• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 /** @file brw_fs.cpp
25  *
26  * This file drives the GLSL IR -> LIR translation, contains the
27  * optimizations on the LIR, and drives the generation of native code
28  * from the LIR.
29  */
30 
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_fs_live_variables.h"
35 #include "brw_nir.h"
36 #include "brw_vec4_gs_visitor.h"
37 #include "brw_cfg.h"
38 #include "brw_dead_control_flow.h"
39 #include "dev/gen_debug.h"
40 #include "compiler/glsl_types.h"
41 #include "compiler/nir/nir_builder.h"
42 #include "program/prog_parameter.h"
43 #include "util/u_math.h"
44 
45 using namespace brw;
46 
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48                                        const fs_inst *inst);
49 
50 void
init(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg * src,unsigned sources)51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52               const fs_reg *src, unsigned sources)
53 {
54    memset((void*)this, 0, sizeof(*this));
55 
56    this->src = new fs_reg[MAX2(sources, 3)];
57    for (unsigned i = 0; i < sources; i++)
58       this->src[i] = src[i];
59 
60    this->opcode = opcode;
61    this->dst = dst;
62    this->sources = sources;
63    this->exec_size = exec_size;
64    this->base_mrf = -1;
65 
66    assert(dst.file != IMM && dst.file != UNIFORM);
67 
68    assert(this->exec_size != 0);
69 
70    this->conditional_mod = BRW_CONDITIONAL_NONE;
71 
72    /* This will be the case for almost all instructions. */
73    switch (dst.file) {
74    case VGRF:
75    case ARF:
76    case FIXED_GRF:
77    case MRF:
78    case ATTR:
79       this->size_written = dst.component_size(exec_size);
80       break;
81    case BAD_FILE:
82       this->size_written = 0;
83       break;
84    case IMM:
85    case UNIFORM:
86       unreachable("Invalid destination register file");
87    }
88 
89    this->writes_accumulator = false;
90 }
91 
fs_inst()92 fs_inst::fs_inst()
93 {
94    init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96 
fs_inst(enum opcode opcode,uint8_t exec_size)97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99    init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101 
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst)102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104    init(opcode, exec_size, dst, NULL, 0);
105 }
106 
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0)107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108                  const fs_reg &src0)
109 {
110    const fs_reg src[1] = { src0 };
111    init(opcode, exec_size, dst, src, 1);
112 }
113 
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0,const fs_reg & src1)114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115                  const fs_reg &src0, const fs_reg &src1)
116 {
117    const fs_reg src[2] = { src0, src1 };
118    init(opcode, exec_size, dst, src, 2);
119 }
120 
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0,const fs_reg & src1,const fs_reg & src2)121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122                  const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124    const fs_reg src[3] = { src0, src1, src2 };
125    init(opcode, exec_size, dst, src, 3);
126 }
127 
fs_inst(enum opcode opcode,uint8_t exec_width,const fs_reg & dst,const fs_reg src[],unsigned sources)128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129                  const fs_reg src[], unsigned sources)
130 {
131    init(opcode, exec_width, dst, src, sources);
132 }
133 
fs_inst(const fs_inst & that)134 fs_inst::fs_inst(const fs_inst &that)
135 {
136    memcpy((void*)this, &that, sizeof(that));
137 
138    this->src = new fs_reg[MAX2(that.sources, 3)];
139 
140    for (unsigned i = 0; i < that.sources; i++)
141       this->src[i] = that.src[i];
142 }
143 
~fs_inst()144 fs_inst::~fs_inst()
145 {
146    delete[] this->src;
147 }
148 
149 void
resize_sources(uint8_t num_sources)150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152    if (this->sources != num_sources) {
153       fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154 
155       for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156          src[i] = this->src[i];
157 
158       delete[] this->src;
159       this->src = src;
160       this->sources = num_sources;
161    }
162 }
163 
164 void
VARYING_PULL_CONSTANT_LOAD(const fs_builder & bld,const fs_reg & dst,const fs_reg & surf_index,const fs_reg & varying_offset,uint32_t const_offset,uint8_t alignment)165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166                                        const fs_reg &dst,
167                                        const fs_reg &surf_index,
168                                        const fs_reg &varying_offset,
169                                        uint32_t const_offset,
170                                        uint8_t alignment)
171 {
172    /* We have our constant surface use a pitch of 4 bytes, so our index can
173     * be any component of a vector, and then we load 4 contiguous
174     * components starting from that.
175     *
176     * We break down the const_offset to a portion added to the variable offset
177     * and a portion done using fs_reg::offset, which means that if you have
178     * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
179     * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
180     * later notice that those loads are all the same and eliminate the
181     * redundant ones.
182     */
183    fs_reg vec4_offset = vgrf(glsl_type::uint_type);
184    bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
185 
186    /* The pull load message will load a vec4 (16 bytes). If we are loading
187     * a double this means we are only loading 2 elements worth of data.
188     * We also want to use a 32-bit data type for the dst of the load operation
189     * so other parts of the driver don't get confused about the size of the
190     * result.
191     */
192    fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
193    fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
194                             vec4_result, surf_index, vec4_offset,
195                             brw_imm_ud(alignment));
196    inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
197 
198    shuffle_from_32bit_read(bld, dst, vec4_result,
199                            (const_offset & 0xf) / type_sz(dst.type), 1);
200 }
201 
202 /**
203  * A helper for MOV generation for fixing up broken hardware SEND dependency
204  * handling.
205  */
206 void
DEP_RESOLVE_MOV(const fs_builder & bld,int grf)207 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
208 {
209    /* The caller always wants uncompressed to emit the minimal extra
210     * dependencies, and to avoid having to deal with aligning its regs to 2.
211     */
212    const fs_builder ubld = bld.annotate("send dependency resolve")
213                               .quarter(0);
214 
215    ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
216 }
217 
218 bool
is_send_from_grf() const219 fs_inst::is_send_from_grf() const
220 {
221    switch (opcode) {
222    case SHADER_OPCODE_SEND:
223    case SHADER_OPCODE_SHADER_TIME_ADD:
224    case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
225    case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
226    case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
227    case SHADER_OPCODE_URB_WRITE_SIMD8:
228    case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
229    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
230    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
231    case SHADER_OPCODE_URB_READ_SIMD8:
232    case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
233    case SHADER_OPCODE_INTERLOCK:
234    case SHADER_OPCODE_MEMORY_FENCE:
235    case SHADER_OPCODE_BARRIER:
236       return true;
237    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
238       return src[1].file == VGRF;
239    case FS_OPCODE_FB_WRITE:
240    case FS_OPCODE_FB_READ:
241       return src[0].file == VGRF;
242    default:
243       if (is_tex())
244          return src[0].file == VGRF;
245 
246       return false;
247    }
248 }
249 
250 bool
is_control_source(unsigned arg) const251 fs_inst::is_control_source(unsigned arg) const
252 {
253    switch (opcode) {
254    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
255    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
256    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
257       return arg == 0;
258 
259    case SHADER_OPCODE_BROADCAST:
260    case SHADER_OPCODE_SHUFFLE:
261    case SHADER_OPCODE_QUAD_SWIZZLE:
262    case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
263    case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
264    case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
265    case SHADER_OPCODE_GET_BUFFER_SIZE:
266       return arg == 1;
267 
268    case SHADER_OPCODE_MOV_INDIRECT:
269    case SHADER_OPCODE_CLUSTER_BROADCAST:
270    case SHADER_OPCODE_TEX:
271    case FS_OPCODE_TXB:
272    case SHADER_OPCODE_TXD:
273    case SHADER_OPCODE_TXF:
274    case SHADER_OPCODE_TXF_LZ:
275    case SHADER_OPCODE_TXF_CMS:
276    case SHADER_OPCODE_TXF_CMS_W:
277    case SHADER_OPCODE_TXF_UMS:
278    case SHADER_OPCODE_TXF_MCS:
279    case SHADER_OPCODE_TXL:
280    case SHADER_OPCODE_TXL_LZ:
281    case SHADER_OPCODE_TXS:
282    case SHADER_OPCODE_LOD:
283    case SHADER_OPCODE_TG4:
284    case SHADER_OPCODE_TG4_OFFSET:
285    case SHADER_OPCODE_SAMPLEINFO:
286       return arg == 1 || arg == 2;
287 
288    case SHADER_OPCODE_SEND:
289       return arg == 0 || arg == 1;
290 
291    default:
292       return false;
293    }
294 }
295 
296 bool
is_payload(unsigned arg) const297 fs_inst::is_payload(unsigned arg) const
298 {
299    switch (opcode) {
300    case FS_OPCODE_FB_WRITE:
301    case FS_OPCODE_FB_READ:
302    case SHADER_OPCODE_URB_WRITE_SIMD8:
303    case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
304    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
305    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
306    case SHADER_OPCODE_URB_READ_SIMD8:
307    case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
308    case VEC4_OPCODE_UNTYPED_ATOMIC:
309    case VEC4_OPCODE_UNTYPED_SURFACE_READ:
310    case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
311    case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
312    case SHADER_OPCODE_SHADER_TIME_ADD:
313    case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
314    case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
315    case SHADER_OPCODE_INTERLOCK:
316    case SHADER_OPCODE_MEMORY_FENCE:
317    case SHADER_OPCODE_BARRIER:
318       return arg == 0;
319 
320    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
321       return arg == 1;
322 
323    case SHADER_OPCODE_SEND:
324       return arg == 2 || arg == 3;
325 
326    default:
327       if (is_tex())
328          return arg == 0;
329       else
330          return false;
331    }
332 }
333 
334 /**
335  * Returns true if this instruction's sources and destinations cannot
336  * safely be the same register.
337  *
338  * In most cases, a register can be written over safely by the same
339  * instruction that is its last use.  For a single instruction, the
340  * sources are dereferenced before writing of the destination starts
341  * (naturally).
342  *
343  * However, there are a few cases where this can be problematic:
344  *
345  * - Virtual opcodes that translate to multiple instructions in the
346  *   code generator: if src == dst and one instruction writes the
347  *   destination before a later instruction reads the source, then
348  *   src will have been clobbered.
349  *
350  * - SIMD16 compressed instructions with certain regioning (see below).
351  *
352  * The register allocator uses this information to set up conflicts between
353  * GRF sources and the destination.
354  */
355 bool
has_source_and_destination_hazard() const356 fs_inst::has_source_and_destination_hazard() const
357 {
358    switch (opcode) {
359    case FS_OPCODE_PACK_HALF_2x16_SPLIT:
360       /* Multiple partial writes to the destination */
361       return true;
362    case SHADER_OPCODE_SHUFFLE:
363       /* This instruction returns an arbitrary channel from the source and
364        * gets split into smaller instructions in the generator.  It's possible
365        * that one of the instructions will read from a channel corresponding
366        * to an earlier instruction.
367        */
368    case SHADER_OPCODE_SEL_EXEC:
369       /* This is implemented as
370        *
371        * mov(16)      g4<1>D      0D            { align1 WE_all 1H };
372        * mov(16)      g4<1>D      g5<8,8,1>D    { align1 1H }
373        *
374        * Because the source is only read in the second instruction, the first
375        * may stomp all over it.
376        */
377       return true;
378    case SHADER_OPCODE_QUAD_SWIZZLE:
379       switch (src[1].ud) {
380       case BRW_SWIZZLE_XXXX:
381       case BRW_SWIZZLE_YYYY:
382       case BRW_SWIZZLE_ZZZZ:
383       case BRW_SWIZZLE_WWWW:
384       case BRW_SWIZZLE_XXZZ:
385       case BRW_SWIZZLE_YYWW:
386       case BRW_SWIZZLE_XYXY:
387       case BRW_SWIZZLE_ZWZW:
388          /* These can be implemented as a single Align1 region on all
389           * platforms, so there's never a hazard between source and
390           * destination.  C.f. fs_generator::generate_quad_swizzle().
391           */
392          return false;
393       default:
394          return !is_uniform(src[0]);
395       }
396    default:
397       /* The SIMD16 compressed instruction
398        *
399        * add(16)      g4<1>F      g4<8,8,1>F   g6<8,8,1>F
400        *
401        * is actually decoded in hardware as:
402        *
403        * add(8)       g4<1>F      g4<8,8,1>F   g6<8,8,1>F
404        * add(8)       g5<1>F      g5<8,8,1>F   g7<8,8,1>F
405        *
406        * Which is safe.  However, if we have uniform accesses
407        * happening, we get into trouble:
408        *
409        * add(8)       g4<1>F      g4<0,1,0>F   g6<8,8,1>F
410        * add(8)       g5<1>F      g4<0,1,0>F   g7<8,8,1>F
411        *
412        * Now our destination for the first instruction overwrote the
413        * second instruction's src0, and we get garbage for those 8
414        * pixels.  There's a similar issue for the pre-gen6
415        * pixel_x/pixel_y, which are registers of 16-bit values and thus
416        * would get stomped by the first decode as well.
417        */
418       if (exec_size == 16) {
419          for (int i = 0; i < sources; i++) {
420             if (src[i].file == VGRF && (src[i].stride == 0 ||
421                                         src[i].type == BRW_REGISTER_TYPE_UW ||
422                                         src[i].type == BRW_REGISTER_TYPE_W ||
423                                         src[i].type == BRW_REGISTER_TYPE_UB ||
424                                         src[i].type == BRW_REGISTER_TYPE_B)) {
425                return true;
426             }
427          }
428       }
429       return false;
430    }
431 }
432 
433 bool
can_do_source_mods(const struct gen_device_info * devinfo) const434 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo) const
435 {
436    if (devinfo->gen == 6 && is_math())
437       return false;
438 
439    if (is_send_from_grf())
440       return false;
441 
442    /* From GEN:BUG:1604601757:
443     *
444     * "When multiplying a DW and any lower precision integer, source modifier
445     *  is not supported."
446     */
447    if (devinfo->gen >= 12 && (opcode == BRW_OPCODE_MUL ||
448                               opcode == BRW_OPCODE_MAD)) {
449       const brw_reg_type exec_type = get_exec_type(this);
450       const unsigned min_type_sz = opcode == BRW_OPCODE_MAD ?
451          MIN2(type_sz(src[1].type), type_sz(src[2].type)) :
452          MIN2(type_sz(src[0].type), type_sz(src[1].type));
453 
454       if (brw_reg_type_is_integer(exec_type) &&
455           type_sz(exec_type) >= 4 &&
456           type_sz(exec_type) != min_type_sz)
457          return false;
458    }
459 
460    if (!backend_instruction::can_do_source_mods())
461       return false;
462 
463    return true;
464 }
465 
466 bool
can_do_cmod()467 fs_inst::can_do_cmod()
468 {
469    if (!backend_instruction::can_do_cmod())
470       return false;
471 
472    /* The accumulator result appears to get used for the conditional modifier
473     * generation.  When negating a UD value, there is a 33rd bit generated for
474     * the sign in the accumulator value, so now you can't check, for example,
475     * equality with a 32-bit value.  See piglit fs-op-neg-uvec4.
476     */
477    for (unsigned i = 0; i < sources; i++) {
478       if (type_is_unsigned_int(src[i].type) && src[i].negate)
479          return false;
480    }
481 
482    return true;
483 }
484 
485 bool
can_change_types() const486 fs_inst::can_change_types() const
487 {
488    return dst.type == src[0].type &&
489           !src[0].abs && !src[0].negate && !saturate &&
490           (opcode == BRW_OPCODE_MOV ||
491            (opcode == BRW_OPCODE_SEL &&
492             dst.type == src[1].type &&
493             predicate != BRW_PREDICATE_NONE &&
494             !src[1].abs && !src[1].negate));
495 }
496 
497 void
init()498 fs_reg::init()
499 {
500    memset((void*)this, 0, sizeof(*this));
501    type = BRW_REGISTER_TYPE_UD;
502    stride = 1;
503 }
504 
505 /** Generic unset register constructor. */
fs_reg()506 fs_reg::fs_reg()
507 {
508    init();
509    this->file = BAD_FILE;
510 }
511 
fs_reg(struct::brw_reg reg)512 fs_reg::fs_reg(struct ::brw_reg reg) :
513    backend_reg(reg)
514 {
515    this->offset = 0;
516    this->stride = 1;
517    if (this->file == IMM &&
518        (this->type != BRW_REGISTER_TYPE_V &&
519         this->type != BRW_REGISTER_TYPE_UV &&
520         this->type != BRW_REGISTER_TYPE_VF)) {
521       this->stride = 0;
522    }
523 }
524 
525 bool
equals(const fs_reg & r) const526 fs_reg::equals(const fs_reg &r) const
527 {
528    return (this->backend_reg::equals(r) &&
529            stride == r.stride);
530 }
531 
532 bool
negative_equals(const fs_reg & r) const533 fs_reg::negative_equals(const fs_reg &r) const
534 {
535    return (this->backend_reg::negative_equals(r) &&
536            stride == r.stride);
537 }
538 
539 bool
is_contiguous() const540 fs_reg::is_contiguous() const
541 {
542    switch (file) {
543    case ARF:
544    case FIXED_GRF:
545       return hstride == BRW_HORIZONTAL_STRIDE_1 &&
546              vstride == width + hstride;
547    case MRF:
548    case VGRF:
549    case ATTR:
550       return stride == 1;
551    case UNIFORM:
552    case IMM:
553    case BAD_FILE:
554       return true;
555    }
556 
557    unreachable("Invalid register file");
558 }
559 
560 unsigned
component_size(unsigned width) const561 fs_reg::component_size(unsigned width) const
562 {
563    const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
564                             hstride == 0 ? 0 :
565                             1 << (hstride - 1));
566    return MAX2(width * stride, 1) * type_sz(type);
567 }
568 
569 /**
570  * Create a MOV to read the timestamp register.
571  */
572 fs_reg
get_timestamp(const fs_builder & bld)573 fs_visitor::get_timestamp(const fs_builder &bld)
574 {
575    assert(devinfo->gen >= 7);
576 
577    fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
578                                           BRW_ARF_TIMESTAMP,
579                                           0),
580                              BRW_REGISTER_TYPE_UD));
581 
582    fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
583 
584    /* We want to read the 3 fields we care about even if it's not enabled in
585     * the dispatch.
586     */
587    bld.group(4, 0).exec_all().MOV(dst, ts);
588 
589    return dst;
590 }
591 
592 void
emit_shader_time_begin()593 fs_visitor::emit_shader_time_begin()
594 {
595    /* We want only the low 32 bits of the timestamp.  Since it's running
596     * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
597     * which is plenty of time for our purposes.  It is identical across the
598     * EUs, but since it's tracking GPU core speed it will increment at a
599     * varying rate as render P-states change.
600     */
601    shader_start_time = component(
602       get_timestamp(bld.annotate("shader time start")), 0);
603 }
604 
605 void
emit_shader_time_end()606 fs_visitor::emit_shader_time_end()
607 {
608    /* Insert our code just before the final SEND with EOT. */
609    exec_node *end = this->instructions.get_tail();
610    assert(end && ((fs_inst *) end)->eot);
611    const fs_builder ibld = bld.annotate("shader time end")
612                               .exec_all().at(NULL, end);
613    const fs_reg timestamp = get_timestamp(ibld);
614 
615    /* We only use the low 32 bits of the timestamp - see
616     * emit_shader_time_begin()).
617     *
618     * We could also check if render P-states have changed (or anything
619     * else that might disrupt timing) by setting smear to 2 and checking if
620     * that field is != 0.
621     */
622    const fs_reg shader_end_time = component(timestamp, 0);
623 
624    /* Check that there weren't any timestamp reset events (assuming these
625     * were the only two timestamp reads that happened).
626     */
627    const fs_reg reset = component(timestamp, 2);
628    set_condmod(BRW_CONDITIONAL_Z,
629                ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
630    ibld.IF(BRW_PREDICATE_NORMAL);
631 
632    fs_reg start = shader_start_time;
633    start.negate = true;
634    const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
635                                         BRW_REGISTER_TYPE_UD),
636                                  0);
637    const fs_builder cbld = ibld.group(1, 0);
638    cbld.group(1, 0).ADD(diff, start, shader_end_time);
639 
640    /* If there were no instructions between the two timestamp gets, the diff
641     * is 2 cycles.  Remove that overhead, so I can forget about that when
642     * trying to determine the time taken for single instructions.
643     */
644    cbld.ADD(diff, diff, brw_imm_ud(-2u));
645    SHADER_TIME_ADD(cbld, 0, diff);
646    SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
647    ibld.emit(BRW_OPCODE_ELSE);
648    SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
649    ibld.emit(BRW_OPCODE_ENDIF);
650 }
651 
652 void
SHADER_TIME_ADD(const fs_builder & bld,int shader_time_subindex,fs_reg value)653 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
654                             int shader_time_subindex,
655                             fs_reg value)
656 {
657    int index = shader_time_index * 3 + shader_time_subindex;
658    struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
659 
660    fs_reg payload;
661    if (dispatch_width == 8)
662       payload = vgrf(glsl_type::uvec2_type);
663    else
664       payload = vgrf(glsl_type::uint_type);
665 
666    bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
667 }
668 
669 void
vfail(const char * format,va_list va)670 fs_visitor::vfail(const char *format, va_list va)
671 {
672    char *msg;
673 
674    if (failed)
675       return;
676 
677    failed = true;
678 
679    msg = ralloc_vasprintf(mem_ctx, format, va);
680    msg = ralloc_asprintf(mem_ctx, "SIMD%d %s compile failed: %s\n",
681          dispatch_width, stage_abbrev, msg);
682 
683    this->fail_msg = msg;
684 
685    if (debug_enabled) {
686       fprintf(stderr, "%s",  msg);
687    }
688 }
689 
690 void
fail(const char * format,...)691 fs_visitor::fail(const char *format, ...)
692 {
693    va_list va;
694 
695    va_start(va, format);
696    vfail(format, va);
697    va_end(va);
698 }
699 
700 /**
701  * Mark this program as impossible to compile with dispatch width greater
702  * than n.
703  *
704  * During the SIMD8 compile (which happens first), we can detect and flag
705  * things that are unsupported in SIMD16+ mode, so the compiler can skip the
706  * SIMD16+ compile altogether.
707  *
708  * During a compile of dispatch width greater than n (if one happens anyway),
709  * this just calls fail().
710  */
711 void
limit_dispatch_width(unsigned n,const char * msg)712 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
713 {
714    if (dispatch_width > n) {
715       fail("%s", msg);
716    } else {
717       max_dispatch_width = n;
718       compiler->shader_perf_log(log_data,
719                                 "Shader dispatch width limited to SIMD%d: %s",
720                                 n, msg);
721    }
722 }
723 
724 /**
725  * Returns true if the instruction has a flag that means it won't
726  * update an entire destination register.
727  *
728  * For example, dead code elimination and live variable analysis want to know
729  * when a write to a variable screens off any preceding values that were in
730  * it.
731  */
732 bool
is_partial_write() const733 fs_inst::is_partial_write() const
734 {
735    return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
736            (this->exec_size * type_sz(this->dst.type)) < 32 ||
737            !this->dst.is_contiguous() ||
738            this->dst.offset % REG_SIZE != 0);
739 }
740 
741 unsigned
components_read(unsigned i) const742 fs_inst::components_read(unsigned i) const
743 {
744    /* Return zero if the source is not present. */
745    if (src[i].file == BAD_FILE)
746       return 0;
747 
748    switch (opcode) {
749    case FS_OPCODE_LINTERP:
750       if (i == 0)
751          return 2;
752       else
753          return 1;
754 
755    case FS_OPCODE_PIXEL_X:
756    case FS_OPCODE_PIXEL_Y:
757       assert(i == 0);
758       return 2;
759 
760    case FS_OPCODE_FB_WRITE_LOGICAL:
761       assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
762       /* First/second FB write color. */
763       if (i < 2)
764          return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
765       else
766          return 1;
767 
768    case SHADER_OPCODE_TEX_LOGICAL:
769    case SHADER_OPCODE_TXD_LOGICAL:
770    case SHADER_OPCODE_TXF_LOGICAL:
771    case SHADER_OPCODE_TXL_LOGICAL:
772    case SHADER_OPCODE_TXS_LOGICAL:
773    case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
774    case FS_OPCODE_TXB_LOGICAL:
775    case SHADER_OPCODE_TXF_CMS_LOGICAL:
776    case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
777    case SHADER_OPCODE_TXF_UMS_LOGICAL:
778    case SHADER_OPCODE_TXF_MCS_LOGICAL:
779    case SHADER_OPCODE_LOD_LOGICAL:
780    case SHADER_OPCODE_TG4_LOGICAL:
781    case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
782    case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
783       assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
784              src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
785       /* Texture coordinates. */
786       if (i == TEX_LOGICAL_SRC_COORDINATE)
787          return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
788       /* Texture derivatives. */
789       else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
790                opcode == SHADER_OPCODE_TXD_LOGICAL)
791          return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
792       /* Texture offset. */
793       else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
794          return 2;
795       /* MCS */
796       else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
797          return 2;
798       else
799          return 1;
800 
801    case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
802    case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
803       assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
804       /* Surface coordinates. */
805       if (i == SURFACE_LOGICAL_SRC_ADDRESS)
806          return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
807       /* Surface operation source (ignored for reads). */
808       else if (i == SURFACE_LOGICAL_SRC_DATA)
809          return 0;
810       else
811          return 1;
812 
813    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
814    case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
815       assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
816              src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
817       /* Surface coordinates. */
818       if (i == SURFACE_LOGICAL_SRC_ADDRESS)
819          return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
820       /* Surface operation source. */
821       else if (i == SURFACE_LOGICAL_SRC_DATA)
822          return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
823       else
824          return 1;
825 
826    case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
827    case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
828    case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
829       assert(src[2].file == IMM);
830       return 1;
831 
832    case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
833       assert(src[2].file == IMM);
834       if (i == 1) { /* data to write */
835          const unsigned comps = src[2].ud / exec_size;
836          assert(comps > 0);
837          return comps;
838       } else {
839          return 1;
840       }
841 
842    case SHADER_OPCODE_OWORD_BLOCK_READ_LOGICAL:
843    case SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
844       assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
845       return 1;
846 
847    case SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL:
848       assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
849       if (i == SURFACE_LOGICAL_SRC_DATA) {
850          const unsigned comps = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud / exec_size;
851          assert(comps > 0);
852          return comps;
853       } else {
854          return 1;
855       }
856 
857    case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
858       assert(src[2].file == IMM);
859       return i == 1 ? src[2].ud : 1;
860 
861    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
862    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
863       assert(src[2].file == IMM);
864       if (i == 1) {
865          /* Data source */
866          const unsigned op = src[2].ud;
867          switch (op) {
868          case BRW_AOP_INC:
869          case BRW_AOP_DEC:
870          case BRW_AOP_PREDEC:
871             return 0;
872          case BRW_AOP_CMPWR:
873             return 2;
874          default:
875             return 1;
876          }
877       } else {
878          return 1;
879       }
880 
881    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
882       assert(src[2].file == IMM);
883       if (i == 1) {
884          /* Data source */
885          const unsigned op = src[2].ud;
886          return op == BRW_AOP_FCMPWR ? 2 : 1;
887       } else {
888          return 1;
889       }
890 
891    case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
892    case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
893       /* Scattered logical opcodes use the following params:
894        * src[0] Surface coordinates
895        * src[1] Surface operation source (ignored for reads)
896        * src[2] Surface
897        * src[3] IMM with always 1 dimension.
898        * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
899        */
900       assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
901              src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
902       return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
903 
904    case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
905    case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
906       assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
907              src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
908       return 1;
909 
910    case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
911    case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
912       assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
913              src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
914       const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
915       /* Surface coordinates. */
916       if (i == SURFACE_LOGICAL_SRC_ADDRESS)
917          return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
918       /* Surface operation source. */
919       else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR)
920          return 2;
921       else if (i == SURFACE_LOGICAL_SRC_DATA &&
922                (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC))
923          return 0;
924       else
925          return 1;
926    }
927    case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
928       return (i == 0 ? 2 : 1);
929 
930    case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
931       assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
932              src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
933       const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
934       /* Surface coordinates. */
935       if (i == SURFACE_LOGICAL_SRC_ADDRESS)
936          return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
937       /* Surface operation source. */
938       else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR)
939          return 2;
940       else
941          return 1;
942    }
943 
944    default:
945       return 1;
946    }
947 }
948 
949 unsigned
size_read(int arg) const950 fs_inst::size_read(int arg) const
951 {
952    switch (opcode) {
953    case SHADER_OPCODE_SEND:
954       if (arg == 2) {
955          return mlen * REG_SIZE;
956       } else if (arg == 3) {
957          return ex_mlen * REG_SIZE;
958       }
959       break;
960 
961    case FS_OPCODE_FB_WRITE:
962    case FS_OPCODE_REP_FB_WRITE:
963       if (arg == 0) {
964          if (base_mrf >= 0)
965             return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
966          else
967             return mlen * REG_SIZE;
968       }
969       break;
970 
971    case FS_OPCODE_FB_READ:
972    case SHADER_OPCODE_URB_WRITE_SIMD8:
973    case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
974    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
975    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
976    case SHADER_OPCODE_URB_READ_SIMD8:
977    case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
978    case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
979    case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
980       if (arg == 0)
981          return mlen * REG_SIZE;
982       break;
983 
984    case FS_OPCODE_SET_SAMPLE_ID:
985       if (arg == 1)
986          return 1;
987       break;
988 
989    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
990       /* The payload is actually stored in src1 */
991       if (arg == 1)
992          return mlen * REG_SIZE;
993       break;
994 
995    case FS_OPCODE_LINTERP:
996       if (arg == 1)
997          return 16;
998       break;
999 
1000    case SHADER_OPCODE_LOAD_PAYLOAD:
1001       if (arg < this->header_size)
1002          return REG_SIZE;
1003       break;
1004 
1005    case CS_OPCODE_CS_TERMINATE:
1006    case SHADER_OPCODE_BARRIER:
1007       return REG_SIZE;
1008 
1009    case SHADER_OPCODE_MOV_INDIRECT:
1010       if (arg == 0) {
1011          assert(src[2].file == IMM);
1012          return src[2].ud;
1013       }
1014       break;
1015 
1016    default:
1017       if (is_tex() && arg == 0 && src[0].file == VGRF)
1018          return mlen * REG_SIZE;
1019       break;
1020    }
1021 
1022    switch (src[arg].file) {
1023    case UNIFORM:
1024    case IMM:
1025       return components_read(arg) * type_sz(src[arg].type);
1026    case BAD_FILE:
1027    case ARF:
1028    case FIXED_GRF:
1029    case VGRF:
1030    case ATTR:
1031       return components_read(arg) * src[arg].component_size(exec_size);
1032    case MRF:
1033       unreachable("MRF registers are not allowed as sources");
1034    }
1035    return 0;
1036 }
1037 
1038 namespace {
1039    unsigned
predicate_width(brw_predicate predicate)1040    predicate_width(brw_predicate predicate)
1041    {
1042       switch (predicate) {
1043       case BRW_PREDICATE_NONE:            return 1;
1044       case BRW_PREDICATE_NORMAL:          return 1;
1045       case BRW_PREDICATE_ALIGN1_ANY2H:    return 2;
1046       case BRW_PREDICATE_ALIGN1_ALL2H:    return 2;
1047       case BRW_PREDICATE_ALIGN1_ANY4H:    return 4;
1048       case BRW_PREDICATE_ALIGN1_ALL4H:    return 4;
1049       case BRW_PREDICATE_ALIGN1_ANY8H:    return 8;
1050       case BRW_PREDICATE_ALIGN1_ALL8H:    return 8;
1051       case BRW_PREDICATE_ALIGN1_ANY16H:   return 16;
1052       case BRW_PREDICATE_ALIGN1_ALL16H:   return 16;
1053       case BRW_PREDICATE_ALIGN1_ANY32H:   return 32;
1054       case BRW_PREDICATE_ALIGN1_ALL32H:   return 32;
1055       default: unreachable("Unsupported predicate");
1056       }
1057    }
1058 
1059    /* Return the subset of flag registers that an instruction could
1060     * potentially read or write based on the execution controls and flag
1061     * subregister number of the instruction.
1062     */
1063    unsigned
flag_mask(const fs_inst * inst,unsigned width)1064    flag_mask(const fs_inst *inst, unsigned width)
1065    {
1066       assert(util_is_power_of_two_nonzero(width));
1067       const unsigned start = (inst->flag_subreg * 16 + inst->group) &
1068                              ~(width - 1);
1069       const unsigned end = start + ALIGN(inst->exec_size, width);
1070       return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
1071    }
1072 
1073    unsigned
bit_mask(unsigned n)1074    bit_mask(unsigned n)
1075    {
1076       return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
1077    }
1078 
1079    unsigned
flag_mask(const fs_reg & r,unsigned sz)1080    flag_mask(const fs_reg &r, unsigned sz)
1081    {
1082       if (r.file == ARF) {
1083          const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
1084          const unsigned end = start + sz;
1085          return bit_mask(end) & ~bit_mask(start);
1086       } else {
1087          return 0;
1088       }
1089    }
1090 }
1091 
1092 unsigned
flags_read(const gen_device_info * devinfo) const1093 fs_inst::flags_read(const gen_device_info *devinfo) const
1094 {
1095    if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
1096        predicate == BRW_PREDICATE_ALIGN1_ALLV) {
1097       /* The vertical predication modes combine corresponding bits from
1098        * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
1099        */
1100       const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
1101       return flag_mask(this, 1) << shift | flag_mask(this, 1);
1102    } else if (predicate) {
1103       return flag_mask(this, predicate_width(predicate));
1104    } else {
1105       unsigned mask = 0;
1106       for (int i = 0; i < sources; i++) {
1107          mask |= flag_mask(src[i], size_read(i));
1108       }
1109       return mask;
1110    }
1111 }
1112 
1113 unsigned
flags_written() const1114 fs_inst::flags_written() const
1115 {
1116    if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
1117                             opcode != BRW_OPCODE_CSEL &&
1118                             opcode != BRW_OPCODE_IF &&
1119                             opcode != BRW_OPCODE_WHILE)) ||
1120        opcode == FS_OPCODE_FB_WRITE) {
1121       return flag_mask(this, 1);
1122    } else if (opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL ||
1123               opcode == FS_OPCODE_LOAD_LIVE_CHANNELS) {
1124       return flag_mask(this, 32);
1125    } else {
1126       return flag_mask(dst, size_written);
1127    }
1128 }
1129 
1130 /**
1131  * Returns how many MRFs an FS opcode will write over.
1132  *
1133  * Note that this is not the 0 or 1 implied writes in an actual gen
1134  * instruction -- the FS opcodes often generate MOVs in addition.
1135  */
1136 unsigned
implied_mrf_writes() const1137 fs_inst::implied_mrf_writes() const
1138 {
1139    if (mlen == 0)
1140       return 0;
1141 
1142    if (base_mrf == -1)
1143       return 0;
1144 
1145    switch (opcode) {
1146    case SHADER_OPCODE_RCP:
1147    case SHADER_OPCODE_RSQ:
1148    case SHADER_OPCODE_SQRT:
1149    case SHADER_OPCODE_EXP2:
1150    case SHADER_OPCODE_LOG2:
1151    case SHADER_OPCODE_SIN:
1152    case SHADER_OPCODE_COS:
1153       return 1 * exec_size / 8;
1154    case SHADER_OPCODE_POW:
1155    case SHADER_OPCODE_INT_QUOTIENT:
1156    case SHADER_OPCODE_INT_REMAINDER:
1157       return 2 * exec_size / 8;
1158    case SHADER_OPCODE_TEX:
1159    case FS_OPCODE_TXB:
1160    case SHADER_OPCODE_TXD:
1161    case SHADER_OPCODE_TXF:
1162    case SHADER_OPCODE_TXF_CMS:
1163    case SHADER_OPCODE_TXF_MCS:
1164    case SHADER_OPCODE_TG4:
1165    case SHADER_OPCODE_TG4_OFFSET:
1166    case SHADER_OPCODE_TXL:
1167    case SHADER_OPCODE_TXS:
1168    case SHADER_OPCODE_LOD:
1169    case SHADER_OPCODE_SAMPLEINFO:
1170       return 1;
1171    case FS_OPCODE_FB_WRITE:
1172    case FS_OPCODE_REP_FB_WRITE:
1173       return src[0].file == BAD_FILE ? 0 : 2;
1174    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1175    case SHADER_OPCODE_GEN4_SCRATCH_READ:
1176       return 1;
1177    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
1178       return mlen;
1179    case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1180       return mlen;
1181    default:
1182       unreachable("not reached");
1183    }
1184 }
1185 
1186 fs_reg
vgrf(const glsl_type * const type)1187 fs_visitor::vgrf(const glsl_type *const type)
1188 {
1189    int reg_width = dispatch_width / 8;
1190    return fs_reg(VGRF,
1191                  alloc.allocate(glsl_count_dword_slots(type, false) * reg_width),
1192                  brw_type_for_base_type(type));
1193 }
1194 
fs_reg(enum brw_reg_file file,int nr)1195 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1196 {
1197    init();
1198    this->file = file;
1199    this->nr = nr;
1200    this->type = BRW_REGISTER_TYPE_F;
1201    this->stride = (file == UNIFORM ? 0 : 1);
1202 }
1203 
fs_reg(enum brw_reg_file file,int nr,enum brw_reg_type type)1204 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1205 {
1206    init();
1207    this->file = file;
1208    this->nr = nr;
1209    this->type = type;
1210    this->stride = (file == UNIFORM ? 0 : 1);
1211 }
1212 
1213 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1214  * This brings in those uniform definitions
1215  */
1216 void
import_uniforms(fs_visitor * v)1217 fs_visitor::import_uniforms(fs_visitor *v)
1218 {
1219    this->push_constant_loc = v->push_constant_loc;
1220    this->pull_constant_loc = v->pull_constant_loc;
1221    this->uniforms = v->uniforms;
1222    this->subgroup_id = v->subgroup_id;
1223    for (unsigned i = 0; i < ARRAY_SIZE(this->group_size); i++)
1224       this->group_size[i] = v->group_size[i];
1225 }
1226 
1227 void
emit_fragcoord_interpolation(fs_reg wpos)1228 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1229 {
1230    assert(stage == MESA_SHADER_FRAGMENT);
1231 
1232    /* gl_FragCoord.x */
1233    bld.MOV(wpos, this->pixel_x);
1234    wpos = offset(wpos, bld, 1);
1235 
1236    /* gl_FragCoord.y */
1237    bld.MOV(wpos, this->pixel_y);
1238    wpos = offset(wpos, bld, 1);
1239 
1240    /* gl_FragCoord.z */
1241    if (devinfo->gen >= 6) {
1242       bld.MOV(wpos, fetch_payload_reg(bld, payload.source_depth_reg));
1243    } else {
1244       bld.emit(FS_OPCODE_LINTERP, wpos,
1245                this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1246                component(interp_reg(VARYING_SLOT_POS, 2), 0));
1247    }
1248    wpos = offset(wpos, bld, 1);
1249 
1250    /* gl_FragCoord.w: Already set up in emit_interpolation */
1251    bld.MOV(wpos, this->wpos_w);
1252 }
1253 
1254 enum brw_barycentric_mode
brw_barycentric_mode(enum glsl_interp_mode mode,nir_intrinsic_op op)1255 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1256 {
1257    /* Barycentric modes don't make sense for flat inputs. */
1258    assert(mode != INTERP_MODE_FLAT);
1259 
1260    unsigned bary;
1261    switch (op) {
1262    case nir_intrinsic_load_barycentric_pixel:
1263    case nir_intrinsic_load_barycentric_at_offset:
1264       bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1265       break;
1266    case nir_intrinsic_load_barycentric_centroid:
1267       bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1268       break;
1269    case nir_intrinsic_load_barycentric_sample:
1270    case nir_intrinsic_load_barycentric_at_sample:
1271       bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1272       break;
1273    default:
1274       unreachable("invalid intrinsic");
1275    }
1276 
1277    if (mode == INTERP_MODE_NOPERSPECTIVE)
1278       bary += 3;
1279 
1280    return (enum brw_barycentric_mode) bary;
1281 }
1282 
1283 /**
1284  * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1285  */
1286 static enum brw_barycentric_mode
centroid_to_pixel(enum brw_barycentric_mode bary)1287 centroid_to_pixel(enum brw_barycentric_mode bary)
1288 {
1289    assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1290           bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1291    return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1292 }
1293 
1294 fs_reg *
emit_frontfacing_interpolation()1295 fs_visitor::emit_frontfacing_interpolation()
1296 {
1297    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1298 
1299    if (devinfo->gen >= 12) {
1300       fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
1301 
1302       fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_W);
1303       bld.ASR(tmp, g1, brw_imm_d(15));
1304       bld.NOT(*reg, tmp);
1305    } else if (devinfo->gen >= 6) {
1306       /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1307        * a boolean result from this (~0/true or 0/false).
1308        *
1309        * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1310        * this task in only one instruction:
1311        *    - a negation source modifier will flip the bit; and
1312        *    - a W -> D type conversion will sign extend the bit into the high
1313        *      word of the destination.
1314        *
1315        * An ASR 15 fills the low word of the destination.
1316        */
1317       fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1318       g0.negate = true;
1319 
1320       bld.ASR(*reg, g0, brw_imm_d(15));
1321    } else {
1322       /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1323        * a boolean result from this (1/true or 0/false).
1324        *
1325        * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1326        * the negation source modifier to flip it. Unfortunately the SHR
1327        * instruction only operates on UD (or D with an abs source modifier)
1328        * sources without negation.
1329        *
1330        * Instead, use ASR (which will give ~0/true or 0/false).
1331        */
1332       fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1333       g1_6.negate = true;
1334 
1335       bld.ASR(*reg, g1_6, brw_imm_d(31));
1336    }
1337 
1338    return reg;
1339 }
1340 
1341 void
compute_sample_position(fs_reg dst,fs_reg int_sample_pos)1342 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1343 {
1344    assert(stage == MESA_SHADER_FRAGMENT);
1345    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1346    assert(dst.type == BRW_REGISTER_TYPE_F);
1347 
1348    if (wm_prog_data->persample_dispatch) {
1349       /* Convert int_sample_pos to floating point */
1350       bld.MOV(dst, int_sample_pos);
1351       /* Scale to the range [0, 1] */
1352       bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1353    }
1354    else {
1355       /* From ARB_sample_shading specification:
1356        * "When rendering to a non-multisample buffer, or if multisample
1357        *  rasterization is disabled, gl_SamplePosition will always be
1358        *  (0.5, 0.5).
1359        */
1360       bld.MOV(dst, brw_imm_f(0.5f));
1361    }
1362 }
1363 
1364 fs_reg *
emit_samplepos_setup()1365 fs_visitor::emit_samplepos_setup()
1366 {
1367    assert(devinfo->gen >= 6);
1368 
1369    const fs_builder abld = bld.annotate("compute sample position");
1370    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1371    fs_reg pos = *reg;
1372    fs_reg int_sample_x = vgrf(glsl_type::int_type);
1373    fs_reg int_sample_y = vgrf(glsl_type::int_type);
1374 
1375    /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1376     * mode will be enabled.
1377     *
1378     * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1379     * R31.1:0         Position Offset X/Y for Slot[3:0]
1380     * R31.3:2         Position Offset X/Y for Slot[7:4]
1381     * .....
1382     *
1383     * The X, Y sample positions come in as bytes in  thread payload. So, read
1384     * the positions using vstride=16, width=8, hstride=2.
1385     */
1386    const fs_reg sample_pos_reg =
1387       fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W);
1388 
1389    /* Compute gl_SamplePosition.x */
1390    abld.MOV(int_sample_x, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 0));
1391    compute_sample_position(offset(pos, abld, 0), int_sample_x);
1392 
1393    /* Compute gl_SamplePosition.y */
1394    abld.MOV(int_sample_y, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 1));
1395    compute_sample_position(offset(pos, abld, 1), int_sample_y);
1396    return reg;
1397 }
1398 
1399 fs_reg *
emit_sampleid_setup()1400 fs_visitor::emit_sampleid_setup()
1401 {
1402    assert(stage == MESA_SHADER_FRAGMENT);
1403    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1404    assert(devinfo->gen >= 6);
1405 
1406    const fs_builder abld = bld.annotate("compute sample id");
1407    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uint_type));
1408 
1409    if (!key->multisample_fbo) {
1410       /* As per GL_ARB_sample_shading specification:
1411        * "When rendering to a non-multisample buffer, or if multisample
1412        *  rasterization is disabled, gl_SampleID will always be zero."
1413        */
1414       abld.MOV(*reg, brw_imm_d(0));
1415    } else if (devinfo->gen >= 8) {
1416       /* Sample ID comes in as 4-bit numbers in g1.0:
1417        *
1418        *    15:12 Slot 3 SampleID (only used in SIMD16)
1419        *     11:8 Slot 2 SampleID (only used in SIMD16)
1420        *      7:4 Slot 1 SampleID
1421        *      3:0 Slot 0 SampleID
1422        *
1423        * Each slot corresponds to four channels, so we want to replicate each
1424        * half-byte value to 4 channels in a row:
1425        *
1426        *    dst+0:    .7    .6    .5    .4    .3    .2    .1    .0
1427        *             7:4   7:4   7:4   7:4   3:0   3:0   3:0   3:0
1428        *
1429        *    dst+1:    .7    .6    .5    .4    .3    .2    .1    .0  (if SIMD16)
1430        *           15:12 15:12 15:12 15:12  11:8  11:8  11:8  11:8
1431        *
1432        * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1433        * channels to read the first byte (7:0), and the second group of 8
1434        * channels to read the second byte (15:8).  Then, we shift right by
1435        * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1436        * values into place.  Finally, we AND with 0xf to keep the low nibble.
1437        *
1438        *    shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1439        *    and(16) dst<1>D tmp<8,8,1>W  0xf:W
1440        *
1441        * TODO: These payload bits exist on Gen7 too, but they appear to always
1442        *       be zero, so this code fails to work.  We should find out why.
1443        */
1444       const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW);
1445 
1446       for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
1447          const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
1448          hbld.SHR(offset(tmp, hbld, i),
1449                   stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB),
1450                          1, 8, 0),
1451                   brw_imm_v(0x44440000));
1452       }
1453 
1454       abld.AND(*reg, tmp, brw_imm_w(0xf));
1455    } else {
1456       const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0);
1457       const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW);
1458 
1459       /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1460        * 8x multisampling, subspan 0 will represent sample N (where N
1461        * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1462        * 7. We can find the value of N by looking at R0.0 bits 7:6
1463        * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1464        * (since samples are always delivered in pairs). That is, we
1465        * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1466        * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1467        * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1468        * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1469        * populating a temporary variable with the sequence (0, 1, 2, 3),
1470        * and then reading from it using vstride=1, width=4, hstride=0.
1471        * These computations hold good for 4x multisampling as well.
1472        *
1473        * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1474        * the first four slots are sample 0 of subspan 0; the next four
1475        * are sample 1 of subspan 0; the third group is sample 0 of
1476        * subspan 1, and finally sample 1 of subspan 1.
1477        */
1478 
1479       /* SKL+ has an extra bit for the Starting Sample Pair Index to
1480        * accomodate 16x MSAA.
1481        */
1482       abld.exec_all().group(1, 0)
1483           .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1484                brw_imm_ud(0xc0));
1485       abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1486 
1487       /* This works for SIMD8-SIMD16.  It also works for SIMD32 but only if we
1488        * can assume 4x MSAA.  Disallow it on IVB+
1489        *
1490        * FINISHME: One day, we could come up with a way to do this that
1491        * actually works on gen7.
1492        */
1493       if (devinfo->gen >= 7)
1494          limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gen7");
1495       abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210));
1496 
1497       /* This special instruction takes care of setting vstride=1,
1498        * width=4, hstride=0 of t2 during an ADD instruction.
1499        */
1500       abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1501    }
1502 
1503    return reg;
1504 }
1505 
1506 fs_reg *
emit_samplemaskin_setup()1507 fs_visitor::emit_samplemaskin_setup()
1508 {
1509    assert(stage == MESA_SHADER_FRAGMENT);
1510    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1511    assert(devinfo->gen >= 6);
1512 
1513    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1514 
1515    fs_reg coverage_mask =
1516       fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D);
1517 
1518    if (wm_prog_data->persample_dispatch) {
1519       /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1520        * and a mask representing which sample is being processed by the
1521        * current shader invocation.
1522        *
1523        * From the OES_sample_variables specification:
1524        * "When per-sample shading is active due to the use of a fragment input
1525        *  qualified by "sample" or due to the use of the gl_SampleID or
1526        *  gl_SamplePosition variables, only the bit for the current sample is
1527        *  set in gl_SampleMaskIn."
1528        */
1529       const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1530 
1531       if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1532          nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1533 
1534       fs_reg one = vgrf(glsl_type::int_type);
1535       fs_reg enabled_mask = vgrf(glsl_type::int_type);
1536       abld.MOV(one, brw_imm_d(1));
1537       abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1538       abld.AND(*reg, enabled_mask, coverage_mask);
1539    } else {
1540       /* In per-pixel mode, the coverage mask is sufficient. */
1541       *reg = coverage_mask;
1542    }
1543    return reg;
1544 }
1545 
1546 fs_reg
resolve_source_modifiers(const fs_reg & src)1547 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1548 {
1549    if (!src.abs && !src.negate)
1550       return src;
1551 
1552    fs_reg temp = bld.vgrf(src.type);
1553    bld.MOV(temp, src);
1554 
1555    return temp;
1556 }
1557 
1558 void
emit_gs_thread_end()1559 fs_visitor::emit_gs_thread_end()
1560 {
1561    assert(stage == MESA_SHADER_GEOMETRY);
1562 
1563    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1564 
1565    if (gs_compile->control_data_header_size_bits > 0) {
1566       emit_gs_control_data_bits(this->final_gs_vertex_count);
1567    }
1568 
1569    const fs_builder abld = bld.annotate("thread end");
1570    fs_inst *inst;
1571 
1572    if (gs_prog_data->static_vertex_count != -1) {
1573       foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1574          if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1575              prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1576              prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1577              prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1578             prev->eot = true;
1579 
1580             /* Delete now dead instructions. */
1581             foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1582                if (dead == prev)
1583                   break;
1584                dead->remove();
1585             }
1586             return;
1587          } else if (prev->is_control_flow() || prev->has_side_effects()) {
1588             break;
1589          }
1590       }
1591       fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1592       abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1593       inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1594       inst->mlen = 1;
1595    } else {
1596       fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1597       fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1598       sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1599       sources[1] = this->final_gs_vertex_count;
1600       abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1601       inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1602       inst->mlen = 2;
1603    }
1604    inst->eot = true;
1605    inst->offset = 0;
1606 }
1607 
1608 void
assign_curb_setup()1609 fs_visitor::assign_curb_setup()
1610 {
1611    unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1612 
1613    unsigned ubo_push_length = 0;
1614    unsigned ubo_push_start[4];
1615    for (int i = 0; i < 4; i++) {
1616       ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1617       ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1618    }
1619 
1620    prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1621 
1622    uint64_t used = 0;
1623 
1624    /* Map the offsets in the UNIFORM file to fixed HW regs. */
1625    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1626       for (unsigned int i = 0; i < inst->sources; i++) {
1627 	 if (inst->src[i].file == UNIFORM) {
1628             int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1629             int constant_nr;
1630             if (inst->src[i].nr >= UBO_START) {
1631                /* constant_nr is in 32-bit units, the rest are in bytes */
1632                constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1633                              inst->src[i].offset / 4;
1634             } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1635                constant_nr = push_constant_loc[uniform_nr];
1636             } else {
1637                /* Section 5.11 of the OpenGL 4.1 spec says:
1638                 * "Out-of-bounds reads return undefined values, which include
1639                 *  values from other variables of the active program or zero."
1640                 * Just return the first push constant.
1641                 */
1642                constant_nr = 0;
1643             }
1644 
1645             assert(constant_nr / 8 < 64);
1646             used |= BITFIELD64_BIT(constant_nr / 8);
1647 
1648 	    struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1649 						  constant_nr / 8,
1650 						  constant_nr % 8);
1651             brw_reg.abs = inst->src[i].abs;
1652             brw_reg.negate = inst->src[i].negate;
1653 
1654             assert(inst->src[i].stride == 0);
1655             inst->src[i] = byte_offset(
1656                retype(brw_reg, inst->src[i].type),
1657                inst->src[i].offset % 4);
1658 	 }
1659       }
1660    }
1661 
1662    uint64_t want_zero = used & stage_prog_data->zero_push_reg;
1663    if (want_zero) {
1664       assert(!compiler->compact_params);
1665       fs_builder ubld = bld.exec_all().group(8, 0).at(
1666          cfg->first_block(), cfg->first_block()->start());
1667 
1668       /* push_reg_mask_param is in 32-bit units */
1669       unsigned mask_param = stage_prog_data->push_reg_mask_param;
1670       struct brw_reg mask = brw_vec1_grf(payload.num_regs + mask_param / 8,
1671                                                             mask_param % 8);
1672 
1673       fs_reg b32;
1674       for (unsigned i = 0; i < 64; i++) {
1675          if (i % 16 == 0 && (want_zero & BITFIELD64_RANGE(i, 16))) {
1676             fs_reg shifted = ubld.vgrf(BRW_REGISTER_TYPE_W, 2);
1677             ubld.SHL(horiz_offset(shifted, 8),
1678                      byte_offset(retype(mask, BRW_REGISTER_TYPE_W), i / 8),
1679                      brw_imm_v(0x01234567));
1680             ubld.SHL(shifted, horiz_offset(shifted, 8), brw_imm_w(8));
1681 
1682             fs_builder ubld16 = ubld.group(16, 0);
1683             b32 = ubld16.vgrf(BRW_REGISTER_TYPE_D);
1684             ubld16.group(16, 0).ASR(b32, shifted, brw_imm_w(15));
1685          }
1686 
1687          if (want_zero & BITFIELD64_BIT(i)) {
1688             assert(i < prog_data->curb_read_length);
1689             struct brw_reg push_reg =
1690                retype(brw_vec8_grf(payload.num_regs + i, 0),
1691                       BRW_REGISTER_TYPE_D);
1692 
1693             ubld.AND(push_reg, push_reg, component(b32, i % 16));
1694          }
1695       }
1696 
1697       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1698    }
1699 
1700    /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1701    this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1702 }
1703 
1704 /*
1705  * Build up an array of indices into the urb_setup array that
1706  * references the active entries of the urb_setup array.
1707  * Used to accelerate walking the active entries of the urb_setup array
1708  * on each upload.
1709  */
1710 void
brw_compute_urb_setup_index(struct brw_wm_prog_data * wm_prog_data)1711 brw_compute_urb_setup_index(struct brw_wm_prog_data *wm_prog_data)
1712 {
1713    /* Make sure uint8_t is sufficient */
1714    STATIC_ASSERT(VARYING_SLOT_MAX <= 0xff);
1715    uint8_t index = 0;
1716    for (uint8_t attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1717       if (wm_prog_data->urb_setup[attr] >= 0) {
1718          wm_prog_data->urb_setup_attribs[index++] = attr;
1719       }
1720    }
1721    wm_prog_data->urb_setup_attribs_count = index;
1722 }
1723 
1724 static void
calculate_urb_setup(const struct gen_device_info * devinfo,const struct brw_wm_prog_key * key,struct brw_wm_prog_data * prog_data,const nir_shader * nir)1725 calculate_urb_setup(const struct gen_device_info *devinfo,
1726                     const struct brw_wm_prog_key *key,
1727                     struct brw_wm_prog_data *prog_data,
1728                     const nir_shader *nir)
1729 {
1730    memset(prog_data->urb_setup, -1,
1731           sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1732 
1733    int urb_next = 0;
1734    /* Figure out where each of the incoming setup attributes lands. */
1735    if (devinfo->gen >= 6) {
1736       if (util_bitcount64(nir->info.inputs_read &
1737                             BRW_FS_VARYING_INPUT_MASK) <= 16) {
1738          /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1739           * first 16 varying inputs, so we can put them wherever we want.
1740           * Just put them in order.
1741           *
1742           * This is useful because it means that (a) inputs not used by the
1743           * fragment shader won't take up valuable register space, and (b) we
1744           * won't have to recompile the fragment shader if it gets paired with
1745           * a different vertex (or geometry) shader.
1746           */
1747          for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1748             if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1749                 BITFIELD64_BIT(i)) {
1750                prog_data->urb_setup[i] = urb_next++;
1751             }
1752          }
1753       } else {
1754          /* We have enough input varyings that the SF/SBE pipeline stage can't
1755           * arbitrarily rearrange them to suit our whim; we have to put them
1756           * in an order that matches the output of the previous pipeline stage
1757           * (geometry or vertex shader).
1758           */
1759          struct brw_vue_map prev_stage_vue_map;
1760          brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1761                              key->input_slots_valid,
1762                              nir->info.separate_shader, 1);
1763 
1764          int first_slot =
1765             brw_compute_first_urb_slot_required(nir->info.inputs_read,
1766                                                 &prev_stage_vue_map);
1767 
1768          assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1769          for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1770               slot++) {
1771             int varying = prev_stage_vue_map.slot_to_varying[slot];
1772             if (varying != BRW_VARYING_SLOT_PAD &&
1773                 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1774                  BITFIELD64_BIT(varying))) {
1775                prog_data->urb_setup[varying] = slot - first_slot;
1776             }
1777          }
1778          urb_next = prev_stage_vue_map.num_slots - first_slot;
1779       }
1780    } else {
1781       /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1782       for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1783          /* Point size is packed into the header, not as a general attribute */
1784          if (i == VARYING_SLOT_PSIZ)
1785             continue;
1786 
1787 	 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1788 	    /* The back color slot is skipped when the front color is
1789 	     * also written to.  In addition, some slots can be
1790 	     * written in the vertex shader and not read in the
1791 	     * fragment shader.  So the register number must always be
1792 	     * incremented, mapped or not.
1793 	     */
1794 	    if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1795 	       prog_data->urb_setup[i] = urb_next;
1796             urb_next++;
1797 	 }
1798       }
1799 
1800       /*
1801        * It's a FS only attribute, and we did interpolation for this attribute
1802        * in SF thread. So, count it here, too.
1803        *
1804        * See compile_sf_prog() for more info.
1805        */
1806       if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1807          prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1808    }
1809 
1810    prog_data->num_varying_inputs = urb_next;
1811    prog_data->inputs = nir->info.inputs_read;
1812 
1813    brw_compute_urb_setup_index(prog_data);
1814 }
1815 
1816 void
assign_urb_setup()1817 fs_visitor::assign_urb_setup()
1818 {
1819    assert(stage == MESA_SHADER_FRAGMENT);
1820    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1821 
1822    int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1823 
1824    /* Offset all the urb_setup[] index by the actual position of the
1825     * setup regs, now that the location of the constants has been chosen.
1826     */
1827    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1828       for (int i = 0; i < inst->sources; i++) {
1829          if (inst->src[i].file == ATTR) {
1830             /* ATTR regs in the FS are in units of logical scalar inputs each
1831              * of which consumes half of a GRF register.
1832              */
1833             assert(inst->src[i].offset < REG_SIZE / 2);
1834             const unsigned grf = urb_start + inst->src[i].nr / 2;
1835             const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) +
1836                                     inst->src[i].offset;
1837             const unsigned width = inst->src[i].stride == 0 ?
1838                                    1 : MIN2(inst->exec_size, 8);
1839             struct brw_reg reg = stride(
1840                byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1841                            offset),
1842                width * inst->src[i].stride,
1843                width, inst->src[i].stride);
1844             reg.abs = inst->src[i].abs;
1845             reg.negate = inst->src[i].negate;
1846             inst->src[i] = reg;
1847          }
1848       }
1849    }
1850 
1851    /* Each attribute is 4 setup channels, each of which is half a reg. */
1852    this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1853 }
1854 
1855 void
convert_attr_sources_to_hw_regs(fs_inst * inst)1856 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1857 {
1858    for (int i = 0; i < inst->sources; i++) {
1859       if (inst->src[i].file == ATTR) {
1860          int grf = payload.num_regs +
1861                    prog_data->curb_read_length +
1862                    inst->src[i].nr +
1863                    inst->src[i].offset / REG_SIZE;
1864 
1865          /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1866           *
1867           * VertStride must be used to cross GRF register boundaries. This
1868           * rule implies that elements within a 'Width' cannot cross GRF
1869           * boundaries.
1870           *
1871           * So, for registers that are large enough, we have to split the exec
1872           * size in two and trust the compression state to sort it out.
1873           */
1874          unsigned total_size = inst->exec_size *
1875                                inst->src[i].stride *
1876                                type_sz(inst->src[i].type);
1877 
1878          assert(total_size <= 2 * REG_SIZE);
1879          const unsigned exec_size =
1880             (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1881 
1882          unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1883          struct brw_reg reg =
1884             stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1885                                inst->src[i].offset % REG_SIZE),
1886                    exec_size * inst->src[i].stride,
1887                    width, inst->src[i].stride);
1888          reg.abs = inst->src[i].abs;
1889          reg.negate = inst->src[i].negate;
1890 
1891          inst->src[i] = reg;
1892       }
1893    }
1894 }
1895 
1896 void
assign_vs_urb_setup()1897 fs_visitor::assign_vs_urb_setup()
1898 {
1899    struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1900 
1901    assert(stage == MESA_SHADER_VERTEX);
1902 
1903    /* Each attribute is 4 regs. */
1904    this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1905 
1906    assert(vs_prog_data->base.urb_read_length <= 15);
1907 
1908    /* Rewrite all ATTR file references to the hw grf that they land in. */
1909    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1910       convert_attr_sources_to_hw_regs(inst);
1911    }
1912 }
1913 
1914 void
assign_tcs_urb_setup()1915 fs_visitor::assign_tcs_urb_setup()
1916 {
1917    assert(stage == MESA_SHADER_TESS_CTRL);
1918 
1919    /* Rewrite all ATTR file references to HW_REGs. */
1920    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1921       convert_attr_sources_to_hw_regs(inst);
1922    }
1923 }
1924 
1925 void
assign_tes_urb_setup()1926 fs_visitor::assign_tes_urb_setup()
1927 {
1928    assert(stage == MESA_SHADER_TESS_EVAL);
1929 
1930    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1931 
1932    first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1933 
1934    /* Rewrite all ATTR file references to HW_REGs. */
1935    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1936       convert_attr_sources_to_hw_regs(inst);
1937    }
1938 }
1939 
1940 void
assign_gs_urb_setup()1941 fs_visitor::assign_gs_urb_setup()
1942 {
1943    assert(stage == MESA_SHADER_GEOMETRY);
1944 
1945    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1946 
1947    first_non_payload_grf +=
1948       8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1949 
1950    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1951       /* Rewrite all ATTR file references to GRFs. */
1952       convert_attr_sources_to_hw_regs(inst);
1953    }
1954 }
1955 
1956 
1957 /**
1958  * Split large virtual GRFs into separate components if we can.
1959  *
1960  * This is mostly duplicated with what brw_fs_vector_splitting does,
1961  * but that's really conservative because it's afraid of doing
1962  * splitting that doesn't result in real progress after the rest of
1963  * the optimization phases, which would cause infinite looping in
1964  * optimization.  We can do it once here, safely.  This also has the
1965  * opportunity to split interpolated values, or maybe even uniforms,
1966  * which we don't have at the IR level.
1967  *
1968  * We want to split, because virtual GRFs are what we register
1969  * allocate and spill (due to contiguousness requirements for some
1970  * instructions), and they're what we naturally generate in the
1971  * codegen process, but most virtual GRFs don't actually need to be
1972  * contiguous sets of GRFs.  If we split, we'll end up with reduced
1973  * live intervals and better dead code elimination and coalescing.
1974  */
1975 void
split_virtual_grfs()1976 fs_visitor::split_virtual_grfs()
1977 {
1978    /* Compact the register file so we eliminate dead vgrfs.  This
1979     * only defines split points for live registers, so if we have
1980     * too large dead registers they will hit assertions later.
1981     */
1982    compact_virtual_grfs();
1983 
1984    int num_vars = this->alloc.count;
1985 
1986    /* Count the total number of registers */
1987    int reg_count = 0;
1988    int vgrf_to_reg[num_vars];
1989    for (int i = 0; i < num_vars; i++) {
1990       vgrf_to_reg[i] = reg_count;
1991       reg_count += alloc.sizes[i];
1992    }
1993 
1994    /* An array of "split points".  For each register slot, this indicates
1995     * if this slot can be separated from the previous slot.  Every time an
1996     * instruction uses multiple elements of a register (as a source or
1997     * destination), we mark the used slots as inseparable.  Then we go
1998     * through and split the registers into the smallest pieces we can.
1999     */
2000    bool *split_points = new bool[reg_count];
2001    memset(split_points, 0, reg_count * sizeof(*split_points));
2002 
2003    /* Mark all used registers as fully splittable */
2004    foreach_block_and_inst(block, fs_inst, inst, cfg) {
2005       if (inst->dst.file == VGRF) {
2006          int reg = vgrf_to_reg[inst->dst.nr];
2007          for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
2008             split_points[reg + j] = true;
2009       }
2010 
2011       for (int i = 0; i < inst->sources; i++) {
2012          if (inst->src[i].file == VGRF) {
2013             int reg = vgrf_to_reg[inst->src[i].nr];
2014             for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
2015                split_points[reg + j] = true;
2016          }
2017       }
2018    }
2019 
2020    foreach_block_and_inst(block, fs_inst, inst, cfg) {
2021       /* We fix up undef instructions later */
2022       if (inst->opcode == SHADER_OPCODE_UNDEF) {
2023          /* UNDEF instructions are currently only used to undef entire
2024           * registers.  We need this invariant later when we split them.
2025           */
2026          assert(inst->dst.file == VGRF);
2027          assert(inst->dst.offset == 0);
2028          assert(inst->size_written == alloc.sizes[inst->dst.nr] * REG_SIZE);
2029          continue;
2030       }
2031 
2032       if (inst->dst.file == VGRF) {
2033          int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2034          for (unsigned j = 1; j < regs_written(inst); j++)
2035             split_points[reg + j] = false;
2036       }
2037       for (int i = 0; i < inst->sources; i++) {
2038          if (inst->src[i].file == VGRF) {
2039             int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2040             for (unsigned j = 1; j < regs_read(inst, i); j++)
2041                split_points[reg + j] = false;
2042          }
2043       }
2044    }
2045 
2046    int *new_virtual_grf = new int[reg_count];
2047    int *new_reg_offset = new int[reg_count];
2048 
2049    int reg = 0;
2050    for (int i = 0; i < num_vars; i++) {
2051       /* The first one should always be 0 as a quick sanity check. */
2052       assert(split_points[reg] == false);
2053 
2054       /* j = 0 case */
2055       new_reg_offset[reg] = 0;
2056       reg++;
2057       int offset = 1;
2058 
2059       /* j > 0 case */
2060       for (unsigned j = 1; j < alloc.sizes[i]; j++) {
2061          /* If this is a split point, reset the offset to 0 and allocate a
2062           * new virtual GRF for the previous offset many registers
2063           */
2064          if (split_points[reg]) {
2065             assert(offset <= MAX_VGRF_SIZE);
2066             int grf = alloc.allocate(offset);
2067             for (int k = reg - offset; k < reg; k++)
2068                new_virtual_grf[k] = grf;
2069             offset = 0;
2070          }
2071          new_reg_offset[reg] = offset;
2072          offset++;
2073          reg++;
2074       }
2075 
2076       /* The last one gets the original register number */
2077       assert(offset <= MAX_VGRF_SIZE);
2078       alloc.sizes[i] = offset;
2079       for (int k = reg - offset; k < reg; k++)
2080          new_virtual_grf[k] = i;
2081    }
2082    assert(reg == reg_count);
2083 
2084    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2085       if (inst->opcode == SHADER_OPCODE_UNDEF) {
2086          const fs_builder ibld(this, block, inst);
2087          assert(inst->size_written % REG_SIZE == 0);
2088          unsigned reg_offset = 0;
2089          while (reg_offset < inst->size_written / REG_SIZE) {
2090             reg = vgrf_to_reg[inst->dst.nr] + reg_offset;
2091             ibld.UNDEF(fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type));
2092             reg_offset += alloc.sizes[new_virtual_grf[reg]];
2093          }
2094          inst->remove(block);
2095          continue;
2096       }
2097 
2098       if (inst->dst.file == VGRF) {
2099          reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2100          inst->dst.nr = new_virtual_grf[reg];
2101          inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
2102                             inst->dst.offset % REG_SIZE;
2103          assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2104       }
2105       for (int i = 0; i < inst->sources; i++) {
2106 	 if (inst->src[i].file == VGRF) {
2107             reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2108             inst->src[i].nr = new_virtual_grf[reg];
2109             inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
2110                                   inst->src[i].offset % REG_SIZE;
2111             assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2112          }
2113       }
2114    }
2115    invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2116 
2117    delete[] split_points;
2118    delete[] new_virtual_grf;
2119    delete[] new_reg_offset;
2120 }
2121 
2122 /**
2123  * Remove unused virtual GRFs and compact the vgrf_* arrays.
2124  *
2125  * During code generation, we create tons of temporary variables, many of
2126  * which get immediately killed and are never used again.  Yet, in later
2127  * optimization and analysis passes, such as compute_live_intervals, we need
2128  * to loop over all the virtual GRFs.  Compacting them can save a lot of
2129  * overhead.
2130  */
2131 bool
compact_virtual_grfs()2132 fs_visitor::compact_virtual_grfs()
2133 {
2134    bool progress = false;
2135    int *remap_table = new int[this->alloc.count];
2136    memset(remap_table, -1, this->alloc.count * sizeof(int));
2137 
2138    /* Mark which virtual GRFs are used. */
2139    foreach_block_and_inst(block, const fs_inst, inst, cfg) {
2140       if (inst->dst.file == VGRF)
2141          remap_table[inst->dst.nr] = 0;
2142 
2143       for (int i = 0; i < inst->sources; i++) {
2144          if (inst->src[i].file == VGRF)
2145             remap_table[inst->src[i].nr] = 0;
2146       }
2147    }
2148 
2149    /* Compact the GRF arrays. */
2150    int new_index = 0;
2151    for (unsigned i = 0; i < this->alloc.count; i++) {
2152       if (remap_table[i] == -1) {
2153          /* We just found an unused register.  This means that we are
2154           * actually going to compact something.
2155           */
2156          progress = true;
2157       } else {
2158          remap_table[i] = new_index;
2159          alloc.sizes[new_index] = alloc.sizes[i];
2160          invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2161          ++new_index;
2162       }
2163    }
2164 
2165    this->alloc.count = new_index;
2166 
2167    /* Patch all the instructions to use the newly renumbered registers */
2168    foreach_block_and_inst(block, fs_inst, inst, cfg) {
2169       if (inst->dst.file == VGRF)
2170          inst->dst.nr = remap_table[inst->dst.nr];
2171 
2172       for (int i = 0; i < inst->sources; i++) {
2173          if (inst->src[i].file == VGRF)
2174             inst->src[i].nr = remap_table[inst->src[i].nr];
2175       }
2176    }
2177 
2178    /* Patch all the references to delta_xy, since they're used in register
2179     * allocation.  If they're unused, switch them to BAD_FILE so we don't
2180     * think some random VGRF is delta_xy.
2181     */
2182    for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2183       if (delta_xy[i].file == VGRF) {
2184          if (remap_table[delta_xy[i].nr] != -1) {
2185             delta_xy[i].nr = remap_table[delta_xy[i].nr];
2186          } else {
2187             delta_xy[i].file = BAD_FILE;
2188          }
2189       }
2190    }
2191 
2192    delete[] remap_table;
2193 
2194    return progress;
2195 }
2196 
2197 static int
get_subgroup_id_param_index(const brw_stage_prog_data * prog_data)2198 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
2199 {
2200    if (prog_data->nr_params == 0)
2201       return -1;
2202 
2203    /* The local thread id is always the last parameter in the list */
2204    uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
2205    if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
2206       return prog_data->nr_params - 1;
2207 
2208    return -1;
2209 }
2210 
2211 /**
2212  * Struct for handling complex alignments.
2213  *
2214  * A complex alignment is stored as multiplier and an offset.  A value is
2215  * considered to be aligned if it is {offset} larger than a multiple of {mul}.
2216  * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
2217  * following:
2218  *
2219  *  N  | cplx_align_apply({8, 2}, N)
2220  * ----+-----------------------------
2221  *  4  | 6
2222  *  6  | 6
2223  *  8  | 14
2224  *  10 | 14
2225  *  12 | 14
2226  *  14 | 14
2227  *  16 | 22
2228  */
2229 struct cplx_align {
2230    unsigned mul:4;
2231    unsigned offset:4;
2232 };
2233 
2234 #define CPLX_ALIGN_MAX_MUL 8
2235 
2236 static void
cplx_align_assert_sane(struct cplx_align a)2237 cplx_align_assert_sane(struct cplx_align a)
2238 {
2239    assert(a.mul > 0 && util_is_power_of_two_nonzero(a.mul));
2240    assert(a.offset < a.mul);
2241 }
2242 
2243 /**
2244  * Combines two alignments to produce a least multiple of sorts.
2245  *
2246  * The returned alignment is the smallest (in terms of multiplier) such that
2247  * anything aligned to both a and b will be aligned to the new alignment.
2248  * This function will assert-fail if a and b are not compatible, i.e. if the
2249  * offset parameters are such that no common alignment is possible.
2250  */
2251 static struct cplx_align
cplx_align_combine(struct cplx_align a,struct cplx_align b)2252 cplx_align_combine(struct cplx_align a, struct cplx_align b)
2253 {
2254    cplx_align_assert_sane(a);
2255    cplx_align_assert_sane(b);
2256 
2257    /* Assert that the alignments agree. */
2258    assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
2259 
2260    return a.mul > b.mul ? a : b;
2261 }
2262 
2263 /**
2264  * Apply a complex alignment
2265  *
2266  * This function will return the smallest number greater than or equal to
2267  * offset that is aligned to align.
2268  */
2269 static unsigned
cplx_align_apply(struct cplx_align align,unsigned offset)2270 cplx_align_apply(struct cplx_align align, unsigned offset)
2271 {
2272    return ALIGN(offset - align.offset, align.mul) + align.offset;
2273 }
2274 
2275 #define UNIFORM_SLOT_SIZE 4
2276 
2277 struct uniform_slot_info {
2278    /** True if the given uniform slot is live */
2279    unsigned is_live:1;
2280 
2281    /** True if this slot and the next slot must remain contiguous */
2282    unsigned contiguous:1;
2283 
2284    struct cplx_align align;
2285 };
2286 
2287 static void
mark_uniform_slots_read(struct uniform_slot_info * slots,unsigned num_slots,unsigned alignment)2288 mark_uniform_slots_read(struct uniform_slot_info *slots,
2289                         unsigned num_slots, unsigned alignment)
2290 {
2291    assert(alignment > 0 && util_is_power_of_two_nonzero(alignment));
2292    assert(alignment <= CPLX_ALIGN_MAX_MUL);
2293 
2294    /* We can't align a slot to anything less than the slot size */
2295    alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2296 
2297    struct cplx_align align = {alignment, 0};
2298    cplx_align_assert_sane(align);
2299 
2300    for (unsigned i = 0; i < num_slots; i++) {
2301       slots[i].is_live = true;
2302       if (i < num_slots - 1)
2303          slots[i].contiguous = true;
2304 
2305       align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2306       if (slots[i].align.mul == 0) {
2307          slots[i].align = align;
2308       } else {
2309          slots[i].align = cplx_align_combine(slots[i].align, align);
2310       }
2311    }
2312 }
2313 
2314 /**
2315  * Assign UNIFORM file registers to either push constants or pull constants.
2316  *
2317  * We allow a fragment shader to have more than the specified minimum
2318  * maximum number of fragment shader uniform components (64).  If
2319  * there are too many of these, they'd fill up all of register space.
2320  * So, this will push some of them out to the pull constant buffer and
2321  * update the program to load them.
2322  */
2323 void
assign_constant_locations()2324 fs_visitor::assign_constant_locations()
2325 {
2326    /* Only the first compile gets to decide on locations. */
2327    if (push_constant_loc) {
2328       assert(pull_constant_loc);
2329       return;
2330    }
2331 
2332    if (compiler->compact_params) {
2333       struct uniform_slot_info slots[uniforms + 1];
2334       memset(slots, 0, sizeof(slots));
2335 
2336       foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2337          for (int i = 0 ; i < inst->sources; i++) {
2338             if (inst->src[i].file != UNIFORM)
2339                continue;
2340 
2341             /* NIR tightly packs things so the uniform number might not be
2342              * aligned (if we have a double right after a float, for
2343              * instance).  This is fine because the process of re-arranging
2344              * them will ensure that things are properly aligned.  The offset
2345              * into that uniform, however, must be aligned.
2346              *
2347              * In Vulkan, we have explicit offsets but everything is crammed
2348              * into a single "variable" so inst->src[i].nr will always be 0.
2349              * Everything will be properly aligned relative to that one base.
2350              */
2351             assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2352 
2353             unsigned u = inst->src[i].nr +
2354                          inst->src[i].offset / UNIFORM_SLOT_SIZE;
2355 
2356             if (u >= uniforms)
2357                continue;
2358 
2359             unsigned slots_read;
2360             if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2361                slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2362             } else {
2363                unsigned bytes_read = inst->components_read(i) *
2364                                      type_sz(inst->src[i].type);
2365                slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2366             }
2367 
2368             assert(u + slots_read <= uniforms);
2369             mark_uniform_slots_read(&slots[u], slots_read,
2370                                     type_sz(inst->src[i].type));
2371          }
2372       }
2373 
2374       int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2375 
2376       /* Only allow 16 registers (128 uniform components) as push constants.
2377        *
2378        * Just demote the end of the list.  We could probably do better
2379        * here, demoting things that are rarely used in the program first.
2380        *
2381        * If changing this value, note the limitation about total_regs in
2382        * brw_curbe.c.
2383        */
2384       unsigned int max_push_components = 16 * 8;
2385       if (subgroup_id_index >= 0)
2386          max_push_components--; /* Save a slot for the thread ID */
2387 
2388       /* We push small arrays, but no bigger than 16 floats.  This is big
2389        * enough for a vec4 but hopefully not large enough to push out other
2390        * stuff.  We should probably use a better heuristic at some point.
2391        */
2392       const unsigned int max_chunk_size = 16;
2393 
2394       unsigned int num_push_constants = 0;
2395       unsigned int num_pull_constants = 0;
2396 
2397       push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2398       pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2399 
2400       /* Default to -1 meaning no location */
2401       memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2402       memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2403 
2404       int chunk_start = -1;
2405       struct cplx_align align;
2406       for (unsigned u = 0; u < uniforms; u++) {
2407          if (!slots[u].is_live) {
2408             assert(chunk_start == -1);
2409             continue;
2410          }
2411 
2412          /* Skip subgroup_id_index to put it in the last push register. */
2413          if (subgroup_id_index == (int)u)
2414             continue;
2415 
2416          if (chunk_start == -1) {
2417             chunk_start = u;
2418             align = slots[u].align;
2419          } else {
2420             /* Offset into the chunk */
2421             unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2422 
2423             /* Shift the slot alignment down by the chunk offset so it is
2424              * comparable with the base chunk alignment.
2425              */
2426             struct cplx_align slot_align = slots[u].align;
2427             slot_align.offset =
2428                (slot_align.offset - chunk_offset) & (align.mul - 1);
2429 
2430             align = cplx_align_combine(align, slot_align);
2431          }
2432 
2433          /* Sanity check the alignment */
2434          cplx_align_assert_sane(align);
2435 
2436          if (slots[u].contiguous)
2437             continue;
2438 
2439          /* Adjust the alignment to be in terms of slots, not bytes */
2440          assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2441          assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2442          align.mul /= UNIFORM_SLOT_SIZE;
2443          align.offset /= UNIFORM_SLOT_SIZE;
2444 
2445          unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2446          unsigned chunk_size = u - chunk_start + 1;
2447          if ((!compiler->supports_pull_constants && u < UBO_START) ||
2448              (chunk_size < max_chunk_size &&
2449               push_start_align + chunk_size <= max_push_components)) {
2450             /* Align up the number of push constants */
2451             num_push_constants = push_start_align;
2452             for (unsigned i = 0; i < chunk_size; i++)
2453                push_constant_loc[chunk_start + i] = num_push_constants++;
2454          } else {
2455             /* We need to pull this one */
2456             num_pull_constants = cplx_align_apply(align, num_pull_constants);
2457             for (unsigned i = 0; i < chunk_size; i++)
2458                pull_constant_loc[chunk_start + i] = num_pull_constants++;
2459          }
2460 
2461          /* Reset the chunk and start again */
2462          chunk_start = -1;
2463       }
2464 
2465       /* Add the CS local thread ID uniform at the end of the push constants */
2466       if (subgroup_id_index >= 0)
2467          push_constant_loc[subgroup_id_index] = num_push_constants++;
2468 
2469       /* As the uniforms are going to be reordered, stash the old array and
2470        * create two new arrays for push/pull params.
2471        */
2472       uint32_t *param = stage_prog_data->param;
2473       stage_prog_data->nr_params = num_push_constants;
2474       if (num_push_constants) {
2475          stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2476                                                 num_push_constants);
2477       } else {
2478          stage_prog_data->param = NULL;
2479       }
2480       assert(stage_prog_data->nr_pull_params == 0);
2481       assert(stage_prog_data->pull_param == NULL);
2482       if (num_pull_constants > 0) {
2483          stage_prog_data->nr_pull_params = num_pull_constants;
2484          stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2485                                                      num_pull_constants);
2486       }
2487 
2488       /* Up until now, the param[] array has been indexed by reg + offset
2489        * of UNIFORM registers.  Move pull constants into pull_param[] and
2490        * condense param[] to only contain the uniforms we chose to push.
2491        *
2492        * NOTE: Because we are condensing the params[] array, we know that
2493        * push_constant_loc[i] <= i and we can do it in one smooth loop without
2494        * having to make a copy.
2495        */
2496       for (unsigned int i = 0; i < uniforms; i++) {
2497          uint32_t value = param[i];
2498          if (pull_constant_loc[i] != -1) {
2499             stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2500          } else if (push_constant_loc[i] != -1) {
2501             stage_prog_data->param[push_constant_loc[i]] = value;
2502          }
2503       }
2504       ralloc_free(param);
2505    } else {
2506       /* If we don't want to compact anything, just set up dummy push/pull
2507        * arrays.  All the rest of the compiler cares about are these arrays.
2508        */
2509       push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2510       pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2511 
2512       for (unsigned u = 0; u < uniforms; u++)
2513          push_constant_loc[u] = u;
2514 
2515       memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2516    }
2517 
2518    /* Now that we know how many regular uniforms we'll push, reduce the
2519     * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2520     */
2521    unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2522    for (int i = 0; i < 4; i++) {
2523       struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2524 
2525       if (push_length + range->length > 64)
2526          range->length = 64 - push_length;
2527 
2528       push_length += range->length;
2529    }
2530    assert(push_length <= 64);
2531 }
2532 
2533 bool
get_pull_locs(const fs_reg & src,unsigned * out_surf_index,unsigned * out_pull_index)2534 fs_visitor::get_pull_locs(const fs_reg &src,
2535                           unsigned *out_surf_index,
2536                           unsigned *out_pull_index)
2537 {
2538    assert(src.file == UNIFORM);
2539 
2540    if (src.nr >= UBO_START) {
2541       const struct brw_ubo_range *range =
2542          &prog_data->ubo_ranges[src.nr - UBO_START];
2543 
2544       /* If this access is in our (reduced) range, use the push data. */
2545       if (src.offset / 32 < range->length)
2546          return false;
2547 
2548       *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2549       *out_pull_index = (32 * range->start + src.offset) / 4;
2550 
2551       prog_data->has_ubo_pull = true;
2552       return true;
2553    }
2554 
2555    const unsigned location = src.nr + src.offset / 4;
2556 
2557    if (location < uniforms && pull_constant_loc[location] != -1) {
2558       /* A regular uniform push constant */
2559       *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2560       *out_pull_index = pull_constant_loc[location];
2561 
2562       prog_data->has_ubo_pull = true;
2563       return true;
2564    }
2565 
2566    return false;
2567 }
2568 
2569 /**
2570  * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2571  * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2572  */
2573 void
lower_constant_loads()2574 fs_visitor::lower_constant_loads()
2575 {
2576    unsigned index, pull_index;
2577 
2578    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2579       /* Set up the annotation tracking for new generated instructions. */
2580       const fs_builder ibld(this, block, inst);
2581 
2582       for (int i = 0; i < inst->sources; i++) {
2583 	 if (inst->src[i].file != UNIFORM)
2584 	    continue;
2585 
2586          /* We'll handle this case later */
2587          if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2588             continue;
2589 
2590          if (!get_pull_locs(inst->src[i], &index, &pull_index))
2591 	    continue;
2592 
2593          assert(inst->src[i].stride == 0);
2594 
2595          const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2596          const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2597          const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2598          const unsigned base = pull_index * 4;
2599 
2600          ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2601                    dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2602 
2603          /* Rewrite the instruction to use the temporary VGRF. */
2604          inst->src[i].file = VGRF;
2605          inst->src[i].nr = dst.nr;
2606          inst->src[i].offset = (base & (block_sz - 1)) +
2607                                inst->src[i].offset % 4;
2608       }
2609 
2610       if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2611           inst->src[0].file == UNIFORM) {
2612 
2613          if (!get_pull_locs(inst->src[0], &index, &pull_index))
2614             continue;
2615 
2616          VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2617                                     brw_imm_ud(index),
2618                                     inst->src[1],
2619                                     pull_index * 4, 4);
2620          inst->remove(block);
2621       }
2622    }
2623    invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2624 }
2625 
2626 bool
opt_algebraic()2627 fs_visitor::opt_algebraic()
2628 {
2629    bool progress = false;
2630 
2631    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2632       switch (inst->opcode) {
2633       case BRW_OPCODE_MOV:
2634          if (!devinfo->has_64bit_float &&
2635              !devinfo->has_64bit_int &&
2636              (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2637               inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2638               inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2639             assert(inst->dst.type == inst->src[0].type);
2640             assert(!inst->saturate);
2641             assert(!inst->src[0].abs);
2642             assert(!inst->src[0].negate);
2643             const brw::fs_builder ibld(this, block, inst);
2644 
2645             if (inst->src[0].file == IMM) {
2646                ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2647                         brw_imm_ud(inst->src[0].u64 >> 32));
2648                ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2649                         brw_imm_ud(inst->src[0].u64));
2650             } else {
2651                ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2652                         subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1));
2653                ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2654                         subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0));
2655             }
2656 
2657             inst->remove(block);
2658             progress = true;
2659          }
2660 
2661          if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2662               inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2663              inst->dst.is_null() &&
2664              (inst->src[0].abs || inst->src[0].negate)) {
2665             inst->src[0].abs = false;
2666             inst->src[0].negate = false;
2667             progress = true;
2668             break;
2669          }
2670 
2671          if (inst->src[0].file != IMM)
2672             break;
2673 
2674          if (inst->saturate) {
2675             /* Full mixed-type saturates don't happen.  However, we can end up
2676              * with things like:
2677              *
2678              *    mov.sat(8) g21<1>DF       -1F
2679              *
2680              * Other mixed-size-but-same-base-type cases may also be possible.
2681              */
2682             if (inst->dst.type != inst->src[0].type &&
2683                 inst->dst.type != BRW_REGISTER_TYPE_DF &&
2684                 inst->src[0].type != BRW_REGISTER_TYPE_F)
2685                assert(!"unimplemented: saturate mixed types");
2686 
2687             if (brw_saturate_immediate(inst->src[0].type,
2688                                        &inst->src[0].as_brw_reg())) {
2689                inst->saturate = false;
2690                progress = true;
2691             }
2692          }
2693          break;
2694 
2695       case BRW_OPCODE_MUL:
2696          if (inst->src[1].file != IMM)
2697             continue;
2698 
2699          /* a * 1.0 = a */
2700          if (inst->src[1].is_one()) {
2701             inst->opcode = BRW_OPCODE_MOV;
2702             inst->src[1] = reg_undef;
2703             progress = true;
2704             break;
2705          }
2706 
2707          /* a * -1.0 = -a */
2708          if (inst->src[1].is_negative_one()) {
2709             inst->opcode = BRW_OPCODE_MOV;
2710             inst->src[0].negate = !inst->src[0].negate;
2711             inst->src[1] = reg_undef;
2712             progress = true;
2713             break;
2714          }
2715 
2716          break;
2717       case BRW_OPCODE_ADD:
2718          if (inst->src[1].file != IMM)
2719             continue;
2720 
2721          if (brw_reg_type_is_integer(inst->src[1].type) &&
2722              inst->src[1].is_zero()) {
2723             inst->opcode = BRW_OPCODE_MOV;
2724             inst->src[1] = reg_undef;
2725             progress = true;
2726             break;
2727          }
2728 
2729          if (inst->src[0].file == IMM) {
2730             assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2731             inst->opcode = BRW_OPCODE_MOV;
2732             inst->src[0].f += inst->src[1].f;
2733             inst->src[1] = reg_undef;
2734             progress = true;
2735             break;
2736          }
2737          break;
2738       case BRW_OPCODE_OR:
2739          if (inst->src[0].equals(inst->src[1]) ||
2740              inst->src[1].is_zero()) {
2741             /* On Gen8+, the OR instruction can have a source modifier that
2742              * performs logical not on the operand.  Cases of 'OR r0, ~r1, 0'
2743              * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV.
2744              */
2745             if (inst->src[0].negate) {
2746                inst->opcode = BRW_OPCODE_NOT;
2747                inst->src[0].negate = false;
2748             } else {
2749                inst->opcode = BRW_OPCODE_MOV;
2750             }
2751             inst->src[1] = reg_undef;
2752             progress = true;
2753             break;
2754          }
2755          break;
2756       case BRW_OPCODE_CMP:
2757          if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2758               inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2759              inst->src[1].is_zero() &&
2760              (inst->src[0].abs || inst->src[0].negate)) {
2761             inst->src[0].abs = false;
2762             inst->src[0].negate = false;
2763             progress = true;
2764             break;
2765          }
2766          break;
2767       case BRW_OPCODE_SEL:
2768          if (!devinfo->has_64bit_float &&
2769              !devinfo->has_64bit_int &&
2770              (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2771               inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2772               inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2773             assert(inst->dst.type == inst->src[0].type);
2774             assert(!inst->saturate);
2775             assert(!inst->src[0].abs && !inst->src[0].negate);
2776             assert(!inst->src[1].abs && !inst->src[1].negate);
2777             const brw::fs_builder ibld(this, block, inst);
2778 
2779             set_predicate(inst->predicate,
2780                           ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2781                                    subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
2782                                    subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)));
2783             set_predicate(inst->predicate,
2784                           ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2785                                    subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
2786                                    subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1)));
2787 
2788             inst->remove(block);
2789             progress = true;
2790          }
2791          if (inst->src[0].equals(inst->src[1])) {
2792             inst->opcode = BRW_OPCODE_MOV;
2793             inst->src[1] = reg_undef;
2794             inst->predicate = BRW_PREDICATE_NONE;
2795             inst->predicate_inverse = false;
2796             progress = true;
2797          } else if (inst->saturate && inst->src[1].file == IMM) {
2798             switch (inst->conditional_mod) {
2799             case BRW_CONDITIONAL_LE:
2800             case BRW_CONDITIONAL_L:
2801                switch (inst->src[1].type) {
2802                case BRW_REGISTER_TYPE_F:
2803                   if (inst->src[1].f >= 1.0f) {
2804                      inst->opcode = BRW_OPCODE_MOV;
2805                      inst->src[1] = reg_undef;
2806                      inst->conditional_mod = BRW_CONDITIONAL_NONE;
2807                      progress = true;
2808                   }
2809                   break;
2810                default:
2811                   break;
2812                }
2813                break;
2814             case BRW_CONDITIONAL_GE:
2815             case BRW_CONDITIONAL_G:
2816                switch (inst->src[1].type) {
2817                case BRW_REGISTER_TYPE_F:
2818                   if (inst->src[1].f <= 0.0f) {
2819                      inst->opcode = BRW_OPCODE_MOV;
2820                      inst->src[1] = reg_undef;
2821                      inst->conditional_mod = BRW_CONDITIONAL_NONE;
2822                      progress = true;
2823                   }
2824                   break;
2825                default:
2826                   break;
2827                }
2828             default:
2829                break;
2830             }
2831          }
2832          break;
2833       case BRW_OPCODE_MAD:
2834          if (inst->src[0].type != BRW_REGISTER_TYPE_F ||
2835              inst->src[1].type != BRW_REGISTER_TYPE_F ||
2836              inst->src[2].type != BRW_REGISTER_TYPE_F)
2837             break;
2838          if (inst->src[1].is_one()) {
2839             inst->opcode = BRW_OPCODE_ADD;
2840             inst->src[1] = inst->src[2];
2841             inst->src[2] = reg_undef;
2842             progress = true;
2843          } else if (inst->src[2].is_one()) {
2844             inst->opcode = BRW_OPCODE_ADD;
2845             inst->src[2] = reg_undef;
2846             progress = true;
2847          }
2848          break;
2849       case SHADER_OPCODE_BROADCAST:
2850          if (is_uniform(inst->src[0])) {
2851             inst->opcode = BRW_OPCODE_MOV;
2852             inst->sources = 1;
2853             inst->force_writemask_all = true;
2854             progress = true;
2855          } else if (inst->src[1].file == IMM) {
2856             inst->opcode = BRW_OPCODE_MOV;
2857             /* It's possible that the selected component will be too large and
2858              * overflow the register.  This can happen if someone does a
2859              * readInvocation() from GLSL or SPIR-V and provides an OOB
2860              * invocationIndex.  If this happens and we some how manage
2861              * to constant fold it in and get here, then component() may cause
2862              * us to start reading outside of the VGRF which will lead to an
2863              * assert later.  Instead, just let it wrap around if it goes over
2864              * exec_size.
2865              */
2866             const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2867             inst->src[0] = component(inst->src[0], comp);
2868             inst->sources = 1;
2869             inst->force_writemask_all = true;
2870             progress = true;
2871          }
2872          break;
2873 
2874       case SHADER_OPCODE_SHUFFLE:
2875          if (is_uniform(inst->src[0])) {
2876             inst->opcode = BRW_OPCODE_MOV;
2877             inst->sources = 1;
2878             progress = true;
2879          } else if (inst->src[1].file == IMM) {
2880             inst->opcode = BRW_OPCODE_MOV;
2881             inst->src[0] = component(inst->src[0],
2882                                      inst->src[1].ud);
2883             inst->sources = 1;
2884             progress = true;
2885          }
2886          break;
2887 
2888       default:
2889 	 break;
2890       }
2891 
2892       /* Swap if src[0] is immediate. */
2893       if (progress && inst->is_commutative()) {
2894          if (inst->src[0].file == IMM) {
2895             fs_reg tmp = inst->src[1];
2896             inst->src[1] = inst->src[0];
2897             inst->src[0] = tmp;
2898          }
2899       }
2900    }
2901 
2902    if (progress)
2903       invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
2904                           DEPENDENCY_INSTRUCTION_DETAIL);
2905 
2906    return progress;
2907 }
2908 
2909 /**
2910  * Optimize sample messages that have constant zero values for the trailing
2911  * texture coordinates. We can just reduce the message length for these
2912  * instructions instead of reserving a register for it. Trailing parameters
2913  * that aren't sent default to zero anyway. This will cause the dead code
2914  * eliminator to remove the MOV instruction that would otherwise be emitted to
2915  * set up the zero value.
2916  */
2917 bool
opt_zero_samples()2918 fs_visitor::opt_zero_samples()
2919 {
2920    /* Gen4 infers the texturing opcode based on the message length so we can't
2921     * change it.
2922     */
2923    if (devinfo->gen < 5)
2924       return false;
2925 
2926    bool progress = false;
2927 
2928    foreach_block_and_inst(block, fs_inst, inst, cfg) {
2929       if (!inst->is_tex())
2930          continue;
2931 
2932       fs_inst *load_payload = (fs_inst *) inst->prev;
2933 
2934       if (load_payload->is_head_sentinel() ||
2935           load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2936          continue;
2937 
2938       /* We don't want to remove the message header or the first parameter.
2939        * Removing the first parameter is not allowed, see the Haswell PRM
2940        * volume 7, page 149:
2941        *
2942        *     "Parameter 0 is required except for the sampleinfo message, which
2943        *      has no parameter 0"
2944        */
2945       while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2946              load_payload->src[(inst->mlen - inst->header_size) /
2947                                (inst->exec_size / 8) +
2948                                inst->header_size - 1].is_zero()) {
2949          inst->mlen -= inst->exec_size / 8;
2950          progress = true;
2951       }
2952    }
2953 
2954    if (progress)
2955       invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
2956 
2957    return progress;
2958 }
2959 
2960 bool
opt_register_renaming()2961 fs_visitor::opt_register_renaming()
2962 {
2963    bool progress = false;
2964    int depth = 0;
2965 
2966    unsigned remap[alloc.count];
2967    memset(remap, ~0u, sizeof(unsigned) * alloc.count);
2968 
2969    foreach_block_and_inst(block, fs_inst, inst, cfg) {
2970       if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2971          depth++;
2972       } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2973                  inst->opcode == BRW_OPCODE_WHILE) {
2974          depth--;
2975       }
2976 
2977       /* Rewrite instruction sources. */
2978       for (int i = 0; i < inst->sources; i++) {
2979          if (inst->src[i].file == VGRF &&
2980              remap[inst->src[i].nr] != ~0u &&
2981              remap[inst->src[i].nr] != inst->src[i].nr) {
2982             inst->src[i].nr = remap[inst->src[i].nr];
2983             progress = true;
2984          }
2985       }
2986 
2987       const unsigned dst = inst->dst.nr;
2988 
2989       if (depth == 0 &&
2990           inst->dst.file == VGRF &&
2991           alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2992           !inst->is_partial_write()) {
2993          if (remap[dst] == ~0u) {
2994             remap[dst] = dst;
2995          } else {
2996             remap[dst] = alloc.allocate(regs_written(inst));
2997             inst->dst.nr = remap[dst];
2998             progress = true;
2999          }
3000       } else if (inst->dst.file == VGRF &&
3001                  remap[dst] != ~0u &&
3002                  remap[dst] != dst) {
3003          inst->dst.nr = remap[dst];
3004          progress = true;
3005       }
3006    }
3007 
3008    if (progress) {
3009       invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
3010                           DEPENDENCY_VARIABLES);
3011 
3012       for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
3013          if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) {
3014             delta_xy[i].nr = remap[delta_xy[i].nr];
3015          }
3016       }
3017    }
3018 
3019    return progress;
3020 }
3021 
3022 /**
3023  * Remove redundant or useless discard jumps.
3024  *
3025  * For example, we can eliminate jumps in the following sequence:
3026  *
3027  * discard-jump       (redundant with the next jump)
3028  * discard-jump       (useless; jumps to the next instruction)
3029  * placeholder-halt
3030  */
3031 bool
opt_redundant_discard_jumps()3032 fs_visitor::opt_redundant_discard_jumps()
3033 {
3034    bool progress = false;
3035 
3036    bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
3037 
3038    fs_inst *placeholder_halt = NULL;
3039    foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
3040       if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
3041          placeholder_halt = inst;
3042          break;
3043       }
3044    }
3045 
3046    if (!placeholder_halt)
3047       return false;
3048 
3049    /* Delete any HALTs immediately before the placeholder halt. */
3050    for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
3051         !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
3052         prev = (fs_inst *) placeholder_halt->prev) {
3053       prev->remove(last_bblock);
3054       progress = true;
3055    }
3056 
3057    if (progress)
3058       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3059 
3060    return progress;
3061 }
3062 
3063 /**
3064  * Compute a bitmask with GRF granularity with a bit set for each GRF starting
3065  * from \p r.offset which overlaps the region starting at \p s.offset and
3066  * spanning \p ds bytes.
3067  */
3068 static inline unsigned
mask_relative_to(const fs_reg & r,const fs_reg & s,unsigned ds)3069 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
3070 {
3071    const int rel_offset = reg_offset(s) - reg_offset(r);
3072    const int shift = rel_offset / REG_SIZE;
3073    const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
3074    assert(reg_space(r) == reg_space(s) &&
3075           shift >= 0 && shift < int(8 * sizeof(unsigned)));
3076    return ((1 << n) - 1) << shift;
3077 }
3078 
3079 bool
compute_to_mrf()3080 fs_visitor::compute_to_mrf()
3081 {
3082    bool progress = false;
3083    int next_ip = 0;
3084 
3085    /* No MRFs on Gen >= 7. */
3086    if (devinfo->gen >= 7)
3087       return false;
3088 
3089    const fs_live_variables &live = live_analysis.require();
3090 
3091    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3092       int ip = next_ip;
3093       next_ip++;
3094 
3095       if (inst->opcode != BRW_OPCODE_MOV ||
3096 	  inst->is_partial_write() ||
3097 	  inst->dst.file != MRF || inst->src[0].file != VGRF ||
3098 	  inst->dst.type != inst->src[0].type ||
3099 	  inst->src[0].abs || inst->src[0].negate ||
3100           !inst->src[0].is_contiguous() ||
3101           inst->src[0].offset % REG_SIZE != 0)
3102 	 continue;
3103 
3104       /* Can't compute-to-MRF this GRF if someone else was going to
3105        * read it later.
3106        */
3107       if (live.vgrf_end[inst->src[0].nr] > ip)
3108 	 continue;
3109 
3110       /* Found a move of a GRF to a MRF.  Let's see if we can go rewrite the
3111        * things that computed the value of all GRFs of the source region.  The
3112        * regs_left bitset keeps track of the registers we haven't yet found a
3113        * generating instruction for.
3114        */
3115       unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
3116 
3117       foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3118          if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3119                              inst->src[0], inst->size_read(0))) {
3120 	    /* Found the last thing to write our reg we want to turn
3121 	     * into a compute-to-MRF.
3122 	     */
3123 
3124 	    /* If this one instruction didn't populate all the
3125 	     * channels, bail.  We might be able to rewrite everything
3126 	     * that writes that reg, but it would require smarter
3127 	     * tracking.
3128 	     */
3129 	    if (scan_inst->is_partial_write())
3130 	       break;
3131 
3132             /* Handling things not fully contained in the source of the copy
3133              * would need us to understand coalescing out more than one MOV at
3134              * a time.
3135              */
3136             if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
3137                                      inst->src[0], inst->size_read(0)))
3138                break;
3139 
3140 	    /* SEND instructions can't have MRF as a destination. */
3141 	    if (scan_inst->mlen)
3142 	       break;
3143 
3144 	    if (devinfo->gen == 6) {
3145 	       /* gen6 math instructions must have the destination be
3146 		* GRF, so no compute-to-MRF for them.
3147 		*/
3148 	       if (scan_inst->is_math()) {
3149 		  break;
3150 	       }
3151 	    }
3152 
3153             /* Clear the bits for any registers this instruction overwrites. */
3154             regs_left &= ~mask_relative_to(
3155                inst->src[0], scan_inst->dst, scan_inst->size_written);
3156             if (!regs_left)
3157                break;
3158 	 }
3159 
3160 	 /* We don't handle control flow here.  Most computation of
3161 	  * values that end up in MRFs are shortly before the MRF
3162 	  * write anyway.
3163 	  */
3164 	 if (block->start() == scan_inst)
3165 	    break;
3166 
3167 	 /* You can't read from an MRF, so if someone else reads our
3168 	  * MRF's source GRF that we wanted to rewrite, that stops us.
3169 	  */
3170 	 bool interfered = false;
3171 	 for (int i = 0; i < scan_inst->sources; i++) {
3172             if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
3173                                 inst->src[0], inst->size_read(0))) {
3174 	       interfered = true;
3175 	    }
3176 	 }
3177 	 if (interfered)
3178 	    break;
3179 
3180          if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3181                              inst->dst, inst->size_written)) {
3182 	    /* If somebody else writes our MRF here, we can't
3183 	     * compute-to-MRF before that.
3184 	     */
3185             break;
3186          }
3187 
3188          if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
3189              regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
3190                              inst->dst, inst->size_written)) {
3191 	    /* Found a SEND instruction, which means that there are
3192 	     * live values in MRFs from base_mrf to base_mrf +
3193 	     * scan_inst->mlen - 1.  Don't go pushing our MRF write up
3194 	     * above it.
3195 	     */
3196             break;
3197          }
3198       }
3199 
3200       if (regs_left)
3201          continue;
3202 
3203       /* Found all generating instructions of our MRF's source value, so it
3204        * should be safe to rewrite them to point to the MRF directly.
3205        */
3206       regs_left = (1 << regs_read(inst, 0)) - 1;
3207 
3208       foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3209          if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3210                              inst->src[0], inst->size_read(0))) {
3211             /* Clear the bits for any registers this instruction overwrites. */
3212             regs_left &= ~mask_relative_to(
3213                inst->src[0], scan_inst->dst, scan_inst->size_written);
3214 
3215             const unsigned rel_offset = reg_offset(scan_inst->dst) -
3216                                         reg_offset(inst->src[0]);
3217 
3218             if (inst->dst.nr & BRW_MRF_COMPR4) {
3219                /* Apply the same address transformation done by the hardware
3220                 * for COMPR4 MRF writes.
3221                 */
3222                assert(rel_offset < 2 * REG_SIZE);
3223                scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
3224 
3225                /* Clear the COMPR4 bit if the generating instruction is not
3226                 * compressed.
3227                 */
3228                if (scan_inst->size_written < 2 * REG_SIZE)
3229                   scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
3230 
3231             } else {
3232                /* Calculate the MRF number the result of this instruction is
3233                 * ultimately written to.
3234                 */
3235                scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
3236             }
3237 
3238             scan_inst->dst.file = MRF;
3239             scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
3240             scan_inst->saturate |= inst->saturate;
3241             if (!regs_left)
3242                break;
3243          }
3244       }
3245 
3246       assert(!regs_left);
3247       inst->remove(block);
3248       progress = true;
3249    }
3250 
3251    if (progress)
3252       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3253 
3254    return progress;
3255 }
3256 
3257 /**
3258  * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
3259  * flow.  We could probably do better here with some form of divergence
3260  * analysis.
3261  */
3262 bool
eliminate_find_live_channel()3263 fs_visitor::eliminate_find_live_channel()
3264 {
3265    bool progress = false;
3266    unsigned depth = 0;
3267 
3268    if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3269       /* The optimization below assumes that channel zero is live on thread
3270        * dispatch, which may not be the case if the fixed function dispatches
3271        * threads sparsely.
3272        */
3273       return false;
3274    }
3275 
3276    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3277       switch (inst->opcode) {
3278       case BRW_OPCODE_IF:
3279       case BRW_OPCODE_DO:
3280          depth++;
3281          break;
3282 
3283       case BRW_OPCODE_ENDIF:
3284       case BRW_OPCODE_WHILE:
3285          depth--;
3286          break;
3287 
3288       case FS_OPCODE_DISCARD_JUMP:
3289          /* This can potentially make control flow non-uniform until the end
3290           * of the program.
3291           */
3292          return progress;
3293 
3294       case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3295          if (depth == 0) {
3296             inst->opcode = BRW_OPCODE_MOV;
3297             inst->src[0] = brw_imm_ud(0u);
3298             inst->sources = 1;
3299             inst->force_writemask_all = true;
3300             progress = true;
3301          }
3302          break;
3303 
3304       default:
3305          break;
3306       }
3307    }
3308 
3309    if (progress)
3310       invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
3311 
3312    return progress;
3313 }
3314 
3315 /**
3316  * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3317  * instructions to FS_OPCODE_REP_FB_WRITE.
3318  */
3319 void
emit_repclear_shader()3320 fs_visitor::emit_repclear_shader()
3321 {
3322    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3323    int base_mrf = 0;
3324    int color_mrf = base_mrf + 2;
3325    fs_inst *mov;
3326 
3327    if (uniforms > 0) {
3328       mov = bld.exec_all().group(4, 0)
3329                .MOV(brw_message_reg(color_mrf),
3330                     fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3331    } else {
3332       struct brw_reg reg =
3333          brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3334                  BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3335                  BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3336 
3337       mov = bld.exec_all().group(4, 0)
3338                .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3339    }
3340 
3341    fs_inst *write = NULL;
3342    if (key->nr_color_regions == 1) {
3343       write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3344       write->saturate = key->clamp_fragment_color;
3345       write->base_mrf = color_mrf;
3346       write->target = 0;
3347       write->header_size = 0;
3348       write->mlen = 1;
3349    } else {
3350       assume(key->nr_color_regions > 0);
3351 
3352       struct brw_reg header =
3353          retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD);
3354       bld.exec_all().group(16, 0)
3355          .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3356 
3357       for (int i = 0; i < key->nr_color_regions; ++i) {
3358          if (i > 0) {
3359             bld.exec_all().group(1, 0)
3360                .MOV(component(header, 2), brw_imm_ud(i));
3361          }
3362 
3363          write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3364          write->saturate = key->clamp_fragment_color;
3365          write->base_mrf = base_mrf;
3366          write->target = i;
3367          write->header_size = 2;
3368          write->mlen = 3;
3369       }
3370    }
3371    write->eot = true;
3372    write->last_rt = true;
3373 
3374    calculate_cfg();
3375 
3376    assign_constant_locations();
3377    assign_curb_setup();
3378 
3379    /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3380    if (uniforms > 0) {
3381       assert(mov->src[0].file == FIXED_GRF);
3382       mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3383    }
3384 
3385    lower_scoreboard();
3386 }
3387 
3388 /**
3389  * Walks through basic blocks, looking for repeated MRF writes and
3390  * removing the later ones.
3391  */
3392 bool
remove_duplicate_mrf_writes()3393 fs_visitor::remove_duplicate_mrf_writes()
3394 {
3395    fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3396    bool progress = false;
3397 
3398    /* Need to update the MRF tracking for compressed instructions. */
3399    if (dispatch_width >= 16)
3400       return false;
3401 
3402    memset(last_mrf_move, 0, sizeof(last_mrf_move));
3403 
3404    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3405       if (inst->is_control_flow()) {
3406 	 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3407       }
3408 
3409       if (inst->opcode == BRW_OPCODE_MOV &&
3410 	  inst->dst.file == MRF) {
3411          fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3412 	 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV &&
3413              inst->dst.equals(prev_inst->dst) &&
3414              inst->src[0].equals(prev_inst->src[0]) &&
3415              inst->saturate == prev_inst->saturate &&
3416              inst->predicate == prev_inst->predicate &&
3417              inst->conditional_mod == prev_inst->conditional_mod &&
3418              inst->exec_size == prev_inst->exec_size) {
3419 	    inst->remove(block);
3420 	    progress = true;
3421 	    continue;
3422 	 }
3423       }
3424 
3425       /* Clear out the last-write records for MRFs that were overwritten. */
3426       if (inst->dst.file == MRF) {
3427          last_mrf_move[inst->dst.nr] = NULL;
3428       }
3429 
3430       if (inst->mlen > 0 && inst->base_mrf != -1) {
3431 	 /* Found a SEND instruction, which will include two or fewer
3432 	  * implied MRF writes.  We could do better here.
3433 	  */
3434 	 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
3435 	    last_mrf_move[inst->base_mrf + i] = NULL;
3436 	 }
3437       }
3438 
3439       /* Clear out any MRF move records whose sources got overwritten. */
3440       for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3441          if (last_mrf_move[i] &&
3442              regions_overlap(inst->dst, inst->size_written,
3443                              last_mrf_move[i]->src[0],
3444                              last_mrf_move[i]->size_read(0))) {
3445             last_mrf_move[i] = NULL;
3446          }
3447       }
3448 
3449       if (inst->opcode == BRW_OPCODE_MOV &&
3450 	  inst->dst.file == MRF &&
3451 	  inst->src[0].file != ARF &&
3452 	  !inst->is_partial_write()) {
3453          last_mrf_move[inst->dst.nr] = inst;
3454       }
3455    }
3456 
3457    if (progress)
3458       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3459 
3460    return progress;
3461 }
3462 
3463 /**
3464  * Rounding modes for conversion instructions are included for each
3465  * conversion, but right now it is a state. So once it is set,
3466  * we don't need to call it again for subsequent calls.
3467  *
3468  * This is useful for vector/matrices conversions, as setting the
3469  * mode once is enough for the full vector/matrix
3470  */
3471 bool
remove_extra_rounding_modes()3472 fs_visitor::remove_extra_rounding_modes()
3473 {
3474    bool progress = false;
3475    unsigned execution_mode = this->nir->info.float_controls_execution_mode;
3476 
3477    brw_rnd_mode base_mode = BRW_RND_MODE_UNSPECIFIED;
3478    if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
3479         FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
3480         FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
3481        execution_mode)
3482       base_mode = BRW_RND_MODE_RTNE;
3483    if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
3484         FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
3485         FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
3486        execution_mode)
3487       base_mode = BRW_RND_MODE_RTZ;
3488 
3489    foreach_block (block, cfg) {
3490       brw_rnd_mode prev_mode = base_mode;
3491 
3492       foreach_inst_in_block_safe (fs_inst, inst, block) {
3493          if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3494             assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3495             const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3496             if (mode == prev_mode) {
3497                inst->remove(block);
3498                progress = true;
3499             } else {
3500                prev_mode = mode;
3501             }
3502          }
3503       }
3504    }
3505 
3506    if (progress)
3507       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3508 
3509    return progress;
3510 }
3511 
3512 static void
clear_deps_for_inst_src(fs_inst * inst,bool * deps,int first_grf,int grf_len)3513 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3514 {
3515    /* Clear the flag for registers that actually got read (as expected). */
3516    for (int i = 0; i < inst->sources; i++) {
3517       int grf;
3518       if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3519          grf = inst->src[i].nr;
3520       } else {
3521          continue;
3522       }
3523 
3524       if (grf >= first_grf &&
3525           grf < first_grf + grf_len) {
3526          deps[grf - first_grf] = false;
3527          if (inst->exec_size == 16)
3528             deps[grf - first_grf + 1] = false;
3529       }
3530    }
3531 }
3532 
3533 /**
3534  * Implements this workaround for the original 965:
3535  *
3536  *     "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3537  *      check for post destination dependencies on this instruction, software
3538  *      must ensure that there is no destination hazard for the case of ‘write
3539  *      followed by a posted write’ shown in the following example.
3540  *
3541  *      1. mov r3 0
3542  *      2. send r3.xy <rest of send instruction>
3543  *      3. mov r2 r3
3544  *
3545  *      Due to no post-destination dependency check on the ‘send’, the above
3546  *      code sequence could have two instructions (1 and 2) in flight at the
3547  *      same time that both consider ‘r3’ as the target of their final writes.
3548  */
3549 void
insert_gen4_pre_send_dependency_workarounds(bblock_t * block,fs_inst * inst)3550 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3551                                                         fs_inst *inst)
3552 {
3553    int write_len = regs_written(inst);
3554    int first_write_grf = inst->dst.nr;
3555    bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3556    assert(write_len < (int)sizeof(needs_dep) - 1);
3557 
3558    memset(needs_dep, false, sizeof(needs_dep));
3559    memset(needs_dep, true, write_len);
3560 
3561    clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3562 
3563    /* Walk backwards looking for writes to registers we're writing which
3564     * aren't read since being written.  If we hit the start of the program,
3565     * we assume that there are no outstanding dependencies on entry to the
3566     * program.
3567     */
3568    foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3569       /* If we hit control flow, assume that there *are* outstanding
3570        * dependencies, and force their cleanup before our instruction.
3571        */
3572       if (block->start() == scan_inst && block->num != 0) {
3573          for (int i = 0; i < write_len; i++) {
3574             if (needs_dep[i])
3575                DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3576                                first_write_grf + i);
3577          }
3578          return;
3579       }
3580 
3581       /* We insert our reads as late as possible on the assumption that any
3582        * instruction but a MOV that might have left us an outstanding
3583        * dependency has more latency than a MOV.
3584        */
3585       if (scan_inst->dst.file == VGRF) {
3586          for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3587             int reg = scan_inst->dst.nr + i;
3588 
3589             if (reg >= first_write_grf &&
3590                 reg < first_write_grf + write_len &&
3591                 needs_dep[reg - first_write_grf]) {
3592                DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3593                needs_dep[reg - first_write_grf] = false;
3594                if (scan_inst->exec_size == 16)
3595                   needs_dep[reg - first_write_grf + 1] = false;
3596             }
3597          }
3598       }
3599 
3600       /* Clear the flag for registers that actually got read (as expected). */
3601       clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3602 
3603       /* Continue the loop only if we haven't resolved all the dependencies */
3604       int i;
3605       for (i = 0; i < write_len; i++) {
3606          if (needs_dep[i])
3607             break;
3608       }
3609       if (i == write_len)
3610          return;
3611    }
3612 }
3613 
3614 /**
3615  * Implements this workaround for the original 965:
3616  *
3617  *     "[DevBW, DevCL] Errata: A destination register from a send can not be
3618  *      used as a destination register until after it has been sourced by an
3619  *      instruction with a different destination register.
3620  */
3621 void
insert_gen4_post_send_dependency_workarounds(bblock_t * block,fs_inst * inst)3622 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3623 {
3624    int write_len = regs_written(inst);
3625    unsigned first_write_grf = inst->dst.nr;
3626    bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3627    assert(write_len < (int)sizeof(needs_dep) - 1);
3628 
3629    memset(needs_dep, false, sizeof(needs_dep));
3630    memset(needs_dep, true, write_len);
3631    /* Walk forwards looking for writes to registers we're writing which aren't
3632     * read before being written.
3633     */
3634    foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3635       /* If we hit control flow, force resolve all remaining dependencies. */
3636       if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3637          for (int i = 0; i < write_len; i++) {
3638             if (needs_dep[i])
3639                DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3640                                first_write_grf + i);
3641          }
3642          return;
3643       }
3644 
3645       /* Clear the flag for registers that actually got read (as expected). */
3646       clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3647 
3648       /* We insert our reads as late as possible since they're reading the
3649        * result of a SEND, which has massive latency.
3650        */
3651       if (scan_inst->dst.file == VGRF &&
3652           scan_inst->dst.nr >= first_write_grf &&
3653           scan_inst->dst.nr < first_write_grf + write_len &&
3654           needs_dep[scan_inst->dst.nr - first_write_grf]) {
3655          DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3656                          scan_inst->dst.nr);
3657          needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3658       }
3659 
3660       /* Continue the loop only if we haven't resolved all the dependencies */
3661       int i;
3662       for (i = 0; i < write_len; i++) {
3663          if (needs_dep[i])
3664             break;
3665       }
3666       if (i == write_len)
3667          return;
3668    }
3669 }
3670 
3671 void
insert_gen4_send_dependency_workarounds()3672 fs_visitor::insert_gen4_send_dependency_workarounds()
3673 {
3674    if (devinfo->gen != 4 || devinfo->is_g4x)
3675       return;
3676 
3677    bool progress = false;
3678 
3679    foreach_block_and_inst(block, fs_inst, inst, cfg) {
3680       if (inst->mlen != 0 && inst->dst.file == VGRF) {
3681          insert_gen4_pre_send_dependency_workarounds(block, inst);
3682          insert_gen4_post_send_dependency_workarounds(block, inst);
3683          progress = true;
3684       }
3685    }
3686 
3687    if (progress)
3688       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3689 }
3690 
3691 /**
3692  * Turns the generic expression-style uniform pull constant load instruction
3693  * into a hardware-specific series of instructions for loading a pull
3694  * constant.
3695  *
3696  * The expression style allows the CSE pass before this to optimize out
3697  * repeated loads from the same offset, and gives the pre-register-allocation
3698  * scheduling full flexibility, while the conversion to native instructions
3699  * allows the post-register-allocation scheduler the best information
3700  * possible.
3701  *
3702  * Note that execution masking for setting up pull constant loads is special:
3703  * the channels that need to be written are unrelated to the current execution
3704  * mask, since a later instruction will use one of the result channels as a
3705  * source operand for all 8 or 16 of its channels.
3706  */
3707 void
lower_uniform_pull_constant_loads()3708 fs_visitor::lower_uniform_pull_constant_loads()
3709 {
3710    foreach_block_and_inst (block, fs_inst, inst, cfg) {
3711       if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3712          continue;
3713 
3714       if (devinfo->gen >= 7) {
3715          const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3716          const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3717 
3718          ubld.group(8, 0).MOV(payload,
3719                               retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3720          ubld.group(1, 0).MOV(component(payload, 2),
3721                               brw_imm_ud(inst->src[1].ud / 16));
3722 
3723          inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3724          inst->src[1] = payload;
3725          inst->header_size = 1;
3726          inst->mlen = 1;
3727 
3728          invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
3729       } else {
3730          /* Before register allocation, we didn't tell the scheduler about the
3731           * MRF we use.  We know it's safe to use this MRF because nothing
3732           * else does except for register spill/unspill, which generates and
3733           * uses its MRF within a single IR instruction.
3734           */
3735          inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3736          inst->mlen = 1;
3737       }
3738    }
3739 }
3740 
3741 bool
lower_load_payload()3742 fs_visitor::lower_load_payload()
3743 {
3744    bool progress = false;
3745 
3746    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3747       if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3748          continue;
3749 
3750       assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3751       assert(inst->saturate == false);
3752       fs_reg dst = inst->dst;
3753 
3754       /* Get rid of COMPR4.  We'll add it back in if we need it */
3755       if (dst.file == MRF)
3756          dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3757 
3758       const fs_builder ibld(this, block, inst);
3759       const fs_builder ubld = ibld.exec_all();
3760 
3761       for (uint8_t i = 0; i < inst->header_size;) {
3762          /* Number of header GRFs to initialize at once with a single MOV
3763           * instruction.
3764           */
3765          const unsigned n =
3766             (i + 1 < inst->header_size && inst->src[i].stride == 1 &&
3767              inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ?
3768             2 : 1;
3769 
3770          if (inst->src[i].file != BAD_FILE)
3771             ubld.group(8 * n, 0).MOV(retype(dst, BRW_REGISTER_TYPE_UD),
3772                                      retype(inst->src[i], BRW_REGISTER_TYPE_UD));
3773 
3774          dst = byte_offset(dst, n * REG_SIZE);
3775          i += n;
3776       }
3777 
3778       if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3779           inst->exec_size > 8) {
3780          /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3781           * a straightforward copy.  Instead, the result of the
3782           * LOAD_PAYLOAD is treated as interleaved and the first four
3783           * non-header sources are unpacked as:
3784           *
3785           * m + 0: r0
3786           * m + 1: g0
3787           * m + 2: b0
3788           * m + 3: a0
3789           * m + 4: r1
3790           * m + 5: g1
3791           * m + 6: b1
3792           * m + 7: a1
3793           *
3794           * This is used for gen <= 5 fb writes.
3795           */
3796          assert(inst->exec_size == 16);
3797          assert(inst->header_size + 4 <= inst->sources);
3798          for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3799             if (inst->src[i].file != BAD_FILE) {
3800                if (devinfo->has_compr4) {
3801                   fs_reg compr4_dst = retype(dst, inst->src[i].type);
3802                   compr4_dst.nr |= BRW_MRF_COMPR4;
3803                   ibld.MOV(compr4_dst, inst->src[i]);
3804                } else {
3805                   /* Platform doesn't have COMPR4.  We have to fake it */
3806                   fs_reg mov_dst = retype(dst, inst->src[i].type);
3807                   ibld.quarter(0).MOV(mov_dst, quarter(inst->src[i], 0));
3808                   mov_dst.nr += 4;
3809                   ibld.quarter(1).MOV(mov_dst, quarter(inst->src[i], 1));
3810                }
3811             }
3812 
3813             dst.nr++;
3814          }
3815 
3816          /* The loop above only ever incremented us through the first set
3817           * of 4 registers.  However, thanks to the magic of COMPR4, we
3818           * actually wrote to the first 8 registers, so we need to take
3819           * that into account now.
3820           */
3821          dst.nr += 4;
3822 
3823          /* The COMPR4 code took care of the first 4 sources.  We'll let
3824           * the regular path handle any remaining sources.  Yes, we are
3825           * modifying the instruction but we're about to delete it so
3826           * this really doesn't hurt anything.
3827           */
3828          inst->header_size += 4;
3829       }
3830 
3831       for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3832          if (inst->src[i].file != BAD_FILE) {
3833             dst.type = inst->src[i].type;
3834             ibld.MOV(dst, inst->src[i]);
3835          } else {
3836             dst.type = BRW_REGISTER_TYPE_UD;
3837          }
3838          dst = offset(dst, ibld, 1);
3839       }
3840 
3841       inst->remove(block);
3842       progress = true;
3843    }
3844 
3845    if (progress)
3846       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3847 
3848    return progress;
3849 }
3850 
3851 void
lower_mul_dword_inst(fs_inst * inst,bblock_t * block)3852 fs_visitor::lower_mul_dword_inst(fs_inst *inst, bblock_t *block)
3853 {
3854    const fs_builder ibld(this, block, inst);
3855 
3856    const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3857    if (inst->src[1].file == IMM &&
3858        (( ud && inst->src[1].ud <= UINT16_MAX) ||
3859         (!ud && inst->src[1].d <= INT16_MAX && inst->src[1].d >= INT16_MIN))) {
3860       /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3861        * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3862        * src1 are used.
3863        *
3864        * If multiplying by an immediate value that fits in 16-bits, do a
3865        * single MUL instruction with that value in the proper location.
3866        */
3867       if (devinfo->gen < 7) {
3868          fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type);
3869          ibld.MOV(imm, inst->src[1]);
3870          ibld.MUL(inst->dst, imm, inst->src[0]);
3871       } else {
3872          ibld.MUL(inst->dst, inst->src[0],
3873                   ud ? brw_imm_uw(inst->src[1].ud)
3874                      : brw_imm_w(inst->src[1].d));
3875       }
3876    } else {
3877       /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3878        * do 32-bit integer multiplication in one instruction, but instead
3879        * must do a sequence (which actually calculates a 64-bit result):
3880        *
3881        *    mul(8)  acc0<1>D   g3<8,8,1>D      g4<8,8,1>D
3882        *    mach(8) null       g3<8,8,1>D      g4<8,8,1>D
3883        *    mov(8)  g2<1>D     acc0<8,8,1>D
3884        *
3885        * But on Gen > 6, the ability to use second accumulator register
3886        * (acc1) for non-float data types was removed, preventing a simple
3887        * implementation in SIMD16. A 16-channel result can be calculated by
3888        * executing the three instructions twice in SIMD8, once with quarter
3889        * control of 1Q for the first eight channels and again with 2Q for
3890        * the second eight channels.
3891        *
3892        * Which accumulator register is implicitly accessed (by AccWrEnable
3893        * for instance) is determined by the quarter control. Unfortunately
3894        * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3895        * implicit accumulator access by an instruction with 2Q will access
3896        * acc1 regardless of whether the data type is usable in acc1.
3897        *
3898        * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3899        * integer data types.
3900        *
3901        * Since we only want the low 32-bits of the result, we can do two
3902        * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3903        * adjust the high result and add them (like the mach is doing):
3904        *
3905        *    mul(8)  g7<1>D     g3<8,8,1>D      g4.0<8,8,1>UW
3906        *    mul(8)  g8<1>D     g3<8,8,1>D      g4.1<8,8,1>UW
3907        *    shl(8)  g9<1>D     g8<8,8,1>D      16D
3908        *    add(8)  g2<1>D     g7<8,8,1>D      g8<8,8,1>D
3909        *
3910        * We avoid the shl instruction by realizing that we only want to add
3911        * the low 16-bits of the "high" result to the high 16-bits of the
3912        * "low" result and using proper regioning on the add:
3913        *
3914        *    mul(8)  g7<1>D     g3<8,8,1>D      g4.0<16,8,2>UW
3915        *    mul(8)  g8<1>D     g3<8,8,1>D      g4.1<16,8,2>UW
3916        *    add(8)  g7.1<2>UW  g7.1<16,8,2>UW  g8<16,8,2>UW
3917        *
3918        * Since it does not use the (single) accumulator register, we can
3919        * schedule multi-component multiplications much better.
3920        */
3921 
3922       bool needs_mov = false;
3923       fs_reg orig_dst = inst->dst;
3924 
3925       /* Get a new VGRF for the "low" 32x16-bit multiplication result if
3926        * reusing the original destination is impossible due to hardware
3927        * restrictions, source/destination overlap, or it being the null
3928        * register.
3929        */
3930       fs_reg low = inst->dst;
3931       if (orig_dst.is_null() || orig_dst.file == MRF ||
3932           regions_overlap(inst->dst, inst->size_written,
3933                           inst->src[0], inst->size_read(0)) ||
3934           regions_overlap(inst->dst, inst->size_written,
3935                           inst->src[1], inst->size_read(1)) ||
3936           inst->dst.stride >= 4) {
3937          needs_mov = true;
3938          low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
3939                       inst->dst.type);
3940       }
3941 
3942       /* Get a new VGRF but keep the same stride as inst->dst */
3943       fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type);
3944       high.stride = inst->dst.stride;
3945       high.offset = inst->dst.offset % REG_SIZE;
3946 
3947       if (devinfo->gen >= 7) {
3948          /* From GEN:BUG:1604601757:
3949           *
3950           * "When multiplying a DW and any lower precision integer, source modifier
3951           *  is not supported."
3952           *
3953           * An unsupported negate modifier on src[1] would ordinarily be
3954           * lowered by the subsequent lower_regioning pass.  In this case that
3955           * pass would spawn another dword multiply.  Instead, lower the
3956           * modifier first.
3957           */
3958          const bool source_mods_unsupported = (devinfo->gen >= 12);
3959 
3960          if (inst->src[1].abs || (inst->src[1].negate &&
3961                                   source_mods_unsupported))
3962             lower_src_modifiers(this, block, inst, 1);
3963 
3964          if (inst->src[1].file == IMM) {
3965             ibld.MUL(low, inst->src[0],
3966                      brw_imm_uw(inst->src[1].ud & 0xffff));
3967             ibld.MUL(high, inst->src[0],
3968                      brw_imm_uw(inst->src[1].ud >> 16));
3969          } else {
3970             ibld.MUL(low, inst->src[0],
3971                      subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3972             ibld.MUL(high, inst->src[0],
3973                      subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3974          }
3975       } else {
3976          if (inst->src[0].abs)
3977             lower_src_modifiers(this, block, inst, 0);
3978 
3979          ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3980                   inst->src[1]);
3981          ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3982                   inst->src[1]);
3983       }
3984 
3985       ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
3986                subscript(low, BRW_REGISTER_TYPE_UW, 1),
3987                subscript(high, BRW_REGISTER_TYPE_UW, 0));
3988 
3989       if (needs_mov || inst->conditional_mod)
3990          set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low));
3991    }
3992 }
3993 
3994 void
lower_mul_qword_inst(fs_inst * inst,bblock_t * block)3995 fs_visitor::lower_mul_qword_inst(fs_inst *inst, bblock_t *block)
3996 {
3997    const fs_builder ibld(this, block, inst);
3998 
3999    /* Considering two 64-bit integers ab and cd where each letter        ab
4000     * corresponds to 32 bits, we get a 128-bit result WXYZ. We         * cd
4001     * only need to provide the YZ part of the result.               -------
4002     *                                                                    BD
4003     *  Only BD needs to be 64 bits. For AD and BC we only care       +  AD
4004     *  about the lower 32 bits (since they are part of the upper     +  BC
4005     *  32 bits of our result). AC is not needed since it starts      + AC
4006     *  on the 65th bit of the result.                               -------
4007     *                                                                  WXYZ
4008     */
4009    unsigned int q_regs = regs_written(inst);
4010    unsigned int d_regs = (q_regs + 1) / 2;
4011 
4012    fs_reg bd(VGRF, alloc.allocate(q_regs), BRW_REGISTER_TYPE_UQ);
4013    fs_reg ad(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4014    fs_reg bc(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4015 
4016    /* Here we need the full 64 bit result for 32b * 32b. */
4017    if (devinfo->has_integer_dword_mul) {
4018       ibld.MUL(bd, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4019                subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4020    } else {
4021       fs_reg bd_high(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4022       fs_reg bd_low(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4023       fs_reg acc = retype(brw_acc_reg(inst->exec_size), BRW_REGISTER_TYPE_UD);
4024 
4025       fs_inst *mul = ibld.MUL(acc,
4026                             subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4027                             subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4028       mul->writes_accumulator = true;
4029 
4030       ibld.MACH(bd_high, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4031                 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4032       ibld.MOV(bd_low, acc);
4033 
4034       ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 0), bd_low);
4035       ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 1), bd_high);
4036    }
4037 
4038    ibld.MUL(ad, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
4039             subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4040    ibld.MUL(bc, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4041             subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1));
4042 
4043    ibld.ADD(ad, ad, bc);
4044    ibld.ADD(subscript(bd, BRW_REGISTER_TYPE_UD, 1),
4045             subscript(bd, BRW_REGISTER_TYPE_UD, 1), ad);
4046 
4047    ibld.MOV(inst->dst, bd);
4048 }
4049 
4050 void
lower_mulh_inst(fs_inst * inst,bblock_t * block)4051 fs_visitor::lower_mulh_inst(fs_inst *inst, bblock_t *block)
4052 {
4053    const fs_builder ibld(this, block, inst);
4054 
4055    /* According to the BDW+ BSpec page for the "Multiply Accumulate
4056     * High" instruction:
4057     *
4058     *  "An added preliminary mov is required for source modification on
4059     *   src1:
4060     *      mov (8) r3.0<1>:d -r3<8;8,1>:d
4061     *      mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw
4062     *      mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d"
4063     */
4064    if (devinfo->gen >= 8 && (inst->src[1].negate || inst->src[1].abs))
4065       lower_src_modifiers(this, block, inst, 1);
4066 
4067    /* Should have been lowered to 8-wide. */
4068    assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
4069    const fs_reg acc = retype(brw_acc_reg(inst->exec_size), inst->dst.type);
4070    fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
4071    fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
4072 
4073    if (devinfo->gen >= 8) {
4074       /* Until Gen8, integer multiplies read 32-bits from one source,
4075        * and 16-bits from the other, and relying on the MACH instruction
4076        * to generate the high bits of the result.
4077        *
4078        * On Gen8, the multiply instruction does a full 32x32-bit
4079        * multiply, but in order to do a 64-bit multiply we can simulate
4080        * the previous behavior and then use a MACH instruction.
4081        */
4082       assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
4083              mul->src[1].type == BRW_REGISTER_TYPE_UD);
4084       mul->src[1].type = BRW_REGISTER_TYPE_UW;
4085       mul->src[1].stride *= 2;
4086 
4087       if (mul->src[1].file == IMM) {
4088          mul->src[1] = brw_imm_uw(mul->src[1].ud);
4089       }
4090    } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
4091               inst->group > 0) {
4092       /* Among other things the quarter control bits influence which
4093        * accumulator register is used by the hardware for instructions
4094        * that access the accumulator implicitly (e.g. MACH).  A
4095        * second-half instruction would normally map to acc1, which
4096        * doesn't exist on Gen7 and up (the hardware does emulate it for
4097        * floating-point instructions *only* by taking advantage of the
4098        * extra precision of acc0 not normally used for floating point
4099        * arithmetic).
4100        *
4101        * HSW and up are careful enough not to try to access an
4102        * accumulator register that doesn't exist, but on earlier Gen7
4103        * hardware we need to make sure that the quarter control bits are
4104        * zero to avoid non-deterministic behaviour and emit an extra MOV
4105        * to get the result masked correctly according to the current
4106        * channel enables.
4107        */
4108       mach->group = 0;
4109       mach->force_writemask_all = true;
4110       mach->dst = ibld.vgrf(inst->dst.type);
4111       ibld.MOV(inst->dst, mach->dst);
4112    }
4113 }
4114 
4115 bool
lower_integer_multiplication()4116 fs_visitor::lower_integer_multiplication()
4117 {
4118    bool progress = false;
4119 
4120    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4121       if (inst->opcode == BRW_OPCODE_MUL) {
4122          /* If the instruction is already in a form that does not need lowering,
4123           * return early.
4124           */
4125          if (devinfo->gen >= 7) {
4126             if (type_sz(inst->src[1].type) < 4 && type_sz(inst->src[0].type) <= 4)
4127                continue;
4128          } else {
4129             if (type_sz(inst->src[0].type) < 4 && type_sz(inst->src[1].type) <= 4)
4130                continue;
4131          }
4132 
4133          if ((inst->dst.type == BRW_REGISTER_TYPE_Q ||
4134               inst->dst.type == BRW_REGISTER_TYPE_UQ) &&
4135              (inst->src[0].type == BRW_REGISTER_TYPE_Q ||
4136               inst->src[0].type == BRW_REGISTER_TYPE_UQ) &&
4137              (inst->src[1].type == BRW_REGISTER_TYPE_Q ||
4138               inst->src[1].type == BRW_REGISTER_TYPE_UQ)) {
4139             lower_mul_qword_inst(inst, block);
4140             inst->remove(block);
4141             progress = true;
4142          } else if (!inst->dst.is_accumulator() &&
4143                     (inst->dst.type == BRW_REGISTER_TYPE_D ||
4144                      inst->dst.type == BRW_REGISTER_TYPE_UD) &&
4145                     !devinfo->has_integer_dword_mul) {
4146             lower_mul_dword_inst(inst, block);
4147             inst->remove(block);
4148             progress = true;
4149          }
4150       } else if (inst->opcode == SHADER_OPCODE_MULH) {
4151          lower_mulh_inst(inst, block);
4152          inst->remove(block);
4153          progress = true;
4154       }
4155 
4156    }
4157 
4158    if (progress)
4159       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4160 
4161    return progress;
4162 }
4163 
4164 bool
lower_minmax()4165 fs_visitor::lower_minmax()
4166 {
4167    assert(devinfo->gen < 6);
4168 
4169    bool progress = false;
4170 
4171    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4172       const fs_builder ibld(this, block, inst);
4173 
4174       if (inst->opcode == BRW_OPCODE_SEL &&
4175           inst->predicate == BRW_PREDICATE_NONE) {
4176          /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
4177           *        the original SEL.L/GE instruction
4178           */
4179          ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4180                   inst->conditional_mod);
4181          inst->predicate = BRW_PREDICATE_NORMAL;
4182          inst->conditional_mod = BRW_CONDITIONAL_NONE;
4183 
4184          progress = true;
4185       }
4186    }
4187 
4188    if (progress)
4189       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
4190 
4191    return progress;
4192 }
4193 
4194 bool
lower_sub_sat()4195 fs_visitor::lower_sub_sat()
4196 {
4197    bool progress = false;
4198 
4199    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4200       const fs_builder ibld(this, block, inst);
4201 
4202       if (inst->opcode == SHADER_OPCODE_USUB_SAT ||
4203           inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4204          /* The fundamental problem is the hardware performs source negation
4205           * at the bit width of the source.  If the source is 0x80000000D, the
4206           * negation is 0x80000000D.  As a result, subtractSaturate(0,
4207           * 0x80000000) will produce 0x80000000 instead of 0x7fffffff.  There
4208           * are at least three ways to resolve this:
4209           *
4210           * 1. Use the accumulator for the negated source.  The accumulator is
4211           *    33 bits, so our source 0x80000000 is sign-extended to
4212           *    0x1800000000.  The negation of which is 0x080000000.  This
4213           *    doesn't help for 64-bit integers (which are already bigger than
4214           *    33 bits).  There are also only 8 accumulators, so SIMD16 or
4215           *    SIMD32 instructions would have to be split into multiple SIMD8
4216           *    instructions.
4217           *
4218           * 2. Use slightly different math.  For any n-bit value x, we know (x
4219           *    >> 1) != -(x >> 1).  We can use this fact to only do
4220           *    subtractions involving (x >> 1).  subtractSaturate(a, b) ==
4221           *    subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)).
4222           *
4223           * 3. For unsigned sources, it is sufficient to replace the
4224           *    subtractSaturate with (a > b) ? a - b : 0.
4225           *
4226           * It may also be possible to use the SUBB instruction.  This
4227           * implicitly writes the accumulator, so it could only be used in the
4228           * same situations as #1 above.  It is further limited by only
4229           * allowing UD sources.
4230           */
4231          if (inst->exec_size == 8 && inst->src[0].type != BRW_REGISTER_TYPE_Q &&
4232              inst->src[0].type != BRW_REGISTER_TYPE_UQ) {
4233             fs_reg acc(ARF, BRW_ARF_ACCUMULATOR, inst->src[1].type);
4234 
4235             ibld.MOV(acc, inst->src[1]);
4236             fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]);
4237             add->saturate = true;
4238             add->src[0].negate = true;
4239          } else if (inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4240             /* tmp = src1 >> 1;
4241              * dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp));
4242              */
4243             fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
4244             fs_reg tmp2 = ibld.vgrf(inst->src[0].type);
4245             fs_reg tmp3 = ibld.vgrf(inst->src[0].type);
4246             fs_inst *add;
4247 
4248             ibld.SHR(tmp1, inst->src[1], brw_imm_d(1));
4249 
4250             add = ibld.ADD(tmp2, inst->src[1], tmp1);
4251             add->src[1].negate = true;
4252 
4253             add = ibld.ADD(tmp3, inst->src[0], tmp1);
4254             add->src[1].negate = true;
4255             add->saturate = true;
4256 
4257             add = ibld.ADD(inst->dst, tmp3, tmp2);
4258             add->src[1].negate = true;
4259             add->saturate = true;
4260          } else {
4261             /* a > b ? a - b : 0 */
4262             ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4263                      BRW_CONDITIONAL_G);
4264 
4265             fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]);
4266             add->src[1].negate = !add->src[1].negate;
4267 
4268             ibld.SEL(inst->dst, inst->dst, brw_imm_ud(0))
4269                ->predicate = BRW_PREDICATE_NORMAL;
4270          }
4271 
4272          inst->remove(block);
4273          progress = true;
4274       }
4275    }
4276 
4277    if (progress)
4278       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4279 
4280    return progress;
4281 }
4282 
4283 /**
4284  * Get the mask of SIMD channels enabled during dispatch and not yet disabled
4285  * by discard.  Due to the layout of the sample mask in the fragment shader
4286  * thread payload, \p bld is required to have a dispatch_width() not greater
4287  * than 16 for fragment shaders.
4288  */
4289 static fs_reg
sample_mask_reg(const fs_builder & bld)4290 sample_mask_reg(const fs_builder &bld)
4291 {
4292    const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
4293 
4294    if (v->stage != MESA_SHADER_FRAGMENT) {
4295       return brw_imm_ud(0xffffffff);
4296    } else if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
4297       assert(bld.dispatch_width() <= 16);
4298       return brw_flag_subreg(sample_mask_flag_subreg(v) + bld.group() / 16);
4299    } else {
4300       assert(v->devinfo->gen >= 6 && bld.dispatch_width() <= 16);
4301       return retype(brw_vec1_grf((bld.group() >= 16 ? 2 : 1), 7),
4302                     BRW_REGISTER_TYPE_UW);
4303    }
4304 }
4305 
4306 static void
setup_color_payload(const fs_builder & bld,const brw_wm_prog_key * key,fs_reg * dst,fs_reg color,unsigned components)4307 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
4308                     fs_reg *dst, fs_reg color, unsigned components)
4309 {
4310    if (key->clamp_fragment_color) {
4311       fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
4312       assert(color.type == BRW_REGISTER_TYPE_F);
4313 
4314       for (unsigned i = 0; i < components; i++)
4315          set_saturate(true,
4316                       bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
4317 
4318       color = tmp;
4319    }
4320 
4321    for (unsigned i = 0; i < components; i++)
4322       dst[i] = offset(color, bld, i);
4323 }
4324 
4325 uint32_t
brw_fb_write_msg_control(const fs_inst * inst,const struct brw_wm_prog_data * prog_data)4326 brw_fb_write_msg_control(const fs_inst *inst,
4327                          const struct brw_wm_prog_data *prog_data)
4328 {
4329    uint32_t mctl;
4330 
4331    if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
4332       assert(inst->group == 0 && inst->exec_size == 16);
4333       mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
4334    } else if (prog_data->dual_src_blend) {
4335       assert(inst->exec_size == 8);
4336 
4337       if (inst->group % 16 == 0)
4338          mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
4339       else if (inst->group % 16 == 8)
4340          mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
4341       else
4342          unreachable("Invalid dual-source FB write instruction group");
4343    } else {
4344       assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
4345 
4346       if (inst->exec_size == 16)
4347          mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
4348       else if (inst->exec_size == 8)
4349          mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
4350       else
4351          unreachable("Invalid FB write execution size");
4352    }
4353 
4354    return mctl;
4355 }
4356 
4357 static void
lower_fb_write_logical_send(const fs_builder & bld,fs_inst * inst,const struct brw_wm_prog_data * prog_data,const brw_wm_prog_key * key,const fs_visitor::thread_payload & payload)4358 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
4359                             const struct brw_wm_prog_data *prog_data,
4360                             const brw_wm_prog_key *key,
4361                             const fs_visitor::thread_payload &payload)
4362 {
4363    assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
4364    const gen_device_info *devinfo = bld.shader->devinfo;
4365    const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
4366    const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
4367    const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
4368    const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
4369    const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
4370    const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
4371    fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
4372    const unsigned components =
4373       inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
4374 
4375    assert(inst->target != 0 || src0_alpha.file == BAD_FILE);
4376 
4377    /* We can potentially have a message length of up to 15, so we have to set
4378     * base_mrf to either 0 or 1 in order to fit in m0..m15.
4379     */
4380    fs_reg sources[15];
4381    int header_size = 2, payload_header_size;
4382    unsigned length = 0;
4383 
4384    if (devinfo->gen < 6) {
4385       /* TODO: Support SIMD32 on gen4-5 */
4386       assert(bld.group() < 16);
4387 
4388       /* For gen4-5, we always have a header consisting of g0 and g1.  We have
4389        * an implied MOV from g0,g1 to the start of the message.  The MOV from
4390        * g0 is handled by the hardware and the MOV from g1 is provided by the
4391        * generator.  This is required because, on gen4-5, the generator may
4392        * generate two write messages with different message lengths in order
4393        * to handle AA data properly.
4394        *
4395        * Also, since the pixel mask goes in the g0 portion of the message and
4396        * since render target writes are the last thing in the shader, we write
4397        * the pixel mask directly into g0 and it will get copied as part of the
4398        * implied write.
4399        */
4400       if (prog_data->uses_kill) {
4401          bld.exec_all().group(1, 0)
4402             .MOV(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW),
4403                  sample_mask_reg(bld));
4404       }
4405 
4406       assert(length == 0);
4407       length = 2;
4408    } else if ((devinfo->gen <= 7 && !devinfo->is_haswell &&
4409                prog_data->uses_kill) ||
4410               (devinfo->gen < 11 &&
4411                (color1.file != BAD_FILE || key->nr_color_regions > 1))) {
4412       /* From the Sandy Bridge PRM, volume 4, page 198:
4413        *
4414        *     "Dispatched Pixel Enables. One bit per pixel indicating
4415        *      which pixels were originally enabled when the thread was
4416        *      dispatched. This field is only required for the end-of-
4417        *      thread message and on all dual-source messages."
4418        */
4419       const fs_builder ubld = bld.exec_all().group(8, 0);
4420 
4421       fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4422       if (bld.group() < 16) {
4423          /* The header starts off as g0 and g1 for the first half */
4424          ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4425                                               BRW_REGISTER_TYPE_UD));
4426       } else {
4427          /* The header starts off as g0 and g2 for the second half */
4428          assert(bld.group() < 32);
4429          const fs_reg header_sources[2] = {
4430             retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4431             retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD),
4432          };
4433          ubld.LOAD_PAYLOAD(header, header_sources, 2, 0);
4434 
4435          /* Gen12 will require additional fix-ups if we ever hit this path. */
4436          assert(devinfo->gen < 12);
4437       }
4438 
4439       uint32_t g00_bits = 0;
4440 
4441       /* Set "Source0 Alpha Present to RenderTarget" bit in message
4442        * header.
4443        */
4444       if (src0_alpha.file != BAD_FILE)
4445          g00_bits |= 1 << 11;
4446 
4447       /* Set computes stencil to render target */
4448       if (prog_data->computed_stencil)
4449          g00_bits |= 1 << 14;
4450 
4451       if (g00_bits) {
4452          /* OR extra bits into g0.0 */
4453          ubld.group(1, 0).OR(component(header, 0),
4454                              retype(brw_vec1_grf(0, 0),
4455                                     BRW_REGISTER_TYPE_UD),
4456                              brw_imm_ud(g00_bits));
4457       }
4458 
4459       /* Set the render target index for choosing BLEND_STATE. */
4460       if (inst->target > 0) {
4461          ubld.group(1, 0).MOV(component(header, 2), brw_imm_ud(inst->target));
4462       }
4463 
4464       if (prog_data->uses_kill) {
4465          ubld.group(1, 0).MOV(retype(component(header, 15),
4466                                      BRW_REGISTER_TYPE_UW),
4467                               sample_mask_reg(bld));
4468       }
4469 
4470       assert(length == 0);
4471       sources[0] = header;
4472       sources[1] = horiz_offset(header, 8);
4473       length = 2;
4474    }
4475    assert(length == 0 || length == 2);
4476    header_size = length;
4477 
4478    if (payload.aa_dest_stencil_reg[0]) {
4479       assert(inst->group < 16);
4480       sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
4481       bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
4482          .MOV(sources[length],
4483               fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg[0], 0)));
4484       length++;
4485    }
4486 
4487    if (src0_alpha.file != BAD_FILE) {
4488       for (unsigned i = 0; i < bld.dispatch_width() / 8; i++) {
4489          const fs_builder &ubld = bld.exec_all().group(8, i)
4490                                     .annotate("FB write src0 alpha");
4491          const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_F);
4492          ubld.MOV(tmp, horiz_offset(src0_alpha, i * 8));
4493          setup_color_payload(ubld, key, &sources[length], tmp, 1);
4494          length++;
4495       }
4496    }
4497 
4498    if (sample_mask.file != BAD_FILE) {
4499       sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
4500                                BRW_REGISTER_TYPE_UD);
4501 
4502       /* Hand over gl_SampleMask.  Only the lower 16 bits of each channel are
4503        * relevant.  Since it's unsigned single words one vgrf is always
4504        * 16-wide, but only the lower or higher 8 channels will be used by the
4505        * hardware when doing a SIMD8 write depending on whether we have
4506        * selected the subspans for the first or second half respectively.
4507        */
4508       assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
4509       sample_mask.type = BRW_REGISTER_TYPE_UW;
4510       sample_mask.stride *= 2;
4511 
4512       bld.exec_all().annotate("FB write oMask")
4513          .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
4514                            inst->group % 16),
4515               sample_mask);
4516       length++;
4517    }
4518 
4519    payload_header_size = length;
4520 
4521    setup_color_payload(bld, key, &sources[length], color0, components);
4522    length += 4;
4523 
4524    if (color1.file != BAD_FILE) {
4525       setup_color_payload(bld, key, &sources[length], color1, components);
4526       length += 4;
4527    }
4528 
4529    if (src_depth.file != BAD_FILE) {
4530       sources[length] = src_depth;
4531       length++;
4532    }
4533 
4534    if (dst_depth.file != BAD_FILE) {
4535       sources[length] = dst_depth;
4536       length++;
4537    }
4538 
4539    if (src_stencil.file != BAD_FILE) {
4540       assert(devinfo->gen >= 9);
4541       assert(bld.dispatch_width() == 8);
4542 
4543       /* XXX: src_stencil is only available on gen9+. dst_depth is never
4544        * available on gen9+. As such it's impossible to have both enabled at the
4545        * same time and therefore length cannot overrun the array.
4546        */
4547       assert(length < 15);
4548 
4549       sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4550       bld.exec_all().annotate("FB write OS")
4551          .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
4552               subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
4553       length++;
4554    }
4555 
4556    fs_inst *load;
4557    if (devinfo->gen >= 7) {
4558       /* Send from the GRF */
4559       fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
4560       load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
4561       payload.nr = bld.shader->alloc.allocate(regs_written(load));
4562       load->dst = payload;
4563 
4564       uint32_t msg_ctl = brw_fb_write_msg_control(inst, prog_data);
4565       uint32_t ex_desc = 0;
4566 
4567       inst->desc =
4568          (inst->group / 16) << 11 | /* rt slot group */
4569          brw_dp_write_desc(devinfo, inst->target, msg_ctl,
4570                            GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE,
4571                            inst->last_rt, false);
4572 
4573       if (devinfo->gen >= 11) {
4574          /* Set the "Render Target Index" and "Src0 Alpha Present" fields
4575           * in the extended message descriptor, in lieu of using a header.
4576           */
4577          ex_desc = inst->target << 12 | (src0_alpha.file != BAD_FILE) << 15;
4578 
4579          if (key->nr_color_regions == 0)
4580             ex_desc |= 1 << 20; /* Null Render Target */
4581       }
4582 
4583       inst->opcode = SHADER_OPCODE_SEND;
4584       inst->resize_sources(3);
4585       inst->sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
4586       inst->src[0] = brw_imm_ud(inst->desc);
4587       inst->src[1] = brw_imm_ud(ex_desc);
4588       inst->src[2] = payload;
4589       inst->mlen = regs_written(load);
4590       inst->ex_mlen = 0;
4591       inst->header_size = header_size;
4592       inst->check_tdr = true;
4593       inst->send_has_side_effects = true;
4594    } else {
4595       /* Send from the MRF */
4596       load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
4597                               sources, length, payload_header_size);
4598 
4599       /* On pre-SNB, we have to interlace the color values.  LOAD_PAYLOAD
4600        * will do this for us if we just give it a COMPR4 destination.
4601        */
4602       if (devinfo->gen < 6 && bld.dispatch_width() == 16)
4603          load->dst.nr |= BRW_MRF_COMPR4;
4604 
4605       if (devinfo->gen < 6) {
4606          /* Set up src[0] for the implied MOV from grf0-1 */
4607          inst->resize_sources(1);
4608          inst->src[0] = brw_vec8_grf(0, 0);
4609       } else {
4610          inst->resize_sources(0);
4611       }
4612       inst->base_mrf = 1;
4613       inst->opcode = FS_OPCODE_FB_WRITE;
4614       inst->mlen = regs_written(load);
4615       inst->header_size = header_size;
4616    }
4617 }
4618 
4619 static void
lower_fb_read_logical_send(const fs_builder & bld,fs_inst * inst)4620 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
4621 {
4622    const gen_device_info *devinfo = bld.shader->devinfo;
4623    const fs_builder &ubld = bld.exec_all().group(8, 0);
4624    const unsigned length = 2;
4625    const fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, length);
4626 
4627    if (bld.group() < 16) {
4628       ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4629                                            BRW_REGISTER_TYPE_UD));
4630    } else {
4631       assert(bld.group() < 32);
4632       const fs_reg header_sources[] = {
4633          retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4634          retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD)
4635       };
4636       ubld.LOAD_PAYLOAD(header, header_sources, ARRAY_SIZE(header_sources), 0);
4637 
4638       if (devinfo->gen >= 12) {
4639          /* On Gen12 the Viewport and Render Target Array Index fields (AKA
4640           * Poly 0 Info) are provided in r1.1 instead of r0.0, and the render
4641           * target message header format was updated accordingly -- However
4642           * the updated format only works for the lower 16 channels in a
4643           * SIMD32 thread, since the higher 16 channels want the subspan data
4644           * from r2 instead of r1, so we need to copy over the contents of
4645           * r1.1 in order to fix things up.
4646           */
4647          ubld.group(1, 0).MOV(component(header, 9),
4648                               retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_UD));
4649       }
4650    }
4651 
4652    inst->resize_sources(1);
4653    inst->src[0] = header;
4654    inst->opcode = FS_OPCODE_FB_READ;
4655    inst->mlen = length;
4656    inst->header_size = length;
4657 }
4658 
4659 static void
lower_sampler_logical_send_gen4(const fs_builder & bld,fs_inst * inst,opcode op,const fs_reg & coordinate,const fs_reg & shadow_c,const fs_reg & lod,const fs_reg & lod2,const fs_reg & surface,const fs_reg & sampler,unsigned coord_components,unsigned grad_components)4660 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
4661                                 const fs_reg &coordinate,
4662                                 const fs_reg &shadow_c,
4663                                 const fs_reg &lod, const fs_reg &lod2,
4664                                 const fs_reg &surface,
4665                                 const fs_reg &sampler,
4666                                 unsigned coord_components,
4667                                 unsigned grad_components)
4668 {
4669    const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
4670                          op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
4671    fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
4672    fs_reg msg_end = msg_begin;
4673 
4674    /* g0 header. */
4675    msg_end = offset(msg_end, bld.group(8, 0), 1);
4676 
4677    for (unsigned i = 0; i < coord_components; i++)
4678       bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
4679               offset(coordinate, bld, i));
4680 
4681    msg_end = offset(msg_end, bld, coord_components);
4682 
4683    /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
4684     * require all three components to be present and zero if they are unused.
4685     */
4686    if (coord_components > 0 &&
4687        (has_lod || shadow_c.file != BAD_FILE ||
4688         (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
4689       assert(coord_components <= 3);
4690       for (unsigned i = 0; i < 3 - coord_components; i++)
4691          bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
4692 
4693       msg_end = offset(msg_end, bld, 3 - coord_components);
4694    }
4695 
4696    if (op == SHADER_OPCODE_TXD) {
4697       /* TXD unsupported in SIMD16 mode. */
4698       assert(bld.dispatch_width() == 8);
4699 
4700       /* the slots for u and v are always present, but r is optional */
4701       if (coord_components < 2)
4702          msg_end = offset(msg_end, bld, 2 - coord_components);
4703 
4704       /*  P   = u, v, r
4705        * dPdx = dudx, dvdx, drdx
4706        * dPdy = dudy, dvdy, drdy
4707        *
4708        * 1-arg: Does not exist.
4709        *
4710        * 2-arg: dudx   dvdx   dudy   dvdy
4711        *        dPdx.x dPdx.y dPdy.x dPdy.y
4712        *        m4     m5     m6     m7
4713        *
4714        * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
4715        *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4716        *        m5     m6     m7     m8     m9     m10
4717        */
4718       for (unsigned i = 0; i < grad_components; i++)
4719          bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4720 
4721       msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4722 
4723       for (unsigned i = 0; i < grad_components; i++)
4724          bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4725 
4726       msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4727    }
4728 
4729    if (has_lod) {
4730       /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4731        * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4732        */
4733       assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4734              bld.dispatch_width() == 16);
4735 
4736       const brw_reg_type type =
4737          (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4738           BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4739       bld.MOV(retype(msg_end, type), lod);
4740       msg_end = offset(msg_end, bld, 1);
4741    }
4742 
4743    if (shadow_c.file != BAD_FILE) {
4744       if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4745          /* There's no plain shadow compare message, so we use shadow
4746           * compare with a bias of 0.0.
4747           */
4748          bld.MOV(msg_end, brw_imm_f(0.0f));
4749          msg_end = offset(msg_end, bld, 1);
4750       }
4751 
4752       bld.MOV(msg_end, shadow_c);
4753       msg_end = offset(msg_end, bld, 1);
4754    }
4755 
4756    inst->opcode = op;
4757    inst->src[0] = reg_undef;
4758    inst->src[1] = surface;
4759    inst->src[2] = sampler;
4760    inst->resize_sources(3);
4761    inst->base_mrf = msg_begin.nr;
4762    inst->mlen = msg_end.nr - msg_begin.nr;
4763    inst->header_size = 1;
4764 }
4765 
4766 static void
lower_sampler_logical_send_gen5(const fs_builder & bld,fs_inst * inst,opcode op,const fs_reg & coordinate,const fs_reg & shadow_c,const fs_reg & lod,const fs_reg & lod2,const fs_reg & sample_index,const fs_reg & surface,const fs_reg & sampler,unsigned coord_components,unsigned grad_components)4767 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4768                                 const fs_reg &coordinate,
4769                                 const fs_reg &shadow_c,
4770                                 const fs_reg &lod, const fs_reg &lod2,
4771                                 const fs_reg &sample_index,
4772                                 const fs_reg &surface,
4773                                 const fs_reg &sampler,
4774                                 unsigned coord_components,
4775                                 unsigned grad_components)
4776 {
4777    fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4778    fs_reg msg_coords = message;
4779    unsigned header_size = 0;
4780 
4781    if (inst->offset != 0) {
4782       /* The offsets set up by the visitor are in the m1 header, so we can't
4783        * go headerless.
4784        */
4785       header_size = 1;
4786       message.nr--;
4787    }
4788 
4789    for (unsigned i = 0; i < coord_components; i++)
4790       bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4791               offset(coordinate, bld, i));
4792 
4793    fs_reg msg_end = offset(msg_coords, bld, coord_components);
4794    fs_reg msg_lod = offset(msg_coords, bld, 4);
4795 
4796    if (shadow_c.file != BAD_FILE) {
4797       fs_reg msg_shadow = msg_lod;
4798       bld.MOV(msg_shadow, shadow_c);
4799       msg_lod = offset(msg_shadow, bld, 1);
4800       msg_end = msg_lod;
4801    }
4802 
4803    switch (op) {
4804    case SHADER_OPCODE_TXL:
4805    case FS_OPCODE_TXB:
4806       bld.MOV(msg_lod, lod);
4807       msg_end = offset(msg_lod, bld, 1);
4808       break;
4809    case SHADER_OPCODE_TXD:
4810       /**
4811        *  P   =  u,    v,    r
4812        * dPdx = dudx, dvdx, drdx
4813        * dPdy = dudy, dvdy, drdy
4814        *
4815        * Load up these values:
4816        * - dudx   dudy   dvdx   dvdy   drdx   drdy
4817        * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4818        */
4819       msg_end = msg_lod;
4820       for (unsigned i = 0; i < grad_components; i++) {
4821          bld.MOV(msg_end, offset(lod, bld, i));
4822          msg_end = offset(msg_end, bld, 1);
4823 
4824          bld.MOV(msg_end, offset(lod2, bld, i));
4825          msg_end = offset(msg_end, bld, 1);
4826       }
4827       break;
4828    case SHADER_OPCODE_TXS:
4829       msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4830       bld.MOV(msg_lod, lod);
4831       msg_end = offset(msg_lod, bld, 1);
4832       break;
4833    case SHADER_OPCODE_TXF:
4834       msg_lod = offset(msg_coords, bld, 3);
4835       bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4836       msg_end = offset(msg_lod, bld, 1);
4837       break;
4838    case SHADER_OPCODE_TXF_CMS:
4839       msg_lod = offset(msg_coords, bld, 3);
4840       /* lod */
4841       bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4842       /* sample index */
4843       bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4844       msg_end = offset(msg_lod, bld, 2);
4845       break;
4846    default:
4847       break;
4848    }
4849 
4850    inst->opcode = op;
4851    inst->src[0] = reg_undef;
4852    inst->src[1] = surface;
4853    inst->src[2] = sampler;
4854    inst->resize_sources(3);
4855    inst->base_mrf = message.nr;
4856    inst->mlen = msg_end.nr - message.nr;
4857    inst->header_size = header_size;
4858 
4859    /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4860    assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4861 }
4862 
4863 static bool
is_high_sampler(const struct gen_device_info * devinfo,const fs_reg & sampler)4864 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4865 {
4866    if (devinfo->gen < 8 && !devinfo->is_haswell)
4867       return false;
4868 
4869    return sampler.file != IMM || sampler.ud >= 16;
4870 }
4871 
4872 static unsigned
sampler_msg_type(const gen_device_info * devinfo,opcode opcode,bool shadow_compare)4873 sampler_msg_type(const gen_device_info *devinfo,
4874                  opcode opcode, bool shadow_compare)
4875 {
4876    assert(devinfo->gen >= 5);
4877    switch (opcode) {
4878    case SHADER_OPCODE_TEX:
4879       return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE :
4880                               GEN5_SAMPLER_MESSAGE_SAMPLE;
4881    case FS_OPCODE_TXB:
4882       return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE :
4883                               GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
4884    case SHADER_OPCODE_TXL:
4885       return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE :
4886                               GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
4887    case SHADER_OPCODE_TXL_LZ:
4888       return shadow_compare ? GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ :
4889                               GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
4890    case SHADER_OPCODE_TXS:
4891    case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
4892       return GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
4893    case SHADER_OPCODE_TXD:
4894       assert(!shadow_compare || devinfo->gen >= 8 || devinfo->is_haswell);
4895       return shadow_compare ? HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE :
4896                               GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
4897    case SHADER_OPCODE_TXF:
4898       return GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4899    case SHADER_OPCODE_TXF_LZ:
4900       assert(devinfo->gen >= 9);
4901       return GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
4902    case SHADER_OPCODE_TXF_CMS_W:
4903       assert(devinfo->gen >= 9);
4904       return GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
4905    case SHADER_OPCODE_TXF_CMS:
4906       return devinfo->gen >= 7 ? GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS :
4907                                  GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4908    case SHADER_OPCODE_TXF_UMS:
4909       assert(devinfo->gen >= 7);
4910       return GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
4911    case SHADER_OPCODE_TXF_MCS:
4912       assert(devinfo->gen >= 7);
4913       return GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
4914    case SHADER_OPCODE_LOD:
4915       return GEN5_SAMPLER_MESSAGE_LOD;
4916    case SHADER_OPCODE_TG4:
4917       assert(devinfo->gen >= 7);
4918       return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C :
4919                               GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
4920       break;
4921    case SHADER_OPCODE_TG4_OFFSET:
4922       assert(devinfo->gen >= 7);
4923       return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C :
4924                               GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
4925    case SHADER_OPCODE_SAMPLEINFO:
4926       return GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
4927    default:
4928       unreachable("not reached");
4929    }
4930 }
4931 
4932 static void
lower_sampler_logical_send_gen7(const fs_builder & bld,fs_inst * inst,opcode op,const fs_reg & coordinate,const fs_reg & shadow_c,fs_reg lod,const fs_reg & lod2,const fs_reg & min_lod,const fs_reg & sample_index,const fs_reg & mcs,const fs_reg & surface,const fs_reg & sampler,const fs_reg & surface_handle,const fs_reg & sampler_handle,const fs_reg & tg4_offset,unsigned coord_components,unsigned grad_components)4933 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4934                                 const fs_reg &coordinate,
4935                                 const fs_reg &shadow_c,
4936                                 fs_reg lod, const fs_reg &lod2,
4937                                 const fs_reg &min_lod,
4938                                 const fs_reg &sample_index,
4939                                 const fs_reg &mcs,
4940                                 const fs_reg &surface,
4941                                 const fs_reg &sampler,
4942                                 const fs_reg &surface_handle,
4943                                 const fs_reg &sampler_handle,
4944                                 const fs_reg &tg4_offset,
4945                                 unsigned coord_components,
4946                                 unsigned grad_components)
4947 {
4948    const gen_device_info *devinfo = bld.shader->devinfo;
4949    const brw_stage_prog_data *prog_data = bld.shader->stage_prog_data;
4950    unsigned reg_width = bld.dispatch_width() / 8;
4951    unsigned header_size = 0, length = 0;
4952    fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4953    for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4954       sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4955 
4956    /* We must have exactly one of surface/sampler and surface/sampler_handle */
4957    assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
4958    assert((sampler.file == BAD_FILE) != (sampler_handle.file == BAD_FILE));
4959 
4960    if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4961        inst->offset != 0 || inst->eot ||
4962        op == SHADER_OPCODE_SAMPLEINFO ||
4963        sampler_handle.file != BAD_FILE ||
4964        is_high_sampler(devinfo, sampler)) {
4965       /* For general texture offsets (no txf workaround), we need a header to
4966        * put them in.
4967        *
4968        * TG4 needs to place its channel select in the header, for interaction
4969        * with ARB_texture_swizzle.  The sampler index is only 4-bits, so for
4970        * larger sampler numbers we need to offset the Sampler State Pointer in
4971        * the header.
4972        */
4973       fs_reg header = retype(sources[0], BRW_REGISTER_TYPE_UD);
4974       header_size = 1;
4975       length++;
4976 
4977       /* If we're requesting fewer than four channels worth of response,
4978        * and we have an explicit header, we need to set up the sampler
4979        * writemask.  It's reversed from normal: 1 means "don't write".
4980        */
4981       if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4982          assert(regs_written(inst) % reg_width == 0);
4983          unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4984          inst->offset |= mask << 12;
4985       }
4986 
4987       /* Build the actual header */
4988       const fs_builder ubld = bld.exec_all().group(8, 0);
4989       const fs_builder ubld1 = ubld.group(1, 0);
4990       ubld.MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
4991       if (inst->offset) {
4992          ubld1.MOV(component(header, 2), brw_imm_ud(inst->offset));
4993       } else if (bld.shader->stage != MESA_SHADER_VERTEX &&
4994                  bld.shader->stage != MESA_SHADER_FRAGMENT) {
4995          /* The vertex and fragment stages have g0.2 set to 0, so
4996           * header0.2 is 0 when g0 is copied. Other stages may not, so we
4997           * must set it to 0 to avoid setting undesirable bits in the
4998           * message.
4999           */
5000          ubld1.MOV(component(header, 2), brw_imm_ud(0));
5001       }
5002 
5003       if (sampler_handle.file != BAD_FILE) {
5004          /* Bindless sampler handles aren't relative to the sampler state
5005           * pointer passed into the shader through SAMPLER_STATE_POINTERS_*.
5006           * Instead, it's an absolute pointer relative to dynamic state base
5007           * address.
5008           *
5009           * Sampler states are 16 bytes each and the pointer we give here has
5010           * to be 32-byte aligned.  In order to avoid more indirect messages
5011           * than required, we assume that all bindless sampler states are
5012           * 32-byte aligned.  This sacrifices a bit of general state base
5013           * address space but means we can do something more efficient in the
5014           * shader.
5015           */
5016          ubld1.MOV(component(header, 3), sampler_handle);
5017       } else if (is_high_sampler(devinfo, sampler)) {
5018          fs_reg sampler_state_ptr =
5019             retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD);
5020 
5021          /* Gen11+ sampler message headers include bits in 4:0 which conflict
5022           * with the ones included in g0.3 bits 4:0.  Mask them out.
5023           */
5024          if (devinfo->gen >= 11) {
5025             sampler_state_ptr = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
5026             ubld1.AND(sampler_state_ptr,
5027                       retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5028                       brw_imm_ud(INTEL_MASK(31, 5)));
5029          }
5030 
5031          if (sampler.file == BRW_IMMEDIATE_VALUE) {
5032             assert(sampler.ud >= 16);
5033             const int sampler_state_size = 16; /* 16 bytes */
5034 
5035             ubld1.ADD(component(header, 3), sampler_state_ptr,
5036                       brw_imm_ud(16 * (sampler.ud / 16) * sampler_state_size));
5037          } else {
5038             fs_reg tmp = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
5039             ubld1.AND(tmp, sampler, brw_imm_ud(0x0f0));
5040             ubld1.SHL(tmp, tmp, brw_imm_ud(4));
5041             ubld1.ADD(component(header, 3), sampler_state_ptr, tmp);
5042          }
5043       } else if (devinfo->gen >= 11) {
5044          /* Gen11+ sampler message headers include bits in 4:0 which conflict
5045           * with the ones included in g0.3 bits 4:0.  Mask them out.
5046           */
5047          ubld1.AND(component(header, 3),
5048                    retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5049                    brw_imm_ud(INTEL_MASK(31, 5)));
5050       }
5051    }
5052 
5053    if (shadow_c.file != BAD_FILE) {
5054       bld.MOV(sources[length], shadow_c);
5055       length++;
5056    }
5057 
5058    bool coordinate_done = false;
5059 
5060    /* Set up the LOD info */
5061    switch (op) {
5062    case FS_OPCODE_TXB:
5063    case SHADER_OPCODE_TXL:
5064       if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
5065          op = SHADER_OPCODE_TXL_LZ;
5066          break;
5067       }
5068       bld.MOV(sources[length], lod);
5069       length++;
5070       break;
5071    case SHADER_OPCODE_TXD:
5072       /* TXD should have been lowered in SIMD16 mode. */
5073       assert(bld.dispatch_width() == 8);
5074 
5075       /* Load dPdx and the coordinate together:
5076        * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
5077        */
5078       for (unsigned i = 0; i < coord_components; i++) {
5079          bld.MOV(sources[length++], offset(coordinate, bld, i));
5080 
5081          /* For cube map array, the coordinate is (u,v,r,ai) but there are
5082           * only derivatives for (u, v, r).
5083           */
5084          if (i < grad_components) {
5085             bld.MOV(sources[length++], offset(lod, bld, i));
5086             bld.MOV(sources[length++], offset(lod2, bld, i));
5087          }
5088       }
5089 
5090       coordinate_done = true;
5091       break;
5092    case SHADER_OPCODE_TXS:
5093       bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
5094       length++;
5095       break;
5096    case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5097       /* We need an LOD; just use 0 */
5098       bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
5099       length++;
5100       break;
5101    case SHADER_OPCODE_TXF:
5102       /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
5103        * On Gen9 they are u, v, lod, r
5104        */
5105       bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
5106 
5107       if (devinfo->gen >= 9) {
5108          if (coord_components >= 2) {
5109             bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
5110                     offset(coordinate, bld, 1));
5111          } else {
5112             sources[length] = brw_imm_d(0);
5113          }
5114          length++;
5115       }
5116 
5117       if (devinfo->gen >= 9 && lod.is_zero()) {
5118          op = SHADER_OPCODE_TXF_LZ;
5119       } else {
5120          bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
5121          length++;
5122       }
5123 
5124       for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
5125          bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5126                  offset(coordinate, bld, i));
5127 
5128       coordinate_done = true;
5129       break;
5130 
5131    case SHADER_OPCODE_TXF_CMS:
5132    case SHADER_OPCODE_TXF_CMS_W:
5133    case SHADER_OPCODE_TXF_UMS:
5134    case SHADER_OPCODE_TXF_MCS:
5135       if (op == SHADER_OPCODE_TXF_UMS ||
5136           op == SHADER_OPCODE_TXF_CMS ||
5137           op == SHADER_OPCODE_TXF_CMS_W) {
5138          bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
5139          length++;
5140       }
5141 
5142       if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
5143          /* Data from the multisample control surface. */
5144          bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
5145          length++;
5146 
5147          /* On Gen9+ we'll use ld2dms_w instead which has two registers for
5148           * the MCS data.
5149           */
5150          if (op == SHADER_OPCODE_TXF_CMS_W) {
5151             bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
5152                     mcs.file == IMM ?
5153                     mcs :
5154                     offset(mcs, bld, 1));
5155             length++;
5156          }
5157       }
5158 
5159       /* There is no offsetting for this message; just copy in the integer
5160        * texture coordinates.
5161        */
5162       for (unsigned i = 0; i < coord_components; i++)
5163          bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5164                  offset(coordinate, bld, i));
5165 
5166       coordinate_done = true;
5167       break;
5168    case SHADER_OPCODE_TG4_OFFSET:
5169       /* More crazy intermixing */
5170       for (unsigned i = 0; i < 2; i++) /* u, v */
5171          bld.MOV(sources[length++], offset(coordinate, bld, i));
5172 
5173       for (unsigned i = 0; i < 2; i++) /* offu, offv */
5174          bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5175                  offset(tg4_offset, bld, i));
5176 
5177       if (coord_components == 3) /* r if present */
5178          bld.MOV(sources[length++], offset(coordinate, bld, 2));
5179 
5180       coordinate_done = true;
5181       break;
5182    default:
5183       break;
5184    }
5185 
5186    /* Set up the coordinate (except for cases where it was done above) */
5187    if (!coordinate_done) {
5188       for (unsigned i = 0; i < coord_components; i++)
5189          bld.MOV(sources[length++], offset(coordinate, bld, i));
5190    }
5191 
5192    if (min_lod.file != BAD_FILE) {
5193       /* Account for all of the missing coordinate sources */
5194       length += 4 - coord_components;
5195       if (op == SHADER_OPCODE_TXD)
5196          length += (3 - grad_components) * 2;
5197 
5198       bld.MOV(sources[length++], min_lod);
5199    }
5200 
5201    unsigned mlen;
5202    if (reg_width == 2)
5203       mlen = length * reg_width - header_size;
5204    else
5205       mlen = length * reg_width;
5206 
5207    const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
5208                                      BRW_REGISTER_TYPE_F);
5209    bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
5210 
5211    /* Generate the SEND. */
5212    inst->opcode = SHADER_OPCODE_SEND;
5213    inst->mlen = mlen;
5214    inst->header_size = header_size;
5215 
5216    const unsigned msg_type =
5217       sampler_msg_type(devinfo, op, inst->shadow_compare);
5218    const unsigned simd_mode =
5219       inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5220                              BRW_SAMPLER_SIMD_MODE_SIMD16;
5221 
5222    uint32_t base_binding_table_index;
5223    switch (op) {
5224    case SHADER_OPCODE_TG4:
5225    case SHADER_OPCODE_TG4_OFFSET:
5226       base_binding_table_index = prog_data->binding_table.gather_texture_start;
5227       break;
5228    case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5229       base_binding_table_index = prog_data->binding_table.image_start;
5230       break;
5231    default:
5232       base_binding_table_index = prog_data->binding_table.texture_start;
5233       break;
5234    }
5235 
5236    inst->sfid = BRW_SFID_SAMPLER;
5237    if (surface.file == IMM &&
5238        (sampler.file == IMM || sampler_handle.file != BAD_FILE)) {
5239       inst->desc = brw_sampler_desc(devinfo,
5240                                     surface.ud + base_binding_table_index,
5241                                     sampler.file == IMM ? sampler.ud % 16 : 0,
5242                                     msg_type,
5243                                     simd_mode,
5244                                     0 /* return_format unused on gen7+ */);
5245       inst->src[0] = brw_imm_ud(0);
5246       inst->src[1] = brw_imm_ud(0); /* ex_desc */
5247    } else if (surface_handle.file != BAD_FILE) {
5248       /* Bindless surface */
5249       assert(devinfo->gen >= 9);
5250       inst->desc = brw_sampler_desc(devinfo,
5251                                     GEN9_BTI_BINDLESS,
5252                                     sampler.file == IMM ? sampler.ud % 16 : 0,
5253                                     msg_type,
5254                                     simd_mode,
5255                                     0 /* return_format unused on gen7+ */);
5256 
5257       /* For bindless samplers, the entire address is included in the message
5258        * header so we can leave the portion in the message descriptor 0.
5259        */
5260       if (sampler_handle.file != BAD_FILE || sampler.file == IMM) {
5261          inst->src[0] = brw_imm_ud(0);
5262       } else {
5263          const fs_builder ubld = bld.group(1, 0).exec_all();
5264          fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5265          ubld.SHL(desc, sampler, brw_imm_ud(8));
5266          inst->src[0] = desc;
5267       }
5268 
5269       /* We assume that the driver provided the handle in the top 20 bits so
5270        * we can use the surface handle directly as the extended descriptor.
5271        */
5272       inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5273    } else {
5274       /* Immediate portion of the descriptor */
5275       inst->desc = brw_sampler_desc(devinfo,
5276                                     0, /* surface */
5277                                     0, /* sampler */
5278                                     msg_type,
5279                                     simd_mode,
5280                                     0 /* return_format unused on gen7+ */);
5281       const fs_builder ubld = bld.group(1, 0).exec_all();
5282       fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5283       if (surface.equals(sampler)) {
5284          /* This case is common in GL */
5285          ubld.MUL(desc, surface, brw_imm_ud(0x101));
5286       } else {
5287          if (sampler_handle.file != BAD_FILE) {
5288             ubld.MOV(desc, surface);
5289          } else if (sampler.file == IMM) {
5290             ubld.OR(desc, surface, brw_imm_ud(sampler.ud << 8));
5291          } else {
5292             ubld.SHL(desc, sampler, brw_imm_ud(8));
5293             ubld.OR(desc, desc, surface);
5294          }
5295       }
5296       if (base_binding_table_index)
5297          ubld.ADD(desc, desc, brw_imm_ud(base_binding_table_index));
5298       ubld.AND(desc, desc, brw_imm_ud(0xfff));
5299 
5300       inst->src[0] = component(desc, 0);
5301       inst->src[1] = brw_imm_ud(0); /* ex_desc */
5302    }
5303 
5304    inst->src[2] = src_payload;
5305    inst->resize_sources(3);
5306 
5307    if (inst->eot) {
5308       /* EOT sampler messages don't make sense to split because it would
5309        * involve ending half of the thread early.
5310        */
5311       assert(inst->group == 0);
5312       /* We need to use SENDC for EOT sampler messages */
5313       inst->check_tdr = true;
5314       inst->send_has_side_effects = true;
5315    }
5316 
5317    /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
5318    assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
5319 }
5320 
5321 static void
lower_sampler_logical_send(const fs_builder & bld,fs_inst * inst,opcode op)5322 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
5323 {
5324    const gen_device_info *devinfo = bld.shader->devinfo;
5325    const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
5326    const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
5327    const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
5328    const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
5329    const fs_reg &min_lod = inst->src[TEX_LOGICAL_SRC_MIN_LOD];
5330    const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
5331    const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
5332    const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
5333    const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
5334    const fs_reg &surface_handle = inst->src[TEX_LOGICAL_SRC_SURFACE_HANDLE];
5335    const fs_reg &sampler_handle = inst->src[TEX_LOGICAL_SRC_SAMPLER_HANDLE];
5336    const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
5337    assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
5338    const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
5339    assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
5340    const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
5341 
5342    if (devinfo->gen >= 7) {
5343       lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
5344                                       shadow_c, lod, lod2, min_lod,
5345                                       sample_index,
5346                                       mcs, surface, sampler,
5347                                       surface_handle, sampler_handle,
5348                                       tg4_offset,
5349                                       coord_components, grad_components);
5350    } else if (devinfo->gen >= 5) {
5351       lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
5352                                       shadow_c, lod, lod2, sample_index,
5353                                       surface, sampler,
5354                                       coord_components, grad_components);
5355    } else {
5356       lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
5357                                       shadow_c, lod, lod2,
5358                                       surface, sampler,
5359                                       coord_components, grad_components);
5360    }
5361 }
5362 
5363 /**
5364  * Predicate the specified instruction on the sample mask.
5365  */
5366 static void
emit_predicate_on_sample_mask(const fs_builder & bld,fs_inst * inst)5367 emit_predicate_on_sample_mask(const fs_builder &bld, fs_inst *inst)
5368 {
5369    assert(bld.shader->stage == MESA_SHADER_FRAGMENT &&
5370           bld.group() == inst->group &&
5371           bld.dispatch_width() == inst->exec_size);
5372 
5373    const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
5374    const fs_reg sample_mask = sample_mask_reg(bld);
5375    const unsigned subreg = sample_mask_flag_subreg(v);
5376 
5377    if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
5378       assert(sample_mask.file == ARF &&
5379              sample_mask.nr == brw_flag_subreg(subreg).nr &&
5380              sample_mask.subnr == brw_flag_subreg(
5381                 subreg + inst->group / 16).subnr);
5382    } else {
5383       bld.group(1, 0).exec_all()
5384          .MOV(brw_flag_subreg(subreg + inst->group / 16), sample_mask);
5385    }
5386 
5387    if (inst->predicate) {
5388       assert(inst->predicate == BRW_PREDICATE_NORMAL);
5389       assert(!inst->predicate_inverse);
5390       assert(inst->flag_subreg == 0);
5391       /* Combine the sample mask with the existing predicate by using a
5392        * vertical predication mode.
5393        */
5394       inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
5395    } else {
5396       inst->flag_subreg = subreg;
5397       inst->predicate = BRW_PREDICATE_NORMAL;
5398       inst->predicate_inverse = false;
5399    }
5400 }
5401 
5402 static void
setup_surface_descriptors(const fs_builder & bld,fs_inst * inst,uint32_t desc,const fs_reg & surface,const fs_reg & surface_handle)5403 setup_surface_descriptors(const fs_builder &bld, fs_inst *inst, uint32_t desc,
5404                           const fs_reg &surface, const fs_reg &surface_handle)
5405 {
5406    const gen_device_info *devinfo = bld.shader->devinfo;
5407 
5408    /* We must have exactly one of surface and surface_handle */
5409    assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
5410 
5411    if (surface.file == IMM) {
5412       inst->desc = desc | (surface.ud & 0xff);
5413       inst->src[0] = brw_imm_ud(0);
5414       inst->src[1] = brw_imm_ud(0); /* ex_desc */
5415    } else if (surface_handle.file != BAD_FILE) {
5416       /* Bindless surface */
5417       assert(devinfo->gen >= 9);
5418       inst->desc = desc | GEN9_BTI_BINDLESS;
5419       inst->src[0] = brw_imm_ud(0);
5420 
5421       /* We assume that the driver provided the handle in the top 20 bits so
5422        * we can use the surface handle directly as the extended descriptor.
5423        */
5424       inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5425    } else {
5426       inst->desc = desc;
5427       const fs_builder ubld = bld.exec_all().group(1, 0);
5428       fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5429       ubld.AND(tmp, surface, brw_imm_ud(0xff));
5430       inst->src[0] = component(tmp, 0);
5431       inst->src[1] = brw_imm_ud(0); /* ex_desc */
5432    }
5433 }
5434 
5435 static void
lower_surface_logical_send(const fs_builder & bld,fs_inst * inst)5436 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst)
5437 {
5438    const gen_device_info *devinfo = bld.shader->devinfo;
5439 
5440    /* Get the logical send arguments. */
5441    const fs_reg &addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS];
5442    const fs_reg &src = inst->src[SURFACE_LOGICAL_SRC_DATA];
5443    const fs_reg &surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE];
5444    const fs_reg &surface_handle = inst->src[SURFACE_LOGICAL_SRC_SURFACE_HANDLE];
5445    const UNUSED fs_reg &dims = inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS];
5446    const fs_reg &arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG];
5447    const fs_reg &allow_sample_mask =
5448       inst->src[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK];
5449    assert(arg.file == IMM);
5450    assert(allow_sample_mask.file == IMM);
5451 
5452    /* Calculate the total number of components of the payload. */
5453    const unsigned addr_sz = inst->components_read(SURFACE_LOGICAL_SRC_ADDRESS);
5454    const unsigned src_sz = inst->components_read(SURFACE_LOGICAL_SRC_DATA);
5455 
5456    const bool is_typed_access =
5457       inst->opcode == SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL ||
5458       inst->opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL ||
5459       inst->opcode == SHADER_OPCODE_TYPED_ATOMIC_LOGICAL;
5460 
5461    const bool is_surface_access = is_typed_access ||
5462       inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL ||
5463       inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL ||
5464       inst->opcode == SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL;
5465 
5466    const bool is_stateless =
5467       surface.file == IMM && (surface.ud == BRW_BTI_STATELESS ||
5468                               surface.ud == GEN8_BTI_STATELESS_NON_COHERENT);
5469 
5470    const bool has_side_effects = inst->has_side_effects();
5471 
5472    fs_reg sample_mask = allow_sample_mask.ud ? sample_mask_reg(bld) :
5473                                                fs_reg(brw_imm_d(0xffff));
5474 
5475    /* From the BDW PRM Volume 7, page 147:
5476     *
5477     *  "For the Data Cache Data Port*, the header must be present for the
5478     *   following message types: [...] Typed read/write/atomics"
5479     *
5480     * Earlier generations have a similar wording.  Because of this restriction
5481     * we don't attempt to implement sample masks via predication for such
5482     * messages prior to Gen9, since we have to provide a header anyway.  On
5483     * Gen11+ the header has been removed so we can only use predication.
5484     *
5485     * For all stateless A32 messages, we also need a header
5486     */
5487    fs_reg header;
5488    if ((devinfo->gen < 9 && is_typed_access) || is_stateless) {
5489       fs_builder ubld = bld.exec_all().group(8, 0);
5490       header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5491       if (is_stateless) {
5492          assert(!is_surface_access);
5493          ubld.emit(SHADER_OPCODE_SCRATCH_HEADER, header);
5494       } else {
5495          ubld.MOV(header, brw_imm_d(0));
5496          if (is_surface_access)
5497             ubld.group(1, 0).MOV(component(header, 7), sample_mask);
5498       }
5499    }
5500    const unsigned header_sz = header.file != BAD_FILE ? 1 : 0;
5501 
5502    fs_reg payload, payload2;
5503    unsigned mlen, ex_mlen = 0;
5504    if (devinfo->gen >= 9 &&
5505        (src.file == BAD_FILE || header.file == BAD_FILE)) {
5506       /* We have split sends on gen9 and above */
5507       if (header.file == BAD_FILE) {
5508          payload = bld.move_to_vgrf(addr, addr_sz);
5509          payload2 = bld.move_to_vgrf(src, src_sz);
5510          mlen = addr_sz * (inst->exec_size / 8);
5511          ex_mlen = src_sz * (inst->exec_size / 8);
5512       } else {
5513          assert(src.file == BAD_FILE);
5514          payload = header;
5515          payload2 = bld.move_to_vgrf(addr, addr_sz);
5516          mlen = header_sz;
5517          ex_mlen = addr_sz * (inst->exec_size / 8);
5518       }
5519    } else {
5520       /* Allocate space for the payload. */
5521       const unsigned sz = header_sz + addr_sz + src_sz;
5522       payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
5523       fs_reg *const components = new fs_reg[sz];
5524       unsigned n = 0;
5525 
5526       /* Construct the payload. */
5527       if (header.file != BAD_FILE)
5528          components[n++] = header;
5529 
5530       for (unsigned i = 0; i < addr_sz; i++)
5531          components[n++] = offset(addr, bld, i);
5532 
5533       for (unsigned i = 0; i < src_sz; i++)
5534          components[n++] = offset(src, bld, i);
5535 
5536       bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
5537       mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
5538 
5539       delete[] components;
5540    }
5541 
5542    /* Predicate the instruction on the sample mask if no header is
5543     * provided.
5544     */
5545    if ((header.file == BAD_FILE || !is_surface_access) &&
5546        sample_mask.file != BAD_FILE && sample_mask.file != IMM)
5547       emit_predicate_on_sample_mask(bld, inst);
5548 
5549    uint32_t sfid;
5550    switch (inst->opcode) {
5551    case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5552    case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5553       /* Byte scattered opcodes go through the normal data cache */
5554       sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
5555       break;
5556 
5557    case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5558    case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5559       sfid =  devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
5560               devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
5561                                   BRW_DATAPORT_READ_TARGET_RENDER_CACHE;
5562       break;
5563 
5564    case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5565    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5566    case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5567    case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5568       /* Untyped Surface messages go through the data cache but the SFID value
5569        * changed on Haswell.
5570        */
5571       sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5572               HSW_SFID_DATAPORT_DATA_CACHE_1 :
5573               GEN7_SFID_DATAPORT_DATA_CACHE);
5574       break;
5575 
5576    case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5577    case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5578    case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5579       /* Typed surface messages go through the render cache on IVB and the
5580        * data cache on HSW+.
5581        */
5582       sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5583               HSW_SFID_DATAPORT_DATA_CACHE_1 :
5584               GEN6_SFID_DATAPORT_RENDER_CACHE);
5585       break;
5586 
5587    default:
5588       unreachable("Unsupported surface opcode");
5589    }
5590 
5591    uint32_t desc;
5592    switch (inst->opcode) {
5593    case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5594       desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5595                                             arg.ud, /* num_channels */
5596                                             false   /* write */);
5597       break;
5598 
5599    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5600       desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5601                                             arg.ud, /* num_channels */
5602                                             true    /* write */);
5603       break;
5604 
5605    case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5606       desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5607                                            arg.ud, /* bit_size */
5608                                            false   /* write */);
5609       break;
5610 
5611    case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5612       desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5613                                            arg.ud, /* bit_size */
5614                                            true    /* write */);
5615       break;
5616 
5617    case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5618       assert(arg.ud == 32); /* bit_size */
5619       desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5620                                             false  /* write */);
5621       break;
5622 
5623    case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5624       assert(arg.ud == 32); /* bit_size */
5625       desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5626                                             true   /* write */);
5627       break;
5628 
5629    case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5630       desc = brw_dp_untyped_atomic_desc(devinfo, inst->exec_size,
5631                                         arg.ud, /* atomic_op */
5632                                         !inst->dst.is_null());
5633       break;
5634 
5635    case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5636       desc = brw_dp_untyped_atomic_float_desc(devinfo, inst->exec_size,
5637                                               arg.ud, /* atomic_op */
5638                                               !inst->dst.is_null());
5639       break;
5640 
5641    case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5642       desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5643                                           arg.ud, /* num_channels */
5644                                           false   /* write */);
5645       break;
5646 
5647    case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5648       desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5649                                           arg.ud, /* num_channels */
5650                                           true    /* write */);
5651       break;
5652 
5653    case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5654       desc = brw_dp_typed_atomic_desc(devinfo, inst->exec_size, inst->group,
5655                                       arg.ud, /* atomic_op */
5656                                       !inst->dst.is_null());
5657       break;
5658 
5659    default:
5660       unreachable("Unknown surface logical instruction");
5661    }
5662 
5663    /* Update the original instruction. */
5664    inst->opcode = SHADER_OPCODE_SEND;
5665    inst->mlen = mlen;
5666    inst->ex_mlen = ex_mlen;
5667    inst->header_size = header_sz;
5668    inst->send_has_side_effects = has_side_effects;
5669    inst->send_is_volatile = !has_side_effects;
5670 
5671    /* Set up SFID and descriptors */
5672    inst->sfid = sfid;
5673    setup_surface_descriptors(bld, inst, desc, surface, surface_handle);
5674 
5675    /* Finally, the payload */
5676    inst->src[2] = payload;
5677    inst->src[3] = payload2;
5678 
5679    inst->resize_sources(4);
5680 }
5681 
5682 static void
lower_surface_block_logical_send(const fs_builder & bld,fs_inst * inst)5683 lower_surface_block_logical_send(const fs_builder &bld, fs_inst *inst)
5684 {
5685    const gen_device_info *devinfo = bld.shader->devinfo;
5686    assert(devinfo->gen >= 9);
5687 
5688    /* Get the logical send arguments. */
5689    const fs_reg &addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS];
5690    const fs_reg &src = inst->src[SURFACE_LOGICAL_SRC_DATA];
5691    const fs_reg &surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE];
5692    const fs_reg &surface_handle = inst->src[SURFACE_LOGICAL_SRC_SURFACE_HANDLE];
5693    const fs_reg &arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG];
5694    assert(arg.file == IMM);
5695    assert(inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == BAD_FILE);
5696    assert(inst->src[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK].file == BAD_FILE);
5697 
5698    const bool is_stateless =
5699       surface.file == IMM && (surface.ud == BRW_BTI_STATELESS ||
5700                               surface.ud == GEN8_BTI_STATELESS_NON_COHERENT);
5701 
5702    const bool has_side_effects = inst->has_side_effects();
5703 
5704    const bool align_16B =
5705       inst->opcode != SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL;
5706 
5707    const bool write = inst->opcode == SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL;
5708 
5709    /* The address is stored in the header.  See MH_A32_GO and MH_BTS_GO. */
5710    fs_builder ubld = bld.exec_all().group(8, 0);
5711    fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5712 
5713    if (is_stateless)
5714       ubld.emit(SHADER_OPCODE_SCRATCH_HEADER, header);
5715    else
5716       ubld.MOV(header, brw_imm_d(0));
5717 
5718    /* Address in OWord units when aligned to OWords. */
5719    if (align_16B)
5720       ubld.group(1, 0).SHR(component(header, 2), addr, brw_imm_ud(4));
5721    else
5722       ubld.group(1, 0).MOV(component(header, 2), addr);
5723 
5724    fs_reg data;
5725    unsigned ex_mlen = 0;
5726    if (write) {
5727       const unsigned src_sz = inst->components_read(SURFACE_LOGICAL_SRC_DATA);
5728       data = retype(bld.move_to_vgrf(src, src_sz), BRW_REGISTER_TYPE_UD);
5729       ex_mlen = src_sz * type_sz(src.type) * inst->exec_size / REG_SIZE;
5730    }
5731 
5732    inst->opcode = SHADER_OPCODE_SEND;
5733    inst->mlen = 1;
5734    inst->ex_mlen = ex_mlen;
5735    inst->header_size = 1;
5736    inst->send_has_side_effects = has_side_effects;
5737    inst->send_is_volatile = !has_side_effects;
5738 
5739    inst->sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
5740 
5741    const uint32_t desc = brw_dp_oword_block_rw_desc(devinfo, align_16B,
5742                                                     arg.ud, write);
5743    setup_surface_descriptors(bld, inst, desc, surface, surface_handle);
5744 
5745    inst->src[2] = header;
5746    inst->src[3] = data;
5747 
5748    inst->resize_sources(4);
5749 }
5750 
5751 static fs_reg
emit_a64_oword_block_header(const fs_builder & bld,const fs_reg & addr)5752 emit_a64_oword_block_header(const fs_builder &bld, const fs_reg &addr)
5753 {
5754    const fs_builder ubld = bld.exec_all().group(8, 0);
5755    fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5756    ubld.MOV(header, brw_imm_ud(0));
5757 
5758    /* Use a 2-wide MOV to fill out the address */
5759    assert(type_sz(addr.type) == 8 && addr.stride == 0);
5760    fs_reg addr_vec2 = addr;
5761    addr_vec2.type = BRW_REGISTER_TYPE_UD;
5762    addr_vec2.stride = 1;
5763    ubld.group(2, 0).MOV(header, addr_vec2);
5764 
5765    return header;
5766 }
5767 
5768 static void
lower_a64_logical_send(const fs_builder & bld,fs_inst * inst)5769 lower_a64_logical_send(const fs_builder &bld, fs_inst *inst)
5770 {
5771    const gen_device_info *devinfo = bld.shader->devinfo;
5772 
5773    const fs_reg &addr = inst->src[0];
5774    const fs_reg &src = inst->src[1];
5775    const unsigned src_comps = inst->components_read(1);
5776    assert(inst->src[2].file == IMM);
5777    const unsigned arg = inst->src[2].ud;
5778    const bool has_side_effects = inst->has_side_effects();
5779 
5780    /* If the surface message has side effects and we're a fragment shader, we
5781     * have to predicate with the sample mask to avoid helper invocations.
5782     */
5783    if (has_side_effects && bld.shader->stage == MESA_SHADER_FRAGMENT)
5784       emit_predicate_on_sample_mask(bld, inst);
5785 
5786    fs_reg payload, payload2;
5787    unsigned mlen, ex_mlen = 0, header_size = 0;
5788    if (inst->opcode == SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL ||
5789        inst->opcode == SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL ||
5790        inst->opcode == SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL) {
5791       assert(devinfo->gen >= 9);
5792 
5793       /* OWORD messages only take a scalar address in a header */
5794       mlen = 1;
5795       header_size = 1;
5796       payload = emit_a64_oword_block_header(bld, addr);
5797 
5798       if (inst->opcode == SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL) {
5799          ex_mlen = src_comps * type_sz(src.type) * inst->exec_size / REG_SIZE;
5800          payload2 = retype(bld.move_to_vgrf(src, src_comps),
5801                            BRW_REGISTER_TYPE_UD);
5802       }
5803    } else if (devinfo->gen >= 9) {
5804       /* On Skylake and above, we have SENDS */
5805       mlen = 2 * (inst->exec_size / 8);
5806       ex_mlen = src_comps * type_sz(src.type) * inst->exec_size / REG_SIZE;
5807       payload = retype(bld.move_to_vgrf(addr, 1), BRW_REGISTER_TYPE_UD);
5808       payload2 = retype(bld.move_to_vgrf(src, src_comps),
5809                         BRW_REGISTER_TYPE_UD);
5810    } else {
5811       /* Add two because the address is 64-bit */
5812       const unsigned dwords = 2 + src_comps;
5813       mlen = dwords * (inst->exec_size / 8);
5814 
5815       fs_reg sources[5];
5816 
5817       sources[0] = addr;
5818 
5819       for (unsigned i = 0; i < src_comps; i++)
5820          sources[1 + i] = offset(src, bld, i);
5821 
5822       payload = bld.vgrf(BRW_REGISTER_TYPE_UD, dwords);
5823       bld.LOAD_PAYLOAD(payload, sources, 1 + src_comps, 0);
5824    }
5825 
5826    uint32_t desc;
5827    switch (inst->opcode) {
5828    case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5829       desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5830                                                 arg,   /* num_channels */
5831                                                 false  /* write */);
5832       break;
5833 
5834    case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5835       desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5836                                                 arg,   /* num_channels */
5837                                                 true   /* write */);
5838       break;
5839 
5840    case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
5841       desc = brw_dp_a64_oword_block_rw_desc(devinfo,
5842                                             true,    /* align_16B */
5843                                             arg,     /* num_dwords */
5844                                             false    /* write */);
5845       break;
5846 
5847    case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
5848       desc = brw_dp_a64_oword_block_rw_desc(devinfo,
5849                                             false,   /* align_16B */
5850                                             arg,     /* num_dwords */
5851                                             false    /* write */);
5852       break;
5853 
5854    case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
5855       desc = brw_dp_a64_oword_block_rw_desc(devinfo,
5856                                             true,    /* align_16B */
5857                                             arg,     /* num_dwords */
5858                                             true     /* write */);
5859       break;
5860 
5861    case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5862       desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5863                                                arg,   /* bit_size */
5864                                                false  /* write */);
5865       break;
5866 
5867    case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5868       desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5869                                                arg,   /* bit_size */
5870                                                true   /* write */);
5871       break;
5872 
5873    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5874       desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 32,
5875                                             arg,   /* atomic_op */
5876                                             !inst->dst.is_null());
5877       break;
5878 
5879    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5880       desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 64,
5881                                             arg,   /* atomic_op */
5882                                             !inst->dst.is_null());
5883       break;
5884 
5885 
5886    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5887       desc = brw_dp_a64_untyped_atomic_float_desc(devinfo, inst->exec_size,
5888                                                   arg,   /* atomic_op */
5889                                                   !inst->dst.is_null());
5890       break;
5891 
5892    default:
5893       unreachable("Unknown A64 logical instruction");
5894    }
5895 
5896    /* Update the original instruction. */
5897    inst->opcode = SHADER_OPCODE_SEND;
5898    inst->mlen = mlen;
5899    inst->ex_mlen = ex_mlen;
5900    inst->header_size = header_size;
5901    inst->send_has_side_effects = has_side_effects;
5902    inst->send_is_volatile = !has_side_effects;
5903 
5904    /* Set up SFID and descriptors */
5905    inst->sfid = HSW_SFID_DATAPORT_DATA_CACHE_1;
5906    inst->desc = desc;
5907    inst->resize_sources(4);
5908    inst->src[0] = brw_imm_ud(0); /* desc */
5909    inst->src[1] = brw_imm_ud(0); /* ex_desc */
5910    inst->src[2] = payload;
5911    inst->src[3] = payload2;
5912 }
5913 
5914 static void
lower_varying_pull_constant_logical_send(const fs_builder & bld,fs_inst * inst)5915 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
5916 {
5917    const gen_device_info *devinfo = bld.shader->devinfo;
5918    const brw_compiler *compiler = bld.shader->compiler;
5919 
5920    if (devinfo->gen >= 7) {
5921       fs_reg index = inst->src[0];
5922       /* We are switching the instruction from an ALU-like instruction to a
5923        * send-from-grf instruction.  Since sends can't handle strides or
5924        * source modifiers, we have to make a copy of the offset source.
5925        */
5926       fs_reg ubo_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
5927       bld.MOV(ubo_offset, inst->src[1]);
5928 
5929       assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
5930       unsigned alignment = inst->src[2].ud;
5931 
5932       inst->opcode = SHADER_OPCODE_SEND;
5933       inst->mlen = inst->exec_size / 8;
5934       inst->resize_sources(3);
5935 
5936       if (index.file == IMM) {
5937          inst->desc = index.ud & 0xff;
5938          inst->src[0] = brw_imm_ud(0);
5939       } else {
5940          inst->desc = 0;
5941          const fs_builder ubld = bld.exec_all().group(1, 0);
5942          fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5943          ubld.AND(tmp, index, brw_imm_ud(0xff));
5944          inst->src[0] = component(tmp, 0);
5945       }
5946       inst->src[1] = brw_imm_ud(0); /* ex_desc */
5947       inst->src[2] = ubo_offset; /* payload */
5948 
5949       if (compiler->indirect_ubos_use_sampler) {
5950          const unsigned simd_mode =
5951             inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5952                                    BRW_SAMPLER_SIMD_MODE_SIMD16;
5953 
5954          inst->sfid = BRW_SFID_SAMPLER;
5955          inst->desc |= brw_sampler_desc(devinfo, 0, 0,
5956                                         GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
5957                                         simd_mode, 0);
5958       } else if (alignment >= 4) {
5959          inst->sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5960                        HSW_SFID_DATAPORT_DATA_CACHE_1 :
5961                        GEN7_SFID_DATAPORT_DATA_CACHE);
5962          inst->desc |= brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5963                                                       4, /* num_channels */
5964                                                       false   /* write */);
5965       } else {
5966          inst->sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
5967          inst->desc |= brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5968                                                      32,     /* bit_size */
5969                                                      false   /* write */);
5970          /* The byte scattered messages can only read one dword at a time so
5971           * we have to duplicate the message 4 times to read the full vec4.
5972           * Hopefully, dead code will clean up the mess if some of them aren't
5973           * needed.
5974           */
5975          assert(inst->size_written == 16 * inst->exec_size);
5976          inst->size_written /= 4;
5977          for (unsigned c = 1; c < 4; c++) {
5978             /* Emit a copy of the instruction because we're about to modify
5979              * it.  Because this loop starts at 1, we will emit copies for the
5980              * first 3 and the final one will be the modified instruction.
5981              */
5982             bld.emit(*inst);
5983 
5984             /* Offset the source */
5985             inst->src[2] = bld.vgrf(BRW_REGISTER_TYPE_UD);
5986             bld.ADD(inst->src[2], ubo_offset, brw_imm_ud(c * 4));
5987 
5988             /* Offset the destination */
5989             inst->dst = offset(inst->dst, bld, 1);
5990          }
5991       }
5992    } else {
5993       const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
5994                            BRW_REGISTER_TYPE_UD);
5995 
5996       bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
5997 
5998       inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
5999       inst->resize_sources(1);
6000       inst->base_mrf = payload.nr;
6001       inst->header_size = 1;
6002       inst->mlen = 1 + inst->exec_size / 8;
6003    }
6004 }
6005 
6006 static void
lower_math_logical_send(const fs_builder & bld,fs_inst * inst)6007 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
6008 {
6009    assert(bld.shader->devinfo->gen < 6);
6010 
6011    inst->base_mrf = 2;
6012    inst->mlen = inst->sources * inst->exec_size / 8;
6013 
6014    if (inst->sources > 1) {
6015       /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
6016        * "Message Payload":
6017        *
6018        * "Operand0[7].  For the INT DIV functions, this operand is the
6019        *  denominator."
6020        *  ...
6021        * "Operand1[7].  For the INT DIV functions, this operand is the
6022        *  numerator."
6023        */
6024       const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
6025       const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
6026       const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
6027 
6028       inst->resize_sources(1);
6029       inst->src[0] = src0;
6030 
6031       assert(inst->exec_size == 8);
6032       bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
6033    }
6034 }
6035 
6036 bool
lower_logical_sends()6037 fs_visitor::lower_logical_sends()
6038 {
6039    bool progress = false;
6040 
6041    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6042       const fs_builder ibld(this, block, inst);
6043 
6044       switch (inst->opcode) {
6045       case FS_OPCODE_FB_WRITE_LOGICAL:
6046          assert(stage == MESA_SHADER_FRAGMENT);
6047          lower_fb_write_logical_send(ibld, inst,
6048                                      brw_wm_prog_data(prog_data),
6049                                      (const brw_wm_prog_key *)key,
6050                                      payload);
6051          break;
6052 
6053       case FS_OPCODE_FB_READ_LOGICAL:
6054          lower_fb_read_logical_send(ibld, inst);
6055          break;
6056 
6057       case SHADER_OPCODE_TEX_LOGICAL:
6058          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
6059          break;
6060 
6061       case SHADER_OPCODE_TXD_LOGICAL:
6062          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
6063          break;
6064 
6065       case SHADER_OPCODE_TXF_LOGICAL:
6066          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
6067          break;
6068 
6069       case SHADER_OPCODE_TXL_LOGICAL:
6070          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
6071          break;
6072 
6073       case SHADER_OPCODE_TXS_LOGICAL:
6074          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
6075          break;
6076 
6077       case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
6078          lower_sampler_logical_send(ibld, inst,
6079                                     SHADER_OPCODE_IMAGE_SIZE_LOGICAL);
6080          break;
6081 
6082       case FS_OPCODE_TXB_LOGICAL:
6083          lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
6084          break;
6085 
6086       case SHADER_OPCODE_TXF_CMS_LOGICAL:
6087          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
6088          break;
6089 
6090       case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
6091          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
6092          break;
6093 
6094       case SHADER_OPCODE_TXF_UMS_LOGICAL:
6095          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
6096          break;
6097 
6098       case SHADER_OPCODE_TXF_MCS_LOGICAL:
6099          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
6100          break;
6101 
6102       case SHADER_OPCODE_LOD_LOGICAL:
6103          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
6104          break;
6105 
6106       case SHADER_OPCODE_TG4_LOGICAL:
6107          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
6108          break;
6109 
6110       case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
6111          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
6112          break;
6113 
6114       case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
6115          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
6116          break;
6117 
6118       case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
6119       case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
6120       case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
6121       case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
6122       case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
6123       case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
6124       case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
6125       case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6126       case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
6127       case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
6128       case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
6129          lower_surface_logical_send(ibld, inst);
6130          break;
6131 
6132       case SHADER_OPCODE_OWORD_BLOCK_READ_LOGICAL:
6133       case SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
6134       case SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL:
6135          lower_surface_block_logical_send(ibld, inst);
6136          break;
6137 
6138       case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6139       case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6140       case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
6141       case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
6142       case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
6143       case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6144       case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6145       case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6146       case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
6147       case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6148          lower_a64_logical_send(ibld, inst);
6149          break;
6150 
6151       case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
6152          lower_varying_pull_constant_logical_send(ibld, inst);
6153          break;
6154 
6155       case SHADER_OPCODE_RCP:
6156       case SHADER_OPCODE_RSQ:
6157       case SHADER_OPCODE_SQRT:
6158       case SHADER_OPCODE_EXP2:
6159       case SHADER_OPCODE_LOG2:
6160       case SHADER_OPCODE_SIN:
6161       case SHADER_OPCODE_COS:
6162       case SHADER_OPCODE_POW:
6163       case SHADER_OPCODE_INT_QUOTIENT:
6164       case SHADER_OPCODE_INT_REMAINDER:
6165          /* The math opcodes are overloaded for the send-like and
6166           * expression-like instructions which seems kind of icky.  Gen6+ has
6167           * a native (but rather quirky) MATH instruction so we don't need to
6168           * do anything here.  On Gen4-5 we'll have to lower the Gen6-like
6169           * logical instructions (which we can easily recognize because they
6170           * have mlen = 0) into send-like virtual instructions.
6171           */
6172          if (devinfo->gen < 6 && inst->mlen == 0) {
6173             lower_math_logical_send(ibld, inst);
6174             break;
6175 
6176          } else {
6177             continue;
6178          }
6179 
6180       default:
6181          continue;
6182       }
6183 
6184       progress = true;
6185    }
6186 
6187    if (progress)
6188       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6189 
6190    return progress;
6191 }
6192 
6193 static bool
is_mixed_float_with_fp32_dst(const fs_inst * inst)6194 is_mixed_float_with_fp32_dst(const fs_inst *inst)
6195 {
6196    /* This opcode sometimes uses :W type on the source even if the operand is
6197     * a :HF, because in gen7 there is no support for :HF, and thus it uses :W.
6198     */
6199    if (inst->opcode == BRW_OPCODE_F16TO32)
6200       return true;
6201 
6202    if (inst->dst.type != BRW_REGISTER_TYPE_F)
6203       return false;
6204 
6205    for (int i = 0; i < inst->sources; i++) {
6206       if (inst->src[i].type == BRW_REGISTER_TYPE_HF)
6207          return true;
6208    }
6209 
6210    return false;
6211 }
6212 
6213 static bool
is_mixed_float_with_packed_fp16_dst(const fs_inst * inst)6214 is_mixed_float_with_packed_fp16_dst(const fs_inst *inst)
6215 {
6216    /* This opcode sometimes uses :W type on the destination even if the
6217     * destination is a :HF, because in gen7 there is no support for :HF, and
6218     * thus it uses :W.
6219     */
6220    if (inst->opcode == BRW_OPCODE_F32TO16 &&
6221        inst->dst.stride == 1)
6222       return true;
6223 
6224    if (inst->dst.type != BRW_REGISTER_TYPE_HF ||
6225        inst->dst.stride != 1)
6226       return false;
6227 
6228    for (int i = 0; i < inst->sources; i++) {
6229       if (inst->src[i].type == BRW_REGISTER_TYPE_F)
6230          return true;
6231    }
6232 
6233    return false;
6234 }
6235 
6236 /**
6237  * Get the closest allowed SIMD width for instruction \p inst accounting for
6238  * some common regioning and execution control restrictions that apply to FPU
6239  * instructions.  These restrictions don't necessarily have any relevance to
6240  * instructions not executed by the FPU pipeline like extended math, control
6241  * flow or send message instructions.
6242  *
6243  * For virtual opcodes it's really up to the instruction -- In some cases
6244  * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
6245  * instructions) it may simplify virtual instruction lowering if we can
6246  * enforce FPU-like regioning restrictions already on the virtual instruction,
6247  * in other cases (e.g. virtual send-like instructions) this may be
6248  * excessively restrictive.
6249  */
6250 static unsigned
get_fpu_lowered_simd_width(const struct gen_device_info * devinfo,const fs_inst * inst)6251 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
6252                            const fs_inst *inst)
6253 {
6254    /* Maximum execution size representable in the instruction controls. */
6255    unsigned max_width = MIN2(32, inst->exec_size);
6256 
6257    /* According to the PRMs:
6258     *  "A. In Direct Addressing mode, a source cannot span more than 2
6259     *      adjacent GRF registers.
6260     *   B. A destination cannot span more than 2 adjacent GRF registers."
6261     *
6262     * Look for the source or destination with the largest register region
6263     * which is the one that is going to limit the overall execution size of
6264     * the instruction due to this rule.
6265     */
6266    unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6267 
6268    for (unsigned i = 0; i < inst->sources; i++)
6269       reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
6270 
6271    /* Calculate the maximum execution size of the instruction based on the
6272     * factor by which it goes over the hardware limit of 2 GRFs.
6273     */
6274    if (reg_count > 2)
6275       max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
6276 
6277    /* According to the IVB PRMs:
6278     *  "When destination spans two registers, the source MUST span two
6279     *   registers. The exception to the above rule:
6280     *
6281     *    - When source is scalar, the source registers are not incremented.
6282     *    - When source is packed integer Word and destination is packed
6283     *      integer DWord, the source register is not incremented but the
6284     *      source sub register is incremented."
6285     *
6286     * The hardware specs from Gen4 to Gen7.5 mention similar regioning
6287     * restrictions.  The code below intentionally doesn't check whether the
6288     * destination type is integer because empirically the hardware doesn't
6289     * seem to care what the actual type is as long as it's dword-aligned.
6290     */
6291    if (devinfo->gen < 8) {
6292       for (unsigned i = 0; i < inst->sources; i++) {
6293          /* IVB implements DF scalars as <0;2,1> regions. */
6294          const bool is_scalar_exception = is_uniform(inst->src[i]) &&
6295             (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
6296          const bool is_packed_word_exception =
6297             type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
6298             type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
6299 
6300          /* We check size_read(i) against size_written instead of REG_SIZE
6301           * because we want to properly handle SIMD32.  In SIMD32, you can end
6302           * up with writes to 4 registers and a source that reads 2 registers
6303           * and we may still need to lower all the way to SIMD8 in that case.
6304           */
6305          if (inst->size_written > REG_SIZE &&
6306              inst->size_read(i) != 0 &&
6307              inst->size_read(i) < inst->size_written &&
6308              !is_scalar_exception && !is_packed_word_exception) {
6309             const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6310             max_width = MIN2(max_width, inst->exec_size / reg_count);
6311          }
6312       }
6313    }
6314 
6315    if (devinfo->gen < 6) {
6316       /* From the G45 PRM, Volume 4 Page 361:
6317        *
6318        *    "Operand Alignment Rule: With the exceptions listed below, a
6319        *     source/destination operand in general should be aligned to even
6320        *     256-bit physical register with a region size equal to two 256-bit
6321        *     physical registers."
6322        *
6323        * Normally we enforce this by allocating virtual registers to the
6324        * even-aligned class.  But we need to handle payload registers.
6325        */
6326       for (unsigned i = 0; i < inst->sources; i++) {
6327          if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) &&
6328              inst->size_read(i) > REG_SIZE) {
6329             max_width = MIN2(max_width, 8);
6330          }
6331       }
6332    }
6333 
6334    /* From the IVB PRMs:
6335     *  "When an instruction is SIMD32, the low 16 bits of the execution mask
6336     *   are applied for both halves of the SIMD32 instruction. If different
6337     *   execution mask channels are required, split the instruction into two
6338     *   SIMD16 instructions."
6339     *
6340     * There is similar text in the HSW PRMs.  Gen4-6 don't even implement
6341     * 32-wide control flow support in hardware and will behave similarly.
6342     */
6343    if (devinfo->gen < 8 && !inst->force_writemask_all)
6344       max_width = MIN2(max_width, 16);
6345 
6346    /* From the IVB PRMs (applies to HSW too):
6347     *  "Instructions with condition modifiers must not use SIMD32."
6348     *
6349     * From the BDW PRMs (applies to later hardware too):
6350     *  "Ternary instruction with condition modifiers must not use SIMD32."
6351     */
6352    if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
6353       max_width = MIN2(max_width, 16);
6354 
6355    /* From the IVB PRMs (applies to other devices that don't have the
6356     * gen_device_info::supports_simd16_3src flag set):
6357     *  "In Align16 access mode, SIMD16 is not allowed for DW operations and
6358     *   SIMD8 is not allowed for DF operations."
6359     */
6360    if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
6361       max_width = MIN2(max_width, inst->exec_size / reg_count);
6362 
6363    /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
6364     * the 8-bit quarter of the execution mask signals specified in the
6365     * instruction control fields) for the second compressed half of any
6366     * single-precision instruction (for double-precision instructions
6367     * it's hardwired to use NibCtrl+1, at least on HSW), which means that
6368     * the EU will apply the wrong execution controls for the second
6369     * sequential GRF write if the number of channels per GRF is not exactly
6370     * eight in single-precision mode (or four in double-float mode).
6371     *
6372     * In this situation we calculate the maximum size of the split
6373     * instructions so they only ever write to a single register.
6374     */
6375    if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
6376        !inst->force_writemask_all) {
6377       const unsigned channels_per_grf = inst->exec_size /
6378          DIV_ROUND_UP(inst->size_written, REG_SIZE);
6379       const unsigned exec_type_size = get_exec_type_size(inst);
6380       assert(exec_type_size);
6381 
6382       /* The hardware shifts exactly 8 channels per compressed half of the
6383        * instruction in single-precision mode and exactly 4 in double-precision.
6384        */
6385       if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
6386          max_width = MIN2(max_width, channels_per_grf);
6387 
6388       /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
6389        * because HW applies the same channel enable signals to both halves of
6390        * the compressed instruction which will be just wrong under
6391        * non-uniform control flow.
6392        */
6393       if (devinfo->gen == 7 && !devinfo->is_haswell &&
6394           (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
6395          max_width = MIN2(max_width, 4);
6396    }
6397 
6398    /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6399     * Float Operations:
6400     *
6401     *    "No SIMD16 in mixed mode when destination is f32. Instruction
6402     *     execution size must be no more than 8."
6403     *
6404     * FIXME: the simulator doesn't seem to complain if we don't do this and
6405     * empirical testing with existing CTS tests show that they pass just fine
6406     * without implementing this, however, since our interpretation of the PRM
6407     * is that conversion MOVs between HF and F are still mixed-float
6408     * instructions (and therefore subject to this restriction) we decided to
6409     * split them to be safe. Might be useful to do additional investigation to
6410     * lift the restriction if we can ensure that it is safe though, since these
6411     * conversions are common when half-float types are involved since many
6412     * instructions do not support HF types and conversions from/to F are
6413     * required.
6414     */
6415    if (is_mixed_float_with_fp32_dst(inst))
6416       max_width = MIN2(max_width, 8);
6417 
6418    /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6419     * Float Operations:
6420     *
6421     *    "No SIMD16 in mixed mode when destination is packed f16 for both
6422     *     Align1 and Align16."
6423     */
6424    if (is_mixed_float_with_packed_fp16_dst(inst))
6425       max_width = MIN2(max_width, 8);
6426 
6427    /* Only power-of-two execution sizes are representable in the instruction
6428     * control fields.
6429     */
6430    return 1 << util_logbase2(max_width);
6431 }
6432 
6433 /**
6434  * Get the maximum allowed SIMD width for instruction \p inst accounting for
6435  * various payload size restrictions that apply to sampler message
6436  * instructions.
6437  *
6438  * This is only intended to provide a maximum theoretical bound for the
6439  * execution size of the message based on the number of argument components
6440  * alone, which in most cases will determine whether the SIMD8 or SIMD16
6441  * variant of the message can be used, though some messages may have
6442  * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
6443  * the message length to determine the exact SIMD width and argument count,
6444  * which makes a number of sampler message combinations impossible to
6445  * represent).
6446  */
6447 static unsigned
get_sampler_lowered_simd_width(const struct gen_device_info * devinfo,const fs_inst * inst)6448 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
6449                                const fs_inst *inst)
6450 {
6451    /* If we have a min_lod parameter on anything other than a simple sample
6452     * message, it will push it over 5 arguments and we have to fall back to
6453     * SIMD8.
6454     */
6455    if (inst->opcode != SHADER_OPCODE_TEX &&
6456        inst->components_read(TEX_LOGICAL_SRC_MIN_LOD))
6457       return 8;
6458 
6459    /* Calculate the number of coordinate components that have to be present
6460     * assuming that additional arguments follow the texel coordinates in the
6461     * message payload.  On IVB+ there is no need for padding, on ILK-SNB we
6462     * need to pad to four or three components depending on the message,
6463     * pre-ILK we need to pad to at most three components.
6464     */
6465    const unsigned req_coord_components =
6466       (devinfo->gen >= 7 ||
6467        !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
6468       (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
6469                             inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
6470       3;
6471 
6472    /* On Gen9+ the LOD argument is for free if we're able to use the LZ
6473     * variant of the TXL or TXF message.
6474     */
6475    const bool implicit_lod = devinfo->gen >= 9 &&
6476                              (inst->opcode == SHADER_OPCODE_TXL ||
6477                               inst->opcode == SHADER_OPCODE_TXF) &&
6478                              inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
6479 
6480    /* Calculate the total number of argument components that need to be passed
6481     * to the sampler unit.
6482     */
6483    const unsigned num_payload_components =
6484       MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
6485            req_coord_components) +
6486       inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
6487       (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
6488       inst->components_read(TEX_LOGICAL_SRC_LOD2) +
6489       inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
6490       (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
6491        inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
6492       inst->components_read(TEX_LOGICAL_SRC_MCS);
6493 
6494    /* SIMD16 messages with more than five arguments exceed the maximum message
6495     * size supported by the sampler, regardless of whether a header is
6496     * provided or not.
6497     */
6498    return MIN2(inst->exec_size,
6499                num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
6500 }
6501 
6502 /**
6503  * Get the closest native SIMD width supported by the hardware for instruction
6504  * \p inst.  The instruction will be left untouched by
6505  * fs_visitor::lower_simd_width() if the returned value is equal to the
6506  * original execution size.
6507  */
6508 static unsigned
get_lowered_simd_width(const struct gen_device_info * devinfo,const fs_inst * inst)6509 get_lowered_simd_width(const struct gen_device_info *devinfo,
6510                        const fs_inst *inst)
6511 {
6512    switch (inst->opcode) {
6513    case BRW_OPCODE_MOV:
6514    case BRW_OPCODE_SEL:
6515    case BRW_OPCODE_NOT:
6516    case BRW_OPCODE_AND:
6517    case BRW_OPCODE_OR:
6518    case BRW_OPCODE_XOR:
6519    case BRW_OPCODE_SHR:
6520    case BRW_OPCODE_SHL:
6521    case BRW_OPCODE_ASR:
6522    case BRW_OPCODE_ROR:
6523    case BRW_OPCODE_ROL:
6524    case BRW_OPCODE_CMPN:
6525    case BRW_OPCODE_CSEL:
6526    case BRW_OPCODE_F32TO16:
6527    case BRW_OPCODE_F16TO32:
6528    case BRW_OPCODE_BFREV:
6529    case BRW_OPCODE_BFE:
6530    case BRW_OPCODE_ADD:
6531    case BRW_OPCODE_MUL:
6532    case BRW_OPCODE_AVG:
6533    case BRW_OPCODE_FRC:
6534    case BRW_OPCODE_RNDU:
6535    case BRW_OPCODE_RNDD:
6536    case BRW_OPCODE_RNDE:
6537    case BRW_OPCODE_RNDZ:
6538    case BRW_OPCODE_LZD:
6539    case BRW_OPCODE_FBH:
6540    case BRW_OPCODE_FBL:
6541    case BRW_OPCODE_CBIT:
6542    case BRW_OPCODE_SAD2:
6543    case BRW_OPCODE_MAD:
6544    case BRW_OPCODE_LRP:
6545    case FS_OPCODE_PACK:
6546    case SHADER_OPCODE_SEL_EXEC:
6547    case SHADER_OPCODE_CLUSTER_BROADCAST:
6548    case SHADER_OPCODE_MOV_RELOC_IMM:
6549       return get_fpu_lowered_simd_width(devinfo, inst);
6550 
6551    case BRW_OPCODE_CMP: {
6552       /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
6553        * when the destination is a GRF the dependency-clear bit on the flag
6554        * register is cleared early.
6555        *
6556        * Suggested workarounds are to disable coissuing CMP instructions
6557        * or to split CMP(16) instructions into two CMP(8) instructions.
6558        *
6559        * We choose to split into CMP(8) instructions since disabling
6560        * coissuing would affect CMP instructions not otherwise affected by
6561        * the errata.
6562        */
6563       const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
6564                                   !inst->dst.is_null() ? 8 : ~0);
6565       return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
6566    }
6567    case BRW_OPCODE_BFI1:
6568    case BRW_OPCODE_BFI2:
6569       /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
6570        * should
6571        *  "Force BFI instructions to be executed always in SIMD8."
6572        */
6573       return MIN2(devinfo->is_haswell ? 8 : ~0u,
6574                   get_fpu_lowered_simd_width(devinfo, inst));
6575 
6576    case BRW_OPCODE_IF:
6577       assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
6578       return inst->exec_size;
6579 
6580    case SHADER_OPCODE_RCP:
6581    case SHADER_OPCODE_RSQ:
6582    case SHADER_OPCODE_SQRT:
6583    case SHADER_OPCODE_EXP2:
6584    case SHADER_OPCODE_LOG2:
6585    case SHADER_OPCODE_SIN:
6586    case SHADER_OPCODE_COS: {
6587       /* Unary extended math instructions are limited to SIMD8 on Gen4 and
6588        * Gen6. Extended Math Function is limited to SIMD8 with half-float.
6589        */
6590       if (devinfo->gen == 6 || (devinfo->gen == 4 && !devinfo->is_g4x))
6591          return MIN2(8, inst->exec_size);
6592       if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6593          return MIN2(8, inst->exec_size);
6594       return MIN2(16, inst->exec_size);
6595    }
6596 
6597    case SHADER_OPCODE_POW: {
6598       /* SIMD16 is only allowed on Gen7+. Extended Math Function is limited
6599        * to SIMD8 with half-float
6600        */
6601       if (devinfo->gen < 7)
6602          return MIN2(8, inst->exec_size);
6603       if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6604          return MIN2(8, inst->exec_size);
6605       return MIN2(16, inst->exec_size);
6606    }
6607 
6608    case SHADER_OPCODE_USUB_SAT:
6609    case SHADER_OPCODE_ISUB_SAT:
6610       return get_fpu_lowered_simd_width(devinfo, inst);
6611 
6612    case SHADER_OPCODE_INT_QUOTIENT:
6613    case SHADER_OPCODE_INT_REMAINDER:
6614       /* Integer division is limited to SIMD8 on all generations. */
6615       return MIN2(8, inst->exec_size);
6616 
6617    case FS_OPCODE_LINTERP:
6618    case SHADER_OPCODE_GET_BUFFER_SIZE:
6619    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
6620    case FS_OPCODE_PACK_HALF_2x16_SPLIT:
6621    case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6622    case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6623    case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
6624       return MIN2(16, inst->exec_size);
6625 
6626    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
6627       /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
6628        * message used to implement varying pull constant loads, so expand it
6629        * to SIMD16.  An alternative with longer message payload length but
6630        * shorter return payload would be to use the SIMD8 sampler message that
6631        * takes (header, u, v, r) as parameters instead of (header, u).
6632        */
6633       return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
6634 
6635    case FS_OPCODE_DDX_COARSE:
6636    case FS_OPCODE_DDX_FINE:
6637    case FS_OPCODE_DDY_COARSE:
6638    case FS_OPCODE_DDY_FINE:
6639       /* The implementation of this virtual opcode may require emitting
6640        * compressed Align16 instructions, which are severely limited on some
6641        * generations.
6642        *
6643        * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
6644        * Region Restrictions):
6645        *
6646        *  "In Align16 access mode, SIMD16 is not allowed for DW operations
6647        *   and SIMD8 is not allowed for DF operations."
6648        *
6649        * In this context, "DW operations" means "operations acting on 32-bit
6650        * values", so it includes operations on floats.
6651        *
6652        * Gen4 has a similar restriction.  From the i965 PRM, section 11.5.3
6653        * (Instruction Compression -> Rules and Restrictions):
6654        *
6655        *  "A compressed instruction must be in Align1 access mode. Align16
6656        *   mode instructions cannot be compressed."
6657        *
6658        * Similar text exists in the g45 PRM.
6659        *
6660        * Empirically, compressed align16 instructions using odd register
6661        * numbers don't appear to work on Sandybridge either.
6662        */
6663       return (devinfo->gen == 4 || devinfo->gen == 6 ||
6664               (devinfo->gen == 7 && !devinfo->is_haswell) ?
6665               MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
6666 
6667    case SHADER_OPCODE_MULH:
6668       /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
6669        * is 8-wide on Gen7+.
6670        */
6671       return (devinfo->gen >= 7 ? 8 :
6672               get_fpu_lowered_simd_width(devinfo, inst));
6673 
6674    case FS_OPCODE_FB_WRITE_LOGICAL:
6675       /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
6676        * here.
6677        */
6678       assert(devinfo->gen != 6 ||
6679              inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
6680              inst->exec_size == 8);
6681       /* Dual-source FB writes are unsupported in SIMD16 mode. */
6682       return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
6683               8 : MIN2(16, inst->exec_size));
6684 
6685    case FS_OPCODE_FB_READ_LOGICAL:
6686       return MIN2(16, inst->exec_size);
6687 
6688    case SHADER_OPCODE_TEX_LOGICAL:
6689    case SHADER_OPCODE_TXF_CMS_LOGICAL:
6690    case SHADER_OPCODE_TXF_UMS_LOGICAL:
6691    case SHADER_OPCODE_TXF_MCS_LOGICAL:
6692    case SHADER_OPCODE_LOD_LOGICAL:
6693    case SHADER_OPCODE_TG4_LOGICAL:
6694    case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
6695    case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
6696    case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
6697       return get_sampler_lowered_simd_width(devinfo, inst);
6698 
6699    case SHADER_OPCODE_TXD_LOGICAL:
6700       /* TXD is unsupported in SIMD16 mode. */
6701       return 8;
6702 
6703    case SHADER_OPCODE_TXL_LOGICAL:
6704    case FS_OPCODE_TXB_LOGICAL:
6705       /* Only one execution size is representable pre-ILK depending on whether
6706        * the shadow reference argument is present.
6707        */
6708       if (devinfo->gen == 4)
6709          return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
6710       else
6711          return get_sampler_lowered_simd_width(devinfo, inst);
6712 
6713    case SHADER_OPCODE_TXF_LOGICAL:
6714    case SHADER_OPCODE_TXS_LOGICAL:
6715       /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
6716        * messages.  Use SIMD16 instead.
6717        */
6718       if (devinfo->gen == 4)
6719          return 16;
6720       else
6721          return get_sampler_lowered_simd_width(devinfo, inst);
6722 
6723    case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
6724    case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
6725    case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
6726       return 8;
6727 
6728    case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
6729    case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6730    case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
6731    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
6732    case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
6733    case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
6734    case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
6735    case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
6736       return MIN2(16, inst->exec_size);
6737 
6738    case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6739    case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6740    case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6741    case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6742       return devinfo->gen <= 8 ? 8 : MIN2(16, inst->exec_size);
6743 
6744    case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
6745    case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
6746    case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
6747       assert(inst->exec_size <= 16);
6748       return inst->exec_size;
6749 
6750    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6751    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
6752    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6753       return 8;
6754 
6755    case SHADER_OPCODE_URB_READ_SIMD8:
6756    case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
6757    case SHADER_OPCODE_URB_WRITE_SIMD8:
6758    case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
6759    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
6760    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
6761       return MIN2(8, inst->exec_size);
6762 
6763    case SHADER_OPCODE_QUAD_SWIZZLE: {
6764       const unsigned swiz = inst->src[1].ud;
6765       return (is_uniform(inst->src[0]) ?
6766                  get_fpu_lowered_simd_width(devinfo, inst) :
6767               devinfo->gen < 11 && type_sz(inst->src[0].type) == 4 ? 8 :
6768               swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 :
6769               get_fpu_lowered_simd_width(devinfo, inst));
6770    }
6771    case SHADER_OPCODE_MOV_INDIRECT: {
6772       /* From IVB and HSW PRMs:
6773        *
6774        * "2.When the destination requires two registers and the sources are
6775        *  indirect, the sources must use 1x1 regioning mode.
6776        *
6777        * In case of DF instructions in HSW/IVB, the exec_size is limited by
6778        * the EU decompression logic not handling VxH indirect addressing
6779        * correctly.
6780        */
6781       const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
6782       /* Prior to Broadwell, we only have 8 address subregisters. */
6783       return MIN3(devinfo->gen >= 8 ? 16 : 8,
6784                   max_size / (inst->dst.stride * type_sz(inst->dst.type)),
6785                   inst->exec_size);
6786    }
6787 
6788    case SHADER_OPCODE_LOAD_PAYLOAD: {
6789       const unsigned reg_count =
6790          DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
6791 
6792       if (reg_count > 2) {
6793          /* Only LOAD_PAYLOAD instructions with per-channel destination region
6794           * can be easily lowered (which excludes headers and heterogeneous
6795           * types).
6796           */
6797          assert(!inst->header_size);
6798          for (unsigned i = 0; i < inst->sources; i++)
6799             assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
6800                    inst->src[i].file == BAD_FILE);
6801 
6802          return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
6803       } else {
6804          return inst->exec_size;
6805       }
6806    }
6807    default:
6808       return inst->exec_size;
6809    }
6810 }
6811 
6812 /**
6813  * Return true if splitting out the group of channels of instruction \p inst
6814  * given by lbld.group() requires allocating a temporary for the i-th source
6815  * of the lowered instruction.
6816  */
6817 static inline bool
needs_src_copy(const fs_builder & lbld,const fs_inst * inst,unsigned i)6818 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
6819 {
6820    return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
6821             (inst->components_read(i) == 1 &&
6822              lbld.dispatch_width() <= inst->exec_size)) ||
6823           (inst->flags_written() &
6824            flag_mask(inst->src[i], type_sz(inst->src[i].type)));
6825 }
6826 
6827 /**
6828  * Extract the data that would be consumed by the channel group given by
6829  * lbld.group() from the i-th source region of instruction \p inst and return
6830  * it as result in packed form.
6831  */
6832 static fs_reg
emit_unzip(const fs_builder & lbld,fs_inst * inst,unsigned i)6833 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
6834 {
6835    assert(lbld.group() >= inst->group);
6836 
6837    /* Specified channel group from the source region. */
6838    const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group);
6839 
6840    if (needs_src_copy(lbld, inst, i)) {
6841       /* Builder of the right width to perform the copy avoiding uninitialized
6842        * data if the lowered execution size is greater than the original
6843        * execution size of the instruction.
6844        */
6845       const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
6846                                               inst->exec_size), 0);
6847       const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
6848 
6849       for (unsigned k = 0; k < inst->components_read(i); ++k)
6850          cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
6851 
6852       return tmp;
6853 
6854    } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
6855       /* The source is invariant for all dispatch_width-wide groups of the
6856        * original region.
6857        */
6858       return inst->src[i];
6859 
6860    } else {
6861       /* We can just point the lowered instruction at the right channel group
6862        * from the original region.
6863        */
6864       return src;
6865    }
6866 }
6867 
6868 /**
6869  * Return true if splitting out the group of channels of instruction \p inst
6870  * given by lbld.group() requires allocating a temporary for the destination
6871  * of the lowered instruction and copying the data back to the original
6872  * destination region.
6873  */
6874 static inline bool
needs_dst_copy(const fs_builder & lbld,const fs_inst * inst)6875 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
6876 {
6877    /* If the instruction writes more than one component we'll have to shuffle
6878     * the results of multiple lowered instructions in order to make sure that
6879     * they end up arranged correctly in the original destination region.
6880     */
6881    if (inst->size_written > inst->dst.component_size(inst->exec_size))
6882       return true;
6883 
6884    /* If the lowered execution size is larger than the original the result of
6885     * the instruction won't fit in the original destination, so we'll have to
6886     * allocate a temporary in any case.
6887     */
6888    if (lbld.dispatch_width() > inst->exec_size)
6889       return true;
6890 
6891    for (unsigned i = 0; i < inst->sources; i++) {
6892       /* If we already made a copy of the source for other reasons there won't
6893        * be any overlap with the destination.
6894        */
6895       if (needs_src_copy(lbld, inst, i))
6896          continue;
6897 
6898       /* In order to keep the logic simple we emit a copy whenever the
6899        * destination region doesn't exactly match an overlapping source, which
6900        * may point at the source and destination not being aligned group by
6901        * group which could cause one of the lowered instructions to overwrite
6902        * the data read from the same source by other lowered instructions.
6903        */
6904       if (regions_overlap(inst->dst, inst->size_written,
6905                           inst->src[i], inst->size_read(i)) &&
6906           !inst->dst.equals(inst->src[i]))
6907         return true;
6908    }
6909 
6910    return false;
6911 }
6912 
6913 /**
6914  * Insert data from a packed temporary into the channel group given by
6915  * lbld.group() of the destination region of instruction \p inst and return
6916  * the temporary as result.  Any copy instructions that are required for
6917  * unzipping the previous value (in the case of partial writes) will be
6918  * inserted using \p lbld_before and any copy instructions required for
6919  * zipping up the destination of \p inst will be inserted using \p lbld_after.
6920  */
6921 static fs_reg
emit_zip(const fs_builder & lbld_before,const fs_builder & lbld_after,fs_inst * inst)6922 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
6923          fs_inst *inst)
6924 {
6925    assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
6926    assert(lbld_before.group() == lbld_after.group());
6927    assert(lbld_after.group() >= inst->group);
6928 
6929    /* Specified channel group from the destination region. */
6930    const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group);
6931    const unsigned dst_size = inst->size_written /
6932       inst->dst.component_size(inst->exec_size);
6933 
6934    if (needs_dst_copy(lbld_after, inst)) {
6935       const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
6936 
6937       if (inst->predicate) {
6938          /* Handle predication by copying the original contents of
6939           * the destination into the temporary before emitting the
6940           * lowered instruction.
6941           */
6942          const fs_builder gbld_before =
6943             lbld_before.group(MIN2(lbld_before.dispatch_width(),
6944                                    inst->exec_size), 0);
6945          for (unsigned k = 0; k < dst_size; ++k) {
6946             gbld_before.MOV(offset(tmp, lbld_before, k),
6947                             offset(dst, inst->exec_size, k));
6948          }
6949       }
6950 
6951       const fs_builder gbld_after =
6952          lbld_after.group(MIN2(lbld_after.dispatch_width(),
6953                                inst->exec_size), 0);
6954       for (unsigned k = 0; k < dst_size; ++k) {
6955          /* Use a builder of the right width to perform the copy avoiding
6956           * uninitialized data if the lowered execution size is greater than
6957           * the original execution size of the instruction.
6958           */
6959          gbld_after.MOV(offset(dst, inst->exec_size, k),
6960                         offset(tmp, lbld_after, k));
6961       }
6962 
6963       return tmp;
6964 
6965    } else {
6966       /* No need to allocate a temporary for the lowered instruction, just
6967        * take the right group of channels from the original region.
6968        */
6969       return dst;
6970    }
6971 }
6972 
6973 bool
lower_simd_width()6974 fs_visitor::lower_simd_width()
6975 {
6976    bool progress = false;
6977 
6978    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6979       const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
6980 
6981       if (lower_width != inst->exec_size) {
6982          /* Builder matching the original instruction.  We may also need to
6983           * emit an instruction of width larger than the original, set the
6984           * execution size of the builder to the highest of both for now so
6985           * we're sure that both cases can be handled.
6986           */
6987          const unsigned max_width = MAX2(inst->exec_size, lower_width);
6988          const fs_builder ibld = bld.at(block, inst)
6989                                     .exec_all(inst->force_writemask_all)
6990                                     .group(max_width, inst->group / max_width);
6991 
6992          /* Split the copies in chunks of the execution width of either the
6993           * original or the lowered instruction, whichever is lower.
6994           */
6995          const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
6996          const unsigned dst_size = inst->size_written /
6997             inst->dst.component_size(inst->exec_size);
6998 
6999          assert(!inst->writes_accumulator && !inst->mlen);
7000 
7001          /* Inserting the zip, unzip, and duplicated instructions in all of
7002           * the right spots is somewhat tricky.  All of the unzip and any
7003           * instructions from the zip which unzip the destination prior to
7004           * writing need to happen before all of the per-group instructions
7005           * and the zip instructions need to happen after.  In order to sort
7006           * this all out, we insert the unzip instructions before \p inst,
7007           * insert the per-group instructions after \p inst (i.e. before
7008           * inst->next), and insert the zip instructions before the
7009           * instruction after \p inst.  Since we are inserting instructions
7010           * after \p inst, inst->next is a moving target and we need to save
7011           * it off here so that we insert the zip instructions in the right
7012           * place.
7013           *
7014           * Since we're inserting split instructions after after_inst, the
7015           * instructions will end up in the reverse order that we insert them.
7016           * However, certain render target writes require that the low group
7017           * instructions come before the high group.  From the Ivy Bridge PRM
7018           * Vol. 4, Pt. 1, Section 3.9.11:
7019           *
7020           *    "If multiple SIMD8 Dual Source messages are delivered by the
7021           *    pixel shader thread, each SIMD8_DUALSRC_LO message must be
7022           *    issued before the SIMD8_DUALSRC_HI message with the same Slot
7023           *    Group Select setting."
7024           *
7025           * And, from Section 3.9.11.1 of the same PRM:
7026           *
7027           *    "When SIMD32 or SIMD16 PS threads send render target writes
7028           *    with multiple SIMD8 and SIMD16 messages, the following must
7029           *    hold:
7030           *
7031           *    All the slots (as described above) must have a corresponding
7032           *    render target write irrespective of the slot's validity. A slot
7033           *    is considered valid when at least one sample is enabled. For
7034           *    example, a SIMD16 PS thread must send two SIMD8 render target
7035           *    writes to cover all the slots.
7036           *
7037           *    PS thread must send SIMD render target write messages with
7038           *    increasing slot numbers. For example, SIMD16 thread has
7039           *    Slot[15:0] and if two SIMD8 render target writes are used, the
7040           *    first SIMD8 render target write must send Slot[7:0] and the
7041           *    next one must send Slot[15:8]."
7042           *
7043           * In order to make low group instructions come before high group
7044           * instructions (this is required for some render target writes), we
7045           * split from the highest group to lowest.
7046           */
7047          exec_node *const after_inst = inst->next;
7048          for (int i = n - 1; i >= 0; i--) {
7049             /* Emit a copy of the original instruction with the lowered width.
7050              * If the EOT flag was set throw it away except for the last
7051              * instruction to avoid killing the thread prematurely.
7052              */
7053             fs_inst split_inst = *inst;
7054             split_inst.exec_size = lower_width;
7055             split_inst.eot = inst->eot && i == int(n - 1);
7056 
7057             /* Select the correct channel enables for the i-th group, then
7058              * transform the sources and destination and emit the lowered
7059              * instruction.
7060              */
7061             const fs_builder lbld = ibld.group(lower_width, i);
7062 
7063             for (unsigned j = 0; j < inst->sources; j++)
7064                split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
7065 
7066             split_inst.dst = emit_zip(lbld.at(block, inst),
7067                                       lbld.at(block, after_inst), inst);
7068             split_inst.size_written =
7069                split_inst.dst.component_size(lower_width) * dst_size;
7070 
7071             lbld.at(block, inst->next).emit(split_inst);
7072          }
7073 
7074          inst->remove(block);
7075          progress = true;
7076       }
7077    }
7078 
7079    if (progress)
7080       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7081 
7082    return progress;
7083 }
7084 
7085 /**
7086  * Transform barycentric vectors into the interleaved form expected by the PLN
7087  * instruction and returned by the Gen7+ PI shared function.
7088  *
7089  * For channels 0-15 in SIMD16 mode they are expected to be laid out as
7090  * follows in the register file:
7091  *
7092  *    rN+0: X[0-7]
7093  *    rN+1: Y[0-7]
7094  *    rN+2: X[8-15]
7095  *    rN+3: Y[8-15]
7096  *
7097  * There is no need to handle SIMD32 here -- This is expected to be run after
7098  * SIMD lowering, since SIMD lowering relies on vectors having the standard
7099  * component layout.
7100  */
7101 bool
lower_barycentrics()7102 fs_visitor::lower_barycentrics()
7103 {
7104    const bool has_interleaved_layout = devinfo->has_pln || devinfo->gen >= 7;
7105    bool progress = false;
7106 
7107    if (stage != MESA_SHADER_FRAGMENT || !has_interleaved_layout)
7108       return false;
7109 
7110    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
7111       if (inst->exec_size < 16)
7112          continue;
7113 
7114       const fs_builder ibld(this, block, inst);
7115       const fs_builder ubld = ibld.exec_all().group(8, 0);
7116 
7117       switch (inst->opcode) {
7118       case FS_OPCODE_LINTERP : {
7119          assert(inst->exec_size == 16);
7120          const fs_reg tmp = ibld.vgrf(inst->src[0].type, 2);
7121          fs_reg srcs[4];
7122 
7123          for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++)
7124             srcs[i] = horiz_offset(offset(inst->src[0], ibld, i % 2),
7125                                    8 * (i / 2));
7126 
7127          ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs));
7128 
7129          inst->src[0] = tmp;
7130          progress = true;
7131          break;
7132       }
7133       case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
7134       case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
7135       case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: {
7136          assert(inst->exec_size == 16);
7137          const fs_reg tmp = ibld.vgrf(inst->dst.type, 2);
7138 
7139          for (unsigned i = 0; i < 2; i++) {
7140             for (unsigned g = 0; g < inst->exec_size / 8; g++) {
7141                fs_inst *mov = ibld.at(block, inst->next).group(8, g)
7142                                   .MOV(horiz_offset(offset(inst->dst, ibld, i),
7143                                                     8 * g),
7144                                        offset(tmp, ubld, 2 * g + i));
7145                mov->predicate = inst->predicate;
7146                mov->predicate_inverse = inst->predicate_inverse;
7147                mov->flag_subreg = inst->flag_subreg;
7148             }
7149          }
7150 
7151          inst->dst = tmp;
7152          progress = true;
7153          break;
7154       }
7155       default:
7156          break;
7157       }
7158    }
7159 
7160    if (progress)
7161       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7162 
7163    return progress;
7164 }
7165 
7166 void
dump_instructions() const7167 fs_visitor::dump_instructions() const
7168 {
7169    dump_instructions(NULL);
7170 }
7171 
7172 void
dump_instructions(const char * name) const7173 fs_visitor::dump_instructions(const char *name) const
7174 {
7175    FILE *file = stderr;
7176    if (name && geteuid() != 0) {
7177       file = fopen(name, "w");
7178       if (!file)
7179          file = stderr;
7180    }
7181 
7182    if (cfg) {
7183       const register_pressure &rp = regpressure_analysis.require();
7184       unsigned ip = 0, max_pressure = 0;
7185       foreach_block_and_inst(block, backend_instruction, inst, cfg) {
7186          max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]);
7187          fprintf(file, "{%3d} %4d: ", rp.regs_live_at_ip[ip], ip);
7188          dump_instruction(inst, file);
7189          ip++;
7190       }
7191       fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
7192    } else {
7193       int ip = 0;
7194       foreach_in_list(backend_instruction, inst, &instructions) {
7195          fprintf(file, "%4d: ", ip++);
7196          dump_instruction(inst, file);
7197       }
7198    }
7199 
7200    if (file != stderr) {
7201       fclose(file);
7202    }
7203 }
7204 
7205 void
dump_instruction(const backend_instruction * be_inst) const7206 fs_visitor::dump_instruction(const backend_instruction *be_inst) const
7207 {
7208    dump_instruction(be_inst, stderr);
7209 }
7210 
7211 void
dump_instruction(const backend_instruction * be_inst,FILE * file) const7212 fs_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const
7213 {
7214    const fs_inst *inst = (const fs_inst *)be_inst;
7215 
7216    if (inst->predicate) {
7217       fprintf(file, "(%cf%d.%d) ",
7218               inst->predicate_inverse ? '-' : '+',
7219               inst->flag_subreg / 2,
7220               inst->flag_subreg % 2);
7221    }
7222 
7223    fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
7224    if (inst->saturate)
7225       fprintf(file, ".sat");
7226    if (inst->conditional_mod) {
7227       fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
7228       if (!inst->predicate &&
7229           (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
7230                                 inst->opcode != BRW_OPCODE_CSEL &&
7231                                 inst->opcode != BRW_OPCODE_IF &&
7232                                 inst->opcode != BRW_OPCODE_WHILE))) {
7233          fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
7234                  inst->flag_subreg % 2);
7235       }
7236    }
7237    fprintf(file, "(%d) ", inst->exec_size);
7238 
7239    if (inst->mlen) {
7240       fprintf(file, "(mlen: %d) ", inst->mlen);
7241    }
7242 
7243    if (inst->ex_mlen) {
7244       fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen);
7245    }
7246 
7247    if (inst->eot) {
7248       fprintf(file, "(EOT) ");
7249    }
7250 
7251    switch (inst->dst.file) {
7252    case VGRF:
7253       fprintf(file, "vgrf%d", inst->dst.nr);
7254       break;
7255    case FIXED_GRF:
7256       fprintf(file, "g%d", inst->dst.nr);
7257       break;
7258    case MRF:
7259       fprintf(file, "m%d", inst->dst.nr);
7260       break;
7261    case BAD_FILE:
7262       fprintf(file, "(null)");
7263       break;
7264    case UNIFORM:
7265       fprintf(file, "***u%d***", inst->dst.nr);
7266       break;
7267    case ATTR:
7268       fprintf(file, "***attr%d***", inst->dst.nr);
7269       break;
7270    case ARF:
7271       switch (inst->dst.nr) {
7272       case BRW_ARF_NULL:
7273          fprintf(file, "null");
7274          break;
7275       case BRW_ARF_ADDRESS:
7276          fprintf(file, "a0.%d", inst->dst.subnr);
7277          break;
7278       case BRW_ARF_ACCUMULATOR:
7279          fprintf(file, "acc%d", inst->dst.subnr);
7280          break;
7281       case BRW_ARF_FLAG:
7282          fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7283          break;
7284       default:
7285          fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7286          break;
7287       }
7288       break;
7289    case IMM:
7290       unreachable("not reached");
7291    }
7292 
7293    if (inst->dst.offset ||
7294        (inst->dst.file == VGRF &&
7295         alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
7296       const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
7297       fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
7298               inst->dst.offset % reg_size);
7299    }
7300 
7301    if (inst->dst.stride != 1)
7302       fprintf(file, "<%u>", inst->dst.stride);
7303    fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
7304 
7305    for (int i = 0; i < inst->sources; i++) {
7306       if (inst->src[i].negate)
7307          fprintf(file, "-");
7308       if (inst->src[i].abs)
7309          fprintf(file, "|");
7310       switch (inst->src[i].file) {
7311       case VGRF:
7312          fprintf(file, "vgrf%d", inst->src[i].nr);
7313          break;
7314       case FIXED_GRF:
7315          fprintf(file, "g%d", inst->src[i].nr);
7316          break;
7317       case MRF:
7318          fprintf(file, "***m%d***", inst->src[i].nr);
7319          break;
7320       case ATTR:
7321          fprintf(file, "attr%d", inst->src[i].nr);
7322          break;
7323       case UNIFORM:
7324          fprintf(file, "u%d", inst->src[i].nr);
7325          break;
7326       case BAD_FILE:
7327          fprintf(file, "(null)");
7328          break;
7329       case IMM:
7330          switch (inst->src[i].type) {
7331          case BRW_REGISTER_TYPE_F:
7332             fprintf(file, "%-gf", inst->src[i].f);
7333             break;
7334          case BRW_REGISTER_TYPE_DF:
7335             fprintf(file, "%fdf", inst->src[i].df);
7336             break;
7337          case BRW_REGISTER_TYPE_W:
7338          case BRW_REGISTER_TYPE_D:
7339             fprintf(file, "%dd", inst->src[i].d);
7340             break;
7341          case BRW_REGISTER_TYPE_UW:
7342          case BRW_REGISTER_TYPE_UD:
7343             fprintf(file, "%uu", inst->src[i].ud);
7344             break;
7345          case BRW_REGISTER_TYPE_Q:
7346             fprintf(file, "%" PRId64 "q", inst->src[i].d64);
7347             break;
7348          case BRW_REGISTER_TYPE_UQ:
7349             fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
7350             break;
7351          case BRW_REGISTER_TYPE_VF:
7352             fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
7353                     brw_vf_to_float((inst->src[i].ud >>  0) & 0xff),
7354                     brw_vf_to_float((inst->src[i].ud >>  8) & 0xff),
7355                     brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
7356                     brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
7357             break;
7358          case BRW_REGISTER_TYPE_V:
7359          case BRW_REGISTER_TYPE_UV:
7360             fprintf(file, "%08x%s", inst->src[i].ud,
7361                     inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV");
7362             break;
7363          default:
7364             fprintf(file, "???");
7365             break;
7366          }
7367          break;
7368       case ARF:
7369          switch (inst->src[i].nr) {
7370          case BRW_ARF_NULL:
7371             fprintf(file, "null");
7372             break;
7373          case BRW_ARF_ADDRESS:
7374             fprintf(file, "a0.%d", inst->src[i].subnr);
7375             break;
7376          case BRW_ARF_ACCUMULATOR:
7377             fprintf(file, "acc%d", inst->src[i].subnr);
7378             break;
7379          case BRW_ARF_FLAG:
7380             fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7381             break;
7382          default:
7383             fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7384             break;
7385          }
7386          break;
7387       }
7388 
7389       if (inst->src[i].offset ||
7390           (inst->src[i].file == VGRF &&
7391            alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
7392          const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
7393          fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
7394                  inst->src[i].offset % reg_size);
7395       }
7396 
7397       if (inst->src[i].abs)
7398          fprintf(file, "|");
7399 
7400       if (inst->src[i].file != IMM) {
7401          unsigned stride;
7402          if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
7403             unsigned hstride = inst->src[i].hstride;
7404             stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
7405          } else {
7406             stride = inst->src[i].stride;
7407          }
7408          if (stride != 1)
7409             fprintf(file, "<%u>", stride);
7410 
7411          fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
7412       }
7413 
7414       if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
7415          fprintf(file, ", ");
7416    }
7417 
7418    fprintf(file, " ");
7419 
7420    if (inst->force_writemask_all)
7421       fprintf(file, "NoMask ");
7422 
7423    if (inst->exec_size != dispatch_width)
7424       fprintf(file, "group%d ", inst->group);
7425 
7426    fprintf(file, "\n");
7427 }
7428 
7429 void
setup_fs_payload_gen6()7430 fs_visitor::setup_fs_payload_gen6()
7431 {
7432    assert(stage == MESA_SHADER_FRAGMENT);
7433    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
7434    const unsigned payload_width = MIN2(16, dispatch_width);
7435    assert(dispatch_width % payload_width == 0);
7436    assert(devinfo->gen >= 6);
7437 
7438    /* R0: PS thread payload header. */
7439    payload.num_regs++;
7440 
7441    for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7442       /* R1: masks, pixel X/Y coordinates. */
7443       payload.subspan_coord_reg[j] = payload.num_regs++;
7444    }
7445 
7446    for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7447       /* R3-26: barycentric interpolation coordinates.  These appear in the
7448        * same order that they appear in the brw_barycentric_mode enum.  Each
7449        * set of coordinates occupies 2 registers if dispatch width == 8 and 4
7450        * registers if dispatch width == 16.  Coordinates only appear if they
7451        * were enabled using the "Barycentric Interpolation Mode" bits in
7452        * WM_STATE.
7453        */
7454       for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
7455          if (prog_data->barycentric_interp_modes & (1 << i)) {
7456             payload.barycentric_coord_reg[i][j] = payload.num_regs;
7457             payload.num_regs += payload_width / 4;
7458          }
7459       }
7460 
7461       /* R27-28: interpolated depth if uses source depth */
7462       if (prog_data->uses_src_depth) {
7463          payload.source_depth_reg[j] = payload.num_regs;
7464          payload.num_regs += payload_width / 8;
7465       }
7466 
7467       /* R29-30: interpolated W set if GEN6_WM_USES_SOURCE_W. */
7468       if (prog_data->uses_src_w) {
7469          payload.source_w_reg[j] = payload.num_regs;
7470          payload.num_regs += payload_width / 8;
7471       }
7472 
7473       /* R31: MSAA position offsets. */
7474       if (prog_data->uses_pos_offset) {
7475          payload.sample_pos_reg[j] = payload.num_regs;
7476          payload.num_regs++;
7477       }
7478 
7479       /* R32-33: MSAA input coverage mask */
7480       if (prog_data->uses_sample_mask) {
7481          assert(devinfo->gen >= 7);
7482          payload.sample_mask_in_reg[j] = payload.num_regs;
7483          payload.num_regs += payload_width / 8;
7484       }
7485    }
7486 
7487    if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
7488       source_depth_to_render_target = true;
7489    }
7490 }
7491 
7492 void
setup_vs_payload()7493 fs_visitor::setup_vs_payload()
7494 {
7495    /* R0: thread header, R1: urb handles */
7496    payload.num_regs = 2;
7497 }
7498 
7499 void
setup_gs_payload()7500 fs_visitor::setup_gs_payload()
7501 {
7502    assert(stage == MESA_SHADER_GEOMETRY);
7503 
7504    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
7505    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7506 
7507    /* R0: thread header, R1: output URB handles */
7508    payload.num_regs = 2;
7509 
7510    if (gs_prog_data->include_primitive_id) {
7511       /* R2: Primitive ID 0..7 */
7512       payload.num_regs++;
7513    }
7514 
7515    /* Always enable VUE handles so we can safely use pull model if needed.
7516     *
7517     * The push model for a GS uses a ton of register space even for trivial
7518     * scenarios with just a few inputs, so just make things easier and a bit
7519     * safer by always having pull model available.
7520     */
7521    gs_prog_data->base.include_vue_handles = true;
7522 
7523    /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
7524    payload.num_regs += nir->info.gs.vertices_in;
7525 
7526    /* Use a maximum of 24 registers for push-model inputs. */
7527    const unsigned max_push_components = 24;
7528 
7529    /* If pushing our inputs would take too many registers, reduce the URB read
7530     * length (which is in HWords, or 8 registers), and resort to pulling.
7531     *
7532     * Note that the GS reads <URB Read Length> HWords for every vertex - so we
7533     * have to multiply by VerticesIn to obtain the total storage requirement.
7534     */
7535    if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
7536        max_push_components) {
7537       vue_prog_data->urb_read_length =
7538          ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
7539    }
7540 }
7541 
7542 void
setup_cs_payload()7543 fs_visitor::setup_cs_payload()
7544 {
7545    assert(devinfo->gen >= 7);
7546    payload.num_regs = 1;
7547 }
7548 
register_pressure(const fs_visitor * v)7549 brw::register_pressure::register_pressure(const fs_visitor *v)
7550 {
7551    const fs_live_variables &live = v->live_analysis.require();
7552    const unsigned num_instructions = v->cfg->num_blocks ?
7553       v->cfg->blocks[v->cfg->num_blocks - 1]->end_ip + 1 : 0;
7554 
7555    regs_live_at_ip = new unsigned[num_instructions]();
7556 
7557    for (unsigned reg = 0; reg < v->alloc.count; reg++) {
7558       for (int ip = live.vgrf_start[reg]; ip <= live.vgrf_end[reg]; ip++)
7559          regs_live_at_ip[ip] += v->alloc.sizes[reg];
7560    }
7561 }
7562 
~register_pressure()7563 brw::register_pressure::~register_pressure()
7564 {
7565    delete[] regs_live_at_ip;
7566 }
7567 
7568 void
invalidate_analysis(brw::analysis_dependency_class c)7569 fs_visitor::invalidate_analysis(brw::analysis_dependency_class c)
7570 {
7571    backend_shader::invalidate_analysis(c);
7572    live_analysis.invalidate(c);
7573    regpressure_analysis.invalidate(c);
7574 }
7575 
7576 void
optimize()7577 fs_visitor::optimize()
7578 {
7579    /* Start by validating the shader we currently have. */
7580    validate();
7581 
7582    /* bld is the common builder object pointing at the end of the program we
7583     * used to translate it into i965 IR.  For the optimization and lowering
7584     * passes coming next, any code added after the end of the program without
7585     * having explicitly called fs_builder::at() clearly points at a mistake.
7586     * Ideally optimization passes wouldn't be part of the visitor so they
7587     * wouldn't have access to bld at all, but they do, so just in case some
7588     * pass forgets to ask for a location explicitly set it to NULL here to
7589     * make it trip.  The dispatch width is initialized to a bogus value to
7590     * make sure that optimizations set the execution controls explicitly to
7591     * match the code they are manipulating instead of relying on the defaults.
7592     */
7593    bld = fs_builder(this, 64);
7594 
7595    assign_constant_locations();
7596    lower_constant_loads();
7597 
7598    validate();
7599 
7600    split_virtual_grfs();
7601    validate();
7602 
7603 #define OPT(pass, args...) ({                                           \
7604       pass_num++;                                                       \
7605       bool this_progress = pass(args);                                  \
7606                                                                         \
7607       if ((INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) {           \
7608          char filename[64];                                             \
7609          snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass,              \
7610                   stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
7611                                                                         \
7612          backend_shader::dump_instructions(filename);                   \
7613       }                                                                 \
7614                                                                         \
7615       validate();                                                       \
7616                                                                         \
7617       progress = progress || this_progress;                             \
7618       this_progress;                                                    \
7619    })
7620 
7621    if (INTEL_DEBUG & DEBUG_OPTIMIZER) {
7622       char filename[64];
7623       snprintf(filename, 64, "%s%d-%s-00-00-start",
7624                stage_abbrev, dispatch_width, nir->info.name);
7625 
7626       backend_shader::dump_instructions(filename);
7627    }
7628 
7629    bool progress = false;
7630    int iteration = 0;
7631    int pass_num = 0;
7632 
7633    /* Before anything else, eliminate dead code.  The results of some NIR
7634     * instructions may effectively be calculated twice.  Once when the
7635     * instruction is encountered, and again when the user of that result is
7636     * encountered.  Wipe those away before algebraic optimizations and
7637     * especially copy propagation can mix things up.
7638     */
7639    OPT(dead_code_eliminate);
7640 
7641    OPT(remove_extra_rounding_modes);
7642 
7643    do {
7644       progress = false;
7645       pass_num = 0;
7646       iteration++;
7647 
7648       OPT(remove_duplicate_mrf_writes);
7649 
7650       OPT(opt_algebraic);
7651       OPT(opt_cse);
7652       OPT(opt_copy_propagation);
7653       OPT(opt_predicated_break, this);
7654       OPT(opt_cmod_propagation);
7655       OPT(dead_code_eliminate);
7656       OPT(opt_peephole_sel);
7657       OPT(dead_control_flow_eliminate, this);
7658       OPT(opt_register_renaming);
7659       OPT(opt_saturate_propagation);
7660       OPT(register_coalesce);
7661       OPT(compute_to_mrf);
7662       OPT(eliminate_find_live_channel);
7663 
7664       OPT(compact_virtual_grfs);
7665    } while (progress);
7666 
7667    progress = false;
7668    pass_num = 0;
7669 
7670    if (OPT(lower_pack)) {
7671       OPT(register_coalesce);
7672       OPT(dead_code_eliminate);
7673    }
7674 
7675    OPT(lower_simd_width);
7676    OPT(lower_barycentrics);
7677    OPT(lower_logical_sends);
7678 
7679    /* After logical SEND lowering. */
7680    OPT(fixup_nomask_control_flow);
7681 
7682    if (progress) {
7683       OPT(opt_copy_propagation);
7684       /* Only run after logical send lowering because it's easier to implement
7685        * in terms of physical sends.
7686        */
7687       if (OPT(opt_zero_samples))
7688          OPT(opt_copy_propagation);
7689       /* Run after logical send lowering to give it a chance to CSE the
7690        * LOAD_PAYLOAD instructions created to construct the payloads of
7691        * e.g. texturing messages in cases where it wasn't possible to CSE the
7692        * whole logical instruction.
7693        */
7694       OPT(opt_cse);
7695       OPT(register_coalesce);
7696       OPT(compute_to_mrf);
7697       OPT(dead_code_eliminate);
7698       OPT(remove_duplicate_mrf_writes);
7699       OPT(opt_peephole_sel);
7700    }
7701 
7702    OPT(opt_redundant_discard_jumps);
7703 
7704    if (OPT(lower_load_payload)) {
7705       split_virtual_grfs();
7706 
7707       /* Lower 64 bit MOVs generated by payload lowering. */
7708       if (!devinfo->has_64bit_float && !devinfo->has_64bit_int)
7709          OPT(opt_algebraic);
7710 
7711       OPT(register_coalesce);
7712       OPT(lower_simd_width);
7713       OPT(compute_to_mrf);
7714       OPT(dead_code_eliminate);
7715    }
7716 
7717    OPT(opt_combine_constants);
7718    OPT(lower_integer_multiplication);
7719    OPT(lower_sub_sat);
7720 
7721    if (devinfo->gen <= 5 && OPT(lower_minmax)) {
7722       OPT(opt_cmod_propagation);
7723       OPT(opt_cse);
7724       OPT(opt_copy_propagation);
7725       OPT(dead_code_eliminate);
7726    }
7727 
7728    if (OPT(lower_regioning)) {
7729       OPT(opt_copy_propagation);
7730       OPT(dead_code_eliminate);
7731       OPT(lower_simd_width);
7732    }
7733 
7734    OPT(fixup_sends_duplicate_payload);
7735 
7736    lower_uniform_pull_constant_loads();
7737 
7738    validate();
7739 }
7740 
7741 /**
7742  * From the Skylake PRM Vol. 2a docs for sends:
7743  *
7744  *    "It is required that the second block of GRFs does not overlap with the
7745  *    first block."
7746  *
7747  * There are plenty of cases where we may accidentally violate this due to
7748  * having, for instance, both sources be the constant 0.  This little pass
7749  * just adds a new vgrf for the second payload and copies it over.
7750  */
7751 bool
fixup_sends_duplicate_payload()7752 fs_visitor::fixup_sends_duplicate_payload()
7753 {
7754    bool progress = false;
7755 
7756    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7757       if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
7758           regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
7759                           inst->src[3], inst->ex_mlen * REG_SIZE)) {
7760          fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen),
7761                              BRW_REGISTER_TYPE_UD);
7762          /* Sadly, we've lost all notion of channels and bit sizes at this
7763           * point.  Just WE_all it.
7764           */
7765          const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0);
7766          fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD);
7767          fs_reg copy_dst = tmp;
7768          for (unsigned i = 0; i < inst->ex_mlen; i += 2) {
7769             if (inst->ex_mlen == i + 1) {
7770                /* Only one register left; do SIMD8 */
7771                ibld.group(8, 0).MOV(copy_dst, copy_src);
7772             } else {
7773                ibld.MOV(copy_dst, copy_src);
7774             }
7775             copy_src = offset(copy_src, ibld, 1);
7776             copy_dst = offset(copy_dst, ibld, 1);
7777          }
7778          inst->src[3] = tmp;
7779          progress = true;
7780       }
7781    }
7782 
7783    if (progress)
7784       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7785 
7786    return progress;
7787 }
7788 
7789 /**
7790  * Three source instruction must have a GRF/MRF destination register.
7791  * ARF NULL is not allowed.  Fix that up by allocating a temporary GRF.
7792  */
7793 void
fixup_3src_null_dest()7794 fs_visitor::fixup_3src_null_dest()
7795 {
7796    bool progress = false;
7797 
7798    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7799       if (inst->is_3src(devinfo) && inst->dst.is_null()) {
7800          inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
7801                             inst->dst.type);
7802          progress = true;
7803       }
7804    }
7805 
7806    if (progress)
7807       invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
7808                           DEPENDENCY_VARIABLES);
7809 }
7810 
7811 /**
7812  * Find the first instruction in the program that might start a region of
7813  * divergent control flow due to a HALT jump.  There is no
7814  * find_halt_control_flow_region_end(), the region of divergence extends until
7815  * the only FS_OPCODE_PLACEHOLDER_HALT in the program.
7816  */
7817 static const fs_inst *
find_halt_control_flow_region_start(const fs_visitor * v)7818 find_halt_control_flow_region_start(const fs_visitor *v)
7819 {
7820    if (v->stage == MESA_SHADER_FRAGMENT &&
7821        brw_wm_prog_data(v->prog_data)->uses_kill) {
7822       foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
7823          if (inst->opcode == FS_OPCODE_DISCARD_JUMP ||
7824              inst->opcode == FS_OPCODE_PLACEHOLDER_HALT)
7825             return inst;
7826       }
7827    }
7828 
7829    return NULL;
7830 }
7831 
7832 /**
7833  * Work around the Gen12 hardware bug filed as GEN:BUG:1407528679.  EU fusion
7834  * can cause a BB to be executed with all channels disabled, which will lead
7835  * to the execution of any NoMask instructions in it, even though any
7836  * execution-masked instructions will be correctly shot down.  This may break
7837  * assumptions of some NoMask SEND messages whose descriptor depends on data
7838  * generated by live invocations of the shader.
7839  *
7840  * This avoids the problem by predicating certain instructions on an ANY
7841  * horizontal predicate that makes sure that their execution is omitted when
7842  * all channels of the program are disabled.
7843  */
7844 bool
fixup_nomask_control_flow()7845 fs_visitor::fixup_nomask_control_flow()
7846 {
7847    if (devinfo->gen != 12)
7848       return false;
7849 
7850    const brw_predicate pred = dispatch_width > 16 ? BRW_PREDICATE_ALIGN1_ANY32H :
7851                               dispatch_width > 8 ? BRW_PREDICATE_ALIGN1_ANY16H :
7852                               BRW_PREDICATE_ALIGN1_ANY8H;
7853    const fs_inst *halt_start = find_halt_control_flow_region_start(this);
7854    unsigned depth = 0;
7855    bool progress = false;
7856 
7857    const fs_live_variables &live_vars = live_analysis.require();
7858 
7859    /* Scan the program backwards in order to be able to easily determine
7860     * whether the flag register is live at any point.
7861     */
7862    foreach_block_reverse_safe(block, cfg) {
7863       BITSET_WORD flag_liveout = live_vars.block_data[block->num]
7864                                                .flag_liveout[0];
7865       STATIC_ASSERT(ARRAY_SIZE(live_vars.block_data[0].flag_liveout) == 1);
7866 
7867       foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
7868          if (!inst->predicate && inst->exec_size >= 8)
7869             flag_liveout &= ~inst->flags_written();
7870 
7871          switch (inst->opcode) {
7872          case BRW_OPCODE_DO:
7873          case BRW_OPCODE_IF:
7874             /* Note that this doesn't handle FS_OPCODE_DISCARD_JUMP since only
7875              * the first one in the program closes the region of divergent
7876              * control flow due to any HALT instructions -- Instead this is
7877              * handled with the halt_start check below.
7878              */
7879             depth--;
7880             break;
7881 
7882          case BRW_OPCODE_WHILE:
7883          case BRW_OPCODE_ENDIF:
7884          case FS_OPCODE_PLACEHOLDER_HALT:
7885             depth++;
7886             break;
7887 
7888          default:
7889             /* Note that the vast majority of NoMask SEND instructions in the
7890              * program are harmless while executed in a block with all
7891              * channels disabled, since any instructions with side effects we
7892              * could hit here should be execution-masked.
7893              *
7894              * The main concern is NoMask SEND instructions where the message
7895              * descriptor or header depends on data generated by live
7896              * invocations of the shader (RESINFO and
7897              * FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD with a dynamically
7898              * computed surface index seem to be the only examples right now
7899              * where this could easily lead to GPU hangs).  Unfortunately we
7900              * have no straightforward way to detect that currently, so just
7901              * predicate any NoMask SEND instructions we find under control
7902              * flow.
7903              *
7904              * If this proves to have a measurable performance impact it can
7905              * be easily extended with a whitelist of messages we know we can
7906              * safely omit the predication for.
7907              */
7908             if (depth && inst->force_writemask_all &&
7909                 is_send(inst) && !inst->predicate) {
7910                /* We need to load the execution mask into the flag register by
7911                 * using a builder with channel group matching the whole shader
7912                 * (rather than the default which is derived from the original
7913                 * instruction), in order to avoid getting a right-shifted
7914                 * value.
7915                 */
7916                const fs_builder ubld = fs_builder(this, block, inst)
7917                                        .exec_all().group(dispatch_width, 0);
7918                const fs_reg flag = retype(brw_flag_reg(0, 0),
7919                                           BRW_REGISTER_TYPE_UD);
7920 
7921                /* Due to the lack of flag register allocation we need to save
7922                 * and restore the flag register if it's live.
7923                 */
7924                const bool save_flag = flag_liveout &
7925                                       flag_mask(flag, dispatch_width / 8);
7926                const fs_reg tmp = ubld.group(1, 0).vgrf(flag.type);
7927 
7928                if (save_flag)
7929                   ubld.group(1, 0).MOV(tmp, flag);
7930 
7931                ubld.emit(FS_OPCODE_LOAD_LIVE_CHANNELS);
7932 
7933                set_predicate(pred, inst);
7934                inst->flag_subreg = 0;
7935 
7936                if (save_flag)
7937                   ubld.group(1, 0).at(block, inst->next).MOV(flag, tmp);
7938 
7939                progress = true;
7940             }
7941             break;
7942          }
7943 
7944          if (inst == halt_start)
7945             depth--;
7946 
7947          flag_liveout |= inst->flags_read(devinfo);
7948       }
7949    }
7950 
7951    if (progress)
7952       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7953 
7954    return progress;
7955 }
7956 
7957 void
allocate_registers(bool allow_spilling)7958 fs_visitor::allocate_registers(bool allow_spilling)
7959 {
7960    bool allocated;
7961 
7962    static const enum instruction_scheduler_mode pre_modes[] = {
7963       SCHEDULE_PRE,
7964       SCHEDULE_PRE_NON_LIFO,
7965       SCHEDULE_PRE_LIFO,
7966    };
7967 
7968    static const char *scheduler_mode_name[] = {
7969       "top-down",
7970       "non-lifo",
7971       "lifo"
7972    };
7973 
7974    bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
7975 
7976    /* Try each scheduling heuristic to see if it can successfully register
7977     * allocate without spilling.  They should be ordered by decreasing
7978     * performance but increasing likelihood of allocating.
7979     */
7980    for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
7981       schedule_instructions(pre_modes[i]);
7982       this->shader_stats.scheduler_mode = scheduler_mode_name[i];
7983 
7984       if (0) {
7985          assign_regs_trivial();
7986          allocated = true;
7987          break;
7988       }
7989 
7990       /* Scheduling may create additional opportunities for CMOD propagation,
7991        * so let's do it again.  If CMOD propagation made any progress,
7992        * eliminate dead code one more time.
7993        */
7994       bool progress = false;
7995       const int iteration = 99;
7996       int pass_num = 0;
7997 
7998       if (OPT(opt_cmod_propagation)) {
7999          /* dead_code_eliminate "undoes" the fixing done by
8000           * fixup_3src_null_dest, so we have to do it again if
8001           * dead_code_eliminiate makes any progress.
8002           */
8003          if (OPT(dead_code_eliminate))
8004             fixup_3src_null_dest();
8005       }
8006 
8007       bool can_spill = allow_spilling &&
8008                        (i == ARRAY_SIZE(pre_modes) - 1);
8009 
8010       /* We should only spill registers on the last scheduling. */
8011       assert(!spilled_any_registers);
8012 
8013       allocated = assign_regs(can_spill, spill_all);
8014       if (allocated)
8015          break;
8016    }
8017 
8018    if (!allocated) {
8019       fail("Failure to register allocate.  Reduce number of "
8020            "live scalar values to avoid this.");
8021    } else if (spilled_any_registers) {
8022       compiler->shader_perf_log(log_data,
8023                                 "%s shader triggered register spilling.  "
8024                                 "Try reducing the number of live scalar "
8025                                 "values to improve performance.\n",
8026                                 stage_name);
8027    }
8028 
8029    /* This must come after all optimization and register allocation, since
8030     * it inserts dead code that happens to have side effects, and it does
8031     * so based on the actual physical registers in use.
8032     */
8033    insert_gen4_send_dependency_workarounds();
8034 
8035    if (failed)
8036       return;
8037 
8038    opt_bank_conflicts();
8039 
8040    schedule_instructions(SCHEDULE_POST);
8041 
8042    if (last_scratch > 0) {
8043       ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024;
8044 
8045       prog_data->total_scratch = brw_get_scratch_size(last_scratch);
8046 
8047       if (stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL) {
8048          if (devinfo->is_haswell) {
8049             /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
8050              * field documentation, Haswell supports a minimum of 2kB of
8051              * scratch space for compute shaders, unlike every other stage
8052              * and platform.
8053              */
8054             prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
8055          } else if (devinfo->gen <= 7) {
8056             /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
8057              * field documentation, platforms prior to Haswell measure scratch
8058              * size linearly with a range of [1kB, 12kB] and 1kB granularity.
8059              */
8060             prog_data->total_scratch = ALIGN(last_scratch, 1024);
8061             max_scratch_size = 12 * 1024;
8062          }
8063       }
8064 
8065       /* We currently only support up to 2MB of scratch space.  If we
8066        * need to support more eventually, the documentation suggests
8067        * that we could allocate a larger buffer, and partition it out
8068        * ourselves.  We'd just have to undo the hardware's address
8069        * calculation by subtracting (FFTID * Per Thread Scratch Space)
8070        * and then add FFTID * (Larger Per Thread Scratch Space).
8071        *
8072        * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
8073        * Thread Group Tracking > Local Memory/Scratch Space.
8074        */
8075       assert(prog_data->total_scratch < max_scratch_size);
8076    }
8077 
8078    lower_scoreboard();
8079 }
8080 
8081 bool
run_vs()8082 fs_visitor::run_vs()
8083 {
8084    assert(stage == MESA_SHADER_VERTEX);
8085 
8086    setup_vs_payload();
8087 
8088    if (shader_time_index >= 0)
8089       emit_shader_time_begin();
8090 
8091    emit_nir_code();
8092 
8093    if (failed)
8094       return false;
8095 
8096    emit_urb_writes();
8097 
8098    if (shader_time_index >= 0)
8099       emit_shader_time_end();
8100 
8101    calculate_cfg();
8102 
8103    optimize();
8104 
8105    assign_curb_setup();
8106    assign_vs_urb_setup();
8107 
8108    fixup_3src_null_dest();
8109    allocate_registers(true /* allow_spilling */);
8110 
8111    return !failed;
8112 }
8113 
8114 void
set_tcs_invocation_id()8115 fs_visitor::set_tcs_invocation_id()
8116 {
8117    struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
8118    struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
8119 
8120    const unsigned instance_id_mask =
8121       devinfo->gen >= 11 ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
8122    const unsigned instance_id_shift =
8123       devinfo->gen >= 11 ? 16 : 17;
8124 
8125    /* Get instance number from g0.2 bits 22:16 or 23:17 */
8126    fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
8127    bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
8128            brw_imm_ud(instance_id_mask));
8129 
8130    invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
8131 
8132    if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH) {
8133       /* gl_InvocationID is just the thread number */
8134       bld.SHR(invocation_id, t, brw_imm_ud(instance_id_shift));
8135       return;
8136    }
8137 
8138    assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH);
8139 
8140    fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
8141    fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
8142    bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
8143    bld.MOV(channels_ud, channels_uw);
8144 
8145    if (tcs_prog_data->instances == 1) {
8146       invocation_id = channels_ud;
8147    } else {
8148       fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
8149       bld.SHR(instance_times_8, t, brw_imm_ud(instance_id_shift - 3));
8150       bld.ADD(invocation_id, instance_times_8, channels_ud);
8151    }
8152 }
8153 
8154 bool
run_tcs()8155 fs_visitor::run_tcs()
8156 {
8157    assert(stage == MESA_SHADER_TESS_CTRL);
8158 
8159    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
8160    struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
8161    struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
8162 
8163    assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH ||
8164           vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
8165 
8166    if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
8167       /* r1-r4 contain the ICP handles. */
8168       payload.num_regs = 5;
8169    } else {
8170       assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
8171       assert(tcs_key->input_vertices > 0);
8172       /* r1 contains output handles, r2 may contain primitive ID, then the
8173        * ICP handles occupy the next 1-32 registers.
8174        */
8175       payload.num_regs = 2 + tcs_prog_data->include_primitive_id +
8176                          tcs_key->input_vertices;
8177    }
8178 
8179    if (shader_time_index >= 0)
8180       emit_shader_time_begin();
8181 
8182    /* Initialize gl_InvocationID */
8183    set_tcs_invocation_id();
8184 
8185    const bool fix_dispatch_mask =
8186       vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH &&
8187       (nir->info.tess.tcs_vertices_out % 8) != 0;
8188 
8189    /* Fix the disptach mask */
8190    if (fix_dispatch_mask) {
8191       bld.CMP(bld.null_reg_ud(), invocation_id,
8192               brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
8193       bld.IF(BRW_PREDICATE_NORMAL);
8194    }
8195 
8196    emit_nir_code();
8197 
8198    if (fix_dispatch_mask) {
8199       bld.emit(BRW_OPCODE_ENDIF);
8200    }
8201 
8202    /* Emit EOT write; set TR DS Cache bit */
8203    fs_reg srcs[3] = {
8204       fs_reg(get_tcs_output_urb_handle()),
8205       fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
8206       fs_reg(brw_imm_ud(0)),
8207    };
8208    fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
8209    bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
8210 
8211    fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
8212                             bld.null_reg_ud(), payload);
8213    inst->mlen = 3;
8214    inst->eot = true;
8215 
8216    if (shader_time_index >= 0)
8217       emit_shader_time_end();
8218 
8219    if (failed)
8220       return false;
8221 
8222    calculate_cfg();
8223 
8224    optimize();
8225 
8226    assign_curb_setup();
8227    assign_tcs_urb_setup();
8228 
8229    fixup_3src_null_dest();
8230    allocate_registers(true /* allow_spilling */);
8231 
8232    return !failed;
8233 }
8234 
8235 bool
run_tes()8236 fs_visitor::run_tes()
8237 {
8238    assert(stage == MESA_SHADER_TESS_EVAL);
8239 
8240    /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
8241    payload.num_regs = 5;
8242 
8243    if (shader_time_index >= 0)
8244       emit_shader_time_begin();
8245 
8246    emit_nir_code();
8247 
8248    if (failed)
8249       return false;
8250 
8251    emit_urb_writes();
8252 
8253    if (shader_time_index >= 0)
8254       emit_shader_time_end();
8255 
8256    calculate_cfg();
8257 
8258    optimize();
8259 
8260    assign_curb_setup();
8261    assign_tes_urb_setup();
8262 
8263    fixup_3src_null_dest();
8264    allocate_registers(true /* allow_spilling */);
8265 
8266    return !failed;
8267 }
8268 
8269 bool
run_gs()8270 fs_visitor::run_gs()
8271 {
8272    assert(stage == MESA_SHADER_GEOMETRY);
8273 
8274    setup_gs_payload();
8275 
8276    this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
8277 
8278    if (gs_compile->control_data_header_size_bits > 0) {
8279       /* Create a VGRF to store accumulated control data bits. */
8280       this->control_data_bits = vgrf(glsl_type::uint_type);
8281 
8282       /* If we're outputting more than 32 control data bits, then EmitVertex()
8283        * will set control_data_bits to 0 after emitting the first vertex.
8284        * Otherwise, we need to initialize it to 0 here.
8285        */
8286       if (gs_compile->control_data_header_size_bits <= 32) {
8287          const fs_builder abld = bld.annotate("initialize control data bits");
8288          abld.MOV(this->control_data_bits, brw_imm_ud(0u));
8289       }
8290    }
8291 
8292    if (shader_time_index >= 0)
8293       emit_shader_time_begin();
8294 
8295    emit_nir_code();
8296 
8297    emit_gs_thread_end();
8298 
8299    if (shader_time_index >= 0)
8300       emit_shader_time_end();
8301 
8302    if (failed)
8303       return false;
8304 
8305    calculate_cfg();
8306 
8307    optimize();
8308 
8309    assign_curb_setup();
8310    assign_gs_urb_setup();
8311 
8312    fixup_3src_null_dest();
8313    allocate_registers(true /* allow_spilling */);
8314 
8315    return !failed;
8316 }
8317 
8318 /* From the SKL PRM, Volume 16, Workarounds:
8319  *
8320  *   0877  3D   Pixel Shader Hang possible when pixel shader dispatched with
8321  *              only header phases (R0-R2)
8322  *
8323  *   WA: Enable a non-header phase (e.g. push constant) when dispatch would
8324  *       have been header only.
8325  *
8326  * Instead of enabling push constants one can alternatively enable one of the
8327  * inputs. Here one simply chooses "layer" which shouldn't impose much
8328  * overhead.
8329  */
8330 static void
gen9_ps_header_only_workaround(struct brw_wm_prog_data * wm_prog_data)8331 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
8332 {
8333    if (wm_prog_data->num_varying_inputs)
8334       return;
8335 
8336    if (wm_prog_data->base.curb_read_length)
8337       return;
8338 
8339    wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
8340    wm_prog_data->num_varying_inputs = 1;
8341 
8342    brw_compute_urb_setup_index(wm_prog_data);
8343 }
8344 
8345 bool
run_fs(bool allow_spilling,bool do_rep_send)8346 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
8347 {
8348    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
8349    brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
8350 
8351    assert(stage == MESA_SHADER_FRAGMENT);
8352 
8353    if (devinfo->gen >= 6)
8354       setup_fs_payload_gen6();
8355    else
8356       setup_fs_payload_gen4();
8357 
8358    if (0) {
8359       emit_dummy_fs();
8360    } else if (do_rep_send) {
8361       assert(dispatch_width == 16);
8362       emit_repclear_shader();
8363    } else {
8364       if (shader_time_index >= 0)
8365          emit_shader_time_begin();
8366 
8367       if (nir->info.inputs_read > 0 ||
8368           BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) ||
8369           (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
8370          if (devinfo->gen < 6)
8371             emit_interpolation_setup_gen4();
8372          else
8373             emit_interpolation_setup_gen6();
8374       }
8375 
8376       /* We handle discards by keeping track of the still-live pixels in f0.1.
8377        * Initialize it with the dispatched pixels.
8378        */
8379       if (wm_prog_data->uses_kill) {
8380          const unsigned lower_width = MIN2(dispatch_width, 16);
8381          for (unsigned i = 0; i < dispatch_width / lower_width; i++) {
8382             const fs_reg dispatch_mask =
8383                devinfo->gen >= 6 ? brw_vec1_grf((i ? 2 : 1), 7) :
8384                brw_vec1_grf(0, 0);
8385             bld.exec_all().group(1, 0)
8386                .MOV(sample_mask_reg(bld.group(lower_width, i)),
8387                     retype(dispatch_mask, BRW_REGISTER_TYPE_UW));
8388          }
8389       }
8390 
8391       if (nir->info.writes_memory)
8392          wm_prog_data->has_side_effects = true;
8393 
8394       emit_nir_code();
8395 
8396       if (failed)
8397 	 return false;
8398 
8399       if (wm_prog_data->uses_kill)
8400          bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
8401 
8402       if (wm_key->alpha_test_func)
8403          emit_alpha_test();
8404 
8405       emit_fb_writes();
8406 
8407       if (shader_time_index >= 0)
8408          emit_shader_time_end();
8409 
8410       calculate_cfg();
8411 
8412       optimize();
8413 
8414       assign_curb_setup();
8415 
8416       if (devinfo->gen >= 9)
8417          gen9_ps_header_only_workaround(wm_prog_data);
8418 
8419       assign_urb_setup();
8420 
8421       fixup_3src_null_dest();
8422 
8423       allocate_registers(allow_spilling);
8424 
8425       if (failed)
8426          return false;
8427    }
8428 
8429    return !failed;
8430 }
8431 
8432 bool
run_cs(bool allow_spilling)8433 fs_visitor::run_cs(bool allow_spilling)
8434 {
8435    assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
8436 
8437    setup_cs_payload();
8438 
8439    if (shader_time_index >= 0)
8440       emit_shader_time_begin();
8441 
8442    if (devinfo->is_haswell && prog_data->total_shared > 0) {
8443       /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
8444       const fs_builder abld = bld.exec_all().group(1, 0);
8445       abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
8446                suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
8447    }
8448 
8449    emit_nir_code();
8450 
8451    if (failed)
8452       return false;
8453 
8454    emit_cs_terminate();
8455 
8456    if (shader_time_index >= 0)
8457       emit_shader_time_end();
8458 
8459    calculate_cfg();
8460 
8461    optimize();
8462 
8463    assign_curb_setup();
8464 
8465    fixup_3src_null_dest();
8466    allocate_registers(allow_spilling);
8467 
8468    if (failed)
8469       return false;
8470 
8471    return !failed;
8472 }
8473 
8474 static bool
is_used_in_not_interp_frag_coord(nir_ssa_def * def)8475 is_used_in_not_interp_frag_coord(nir_ssa_def *def)
8476 {
8477    nir_foreach_use(src, def) {
8478       if (src->parent_instr->type != nir_instr_type_intrinsic)
8479          return true;
8480 
8481       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr);
8482       if (intrin->intrinsic != nir_intrinsic_load_frag_coord)
8483          return true;
8484    }
8485 
8486    nir_foreach_if_use(src, def)
8487       return true;
8488 
8489    return false;
8490 }
8491 
8492 /**
8493  * Return a bitfield where bit n is set if barycentric interpolation mode n
8494  * (see enum brw_barycentric_mode) is needed by the fragment shader.
8495  *
8496  * We examine the load_barycentric intrinsics rather than looking at input
8497  * variables so that we catch interpolateAtCentroid() messages too, which
8498  * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
8499  */
8500 static unsigned
brw_compute_barycentric_interp_modes(const struct gen_device_info * devinfo,const nir_shader * shader)8501 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
8502                                      const nir_shader *shader)
8503 {
8504    unsigned barycentric_interp_modes = 0;
8505 
8506    nir_foreach_function(f, shader) {
8507       if (!f->impl)
8508          continue;
8509 
8510       nir_foreach_block(block, f->impl) {
8511          nir_foreach_instr(instr, block) {
8512             if (instr->type != nir_instr_type_intrinsic)
8513                continue;
8514 
8515             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8516             switch (intrin->intrinsic) {
8517             case nir_intrinsic_load_barycentric_pixel:
8518             case nir_intrinsic_load_barycentric_centroid:
8519             case nir_intrinsic_load_barycentric_sample:
8520                break;
8521             default:
8522                continue;
8523             }
8524 
8525             /* Ignore WPOS; it doesn't require interpolation. */
8526             assert(intrin->dest.is_ssa);
8527             if (!is_used_in_not_interp_frag_coord(&intrin->dest.ssa))
8528                continue;
8529 
8530             enum glsl_interp_mode interp = (enum glsl_interp_mode)
8531                nir_intrinsic_interp_mode(intrin);
8532             nir_intrinsic_op bary_op = intrin->intrinsic;
8533             enum brw_barycentric_mode bary =
8534                brw_barycentric_mode(interp, bary_op);
8535 
8536             barycentric_interp_modes |= 1 << bary;
8537 
8538             if (devinfo->needs_unlit_centroid_workaround &&
8539                 bary_op == nir_intrinsic_load_barycentric_centroid)
8540                barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
8541          }
8542       }
8543    }
8544 
8545    return barycentric_interp_modes;
8546 }
8547 
8548 static void
brw_compute_flat_inputs(struct brw_wm_prog_data * prog_data,const nir_shader * shader)8549 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
8550                         const nir_shader *shader)
8551 {
8552    prog_data->flat_inputs = 0;
8553 
8554    nir_foreach_shader_in_variable(var, shader) {
8555       unsigned slots = glsl_count_attribute_slots(var->type, false);
8556       for (unsigned s = 0; s < slots; s++) {
8557          int input_index = prog_data->urb_setup[var->data.location + s];
8558 
8559          if (input_index < 0)
8560             continue;
8561 
8562          /* flat shading */
8563          if (var->data.interpolation == INTERP_MODE_FLAT)
8564             prog_data->flat_inputs |= 1 << input_index;
8565       }
8566    }
8567 }
8568 
8569 static uint8_t
computed_depth_mode(const nir_shader * shader)8570 computed_depth_mode(const nir_shader *shader)
8571 {
8572    if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
8573       switch (shader->info.fs.depth_layout) {
8574       case FRAG_DEPTH_LAYOUT_NONE:
8575       case FRAG_DEPTH_LAYOUT_ANY:
8576          return BRW_PSCDEPTH_ON;
8577       case FRAG_DEPTH_LAYOUT_GREATER:
8578          return BRW_PSCDEPTH_ON_GE;
8579       case FRAG_DEPTH_LAYOUT_LESS:
8580          return BRW_PSCDEPTH_ON_LE;
8581       case FRAG_DEPTH_LAYOUT_UNCHANGED:
8582          return BRW_PSCDEPTH_OFF;
8583       }
8584    }
8585    return BRW_PSCDEPTH_OFF;
8586 }
8587 
8588 /**
8589  * Move load_interpolated_input with simple (payload-based) barycentric modes
8590  * to the top of the program so we don't emit multiple PLNs for the same input.
8591  *
8592  * This works around CSE not being able to handle non-dominating cases
8593  * such as:
8594  *
8595  *    if (...) {
8596  *       interpolate input
8597  *    } else {
8598  *       interpolate the same exact input
8599  *    }
8600  *
8601  * This should be replaced by global value numbering someday.
8602  */
8603 bool
brw_nir_move_interpolation_to_top(nir_shader * nir)8604 brw_nir_move_interpolation_to_top(nir_shader *nir)
8605 {
8606    bool progress = false;
8607 
8608    nir_foreach_function(f, nir) {
8609       if (!f->impl)
8610          continue;
8611 
8612       nir_block *top = nir_start_block(f->impl);
8613       exec_node *cursor_node = NULL;
8614 
8615       nir_foreach_block(block, f->impl) {
8616          if (block == top)
8617             continue;
8618 
8619          nir_foreach_instr_safe(instr, block) {
8620             if (instr->type != nir_instr_type_intrinsic)
8621                continue;
8622 
8623             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8624             if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
8625                continue;
8626             nir_intrinsic_instr *bary_intrinsic =
8627                nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
8628             nir_intrinsic_op op = bary_intrinsic->intrinsic;
8629 
8630             /* Leave interpolateAtSample/Offset() where they are. */
8631             if (op == nir_intrinsic_load_barycentric_at_sample ||
8632                 op == nir_intrinsic_load_barycentric_at_offset)
8633                continue;
8634 
8635             nir_instr *move[3] = {
8636                &bary_intrinsic->instr,
8637                intrin->src[1].ssa->parent_instr,
8638                instr
8639             };
8640 
8641             for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
8642                if (move[i]->block != top) {
8643                   move[i]->block = top;
8644                   exec_node_remove(&move[i]->node);
8645                   if (cursor_node) {
8646                      exec_node_insert_after(cursor_node, &move[i]->node);
8647                   } else {
8648                      exec_list_push_head(&top->instr_list, &move[i]->node);
8649                   }
8650                   cursor_node = &move[i]->node;
8651                   progress = true;
8652                }
8653             }
8654          }
8655       }
8656       nir_metadata_preserve(f->impl, nir_metadata_block_index |
8657                                      nir_metadata_dominance);
8658    }
8659 
8660    return progress;
8661 }
8662 
8663 /**
8664  * Demote per-sample barycentric intrinsics to centroid.
8665  *
8666  * Useful when rendering to a non-multisampled buffer.
8667  */
8668 bool
brw_nir_demote_sample_qualifiers(nir_shader * nir)8669 brw_nir_demote_sample_qualifiers(nir_shader *nir)
8670 {
8671    bool progress = true;
8672 
8673    nir_foreach_function(f, nir) {
8674       if (!f->impl)
8675          continue;
8676 
8677       nir_builder b;
8678       nir_builder_init(&b, f->impl);
8679 
8680       nir_foreach_block(block, f->impl) {
8681          nir_foreach_instr_safe(instr, block) {
8682             if (instr->type != nir_instr_type_intrinsic)
8683                continue;
8684 
8685             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8686             if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
8687                 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
8688                continue;
8689 
8690             b.cursor = nir_before_instr(instr);
8691             nir_ssa_def *centroid =
8692                nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
8693                                     nir_intrinsic_interp_mode(intrin));
8694             nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
8695                                      nir_src_for_ssa(centroid));
8696             nir_instr_remove(instr);
8697             progress = true;
8698          }
8699       }
8700 
8701       nir_metadata_preserve(f->impl, nir_metadata_block_index |
8702                                      nir_metadata_dominance);
8703    }
8704 
8705    return progress;
8706 }
8707 
8708 void
brw_nir_populate_wm_prog_data(const nir_shader * shader,const struct gen_device_info * devinfo,const struct brw_wm_prog_key * key,struct brw_wm_prog_data * prog_data)8709 brw_nir_populate_wm_prog_data(const nir_shader *shader,
8710                               const struct gen_device_info *devinfo,
8711                               const struct brw_wm_prog_key *key,
8712                               struct brw_wm_prog_data *prog_data)
8713 {
8714    prog_data->uses_src_depth = prog_data->uses_src_w =
8715       BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD);
8716 
8717    /* key->alpha_test_func means simulating alpha testing via discards,
8718     * so the shader definitely kills pixels.
8719     */
8720    prog_data->uses_kill = shader->info.fs.uses_discard ||
8721       key->alpha_test_func;
8722    prog_data->uses_omask = !key->ignore_sample_mask_out &&
8723       (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK));
8724    prog_data->computed_depth_mode = computed_depth_mode(shader);
8725    prog_data->computed_stencil =
8726       shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
8727 
8728    prog_data->persample_dispatch =
8729       key->multisample_fbo &&
8730       (key->persample_interp ||
8731        BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_ID) ||
8732        BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_POS) ||
8733        shader->info.fs.uses_sample_qualifier ||
8734        shader->info.outputs_read);
8735 
8736    if (devinfo->gen >= 6) {
8737       prog_data->uses_sample_mask =
8738          BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN);
8739 
8740       /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
8741        *
8742        *    "MSDISPMODE_PERSAMPLE is required in order to select
8743        *    POSOFFSET_SAMPLE"
8744        *
8745        * So we can only really get sample positions if we are doing real
8746        * per-sample dispatch.  If we need gl_SamplePosition and we don't have
8747        * persample dispatch, we hard-code it to 0.5.
8748        */
8749       prog_data->uses_pos_offset = prog_data->persample_dispatch &&
8750          BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_POS);
8751    }
8752 
8753    prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
8754 
8755    prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
8756    prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
8757    prog_data->inner_coverage = shader->info.fs.inner_coverage;
8758 
8759    prog_data->barycentric_interp_modes =
8760       brw_compute_barycentric_interp_modes(devinfo, shader);
8761 
8762    calculate_urb_setup(devinfo, key, prog_data, shader);
8763    brw_compute_flat_inputs(prog_data, shader);
8764 }
8765 
8766 /**
8767  * Pre-gen6, the register file of the EUs was shared between threads,
8768  * and each thread used some subset allocated on a 16-register block
8769  * granularity.  The unit states wanted these block counts.
8770  */
8771 static inline int
brw_register_blocks(int reg_count)8772 brw_register_blocks(int reg_count)
8773 {
8774    return ALIGN(reg_count, 16) / 16 - 1;
8775 }
8776 
8777 const unsigned *
brw_compile_fs(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const struct brw_wm_prog_key * key,struct brw_wm_prog_data * prog_data,nir_shader * nir,int shader_time_index8,int shader_time_index16,int shader_time_index32,bool allow_spilling,bool use_rep_send,struct brw_vue_map * vue_map,struct brw_compile_stats * stats,char ** error_str)8778 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
8779                void *mem_ctx,
8780                const struct brw_wm_prog_key *key,
8781                struct brw_wm_prog_data *prog_data,
8782                nir_shader *nir,
8783                int shader_time_index8, int shader_time_index16,
8784                int shader_time_index32, bool allow_spilling,
8785                bool use_rep_send, struct brw_vue_map *vue_map,
8786                struct brw_compile_stats *stats,
8787                char **error_str)
8788 {
8789    const struct gen_device_info *devinfo = compiler->devinfo;
8790    const unsigned max_subgroup_size = compiler->devinfo->gen >= 6 ? 32 : 16;
8791 
8792    brw_nir_apply_key(nir, compiler, &key->base, max_subgroup_size, true);
8793    brw_nir_lower_fs_inputs(nir, devinfo, key);
8794    brw_nir_lower_fs_outputs(nir);
8795 
8796    if (devinfo->gen < 6)
8797       brw_setup_vue_interpolation(vue_map, nir, prog_data);
8798 
8799    /* From the SKL PRM, Volume 7, "Alpha Coverage":
8800     *  "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in
8801     *   hardware, regardless of the state setting for this feature."
8802     */
8803    if (devinfo->gen > 6 && key->alpha_to_coverage) {
8804       /* Run constant fold optimization in order to get the correct source
8805        * offset to determine render target 0 store instruction in
8806        * emit_alpha_to_coverage pass.
8807        */
8808       NIR_PASS_V(nir, nir_opt_constant_folding);
8809       NIR_PASS_V(nir, brw_nir_lower_alpha_to_coverage);
8810    }
8811 
8812    if (!key->multisample_fbo)
8813       NIR_PASS_V(nir, brw_nir_demote_sample_qualifiers);
8814    NIR_PASS_V(nir, brw_nir_move_interpolation_to_top);
8815    brw_postprocess_nir(nir, compiler, true);
8816 
8817    brw_nir_populate_wm_prog_data(nir, compiler->devinfo, key, prog_data);
8818 
8819    fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
8820    cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL;
8821    float throughput = 0;
8822    bool has_spilled = false;
8823 
8824    v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8825                        &prog_data->base, nir, 8, shader_time_index8);
8826    if (!v8->run_fs(allow_spilling, false /* do_rep_send */)) {
8827       if (error_str)
8828          *error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
8829 
8830       delete v8;
8831       return NULL;
8832    } else if (!(INTEL_DEBUG & DEBUG_NO8)) {
8833       simd8_cfg = v8->cfg;
8834       prog_data->base.dispatch_grf_start_reg = v8->payload.num_regs;
8835       prog_data->reg_blocks_8 = brw_register_blocks(v8->grf_used);
8836       const performance &perf = v8->performance_analysis.require();
8837       throughput = MAX2(throughput, perf.throughput);
8838       has_spilled = v8->spilled_any_registers;
8839       allow_spilling = false;
8840    }
8841 
8842    /* Limit dispatch width to simd8 with dual source blending on gen8.
8843     * See: https://gitlab.freedesktop.org/mesa/mesa/-/issues/1917
8844     */
8845    if (devinfo->gen == 8 && prog_data->dual_src_blend &&
8846        !(INTEL_DEBUG & DEBUG_NO8)) {
8847       assert(!use_rep_send);
8848       v8->limit_dispatch_width(8, "gen8 workaround: "
8849                                "using SIMD8 when dual src blending.\n");
8850    }
8851 
8852    if (!has_spilled &&
8853        v8->max_dispatch_width >= 16 &&
8854        (!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
8855       /* Try a SIMD16 compile */
8856       v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8857                            &prog_data->base, nir, 16, shader_time_index16);
8858       v16->import_uniforms(v8);
8859       if (!v16->run_fs(allow_spilling, use_rep_send)) {
8860          compiler->shader_perf_log(log_data,
8861                                    "SIMD16 shader failed to compile: %s",
8862                                    v16->fail_msg);
8863       } else {
8864          simd16_cfg = v16->cfg;
8865          prog_data->dispatch_grf_start_reg_16 = v16->payload.num_regs;
8866          prog_data->reg_blocks_16 = brw_register_blocks(v16->grf_used);
8867          const performance &perf = v16->performance_analysis.require();
8868          throughput = MAX2(throughput, perf.throughput);
8869          has_spilled = v16->spilled_any_registers;
8870          allow_spilling = false;
8871       }
8872    }
8873 
8874    const bool simd16_failed = v16 && !simd16_cfg;
8875 
8876    /* Currently, the compiler only supports SIMD32 on SNB+ */
8877    if (!has_spilled &&
8878        v8->max_dispatch_width >= 32 && !use_rep_send &&
8879        devinfo->gen >= 6 && !simd16_failed &&
8880        !(INTEL_DEBUG & DEBUG_NO32)) {
8881       /* Try a SIMD32 compile */
8882       v32 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8883                            &prog_data->base, nir, 32, shader_time_index32);
8884       v32->import_uniforms(v8);
8885       if (!v32->run_fs(allow_spilling, false)) {
8886          compiler->shader_perf_log(log_data,
8887                                    "SIMD32 shader failed to compile: %s",
8888                                    v32->fail_msg);
8889       } else {
8890          const performance &perf = v32->performance_analysis.require();
8891 
8892          if (!(INTEL_DEBUG & DEBUG_DO32) && throughput >= perf.throughput) {
8893             compiler->shader_perf_log(log_data, "SIMD32 shader inefficient\n");
8894          } else {
8895             simd32_cfg = v32->cfg;
8896             prog_data->dispatch_grf_start_reg_32 = v32->payload.num_regs;
8897             prog_data->reg_blocks_32 = brw_register_blocks(v32->grf_used);
8898             throughput = MAX2(throughput, perf.throughput);
8899          }
8900       }
8901    }
8902 
8903    /* When the caller requests a repclear shader, they want SIMD16-only */
8904    if (use_rep_send)
8905       simd8_cfg = NULL;
8906 
8907    /* Prior to Iron Lake, the PS had a single shader offset with a jump table
8908     * at the top to select the shader.  We've never implemented that.
8909     * Instead, we just give them exactly one shader and we pick the widest one
8910     * available.
8911     */
8912    if (compiler->devinfo->gen < 5) {
8913       if (simd32_cfg || simd16_cfg)
8914          simd8_cfg = NULL;
8915       if (simd32_cfg)
8916          simd16_cfg = NULL;
8917    }
8918 
8919    /* If computed depth is enabled SNB only allows SIMD8. */
8920    if (compiler->devinfo->gen == 6 &&
8921        prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF)
8922       assert(simd16_cfg == NULL && simd32_cfg == NULL);
8923 
8924    if (compiler->devinfo->gen <= 5 && !simd8_cfg) {
8925       /* Iron lake and earlier only have one Dispatch GRF start field.  Make
8926        * the data available in the base prog data struct for convenience.
8927        */
8928       if (simd16_cfg) {
8929          prog_data->base.dispatch_grf_start_reg =
8930             prog_data->dispatch_grf_start_reg_16;
8931       } else if (simd32_cfg) {
8932          prog_data->base.dispatch_grf_start_reg =
8933             prog_data->dispatch_grf_start_reg_32;
8934       }
8935    }
8936 
8937    if (prog_data->persample_dispatch) {
8938       /* Starting with SandyBridge (where we first get MSAA), the different
8939        * pixel dispatch combinations are grouped into classifications A
8940        * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1).  On most hardware
8941        * generations, the only configurations supporting persample dispatch
8942        * are those in which only one dispatch width is enabled.
8943        *
8944        * The Gen12 hardware spec has a similar dispatch grouping table, but
8945        * the following conflicting restriction applies (from the page on
8946        * "Structure_3DSTATE_PS_BODY"), so we need to keep the SIMD16 shader:
8947        *
8948        *  "SIMD32 may only be enabled if SIMD16 or (dual)SIMD8 is also
8949        *   enabled."
8950        */
8951       if (simd32_cfg || simd16_cfg)
8952          simd8_cfg = NULL;
8953       if (simd32_cfg && devinfo->gen < 12)
8954          simd16_cfg = NULL;
8955    }
8956 
8957    fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
8958                   v8->runtime_check_aads_emit, MESA_SHADER_FRAGMENT);
8959 
8960    if (INTEL_DEBUG & DEBUG_WM) {
8961       g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
8962                                      nir->info.label ?
8963                                         nir->info.label : "unnamed",
8964                                      nir->info.name));
8965    }
8966 
8967    if (simd8_cfg) {
8968       prog_data->dispatch_8 = true;
8969       g.generate_code(simd8_cfg, 8, v8->shader_stats,
8970                       v8->performance_analysis.require(), stats);
8971       stats = stats ? stats + 1 : NULL;
8972    }
8973 
8974    if (simd16_cfg) {
8975       prog_data->dispatch_16 = true;
8976       prog_data->prog_offset_16 = g.generate_code(
8977          simd16_cfg, 16, v16->shader_stats,
8978          v16->performance_analysis.require(), stats);
8979       stats = stats ? stats + 1 : NULL;
8980    }
8981 
8982    if (simd32_cfg) {
8983       prog_data->dispatch_32 = true;
8984       prog_data->prog_offset_32 = g.generate_code(
8985          simd32_cfg, 32, v32->shader_stats,
8986          v32->performance_analysis.require(), stats);
8987       stats = stats ? stats + 1 : NULL;
8988    }
8989 
8990    g.add_const_data(nir->constant_data, nir->constant_data_size);
8991 
8992    delete v8;
8993    delete v16;
8994    delete v32;
8995 
8996    return g.get_assembly();
8997 }
8998 
8999 fs_reg *
emit_cs_work_group_id_setup()9000 fs_visitor::emit_cs_work_group_id_setup()
9001 {
9002    assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
9003 
9004    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
9005 
9006    struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
9007    struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
9008    struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
9009 
9010    bld.MOV(*reg, r0_1);
9011    bld.MOV(offset(*reg, bld, 1), r0_6);
9012    bld.MOV(offset(*reg, bld, 2), r0_7);
9013 
9014    return reg;
9015 }
9016 
9017 unsigned
brw_cs_push_const_total_size(const struct brw_cs_prog_data * cs_prog_data,unsigned threads)9018 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
9019                              unsigned threads)
9020 {
9021    assert(cs_prog_data->push.per_thread.size % REG_SIZE == 0);
9022    assert(cs_prog_data->push.cross_thread.size % REG_SIZE == 0);
9023    return cs_prog_data->push.per_thread.size * threads +
9024           cs_prog_data->push.cross_thread.size;
9025 }
9026 
9027 static void
fill_push_const_block_info(struct brw_push_const_block * block,unsigned dwords)9028 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
9029 {
9030    block->dwords = dwords;
9031    block->regs = DIV_ROUND_UP(dwords, 8);
9032    block->size = block->regs * 32;
9033 }
9034 
9035 static void
cs_fill_push_const_info(const struct gen_device_info * devinfo,struct brw_cs_prog_data * cs_prog_data)9036 cs_fill_push_const_info(const struct gen_device_info *devinfo,
9037                         struct brw_cs_prog_data *cs_prog_data)
9038 {
9039    const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
9040    int subgroup_id_index = get_subgroup_id_param_index(prog_data);
9041    bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
9042 
9043    /* The thread ID should be stored in the last param dword */
9044    assert(subgroup_id_index == -1 ||
9045           subgroup_id_index == (int)prog_data->nr_params - 1);
9046 
9047    unsigned cross_thread_dwords, per_thread_dwords;
9048    if (!cross_thread_supported) {
9049       cross_thread_dwords = 0u;
9050       per_thread_dwords = prog_data->nr_params;
9051    } else if (subgroup_id_index >= 0) {
9052       /* Fill all but the last register with cross-thread payload */
9053       cross_thread_dwords = 8 * (subgroup_id_index / 8);
9054       per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
9055       assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
9056    } else {
9057       /* Fill all data using cross-thread payload */
9058       cross_thread_dwords = prog_data->nr_params;
9059       per_thread_dwords = 0u;
9060    }
9061 
9062    fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
9063    fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
9064 
9065    assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
9066           cs_prog_data->push.per_thread.size == 0);
9067    assert(cs_prog_data->push.cross_thread.dwords +
9068           cs_prog_data->push.per_thread.dwords ==
9069              prog_data->nr_params);
9070 }
9071 
9072 static bool
filter_simd(const nir_instr * instr,const void * _options)9073 filter_simd(const nir_instr *instr, const void *_options)
9074 {
9075    if (instr->type != nir_instr_type_intrinsic)
9076       return false;
9077 
9078    switch (nir_instr_as_intrinsic(instr)->intrinsic) {
9079    case nir_intrinsic_load_simd_width_intel:
9080    case nir_intrinsic_load_subgroup_id:
9081       return true;
9082 
9083    default:
9084       return false;
9085    }
9086 }
9087 
9088 static nir_ssa_def *
lower_simd(nir_builder * b,nir_instr * instr,void * options)9089 lower_simd(nir_builder *b, nir_instr *instr, void *options)
9090 {
9091    uintptr_t simd_width = (uintptr_t)options;
9092 
9093    switch (nir_instr_as_intrinsic(instr)->intrinsic) {
9094    case nir_intrinsic_load_simd_width_intel:
9095       return nir_imm_int(b, simd_width);
9096 
9097    case nir_intrinsic_load_subgroup_id:
9098       /* If the whole workgroup fits in one thread, we can lower subgroup_id
9099        * to a constant zero.
9100        */
9101       if (!b->shader->info.cs.local_size_variable) {
9102          unsigned local_workgroup_size = b->shader->info.cs.local_size[0] *
9103                                          b->shader->info.cs.local_size[1] *
9104                                          b->shader->info.cs.local_size[2];
9105          if (local_workgroup_size <= simd_width)
9106             return nir_imm_int(b, 0);
9107       }
9108       return NULL;
9109 
9110    default:
9111       return NULL;
9112    }
9113 }
9114 
9115 static void
brw_nir_lower_simd(nir_shader * nir,unsigned dispatch_width)9116 brw_nir_lower_simd(nir_shader *nir, unsigned dispatch_width)
9117 {
9118    nir_shader_lower_instructions(nir, filter_simd, lower_simd,
9119                                  (void *)(uintptr_t)dispatch_width);
9120 }
9121 
9122 static nir_shader *
compile_cs_to_nir(const struct brw_compiler * compiler,void * mem_ctx,const struct brw_cs_prog_key * key,const nir_shader * src_shader,unsigned dispatch_width)9123 compile_cs_to_nir(const struct brw_compiler *compiler,
9124                   void *mem_ctx,
9125                   const struct brw_cs_prog_key *key,
9126                   const nir_shader *src_shader,
9127                   unsigned dispatch_width)
9128 {
9129    nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
9130    brw_nir_apply_key(shader, compiler, &key->base, dispatch_width, true);
9131 
9132    NIR_PASS_V(shader, brw_nir_lower_simd, dispatch_width);
9133 
9134    /* Clean up after the local index and ID calculations. */
9135    NIR_PASS_V(shader, nir_opt_constant_folding);
9136    NIR_PASS_V(shader, nir_opt_dce);
9137 
9138    brw_postprocess_nir(shader, compiler, true);
9139 
9140    return shader;
9141 }
9142 
9143 const unsigned *
brw_compile_cs(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const struct brw_cs_prog_key * key,struct brw_cs_prog_data * prog_data,const nir_shader * nir,int shader_time_index,struct brw_compile_stats * stats,char ** error_str)9144 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
9145                void *mem_ctx,
9146                const struct brw_cs_prog_key *key,
9147                struct brw_cs_prog_data *prog_data,
9148                const nir_shader *nir,
9149                int shader_time_index,
9150                struct brw_compile_stats *stats,
9151                char **error_str)
9152 {
9153    prog_data->base.total_shared = nir->info.cs.shared_size;
9154 
9155    /* Generate code for all the possible SIMD variants. */
9156    bool generate_all;
9157 
9158    unsigned min_dispatch_width;
9159    unsigned max_dispatch_width;
9160 
9161    if (nir->info.cs.local_size_variable) {
9162       generate_all = true;
9163       min_dispatch_width = 8;
9164       max_dispatch_width = 32;
9165    } else {
9166       generate_all = false;
9167       prog_data->local_size[0] = nir->info.cs.local_size[0];
9168       prog_data->local_size[1] = nir->info.cs.local_size[1];
9169       prog_data->local_size[2] = nir->info.cs.local_size[2];
9170       unsigned local_workgroup_size = prog_data->local_size[0] *
9171                                       prog_data->local_size[1] *
9172                                       prog_data->local_size[2];
9173 
9174       /* Limit max_threads to 64 for the GPGPU_WALKER command */
9175       const uint32_t max_threads = MIN2(64, compiler->devinfo->max_cs_threads);
9176       min_dispatch_width = util_next_power_of_two(
9177          MAX2(8, DIV_ROUND_UP(local_workgroup_size, max_threads)));
9178       assert(min_dispatch_width <= 32);
9179       max_dispatch_width = 32;
9180    }
9181 
9182    if ((int)key->base.subgroup_size_type >= (int)BRW_SUBGROUP_SIZE_REQUIRE_8) {
9183       /* These enum values are expressly chosen to be equal to the subgroup
9184        * size that they require.
9185        */
9186       const unsigned required_dispatch_width =
9187          (unsigned)key->base.subgroup_size_type;
9188       assert(required_dispatch_width == 8 ||
9189              required_dispatch_width == 16 ||
9190              required_dispatch_width == 32);
9191       if (required_dispatch_width < min_dispatch_width ||
9192           required_dispatch_width > max_dispatch_width) {
9193          if (error_str) {
9194             *error_str = ralloc_strdup(mem_ctx,
9195                                        "Cannot satisfy explicit subgroup size");
9196          }
9197          return NULL;
9198       }
9199       min_dispatch_width = max_dispatch_width = required_dispatch_width;
9200    }
9201 
9202    assert(min_dispatch_width <= max_dispatch_width);
9203 
9204    fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
9205    fs_visitor *v = NULL;
9206 
9207    if (!(INTEL_DEBUG & DEBUG_NO8) &&
9208        min_dispatch_width <= 8 && max_dispatch_width >= 8) {
9209       nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
9210                                            nir, 8);
9211       v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
9212                           &prog_data->base,
9213                           nir8, 8, shader_time_index);
9214       if (!v8->run_cs(true /* allow_spilling */)) {
9215          if (error_str)
9216             *error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
9217          delete v8;
9218          return NULL;
9219       }
9220 
9221       /* We should always be able to do SIMD32 for compute shaders */
9222       assert(v8->max_dispatch_width >= 32);
9223 
9224       v = v8;
9225       prog_data->prog_mask |= 1 << 0;
9226       if (v8->spilled_any_registers)
9227          prog_data->prog_spilled |= 1 << 0;
9228       cs_fill_push_const_info(compiler->devinfo, prog_data);
9229    }
9230 
9231    if (!(INTEL_DEBUG & DEBUG_NO16) &&
9232        (generate_all || !prog_data->prog_spilled) &&
9233        min_dispatch_width <= 16 && max_dispatch_width >= 16) {
9234       /* Try a SIMD16 compile */
9235       nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
9236                                             nir, 16);
9237       v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
9238                            &prog_data->base,
9239                            nir16, 16, shader_time_index);
9240       if (v8)
9241          v16->import_uniforms(v8);
9242 
9243       const bool allow_spilling = generate_all || v == NULL;
9244       if (!v16->run_cs(allow_spilling)) {
9245          compiler->shader_perf_log(log_data,
9246                                    "SIMD16 shader failed to compile: %s",
9247                                    v16->fail_msg);
9248          if (!v) {
9249             assert(v8 == NULL);
9250             if (error_str) {
9251                *error_str = ralloc_asprintf(
9252                   mem_ctx, "Not enough threads for SIMD8 and "
9253                   "couldn't generate SIMD16: %s", v16->fail_msg);
9254             }
9255             delete v16;
9256             return NULL;
9257          }
9258       } else {
9259          /* We should always be able to do SIMD32 for compute shaders */
9260          assert(v16->max_dispatch_width >= 32);
9261 
9262          v = v16;
9263          prog_data->prog_mask |= 1 << 1;
9264          if (v16->spilled_any_registers)
9265             prog_data->prog_spilled |= 1 << 1;
9266          cs_fill_push_const_info(compiler->devinfo, prog_data);
9267       }
9268    }
9269 
9270    /* The SIMD32 is only enabled for cases it is needed unless forced.
9271     *
9272     * TODO: Use performance_analysis and drop this boolean.
9273     */
9274    const bool needs_32 = v == NULL ||
9275                          (INTEL_DEBUG & DEBUG_DO32) ||
9276                          generate_all;
9277 
9278    if (!(INTEL_DEBUG & DEBUG_NO32) &&
9279        (generate_all || !prog_data->prog_spilled) &&
9280        needs_32 &&
9281        min_dispatch_width <= 32 && max_dispatch_width >= 32) {
9282       /* Try a SIMD32 compile */
9283       nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
9284                                             nir, 32);
9285       v32 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
9286                            &prog_data->base,
9287                            nir32, 32, shader_time_index);
9288       if (v8)
9289          v32->import_uniforms(v8);
9290       else if (v16)
9291          v32->import_uniforms(v16);
9292 
9293       const bool allow_spilling = generate_all || v == NULL;
9294       if (!v32->run_cs(allow_spilling)) {
9295          compiler->shader_perf_log(log_data,
9296                                    "SIMD32 shader failed to compile: %s",
9297                                    v32->fail_msg);
9298          if (!v) {
9299             assert(v8 == NULL);
9300             assert(v16 == NULL);
9301             if (error_str) {
9302                *error_str = ralloc_asprintf(
9303                   mem_ctx, "Not enough threads for SIMD16 and "
9304                   "couldn't generate SIMD32: %s", v32->fail_msg);
9305             }
9306             delete v32;
9307             return NULL;
9308          }
9309       } else {
9310          v = v32;
9311          prog_data->prog_mask |= 1 << 2;
9312          if (v32->spilled_any_registers)
9313             prog_data->prog_spilled |= 1 << 2;
9314          cs_fill_push_const_info(compiler->devinfo, prog_data);
9315       }
9316    }
9317 
9318    if (unlikely(!v) && (INTEL_DEBUG & (DEBUG_NO8 | DEBUG_NO16 | DEBUG_NO32))) {
9319       if (error_str) {
9320          *error_str =
9321             ralloc_strdup(mem_ctx,
9322                           "Cannot satisfy INTEL_DEBUG flags SIMD restrictions");
9323       }
9324       return NULL;
9325    }
9326 
9327    assert(v);
9328 
9329    const unsigned *ret = NULL;
9330 
9331    fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
9332                   v->runtime_check_aads_emit, MESA_SHADER_COMPUTE);
9333    if (INTEL_DEBUG & DEBUG_CS) {
9334       char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
9335                                    nir->info.label ?
9336                                    nir->info.label : "unnamed",
9337                                    nir->info.name);
9338       g.enable_debug(name);
9339    }
9340 
9341    if (generate_all) {
9342       if (prog_data->prog_mask & (1 << 0)) {
9343          assert(v8);
9344          prog_data->prog_offset[0] =
9345             g.generate_code(v8->cfg, 8, v8->shader_stats,
9346                             v8->performance_analysis.require(), stats);
9347          stats = stats ? stats + 1 : NULL;
9348       }
9349 
9350       if (prog_data->prog_mask & (1 << 1)) {
9351          assert(v16);
9352          prog_data->prog_offset[1] =
9353             g.generate_code(v16->cfg, 16, v16->shader_stats,
9354                             v16->performance_analysis.require(), stats);
9355          stats = stats ? stats + 1 : NULL;
9356       }
9357 
9358       if (prog_data->prog_mask & (1 << 2)) {
9359          assert(v32);
9360          prog_data->prog_offset[2] =
9361             g.generate_code(v32->cfg, 32, v32->shader_stats,
9362                             v32->performance_analysis.require(), stats);
9363          stats = stats ? stats + 1 : NULL;
9364       }
9365    } else {
9366       /* Only one dispatch width will be valid, and will be at offset 0,
9367        * which is already the default value of prog_offset_* fields.
9368        */
9369       prog_data->prog_mask = 1 << (v->dispatch_width / 16);
9370       g.generate_code(v->cfg, v->dispatch_width, v->shader_stats,
9371                       v->performance_analysis.require(), stats);
9372    }
9373 
9374    g.add_const_data(nir->constant_data, nir->constant_data_size);
9375 
9376    ret = g.get_assembly();
9377 
9378    delete v8;
9379    delete v16;
9380    delete v32;
9381 
9382    return ret;
9383 }
9384 
9385 unsigned
brw_cs_simd_size_for_group_size(const struct gen_device_info * devinfo,const struct brw_cs_prog_data * cs_prog_data,unsigned group_size)9386 brw_cs_simd_size_for_group_size(const struct gen_device_info *devinfo,
9387                                 const struct brw_cs_prog_data *cs_prog_data,
9388                                 unsigned group_size)
9389 {
9390    const unsigned mask = cs_prog_data->prog_mask;
9391    assert(mask != 0);
9392 
9393    static const unsigned simd8  = 1 << 0;
9394    static const unsigned simd16 = 1 << 1;
9395    static const unsigned simd32 = 1 << 2;
9396 
9397    if ((INTEL_DEBUG & DEBUG_DO32) && (mask & simd32))
9398       return 32;
9399 
9400    /* Limit max_threads to 64 for the GPGPU_WALKER command */
9401    const uint32_t max_threads = MIN2(64, devinfo->max_cs_threads);
9402 
9403    if ((mask & simd8) && group_size <= 8 * max_threads) {
9404       /* Prefer SIMD16 if can do without spilling.  Matches logic in
9405        * brw_compile_cs.
9406        */
9407       if ((mask & simd16) && (~cs_prog_data->prog_spilled & simd16))
9408          return 16;
9409       return 8;
9410    }
9411 
9412    if ((mask & simd16) && group_size <= 16 * max_threads)
9413       return 16;
9414 
9415    assert(mask & simd32);
9416    assert(group_size <= 32 * max_threads);
9417    return 32;
9418 }
9419 
9420 /**
9421  * Test the dispatch mask packing assumptions of
9422  * brw_stage_has_packed_dispatch().  Call this from e.g. the top of
9423  * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
9424  * executed with an unexpected dispatch mask.
9425  */
9426 static UNUSED void
brw_fs_test_dispatch_packing(const fs_builder & bld)9427 brw_fs_test_dispatch_packing(const fs_builder &bld)
9428 {
9429    const gl_shader_stage stage = bld.shader->stage;
9430 
9431    if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
9432                                      bld.shader->stage_prog_data)) {
9433       const fs_builder ubld = bld.exec_all().group(1, 0);
9434       const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
9435       const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
9436                            brw_dmask_reg());
9437 
9438       ubld.ADD(tmp, mask, brw_imm_ud(1));
9439       ubld.AND(tmp, mask, tmp);
9440 
9441       /* This will loop forever if the dispatch mask doesn't have the expected
9442        * form '2^n-1', in which case tmp will be non-zero.
9443        */
9444       bld.emit(BRW_OPCODE_DO);
9445       bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
9446       set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
9447    }
9448 }
9449 
9450 unsigned
workgroup_size() const9451 fs_visitor::workgroup_size() const
9452 {
9453    assert(stage == MESA_SHADER_COMPUTE);
9454    const struct brw_cs_prog_data *cs = brw_cs_prog_data(prog_data);
9455    return cs->local_size[0] * cs->local_size[1] * cs->local_size[2];
9456 }
9457