1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "instruction_builder.h"
18
19 #include "art_method-inl.h"
20 #include "base/arena_bit_vector.h"
21 #include "base/bit_vector-inl.h"
22 #include "base/logging.h"
23 #include "block_builder.h"
24 #include "class_linker-inl.h"
25 #include "code_generator.h"
26 #include "data_type-inl.h"
27 #include "dex/bytecode_utils.h"
28 #include "dex/dex_instruction-inl.h"
29 #include "driver/dex_compilation_unit.h"
30 #include "driver/compiler_options.h"
31 #include "imtable-inl.h"
32 #include "intrinsics.h"
33 #include "intrinsics_utils.h"
34 #include "jit/jit.h"
35 #include "mirror/dex_cache.h"
36 #include "oat_file.h"
37 #include "optimizing_compiler_stats.h"
38 #include "reflective_handle_scope-inl.h"
39 #include "scoped_thread_state_change-inl.h"
40 #include "sharpening.h"
41 #include "ssa_builder.h"
42 #include "well_known_classes.h"
43
44 namespace art {
45
46 namespace {
47
48 class SamePackageCompare {
49 public:
SamePackageCompare(const DexCompilationUnit & dex_compilation_unit)50 explicit SamePackageCompare(const DexCompilationUnit& dex_compilation_unit)
51 : dex_compilation_unit_(dex_compilation_unit) {}
52
operator ()(ObjPtr<mirror::Class> klass)53 bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
54 if (klass->GetClassLoader() != dex_compilation_unit_.GetClassLoader().Get()) {
55 return false;
56 }
57 if (referrers_descriptor_ == nullptr) {
58 const DexFile* dex_file = dex_compilation_unit_.GetDexFile();
59 uint32_t referrers_method_idx = dex_compilation_unit_.GetDexMethodIndex();
60 referrers_descriptor_ =
61 dex_file->StringByTypeIdx(dex_file->GetMethodId(referrers_method_idx).class_idx_);
62 referrers_package_length_ = PackageLength(referrers_descriptor_);
63 }
64 std::string temp;
65 const char* klass_descriptor = klass->GetDescriptor(&temp);
66 size_t klass_package_length = PackageLength(klass_descriptor);
67 return (referrers_package_length_ == klass_package_length) &&
68 memcmp(referrers_descriptor_, klass_descriptor, referrers_package_length_) == 0;
69 };
70
71 private:
PackageLength(const char * descriptor)72 static size_t PackageLength(const char* descriptor) {
73 const char* slash_pos = strrchr(descriptor, '/');
74 return (slash_pos != nullptr) ? static_cast<size_t>(slash_pos - descriptor) : 0u;
75 }
76
77 const DexCompilationUnit& dex_compilation_unit_;
78 const char* referrers_descriptor_ = nullptr;
79 size_t referrers_package_length_ = 0u;
80 };
81
82 } // anonymous namespace
83
HInstructionBuilder(HGraph * graph,HBasicBlockBuilder * block_builder,SsaBuilder * ssa_builder,const DexFile * dex_file,const CodeItemDebugInfoAccessor & accessor,DataType::Type return_type,const DexCompilationUnit * dex_compilation_unit,const DexCompilationUnit * outer_compilation_unit,CodeGenerator * code_generator,OptimizingCompilerStats * compiler_stats,ScopedArenaAllocator * local_allocator)84 HInstructionBuilder::HInstructionBuilder(HGraph* graph,
85 HBasicBlockBuilder* block_builder,
86 SsaBuilder* ssa_builder,
87 const DexFile* dex_file,
88 const CodeItemDebugInfoAccessor& accessor,
89 DataType::Type return_type,
90 const DexCompilationUnit* dex_compilation_unit,
91 const DexCompilationUnit* outer_compilation_unit,
92 CodeGenerator* code_generator,
93 OptimizingCompilerStats* compiler_stats,
94 ScopedArenaAllocator* local_allocator)
95 : allocator_(graph->GetAllocator()),
96 graph_(graph),
97 dex_file_(dex_file),
98 code_item_accessor_(accessor),
99 return_type_(return_type),
100 block_builder_(block_builder),
101 ssa_builder_(ssa_builder),
102 code_generator_(code_generator),
103 dex_compilation_unit_(dex_compilation_unit),
104 outer_compilation_unit_(outer_compilation_unit),
105 compilation_stats_(compiler_stats),
106 local_allocator_(local_allocator),
107 locals_for_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
108 current_block_(nullptr),
109 current_locals_(nullptr),
110 latest_result_(nullptr),
111 current_this_parameter_(nullptr),
112 loop_headers_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
113 class_cache_(std::less<dex::TypeIndex>(), local_allocator->Adapter(kArenaAllocGraphBuilder)) {
114 loop_headers_.reserve(kDefaultNumberOfLoops);
115 }
116
FindBlockStartingAt(uint32_t dex_pc) const117 HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const {
118 return block_builder_->GetBlockAt(dex_pc);
119 }
120
GetLocalsFor(HBasicBlock * block)121 inline ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) {
122 ScopedArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
123 const size_t vregs = graph_->GetNumberOfVRegs();
124 if (locals->size() == vregs) {
125 return locals;
126 }
127 return GetLocalsForWithAllocation(block, locals, vregs);
128 }
129
GetLocalsForWithAllocation(HBasicBlock * block,ScopedArenaVector<HInstruction * > * locals,const size_t vregs)130 ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsForWithAllocation(
131 HBasicBlock* block,
132 ScopedArenaVector<HInstruction*>* locals,
133 const size_t vregs) {
134 DCHECK_NE(locals->size(), vregs);
135 locals->resize(vregs, nullptr);
136 if (block->IsCatchBlock()) {
137 // We record incoming inputs of catch phis at throwing instructions and
138 // must therefore eagerly create the phis. Phis for undefined vregs will
139 // be deleted when the first throwing instruction with the vreg undefined
140 // is encountered. Unused phis will be removed by dead phi analysis.
141 for (size_t i = 0; i < vregs; ++i) {
142 // No point in creating the catch phi if it is already undefined at
143 // the first throwing instruction.
144 HInstruction* current_local_value = (*current_locals_)[i];
145 if (current_local_value != nullptr) {
146 HPhi* phi = new (allocator_) HPhi(
147 allocator_,
148 i,
149 0,
150 current_local_value->GetType());
151 block->AddPhi(phi);
152 (*locals)[i] = phi;
153 }
154 }
155 }
156 return locals;
157 }
158
ValueOfLocalAt(HBasicBlock * block,size_t local)159 inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) {
160 ScopedArenaVector<HInstruction*>* locals = GetLocalsFor(block);
161 return (*locals)[local];
162 }
163
InitializeBlockLocals()164 void HInstructionBuilder::InitializeBlockLocals() {
165 current_locals_ = GetLocalsFor(current_block_);
166
167 if (current_block_->IsCatchBlock()) {
168 // Catch phis were already created and inputs collected from throwing sites.
169 if (kIsDebugBuild) {
170 // Make sure there was at least one throwing instruction which initialized
171 // locals (guaranteed by HGraphBuilder) and that all try blocks have been
172 // visited already (from HTryBoundary scoping and reverse post order).
173 bool catch_block_visited = false;
174 for (HBasicBlock* current : graph_->GetReversePostOrder()) {
175 if (current == current_block_) {
176 catch_block_visited = true;
177 } else if (current->IsTryBlock()) {
178 const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry();
179 if (try_entry.HasExceptionHandler(*current_block_)) {
180 DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
181 }
182 }
183 }
184 DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs())
185 << "No instructions throwing into a live catch block.";
186 }
187 } else if (current_block_->IsLoopHeader()) {
188 // If the block is a loop header, we know we only have visited the pre header
189 // because we are visiting in reverse post order. We create phis for all initialized
190 // locals from the pre header. Their inputs will be populated at the end of
191 // the analysis.
192 for (size_t local = 0; local < current_locals_->size(); ++local) {
193 HInstruction* incoming =
194 ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local);
195 if (incoming != nullptr) {
196 HPhi* phi = new (allocator_) HPhi(
197 allocator_,
198 local,
199 0,
200 incoming->GetType());
201 current_block_->AddPhi(phi);
202 (*current_locals_)[local] = phi;
203 }
204 }
205
206 // Save the loop header so that the last phase of the analysis knows which
207 // blocks need to be updated.
208 loop_headers_.push_back(current_block_);
209 } else if (current_block_->GetPredecessors().size() > 0) {
210 // All predecessors have already been visited because we are visiting in reverse post order.
211 // We merge the values of all locals, creating phis if those values differ.
212 for (size_t local = 0; local < current_locals_->size(); ++local) {
213 bool one_predecessor_has_no_value = false;
214 bool is_different = false;
215 HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
216
217 for (HBasicBlock* predecessor : current_block_->GetPredecessors()) {
218 HInstruction* current = ValueOfLocalAt(predecessor, local);
219 if (current == nullptr) {
220 one_predecessor_has_no_value = true;
221 break;
222 } else if (current != value) {
223 is_different = true;
224 }
225 }
226
227 if (one_predecessor_has_no_value) {
228 // If one predecessor has no value for this local, we trust the verifier has
229 // successfully checked that there is a store dominating any read after this block.
230 continue;
231 }
232
233 if (is_different) {
234 HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
235 HPhi* phi = new (allocator_) HPhi(
236 allocator_,
237 local,
238 current_block_->GetPredecessors().size(),
239 first_input->GetType());
240 for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) {
241 HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local);
242 phi->SetRawInputAt(i, pred_value);
243 }
244 current_block_->AddPhi(phi);
245 value = phi;
246 }
247 (*current_locals_)[local] = value;
248 }
249 }
250 }
251
PropagateLocalsToCatchBlocks()252 void HInstructionBuilder::PropagateLocalsToCatchBlocks() {
253 const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry();
254 for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
255 ScopedArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
256 DCHECK_EQ(handler_locals->size(), current_locals_->size());
257 for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
258 HInstruction* handler_value = (*handler_locals)[vreg];
259 if (handler_value == nullptr) {
260 // Vreg was undefined at a previously encountered throwing instruction
261 // and the catch phi was deleted. Do not record the local value.
262 continue;
263 }
264 DCHECK(handler_value->IsPhi());
265
266 HInstruction* local_value = (*current_locals_)[vreg];
267 if (local_value == nullptr) {
268 // This is the first instruction throwing into `catch_block` where
269 // `vreg` is undefined. Delete the catch phi.
270 catch_block->RemovePhi(handler_value->AsPhi());
271 (*handler_locals)[vreg] = nullptr;
272 } else {
273 // Vreg has been defined at all instructions throwing into `catch_block`
274 // encountered so far. Record the local value in the catch phi.
275 handler_value->AsPhi()->AddInput(local_value);
276 }
277 }
278 }
279 }
280
AppendInstruction(HInstruction * instruction)281 void HInstructionBuilder::AppendInstruction(HInstruction* instruction) {
282 current_block_->AddInstruction(instruction);
283 InitializeInstruction(instruction);
284 }
285
InsertInstructionAtTop(HInstruction * instruction)286 void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) {
287 if (current_block_->GetInstructions().IsEmpty()) {
288 current_block_->AddInstruction(instruction);
289 } else {
290 current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction());
291 }
292 InitializeInstruction(instruction);
293 }
294
InitializeInstruction(HInstruction * instruction)295 void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) {
296 if (instruction->NeedsEnvironment()) {
297 HEnvironment* environment = new (allocator_) HEnvironment(
298 allocator_,
299 current_locals_->size(),
300 graph_->GetArtMethod(),
301 instruction->GetDexPc(),
302 instruction);
303 environment->CopyFrom(ArrayRef<HInstruction* const>(*current_locals_));
304 instruction->SetRawEnvironment(environment);
305 }
306 }
307
LoadNullCheckedLocal(uint32_t register_index,uint32_t dex_pc)308 HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) {
309 HInstruction* ref = LoadLocal(register_index, DataType::Type::kReference);
310 if (!ref->CanBeNull()) {
311 return ref;
312 }
313
314 HNullCheck* null_check = new (allocator_) HNullCheck(ref, dex_pc);
315 AppendInstruction(null_check);
316 return null_check;
317 }
318
SetLoopHeaderPhiInputs()319 void HInstructionBuilder::SetLoopHeaderPhiInputs() {
320 for (size_t i = loop_headers_.size(); i > 0; --i) {
321 HBasicBlock* block = loop_headers_[i - 1];
322 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
323 HPhi* phi = it.Current()->AsPhi();
324 size_t vreg = phi->GetRegNumber();
325 for (HBasicBlock* predecessor : block->GetPredecessors()) {
326 HInstruction* value = ValueOfLocalAt(predecessor, vreg);
327 if (value == nullptr) {
328 // Vreg is undefined at this predecessor. Mark it dead and leave with
329 // fewer inputs than predecessors. SsaChecker will fail if not removed.
330 phi->SetDead();
331 break;
332 } else {
333 phi->AddInput(value);
334 }
335 }
336 }
337 }
338 }
339
IsBlockPopulated(HBasicBlock * block)340 static bool IsBlockPopulated(HBasicBlock* block) {
341 if (block->IsLoopHeader()) {
342 // Suspend checks were inserted into loop headers during building of dominator tree.
343 DCHECK(block->GetFirstInstruction()->IsSuspendCheck());
344 return block->GetFirstInstruction() != block->GetLastInstruction();
345 } else {
346 return !block->GetInstructions().IsEmpty();
347 }
348 }
349
Build()350 bool HInstructionBuilder::Build() {
351 DCHECK(code_item_accessor_.HasCodeItem());
352 locals_for_.resize(
353 graph_->GetBlocks().size(),
354 ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
355
356 // Find locations where we want to generate extra stackmaps for native debugging.
357 // This allows us to generate the info only at interesting points (for example,
358 // at start of java statement) rather than before every dex instruction.
359 const bool native_debuggable = code_generator_ != nullptr &&
360 code_generator_->GetCompilerOptions().GetNativeDebuggable();
361 ArenaBitVector* native_debug_info_locations = nullptr;
362 if (native_debuggable) {
363 native_debug_info_locations = FindNativeDebugInfoLocations();
364 }
365
366 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
367 current_block_ = block;
368 uint32_t block_dex_pc = current_block_->GetDexPc();
369
370 InitializeBlockLocals();
371
372 if (current_block_->IsEntryBlock()) {
373 InitializeParameters();
374 AppendInstruction(new (allocator_) HSuspendCheck(0u));
375 AppendInstruction(new (allocator_) HGoto(0u));
376 continue;
377 } else if (current_block_->IsExitBlock()) {
378 AppendInstruction(new (allocator_) HExit());
379 continue;
380 } else if (current_block_->IsLoopHeader()) {
381 HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(current_block_->GetDexPc());
382 current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check);
383 // This is slightly odd because the loop header might not be empty (TryBoundary).
384 // But we're still creating the environment with locals from the top of the block.
385 InsertInstructionAtTop(suspend_check);
386 }
387
388 if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) {
389 // Synthetic block that does not need to be populated.
390 DCHECK(IsBlockPopulated(current_block_));
391 continue;
392 }
393
394 DCHECK(!IsBlockPopulated(current_block_));
395
396 for (const DexInstructionPcPair& pair : code_item_accessor_.InstructionsFrom(block_dex_pc)) {
397 if (current_block_ == nullptr) {
398 // The previous instruction ended this block.
399 break;
400 }
401
402 const uint32_t dex_pc = pair.DexPc();
403 if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) {
404 // This dex_pc starts a new basic block.
405 break;
406 }
407
408 if (current_block_->IsTryBlock() && IsThrowingDexInstruction(pair.Inst())) {
409 PropagateLocalsToCatchBlocks();
410 }
411
412 if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
413 AppendInstruction(new (allocator_) HNativeDebugInfo(dex_pc));
414 }
415
416 // Note: There may be no Thread for gtests.
417 DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending())
418 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
419 << " " << pair.Inst().Name() << "@" << dex_pc;
420 if (!ProcessDexInstruction(pair.Inst(), dex_pc)) {
421 return false;
422 }
423 DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending())
424 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
425 << " " << pair.Inst().Name() << "@" << dex_pc;
426 }
427
428 if (current_block_ != nullptr) {
429 // Branching instructions clear current_block, so we know the last
430 // instruction of the current block is not a branching instruction.
431 // We add an unconditional Goto to the next block.
432 DCHECK_EQ(current_block_->GetSuccessors().size(), 1u);
433 AppendInstruction(new (allocator_) HGoto());
434 }
435 }
436
437 SetLoopHeaderPhiInputs();
438
439 return true;
440 }
441
BuildIntrinsic(ArtMethod * method)442 void HInstructionBuilder::BuildIntrinsic(ArtMethod* method) {
443 DCHECK(!code_item_accessor_.HasCodeItem());
444 DCHECK(method->IsIntrinsic());
445 if (kIsDebugBuild) {
446 ScopedObjectAccess soa(Thread::Current());
447 CHECK(!method->IsSignaturePolymorphic());
448 }
449
450 locals_for_.resize(
451 graph_->GetBlocks().size(),
452 ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
453
454 // Fill the entry block. Do not add suspend check, we do not want a suspend
455 // check in intrinsics; intrinsic methods are supposed to be fast.
456 current_block_ = graph_->GetEntryBlock();
457 InitializeBlockLocals();
458 InitializeParameters();
459 AppendInstruction(new (allocator_) HGoto(0u));
460
461 // Fill the body.
462 current_block_ = current_block_->GetSingleSuccessor();
463 InitializeBlockLocals();
464 DCHECK(!IsBlockPopulated(current_block_));
465
466 // Add the intermediate representation, if available, or invoke instruction.
467 size_t in_vregs = graph_->GetNumberOfInVRegs();
468 size_t number_of_arguments =
469 in_vregs - std::count(current_locals_->end() - in_vregs, current_locals_->end(), nullptr);
470 uint32_t method_idx = dex_compilation_unit_->GetDexMethodIndex();
471 const char* shorty = dex_file_->GetMethodShorty(method_idx);
472 RangeInstructionOperands operands(graph_->GetNumberOfVRegs() - in_vregs, in_vregs);
473 if (!BuildSimpleIntrinsic(method, kNoDexPc, operands, shorty)) {
474 // Some intrinsics without intermediate representation still yield a leaf method,
475 // so build the invoke. Use HInvokeStaticOrDirect even for methods that would
476 // normally use an HInvokeVirtual (sharpen the call).
477 MethodReference target_method(dex_file_, method_idx);
478 HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
479 MethodLoadKind::kRuntimeCall,
480 CodePtrLocation::kCallArtMethod,
481 /* method_load_data= */ 0u
482 };
483 InvokeType invoke_type = dex_compilation_unit_->IsStatic() ? kStatic : kDirect;
484 HInvokeStaticOrDirect* invoke = new (allocator_) HInvokeStaticOrDirect(
485 allocator_,
486 number_of_arguments,
487 return_type_,
488 kNoDexPc,
489 target_method,
490 method,
491 dispatch_info,
492 invoke_type,
493 target_method,
494 HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
495 HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
496 }
497
498 // Add the return instruction.
499 if (return_type_ == DataType::Type::kVoid) {
500 AppendInstruction(new (allocator_) HReturnVoid());
501 } else {
502 AppendInstruction(new (allocator_) HReturn(latest_result_));
503 }
504
505 // Fill the exit block.
506 DCHECK_EQ(current_block_->GetSingleSuccessor(), graph_->GetExitBlock());
507 current_block_ = graph_->GetExitBlock();
508 InitializeBlockLocals();
509 AppendInstruction(new (allocator_) HExit());
510 }
511
FindNativeDebugInfoLocations()512 ArenaBitVector* HInstructionBuilder::FindNativeDebugInfoLocations() {
513 ArenaBitVector* locations = ArenaBitVector::Create(local_allocator_,
514 code_item_accessor_.InsnsSizeInCodeUnits(),
515 /* expandable= */ false,
516 kArenaAllocGraphBuilder);
517 locations->ClearAllBits();
518 // The visitor gets called when the line number changes.
519 // In other words, it marks the start of new java statement.
520 code_item_accessor_.DecodeDebugPositionInfo([&](const DexFile::PositionInfo& entry) {
521 locations->SetBit(entry.address_);
522 return false;
523 });
524 // Instruction-specific tweaks.
525 for (const DexInstructionPcPair& inst : code_item_accessor_) {
526 switch (inst->Opcode()) {
527 case Instruction::MOVE_EXCEPTION: {
528 // Stop in native debugger after the exception has been moved.
529 // The compiler also expects the move at the start of basic block so
530 // we do not want to interfere by inserting native-debug-info before it.
531 locations->ClearBit(inst.DexPc());
532 DexInstructionIterator next = std::next(DexInstructionIterator(inst));
533 DCHECK(next.DexPc() != inst.DexPc());
534 if (next != code_item_accessor_.end()) {
535 locations->SetBit(next.DexPc());
536 }
537 break;
538 }
539 default:
540 break;
541 }
542 }
543 return locations;
544 }
545
LoadLocal(uint32_t reg_number,DataType::Type type) const546 HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, DataType::Type type) const {
547 HInstruction* value = (*current_locals_)[reg_number];
548 DCHECK(value != nullptr);
549
550 // If the operation requests a specific type, we make sure its input is of that type.
551 if (type != value->GetType()) {
552 if (DataType::IsFloatingPointType(type)) {
553 value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type);
554 } else if (type == DataType::Type::kReference) {
555 value = ssa_builder_->GetReferenceTypeEquivalent(value);
556 }
557 DCHECK(value != nullptr);
558 }
559
560 return value;
561 }
562
UpdateLocal(uint32_t reg_number,HInstruction * stored_value)563 void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) {
564 DataType::Type stored_type = stored_value->GetType();
565 DCHECK_NE(stored_type, DataType::Type::kVoid);
566
567 // Storing into vreg `reg_number` may implicitly invalidate the surrounding
568 // registers. Consider the following cases:
569 // (1) Storing a wide value must overwrite previous values in both `reg_number`
570 // and `reg_number+1`. We store `nullptr` in `reg_number+1`.
571 // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number`
572 // must invalidate it. We store `nullptr` in `reg_number-1`.
573 // Consequently, storing a wide value into the high vreg of another wide value
574 // will invalidate both `reg_number-1` and `reg_number+1`.
575
576 if (reg_number != 0) {
577 HInstruction* local_low = (*current_locals_)[reg_number - 1];
578 if (local_low != nullptr && DataType::Is64BitType(local_low->GetType())) {
579 // The vreg we are storing into was previously the high vreg of a pair.
580 // We need to invalidate its low vreg.
581 DCHECK((*current_locals_)[reg_number] == nullptr);
582 (*current_locals_)[reg_number - 1] = nullptr;
583 }
584 }
585
586 (*current_locals_)[reg_number] = stored_value;
587 if (DataType::Is64BitType(stored_type)) {
588 // We are storing a pair. Invalidate the instruction in the high vreg.
589 (*current_locals_)[reg_number + 1] = nullptr;
590 }
591 }
592
InitializeParameters()593 void HInstructionBuilder::InitializeParameters() {
594 DCHECK(current_block_->IsEntryBlock());
595
596 // outer_compilation_unit_ is null only when unit testing.
597 if (outer_compilation_unit_ == nullptr) {
598 return;
599 }
600
601 const char* shorty = dex_compilation_unit_->GetShorty();
602 uint16_t number_of_parameters = graph_->GetNumberOfInVRegs();
603 uint16_t locals_index = graph_->GetNumberOfLocalVRegs();
604 uint16_t parameter_index = 0;
605
606 const dex::MethodId& referrer_method_id =
607 dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
608 if (!dex_compilation_unit_->IsStatic()) {
609 // Add the implicit 'this' argument, not expressed in the signature.
610 HParameterValue* parameter = new (allocator_) HParameterValue(*dex_file_,
611 referrer_method_id.class_idx_,
612 parameter_index++,
613 DataType::Type::kReference,
614 /* is_this= */ true);
615 AppendInstruction(parameter);
616 UpdateLocal(locals_index++, parameter);
617 number_of_parameters--;
618 current_this_parameter_ = parameter;
619 } else {
620 DCHECK(current_this_parameter_ == nullptr);
621 }
622
623 const dex::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
624 const dex::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
625 for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
626 HParameterValue* parameter = new (allocator_) HParameterValue(
627 *dex_file_,
628 arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
629 parameter_index++,
630 DataType::FromShorty(shorty[shorty_pos]),
631 /* is_this= */ false);
632 ++shorty_pos;
633 AppendInstruction(parameter);
634 // Store the parameter value in the local that the dex code will use
635 // to reference that parameter.
636 UpdateLocal(locals_index++, parameter);
637 if (DataType::Is64BitType(parameter->GetType())) {
638 i++;
639 locals_index++;
640 parameter_index++;
641 }
642 }
643 }
644
645 template<typename T>
If_22t(const Instruction & instruction,uint32_t dex_pc)646 void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
647 HInstruction* first = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
648 HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
649 T* comparison = new (allocator_) T(first, second, dex_pc);
650 AppendInstruction(comparison);
651 AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
652 current_block_ = nullptr;
653 }
654
655 template<typename T>
If_21t(const Instruction & instruction,uint32_t dex_pc)656 void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
657 HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
658 T* comparison = new (allocator_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
659 AppendInstruction(comparison);
660 AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
661 current_block_ = nullptr;
662 }
663
664 template<typename T>
Unop_12x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)665 void HInstructionBuilder::Unop_12x(const Instruction& instruction,
666 DataType::Type type,
667 uint32_t dex_pc) {
668 HInstruction* first = LoadLocal(instruction.VRegB(), type);
669 AppendInstruction(new (allocator_) T(type, first, dex_pc));
670 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
671 }
672
Conversion_12x(const Instruction & instruction,DataType::Type input_type,DataType::Type result_type,uint32_t dex_pc)673 void HInstructionBuilder::Conversion_12x(const Instruction& instruction,
674 DataType::Type input_type,
675 DataType::Type result_type,
676 uint32_t dex_pc) {
677 HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
678 AppendInstruction(new (allocator_) HTypeConversion(result_type, first, dex_pc));
679 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
680 }
681
682 template<typename T>
Binop_23x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)683 void HInstructionBuilder::Binop_23x(const Instruction& instruction,
684 DataType::Type type,
685 uint32_t dex_pc) {
686 HInstruction* first = LoadLocal(instruction.VRegB(), type);
687 HInstruction* second = LoadLocal(instruction.VRegC(), type);
688 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
689 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
690 }
691
692 template<typename T>
Binop_23x_shift(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)693 void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction,
694 DataType::Type type,
695 uint32_t dex_pc) {
696 HInstruction* first = LoadLocal(instruction.VRegB(), type);
697 HInstruction* second = LoadLocal(instruction.VRegC(), DataType::Type::kInt32);
698 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
699 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
700 }
701
Binop_23x_cmp(const Instruction & instruction,DataType::Type type,ComparisonBias bias,uint32_t dex_pc)702 void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction,
703 DataType::Type type,
704 ComparisonBias bias,
705 uint32_t dex_pc) {
706 HInstruction* first = LoadLocal(instruction.VRegB(), type);
707 HInstruction* second = LoadLocal(instruction.VRegC(), type);
708 AppendInstruction(new (allocator_) HCompare(type, first, second, bias, dex_pc));
709 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
710 }
711
712 template<typename T>
Binop_12x_shift(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)713 void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction,
714 DataType::Type type,
715 uint32_t dex_pc) {
716 HInstruction* first = LoadLocal(instruction.VRegA(), type);
717 HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
718 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
719 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
720 }
721
722 template<typename T>
Binop_12x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)723 void HInstructionBuilder::Binop_12x(const Instruction& instruction,
724 DataType::Type type,
725 uint32_t dex_pc) {
726 HInstruction* first = LoadLocal(instruction.VRegA(), type);
727 HInstruction* second = LoadLocal(instruction.VRegB(), type);
728 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
729 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
730 }
731
732 template<typename T>
Binop_22s(const Instruction & instruction,bool reverse,uint32_t dex_pc)733 void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
734 HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
735 HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
736 if (reverse) {
737 std::swap(first, second);
738 }
739 AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
740 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
741 }
742
743 template<typename T>
Binop_22b(const Instruction & instruction,bool reverse,uint32_t dex_pc)744 void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
745 HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
746 HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
747 if (reverse) {
748 std::swap(first, second);
749 }
750 AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
751 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
752 }
753
754 // Does the method being compiled need any constructor barriers being inserted?
755 // (Always 'false' for methods that aren't <init>.)
RequiresConstructorBarrier(const DexCompilationUnit * cu)756 static bool RequiresConstructorBarrier(const DexCompilationUnit* cu) {
757 // Can be null in unit tests only.
758 if (UNLIKELY(cu == nullptr)) {
759 return false;
760 }
761
762 // Constructor barriers are applicable only for <init> methods.
763 if (LIKELY(!cu->IsConstructor() || cu->IsStatic())) {
764 return false;
765 }
766
767 return cu->RequiresConstructorBarrier();
768 }
769
770 // Returns true if `block` has only one successor which starts at the next
771 // dex_pc after `instruction` at `dex_pc`.
IsFallthroughInstruction(const Instruction & instruction,uint32_t dex_pc,HBasicBlock * block)772 static bool IsFallthroughInstruction(const Instruction& instruction,
773 uint32_t dex_pc,
774 HBasicBlock* block) {
775 uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
776 return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc;
777 }
778
BuildSwitch(const Instruction & instruction,uint32_t dex_pc)779 void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) {
780 HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
781 DexSwitchTable table(instruction, dex_pc);
782
783 if (table.GetNumEntries() == 0) {
784 // Empty Switch. Code falls through to the next block.
785 DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_));
786 AppendInstruction(new (allocator_) HGoto(dex_pc));
787 } else if (table.ShouldBuildDecisionTree()) {
788 for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) {
789 HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc);
790 HEqual* comparison = new (allocator_) HEqual(value, case_value, dex_pc);
791 AppendInstruction(comparison);
792 AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
793
794 if (!it.IsLast()) {
795 current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex());
796 }
797 }
798 } else {
799 AppendInstruction(
800 new (allocator_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc));
801 }
802
803 current_block_ = nullptr;
804 }
805
BuildReturn(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)806 void HInstructionBuilder::BuildReturn(const Instruction& instruction,
807 DataType::Type type,
808 uint32_t dex_pc) {
809 if (type == DataType::Type::kVoid) {
810 // Only <init> (which is a return-void) could possibly have a constructor fence.
811 // This may insert additional redundant constructor fences from the super constructors.
812 // TODO: remove redundant constructor fences (b/36656456).
813 if (RequiresConstructorBarrier(dex_compilation_unit_)) {
814 // Compiling instance constructor.
815 DCHECK_STREQ("<init>", graph_->GetMethodName());
816
817 HInstruction* fence_target = current_this_parameter_;
818 DCHECK(fence_target != nullptr);
819
820 AppendInstruction(new (allocator_) HConstructorFence(fence_target, dex_pc, allocator_));
821 MaybeRecordStat(
822 compilation_stats_,
823 MethodCompilationStat::kConstructorFenceGeneratedFinal);
824 }
825 AppendInstruction(new (allocator_) HReturnVoid(dex_pc));
826 } else {
827 DCHECK(!RequiresConstructorBarrier(dex_compilation_unit_));
828 HInstruction* value = LoadLocal(instruction.VRegA(), type);
829 AppendInstruction(new (allocator_) HReturn(value, dex_pc));
830 }
831 current_block_ = nullptr;
832 }
833
GetInvokeTypeFromOpCode(Instruction::Code opcode)834 static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
835 switch (opcode) {
836 case Instruction::INVOKE_STATIC:
837 case Instruction::INVOKE_STATIC_RANGE:
838 return kStatic;
839 case Instruction::INVOKE_DIRECT:
840 case Instruction::INVOKE_DIRECT_RANGE:
841 return kDirect;
842 case Instruction::INVOKE_VIRTUAL:
843 case Instruction::INVOKE_VIRTUAL_RANGE:
844 return kVirtual;
845 case Instruction::INVOKE_INTERFACE:
846 case Instruction::INVOKE_INTERFACE_RANGE:
847 return kInterface;
848 case Instruction::INVOKE_SUPER_RANGE:
849 case Instruction::INVOKE_SUPER:
850 return kSuper;
851 default:
852 LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
853 UNREACHABLE();
854 }
855 }
856
857 // Try to resolve a method using the class linker. Return null if a method could
858 // not be resolved or the resolved method cannot be used for some reason.
859 // Also retrieve method data needed for creating the invoke intermediate
860 // representation while we hold the mutator lock here.
ResolveMethod(uint16_t method_idx,ArtMethod * referrer,const DexCompilationUnit & dex_compilation_unit,InvokeType * invoke_type,MethodReference * resolved_method_info,uint16_t * imt_or_vtable_index,bool * is_string_constructor)861 static ArtMethod* ResolveMethod(uint16_t method_idx,
862 ArtMethod* referrer,
863 const DexCompilationUnit& dex_compilation_unit,
864 /*inout*/InvokeType* invoke_type,
865 /*out*/MethodReference* resolved_method_info,
866 /*out*/uint16_t* imt_or_vtable_index,
867 /*out*/bool* is_string_constructor) {
868 ScopedObjectAccess soa(Thread::Current());
869
870 ClassLinker* class_linker = dex_compilation_unit.GetClassLinker();
871 Handle<mirror::ClassLoader> class_loader = dex_compilation_unit.GetClassLoader();
872
873 ArtMethod* resolved_method =
874 class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
875 method_idx,
876 dex_compilation_unit.GetDexCache(),
877 class_loader,
878 referrer,
879 *invoke_type);
880
881 if (UNLIKELY(resolved_method == nullptr)) {
882 // Clean up any exception left by type resolution.
883 soa.Self()->ClearException();
884 return nullptr;
885 }
886 DCHECK(!soa.Self()->IsExceptionPending());
887
888 // The referrer may be unresolved for AOT if we're compiling a class that cannot be
889 // resolved because, for example, we don't find a superclass in the classpath.
890 if (referrer == nullptr) {
891 // The class linker cannot check access without a referrer, so we have to do it.
892 // Check if the declaring class or referencing class is accessible.
893 SamePackageCompare same_package(dex_compilation_unit);
894 ObjPtr<mirror::Class> declaring_class = resolved_method->GetDeclaringClass();
895 bool declaring_class_accessible = declaring_class->IsPublic() || same_package(declaring_class);
896 if (!declaring_class_accessible) {
897 // It is possible to access members from an inaccessible superclass
898 // by referencing them through an accessible subclass.
899 ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType(
900 dex_compilation_unit.GetDexFile()->GetMethodId(method_idx).class_idx_,
901 dex_compilation_unit.GetDexCache().Get(),
902 class_loader.Get());
903 DCHECK(referenced_class != nullptr); // Must have been resolved when resolving the method.
904 if (!referenced_class->IsPublic() && !same_package(referenced_class)) {
905 return nullptr;
906 }
907 }
908 // Check whether the method itself is accessible.
909 // Since the referrer is unresolved but the method is resolved, it cannot be
910 // inside the same class, so a private method is known to be inaccessible.
911 // And without a resolved referrer, we cannot check for protected member access
912 // in superlass, so we handle only access to public member or within the package.
913 if (resolved_method->IsPrivate() ||
914 (!resolved_method->IsPublic() && !declaring_class_accessible)) {
915 return nullptr;
916 }
917 }
918
919 // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
920 // We need to look at the referrer's super class vtable. We need to do this to know if we need to
921 // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
922 // which require runtime handling.
923 if (*invoke_type == kSuper) {
924 ObjPtr<mirror::Class> compiling_class = dex_compilation_unit.GetCompilingClass().Get();
925 if (compiling_class == nullptr) {
926 // We could not determine the method's class we need to wait until runtime.
927 DCHECK(Runtime::Current()->IsAotCompiler());
928 return nullptr;
929 }
930 ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType(
931 dex_compilation_unit.GetDexFile()->GetMethodId(method_idx).class_idx_,
932 dex_compilation_unit.GetDexCache().Get(),
933 class_loader.Get());
934 DCHECK(referenced_class != nullptr); // We have already resolved a method from this class.
935 if (!referenced_class->IsAssignableFrom(compiling_class)) {
936 // We cannot statically determine the target method. The runtime will throw a
937 // NoSuchMethodError on this one.
938 return nullptr;
939 }
940 ArtMethod* actual_method;
941 if (referenced_class->IsInterface()) {
942 actual_method = referenced_class->FindVirtualMethodForInterfaceSuper(
943 resolved_method, class_linker->GetImagePointerSize());
944 } else {
945 uint16_t vtable_index = resolved_method->GetMethodIndex();
946 if (vtable_index >= static_cast<uint32_t>(
947 compiling_class->GetSuperClass()->GetVTableLength())) {
948 // No super method. The runtime will throw a NoSuchMethodError.
949 return nullptr;
950 }
951 actual_method = compiling_class->GetSuperClass()->GetVTableEntry(
952 vtable_index, class_linker->GetImagePointerSize());
953 }
954 if (!actual_method->IsInvokable()) {
955 // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
956 // could resolve the callee to the wrong method.
957 return nullptr;
958 }
959 // Call GetCanonicalMethod in case the resolved method is a copy: for super calls, the encoding
960 // of ArtMethod in BSS relies on not having copies there.
961 resolved_method = actual_method->GetCanonicalMethod(class_linker->GetImagePointerSize());
962 }
963
964 if (*invoke_type == kInterface) {
965 if (resolved_method->GetDeclaringClass()->IsObjectClass()) {
966 // If the resolved method is from j.l.Object, emit a virtual call instead.
967 // The IMT conflict stub only handles interface methods.
968 *invoke_type = kVirtual;
969 } else {
970 DCHECK(resolved_method->GetDeclaringClass()->IsInterface());
971 }
972 }
973
974 *resolved_method_info =
975 MethodReference(resolved_method->GetDexFile(), resolved_method->GetDexMethodIndex());
976 if (*invoke_type == kVirtual) {
977 // For HInvokeVirtual we need the vtable index.
978 *imt_or_vtable_index = resolved_method->GetVtableIndex();
979 } else if (*invoke_type == kInterface) {
980 // For HInvokeInterface we need the IMT index.
981 *imt_or_vtable_index = ImTable::GetImtIndex(resolved_method);
982 }
983
984 *is_string_constructor =
985 resolved_method->IsConstructor() && resolved_method->GetDeclaringClass()->IsStringClass();
986
987 return resolved_method;
988 }
989
BuildInvoke(const Instruction & instruction,uint32_t dex_pc,uint32_t method_idx,const InstructionOperands & operands)990 bool HInstructionBuilder::BuildInvoke(const Instruction& instruction,
991 uint32_t dex_pc,
992 uint32_t method_idx,
993 const InstructionOperands& operands) {
994 InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
995 const char* shorty = dex_file_->GetMethodShorty(method_idx);
996 DataType::Type return_type = DataType::FromShorty(shorty[0]);
997
998 // Remove the return type from the 'proto'.
999 size_t number_of_arguments = strlen(shorty) - 1;
1000 if (invoke_type != kStatic) { // instance call
1001 // One extra argument for 'this'.
1002 number_of_arguments++;
1003 }
1004
1005 MethodReference resolved_method_reference(nullptr, 0u);
1006 bool is_string_constructor = false;
1007 uint16_t imt_or_vtable_index = DexFile::kDexNoIndex16;
1008 ArtMethod* resolved_method = ResolveMethod(method_idx,
1009 graph_->GetArtMethod(),
1010 *dex_compilation_unit_,
1011 &invoke_type,
1012 &resolved_method_reference,
1013 &imt_or_vtable_index,
1014 &is_string_constructor);
1015
1016 MethodReference method_reference(&graph_->GetDexFile(), method_idx);
1017 if (UNLIKELY(resolved_method == nullptr)) {
1018 DCHECK(!Thread::Current()->IsExceptionPending());
1019 MaybeRecordStat(compilation_stats_,
1020 MethodCompilationStat::kUnresolvedMethod);
1021 HInvoke* invoke = new (allocator_) HInvokeUnresolved(allocator_,
1022 number_of_arguments,
1023 return_type,
1024 dex_pc,
1025 method_reference,
1026 invoke_type);
1027 return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ true);
1028 }
1029
1030 // Replace calls to String.<init> with StringFactory.
1031 if (is_string_constructor) {
1032 uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method);
1033 HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
1034 MethodLoadKind::kStringInit,
1035 CodePtrLocation::kCallArtMethod,
1036 dchecked_integral_cast<uint64_t>(string_init_entry_point)
1037 };
1038 // We pass null for the resolved_method to ensure optimizations
1039 // don't rely on it.
1040 HInvoke* invoke = new (allocator_) HInvokeStaticOrDirect(
1041 allocator_,
1042 number_of_arguments - 1,
1043 /* return_type= */ DataType::Type::kReference,
1044 dex_pc,
1045 method_reference,
1046 /* resolved_method= */ nullptr,
1047 dispatch_info,
1048 invoke_type,
1049 resolved_method_reference,
1050 HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
1051 return HandleStringInit(invoke, operands, shorty);
1052 }
1053
1054 // Potential class initialization check, in the case of a static method call.
1055 HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement =
1056 HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
1057 HClinitCheck* clinit_check = nullptr;
1058 if (invoke_type == kStatic) {
1059 clinit_check = ProcessClinitCheckForInvoke(dex_pc, resolved_method, &clinit_check_requirement);
1060 }
1061
1062 // Try to build an HIR replacement for the intrinsic.
1063 if (UNLIKELY(resolved_method->IsIntrinsic())) {
1064 // All intrinsics are in the primary boot image, so their class can always be referenced
1065 // and we do not need to rely on the implicit class initialization check. The class should
1066 // be initialized but we do not require that here.
1067 DCHECK_NE(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
1068 if (BuildSimpleIntrinsic(resolved_method, dex_pc, operands, shorty)) {
1069 return true;
1070 }
1071 }
1072
1073 HInvoke* invoke = nullptr;
1074 if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
1075 // For sharpening, we create another MethodReference, to account for the
1076 // kSuper case below where we cannot find a dex method index.
1077 bool has_method_id = true;
1078 if (invoke_type == kSuper) {
1079 uint32_t dex_method_index = method_reference.index;
1080 if (IsSameDexFile(*resolved_method_reference.dex_file,
1081 *dex_compilation_unit_->GetDexFile())) {
1082 // Update the method index to the one resolved. Note that this may be a no-op if
1083 // we resolved to the method referenced by the instruction.
1084 dex_method_index = resolved_method_reference.index;
1085 } else {
1086 // Try to find a dex method index in this caller's dex file.
1087 ScopedObjectAccess soa(Thread::Current());
1088 dex_method_index = resolved_method->FindDexMethodIndexInOtherDexFile(
1089 *dex_compilation_unit_->GetDexFile(), method_idx);
1090 }
1091 if (dex_method_index == dex::kDexNoIndex) {
1092 has_method_id = false;
1093 } else {
1094 method_reference.index = dex_method_index;
1095 }
1096 }
1097 HInvokeStaticOrDirect::DispatchInfo dispatch_info =
1098 HSharpening::SharpenLoadMethod(resolved_method,
1099 has_method_id,
1100 /* for_interface_call= */ false,
1101 code_generator_);
1102 if (dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative) {
1103 graph_->SetHasDirectCriticalNativeCall(true);
1104 }
1105 invoke = new (allocator_) HInvokeStaticOrDirect(allocator_,
1106 number_of_arguments,
1107 return_type,
1108 dex_pc,
1109 method_reference,
1110 resolved_method,
1111 dispatch_info,
1112 invoke_type,
1113 resolved_method_reference,
1114 clinit_check_requirement);
1115 if (clinit_check != nullptr) {
1116 // Add the class initialization check as last input of `invoke`.
1117 DCHECK_EQ(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
1118 size_t clinit_check_index = invoke->InputCount() - 1u;
1119 DCHECK(invoke->InputAt(clinit_check_index) == nullptr);
1120 invoke->SetArgumentAt(clinit_check_index, clinit_check);
1121 }
1122 } else if (invoke_type == kVirtual) {
1123 invoke = new (allocator_) HInvokeVirtual(allocator_,
1124 number_of_arguments,
1125 return_type,
1126 dex_pc,
1127 method_reference,
1128 resolved_method,
1129 resolved_method_reference,
1130 /*vtable_index=*/ imt_or_vtable_index);
1131 } else {
1132 DCHECK_EQ(invoke_type, kInterface);
1133 if (kIsDebugBuild) {
1134 ScopedObjectAccess soa(Thread::Current());
1135 DCHECK(resolved_method->GetDeclaringClass()->IsInterface());
1136 }
1137 MethodLoadKind load_kind = HSharpening::SharpenLoadMethod(
1138 resolved_method,
1139 /* has_method_id= */ true,
1140 /* for_interface_call= */ true,
1141 code_generator_)
1142 .method_load_kind;
1143 invoke = new (allocator_) HInvokeInterface(allocator_,
1144 number_of_arguments,
1145 return_type,
1146 dex_pc,
1147 method_reference,
1148 resolved_method,
1149 resolved_method_reference,
1150 /*imt_index=*/ imt_or_vtable_index,
1151 load_kind);
1152 }
1153 return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
1154 }
1155
VarHandleAccessorNeedsReturnTypeCheck(HInvoke * invoke,DataType::Type return_type)1156 static bool VarHandleAccessorNeedsReturnTypeCheck(HInvoke* invoke, DataType::Type return_type) {
1157 mirror::VarHandle::AccessModeTemplate access_mode_template =
1158 mirror::VarHandle::GetAccessModeTemplateByIntrinsic(invoke->GetIntrinsic());
1159
1160 switch (access_mode_template) {
1161 case mirror::VarHandle::AccessModeTemplate::kGet:
1162 case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate:
1163 case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange:
1164 return return_type == DataType::Type::kReference;
1165 case mirror::VarHandle::AccessModeTemplate::kSet:
1166 case mirror::VarHandle::AccessModeTemplate::kCompareAndSet:
1167 return false;
1168 }
1169 }
1170
BuildInvokePolymorphic(uint32_t dex_pc,uint32_t method_idx,dex::ProtoIndex proto_idx,const InstructionOperands & operands)1171 bool HInstructionBuilder::BuildInvokePolymorphic(uint32_t dex_pc,
1172 uint32_t method_idx,
1173 dex::ProtoIndex proto_idx,
1174 const InstructionOperands& operands) {
1175 const char* shorty = dex_file_->GetShorty(proto_idx);
1176 DCHECK_EQ(1 + ArtMethod::NumArgRegisters(shorty), operands.GetNumberOfOperands());
1177 DataType::Type return_type = DataType::FromShorty(shorty[0]);
1178 size_t number_of_arguments = strlen(shorty);
1179 // We use ResolveMethod which is also used in BuildInvoke in order to
1180 // not duplicate code. As such, we need to provide is_string_constructor
1181 // even if we don't need it afterwards.
1182 InvokeType invoke_type = InvokeType::kPolymorphic;
1183 bool is_string_constructor = false;
1184 uint16_t imt_or_vtable_index = DexFile::kDexNoIndex16;
1185 MethodReference resolved_method_reference(nullptr, 0u);
1186 ArtMethod* resolved_method = ResolveMethod(method_idx,
1187 graph_->GetArtMethod(),
1188 *dex_compilation_unit_,
1189 &invoke_type,
1190 &resolved_method_reference,
1191 &imt_or_vtable_index,
1192 &is_string_constructor);
1193
1194 MethodReference method_reference(&graph_->GetDexFile(), method_idx);
1195 HInvoke* invoke = new (allocator_) HInvokePolymorphic(allocator_,
1196 number_of_arguments,
1197 return_type,
1198 dex_pc,
1199 method_reference,
1200 resolved_method,
1201 resolved_method_reference,
1202 proto_idx);
1203 if (!HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false)) {
1204 return false;
1205 }
1206
1207 if (invoke->GetIntrinsic() != Intrinsics::kMethodHandleInvoke &&
1208 invoke->GetIntrinsic() != Intrinsics::kMethodHandleInvokeExact &&
1209 VarHandleAccessorNeedsReturnTypeCheck(invoke, return_type)) {
1210 // Type check is needed because VarHandle intrinsics do not type check the retrieved reference.
1211 ScopedObjectAccess soa(Thread::Current());
1212 ArtMethod* referrer = graph_->GetArtMethod();
1213 dex::TypeIndex return_type_index =
1214 referrer->GetDexFile()->GetProtoId(proto_idx).return_type_idx_;
1215
1216 BuildTypeCheck(/* is_instance_of= */ false, invoke, return_type_index, dex_pc);
1217 latest_result_ = current_block_->GetLastInstruction();
1218 }
1219
1220 return true;
1221 }
1222
1223
BuildInvokeCustom(uint32_t dex_pc,uint32_t call_site_idx,const InstructionOperands & operands)1224 bool HInstructionBuilder::BuildInvokeCustom(uint32_t dex_pc,
1225 uint32_t call_site_idx,
1226 const InstructionOperands& operands) {
1227 dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx);
1228 const char* shorty = dex_file_->GetShorty(proto_idx);
1229 DataType::Type return_type = DataType::FromShorty(shorty[0]);
1230 size_t number_of_arguments = strlen(shorty) - 1;
1231 // HInvokeCustom takes a DexNoNoIndex method reference.
1232 MethodReference method_reference(&graph_->GetDexFile(), dex::kDexNoIndex);
1233 HInvoke* invoke = new (allocator_) HInvokeCustom(allocator_,
1234 number_of_arguments,
1235 call_site_idx,
1236 return_type,
1237 dex_pc,
1238 method_reference);
1239 return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
1240 }
1241
BuildNewInstance(dex::TypeIndex type_index,uint32_t dex_pc)1242 HNewInstance* HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) {
1243 ScopedObjectAccess soa(Thread::Current());
1244
1245 HLoadClass* load_class = BuildLoadClass(type_index, dex_pc);
1246
1247 HInstruction* cls = load_class;
1248 Handle<mirror::Class> klass = load_class->GetClass();
1249
1250 if (!IsInitialized(klass.Get())) {
1251 cls = new (allocator_) HClinitCheck(load_class, dex_pc);
1252 AppendInstruction(cls);
1253 }
1254
1255 // Only the access check entrypoint handles the finalizable class case. If we
1256 // need access checks, then we haven't resolved the method and the class may
1257 // again be finalizable.
1258 QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized;
1259 if (load_class->NeedsAccessCheck() ||
1260 klass == nullptr || // Finalizable/instantiable is unknown.
1261 klass->IsFinalizable() ||
1262 klass.Get() == klass->GetClass() || // Classes cannot be allocated in code
1263 !klass->IsInstantiable()) {
1264 entrypoint = kQuickAllocObjectWithChecks;
1265 }
1266 // We will always be able to resolve the string class since it is in the BCP.
1267 if (!klass.IsNull() && klass->IsStringClass()) {
1268 entrypoint = kQuickAllocStringObject;
1269 }
1270
1271 // Consider classes we haven't resolved as potentially finalizable.
1272 bool finalizable = (klass == nullptr) || klass->IsFinalizable();
1273
1274 HNewInstance* new_instance = new (allocator_) HNewInstance(
1275 cls,
1276 dex_pc,
1277 type_index,
1278 *dex_compilation_unit_->GetDexFile(),
1279 finalizable,
1280 entrypoint);
1281 AppendInstruction(new_instance);
1282
1283 return new_instance;
1284 }
1285
BuildConstructorFenceForAllocation(HInstruction * allocation)1286 void HInstructionBuilder::BuildConstructorFenceForAllocation(HInstruction* allocation) {
1287 DCHECK(allocation != nullptr &&
1288 (allocation->IsNewInstance() ||
1289 allocation->IsNewArray())); // corresponding to "new" keyword in JLS.
1290
1291 if (allocation->IsNewInstance()) {
1292 // STRING SPECIAL HANDLING:
1293 // -------------------------------
1294 // Strings have a real HNewInstance node but they end up always having 0 uses.
1295 // All uses of a String HNewInstance are always transformed to replace their input
1296 // of the HNewInstance with an input of the invoke to StringFactory.
1297 //
1298 // Do not emit an HConstructorFence here since it can inhibit some String new-instance
1299 // optimizations (to pass checker tests that rely on those optimizations).
1300 HNewInstance* new_inst = allocation->AsNewInstance();
1301 HLoadClass* load_class = new_inst->GetLoadClass();
1302
1303 Thread* self = Thread::Current();
1304 ScopedObjectAccess soa(self);
1305 StackHandleScope<1> hs(self);
1306 Handle<mirror::Class> klass = load_class->GetClass();
1307 if (klass != nullptr && klass->IsStringClass()) {
1308 return;
1309 // Note: Do not use allocation->IsStringAlloc which requires
1310 // a valid ReferenceTypeInfo, but that doesn't get made until after reference type
1311 // propagation (and instruction builder is too early).
1312 }
1313 // (In terms of correctness, the StringFactory needs to provide its own
1314 // default initialization barrier, see below.)
1315 }
1316
1317 // JLS 17.4.5 "Happens-before Order" describes:
1318 //
1319 // The default initialization of any object happens-before any other actions (other than
1320 // default-writes) of a program.
1321 //
1322 // In our implementation the default initialization of an object to type T means
1323 // setting all of its initial data (object[0..size)) to 0, and setting the
1324 // object's class header (i.e. object.getClass() == T.class).
1325 //
1326 // In practice this fence ensures that the writes to the object header
1327 // are visible to other threads if this object escapes the current thread.
1328 // (and in theory the 0-initializing, but that happens automatically
1329 // when new memory pages are mapped in by the OS).
1330 HConstructorFence* ctor_fence =
1331 new (allocator_) HConstructorFence(allocation, allocation->GetDexPc(), allocator_);
1332 AppendInstruction(ctor_fence);
1333 MaybeRecordStat(
1334 compilation_stats_,
1335 MethodCompilationStat::kConstructorFenceGeneratedNew);
1336 }
1337
IsInBootImage(ObjPtr<mirror::Class> cls,const CompilerOptions & compiler_options)1338 static bool IsInBootImage(ObjPtr<mirror::Class> cls, const CompilerOptions& compiler_options)
1339 REQUIRES_SHARED(Locks::mutator_lock_) {
1340 if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(cls)) {
1341 return true;
1342 }
1343 if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) {
1344 std::string temp;
1345 const char* descriptor = cls->GetDescriptor(&temp);
1346 return compiler_options.IsImageClass(descriptor);
1347 } else {
1348 return false;
1349 }
1350 }
1351
IsSubClass(ObjPtr<mirror::Class> to_test,ObjPtr<mirror::Class> super_class)1352 static bool IsSubClass(ObjPtr<mirror::Class> to_test, ObjPtr<mirror::Class> super_class)
1353 REQUIRES_SHARED(Locks::mutator_lock_) {
1354 return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
1355 }
1356
HasTrivialClinit(ObjPtr<mirror::Class> klass,PointerSize pointer_size)1357 static bool HasTrivialClinit(ObjPtr<mirror::Class> klass, PointerSize pointer_size)
1358 REQUIRES_SHARED(Locks::mutator_lock_) {
1359 // Check if the class has encoded fields that trigger bytecode execution.
1360 // (Encoded fields are just a different representation of <clinit>.)
1361 if (klass->NumStaticFields() != 0u) {
1362 DCHECK(klass->GetClassDef() != nullptr);
1363 EncodedStaticFieldValueIterator it(klass->GetDexFile(), *klass->GetClassDef());
1364 for (; it.HasNext(); it.Next()) {
1365 switch (it.GetValueType()) {
1366 case EncodedArrayValueIterator::ValueType::kBoolean:
1367 case EncodedArrayValueIterator::ValueType::kByte:
1368 case EncodedArrayValueIterator::ValueType::kShort:
1369 case EncodedArrayValueIterator::ValueType::kChar:
1370 case EncodedArrayValueIterator::ValueType::kInt:
1371 case EncodedArrayValueIterator::ValueType::kLong:
1372 case EncodedArrayValueIterator::ValueType::kFloat:
1373 case EncodedArrayValueIterator::ValueType::kDouble:
1374 case EncodedArrayValueIterator::ValueType::kNull:
1375 case EncodedArrayValueIterator::ValueType::kString:
1376 // Primitive, null or j.l.String initialization is permitted.
1377 break;
1378 case EncodedArrayValueIterator::ValueType::kType:
1379 // Type initialization can load classes and execute bytecode through a class loader
1380 // which can execute arbitrary bytecode. We do not optimize for known class loaders;
1381 // kType is rarely used (if ever).
1382 return false;
1383 default:
1384 // Other types in the encoded static field list are rejected by the DexFileVerifier.
1385 LOG(FATAL) << "Unexpected type " << it.GetValueType();
1386 UNREACHABLE();
1387 }
1388 }
1389 }
1390 // Check if the class has <clinit> that executes arbitrary code.
1391 // Initialization of static fields of the class itself with constants is allowed.
1392 ArtMethod* clinit = klass->FindClassInitializer(pointer_size);
1393 if (clinit != nullptr) {
1394 const DexFile& dex_file = *clinit->GetDexFile();
1395 CodeItemInstructionAccessor accessor(dex_file, clinit->GetCodeItem());
1396 for (DexInstructionPcPair it : accessor) {
1397 switch (it->Opcode()) {
1398 case Instruction::CONST_4:
1399 case Instruction::CONST_16:
1400 case Instruction::CONST:
1401 case Instruction::CONST_HIGH16:
1402 case Instruction::CONST_WIDE_16:
1403 case Instruction::CONST_WIDE_32:
1404 case Instruction::CONST_WIDE:
1405 case Instruction::CONST_WIDE_HIGH16:
1406 case Instruction::CONST_STRING:
1407 case Instruction::CONST_STRING_JUMBO:
1408 // Primitive, null or j.l.String initialization is permitted.
1409 break;
1410 case Instruction::RETURN_VOID:
1411 break;
1412 case Instruction::SPUT:
1413 case Instruction::SPUT_WIDE:
1414 case Instruction::SPUT_OBJECT:
1415 case Instruction::SPUT_BOOLEAN:
1416 case Instruction::SPUT_BYTE:
1417 case Instruction::SPUT_CHAR:
1418 case Instruction::SPUT_SHORT:
1419 // Only initialization of a static field of the same class is permitted.
1420 if (dex_file.GetFieldId(it->VRegB_21c()).class_idx_ != klass->GetDexTypeIndex()) {
1421 return false;
1422 }
1423 break;
1424 case Instruction::NEW_ARRAY:
1425 // Only primitive arrays are permitted.
1426 if (Primitive::GetType(dex_file.GetTypeDescriptor(dex_file.GetTypeId(
1427 dex::TypeIndex(it->VRegC_22c())))[1]) == Primitive::kPrimNot) {
1428 return false;
1429 }
1430 break;
1431 case Instruction::APUT:
1432 case Instruction::APUT_WIDE:
1433 case Instruction::APUT_BOOLEAN:
1434 case Instruction::APUT_BYTE:
1435 case Instruction::APUT_CHAR:
1436 case Instruction::APUT_SHORT:
1437 case Instruction::FILL_ARRAY_DATA:
1438 case Instruction::NOP:
1439 // Allow initialization of primitive arrays (only constants can be stored).
1440 // Note: We expect NOPs used for fill-array-data-payload but accept all NOPs
1441 // (even unreferenced switch payloads if they make it through the verifier).
1442 break;
1443 default:
1444 return false;
1445 }
1446 }
1447 }
1448 return true;
1449 }
1450
HasTrivialInitialization(ObjPtr<mirror::Class> cls,const CompilerOptions & compiler_options)1451 static bool HasTrivialInitialization(ObjPtr<mirror::Class> cls,
1452 const CompilerOptions& compiler_options)
1453 REQUIRES_SHARED(Locks::mutator_lock_) {
1454 Runtime* runtime = Runtime::Current();
1455 PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize();
1456
1457 // Check the superclass chain.
1458 for (ObjPtr<mirror::Class> klass = cls; klass != nullptr; klass = klass->GetSuperClass()) {
1459 if (klass->IsInitialized() && IsInBootImage(klass, compiler_options)) {
1460 break; // `klass` and its superclasses are already initialized in the boot image.
1461 }
1462 if (!HasTrivialClinit(klass, pointer_size)) {
1463 return false;
1464 }
1465 }
1466
1467 // Also check interfaces with default methods as they need to be initialized as well.
1468 ObjPtr<mirror::IfTable> iftable = cls->GetIfTable();
1469 DCHECK(iftable != nullptr);
1470 for (int32_t i = 0, count = iftable->Count(); i != count; ++i) {
1471 ObjPtr<mirror::Class> iface = iftable->GetInterface(i);
1472 if (!iface->HasDefaultMethods()) {
1473 continue; // Initializing `cls` does not initialize this interface.
1474 }
1475 if (iface->IsInitialized() && IsInBootImage(iface, compiler_options)) {
1476 continue; // This interface is already initialized in the boot image.
1477 }
1478 if (!HasTrivialClinit(iface, pointer_size)) {
1479 return false;
1480 }
1481 }
1482 return true;
1483 }
1484
IsInitialized(ObjPtr<mirror::Class> cls) const1485 bool HInstructionBuilder::IsInitialized(ObjPtr<mirror::Class> cls) const {
1486 if (cls == nullptr) {
1487 return false;
1488 }
1489
1490 // Check if the class will be initialized at runtime.
1491 if (cls->IsInitialized()) {
1492 const CompilerOptions& compiler_options = code_generator_->GetCompilerOptions();
1493 if (compiler_options.IsAotCompiler()) {
1494 // Assume loaded only if klass is in the boot image. App classes cannot be assumed
1495 // loaded because we don't even know what class loader will be used to load them.
1496 if (IsInBootImage(cls, compiler_options)) {
1497 return true;
1498 }
1499 } else {
1500 DCHECK(compiler_options.IsJitCompiler());
1501 if (Runtime::Current()->GetJit()->CanAssumeInitialized(
1502 cls,
1503 compiler_options.IsJitCompilerForSharedCode())) {
1504 // For JIT, the class cannot revert to an uninitialized state.
1505 return true;
1506 }
1507 }
1508 }
1509
1510 // We can avoid the class initialization check for `cls` in static methods and constructors
1511 // in the very same class; invoking a static method involves a class initialization check
1512 // and so does the instance allocation that must be executed before invoking a constructor.
1513 // Other instance methods of the same class can run on an escaped instance
1514 // of an erroneous class. Even a superclass may need to be checked as the subclass
1515 // can be completely initialized while the superclass is initializing and the subclass
1516 // remains initialized when the superclass initializer throws afterwards. b/62478025
1517 // Note: The HClinitCheck+HInvokeStaticOrDirect merging can still apply.
1518 auto is_static_method_or_constructor_of_cls = [cls](const DexCompilationUnit& compilation_unit)
1519 REQUIRES_SHARED(Locks::mutator_lock_) {
1520 return (compilation_unit.GetAccessFlags() & (kAccStatic | kAccConstructor)) != 0u &&
1521 compilation_unit.GetCompilingClass().Get() == cls;
1522 };
1523 if (is_static_method_or_constructor_of_cls(*outer_compilation_unit_) ||
1524 // Check also the innermost method. Though excessive copies of ClinitCheck can be
1525 // eliminated by GVN, that happens only after the decision whether to inline the
1526 // graph or not and that may depend on the presence of the ClinitCheck.
1527 // TODO: We should walk over the entire inlined method chain, but we don't pass that
1528 // information to the builder.
1529 is_static_method_or_constructor_of_cls(*dex_compilation_unit_)) {
1530 return true;
1531 }
1532
1533 // Otherwise, we may be able to avoid the check if `cls` is a superclass of a method being
1534 // compiled here (anywhere in the inlining chain) as the `cls` must have started initializing
1535 // before calling any `cls` or subclass methods. Static methods require a clinit check and
1536 // instance methods require an instance which cannot be created before doing a clinit check.
1537 // When a subclass of `cls` starts initializing, it starts initializing its superclass
1538 // chain up to `cls` without running any bytecode, i.e. without any opportunity for circular
1539 // initialization weirdness.
1540 //
1541 // If the initialization of `cls` is trivial (`cls` and its superclasses and superinterfaces
1542 // with default methods initialize only their own static fields using constant values), it must
1543 // complete, either successfully or by throwing and marking `cls` erroneous, without allocating
1544 // any instances of `cls` or subclasses (or any other class) and without calling any methods.
1545 // If it completes by throwing, no instances of `cls` shall be created and no subclass method
1546 // bytecode shall execute (see above), therefore the instruction we're building shall be
1547 // unreachable. By reaching the instruction, we know that `cls` was initialized successfully.
1548 //
1549 // TODO: We should walk over the entire inlined methods chain, but we don't pass that
1550 // information to the builder. (We could also check if we're guaranteed a non-null instance
1551 // of `cls` at this location but that's outside the scope of the instruction builder.)
1552 bool is_subclass = IsSubClass(outer_compilation_unit_->GetCompilingClass().Get(), cls);
1553 if (dex_compilation_unit_ != outer_compilation_unit_) {
1554 is_subclass = is_subclass ||
1555 IsSubClass(dex_compilation_unit_->GetCompilingClass().Get(), cls);
1556 }
1557 if (is_subclass && HasTrivialInitialization(cls, code_generator_->GetCompilerOptions())) {
1558 return true;
1559 }
1560
1561 return false;
1562 }
1563
ProcessClinitCheckForInvoke(uint32_t dex_pc,ArtMethod * resolved_method,HInvokeStaticOrDirect::ClinitCheckRequirement * clinit_check_requirement)1564 HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke(
1565 uint32_t dex_pc,
1566 ArtMethod* resolved_method,
1567 HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
1568 ScopedObjectAccess soa(Thread::Current());
1569 ObjPtr<mirror::Class> klass = resolved_method->GetDeclaringClass();
1570
1571 HClinitCheck* clinit_check = nullptr;
1572 if (IsInitialized(klass)) {
1573 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
1574 } else {
1575 Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass);
1576 HLoadClass* cls = BuildLoadClass(h_klass->GetDexTypeIndex(),
1577 h_klass->GetDexFile(),
1578 h_klass,
1579 dex_pc,
1580 /* needs_access_check= */ false);
1581 if (cls != nullptr) {
1582 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
1583 clinit_check = new (allocator_) HClinitCheck(cls, dex_pc);
1584 AppendInstruction(clinit_check);
1585 } else {
1586 // Let the invoke handle this with an implicit class initialization check.
1587 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
1588 }
1589 }
1590 return clinit_check;
1591 }
1592
SetupInvokeArguments(HInstruction * invoke,const InstructionOperands & operands,const char * shorty,ReceiverArg receiver_arg)1593 bool HInstructionBuilder::SetupInvokeArguments(HInstruction* invoke,
1594 const InstructionOperands& operands,
1595 const char* shorty,
1596 ReceiverArg receiver_arg) {
1597 // Note: The `invoke` can be an intrinsic replacement, so not necessaritly HInvoke.
1598 // In that case, do not log errors, they shall be reported when we try to build the HInvoke.
1599 uint32_t shorty_index = 1; // Skip the return type.
1600 const size_t number_of_operands = operands.GetNumberOfOperands();
1601 bool argument_length_error = false;
1602
1603 size_t start_index = 0u;
1604 size_t argument_index = 0u;
1605 if (receiver_arg != ReceiverArg::kNone) {
1606 if (number_of_operands == 0u) {
1607 argument_length_error = true;
1608 } else {
1609 start_index = 1u;
1610 if (receiver_arg != ReceiverArg::kIgnored) {
1611 uint32_t obj_reg = operands.GetOperand(0u);
1612 HInstruction* arg = (receiver_arg == ReceiverArg::kPlainArg)
1613 ? LoadLocal(obj_reg, DataType::Type::kReference)
1614 : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc());
1615 if (receiver_arg != ReceiverArg::kNullCheckedOnly) {
1616 invoke->SetRawInputAt(0u, arg);
1617 argument_index = 1u;
1618 }
1619 }
1620 }
1621 }
1622
1623 for (size_t i = start_index; i < number_of_operands; ++i, ++argument_index) {
1624 // Make sure we don't go over the expected arguments or over the number of
1625 // dex registers given. If the instruction was seen as dead by the verifier,
1626 // it hasn't been properly checked.
1627 if (UNLIKELY(shorty[shorty_index] == 0)) {
1628 argument_length_error = true;
1629 break;
1630 }
1631 DataType::Type type = DataType::FromShorty(shorty[shorty_index++]);
1632 bool is_wide = (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
1633 if (is_wide && ((i + 1 == number_of_operands) ||
1634 (operands.GetOperand(i) + 1 != operands.GetOperand(i + 1)))) {
1635 if (invoke->IsInvoke()) {
1636 // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
1637 // reject any class where this is violated. However, the verifier only does these checks
1638 // on non trivially dead instructions, so we just bailout the compilation.
1639 VLOG(compiler) << "Did not compile "
1640 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
1641 << " because of non-sequential dex register pair in wide argument";
1642 MaybeRecordStat(compilation_stats_,
1643 MethodCompilationStat::kNotCompiledMalformedOpcode);
1644 }
1645 return false;
1646 }
1647 HInstruction* arg = LoadLocal(operands.GetOperand(i), type);
1648 DCHECK(invoke->InputAt(argument_index) == nullptr);
1649 invoke->SetRawInputAt(argument_index, arg);
1650 if (is_wide) {
1651 ++i;
1652 }
1653 }
1654
1655 argument_length_error = argument_length_error || shorty[shorty_index] != 0;
1656 if (argument_length_error) {
1657 if (invoke->IsInvoke()) {
1658 VLOG(compiler) << "Did not compile "
1659 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
1660 << " because of wrong number of arguments in invoke instruction";
1661 MaybeRecordStat(compilation_stats_,
1662 MethodCompilationStat::kNotCompiledMalformedOpcode);
1663 }
1664 return false;
1665 }
1666
1667 if (invoke->IsInvokeStaticOrDirect() &&
1668 HInvokeStaticOrDirect::NeedsCurrentMethodInput(
1669 invoke->AsInvokeStaticOrDirect()->GetDispatchInfo())) {
1670 DCHECK_EQ(argument_index, invoke->AsInvokeStaticOrDirect()->GetCurrentMethodIndex());
1671 DCHECK(invoke->InputAt(argument_index) == nullptr);
1672 invoke->SetRawInputAt(argument_index, graph_->GetCurrentMethod());
1673 }
1674
1675 if (invoke->IsInvokeInterface() &&
1676 (invoke->AsInvokeInterface()->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive)) {
1677 invoke->SetRawInputAt(invoke->AsInvokeInterface()->GetNumberOfArguments() - 1,
1678 graph_->GetCurrentMethod());
1679 }
1680
1681 return true;
1682 }
1683
HandleInvoke(HInvoke * invoke,const InstructionOperands & operands,const char * shorty,bool is_unresolved)1684 bool HInstructionBuilder::HandleInvoke(HInvoke* invoke,
1685 const InstructionOperands& operands,
1686 const char* shorty,
1687 bool is_unresolved) {
1688 DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
1689
1690 ReceiverArg receiver_arg = (invoke->GetInvokeType() == InvokeType::kStatic)
1691 ? ReceiverArg::kNone
1692 : (is_unresolved ? ReceiverArg::kPlainArg : ReceiverArg::kNullCheckedArg);
1693 if (!SetupInvokeArguments(invoke, operands, shorty, receiver_arg)) {
1694 return false;
1695 }
1696
1697 AppendInstruction(invoke);
1698 latest_result_ = invoke;
1699
1700 return true;
1701 }
1702
BuildSimpleIntrinsic(ArtMethod * method,uint32_t dex_pc,const InstructionOperands & operands,const char * shorty)1703 bool HInstructionBuilder::BuildSimpleIntrinsic(ArtMethod* method,
1704 uint32_t dex_pc,
1705 const InstructionOperands& operands,
1706 const char* shorty) {
1707 Intrinsics intrinsic = static_cast<Intrinsics>(method->GetIntrinsic());
1708 DCHECK_NE(intrinsic, Intrinsics::kNone);
1709 constexpr DataType::Type kInt32 = DataType::Type::kInt32;
1710 constexpr DataType::Type kInt64 = DataType::Type::kInt64;
1711 constexpr DataType::Type kFloat32 = DataType::Type::kFloat32;
1712 constexpr DataType::Type kFloat64 = DataType::Type::kFloat64;
1713 ReceiverArg receiver_arg = method->IsStatic() ? ReceiverArg::kNone : ReceiverArg::kNullCheckedArg;
1714 HInstruction* instruction = nullptr;
1715 switch (intrinsic) {
1716 case Intrinsics::kIntegerRotateRight:
1717 case Intrinsics::kIntegerRotateLeft:
1718 // For rotate left, we negate the distance below.
1719 instruction = new (allocator_) HRor(kInt32, /*value=*/ nullptr, /*distance=*/ nullptr);
1720 break;
1721 case Intrinsics::kLongRotateRight:
1722 case Intrinsics::kLongRotateLeft:
1723 // For rotate left, we negate the distance below.
1724 instruction = new (allocator_) HRor(kInt64, /*value=*/ nullptr, /*distance=*/ nullptr);
1725 break;
1726 case Intrinsics::kIntegerCompare:
1727 instruction = new (allocator_) HCompare(
1728 kInt32, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc);
1729 break;
1730 case Intrinsics::kLongCompare:
1731 instruction = new (allocator_) HCompare(
1732 kInt64, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc);
1733 break;
1734 case Intrinsics::kIntegerSignum:
1735 instruction = new (allocator_) HCompare(
1736 kInt32, /*first=*/ nullptr, graph_->GetIntConstant(0), ComparisonBias::kNoBias, dex_pc);
1737 break;
1738 case Intrinsics::kLongSignum:
1739 instruction = new (allocator_) HCompare(
1740 kInt64, /*first=*/ nullptr, graph_->GetLongConstant(0), ComparisonBias::kNoBias, dex_pc);
1741 break;
1742 case Intrinsics::kFloatIsNaN:
1743 case Intrinsics::kDoubleIsNaN: {
1744 // IsNaN(x) is the same as x != x.
1745 instruction = new (allocator_) HNotEqual(/*first=*/ nullptr, /*second=*/ nullptr, dex_pc);
1746 instruction->AsCondition()->SetBias(ComparisonBias::kLtBias);
1747 break;
1748 }
1749 case Intrinsics::kStringCharAt:
1750 // We treat String as an array to allow DCE and BCE to seamlessly work on strings.
1751 instruction = new (allocator_) HArrayGet(/*array=*/ nullptr,
1752 /*index=*/ nullptr,
1753 DataType::Type::kUint16,
1754 SideEffects::None(), // Strings are immutable.
1755 dex_pc,
1756 /*is_string_char_at=*/ true);
1757 break;
1758 case Intrinsics::kStringIsEmpty:
1759 case Intrinsics::kStringLength:
1760 // We treat String as an array to allow DCE and BCE to seamlessly work on strings.
1761 // For String.isEmpty(), we add a comparison with 0 below.
1762 instruction =
1763 new (allocator_) HArrayLength(/*array=*/ nullptr, dex_pc, /* is_string_length= */ true);
1764 break;
1765 case Intrinsics::kUnsafeLoadFence:
1766 receiver_arg = ReceiverArg::kNullCheckedOnly;
1767 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
1768 break;
1769 case Intrinsics::kUnsafeStoreFence:
1770 receiver_arg = ReceiverArg::kNullCheckedOnly;
1771 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc);
1772 break;
1773 case Intrinsics::kUnsafeFullFence:
1774 receiver_arg = ReceiverArg::kNullCheckedOnly;
1775 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc);
1776 break;
1777 case Intrinsics::kVarHandleFullFence:
1778 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc);
1779 break;
1780 case Intrinsics::kVarHandleAcquireFence:
1781 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
1782 break;
1783 case Intrinsics::kVarHandleReleaseFence:
1784 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc);
1785 break;
1786 case Intrinsics::kVarHandleLoadLoadFence:
1787 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
1788 break;
1789 case Intrinsics::kVarHandleStoreStoreFence:
1790 instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kStoreStore, dex_pc);
1791 break;
1792 case Intrinsics::kMathMinIntInt:
1793 instruction = new (allocator_) HMin(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1794 break;
1795 case Intrinsics::kMathMinLongLong:
1796 instruction = new (allocator_) HMin(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1797 break;
1798 case Intrinsics::kMathMinFloatFloat:
1799 instruction = new (allocator_) HMin(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1800 break;
1801 case Intrinsics::kMathMinDoubleDouble:
1802 instruction = new (allocator_) HMin(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1803 break;
1804 case Intrinsics::kMathMaxIntInt:
1805 instruction = new (allocator_) HMax(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1806 break;
1807 case Intrinsics::kMathMaxLongLong:
1808 instruction = new (allocator_) HMax(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1809 break;
1810 case Intrinsics::kMathMaxFloatFloat:
1811 instruction = new (allocator_) HMax(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1812 break;
1813 case Intrinsics::kMathMaxDoubleDouble:
1814 instruction = new (allocator_) HMax(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1815 break;
1816 case Intrinsics::kMathAbsInt:
1817 instruction = new (allocator_) HAbs(kInt32, /*input=*/ nullptr, dex_pc);
1818 break;
1819 case Intrinsics::kMathAbsLong:
1820 instruction = new (allocator_) HAbs(kInt64, /*input=*/ nullptr, dex_pc);
1821 break;
1822 case Intrinsics::kMathAbsFloat:
1823 instruction = new (allocator_) HAbs(kFloat32, /*input=*/ nullptr, dex_pc);
1824 break;
1825 case Intrinsics::kMathAbsDouble:
1826 instruction = new (allocator_) HAbs(kFloat64, /*input=*/ nullptr, dex_pc);
1827 break;
1828 default:
1829 // We do not have intermediate representation for other intrinsics.
1830 return false;
1831 }
1832 DCHECK(instruction != nullptr);
1833 if (!SetupInvokeArguments(instruction, operands, shorty, receiver_arg)) {
1834 return false;
1835 }
1836
1837 switch (intrinsic) {
1838 case Intrinsics::kIntegerRotateLeft:
1839 case Intrinsics::kLongRotateLeft: {
1840 // Negate the distance value for rotate left.
1841 DCHECK(instruction->IsRor());
1842 HNeg* neg = new (allocator_) HNeg(kInt32, instruction->InputAt(1u));
1843 AppendInstruction(neg);
1844 instruction->SetRawInputAt(1u, neg);
1845 break;
1846 }
1847 case Intrinsics::kFloatIsNaN:
1848 case Intrinsics::kDoubleIsNaN:
1849 // Set the second input to be the same as first.
1850 DCHECK(instruction->IsNotEqual());
1851 DCHECK(instruction->InputAt(1u) == nullptr);
1852 instruction->SetRawInputAt(1u, instruction->InputAt(0u));
1853 break;
1854 case Intrinsics::kStringCharAt: {
1855 // Add bounds check.
1856 HInstruction* array = instruction->InputAt(0u);
1857 HInstruction* index = instruction->InputAt(1u);
1858 HInstruction* length =
1859 new (allocator_) HArrayLength(array, dex_pc, /*is_string_length=*/ true);
1860 AppendInstruction(length);
1861 HBoundsCheck* bounds_check =
1862 new (allocator_) HBoundsCheck(index, length, dex_pc, /*is_string_char_at=*/ true);
1863 AppendInstruction(bounds_check);
1864 graph_->SetHasBoundsChecks(true);
1865 instruction->SetRawInputAt(1u, bounds_check);
1866 break;
1867 }
1868 case Intrinsics::kStringIsEmpty: {
1869 // Compare the length with 0.
1870 DCHECK(instruction->IsArrayLength());
1871 AppendInstruction(instruction);
1872 HEqual* equal = new (allocator_) HEqual(instruction, graph_->GetIntConstant(0), dex_pc);
1873 instruction = equal;
1874 break;
1875 }
1876 default:
1877 break;
1878 }
1879
1880 AppendInstruction(instruction);
1881 latest_result_ = instruction;
1882
1883 return true;
1884 }
1885
HandleStringInit(HInvoke * invoke,const InstructionOperands & operands,const char * shorty)1886 bool HInstructionBuilder::HandleStringInit(HInvoke* invoke,
1887 const InstructionOperands& operands,
1888 const char* shorty) {
1889 DCHECK(invoke->IsInvokeStaticOrDirect());
1890 DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
1891
1892 if (!SetupInvokeArguments(invoke, operands, shorty, ReceiverArg::kIgnored)) {
1893 return false;
1894 }
1895
1896 AppendInstruction(invoke);
1897
1898 // This is a StringFactory call, not an actual String constructor. Its result
1899 // replaces the empty String pre-allocated by NewInstance.
1900 uint32_t orig_this_reg = operands.GetOperand(0);
1901 HInstruction* arg_this = LoadLocal(orig_this_reg, DataType::Type::kReference);
1902
1903 // Replacing the NewInstance might render it redundant. Keep a list of these
1904 // to be visited once it is clear whether it has remaining uses.
1905 if (arg_this->IsNewInstance()) {
1906 ssa_builder_->AddUninitializedString(arg_this->AsNewInstance());
1907 } else {
1908 DCHECK(arg_this->IsPhi());
1909 // We can get a phi as input of a String.<init> if there is a loop between the
1910 // allocation and the String.<init> call. As we don't know which other phis might alias
1911 // with `arg_this`, we keep a record of those invocations so we can later replace
1912 // the allocation with the invocation.
1913 // Add the actual 'this' input so the analysis knows what is the allocation instruction.
1914 // The input will be removed during the analysis.
1915 invoke->AddInput(arg_this);
1916 ssa_builder_->AddUninitializedStringPhi(invoke);
1917 }
1918 // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`.
1919 for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
1920 if ((*current_locals_)[vreg] == arg_this) {
1921 (*current_locals_)[vreg] = invoke;
1922 }
1923 }
1924 return true;
1925 }
1926
GetFieldAccessType(const DexFile & dex_file,uint16_t field_index)1927 static DataType::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
1928 const dex::FieldId& field_id = dex_file.GetFieldId(field_index);
1929 const char* type = dex_file.GetFieldTypeDescriptor(field_id);
1930 return DataType::FromShorty(type[0]);
1931 }
1932
BuildInstanceFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put)1933 bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
1934 uint32_t dex_pc,
1935 bool is_put) {
1936 uint32_t source_or_dest_reg = instruction.VRegA_22c();
1937 uint32_t obj_reg = instruction.VRegB_22c();
1938 uint16_t field_index = instruction.VRegC_22c();
1939
1940 ScopedObjectAccess soa(Thread::Current());
1941 ArtField* resolved_field = ResolveField(field_index, /* is_static= */ false, is_put);
1942
1943 // Generate an explicit null check on the reference, unless the field access
1944 // is unresolved. In that case, we rely on the runtime to perform various
1945 // checks first, followed by a null check.
1946 HInstruction* object = (resolved_field == nullptr)
1947 ? LoadLocal(obj_reg, DataType::Type::kReference)
1948 : LoadNullCheckedLocal(obj_reg, dex_pc);
1949
1950 DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1951 if (is_put) {
1952 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1953 HInstruction* field_set = nullptr;
1954 if (resolved_field == nullptr) {
1955 MaybeRecordStat(compilation_stats_,
1956 MethodCompilationStat::kUnresolvedField);
1957 field_set = new (allocator_) HUnresolvedInstanceFieldSet(object,
1958 value,
1959 field_type,
1960 field_index,
1961 dex_pc);
1962 } else {
1963 uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1964 field_set = new (allocator_) HInstanceFieldSet(object,
1965 value,
1966 resolved_field,
1967 field_type,
1968 resolved_field->GetOffset(),
1969 resolved_field->IsVolatile(),
1970 field_index,
1971 class_def_index,
1972 *dex_file_,
1973 dex_pc);
1974 }
1975 AppendInstruction(field_set);
1976 } else {
1977 HInstruction* field_get = nullptr;
1978 if (resolved_field == nullptr) {
1979 MaybeRecordStat(compilation_stats_,
1980 MethodCompilationStat::kUnresolvedField);
1981 field_get = new (allocator_) HUnresolvedInstanceFieldGet(object,
1982 field_type,
1983 field_index,
1984 dex_pc);
1985 } else {
1986 uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1987 field_get = new (allocator_) HInstanceFieldGet(object,
1988 resolved_field,
1989 field_type,
1990 resolved_field->GetOffset(),
1991 resolved_field->IsVolatile(),
1992 field_index,
1993 class_def_index,
1994 *dex_file_,
1995 dex_pc);
1996 }
1997 AppendInstruction(field_get);
1998 UpdateLocal(source_or_dest_reg, field_get);
1999 }
2000
2001 return true;
2002 }
2003
BuildUnresolvedStaticFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,DataType::Type field_type)2004 void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
2005 uint32_t dex_pc,
2006 bool is_put,
2007 DataType::Type field_type) {
2008 uint32_t source_or_dest_reg = instruction.VRegA_21c();
2009 uint16_t field_index = instruction.VRegB_21c();
2010
2011 if (is_put) {
2012 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
2013 AppendInstruction(
2014 new (allocator_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
2015 } else {
2016 AppendInstruction(new (allocator_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
2017 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
2018 }
2019 }
2020
ResolveField(uint16_t field_idx,bool is_static,bool is_put)2021 ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) {
2022 ScopedObjectAccess soa(Thread::Current());
2023
2024 ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
2025 Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
2026
2027 ArtField* resolved_field = class_linker->ResolveFieldJLS(field_idx,
2028 dex_compilation_unit_->GetDexCache(),
2029 class_loader);
2030 DCHECK_EQ(resolved_field == nullptr, soa.Self()->IsExceptionPending())
2031 << "field="
2032 << ((resolved_field == nullptr) ? "null" : resolved_field->PrettyField())
2033 << ", exception="
2034 << (soa.Self()->IsExceptionPending() ? soa.Self()->GetException()->Dump() : "null");
2035 if (UNLIKELY(resolved_field == nullptr)) {
2036 // Clean up any exception left by field resolution.
2037 soa.Self()->ClearException();
2038 return nullptr;
2039 }
2040
2041 if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
2042 return nullptr;
2043 }
2044
2045 // Check access.
2046 Handle<mirror::Class> compiling_class = dex_compilation_unit_->GetCompilingClass();
2047 if (compiling_class == nullptr) {
2048 // Check if the declaring class or referencing class is accessible.
2049 SamePackageCompare same_package(*dex_compilation_unit_);
2050 ObjPtr<mirror::Class> declaring_class = resolved_field->GetDeclaringClass();
2051 bool declaring_class_accessible = declaring_class->IsPublic() || same_package(declaring_class);
2052 if (!declaring_class_accessible) {
2053 // It is possible to access members from an inaccessible superclass
2054 // by referencing them through an accessible subclass.
2055 ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType(
2056 dex_compilation_unit_->GetDexFile()->GetFieldId(field_idx).class_idx_,
2057 dex_compilation_unit_->GetDexCache().Get(),
2058 class_loader.Get());
2059 DCHECK(referenced_class != nullptr); // Must have been resolved when resolving the field.
2060 if (!referenced_class->IsPublic() && !same_package(referenced_class)) {
2061 return nullptr;
2062 }
2063 }
2064 // Check whether the field itself is accessible.
2065 // Since the referrer is unresolved but the field is resolved, it cannot be
2066 // inside the same class, so a private field is known to be inaccessible.
2067 // And without a resolved referrer, we cannot check for protected member access
2068 // in superlass, so we handle only access to public member or within the package.
2069 if (resolved_field->IsPrivate() ||
2070 (!resolved_field->IsPublic() && !declaring_class_accessible)) {
2071 return nullptr;
2072 }
2073 } else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(),
2074 resolved_field,
2075 dex_compilation_unit_->GetDexCache().Get(),
2076 field_idx)) {
2077 return nullptr;
2078 }
2079
2080 if (is_put &&
2081 resolved_field->IsFinal() &&
2082 (compiling_class.Get() != resolved_field->GetDeclaringClass())) {
2083 // Final fields can only be updated within their own class.
2084 // TODO: Only allow it in constructors. b/34966607.
2085 return nullptr;
2086 }
2087
2088 StackArtFieldHandleScope<1> rhs(soa.Self());
2089 ReflectiveHandle<ArtField> resolved_field_handle(rhs.NewHandle(resolved_field));
2090 if (resolved_field->ResolveType().IsNull()) {
2091 // ArtField::ResolveType() may fail as evidenced with a dexing bug (b/78788577).
2092 soa.Self()->ClearException();
2093 return nullptr; // Failure
2094 }
2095 return resolved_field_handle.Get();
2096 }
2097
BuildStaticFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put)2098 void HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction,
2099 uint32_t dex_pc,
2100 bool is_put) {
2101 uint32_t source_or_dest_reg = instruction.VRegA_21c();
2102 uint16_t field_index = instruction.VRegB_21c();
2103
2104 ScopedObjectAccess soa(Thread::Current());
2105 ArtField* resolved_field = ResolveField(field_index, /* is_static= */ true, is_put);
2106
2107 if (resolved_field == nullptr) {
2108 MaybeRecordStat(compilation_stats_,
2109 MethodCompilationStat::kUnresolvedField);
2110 DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
2111 BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
2112 return;
2113 }
2114
2115 DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
2116
2117 Handle<mirror::Class> klass =
2118 graph_->GetHandleCache()->NewHandle(resolved_field->GetDeclaringClass());
2119 HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(),
2120 klass->GetDexFile(),
2121 klass,
2122 dex_pc,
2123 /* needs_access_check= */ false);
2124
2125 if (constant == nullptr) {
2126 // The class cannot be referenced from this compiled code. Generate
2127 // an unresolved access.
2128 MaybeRecordStat(compilation_stats_,
2129 MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
2130 BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
2131 return;
2132 }
2133
2134 HInstruction* cls = constant;
2135 if (!IsInitialized(klass.Get())) {
2136 cls = new (allocator_) HClinitCheck(constant, dex_pc);
2137 AppendInstruction(cls);
2138 }
2139
2140 uint16_t class_def_index = klass->GetDexClassDefIndex();
2141 if (is_put) {
2142 // We need to keep the class alive before loading the value.
2143 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
2144 DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type));
2145 AppendInstruction(new (allocator_) HStaticFieldSet(cls,
2146 value,
2147 resolved_field,
2148 field_type,
2149 resolved_field->GetOffset(),
2150 resolved_field->IsVolatile(),
2151 field_index,
2152 class_def_index,
2153 *dex_file_,
2154 dex_pc));
2155 } else {
2156 AppendInstruction(new (allocator_) HStaticFieldGet(cls,
2157 resolved_field,
2158 field_type,
2159 resolved_field->GetOffset(),
2160 resolved_field->IsVolatile(),
2161 field_index,
2162 class_def_index,
2163 *dex_file_,
2164 dex_pc));
2165 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
2166 }
2167 }
2168
BuildCheckedDivRem(uint16_t out_vreg,uint16_t first_vreg,int64_t second_vreg_or_constant,uint32_t dex_pc,DataType::Type type,bool second_is_constant,bool isDiv)2169 void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg,
2170 uint16_t first_vreg,
2171 int64_t second_vreg_or_constant,
2172 uint32_t dex_pc,
2173 DataType::Type type,
2174 bool second_is_constant,
2175 bool isDiv) {
2176 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
2177
2178 HInstruction* first = LoadLocal(first_vreg, type);
2179 HInstruction* second = nullptr;
2180 if (second_is_constant) {
2181 if (type == DataType::Type::kInt32) {
2182 second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
2183 } else {
2184 second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
2185 }
2186 } else {
2187 second = LoadLocal(second_vreg_or_constant, type);
2188 }
2189
2190 if (!second_is_constant
2191 || (type == DataType::Type::kInt32 && second->AsIntConstant()->GetValue() == 0)
2192 || (type == DataType::Type::kInt64 && second->AsLongConstant()->GetValue() == 0)) {
2193 second = new (allocator_) HDivZeroCheck(second, dex_pc);
2194 AppendInstruction(second);
2195 }
2196
2197 if (isDiv) {
2198 AppendInstruction(new (allocator_) HDiv(type, first, second, dex_pc));
2199 } else {
2200 AppendInstruction(new (allocator_) HRem(type, first, second, dex_pc));
2201 }
2202 UpdateLocal(out_vreg, current_block_->GetLastInstruction());
2203 }
2204
BuildArrayAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,DataType::Type anticipated_type)2205 void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction,
2206 uint32_t dex_pc,
2207 bool is_put,
2208 DataType::Type anticipated_type) {
2209 uint8_t source_or_dest_reg = instruction.VRegA_23x();
2210 uint8_t array_reg = instruction.VRegB_23x();
2211 uint8_t index_reg = instruction.VRegC_23x();
2212
2213 HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc);
2214 HInstruction* length = new (allocator_) HArrayLength(object, dex_pc);
2215 AppendInstruction(length);
2216 HInstruction* index = LoadLocal(index_reg, DataType::Type::kInt32);
2217 index = new (allocator_) HBoundsCheck(index, length, dex_pc);
2218 AppendInstruction(index);
2219 if (is_put) {
2220 HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
2221 // TODO: Insert a type check node if the type is Object.
2222 HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
2223 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2224 AppendInstruction(aset);
2225 } else {
2226 HArrayGet* aget = new (allocator_) HArrayGet(object, index, anticipated_type, dex_pc);
2227 ssa_builder_->MaybeAddAmbiguousArrayGet(aget);
2228 AppendInstruction(aget);
2229 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
2230 }
2231 graph_->SetHasBoundsChecks(true);
2232 }
2233
BuildNewArray(uint32_t dex_pc,dex::TypeIndex type_index,HInstruction * length)2234 HNewArray* HInstructionBuilder::BuildNewArray(uint32_t dex_pc,
2235 dex::TypeIndex type_index,
2236 HInstruction* length) {
2237 HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
2238
2239 const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(type_index));
2240 DCHECK_EQ(descriptor[0], '[');
2241 size_t component_type_shift = Primitive::ComponentSizeShift(Primitive::GetType(descriptor[1]));
2242
2243 HNewArray* new_array = new (allocator_) HNewArray(cls, length, dex_pc, component_type_shift);
2244 AppendInstruction(new_array);
2245 return new_array;
2246 }
2247
BuildFilledNewArray(uint32_t dex_pc,dex::TypeIndex type_index,const InstructionOperands & operands)2248 HNewArray* HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc,
2249 dex::TypeIndex type_index,
2250 const InstructionOperands& operands) {
2251 const size_t number_of_operands = operands.GetNumberOfOperands();
2252 HInstruction* length = graph_->GetIntConstant(number_of_operands, dex_pc);
2253
2254 HNewArray* new_array = BuildNewArray(dex_pc, type_index, length);
2255 const char* descriptor = dex_file_->StringByTypeIdx(type_index);
2256 DCHECK_EQ(descriptor[0], '[') << descriptor;
2257 char primitive = descriptor[1];
2258 DCHECK(primitive == 'I'
2259 || primitive == 'L'
2260 || primitive == '[') << descriptor;
2261 bool is_reference_array = (primitive == 'L') || (primitive == '[');
2262 DataType::Type type = is_reference_array ? DataType::Type::kReference : DataType::Type::kInt32;
2263
2264 for (size_t i = 0; i < number_of_operands; ++i) {
2265 HInstruction* value = LoadLocal(operands.GetOperand(i), type);
2266 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
2267 HArraySet* aset = new (allocator_) HArraySet(new_array, index, value, type, dex_pc);
2268 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2269 AppendInstruction(aset);
2270 }
2271 latest_result_ = new_array;
2272
2273 return new_array;
2274 }
2275
2276 template <typename T>
BuildFillArrayData(HInstruction * object,const T * data,uint32_t element_count,DataType::Type anticipated_type,uint32_t dex_pc)2277 void HInstructionBuilder::BuildFillArrayData(HInstruction* object,
2278 const T* data,
2279 uint32_t element_count,
2280 DataType::Type anticipated_type,
2281 uint32_t dex_pc) {
2282 for (uint32_t i = 0; i < element_count; ++i) {
2283 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
2284 HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
2285 HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
2286 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2287 AppendInstruction(aset);
2288 }
2289 }
2290
BuildFillArrayData(const Instruction & instruction,uint32_t dex_pc)2291 void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
2292 HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc);
2293
2294 int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
2295 const Instruction::ArrayDataPayload* payload =
2296 reinterpret_cast<const Instruction::ArrayDataPayload*>(
2297 code_item_accessor_.Insns() + payload_offset);
2298 const uint8_t* data = payload->data;
2299 uint32_t element_count = payload->element_count;
2300
2301 if (element_count == 0u) {
2302 // For empty payload we emit only the null check above.
2303 return;
2304 }
2305
2306 HInstruction* length = new (allocator_) HArrayLength(array, dex_pc);
2307 AppendInstruction(length);
2308
2309 // Implementation of this DEX instruction seems to be that the bounds check is
2310 // done before doing any stores.
2311 HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
2312 AppendInstruction(new (allocator_) HBoundsCheck(last_index, length, dex_pc));
2313
2314 switch (payload->element_width) {
2315 case 1:
2316 BuildFillArrayData(array,
2317 reinterpret_cast<const int8_t*>(data),
2318 element_count,
2319 DataType::Type::kInt8,
2320 dex_pc);
2321 break;
2322 case 2:
2323 BuildFillArrayData(array,
2324 reinterpret_cast<const int16_t*>(data),
2325 element_count,
2326 DataType::Type::kInt16,
2327 dex_pc);
2328 break;
2329 case 4:
2330 BuildFillArrayData(array,
2331 reinterpret_cast<const int32_t*>(data),
2332 element_count,
2333 DataType::Type::kInt32,
2334 dex_pc);
2335 break;
2336 case 8:
2337 BuildFillWideArrayData(array,
2338 reinterpret_cast<const int64_t*>(data),
2339 element_count,
2340 dex_pc);
2341 break;
2342 default:
2343 LOG(FATAL) << "Unknown element width for " << payload->element_width;
2344 }
2345 graph_->SetHasBoundsChecks(true);
2346 }
2347
BuildFillWideArrayData(HInstruction * object,const int64_t * data,uint32_t element_count,uint32_t dex_pc)2348 void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object,
2349 const int64_t* data,
2350 uint32_t element_count,
2351 uint32_t dex_pc) {
2352 for (uint32_t i = 0; i < element_count; ++i) {
2353 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
2354 HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
2355 HArraySet* aset =
2356 new (allocator_) HArraySet(object, index, value, DataType::Type::kInt64, dex_pc);
2357 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2358 AppendInstruction(aset);
2359 }
2360 }
2361
BuildLoadString(dex::StringIndex string_index,uint32_t dex_pc)2362 void HInstructionBuilder::BuildLoadString(dex::StringIndex string_index, uint32_t dex_pc) {
2363 HLoadString* load_string =
2364 new (allocator_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc);
2365 HSharpening::ProcessLoadString(load_string,
2366 code_generator_,
2367 *dex_compilation_unit_,
2368 graph_->GetHandleCache()->GetHandles());
2369 AppendInstruction(load_string);
2370 }
2371
BuildLoadClass(dex::TypeIndex type_index,uint32_t dex_pc)2372 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) {
2373 ScopedObjectAccess soa(Thread::Current());
2374 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2375 Handle<mirror::Class> klass = ResolveClass(soa, type_index);
2376 bool needs_access_check = LoadClassNeedsAccessCheck(type_index, klass.Get());
2377 return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
2378 }
2379
BuildLoadClass(dex::TypeIndex type_index,const DexFile & dex_file,Handle<mirror::Class> klass,uint32_t dex_pc,bool needs_access_check)2380 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index,
2381 const DexFile& dex_file,
2382 Handle<mirror::Class> klass,
2383 uint32_t dex_pc,
2384 bool needs_access_check) {
2385 // Try to find a reference in the compiling dex file.
2386 const DexFile* actual_dex_file = &dex_file;
2387 if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) {
2388 dex::TypeIndex local_type_index =
2389 klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile());
2390 if (local_type_index.IsValid()) {
2391 type_index = local_type_index;
2392 actual_dex_file = dex_compilation_unit_->GetDexFile();
2393 }
2394 }
2395
2396 // We cannot use the referrer's class load kind if we need to do an access check.
2397 // If the `klass` is unresolved, we need access check with the exception of the referrer's
2398 // class, see LoadClassNeedsAccessCheck(), so the `!needs_access_check` check is enough.
2399 // Otherwise, also check if the `klass` is the same as the compiling class, which also
2400 // conveniently rejects the case of unresolved compiling class.
2401 bool is_referrers_class =
2402 !needs_access_check &&
2403 (klass == nullptr || outer_compilation_unit_->GetCompilingClass().Get() == klass.Get());
2404 // Note: `klass` must be from `graph_->GetHandleCache()`.
2405 HLoadClass* load_class = new (allocator_) HLoadClass(
2406 graph_->GetCurrentMethod(),
2407 type_index,
2408 *actual_dex_file,
2409 klass,
2410 is_referrers_class,
2411 dex_pc,
2412 needs_access_check);
2413
2414 HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class,
2415 code_generator_,
2416 *dex_compilation_unit_);
2417
2418 if (load_kind == HLoadClass::LoadKind::kInvalid) {
2419 // We actually cannot reference this class, we're forced to bail.
2420 return nullptr;
2421 }
2422 // Load kind must be set before inserting the instruction into the graph.
2423 load_class->SetLoadKind(load_kind);
2424 AppendInstruction(load_class);
2425 return load_class;
2426 }
2427
ResolveClass(ScopedObjectAccess & soa,dex::TypeIndex type_index)2428 Handle<mirror::Class> HInstructionBuilder::ResolveClass(ScopedObjectAccess& soa,
2429 dex::TypeIndex type_index) {
2430 auto it = class_cache_.find(type_index);
2431 if (it != class_cache_.end()) {
2432 return it->second;
2433 }
2434
2435 ObjPtr<mirror::Class> klass = dex_compilation_unit_->GetClassLinker()->ResolveType(
2436 type_index, dex_compilation_unit_->GetDexCache(), dex_compilation_unit_->GetClassLoader());
2437 DCHECK_EQ(klass == nullptr, soa.Self()->IsExceptionPending());
2438 soa.Self()->ClearException(); // Clean up the exception left by type resolution if any.
2439
2440 Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass);
2441 class_cache_.Put(type_index, h_klass);
2442 return h_klass;
2443 }
2444
LoadClassNeedsAccessCheck(dex::TypeIndex type_index,ObjPtr<mirror::Class> klass)2445 bool HInstructionBuilder::LoadClassNeedsAccessCheck(dex::TypeIndex type_index,
2446 ObjPtr<mirror::Class> klass) {
2447 if (klass == nullptr) {
2448 // If the class is unresolved, we can avoid access checks only for references to
2449 // the compiling class as determined by checking the descriptor and ClassLoader.
2450 if (outer_compilation_unit_->GetCompilingClass() != nullptr) {
2451 // Compiling class is resolved, so different from the unresolved class.
2452 return true;
2453 }
2454 if (dex_compilation_unit_->GetClassLoader().Get() !=
2455 outer_compilation_unit_->GetClassLoader().Get()) {
2456 // Resolving the same descriptor in a different ClassLoader than the
2457 // defining loader of the compiling class shall either fail to find
2458 // the class definition, or find a different one.
2459 // (Assuming no custom ClassLoader hierarchy with circular delegation.)
2460 return true;
2461 }
2462 // Check if the class is the outer method's class.
2463 // For the same dex file compare type indexes, otherwise descriptors.
2464 const DexFile* outer_dex_file = outer_compilation_unit_->GetDexFile();
2465 const DexFile* inner_dex_file = dex_compilation_unit_->GetDexFile();
2466 const dex::ClassDef& outer_class_def =
2467 outer_dex_file->GetClassDef(outer_compilation_unit_->GetClassDefIndex());
2468 if (IsSameDexFile(*inner_dex_file, *outer_dex_file)) {
2469 if (type_index != outer_class_def.class_idx_) {
2470 return true;
2471 }
2472 } else {
2473 uint32_t outer_utf16_length;
2474 const char* outer_descriptor =
2475 outer_dex_file->StringByTypeIdx(outer_class_def.class_idx_, &outer_utf16_length);
2476 uint32_t target_utf16_length;
2477 const char* target_descriptor =
2478 inner_dex_file->StringByTypeIdx(type_index, &target_utf16_length);
2479 if (outer_utf16_length != target_utf16_length ||
2480 strcmp(outer_descriptor, target_descriptor) != 0) {
2481 return true;
2482 }
2483 }
2484 // For inlined methods we also need to check if the compiling class
2485 // is public or in the same package as the inlined method's class.
2486 if (dex_compilation_unit_ != outer_compilation_unit_ &&
2487 (outer_class_def.access_flags_ & kAccPublic) == 0) {
2488 DCHECK(dex_compilation_unit_->GetCompilingClass() != nullptr);
2489 SamePackageCompare same_package(*outer_compilation_unit_);
2490 if (!same_package(dex_compilation_unit_->GetCompilingClass().Get())) {
2491 return true;
2492 }
2493 }
2494 return false;
2495 } else if (klass->IsPublic()) {
2496 return false;
2497 } else if (dex_compilation_unit_->GetCompilingClass() != nullptr) {
2498 return !dex_compilation_unit_->GetCompilingClass()->CanAccess(klass);
2499 } else {
2500 SamePackageCompare same_package(*dex_compilation_unit_);
2501 return !same_package(klass);
2502 }
2503 }
2504
BuildLoadMethodHandle(uint16_t method_handle_index,uint32_t dex_pc)2505 void HInstructionBuilder::BuildLoadMethodHandle(uint16_t method_handle_index, uint32_t dex_pc) {
2506 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2507 HLoadMethodHandle* load_method_handle = new (allocator_) HLoadMethodHandle(
2508 graph_->GetCurrentMethod(), method_handle_index, dex_file, dex_pc);
2509 AppendInstruction(load_method_handle);
2510 }
2511
BuildLoadMethodType(dex::ProtoIndex proto_index,uint32_t dex_pc)2512 void HInstructionBuilder::BuildLoadMethodType(dex::ProtoIndex proto_index, uint32_t dex_pc) {
2513 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2514 HLoadMethodType* load_method_type =
2515 new (allocator_) HLoadMethodType(graph_->GetCurrentMethod(), proto_index, dex_file, dex_pc);
2516 AppendInstruction(load_method_type);
2517 }
2518
BuildTypeCheck(bool is_instance_of,HInstruction * object,dex::TypeIndex type_index,uint32_t dex_pc)2519 void HInstructionBuilder::BuildTypeCheck(bool is_instance_of,
2520 HInstruction* object,
2521 dex::TypeIndex type_index,
2522 uint32_t dex_pc) {
2523 ScopedObjectAccess soa(Thread::Current());
2524 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2525 Handle<mirror::Class> klass = ResolveClass(soa, type_index);
2526 bool needs_access_check = LoadClassNeedsAccessCheck(type_index, klass.Get());
2527 TypeCheckKind check_kind = HSharpening::ComputeTypeCheckKind(
2528 klass.Get(), code_generator_, needs_access_check);
2529
2530 HInstruction* class_or_null = nullptr;
2531 HIntConstant* bitstring_path_to_root = nullptr;
2532 HIntConstant* bitstring_mask = nullptr;
2533 if (check_kind == TypeCheckKind::kBitstringCheck) {
2534 // TODO: Allow using the bitstring check also if we need an access check.
2535 DCHECK(!needs_access_check);
2536 class_or_null = graph_->GetNullConstant(dex_pc);
2537 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
2538 uint32_t path_to_root =
2539 SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootForTarget(klass.Get());
2540 uint32_t mask = SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootMask(klass.Get());
2541 bitstring_path_to_root = graph_->GetIntConstant(static_cast<int32_t>(path_to_root), dex_pc);
2542 bitstring_mask = graph_->GetIntConstant(static_cast<int32_t>(mask), dex_pc);
2543 } else {
2544 class_or_null = BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
2545 }
2546 DCHECK(class_or_null != nullptr);
2547
2548 if (is_instance_of) {
2549 AppendInstruction(new (allocator_) HInstanceOf(object,
2550 class_or_null,
2551 check_kind,
2552 klass,
2553 dex_pc,
2554 allocator_,
2555 bitstring_path_to_root,
2556 bitstring_mask));
2557 } else {
2558 // We emit a CheckCast followed by a BoundType. CheckCast is a statement
2559 // which may throw. If it succeeds BoundType sets the new type of `object`
2560 // for all subsequent uses.
2561 AppendInstruction(
2562 new (allocator_) HCheckCast(object,
2563 class_or_null,
2564 check_kind,
2565 klass,
2566 dex_pc,
2567 allocator_,
2568 bitstring_path_to_root,
2569 bitstring_mask));
2570 AppendInstruction(new (allocator_) HBoundType(object, dex_pc));
2571 }
2572 }
2573
BuildTypeCheck(const Instruction & instruction,uint8_t destination,uint8_t reference,dex::TypeIndex type_index,uint32_t dex_pc)2574 void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction,
2575 uint8_t destination,
2576 uint8_t reference,
2577 dex::TypeIndex type_index,
2578 uint32_t dex_pc) {
2579 HInstruction* object = LoadLocal(reference, DataType::Type::kReference);
2580 bool is_instance_of = instruction.Opcode() == Instruction::INSTANCE_OF;
2581
2582 BuildTypeCheck(is_instance_of, object, type_index, dex_pc);
2583
2584 if (is_instance_of) {
2585 UpdateLocal(destination, current_block_->GetLastInstruction());
2586 } else {
2587 DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
2588 UpdateLocal(reference, current_block_->GetLastInstruction());
2589 }
2590 }
2591
ProcessDexInstruction(const Instruction & instruction,uint32_t dex_pc)2592 bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
2593 switch (instruction.Opcode()) {
2594 case Instruction::CONST_4: {
2595 int32_t register_index = instruction.VRegA();
2596 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
2597 UpdateLocal(register_index, constant);
2598 break;
2599 }
2600
2601 case Instruction::CONST_16: {
2602 int32_t register_index = instruction.VRegA();
2603 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
2604 UpdateLocal(register_index, constant);
2605 break;
2606 }
2607
2608 case Instruction::CONST: {
2609 int32_t register_index = instruction.VRegA();
2610 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
2611 UpdateLocal(register_index, constant);
2612 break;
2613 }
2614
2615 case Instruction::CONST_HIGH16: {
2616 int32_t register_index = instruction.VRegA();
2617 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
2618 UpdateLocal(register_index, constant);
2619 break;
2620 }
2621
2622 case Instruction::CONST_WIDE_16: {
2623 int32_t register_index = instruction.VRegA();
2624 // Get 16 bits of constant value, sign extended to 64 bits.
2625 int64_t value = instruction.VRegB_21s();
2626 value <<= 48;
2627 value >>= 48;
2628 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2629 UpdateLocal(register_index, constant);
2630 break;
2631 }
2632
2633 case Instruction::CONST_WIDE_32: {
2634 int32_t register_index = instruction.VRegA();
2635 // Get 32 bits of constant value, sign extended to 64 bits.
2636 int64_t value = instruction.VRegB_31i();
2637 value <<= 32;
2638 value >>= 32;
2639 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2640 UpdateLocal(register_index, constant);
2641 break;
2642 }
2643
2644 case Instruction::CONST_WIDE: {
2645 int32_t register_index = instruction.VRegA();
2646 HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
2647 UpdateLocal(register_index, constant);
2648 break;
2649 }
2650
2651 case Instruction::CONST_WIDE_HIGH16: {
2652 int32_t register_index = instruction.VRegA();
2653 int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
2654 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2655 UpdateLocal(register_index, constant);
2656 break;
2657 }
2658
2659 // Note that the SSA building will refine the types.
2660 case Instruction::MOVE:
2661 case Instruction::MOVE_FROM16:
2662 case Instruction::MOVE_16: {
2663 HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
2664 UpdateLocal(instruction.VRegA(), value);
2665 break;
2666 }
2667
2668 // Note that the SSA building will refine the types.
2669 case Instruction::MOVE_WIDE:
2670 case Instruction::MOVE_WIDE_FROM16:
2671 case Instruction::MOVE_WIDE_16: {
2672 HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt64);
2673 UpdateLocal(instruction.VRegA(), value);
2674 break;
2675 }
2676
2677 case Instruction::MOVE_OBJECT:
2678 case Instruction::MOVE_OBJECT_16:
2679 case Instruction::MOVE_OBJECT_FROM16: {
2680 // The verifier has no notion of a null type, so a move-object of constant 0
2681 // will lead to the same constant 0 in the destination register. To mimic
2682 // this behavior, we just pretend we haven't seen a type change (int to reference)
2683 // for the 0 constant and phis. We rely on our type propagation to eventually get the
2684 // types correct.
2685 uint32_t reg_number = instruction.VRegB();
2686 HInstruction* value = (*current_locals_)[reg_number];
2687 if (value->IsIntConstant()) {
2688 DCHECK_EQ(value->AsIntConstant()->GetValue(), 0);
2689 } else if (value->IsPhi()) {
2690 DCHECK(value->GetType() == DataType::Type::kInt32 ||
2691 value->GetType() == DataType::Type::kReference);
2692 } else {
2693 value = LoadLocal(reg_number, DataType::Type::kReference);
2694 }
2695 UpdateLocal(instruction.VRegA(), value);
2696 break;
2697 }
2698
2699 case Instruction::RETURN_VOID: {
2700 BuildReturn(instruction, DataType::Type::kVoid, dex_pc);
2701 break;
2702 }
2703
2704 #define IF_XX(comparison, cond) \
2705 case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
2706 case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
2707
2708 IF_XX(HEqual, EQ);
2709 IF_XX(HNotEqual, NE);
2710 IF_XX(HLessThan, LT);
2711 IF_XX(HLessThanOrEqual, LE);
2712 IF_XX(HGreaterThan, GT);
2713 IF_XX(HGreaterThanOrEqual, GE);
2714
2715 case Instruction::GOTO:
2716 case Instruction::GOTO_16:
2717 case Instruction::GOTO_32: {
2718 AppendInstruction(new (allocator_) HGoto(dex_pc));
2719 current_block_ = nullptr;
2720 break;
2721 }
2722
2723 case Instruction::RETURN: {
2724 BuildReturn(instruction, return_type_, dex_pc);
2725 break;
2726 }
2727
2728 case Instruction::RETURN_OBJECT: {
2729 BuildReturn(instruction, return_type_, dex_pc);
2730 break;
2731 }
2732
2733 case Instruction::RETURN_WIDE: {
2734 BuildReturn(instruction, return_type_, dex_pc);
2735 break;
2736 }
2737
2738 case Instruction::INVOKE_DIRECT:
2739 case Instruction::INVOKE_INTERFACE:
2740 case Instruction::INVOKE_STATIC:
2741 case Instruction::INVOKE_SUPER:
2742 case Instruction::INVOKE_VIRTUAL: {
2743 uint16_t method_idx = instruction.VRegB_35c();
2744 uint32_t args[5];
2745 uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2746 VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2747 if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) {
2748 return false;
2749 }
2750 break;
2751 }
2752
2753 case Instruction::INVOKE_DIRECT_RANGE:
2754 case Instruction::INVOKE_INTERFACE_RANGE:
2755 case Instruction::INVOKE_STATIC_RANGE:
2756 case Instruction::INVOKE_SUPER_RANGE:
2757 case Instruction::INVOKE_VIRTUAL_RANGE: {
2758 uint16_t method_idx = instruction.VRegB_3rc();
2759 RangeInstructionOperands operands(instruction.VRegC(), instruction.VRegA_3rc());
2760 if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) {
2761 return false;
2762 }
2763 break;
2764 }
2765
2766 case Instruction::INVOKE_POLYMORPHIC: {
2767 uint16_t method_idx = instruction.VRegB_45cc();
2768 dex::ProtoIndex proto_idx(instruction.VRegH_45cc());
2769 uint32_t args[5];
2770 uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2771 VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2772 return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands);
2773 }
2774
2775 case Instruction::INVOKE_POLYMORPHIC_RANGE: {
2776 uint16_t method_idx = instruction.VRegB_4rcc();
2777 dex::ProtoIndex proto_idx(instruction.VRegH_4rcc());
2778 RangeInstructionOperands operands(instruction.VRegC_4rcc(), instruction.VRegA_4rcc());
2779 return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands);
2780 }
2781
2782 case Instruction::INVOKE_CUSTOM: {
2783 uint16_t call_site_idx = instruction.VRegB_35c();
2784 uint32_t args[5];
2785 uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2786 VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2787 return BuildInvokeCustom(dex_pc, call_site_idx, operands);
2788 }
2789
2790 case Instruction::INVOKE_CUSTOM_RANGE: {
2791 uint16_t call_site_idx = instruction.VRegB_3rc();
2792 RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc());
2793 return BuildInvokeCustom(dex_pc, call_site_idx, operands);
2794 }
2795
2796 case Instruction::NEG_INT: {
2797 Unop_12x<HNeg>(instruction, DataType::Type::kInt32, dex_pc);
2798 break;
2799 }
2800
2801 case Instruction::NEG_LONG: {
2802 Unop_12x<HNeg>(instruction, DataType::Type::kInt64, dex_pc);
2803 break;
2804 }
2805
2806 case Instruction::NEG_FLOAT: {
2807 Unop_12x<HNeg>(instruction, DataType::Type::kFloat32, dex_pc);
2808 break;
2809 }
2810
2811 case Instruction::NEG_DOUBLE: {
2812 Unop_12x<HNeg>(instruction, DataType::Type::kFloat64, dex_pc);
2813 break;
2814 }
2815
2816 case Instruction::NOT_INT: {
2817 Unop_12x<HNot>(instruction, DataType::Type::kInt32, dex_pc);
2818 break;
2819 }
2820
2821 case Instruction::NOT_LONG: {
2822 Unop_12x<HNot>(instruction, DataType::Type::kInt64, dex_pc);
2823 break;
2824 }
2825
2826 case Instruction::INT_TO_LONG: {
2827 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt64, dex_pc);
2828 break;
2829 }
2830
2831 case Instruction::INT_TO_FLOAT: {
2832 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat32, dex_pc);
2833 break;
2834 }
2835
2836 case Instruction::INT_TO_DOUBLE: {
2837 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat64, dex_pc);
2838 break;
2839 }
2840
2841 case Instruction::LONG_TO_INT: {
2842 Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kInt32, dex_pc);
2843 break;
2844 }
2845
2846 case Instruction::LONG_TO_FLOAT: {
2847 Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat32, dex_pc);
2848 break;
2849 }
2850
2851 case Instruction::LONG_TO_DOUBLE: {
2852 Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat64, dex_pc);
2853 break;
2854 }
2855
2856 case Instruction::FLOAT_TO_INT: {
2857 Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt32, dex_pc);
2858 break;
2859 }
2860
2861 case Instruction::FLOAT_TO_LONG: {
2862 Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt64, dex_pc);
2863 break;
2864 }
2865
2866 case Instruction::FLOAT_TO_DOUBLE: {
2867 Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kFloat64, dex_pc);
2868 break;
2869 }
2870
2871 case Instruction::DOUBLE_TO_INT: {
2872 Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt32, dex_pc);
2873 break;
2874 }
2875
2876 case Instruction::DOUBLE_TO_LONG: {
2877 Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt64, dex_pc);
2878 break;
2879 }
2880
2881 case Instruction::DOUBLE_TO_FLOAT: {
2882 Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kFloat32, dex_pc);
2883 break;
2884 }
2885
2886 case Instruction::INT_TO_BYTE: {
2887 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt8, dex_pc);
2888 break;
2889 }
2890
2891 case Instruction::INT_TO_SHORT: {
2892 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt16, dex_pc);
2893 break;
2894 }
2895
2896 case Instruction::INT_TO_CHAR: {
2897 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kUint16, dex_pc);
2898 break;
2899 }
2900
2901 case Instruction::ADD_INT: {
2902 Binop_23x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
2903 break;
2904 }
2905
2906 case Instruction::ADD_LONG: {
2907 Binop_23x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
2908 break;
2909 }
2910
2911 case Instruction::ADD_DOUBLE: {
2912 Binop_23x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
2913 break;
2914 }
2915
2916 case Instruction::ADD_FLOAT: {
2917 Binop_23x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
2918 break;
2919 }
2920
2921 case Instruction::SUB_INT: {
2922 Binop_23x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
2923 break;
2924 }
2925
2926 case Instruction::SUB_LONG: {
2927 Binop_23x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
2928 break;
2929 }
2930
2931 case Instruction::SUB_FLOAT: {
2932 Binop_23x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
2933 break;
2934 }
2935
2936 case Instruction::SUB_DOUBLE: {
2937 Binop_23x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
2938 break;
2939 }
2940
2941 case Instruction::ADD_INT_2ADDR: {
2942 Binop_12x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
2943 break;
2944 }
2945
2946 case Instruction::MUL_INT: {
2947 Binop_23x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
2948 break;
2949 }
2950
2951 case Instruction::MUL_LONG: {
2952 Binop_23x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
2953 break;
2954 }
2955
2956 case Instruction::MUL_FLOAT: {
2957 Binop_23x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
2958 break;
2959 }
2960
2961 case Instruction::MUL_DOUBLE: {
2962 Binop_23x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
2963 break;
2964 }
2965
2966 case Instruction::DIV_INT: {
2967 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2968 dex_pc, DataType::Type::kInt32, false, true);
2969 break;
2970 }
2971
2972 case Instruction::DIV_LONG: {
2973 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2974 dex_pc, DataType::Type::kInt64, false, true);
2975 break;
2976 }
2977
2978 case Instruction::DIV_FLOAT: {
2979 Binop_23x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
2980 break;
2981 }
2982
2983 case Instruction::DIV_DOUBLE: {
2984 Binop_23x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
2985 break;
2986 }
2987
2988 case Instruction::REM_INT: {
2989 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2990 dex_pc, DataType::Type::kInt32, false, false);
2991 break;
2992 }
2993
2994 case Instruction::REM_LONG: {
2995 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2996 dex_pc, DataType::Type::kInt64, false, false);
2997 break;
2998 }
2999
3000 case Instruction::REM_FLOAT: {
3001 Binop_23x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
3002 break;
3003 }
3004
3005 case Instruction::REM_DOUBLE: {
3006 Binop_23x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
3007 break;
3008 }
3009
3010 case Instruction::AND_INT: {
3011 Binop_23x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
3012 break;
3013 }
3014
3015 case Instruction::AND_LONG: {
3016 Binop_23x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
3017 break;
3018 }
3019
3020 case Instruction::SHL_INT: {
3021 Binop_23x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
3022 break;
3023 }
3024
3025 case Instruction::SHL_LONG: {
3026 Binop_23x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
3027 break;
3028 }
3029
3030 case Instruction::SHR_INT: {
3031 Binop_23x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
3032 break;
3033 }
3034
3035 case Instruction::SHR_LONG: {
3036 Binop_23x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
3037 break;
3038 }
3039
3040 case Instruction::USHR_INT: {
3041 Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
3042 break;
3043 }
3044
3045 case Instruction::USHR_LONG: {
3046 Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
3047 break;
3048 }
3049
3050 case Instruction::OR_INT: {
3051 Binop_23x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
3052 break;
3053 }
3054
3055 case Instruction::OR_LONG: {
3056 Binop_23x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
3057 break;
3058 }
3059
3060 case Instruction::XOR_INT: {
3061 Binop_23x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
3062 break;
3063 }
3064
3065 case Instruction::XOR_LONG: {
3066 Binop_23x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
3067 break;
3068 }
3069
3070 case Instruction::ADD_LONG_2ADDR: {
3071 Binop_12x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
3072 break;
3073 }
3074
3075 case Instruction::ADD_DOUBLE_2ADDR: {
3076 Binop_12x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
3077 break;
3078 }
3079
3080 case Instruction::ADD_FLOAT_2ADDR: {
3081 Binop_12x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
3082 break;
3083 }
3084
3085 case Instruction::SUB_INT_2ADDR: {
3086 Binop_12x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
3087 break;
3088 }
3089
3090 case Instruction::SUB_LONG_2ADDR: {
3091 Binop_12x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
3092 break;
3093 }
3094
3095 case Instruction::SUB_FLOAT_2ADDR: {
3096 Binop_12x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
3097 break;
3098 }
3099
3100 case Instruction::SUB_DOUBLE_2ADDR: {
3101 Binop_12x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
3102 break;
3103 }
3104
3105 case Instruction::MUL_INT_2ADDR: {
3106 Binop_12x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
3107 break;
3108 }
3109
3110 case Instruction::MUL_LONG_2ADDR: {
3111 Binop_12x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
3112 break;
3113 }
3114
3115 case Instruction::MUL_FLOAT_2ADDR: {
3116 Binop_12x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
3117 break;
3118 }
3119
3120 case Instruction::MUL_DOUBLE_2ADDR: {
3121 Binop_12x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
3122 break;
3123 }
3124
3125 case Instruction::DIV_INT_2ADDR: {
3126 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
3127 dex_pc, DataType::Type::kInt32, false, true);
3128 break;
3129 }
3130
3131 case Instruction::DIV_LONG_2ADDR: {
3132 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
3133 dex_pc, DataType::Type::kInt64, false, true);
3134 break;
3135 }
3136
3137 case Instruction::REM_INT_2ADDR: {
3138 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
3139 dex_pc, DataType::Type::kInt32, false, false);
3140 break;
3141 }
3142
3143 case Instruction::REM_LONG_2ADDR: {
3144 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
3145 dex_pc, DataType::Type::kInt64, false, false);
3146 break;
3147 }
3148
3149 case Instruction::REM_FLOAT_2ADDR: {
3150 Binop_12x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
3151 break;
3152 }
3153
3154 case Instruction::REM_DOUBLE_2ADDR: {
3155 Binop_12x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
3156 break;
3157 }
3158
3159 case Instruction::SHL_INT_2ADDR: {
3160 Binop_12x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
3161 break;
3162 }
3163
3164 case Instruction::SHL_LONG_2ADDR: {
3165 Binop_12x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
3166 break;
3167 }
3168
3169 case Instruction::SHR_INT_2ADDR: {
3170 Binop_12x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
3171 break;
3172 }
3173
3174 case Instruction::SHR_LONG_2ADDR: {
3175 Binop_12x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
3176 break;
3177 }
3178
3179 case Instruction::USHR_INT_2ADDR: {
3180 Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
3181 break;
3182 }
3183
3184 case Instruction::USHR_LONG_2ADDR: {
3185 Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
3186 break;
3187 }
3188
3189 case Instruction::DIV_FLOAT_2ADDR: {
3190 Binop_12x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
3191 break;
3192 }
3193
3194 case Instruction::DIV_DOUBLE_2ADDR: {
3195 Binop_12x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
3196 break;
3197 }
3198
3199 case Instruction::AND_INT_2ADDR: {
3200 Binop_12x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
3201 break;
3202 }
3203
3204 case Instruction::AND_LONG_2ADDR: {
3205 Binop_12x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
3206 break;
3207 }
3208
3209 case Instruction::OR_INT_2ADDR: {
3210 Binop_12x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
3211 break;
3212 }
3213
3214 case Instruction::OR_LONG_2ADDR: {
3215 Binop_12x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
3216 break;
3217 }
3218
3219 case Instruction::XOR_INT_2ADDR: {
3220 Binop_12x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
3221 break;
3222 }
3223
3224 case Instruction::XOR_LONG_2ADDR: {
3225 Binop_12x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
3226 break;
3227 }
3228
3229 case Instruction::ADD_INT_LIT16: {
3230 Binop_22s<HAdd>(instruction, false, dex_pc);
3231 break;
3232 }
3233
3234 case Instruction::AND_INT_LIT16: {
3235 Binop_22s<HAnd>(instruction, false, dex_pc);
3236 break;
3237 }
3238
3239 case Instruction::OR_INT_LIT16: {
3240 Binop_22s<HOr>(instruction, false, dex_pc);
3241 break;
3242 }
3243
3244 case Instruction::XOR_INT_LIT16: {
3245 Binop_22s<HXor>(instruction, false, dex_pc);
3246 break;
3247 }
3248
3249 case Instruction::RSUB_INT: {
3250 Binop_22s<HSub>(instruction, true, dex_pc);
3251 break;
3252 }
3253
3254 case Instruction::MUL_INT_LIT16: {
3255 Binop_22s<HMul>(instruction, false, dex_pc);
3256 break;
3257 }
3258
3259 case Instruction::ADD_INT_LIT8: {
3260 Binop_22b<HAdd>(instruction, false, dex_pc);
3261 break;
3262 }
3263
3264 case Instruction::AND_INT_LIT8: {
3265 Binop_22b<HAnd>(instruction, false, dex_pc);
3266 break;
3267 }
3268
3269 case Instruction::OR_INT_LIT8: {
3270 Binop_22b<HOr>(instruction, false, dex_pc);
3271 break;
3272 }
3273
3274 case Instruction::XOR_INT_LIT8: {
3275 Binop_22b<HXor>(instruction, false, dex_pc);
3276 break;
3277 }
3278
3279 case Instruction::RSUB_INT_LIT8: {
3280 Binop_22b<HSub>(instruction, true, dex_pc);
3281 break;
3282 }
3283
3284 case Instruction::MUL_INT_LIT8: {
3285 Binop_22b<HMul>(instruction, false, dex_pc);
3286 break;
3287 }
3288
3289 case Instruction::DIV_INT_LIT16:
3290 case Instruction::DIV_INT_LIT8: {
3291 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
3292 dex_pc, DataType::Type::kInt32, true, true);
3293 break;
3294 }
3295
3296 case Instruction::REM_INT_LIT16:
3297 case Instruction::REM_INT_LIT8: {
3298 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
3299 dex_pc, DataType::Type::kInt32, true, false);
3300 break;
3301 }
3302
3303 case Instruction::SHL_INT_LIT8: {
3304 Binop_22b<HShl>(instruction, false, dex_pc);
3305 break;
3306 }
3307
3308 case Instruction::SHR_INT_LIT8: {
3309 Binop_22b<HShr>(instruction, false, dex_pc);
3310 break;
3311 }
3312
3313 case Instruction::USHR_INT_LIT8: {
3314 Binop_22b<HUShr>(instruction, false, dex_pc);
3315 break;
3316 }
3317
3318 case Instruction::NEW_INSTANCE: {
3319 HNewInstance* new_instance =
3320 BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc);
3321 DCHECK(new_instance != nullptr);
3322
3323 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
3324 BuildConstructorFenceForAllocation(new_instance);
3325 break;
3326 }
3327
3328 case Instruction::NEW_ARRAY: {
3329 dex::TypeIndex type_index(instruction.VRegC_22c());
3330 HInstruction* length = LoadLocal(instruction.VRegB_22c(), DataType::Type::kInt32);
3331 HNewArray* new_array = BuildNewArray(dex_pc, type_index, length);
3332
3333 UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
3334 BuildConstructorFenceForAllocation(new_array);
3335 break;
3336 }
3337
3338 case Instruction::FILLED_NEW_ARRAY: {
3339 dex::TypeIndex type_index(instruction.VRegB_35c());
3340 uint32_t args[5];
3341 uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
3342 VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
3343 HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands);
3344 BuildConstructorFenceForAllocation(new_array);
3345 break;
3346 }
3347
3348 case Instruction::FILLED_NEW_ARRAY_RANGE: {
3349 dex::TypeIndex type_index(instruction.VRegB_3rc());
3350 RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc());
3351 HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands);
3352 BuildConstructorFenceForAllocation(new_array);
3353 break;
3354 }
3355
3356 case Instruction::FILL_ARRAY_DATA: {
3357 BuildFillArrayData(instruction, dex_pc);
3358 break;
3359 }
3360
3361 case Instruction::MOVE_RESULT:
3362 case Instruction::MOVE_RESULT_WIDE:
3363 case Instruction::MOVE_RESULT_OBJECT: {
3364 DCHECK(latest_result_ != nullptr);
3365 UpdateLocal(instruction.VRegA(), latest_result_);
3366 latest_result_ = nullptr;
3367 break;
3368 }
3369
3370 case Instruction::CMP_LONG: {
3371 Binop_23x_cmp(instruction, DataType::Type::kInt64, ComparisonBias::kNoBias, dex_pc);
3372 break;
3373 }
3374
3375 case Instruction::CMPG_FLOAT: {
3376 Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kGtBias, dex_pc);
3377 break;
3378 }
3379
3380 case Instruction::CMPG_DOUBLE: {
3381 Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kGtBias, dex_pc);
3382 break;
3383 }
3384
3385 case Instruction::CMPL_FLOAT: {
3386 Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kLtBias, dex_pc);
3387 break;
3388 }
3389
3390 case Instruction::CMPL_DOUBLE: {
3391 Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kLtBias, dex_pc);
3392 break;
3393 }
3394
3395 case Instruction::NOP:
3396 break;
3397
3398 case Instruction::IGET:
3399 case Instruction::IGET_WIDE:
3400 case Instruction::IGET_OBJECT:
3401 case Instruction::IGET_BOOLEAN:
3402 case Instruction::IGET_BYTE:
3403 case Instruction::IGET_CHAR:
3404 case Instruction::IGET_SHORT: {
3405 if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ false)) {
3406 return false;
3407 }
3408 break;
3409 }
3410
3411 case Instruction::IPUT:
3412 case Instruction::IPUT_WIDE:
3413 case Instruction::IPUT_OBJECT:
3414 case Instruction::IPUT_BOOLEAN:
3415 case Instruction::IPUT_BYTE:
3416 case Instruction::IPUT_CHAR:
3417 case Instruction::IPUT_SHORT: {
3418 if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ true)) {
3419 return false;
3420 }
3421 break;
3422 }
3423
3424 case Instruction::SGET:
3425 case Instruction::SGET_WIDE:
3426 case Instruction::SGET_OBJECT:
3427 case Instruction::SGET_BOOLEAN:
3428 case Instruction::SGET_BYTE:
3429 case Instruction::SGET_CHAR:
3430 case Instruction::SGET_SHORT: {
3431 BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ false);
3432 break;
3433 }
3434
3435 case Instruction::SPUT:
3436 case Instruction::SPUT_WIDE:
3437 case Instruction::SPUT_OBJECT:
3438 case Instruction::SPUT_BOOLEAN:
3439 case Instruction::SPUT_BYTE:
3440 case Instruction::SPUT_CHAR:
3441 case Instruction::SPUT_SHORT: {
3442 BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ true);
3443 break;
3444 }
3445
3446 #define ARRAY_XX(kind, anticipated_type) \
3447 case Instruction::AGET##kind: { \
3448 BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \
3449 break; \
3450 } \
3451 case Instruction::APUT##kind: { \
3452 BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \
3453 break; \
3454 }
3455
3456 ARRAY_XX(, DataType::Type::kInt32);
3457 ARRAY_XX(_WIDE, DataType::Type::kInt64);
3458 ARRAY_XX(_OBJECT, DataType::Type::kReference);
3459 ARRAY_XX(_BOOLEAN, DataType::Type::kBool);
3460 ARRAY_XX(_BYTE, DataType::Type::kInt8);
3461 ARRAY_XX(_CHAR, DataType::Type::kUint16);
3462 ARRAY_XX(_SHORT, DataType::Type::kInt16);
3463
3464 case Instruction::ARRAY_LENGTH: {
3465 HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc);
3466 AppendInstruction(new (allocator_) HArrayLength(object, dex_pc));
3467 UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
3468 break;
3469 }
3470
3471 case Instruction::CONST_STRING: {
3472 dex::StringIndex string_index(instruction.VRegB_21c());
3473 BuildLoadString(string_index, dex_pc);
3474 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3475 break;
3476 }
3477
3478 case Instruction::CONST_STRING_JUMBO: {
3479 dex::StringIndex string_index(instruction.VRegB_31c());
3480 BuildLoadString(string_index, dex_pc);
3481 UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
3482 break;
3483 }
3484
3485 case Instruction::CONST_CLASS: {
3486 dex::TypeIndex type_index(instruction.VRegB_21c());
3487 BuildLoadClass(type_index, dex_pc);
3488 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3489 break;
3490 }
3491
3492 case Instruction::CONST_METHOD_HANDLE: {
3493 uint16_t method_handle_idx = instruction.VRegB_21c();
3494 BuildLoadMethodHandle(method_handle_idx, dex_pc);
3495 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3496 break;
3497 }
3498
3499 case Instruction::CONST_METHOD_TYPE: {
3500 dex::ProtoIndex proto_idx(instruction.VRegB_21c());
3501 BuildLoadMethodType(proto_idx, dex_pc);
3502 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3503 break;
3504 }
3505
3506 case Instruction::MOVE_EXCEPTION: {
3507 AppendInstruction(new (allocator_) HLoadException(dex_pc));
3508 UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
3509 AppendInstruction(new (allocator_) HClearException(dex_pc));
3510 break;
3511 }
3512
3513 case Instruction::THROW: {
3514 HInstruction* exception = LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference);
3515 AppendInstruction(new (allocator_) HThrow(exception, dex_pc));
3516 // We finished building this block. Set the current block to null to avoid
3517 // adding dead instructions to it.
3518 current_block_ = nullptr;
3519 break;
3520 }
3521
3522 case Instruction::INSTANCE_OF: {
3523 uint8_t destination = instruction.VRegA_22c();
3524 uint8_t reference = instruction.VRegB_22c();
3525 dex::TypeIndex type_index(instruction.VRegC_22c());
3526 BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
3527 break;
3528 }
3529
3530 case Instruction::CHECK_CAST: {
3531 uint8_t reference = instruction.VRegA_21c();
3532 dex::TypeIndex type_index(instruction.VRegB_21c());
3533 BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
3534 break;
3535 }
3536
3537 case Instruction::MONITOR_ENTER: {
3538 AppendInstruction(new (allocator_) HMonitorOperation(
3539 LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
3540 HMonitorOperation::OperationKind::kEnter,
3541 dex_pc));
3542 graph_->SetHasMonitorOperations(true);
3543 break;
3544 }
3545
3546 case Instruction::MONITOR_EXIT: {
3547 AppendInstruction(new (allocator_) HMonitorOperation(
3548 LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
3549 HMonitorOperation::OperationKind::kExit,
3550 dex_pc));
3551 graph_->SetHasMonitorOperations(true);
3552 break;
3553 }
3554
3555 case Instruction::SPARSE_SWITCH:
3556 case Instruction::PACKED_SWITCH: {
3557 BuildSwitch(instruction, dex_pc);
3558 break;
3559 }
3560
3561 case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
3562 case Instruction::UNUSED_73:
3563 case Instruction::UNUSED_79:
3564 case Instruction::UNUSED_7A:
3565 case Instruction::UNUSED_E3 ... Instruction::UNUSED_F9: {
3566 VLOG(compiler) << "Did not compile "
3567 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
3568 << " because of unhandled instruction "
3569 << instruction.Name();
3570 MaybeRecordStat(compilation_stats_,
3571 MethodCompilationStat::kNotCompiledUnhandledInstruction);
3572 return false;
3573 }
3574 }
3575 return true;
3576 } // NOLINT(readability/fn_size)
3577
LookupResolvedType(dex::TypeIndex type_index,const DexCompilationUnit & compilation_unit) const3578 ObjPtr<mirror::Class> HInstructionBuilder::LookupResolvedType(
3579 dex::TypeIndex type_index,
3580 const DexCompilationUnit& compilation_unit) const {
3581 return compilation_unit.GetClassLinker()->LookupResolvedType(
3582 type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
3583 }
3584
LookupReferrerClass() const3585 ObjPtr<mirror::Class> HInstructionBuilder::LookupReferrerClass() const {
3586 // TODO: Cache the result in a Handle<mirror::Class>.
3587 const dex::MethodId& method_id =
3588 dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
3589 return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_);
3590 }
3591
3592 } // namespace art
3593