• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3  Intel funded Tungsten Graphics to
4  develop this 3D driver.
5 
6  Permission is hereby granted, free of charge, to any person obtaining
7  a copy of this software and associated documentation files (the
8  "Software"), to deal in the Software without restriction, including
9  without limitation the rights to use, copy, modify, merge, publish,
10  distribute, sublicense, and/or sell copies of the Software, and to
11  permit persons to whom the Software is furnished to do so, subject to
12  the following conditions:
13 
14  The above copyright notice and this permission notice (including the
15  next paragraph) shall be included in all copies or substantial
16  portions of the Software.
17 
18  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 
26  **********************************************************************/
27  /*
28   * Authors:
29   *   Keith Whitwell <keithw@vmware.com>
30   */
31 
32 
33 
34 #include "intel_batchbuffer.h"
35 #include "brw_context.h"
36 #include "brw_state.h"
37 #include "brw_defines.h"
38 
39 #define VS 0
40 #define GS 1
41 #define CLP 2
42 #define SF 3
43 #define CS 4
44 
45 /** @file brw_urb.c
46  *
47  * Manages the division of the URB space between the various fixed-function
48  * units.
49  *
50  * See the Thread Initiation Management section of the GEN4 B-Spec, and
51  * the individual *_STATE structures for restrictions on numbers of
52  * entries and threads.
53  */
54 
55 /*
56  * Generally, a unit requires a min_nr_entries based on how many entries
57  * it produces before the downstream unit gets unblocked and can use and
58  * dereference some of its handles.
59  *
60  * The SF unit preallocates a PUE at the start of thread dispatch, and only
61  * uses that one.  So it requires one entry per thread.
62  *
63  * For CLIP, the SF unit will hold the previous primitive while the
64  * next is getting assembled, meaning that linestrips require 3 CLIP VUEs
65  * (vertices) to ensure continued processing, trifans require 4, and tristrips
66  * require 5.  There can be 1 or 2 threads, and each has the same requirement.
67  *
68  * GS has the same requirement as CLIP, but it never handles tristrips,
69  * so we can lower the minimum to 4 for the POLYGONs (trifans) it produces.
70  * We only run it single-threaded.
71  *
72  * For VS, the number of entries may be 8, 12, 16, or 32 (or 64 on G4X).
73  * Each thread processes 2 preallocated VUEs (vertices) at a time, and they
74  * get streamed down as soon as threads processing earlier vertices get
75  * theirs accepted.
76  *
77  * Each unit will take the number of URB entries we give it (based on the
78  * entry size calculated in brw_vs_emit.c for VUEs, brw_sf_emit.c for PUEs,
79  * and brw_curbe.c for the CURBEs) and decide its maximum number of
80  * threads it can support based on that. in brw_*_state.c.
81  *
82  * XXX: Are the min_entry_size numbers useful?
83  * XXX: Verify min_nr_entries, esp for VS.
84  * XXX: Verify SF min_entry_size.
85  */
86 static const struct {
87    GLuint min_nr_entries;
88    GLuint preferred_nr_entries;
89    GLuint min_entry_size;
90    GLuint max_entry_size;
91 } limits[CS+1] = {
92    { 16, 32, 1, 5 },			/* vs */
93    { 4, 8,  1, 5 },			/* gs */
94    { 5, 10,  1, 5 },			/* clp */
95    { 1, 8,  1, 12 },		        /* sf */
96    { 1, 4,  1, 32 }			/* cs */
97 };
98 
99 
check_urb_layout(struct brw_context * brw)100 static bool check_urb_layout(struct brw_context *brw)
101 {
102    brw->urb.vs_start = 0;
103    brw->urb.gs_start = brw->urb.nr_vs_entries * brw->urb.vsize;
104    brw->urb.clip_start = brw->urb.gs_start + brw->urb.nr_gs_entries * brw->urb.vsize;
105    brw->urb.sf_start = brw->urb.clip_start + brw->urb.nr_clip_entries * brw->urb.vsize;
106    brw->urb.cs_start = brw->urb.sf_start + brw->urb.nr_sf_entries * brw->urb.sfsize;
107 
108    return brw->urb.cs_start + brw->urb.nr_cs_entries *
109       brw->urb.csize <= brw->urb.size;
110 }
111 
112 /* Most minimal update, forces re-emit of URB fence packet after GS
113  * unit turned on/off.
114  */
115 void
brw_calculate_urb_fence(struct brw_context * brw,unsigned csize,unsigned vsize,unsigned sfsize)116 brw_calculate_urb_fence(struct brw_context *brw, unsigned csize,
117                         unsigned vsize, unsigned sfsize)
118 {
119    const struct gen_device_info *devinfo = &brw->screen->devinfo;
120 
121    if (csize < limits[CS].min_entry_size)
122       csize = limits[CS].min_entry_size;
123 
124    if (vsize < limits[VS].min_entry_size)
125       vsize = limits[VS].min_entry_size;
126 
127    if (sfsize < limits[SF].min_entry_size)
128       sfsize = limits[SF].min_entry_size;
129 
130    if (brw->urb.vsize < vsize ||
131        brw->urb.sfsize < sfsize ||
132        brw->urb.csize < csize ||
133        (brw->urb.constrained && (brw->urb.vsize > vsize ||
134 				 brw->urb.sfsize > sfsize ||
135 				 brw->urb.csize > csize))) {
136 
137 
138       brw->urb.csize = csize;
139       brw->urb.sfsize = sfsize;
140       brw->urb.vsize = vsize;
141 
142       brw->urb.nr_vs_entries = limits[VS].preferred_nr_entries;
143       brw->urb.nr_gs_entries = limits[GS].preferred_nr_entries;
144       brw->urb.nr_clip_entries = limits[CLP].preferred_nr_entries;
145       brw->urb.nr_sf_entries = limits[SF].preferred_nr_entries;
146       brw->urb.nr_cs_entries = limits[CS].preferred_nr_entries;
147 
148       brw->urb.constrained = 0;
149 
150       if (devinfo->gen == 5) {
151          brw->urb.nr_vs_entries = 128;
152          brw->urb.nr_sf_entries = 48;
153          if (check_urb_layout(brw)) {
154             goto done;
155          } else {
156             brw->urb.constrained = 1;
157             brw->urb.nr_vs_entries = limits[VS].preferred_nr_entries;
158             brw->urb.nr_sf_entries = limits[SF].preferred_nr_entries;
159          }
160       } else if (devinfo->is_g4x) {
161 	 brw->urb.nr_vs_entries = 64;
162 	 if (check_urb_layout(brw)) {
163 	    goto done;
164 	 } else {
165 	    brw->urb.constrained = 1;
166 	    brw->urb.nr_vs_entries = limits[VS].preferred_nr_entries;
167 	 }
168       }
169 
170       if (!check_urb_layout(brw)) {
171 	 brw->urb.nr_vs_entries = limits[VS].min_nr_entries;
172 	 brw->urb.nr_gs_entries = limits[GS].min_nr_entries;
173 	 brw->urb.nr_clip_entries = limits[CLP].min_nr_entries;
174 	 brw->urb.nr_sf_entries = limits[SF].min_nr_entries;
175 	 brw->urb.nr_cs_entries = limits[CS].min_nr_entries;
176 
177 	 /* Mark us as operating with constrained nr_entries, so that next
178 	  * time we recalculate we'll resize the fences in the hope of
179 	  * escaping constrained mode and getting back to normal performance.
180 	  */
181 	 brw->urb.constrained = 1;
182 
183 	 if (!check_urb_layout(brw)) {
184 	    /* This is impossible, given the maximal sizes of urb
185 	     * entries and the values for minimum nr of entries
186 	     * provided above.
187 	     */
188 	    fprintf(stderr, "couldn't calculate URB layout!\n");
189 	    exit(1);
190 	 }
191 
192 	 if (INTEL_DEBUG & (DEBUG_URB|DEBUG_PERF))
193 	    fprintf(stderr, "URB CONSTRAINED\n");
194       }
195 
196 done:
197       if (INTEL_DEBUG & DEBUG_URB)
198 	 fprintf(stderr,
199                  "URB fence: %d ..VS.. %d ..GS.. %d ..CLP.. %d ..SF.. %d ..CS.. %d\n",
200                  brw->urb.vs_start,
201                  brw->urb.gs_start,
202                  brw->urb.clip_start,
203                  brw->urb.sf_start,
204                  brw->urb.cs_start,
205                  brw->urb.size);
206 
207       brw->ctx.NewDriverState |= BRW_NEW_URB_FENCE;
208    }
209 }
210 
recalculate_urb_fence(struct brw_context * brw)211 static void recalculate_urb_fence( struct brw_context *brw )
212 {
213    brw_calculate_urb_fence(brw, brw->curbe.total_size,
214                            brw_vue_prog_data(brw->vs.base.prog_data)->urb_entry_size,
215                            brw->sf.prog_data->urb_entry_size);
216 }
217 
218 
219 const struct brw_tracked_state brw_recalculate_urb_fence = {
220    .dirty = {
221       .mesa = 0,
222       .brw = BRW_NEW_BLORP |
223              BRW_NEW_PUSH_CONSTANT_ALLOCATION |
224              BRW_NEW_SF_PROG_DATA |
225              BRW_NEW_VS_PROG_DATA,
226    },
227    .emit = recalculate_urb_fence
228 };
229 
230 
231 
232 
233 
brw_upload_urb_fence(struct brw_context * brw)234 void brw_upload_urb_fence(struct brw_context *brw)
235 {
236    struct brw_urb_fence uf;
237    memset(&uf, 0, sizeof(uf));
238 
239    uf.header.opcode = CMD_URB_FENCE;
240    uf.header.length = sizeof(uf)/4-2;
241    uf.header.vs_realloc = 1;
242    uf.header.gs_realloc = 1;
243    uf.header.clp_realloc = 1;
244    uf.header.sf_realloc = 1;
245    uf.header.vfe_realloc = 1;
246    uf.header.cs_realloc = 1;
247 
248    /* The ordering below is correct, not the layout in the
249     * instruction.
250     *
251     * There are 256/384 urb reg pairs in total.
252     */
253    uf.bits0.vs_fence  = brw->urb.gs_start;
254    uf.bits0.gs_fence  = brw->urb.clip_start;
255    uf.bits0.clp_fence = brw->urb.sf_start;
256    uf.bits1.sf_fence  = brw->urb.cs_start;
257    uf.bits1.cs_fence  = brw->urb.size;
258 
259    /* erratum: URB_FENCE must not cross a 64byte cacheline */
260    if ((USED_BATCH(brw->batch) & 15) > 12) {
261       int pad = 16 - (USED_BATCH(brw->batch) & 15);
262       do
263          *brw->batch.map_next++ = MI_NOOP;
264       while (--pad);
265    }
266 
267    intel_batchbuffer_data(brw, &uf, sizeof(uf));
268 }
269