/packages/modules/NeuralNetworks/common/operations/ |
D | Split.cpp | 29 bool splitGeneric(const Scalar* inputData, const Shape& inputShape, int32_t axis, in splitGeneric() 55 bool splitFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis, in splitFloat16() 62 bool splitFloat32(const float* inputData, const Shape& inputShape, int32_t axis, in splitFloat32() 69 bool splitQuant8(const uint8_t* inputData, const Shape& inputShape, int32_t axis, in splitQuant8() 76 bool splitQuant8Signed(const int8_t* inputData, const Shape& inputShape, int32_t axis, in splitQuant8Signed() 83 bool splitInt32(const int32_t* inputData, const Shape& inputShape, int32_t axis, in splitInt32()
|
D | L2Normalization.cpp | 48 inline bool l2normFloat32Impl(const float* inputData, const Shape& inputShape, int32_t axis, in l2normFloat32Impl() 76 inline bool l2normQuant8Impl(const uint8_t* inputData, const Shape& inputShape, int32_t axis, in l2normQuant8Impl() 108 inline bool l2normQuant8SignedImpl(const int8_t* inputData, const Shape& inputShape, int32_t axis, in l2normQuant8SignedImpl() 139 bool l2normFloat32(const float* inputData, const Shape& inputShape, int32_t axis, float* outputData, in l2normFloat32() 155 bool l2normFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis, in l2normFloat16() 168 bool l2normQuant8(const uint8_t* inputData, const Shape& inputShape, int32_t axis, in l2normQuant8() 184 bool l2normQuant8Signed(const int8_t* inputData, const Shape& inputShape, int32_t axis, in l2normQuant8Signed() 240 int32_t axis = context->getNumInputs() == kNumInputs in prepare() local 263 int32_t axis = context->getNumInputs() == kNumInputs in execute() local
|
D | ExpandDims.cpp | 27 bool prepare(const Shape& input, int32_t axis, Shape* output) { in prepare() 40 bool eval(const uint8_t* inputData, const Shape& inputShape, int32_t axis, uint8_t* outputData, in eval()
|
D | Gather.cpp | 40 inline bool eval(const T* inputData, const Shape& inputShape, int32_t axis, in eval() 84 int32_t axis = context->getInputValue<int32_t>(kInputAxis); in prepare() local 102 int32_t axis = context->getInputValue<int32_t>(kInputAxis); in execute() local
|
D | ChannelShuffle.cpp | 38 inline bool eval(const T* inputData, const Shape& inputShape, int32_t numGroups, int32_t axis, in eval() 85 int32_t axis = context->getInputValue<int32_t>(kInputAxis); in prepare() local 94 int32_t axis = context->getInputValue<int32_t>(kInputAxis); in execute() local
|
D | LocalResponseNormalization.cpp | 53 int32_t axis, float* outputData, in localResponseNormFloat32Impl() 87 float bias, float alpha, float beta, int32_t axis, float* outputData, in localResponseNorm() 109 _Float16 bias, _Float16 alpha, _Float16 beta, int32_t axis, in localResponseNorm() 125 int32_t axis = context->getNumInputs() == kNumInputs in executeTyped() local 186 int32_t axis = context->getNumInputs() == kNumInputs in prepare() local
|
D | SimpleMath.cpp | 33 bool meanFloat16(_Float16* inputData, const Shape& inputShape, const int32_t* axis, in meanFloat16() 48 bool meanGeneric(T* inputData, const Shape& inputShape, const int32_t* axis, const Shape& axisShape, in meanGeneric()
|
D | Softmax.cpp | 54 int32_t axis, float* outputData, const Shape& outputShape) { in softmaxSlowFloat32() 85 bool softmaxFloat32(const float* inputData, const Shape& inputShape, const float beta, int32_t axis, in softmaxFloat32() 102 int32_t axis, _Float16* outputData, const Shape& outputShape) { in softmaxFloat16() 116 bool softmaxQuant8Impl(const T* inputData, const Shape& inputShape, const float beta, int32_t axis, in softmaxQuant8Impl() 203 bool softmaxQuant8(const T* inputData, const Shape& inputShape, const float beta, int32_t axis, in softmaxQuant8() 287 int32_t axis = (context->getNumInputs() == kNumInputs) in execute() local
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
D | argmin_quant8_signed.mod.py | 19 axis = Int32Scalar("axis", -1) variable 37 axis = Int32Scalar("axis", 0) variable 55 axis = Int32Scalar("axis", 1) variable
|
D | argmax_quant8_signed.mod.py | 18 axis = Int32Scalar("axis", 1) variable 36 axis = Int32Scalar("axis", 0) variable 56 axis = Int32Scalar("axis", -1) variable
|
D | split_quant8_signed.mod.py | 18 axis = Int32Scalar("axis", 0) variable 41 axis = Int32Scalar("axis", 0) variable 62 axis = Int32Scalar("axis", 1) variable 85 axis = Int32Scalar("axis", 1) variable
|
D | l2_normalization_quant8_signed.mod.py | 19 axis = Int32Scalar("axis", -1) # last axis variable 53 axis = Int32Scalar("axis", -1) # last axis variable
|
D | gather_quant8_signed.mod.py | 18 axis = 1 variable 46 def test(input0, axis, indices, output0, input_data, output_data): argument
|
D | mean_quant8_signed.mod.py | 18 axis = Parameter("axis", "TENSOR_INT32", "{4}", [1, 0, -3, -3]) variable 42 axis = Parameter("axis", "TENSOR_INT32", "{2}", [0, 2]) variable
|
D | channel_shuffle_quant8_signed.mod.py | 19 axis = Int32Scalar("axis", -1) # last axis variable
|
D | l2_normalization_zeros.mod.py | 20 axis = Int32Scalar("axis", -1) # last axis variable
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
D | l2_normalization_axis.mod.py | 20 axis = Int32Scalar("axis", -1) # last axis variable 54 axis = Int32Scalar("axis", -1) # last axis variable
|
D | local_response_normalization_v1_2.mod.py | 19 axis = Int32Scalar("axis", -1) # last axis variable
|
D | channel_shuffle.mod.py | 19 axis = Int32Scalar("axis", -1) # last axis variable
|
D | argmin_2.mod.py | 18 axis = Int32Scalar("axis", 0) variable
|
D | l2_normalization_v1_2.mod.py | 19 axis = Int32Scalar("axis", -1) # last axis variable
|
D | argmin_1.mod.py | 18 axis = Int32Scalar("axis", 1) variable
|
D | argmax_2.mod.py | 18 axis = Int32Scalar("axis", 0) variable
|
D | argmax_3.mod.py | 20 axis = Int32Scalar("axis", -1) variable
|
D | argmax_1.mod.py | 18 axis = Int32Scalar("axis", 1) variable
|