerate);
1761 if (rc->max_gf_interval == 0)
1762 rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
1763 cpi->framerate, rc->min_gf_interval);
1764 /*
1765 * Extended max interval for genuinely static scenes like slide shows.
1766 * The no.of.stats available in the case of LAP is limited,
1767 * hence setting to max_gf_interval.
1768 */
1769 if (cpi->lap_enabled)
1770 rc->static_scene_max_gf_interval = rc->max_gf_interval + 1;
1771 else
1772 rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
1773
1774 if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
1775 rc->max_gf_interval = rc->static_scene_max_gf_interval;
1776
1777 // Clamp min to max
1778 rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval);
1779 }
1780 }
1781
av1_rc_update_framerate(AV1_COMP * cpi,int width,int height)1782 void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) {
1783 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
1784 RATE_CONTROL *const rc = &cpi->rc;
1785 int vbr_max_bits;
1786 const int MBs = av1_get_MBs(width, height);
1787
1788 rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
1789 rc->min_frame_bandwidth =
1790 (int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100);
1791
1792 rc->min_frame_bandwidth =
1793 AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
1794
1795 // A maximum bitrate for a frame is defined.
1796 // The baseline for this aligns with HW implementations that
1797 // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
1798 // per 16x16 MB (averaged over a frame). However this limit is extended if
1799 // a very high rate is given on the command line or the the rate cannnot
1800 // be acheived because of a user specificed max q (e.g. when the user
1801 // specifies lossless encode.
1802 vbr_max_bits =
1803 (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) /
1804 100);
1805 rc->max_frame_bandwidth =
1806 AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
1807
1808 av1_rc_set_gf_interval_range(cpi, rc);
1809 }
1810
1811 #define VBR_PCT_ADJUSTMENT_LIMIT 50
1812 // For VBR...adjustment to the frame target based on error from previous frames
vbr_rate_correction(AV1_COMP * cpi,int * this_frame_target)1813 static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) {
1814 RATE_CONTROL *const rc = &cpi->rc;
1815 int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
1816 const int stats_count =
1817 cpi->twopass.stats_buf_ctx->total_stats != NULL
1818 ? (int)cpi->twopass.stats_buf_ctx->total_stats->count
1819 : 0;
1820 const int frame_window = AOMMIN(
1821 16, (int)(stats_count - (int)cpi->common.current_frame.frame_number));
1822
1823 if (frame_window > 0) {
1824 const int max_delta =
1825 AOMMIN(abs((int)(vbr_bits_off_target / frame_window)),
1826 (*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100);
1827
1828 // vbr_bits_off_target > 0 means we have extra bits to spend
1829 // vbr_bits_off_target < 0 we are currently overshooting
1830 *this_frame_target += (vbr_bits_off_target >= 0) ? max_delta : -max_delta;
1831 }
1832
1833 // Fast redistribution of bits arising from massive local undershoot.
1834 // Dont do it for kf,arf,gf or overlay frames.
1835 if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
1836 rc->vbr_bits_off_target_fast) {
1837 int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target);
1838 int fast_extra_bits;
1839 fast_extra_bits = (int)AOMMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
1840 fast_extra_bits = (int)AOMMIN(
1841 fast_extra_bits,
1842 AOMMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
1843 *this_frame_target += (int)fast_extra_bits;
1844 rc->vbr_bits_off_target_fast -= fast_extra_bits;
1845 }
1846 }
1847
av1_set_target_rate(AV1_COMP * cpi,int width,int height)1848 void av1_set_target_rate(AV1_COMP *cpi, int width, int height) {
1849 RATE_CONTROL *const rc = &cpi->rc;
1850 int target_rate = rc->base_frame_target;
1851
1852 // Correction to rate target based on prior over or under shoot.
1853 if (cpi->oxcf.rc_mode == AOM_VBR || cpi->oxcf.rc_mode == AOM_CQ)
1854 vbr_rate_correction(cpi, &target_rate);
1855 av1_rc_set_frame_target(cpi, target_rate, width, height);
1856 }
1857
av1_calc_pframe_target_size_one_pass_vbr(const AV1_COMP * const cpi,FRAME_UPDATE_TYPE frame_update_type)1858 int av1_calc_pframe_target_size_one_pass_vbr(
1859 const AV1_COMP *const cpi, FRAME_UPDATE_TYPE frame_update_type) {
1860 static const int af_ratio = 10;
1861 const RATE_CONTROL *const rc = &cpi->rc;
1862 int64_t target;
1863 #if USE_ALTREF_FOR_ONE_PASS
1864 if (frame_update_type == KF_UPDATE || frame_update_type == GF_UPDATE ||
1865 frame_update_type == ARF_UPDATE) {
1866 target = ((int64_t)rc->avg_frame_bandwidth * rc->baseline_gf_interval *
1867 af_ratio) /
1868 (rc->baseline_gf_interval + af_ratio - 1);
1869 } else {
1870 target = ((int64_t)rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
1871 (rc->baseline_gf_interval + af_ratio - 1);
1872 }
1873 if (target > INT_MAX) target = INT_MAX;
1874 #else
1875 target = rc->avg_frame_bandwidth;
1876 #endif
1877 return av1_rc_clamp_pframe_target_size(cpi, (int)target, frame_update_type);
1878 }
1879
av1_calc_iframe_target_size_one_pass_vbr(const AV1_COMP * const cpi)1880 int av1_calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) {
1881 static const int kf_ratio = 25;
1882 const RATE_CONTROL *rc = &cpi->rc;
1883 const int target = rc->avg_frame_bandwidth * kf_ratio;
1884 return av1_rc_clamp_iframe_target_size(cpi, target);
1885 }
1886
av1_calc_pframe_target_size_one_pass_cbr(const AV1_COMP * cpi,FRAME_UPDATE_TYPE frame_update_type)1887 int av1_calc_pframe_target_size_one_pass_cbr(
1888 const AV1_COMP *cpi, FRAME_UPDATE_TYPE frame_update_type) {
1889 const AV1EncoderConfig *oxcf = &cpi->oxcf;
1890 const RATE_CONTROL *rc = &cpi->rc;
1891 const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
1892 const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
1893 int min_frame_target =
1894 AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
1895 int target;
1896
1897 if (oxcf->gf_cbr_boost_pct) {
1898 const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
1899 if (frame_update_type == GF_UPDATE || frame_update_type == OVERLAY_UPDATE) {
1900 target =
1901 (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) /
1902 (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
1903 } else {
1904 target = (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
1905 (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
1906 }
1907 } else {
1908 target = rc->avg_frame_bandwidth;
1909 }
1910 if (cpi->use_svc) {
1911 // Note that for layers, avg_frame_bandwidth is the cumulative
1912 // per-frame-bandwidth. For the target size of this frame, use the
1913 // layer average frame size (i.e., non-cumulative per-frame-bw).
1914 int layer =
1915 LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, cpi->svc.temporal_layer_id,
1916 cpi->svc.number_temporal_layers);
1917 const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
1918 target = lc->avg_frame_size;
1919 min_frame_target = AOMMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
1920 }
1921 if (diff > 0) {
1922 // Lower the target bandwidth for this frame.
1923 const int pct_low = (int)AOMMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
1924 target -= (target * pct_low) / 200;
1925 } else if (diff < 0) {
1926 // Increase the target bandwidth for this frame.
1927 const int pct_high =
1928 (int)AOMMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
1929 target += (target * pct_high) / 200;
1930 }
1931 if (oxcf->rc_max_inter_bitrate_pct) {
1932 const int max_rate =
1933 rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
1934 target = AOMMIN(target, max_rate);
1935 }
1936 return AOMMAX(min_frame_target, target);
1937 }
1938
av1_calc_iframe_target_size_one_pass_cbr(const AV1_COMP * cpi)1939 int av1_calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) {
1940 const RATE_CONTROL *rc = &cpi->rc;
1941 int target;
1942 if (cpi->common.current_frame.frame_number == 0) {
1943 target = ((rc->starting_buffer_level / 2) > INT_MAX)
1944 ? INT_MAX
1945 : (int)(rc->starting_buffer_level / 2);
1946 } else {
1947 int kf_boost = 32;
1948 double framerate = cpi->framerate;
1949
1950 kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16));
1951 if (rc->frames_since_key < framerate / 2) {
1952 kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2));
1953 }
1954 target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
1955 }
1956 return av1_rc_clamp_iframe_target_size(cpi, target);
1957 }
1958
set_reference_structure_one_pass_rt(AV1_COMP * cpi,int gf_update)1959 static void set_reference_structure_one_pass_rt(AV1_COMP *cpi, int gf_update) {
1960 AV1_COMMON *const cm = &cpi->common;
1961 ExternalFlags *const ext_flags = &cpi->ext_flags;
1962 SVC *const svc = &cpi->svc;
1963 // Specify the reference prediction structure, for 1 layer nonrd mode.
1964 // Current structue is to use 3 references (LAST, GOLDEN, ALTREF),
1965 // where ALT_REF always behind current by lag_alt frames, and GOLDEN is
1966 // either updated on LAST with period baseline_gf_interval (fixed slot)
1967 // or always behind current by lag_gld (gld_fixed_slot = 0, lag_gld <= 7).
1968 const int gld_fixed_slot = 1;
1969 const unsigned int lag_alt = 4;
1970 int last_idx = 0;
1971 int last_idx_refresh = 0;
1972 int gld_idx = 0;
1973 int alt_ref_idx = 0;
1974 ext_flags->refresh_frame_flags_pending = 1;
1975 svc->external_ref_frame_config = 1;
1976 ext_flags->ref_frame_flags = 0;
1977 ext_flags->refresh_last_frame = 1;
1978 ext_flags->refresh_golden_frame = 0;
1979 ext_flags->refresh_alt_ref_frame = 0;
1980 for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) svc->ref_idx[i] = 7;
1981 for (int i = 0; i < REF_FRAMES; ++i) svc->refresh[i] = 0;
1982 // Always reference LAST, GOLDEN, ALTREF
1983 ext_flags->ref_frame_flags ^= AOM_LAST_FLAG;
1984 ext_flags->ref_frame_flags ^= AOM_GOLD_FLAG;
1985 ext_flags->ref_frame_flags ^= AOM_ALT_FLAG;
1986 const int sh = 7 - gld_fixed_slot;
1987 // Moving index slot for last: 0 - (sh - 1).
1988 if (cm->current_frame.frame_number > 1)
1989 last_idx = ((cm->current_frame.frame_number - 1) % sh);
1990 // Moving index for refresh of last: one ahead for next frame.
1991 last_idx_refresh = (cm->current_frame.frame_number % sh);
1992 gld_idx = 6;
1993 if (!gld_fixed_slot) {
1994 gld_idx = 7;
1995 const unsigned int lag_gld = 7; // Must be <= 7.
1996 // Moving index for gld_ref, lag behind current by gld_interval frames.
1997 if (cm->current_frame.frame_number > lag_gld)
1998 gld_idx = ((cm->current_frame.frame_number - lag_gld) % sh);
1999 }
2000 // Moving index for alt_ref, lag behind LAST by lag_alt frames.
2001 if (cm->current_frame.frame_number > lag_alt)
2002 alt_ref_idx = ((cm->current_frame.frame_number - lag_alt) % sh);
2003 svc->ref_idx[0] = last_idx; // LAST
2004 svc->ref_idx[1] = last_idx_refresh; // LAST2 (for refresh of last).
2005 svc->ref_idx[3] = gld_idx; // GOLDEN
2006 svc->ref_idx[6] = alt_ref_idx; // ALT_REF
2007 // Refresh this slot, which will become LAST on next frame.
2008 svc->refresh[last_idx_refresh] = 1;
2009 // Update GOLDEN on period for fixed slot case.
2010 if (gld_fixed_slot && gf_update) {
2011 ext_flags->refresh_golden_frame = 1;
2012 svc->refresh[gld_idx] = 1;
2013 }
2014 }
2015
2016 #define DEFAULT_KF_BOOST_RT 2300
2017 #define DEFAULT_GF_BOOST_RT 2000
2018
av1_get_one_pass_rt_params(AV1_COMP * cpi,EncodeFrameParams * const frame_params,unsigned int frame_flags)2019 void av1_get_one_pass_rt_params(AV1_COMP *cpi,
2020 EncodeFrameParams *const frame_params,
2021 unsigned int frame_flags) {
2022 RATE_CONTROL *const rc = &cpi->rc;
2023 AV1_COMMON *const cm = &cpi->common;
2024 GF_GROUP *const gf_group = &cpi->gf_group;
2025 ResizePendingParams *const resize_pending_params =
2026 &cpi->resize_pending_params;
2027 int gf_update = 0;
2028 int target;
2029 const int resize_pending =
2030 (resize_pending_params->width && resize_pending_params->height &&
2031 (cm->width != resize_pending_params->width ||
2032 cm->height != resize_pending_params->height));
2033 // Turn this on to explicitly set the reference structure rather than
2034 // relying on internal/default structure.
2035 const int set_reference_structure = 1;
2036 if (cpi->use_svc) {
2037 av1_update_temporal_layer_framerate(cpi);
2038 av1_restore_layer_context(cpi);
2039 }
2040 if ((!cpi->use_svc && rc->frames_to_key == 0) ||
2041 (cpi->use_svc && cpi->svc.spatial_layer_id == 0 &&
2042 cpi->svc.current_superframe % cpi->oxcf.key_freq == 0) ||
2043 (frame_flags & FRAMEFLAGS_KEY)) {
2044 frame_params->frame_type = KEY_FRAME;
2045 rc->this_key_frame_forced =
2046 cm->current_frame.frame_number != 0 && rc->frames_to_key == 0;
2047 rc->frames_to_key = cpi->oxcf.key_freq;
2048 rc->kf_boost = DEFAULT_KF_BOOST_RT;
2049 rc->source_alt_ref_active = 0;
2050 gf_group->update_type[gf_group->index] = KF_UPDATE;
2051 if (cpi->use_svc && cm->current_frame.frame_number > 0)
2052 av1_svc_reset_temporal_layers(cpi, 1);
2053 } else {
2054 frame_params->frame_type = INTER_FRAME;
2055 gf_group->update_type[gf_group->index] = LF_UPDATE;
2056 }
2057 // GF update based on frames_till_gf_update_due, also
2058 // force upddate on resize pending frame.
2059 if ((resize_pending || rc->frames_till_gf_update_due == 0) &&
2060 cpi->svc.temporal_layer_id == 0 && cpi->svc.spatial_layer_id == 0) {
2061 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2062 av1_cyclic_refresh_set_golden_update(cpi);
2063 else
2064 rc->baseline_gf_interval = MAX_GF_INTERVAL;
2065 if (rc->baseline_gf_interval > rc->frames_to_key)
2066 rc->baseline_gf_interval = rc->frames_to_key;
2067 rc->gfu_boost = DEFAULT_GF_BOOST_RT;
2068 rc->constrained_gf_group =
2069 (rc->baseline_gf_interval >= rc->frames_to_key) ? 1 : 0;
2070 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2071 gf_group->index = 0;
2072 // SVC does not use GF as periodid boost.
2073 // TODO(marpan): Find better way to disable this for SVC.
2074 if (cpi->use_svc) {
2075 SVC *const svc = &cpi->svc;
2076 rc->baseline_gf_interval = MAX_STATIC_GF_GROUP_LENGTH - 1;
2077 rc->gfu_boost = 1;
2078 rc->constrained_gf_group = 0;
2079 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2080 for (int layer = 0;
2081 layer < svc->number_spatial_layers * svc->number_temporal_layers;
2082 ++layer) {
2083 LAYER_CONTEXT *const lc = &svc->layer_context[layer];
2084 lc->rc.baseline_gf_interval = rc->baseline_gf_interval;
2085 lc->rc.gfu_boost = rc->gfu_boost;
2086 lc->rc.constrained_gf_group = rc->constrained_gf_group;
2087 lc->rc.frames_till_gf_update_due = rc->frames_till_gf_update_due;
2088 lc->group_index = 0;
2089 }
2090 }
2091 gf_group->size = rc->baseline_gf_interval;
2092 gf_group->update_type[0] =
2093 (frame_params->frame_type == KEY_FRAME) ? KF_UPDATE : GF_UPDATE;
2094 gf_update = 1;
2095 }
2096 if (cpi->oxcf.rc_mode == AOM_CBR) {
2097 if (frame_params->frame_type == KEY_FRAME) {
2098 target = av1_calc_iframe_target_size_one_pass_cbr(cpi);
2099 } else {
2100 target = av1_calc_pframe_target_size_one_pass_cbr(
2101 cpi, gf_group->update_type[gf_group->index]);
2102 }
2103 } else {
2104 if (frame_params->frame_type == KEY_FRAME) {
2105 target = av1_calc_iframe_target_size_one_pass_vbr(cpi);
2106 } else {
2107 target = av1_calc_pframe_target_size_one_pass_vbr(
2108 cpi, gf_group->update_type[gf_group->index]);
2109 }
2110 }
2111 av1_rc_set_frame_target(cpi, target, cm->width, cm->height);
2112 rc->base_frame_target = target;
2113 if (set_reference_structure && cpi->oxcf.speed >= 6 &&
2114 cm->number_spatial_layers == 1 && cm->number_temporal_layers == 1)
2115 set_reference_structure_one_pass_rt(cpi, gf_update);
2116 cm->current_frame.frame_type = frame_params->frame_type;
2117 }
2118