• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 
14 #include "aom/aom_integer.h"
15 
16 #include "aom_ports/mem.h"
17 
18 #include "aom_dsp/aom_dsp_common.h"
19 
20 #include "av1/common/reconinter.h"
21 
22 #define MAX_MASK_VALUE (1 << WEDGE_WEIGHT_BITS)
23 
24 /**
25  * Computes SSE of a compound predictor constructed from 2 fundamental
26  * predictors p0 and p1 using blending with mask.
27  *
28  * r1:  Residuals of p1.
29  *      (source - p1)
30  * d:   Difference of p1 and p0.
31  *      (p1 - p0)
32  * m:   The blending mask
33  * N:   Number of pixels
34  *
35  * 'r1', 'd', and 'm' are contiguous.
36  *
37  * Computes:
38  *  Sum((MAX_MASK_VALUE*r1 + mask*d)**2), which is equivalent to:
39  *  Sum((mask*r0 + (MAX_MASK_VALUE-mask)*r1)**2),
40  *    where r0 is (source - p0), and r1 is (source - p1), which is in turn
41  *    is equivalent to:
42  *  Sum((source*MAX_MASK_VALUE - (mask*p0 + (MAX_MASK_VALUE-mask)*p1))**2),
43  *    which is the SSE of the residuals of the compound predictor scaled up by
44  *    MAX_MASK_VALUE**2.
45  *
46  * Note that we clamp the partial term in the loop to 16 bits signed. This is
47  * to facilitate equivalent SIMD implementation. It should have no effect if
48  * residuals are within 16 - WEDGE_WEIGHT_BITS (=10) signed, which always
49  * holds for 8 bit input, and on real input, it should hold practically always,
50  * as residuals are expected to be small.
51  */
av1_wedge_sse_from_residuals_c(const int16_t * r1,const int16_t * d,const uint8_t * m,int N)52 uint64_t av1_wedge_sse_from_residuals_c(const int16_t *r1, const int16_t *d,
53                                         const uint8_t *m, int N) {
54   uint64_t csse = 0;
55   int i;
56 
57   for (i = 0; i < N; i++) {
58     int32_t t = MAX_MASK_VALUE * r1[i] + m[i] * d[i];
59     t = clamp(t, INT16_MIN, INT16_MAX);
60     csse += t * t;
61   }
62   return ROUND_POWER_OF_TWO(csse, 2 * WEDGE_WEIGHT_BITS);
63 }
64 
65 /**
66  * Choose the mask sign for a compound predictor.
67  *
68  * ds:    Difference of the squares of the residuals.
69  *        r0**2 - r1**2
70  * m:     The blending mask
71  * N:     Number of pixels
72  * limit: Pre-computed threshold value.
73  *        MAX_MASK_VALUE/2 * (sum(r0**2) - sum(r1**2))
74  *
75  * 'ds' and 'm' are contiguous.
76  *
77  * Returns true if the negated mask has lower SSE compared to the positive
78  * mask. Computation is based on:
79  *  Sum((mask*r0 + (MAX_MASK_VALUE-mask)*r1)**2)
80  *                                     >
81  *                                Sum(((MAX_MASK_VALUE-mask)*r0 + mask*r1)**2)
82  *
83  *  which can be simplified to:
84  *
85  *  Sum(mask*(r0**2 - r1**2)) > MAX_MASK_VALUE/2 * (sum(r0**2) - sum(r1**2))
86  *
87  *  The right hand side does not depend on the mask, and needs to be passed as
88  *  the 'limit' parameter.
89  *
90  *  After pre-computing (r0**2 - r1**2), which is passed in as 'ds', the left
91  *  hand side is simply a scalar product between an int16_t and uint8_t vector.
92  *
93  *  Note that for efficiency, ds is stored on 16 bits. Real input residuals
94  *  being small, this should not cause a noticeable issue.
95  */
av1_wedge_sign_from_residuals_c(const int16_t * ds,const uint8_t * m,int N,int64_t limit)96 int8_t av1_wedge_sign_from_residuals_c(const int16_t *ds, const uint8_t *m,
97                                        int N, int64_t limit) {
98   int64_t acc = 0;
99 
100   do {
101     acc += *ds++ * *m++;
102   } while (--N);
103 
104   return acc > limit;
105 }
106 
107 /**
108  * Compute the element-wise difference of the squares of 2 arrays.
109  *
110  * d: Difference of the squares of the inputs: a**2 - b**2
111  * a: First input array
112  * b: Second input array
113  * N: Number of elements
114  *
115  * 'd', 'a', and 'b' are contiguous.
116  *
117  * The result is saturated to signed 16 bits.
118  */
av1_wedge_compute_delta_squares_c(int16_t * d,const int16_t * a,const int16_t * b,int N)119 void av1_wedge_compute_delta_squares_c(int16_t *d, const int16_t *a,
120                                        const int16_t *b, int N) {
121   int i;
122 
123   for (i = 0; i < N; i++)
124     d[i] = clamp(a[i] * a[i] - b[i] * b[i], INT16_MIN, INT16_MAX);
125 }
126