1 /*
2 * Copyright (c) 2019, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <limits.h>
13 #include <math.h>
14 #include <stdbool.h>
15 #include <stdio.h>
16
17 #include "config/aom_config.h"
18 #include "config/aom_dsp_rtcd.h"
19 #include "config/av1_rtcd.h"
20
21 #include "aom_dsp/aom_dsp_common.h"
22 #include "aom_dsp/binary_codes_writer.h"
23 #include "aom_ports/mem.h"
24 #include "aom_ports/aom_timer.h"
25 #include "aom_ports/system_state.h"
26
27 #include "av1/common/reconinter.h"
28 #include "av1/common/blockd.h"
29
30 #include "av1/encoder/encodeframe.h"
31 #include "av1/encoder/var_based_part.h"
32 #include "av1/encoder/reconinter_enc.h"
33
34 extern const uint8_t AV1_VAR_OFFS[];
35
36 typedef struct {
37 VPVariance *part_variances;
38 VPartVar *split[4];
39 } variance_node;
40
tree_to_node(void * data,BLOCK_SIZE bsize,variance_node * node)41 static AOM_INLINE void tree_to_node(void *data, BLOCK_SIZE bsize,
42 variance_node *node) {
43 int i;
44 node->part_variances = NULL;
45 switch (bsize) {
46 case BLOCK_128X128: {
47 VP128x128 *vt = (VP128x128 *)data;
48 node->part_variances = &vt->part_variances;
49 for (i = 0; i < 4; i++)
50 node->split[i] = &vt->split[i].part_variances.none;
51 break;
52 }
53 case BLOCK_64X64: {
54 VP64x64 *vt = (VP64x64 *)data;
55 node->part_variances = &vt->part_variances;
56 for (i = 0; i < 4; i++)
57 node->split[i] = &vt->split[i].part_variances.none;
58 break;
59 }
60 case BLOCK_32X32: {
61 VP32x32 *vt = (VP32x32 *)data;
62 node->part_variances = &vt->part_variances;
63 for (i = 0; i < 4; i++)
64 node->split[i] = &vt->split[i].part_variances.none;
65 break;
66 }
67 case BLOCK_16X16: {
68 VP16x16 *vt = (VP16x16 *)data;
69 node->part_variances = &vt->part_variances;
70 for (i = 0; i < 4; i++)
71 node->split[i] = &vt->split[i].part_variances.none;
72 break;
73 }
74 case BLOCK_8X8: {
75 VP8x8 *vt = (VP8x8 *)data;
76 node->part_variances = &vt->part_variances;
77 for (i = 0; i < 4; i++)
78 node->split[i] = &vt->split[i].part_variances.none;
79 break;
80 }
81 default: {
82 VP4x4 *vt = (VP4x4 *)data;
83 assert(bsize == BLOCK_4X4);
84 node->part_variances = &vt->part_variances;
85 for (i = 0; i < 4; i++) node->split[i] = &vt->split[i];
86 break;
87 }
88 }
89 }
90
91 // Set variance values given sum square error, sum error, count.
fill_variance(uint32_t s2,int32_t s,int c,VPartVar * v)92 static AOM_INLINE void fill_variance(uint32_t s2, int32_t s, int c,
93 VPartVar *v) {
94 v->sum_square_error = s2;
95 v->sum_error = s;
96 v->log2_count = c;
97 }
98
get_variance(VPartVar * v)99 static AOM_INLINE void get_variance(VPartVar *v) {
100 v->variance =
101 (int)(256 * (v->sum_square_error -
102 (uint32_t)(((int64_t)v->sum_error * v->sum_error) >>
103 v->log2_count)) >>
104 v->log2_count);
105 }
106
sum_2_variances(const VPartVar * a,const VPartVar * b,VPartVar * r)107 static AOM_INLINE void sum_2_variances(const VPartVar *a, const VPartVar *b,
108 VPartVar *r) {
109 assert(a->log2_count == b->log2_count);
110 fill_variance(a->sum_square_error + b->sum_square_error,
111 a->sum_error + b->sum_error, a->log2_count + 1, r);
112 }
113
fill_variance_tree(void * data,BLOCK_SIZE bsize)114 static AOM_INLINE void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
115 variance_node node;
116 memset(&node, 0, sizeof(node));
117 tree_to_node(data, bsize, &node);
118 sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
119 sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
120 sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
121 sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
122 sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
123 &node.part_variances->none);
124 }
125
set_block_size(AV1_COMP * const cpi,MACROBLOCK * const x,MACROBLOCKD * const xd,int mi_row,int mi_col,BLOCK_SIZE bsize)126 static AOM_INLINE void set_block_size(AV1_COMP *const cpi, MACROBLOCK *const x,
127 MACROBLOCKD *const xd, int mi_row,
128 int mi_col, BLOCK_SIZE bsize) {
129 if (cpi->common.mi_params.mi_cols > mi_col &&
130 cpi->common.mi_params.mi_rows > mi_row) {
131 set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
132 mi_row, mi_col);
133 xd->mi[0]->sb_type = bsize;
134 }
135 }
136
set_vt_partitioning(AV1_COMP * cpi,MACROBLOCK * const x,MACROBLOCKD * const xd,const TileInfo * const tile,void * data,BLOCK_SIZE bsize,int mi_row,int mi_col,int64_t threshold,BLOCK_SIZE bsize_min,int force_split)137 static int set_vt_partitioning(AV1_COMP *cpi, MACROBLOCK *const x,
138 MACROBLOCKD *const xd,
139 const TileInfo *const tile, void *data,
140 BLOCK_SIZE bsize, int mi_row, int mi_col,
141 int64_t threshold, BLOCK_SIZE bsize_min,
142 int force_split) {
143 AV1_COMMON *const cm = &cpi->common;
144 variance_node vt;
145 const int block_width = mi_size_wide[bsize];
146 const int block_height = mi_size_high[bsize];
147
148 assert(block_height == block_width);
149 tree_to_node(data, bsize, &vt);
150
151 if (force_split == 1) return 0;
152
153 // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
154 // variance is below threshold, otherwise split will be selected.
155 // No check for vert/horiz split as too few samples for variance.
156 if (bsize == bsize_min) {
157 // Variance already computed to set the force_split.
158 if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
159 if (mi_col + block_width <= tile->mi_col_end &&
160 mi_row + block_height <= tile->mi_row_end &&
161 vt.part_variances->none.variance < threshold) {
162 set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
163 return 1;
164 }
165 return 0;
166 } else if (bsize > bsize_min) {
167 // Variance already computed to set the force_split.
168 if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
169 // For key frame: take split for bsize above 32X32 or very high variance.
170 if (frame_is_intra_only(cm) &&
171 (bsize > BLOCK_32X32 ||
172 vt.part_variances->none.variance > (threshold << 4))) {
173 return 0;
174 }
175 // If variance is low, take the bsize (no split).
176 if (mi_col + block_width <= tile->mi_col_end &&
177 mi_row + block_height <= tile->mi_row_end &&
178 vt.part_variances->none.variance < threshold) {
179 set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
180 return 1;
181 }
182 // Check vertical split.
183 if (mi_row + block_height <= tile->mi_row_end &&
184 mi_col + block_width / 2 <= tile->mi_col_end) {
185 BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT);
186 get_variance(&vt.part_variances->vert[0]);
187 get_variance(&vt.part_variances->vert[1]);
188 if (vt.part_variances->vert[0].variance < threshold &&
189 vt.part_variances->vert[1].variance < threshold &&
190 get_plane_block_size(subsize, xd->plane[1].subsampling_x,
191 xd->plane[1].subsampling_y) < BLOCK_INVALID) {
192 set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
193 set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize);
194 return 1;
195 }
196 }
197 // Check horizontal split.
198 if (mi_col + block_width <= tile->mi_col_end &&
199 mi_row + block_height / 2 <= tile->mi_row_end) {
200 BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
201 get_variance(&vt.part_variances->horz[0]);
202 get_variance(&vt.part_variances->horz[1]);
203 if (vt.part_variances->horz[0].variance < threshold &&
204 vt.part_variances->horz[1].variance < threshold &&
205 get_plane_block_size(subsize, xd->plane[1].subsampling_x,
206 xd->plane[1].subsampling_y) < BLOCK_INVALID) {
207 set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
208 set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize);
209 return 1;
210 }
211 }
212 return 0;
213 }
214 return 0;
215 }
216
fill_variance_8x8avg(const uint8_t * s,int sp,const uint8_t * d,int dp,int x16_idx,int y16_idx,VP16x16 * vst,int highbd_flag,int pixels_wide,int pixels_high,int is_key_frame)217 static AOM_INLINE void fill_variance_8x8avg(const uint8_t *s, int sp,
218 const uint8_t *d, int dp,
219 int x16_idx, int y16_idx,
220 VP16x16 *vst,
221 #if CONFIG_AV1_HIGHBITDEPTH
222 int highbd_flag,
223 #endif
224 int pixels_wide, int pixels_high,
225 int is_key_frame) {
226 int k;
227 for (k = 0; k < 4; k++) {
228 int x8_idx = x16_idx + ((k & 1) << 3);
229 int y8_idx = y16_idx + ((k >> 1) << 3);
230 unsigned int sse = 0;
231 int sum = 0;
232 if (x8_idx < pixels_wide && y8_idx < pixels_high) {
233 int s_avg;
234 int d_avg = 128;
235 #if CONFIG_AV1_HIGHBITDEPTH
236 if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
237 s_avg = aom_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
238 if (!is_key_frame)
239 d_avg = aom_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
240 } else {
241 s_avg = aom_avg_8x8(s + y8_idx * sp + x8_idx, sp);
242 if (!is_key_frame) d_avg = aom_avg_8x8(d + y8_idx * dp + x8_idx, dp);
243 }
244 #else
245 s_avg = aom_avg_8x8(s + y8_idx * sp + x8_idx, sp);
246 if (!is_key_frame) d_avg = aom_avg_8x8(d + y8_idx * dp + x8_idx, dp);
247 #endif
248 sum = s_avg - d_avg;
249 sse = sum * sum;
250 }
251 fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
252 }
253 }
254
compute_minmax_8x8(const uint8_t * s,int sp,const uint8_t * d,int dp,int x16_idx,int y16_idx,int highbd_flag,int pixels_wide,int pixels_high)255 static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
256 int dp, int x16_idx, int y16_idx,
257 #if CONFIG_AV1_HIGHBITDEPTH
258 int highbd_flag,
259 #endif
260 int pixels_wide, int pixels_high) {
261 int k;
262 int minmax_max = 0;
263 int minmax_min = 255;
264 // Loop over the 4 8x8 subblocks.
265 for (k = 0; k < 4; k++) {
266 int x8_idx = x16_idx + ((k & 1) << 3);
267 int y8_idx = y16_idx + ((k >> 1) << 3);
268 int min = 0;
269 int max = 0;
270 if (x8_idx < pixels_wide && y8_idx < pixels_high) {
271 #if CONFIG_AV1_HIGHBITDEPTH
272 if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
273 aom_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
274 d + y8_idx * dp + x8_idx, dp, &min, &max);
275 } else {
276 aom_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx,
277 dp, &min, &max);
278 }
279 #else
280 aom_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp,
281 &min, &max);
282 #endif
283 if ((max - min) > minmax_max) minmax_max = (max - min);
284 if ((max - min) < minmax_min) minmax_min = (max - min);
285 }
286 }
287 return (minmax_max - minmax_min);
288 }
289
fill_variance_4x4avg(const uint8_t * s,int sp,const uint8_t * d,int dp,int x8_idx,int y8_idx,VP8x8 * vst,int highbd_flag,int pixels_wide,int pixels_high,int is_key_frame)290 static AOM_INLINE void fill_variance_4x4avg(const uint8_t *s, int sp,
291 const uint8_t *d, int dp,
292 int x8_idx, int y8_idx, VP8x8 *vst,
293 #if CONFIG_AV1_HIGHBITDEPTH
294 int highbd_flag,
295 #endif
296 int pixels_wide, int pixels_high,
297 int is_key_frame) {
298 int k;
299 for (k = 0; k < 4; k++) {
300 int x4_idx = x8_idx + ((k & 1) << 2);
301 int y4_idx = y8_idx + ((k >> 1) << 2);
302 unsigned int sse = 0;
303 int sum = 0;
304 if (x4_idx < pixels_wide && y4_idx < pixels_high) {
305 int s_avg;
306 int d_avg = 128;
307 #if CONFIG_AV1_HIGHBITDEPTH
308 if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
309 s_avg = aom_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
310 if (!is_key_frame)
311 d_avg = aom_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp);
312 } else {
313 s_avg = aom_avg_4x4(s + y4_idx * sp + x4_idx, sp);
314 if (!is_key_frame) d_avg = aom_avg_4x4(d + y4_idx * dp + x4_idx, dp);
315 }
316 #else
317 s_avg = aom_avg_4x4(s + y4_idx * sp + x4_idx, sp);
318 if (!is_key_frame) d_avg = aom_avg_4x4(d + y4_idx * dp + x4_idx, dp);
319 #endif
320
321 sum = s_avg - d_avg;
322 sse = sum * sum;
323 }
324 fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
325 }
326 }
327
328 // TODO(kyslov) Bring back threshold adjustment based on content state
scale_part_thresh_sumdiff(int64_t threshold_base,int speed,int width,int height,int content_state)329 static int64_t scale_part_thresh_sumdiff(int64_t threshold_base, int speed,
330 int width, int height,
331 int content_state) {
332 (void)width;
333 (void)height;
334 (void)content_state;
335 if (speed >= 8) {
336 return (5 * threshold_base) >> 2;
337 }
338 return threshold_base;
339 }
340
341 // Set the variance split thresholds for following the block sizes:
342 // 0 - threshold_128x128, 1 - threshold_64x64, 2 - threshold_32x32,
343 // 3 - vbp_threshold_16x16. 4 - vbp_threshold_8x8 (to split to 4x4 partition) is
344 // currently only used on key frame.
set_vbp_thresholds(AV1_COMP * cpi,int64_t thresholds[],int q,int content_state)345 static AOM_INLINE void set_vbp_thresholds(AV1_COMP *cpi, int64_t thresholds[],
346 int q, int content_state) {
347 AV1_COMMON *const cm = &cpi->common;
348 const int is_key_frame = frame_is_intra_only(cm);
349 const int threshold_multiplier = is_key_frame ? 40 : 1;
350 int64_t threshold_base =
351 (int64_t)(threshold_multiplier *
352 cpi->enc_quant_dequant_params.dequants.y_dequant_QTX[q][1]);
353
354 if (is_key_frame) {
355 thresholds[0] = threshold_base;
356 thresholds[1] = threshold_base;
357 thresholds[2] = threshold_base >> 2;
358 thresholds[3] = threshold_base >> 2;
359 thresholds[4] = threshold_base << 2;
360 } else {
361 // Increase base variance threshold based on content_state/sum_diff level.
362 threshold_base = scale_part_thresh_sumdiff(
363 threshold_base, cpi->oxcf.speed, cm->width, cm->height, content_state);
364
365 thresholds[0] = threshold_base >> 1;
366 thresholds[1] = threshold_base;
367 thresholds[3] = threshold_base << cpi->oxcf.speed;
368 if (cm->width >= 1280 && cm->height >= 720)
369 thresholds[3] = thresholds[3] << 1;
370 if (cm->width * cm->height <= 352 * 288) {
371 int last_qindex = cpi->rc.last_q[INTER_FRAME];
372 if (last_qindex >= QINDEX_HIGH_THR) {
373 threshold_base = (5 * threshold_base) >> 1;
374 thresholds[1] = threshold_base >> 3;
375 thresholds[2] = threshold_base << 2;
376 thresholds[3] = threshold_base << 5;
377 } else if (last_qindex < QINDEX_LOW_THR) {
378 thresholds[1] = threshold_base >> 3;
379 thresholds[2] = threshold_base >> 1;
380 thresholds[3] = threshold_base << 3;
381 } else {
382 int64_t qi_diff_low = last_qindex - QINDEX_LOW_THR;
383 int64_t qi_diff_high = QINDEX_HIGH_THR - last_qindex;
384 int64_t threshold_diff = QINDEX_HIGH_THR - QINDEX_LOW_THR;
385 int64_t threshold_base_high = (5 * threshold_base) >> 1;
386
387 threshold_diff = threshold_diff > 0 ? threshold_diff : 1;
388 threshold_base = (qi_diff_low * threshold_base_high +
389 qi_diff_high * threshold_base) /
390 threshold_diff;
391 thresholds[1] = threshold_base >> 3;
392 thresholds[2] = ((qi_diff_low * threshold_base) +
393 qi_diff_high * (threshold_base >> 1)) /
394 threshold_diff;
395 thresholds[3] = ((qi_diff_low * (threshold_base << 5)) +
396 qi_diff_high * (threshold_base << 3)) /
397 threshold_diff;
398 }
399 } else if (cm->width < 1280 && cm->height < 720) {
400 thresholds[2] = (5 * threshold_base) >> 2;
401 } else if (cm->width < 1920 && cm->height < 1080) {
402 thresholds[2] = threshold_base << 1;
403 } else {
404 thresholds[2] = (5 * threshold_base) >> 1;
405 }
406 }
407 }
408
409 // Set temporal variance low flag for superblock 64x64.
410 // Only first 25 in the array are used in this case.
set_low_temp_var_flag_64x64(CommonModeInfoParams * mi_params,MACROBLOCK * x,MACROBLOCKD * xd,VP64x64 * vt,const int64_t thresholds[],int mi_col,int mi_row)411 static AOM_INLINE void set_low_temp_var_flag_64x64(
412 CommonModeInfoParams *mi_params, MACROBLOCK *x, MACROBLOCKD *xd,
413 VP64x64 *vt, const int64_t thresholds[], int mi_col, int mi_row) {
414 if (xd->mi[0]->sb_type == BLOCK_64X64) {
415 if ((vt->part_variances).none.variance < (thresholds[0] >> 1))
416 x->variance_low[0] = 1;
417 } else if (xd->mi[0]->sb_type == BLOCK_64X32) {
418 for (int i = 0; i < 2; i++) {
419 if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2))
420 x->variance_low[i + 1] = 1;
421 }
422 } else if (xd->mi[0]->sb_type == BLOCK_32X64) {
423 for (int i = 0; i < 2; i++) {
424 if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2))
425 x->variance_low[i + 3] = 1;
426 }
427 } else {
428 static const int idx[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } };
429 for (int i = 0; i < 4; i++) {
430 const int idx_str =
431 mi_params->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1];
432 MB_MODE_INFO **this_mi = mi_params->mi_grid_base + idx_str;
433
434 if (mi_params->mi_cols <= mi_col + idx[i][1] ||
435 mi_params->mi_rows <= mi_row + idx[i][0])
436 continue;
437
438 if (*this_mi == NULL) continue;
439
440 if ((*this_mi)->sb_type == BLOCK_32X32) {
441 int64_t threshold_32x32 = (5 * thresholds[1]) >> 3;
442 if (vt->split[i].part_variances.none.variance < threshold_32x32)
443 x->variance_low[i + 5] = 1;
444 } else {
445 // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
446 // inside.
447 if ((*this_mi)->sb_type == BLOCK_16X16 ||
448 (*this_mi)->sb_type == BLOCK_32X16 ||
449 (*this_mi)->sb_type == BLOCK_16X32) {
450 for (int j = 0; j < 4; j++) {
451 if (vt->split[i].split[j].part_variances.none.variance <
452 (thresholds[2] >> 8))
453 x->variance_low[(i << 2) + j + 9] = 1;
454 }
455 }
456 }
457 }
458 }
459 }
460
set_low_temp_var_flag_128x128(CommonModeInfoParams * mi_params,MACROBLOCK * x,MACROBLOCKD * xd,VP128x128 * vt,const int64_t thresholds[],int mi_col,int mi_row)461 static AOM_INLINE void set_low_temp_var_flag_128x128(
462 CommonModeInfoParams *mi_params, MACROBLOCK *x, MACROBLOCKD *xd,
463 VP128x128 *vt, const int64_t thresholds[], int mi_col, int mi_row) {
464 if (xd->mi[0]->sb_type == BLOCK_128X128) {
465 if (vt->part_variances.none.variance < (thresholds[0] >> 1))
466 x->variance_low[0] = 1;
467 } else if (xd->mi[0]->sb_type == BLOCK_128X64) {
468 for (int i = 0; i < 2; i++) {
469 if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2))
470 x->variance_low[i + 1] = 1;
471 }
472 } else if (xd->mi[0]->sb_type == BLOCK_64X128) {
473 for (int i = 0; i < 2; i++) {
474 if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2))
475 x->variance_low[i + 3] = 1;
476 }
477 } else {
478 static const int idx64[4][2] = {
479 { 0, 0 }, { 0, 16 }, { 16, 0 }, { 16, 16 }
480 };
481 static const int idx32[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } };
482 for (int i = 0; i < 4; i++) {
483 const int idx_str =
484 mi_params->mi_stride * (mi_row + idx64[i][0]) + mi_col + idx64[i][1];
485 MB_MODE_INFO **mi_64 = mi_params->mi_grid_base + idx_str;
486 if (*mi_64 == NULL) continue;
487 if (mi_params->mi_cols <= mi_col + idx64[i][1] ||
488 mi_params->mi_rows <= mi_row + idx64[i][0])
489 continue;
490 const int64_t threshold_64x64 = (5 * thresholds[1]) >> 3;
491 if ((*mi_64)->sb_type == BLOCK_64X64) {
492 if (vt->split[i].part_variances.none.variance < threshold_64x64)
493 x->variance_low[5 + i] = 1;
494 } else if ((*mi_64)->sb_type == BLOCK_64X32) {
495 for (int j = 0; j < 2; j++)
496 if (vt->split[i].part_variances.horz[j].variance <
497 (threshold_64x64 >> 1))
498 x->variance_low[9 + (i << 1) + j] = 1;
499 } else if ((*mi_64)->sb_type == BLOCK_32X64) {
500 for (int j = 0; j < 2; j++)
501 if (vt->split[i].part_variances.vert[j].variance <
502 (threshold_64x64 >> 1))
503 x->variance_low[17 + (i << 1) + j] = 1;
504 } else {
505 for (int k = 0; k < 4; k++) {
506 const int idx_str1 = mi_params->mi_stride * idx32[k][0] + idx32[k][1];
507 MB_MODE_INFO **mi_32 = mi_params->mi_grid_base + idx_str + idx_str1;
508 if (*mi_32 == NULL) continue;
509
510 if (mi_params->mi_cols <= mi_col + idx64[i][1] + idx32[k][1] ||
511 mi_params->mi_rows <= mi_row + idx64[i][0] + idx32[k][0])
512 continue;
513 const int64_t threshold_32x32 = (5 * thresholds[2]) >> 3;
514 if ((*mi_32)->sb_type == BLOCK_32X32) {
515 if (vt->split[i].split[k].part_variances.none.variance <
516 threshold_32x32)
517 x->variance_low[25 + (i << 2) + k] = 1;
518 } else {
519 // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
520 // inside.
521 if ((*mi_32)->sb_type == BLOCK_16X16 ||
522 (*mi_32)->sb_type == BLOCK_32X16 ||
523 (*mi_32)->sb_type == BLOCK_16X32) {
524 for (int j = 0; j < 4; j++) {
525 if (vt->split[i]
526 .split[k]
527 .split[j]
528 .part_variances.none.variance < (thresholds[3] >> 8))
529 x->variance_low[41 + (i << 4) + (k << 2) + j] = 1;
530 }
531 }
532 }
533 }
534 }
535 }
536 }
537 }
538
set_low_temp_var_flag(AV1_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,VP128x128 * vt,int64_t thresholds[],MV_REFERENCE_FRAME ref_frame_partition,int mi_col,int mi_row)539 static AOM_INLINE void set_low_temp_var_flag(
540 AV1_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, VP128x128 *vt,
541 int64_t thresholds[], MV_REFERENCE_FRAME ref_frame_partition, int mi_col,
542 int mi_row) {
543 AV1_COMMON *const cm = &cpi->common;
544 const int mv_thr = cm->width > 640 ? 8 : 4;
545 // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected and
546 // int_pro mv is small. If the temporal variance is small set the flag
547 // variance_low for the block. The variance threshold can be adjusted, the
548 // higher the more aggressive.
549 if (ref_frame_partition == LAST_FRAME &&
550 (cpi->sf.rt_sf.short_circuit_low_temp_var == 1 ||
551 (cpi->sf.rt_sf.estimate_motion_for_var_based_partition &&
552 xd->mi[0]->mv[0].as_mv.col < mv_thr &&
553 xd->mi[0]->mv[0].as_mv.col > -mv_thr &&
554 xd->mi[0]->mv[0].as_mv.row < mv_thr &&
555 xd->mi[0]->mv[0].as_mv.row > -mv_thr))) {
556 const int is_small_sb = (cm->seq_params.sb_size == BLOCK_64X64);
557 if (is_small_sb)
558 set_low_temp_var_flag_64x64(&cm->mi_params, x, xd, &(vt->split[0]),
559 thresholds, mi_col, mi_row);
560 else
561 set_low_temp_var_flag_128x128(&cm->mi_params, x, xd, vt, thresholds,
562 mi_col, mi_row);
563 }
564 }
565
av1_set_variance_partition_thresholds(AV1_COMP * cpi,int q,int content_state)566 void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int q,
567 int content_state) {
568 SPEED_FEATURES *const sf = &cpi->sf;
569 if (sf->part_sf.partition_search_type != VAR_BASED_PARTITION) {
570 return;
571 } else {
572 set_vbp_thresholds(cpi, cpi->vbp_info.thresholds, q, content_state);
573 // The threshold below is not changed locally.
574 cpi->vbp_info.threshold_minmax = 15 + (q >> 3);
575 }
576 }
577
chroma_check(AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,unsigned int y_sad,int is_key_frame)578 static AOM_INLINE void chroma_check(AV1_COMP *cpi, MACROBLOCK *x,
579 BLOCK_SIZE bsize, unsigned int y_sad,
580 int is_key_frame) {
581 int i;
582 MACROBLOCKD *xd = &x->e_mbd;
583
584 if (is_key_frame) return;
585
586 for (i = 1; i <= 2; ++i) {
587 unsigned int uv_sad = UINT_MAX;
588 struct macroblock_plane *p = &x->plane[i];
589 struct macroblockd_plane *pd = &xd->plane[i];
590 const BLOCK_SIZE bs =
591 get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
592
593 if (bs != BLOCK_INVALID)
594 uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf,
595 pd->dst.stride);
596
597 x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2);
598 }
599 }
600
601 // This function chooses partitioning based on the variance between source and
602 // reconstructed last, where variance is computed for down-sampled inputs.
603 // TODO(kyslov): lot of things. Bring back noise estimation, brush up partition
604 // selection and most of all - retune the thresholds
av1_choose_var_based_partitioning(AV1_COMP * cpi,const TileInfo * const tile,ThreadData * td,MACROBLOCK * x,int mi_row,int mi_col)605 int av1_choose_var_based_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
606 ThreadData *td, MACROBLOCK *x, int mi_row,
607 int mi_col) {
608 AV1_COMMON *const cm = &cpi->common;
609 MACROBLOCKD *xd = &x->e_mbd;
610 const int64_t *const vbp_thresholds = cpi->vbp_info.thresholds;
611
612 int i, j, k, m;
613 VP128x128 *vt;
614 VP16x16 *vt2 = NULL;
615 unsigned char force_split[85];
616 int avg_32x32;
617 int max_var_32x32[4];
618 int min_var_32x32[4];
619 int var_32x32;
620 int var_64x64;
621 int min_var_64x64 = INT_MAX;
622 int max_var_64x64 = 0;
623 int avg_16x16[4][4];
624 int maxvar_16x16[4][4];
625 int minvar_16x16[4][4];
626 int64_t threshold_4x4avg;
627 int content_state = 0;
628 uint8_t *s;
629 const uint8_t *d;
630 int sp;
631 int dp;
632 // TODO(kyslov) Bring back compute_minmax_variance with content type detection
633 int compute_minmax_variance = 0;
634 int is_key_frame = frame_is_intra_only(cm);
635 int pixels_wide = 128, pixels_high = 128;
636 assert(cm->seq_params.sb_size == BLOCK_64X64 ||
637 cm->seq_params.sb_size == BLOCK_128X128);
638 const int is_small_sb = (cm->seq_params.sb_size == BLOCK_64X64);
639 const int num_64x64_blocks = is_small_sb ? 1 : 4;
640
641 unsigned int y_sad = UINT_MAX;
642 unsigned int y_sad_g = UINT_MAX;
643 BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128;
644
645 // Ref frame used in partitioning.
646 MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME;
647
648 CHECK_MEM_ERROR(cm, vt, aom_malloc(sizeof(*vt)));
649
650 vt->split = td->vt64x64;
651
652 int64_t thresholds[5] = { vbp_thresholds[0], vbp_thresholds[1],
653 vbp_thresholds[2], vbp_thresholds[3],
654 vbp_thresholds[4] };
655
656 const int low_res = (cm->width <= 352 && cm->height <= 288);
657 int variance4x4downsample[64];
658 int segment_id;
659 const int num_planes = av1_num_planes(cm);
660
661 segment_id = xd->mi[0]->segment_id;
662
663 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
664 cyclic_refresh_segment_id_boosted(segment_id) &&
665 cpi->sf.rt_sf.use_nonrd_pick_mode) {
666 int q = av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex);
667 set_vbp_thresholds(cpi, thresholds, q, content_state);
668 } else {
669 set_vbp_thresholds(cpi, thresholds, cm->quant_params.base_qindex,
670 content_state);
671 }
672
673 if (is_small_sb) {
674 pixels_wide = 64;
675 pixels_high = 64;
676 }
677
678 // For non keyframes, disable 4x4 average for low resolution when speed = 8
679 threshold_4x4avg = INT64_MAX;
680
681 if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
682 if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
683
684 s = x->plane[0].src.buf;
685 sp = x->plane[0].src.stride;
686
687 // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
688 // 5-20 for the 16x16 blocks.
689 force_split[0] = 0;
690 memset(x->variance_low, 0, sizeof(x->variance_low));
691
692 if (!is_key_frame) {
693 // TODO(kyslov): we are assuming that the ref is LAST_FRAME! Check if it
694 // is!!
695 MB_MODE_INFO *mi = xd->mi[0];
696 const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);
697 assert(yv12 != NULL);
698 const YV12_BUFFER_CONFIG *yv12_g = NULL;
699
700 // For non-SVC GOLDEN is another temporal reference. Check if it should be
701 // used as reference for partitioning.
702 if (!cpi->use_svc && (cpi->ref_frame_flags & AOM_GOLD_FLAG) &&
703 cpi->sf.rt_sf.use_nonrd_pick_mode) {
704 yv12_g = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
705 if (yv12_g && yv12_g != yv12) {
706 av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
707 get_ref_scale_factors(cm, GOLDEN_FRAME),
708 num_planes);
709 y_sad_g = cpi->fn_ptr[bsize].sdf(
710 x->plane[0].src.buf, x->plane[0].src.stride,
711 xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride);
712 }
713 }
714
715 av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
716 get_ref_scale_factors(cm, LAST_FRAME), num_planes);
717 mi->ref_frame[0] = LAST_FRAME;
718 mi->ref_frame[1] = NONE_FRAME;
719 mi->sb_type = cm->seq_params.sb_size;
720 mi->mv[0].as_int = 0;
721 mi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
722 if (cpi->sf.rt_sf.estimate_motion_for_var_based_partition) {
723 if (xd->mb_to_right_edge >= 0 && xd->mb_to_bottom_edge >= 0) {
724 const MV dummy_mv = { 0, 0 };
725 y_sad = av1_int_pro_motion_estimation(cpi, x, cm->seq_params.sb_size,
726 mi_row, mi_col, &dummy_mv);
727 }
728 }
729 if (y_sad == UINT_MAX) {
730 y_sad = cpi->fn_ptr[bsize].sdf(
731 x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
732 xd->plane[0].pre[0].stride);
733 }
734
735 // Pick the ref frame for partitioning, use golden frame only if its
736 // lower sad.
737 if (y_sad_g < 0.9 * y_sad) {
738 av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
739 get_ref_scale_factors(cm, GOLDEN_FRAME), num_planes);
740 mi->ref_frame[0] = GOLDEN_FRAME;
741 mi->mv[0].as_int = 0;
742 y_sad = y_sad_g;
743 ref_frame_partition = GOLDEN_FRAME;
744 x->nonrd_prune_ref_frame_search = 0;
745 } else {
746 x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
747 ref_frame_partition = LAST_FRAME;
748 x->nonrd_prune_ref_frame_search =
749 cpi->sf.rt_sf.nonrd_prune_ref_frame_search;
750 }
751
752 set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
753 av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL,
754 cm->seq_params.sb_size, AOM_PLANE_Y,
755 AOM_PLANE_Y);
756
757 d = xd->plane[0].dst.buf;
758 dp = xd->plane[0].dst.stride;
759 } else {
760 d = AV1_VAR_OFFS;
761 dp = 0;
762 }
763
764 if (low_res && threshold_4x4avg < INT64_MAX)
765 CHECK_MEM_ERROR(cm, vt2, aom_malloc(sizeof(*vt2)));
766 // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
767 // for splits.
768 for (m = 0; m < num_64x64_blocks; m++) {
769 const int x64_idx = ((m & 1) << 6);
770 const int y64_idx = ((m >> 1) << 6);
771 const int m2 = m << 2;
772 force_split[m + 1] = 0;
773 max_var_32x32[m] = 0;
774 min_var_32x32[m] = INT_MAX;
775 for (i = 0; i < 4; i++) {
776 const int x32_idx = x64_idx + ((i & 1) << 5);
777 const int y32_idx = y64_idx + ((i >> 1) << 5);
778 const int i2 = (m2 + i) << 2;
779 force_split[5 + m2 + i] = 0;
780 avg_16x16[m][i] = 0;
781 maxvar_16x16[m][i] = 0;
782 minvar_16x16[m][i] = INT_MAX;
783 for (j = 0; j < 4; j++) {
784 const int x16_idx = x32_idx + ((j & 1) << 4);
785 const int y16_idx = y32_idx + ((j >> 1) << 4);
786 const int split_index = 21 + i2 + j;
787 VP16x16 *vst = &vt->split[m].split[i].split[j];
788 force_split[split_index] = 0;
789 variance4x4downsample[i2 + j] = 0;
790 if (!is_key_frame) {
791 fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst,
792 #if CONFIG_AV1_HIGHBITDEPTH
793 xd->cur_buf->flags,
794 #endif
795 pixels_wide, pixels_high, is_key_frame);
796 fill_variance_tree(&vt->split[m].split[i].split[j], BLOCK_16X16);
797 get_variance(&vt->split[m].split[i].split[j].part_variances.none);
798 avg_16x16[m][i] +=
799 vt->split[m].split[i].split[j].part_variances.none.variance;
800 if (vt->split[m].split[i].split[j].part_variances.none.variance <
801 minvar_16x16[m][i])
802 minvar_16x16[m][i] =
803 vt->split[m].split[i].split[j].part_variances.none.variance;
804 if (vt->split[m].split[i].split[j].part_variances.none.variance >
805 maxvar_16x16[m][i])
806 maxvar_16x16[m][i] =
807 vt->split[m].split[i].split[j].part_variances.none.variance;
808 if (vt->split[m].split[i].split[j].part_variances.none.variance >
809 thresholds[3]) {
810 // 16X16 variance is above threshold for split, so force split to
811 // 8x8 for this 16x16 block (this also forces splits for upper
812 // levels).
813 force_split[split_index] = 1;
814 force_split[5 + m2 + i] = 1;
815 force_split[m + 1] = 1;
816 force_split[0] = 1;
817 } else if (compute_minmax_variance &&
818 vt->split[m]
819 .split[i]
820 .split[j]
821 .part_variances.none.variance > thresholds[2] &&
822 !cyclic_refresh_segment_id_boosted(segment_id)) {
823 // We have some nominal amount of 16x16 variance (based on average),
824 // compute the minmax over the 8x8 sub-blocks, and if above
825 // threshold, force split to 8x8 block for this 16x16 block.
826 int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx,
827 #if CONFIG_AV1_HIGHBITDEPTH
828 xd->cur_buf->flags,
829 #endif
830 pixels_wide, pixels_high);
831 int thresh_minmax = (int)cpi->vbp_info.threshold_minmax;
832 if (minmax > thresh_minmax) {
833 force_split[split_index] = 1;
834 force_split[5 + m2 + i] = 1;
835 force_split[m + 1] = 1;
836 force_split[0] = 1;
837 }
838 }
839 }
840 if (is_key_frame) {
841 force_split[split_index] = 0;
842 // Go down to 4x4 down-sampling for variance.
843 variance4x4downsample[i2 + j] = 1;
844 for (k = 0; k < 4; k++) {
845 int x8_idx = x16_idx + ((k & 1) << 3);
846 int y8_idx = y16_idx + ((k >> 1) << 3);
847 VP8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k];
848 fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2,
849 #if CONFIG_AV1_HIGHBITDEPTH
850 xd->cur_buf->flags,
851 #endif
852 pixels_wide, pixels_high, is_key_frame);
853 }
854 }
855 }
856 }
857 }
858
859 // Fill the rest of the variance tree by summing split partition values.
860 for (m = 0; m < num_64x64_blocks; ++m) {
861 avg_32x32 = 0;
862 const int m2 = m << 2;
863 for (i = 0; i < 4; i++) {
864 const int i2 = (m2 + i) << 2;
865 for (j = 0; j < 4; j++) {
866 const int split_index = 21 + i2 + j;
867 if (variance4x4downsample[i2 + j] == 1) {
868 VP16x16 *vtemp =
869 (!is_key_frame) ? &vt2[i2 + j] : &vt->split[m].split[i].split[j];
870 for (k = 0; k < 4; k++)
871 fill_variance_tree(&vtemp->split[k], BLOCK_8X8);
872 fill_variance_tree(vtemp, BLOCK_16X16);
873 // If variance of this 16x16 block is above the threshold, force block
874 // to split. This also forces a split on the upper levels.
875 get_variance(&vtemp->part_variances.none);
876 if (vtemp->part_variances.none.variance > thresholds[3]) {
877 force_split[split_index] = 1;
878 force_split[5 + m2 + i] = 1;
879 force_split[m + 1] = 1;
880 force_split[0] = 1;
881 }
882 }
883 }
884 fill_variance_tree(&vt->split[m].split[i], BLOCK_32X32);
885 // If variance of this 32x32 block is above the threshold, or if its above
886 // (some threshold of) the average variance over the sub-16x16 blocks,
887 // then force this block to split. This also forces a split on the upper
888 // (64x64) level.
889 if (!force_split[5 + m2 + i]) {
890 get_variance(&vt->split[m].split[i].part_variances.none);
891 var_32x32 = vt->split[m].split[i].part_variances.none.variance;
892 max_var_32x32[m] = AOMMAX(var_32x32, max_var_32x32[m]);
893 min_var_32x32[m] = AOMMIN(var_32x32, min_var_32x32[m]);
894 if (vt->split[m].split[i].part_variances.none.variance >
895 thresholds[2] ||
896 (!is_key_frame &&
897 vt->split[m].split[i].part_variances.none.variance >
898 (thresholds[2] >> 1) &&
899 vt->split[m].split[i].part_variances.none.variance >
900 (avg_16x16[m][i] >> 1))) {
901 force_split[5 + m2 + i] = 1;
902 force_split[m + 1] = 1;
903 force_split[0] = 1;
904 } else if (!is_key_frame && cm->height <= 360 &&
905 (maxvar_16x16[m][i] - minvar_16x16[m][i]) >
906 (thresholds[2] >> 1) &&
907 maxvar_16x16[m][i] > thresholds[2]) {
908 force_split[5 + m2 + i] = 1;
909 force_split[m + 1] = 1;
910 force_split[0] = 1;
911 }
912 avg_32x32 += var_32x32;
913 }
914 }
915 if (!force_split[1 + m]) {
916 fill_variance_tree(&vt->split[m], BLOCK_64X64);
917 get_variance(&vt->split[m].part_variances.none);
918 var_64x64 = vt->split[m].part_variances.none.variance;
919 max_var_64x64 = AOMMAX(var_64x64, max_var_64x64);
920 min_var_64x64 = AOMMIN(var_64x64, min_var_64x64);
921 // If variance of this 64x64 block is above (some threshold of) the
922 // average variance over the sub-32x32 blocks, then force this block to
923 // split. Only checking this for noise level >= medium for now.
924
925 if (!is_key_frame &&
926 (max_var_32x32[m] - min_var_32x32[m]) > 3 * (thresholds[1] >> 3) &&
927 max_var_32x32[m] > thresholds[1] >> 1)
928 force_split[1 + m] = 1;
929 }
930 if (is_small_sb) force_split[0] = 1;
931 }
932
933 if (!force_split[0]) {
934 fill_variance_tree(vt, BLOCK_128X128);
935 get_variance(&vt->part_variances.none);
936 if (!is_key_frame &&
937 (max_var_64x64 - min_var_64x64) > 3 * (thresholds[0] >> 3) &&
938 max_var_64x64 > thresholds[0] >> 1)
939 force_split[0] = 1;
940 }
941
942 if (mi_col + 32 > tile->mi_col_end || mi_row + 32 > tile->mi_row_end ||
943 !set_vt_partitioning(cpi, x, xd, tile, vt, BLOCK_128X128, mi_row, mi_col,
944 thresholds[0], BLOCK_16X16, force_split[0])) {
945 for (m = 0; m < num_64x64_blocks; ++m) {
946 const int x64_idx = ((m & 1) << 4);
947 const int y64_idx = ((m >> 1) << 4);
948 const int m2 = m << 2;
949
950 // Now go through the entire structure, splitting every block size until
951 // we get to one that's got a variance lower than our threshold.
952 if (!set_vt_partitioning(cpi, x, xd, tile, &vt->split[m], BLOCK_64X64,
953 mi_row + y64_idx, mi_col + x64_idx,
954 thresholds[1], BLOCK_16X16,
955 force_split[1 + m])) {
956 for (i = 0; i < 4; ++i) {
957 const int x32_idx = ((i & 1) << 3);
958 const int y32_idx = ((i >> 1) << 3);
959 const int i2 = (m2 + i) << 2;
960 if (!set_vt_partitioning(cpi, x, xd, tile, &vt->split[m].split[i],
961 BLOCK_32X32, (mi_row + y64_idx + y32_idx),
962 (mi_col + x64_idx + x32_idx), thresholds[2],
963 BLOCK_16X16, force_split[5 + m2 + i])) {
964 for (j = 0; j < 4; ++j) {
965 const int x16_idx = ((j & 1) << 2);
966 const int y16_idx = ((j >> 1) << 2);
967 const int split_index = 21 + i2 + j;
968 // For inter frames: if variance4x4downsample[] == 1 for this
969 // 16x16 block, then the variance is based on 4x4 down-sampling,
970 // so use vt2 in set_vt_partioning(), otherwise use vt.
971 VP16x16 *vtemp =
972 (!is_key_frame && variance4x4downsample[i2 + j] == 1)
973 ? &vt2[i2 + j]
974 : &vt->split[m].split[i].split[j];
975 if (!set_vt_partitioning(cpi, x, xd, tile, vtemp, BLOCK_16X16,
976 mi_row + y64_idx + y32_idx + y16_idx,
977 mi_col + x64_idx + x32_idx + x16_idx,
978 thresholds[3], BLOCK_8X8,
979 force_split[split_index])) {
980 for (k = 0; k < 4; ++k) {
981 const int x8_idx = (k & 1) << 1;
982 const int y8_idx = (k >> 1) << 1;
983 set_block_size(
984 cpi, x, xd,
985 (mi_row + y64_idx + y32_idx + y16_idx + y8_idx),
986 (mi_col + x64_idx + x32_idx + x16_idx + x8_idx),
987 BLOCK_8X8);
988 }
989 }
990 }
991 }
992 }
993 }
994 }
995 }
996
997 if (cpi->sf.rt_sf.short_circuit_low_temp_var) {
998 set_low_temp_var_flag(cpi, x, xd, vt, thresholds, ref_frame_partition,
999 mi_col, mi_row);
1000 }
1001 chroma_check(cpi, x, bsize, y_sad, is_key_frame);
1002
1003 if (vt2) aom_free(vt2);
1004 if (vt) aom_free(vt);
1005 return 0;
1006 }
1007