• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <immintrin.h>  // AVX2
13 #include "aom_dsp/x86/synonyms.h"
14 #include "aom_dsp/x86/synonyms_avx2.h"
15 #include "aom_dsp/x86/transpose_sse2.h"
16 
17 #include "config/av1_rtcd.h"
18 #include "av1/common/restoration.h"
19 #include "av1/encoder/pickrst.h"
20 
acc_stat_avx2(int32_t * dst,const uint8_t * src,const __m128i * shuffle,const __m256i * kl)21 static INLINE void acc_stat_avx2(int32_t *dst, const uint8_t *src,
22                                  const __m128i *shuffle, const __m256i *kl) {
23   const __m128i s = _mm_shuffle_epi8(xx_loadu_128(src), *shuffle);
24   const __m256i d0 = _mm256_madd_epi16(*kl, _mm256_cvtepu8_epi16(s));
25   const __m256i dst0 = yy_load_256(dst);
26   const __m256i r0 = _mm256_add_epi32(dst0, d0);
27   yy_store_256(dst, r0);
28 }
29 
acc_stat_win7_one_line_avx2(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN][WIENER_WIN],int32_t M_int[WIENER_WIN][WIENER_WIN],int32_t H_int[WIENER_WIN2][WIENER_WIN * 8])30 static INLINE void acc_stat_win7_one_line_avx2(
31     const uint8_t *dgd, const uint8_t *src, int h_start, int h_end,
32     int dgd_stride, const __m128i *shuffle, int32_t *sumX,
33     int32_t sumY[WIENER_WIN][WIENER_WIN], int32_t M_int[WIENER_WIN][WIENER_WIN],
34     int32_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
35   int j, k, l;
36   const int wiener_win = WIENER_WIN;
37   for (j = h_start; j < h_end; j += 2) {
38     const uint8_t X1 = src[j];
39     const uint8_t X2 = src[j + 1];
40     *sumX += X1 + X2;
41     const uint8_t *dgd_ij = dgd + j;
42     for (k = 0; k < wiener_win; k++) {
43       const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
44       for (l = 0; l < wiener_win; l++) {
45         int32_t *H_ = &H_int[(l * wiener_win + k)][0];
46         const uint8_t D1 = dgd_ijk[l];
47         const uint8_t D2 = dgd_ijk[l + 1];
48         sumY[k][l] += D1 + D2;
49         M_int[k][l] += D1 * X1 + D2 * X2;
50 
51         const __m256i kl =
52             _mm256_cvtepu8_epi16(_mm_set1_epi16(*((uint16_t *)(dgd_ijk + l))));
53         acc_stat_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
54         acc_stat_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
55         acc_stat_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
56         acc_stat_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
57         acc_stat_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
58         acc_stat_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &kl);
59         acc_stat_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &kl);
60       }
61     }
62   }
63 }
64 
compute_stats_win7_opt_avx2(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H)65 static INLINE void compute_stats_win7_opt_avx2(
66     const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
67     int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H) {
68   int i, j, k, l, m, n;
69   const int wiener_win = WIENER_WIN;
70   const int pixel_count = (h_end - h_start) * (v_end - v_start);
71   const int wiener_win2 = wiener_win * wiener_win;
72   const int wiener_halfwin = (wiener_win >> 1);
73   uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
74 
75   int32_t M_int32[WIENER_WIN][WIENER_WIN] = { { 0 } };
76   int64_t M_int64[WIENER_WIN][WIENER_WIN] = { { 0 } };
77 
78   DECLARE_ALIGNED(32, int32_t,
79                   H_int32[WIENER_WIN2][WIENER_WIN * 8]) = { { 0 } };
80   int64_t H_int64[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
81   int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
82   int32_t sumX = 0;
83   const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
84 
85   const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data);
86   for (j = v_start; j < v_end; j += 64) {
87     const int vert_end = AOMMIN(64, v_end - j) + j;
88     for (i = j; i < vert_end; i++) {
89       acc_stat_win7_one_line_avx2(
90           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
91           dgd_stride, &shuffle, &sumX, sumY, M_int32, H_int32);
92     }
93     for (k = 0; k < wiener_win; ++k) {
94       for (l = 0; l < wiener_win; ++l) {
95         M_int64[k][l] += M_int32[k][l];
96         M_int32[k][l] = 0;
97       }
98     }
99     for (k = 0; k < WIENER_WIN2; ++k) {
100       for (l = 0; l < WIENER_WIN * 8; ++l) {
101         H_int64[k][l] += H_int32[k][l];
102         H_int32[k][l] = 0;
103       }
104     }
105   }
106 
107   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
108   for (k = 0; k < wiener_win; k++) {
109     for (l = 0; l < wiener_win; l++) {
110       const int32_t idx0 = l * wiener_win + k;
111       M[idx0] =
112           M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
113       int64_t *H_ = H + idx0 * wiener_win2;
114       int64_t *H_int_ = &H_int64[idx0][0];
115       for (m = 0; m < wiener_win; m++) {
116         for (n = 0; n < wiener_win; n++) {
117           H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
118                                    (int64_t)avg * (sumY[k][l] + sumY[n][m]);
119         }
120       }
121     }
122   }
123 }
124 
125 #if CONFIG_AV1_HIGHBITDEPTH
acc_stat_highbd_avx2(int64_t * dst,const uint16_t * dgd,const __m256i * shuffle,const __m256i * dgd_ijkl)126 static INLINE void acc_stat_highbd_avx2(int64_t *dst, const uint16_t *dgd,
127                                         const __m256i *shuffle,
128                                         const __m256i *dgd_ijkl) {
129   // Load two 128-bit chunks from dgd
130   const __m256i s0 = _mm256_inserti128_si256(
131       _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)dgd)),
132       _mm_loadu_si128((__m128i *)(dgd + 4)), 1);
133   // s0 = [11 10 9 8 7 6 5 4] [7 6 5 4 3 2 1 0] as u16 (values are dgd indices)
134   // The weird order is so the shuffle stays within 128-bit lanes
135 
136   // Shuffle 16x u16 values within lanes according to the mask:
137   // [0 1 1 2 2 3 3 4] [0 1 1 2 2 3 3 4]
138   // (Actually we shuffle u8 values as there's no 16-bit shuffle)
139   const __m256i s1 = _mm256_shuffle_epi8(s0, *shuffle);
140   // s1 = [8 7 7 6 6 5 5 4] [4 3 3 2 2 1 1 0] as u16 (values are dgd indices)
141 
142   // Multiply 16x 16-bit integers in dgd_ijkl and s1, resulting in 16x 32-bit
143   // integers then horizontally add pairs of these integers resulting in 8x
144   // 32-bit integers
145   const __m256i d0 = _mm256_madd_epi16(*dgd_ijkl, s1);
146   // d0 = [a b c d] [e f g h] as u32
147 
148   // Take the lower-half of d0, extend to u64, add it on to dst (H)
149   const __m256i d0l = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 0));
150   // d0l = [a b] [c d] as u64
151   const __m256i dst0 = yy_load_256(dst);
152   yy_store_256(dst, _mm256_add_epi64(d0l, dst0));
153 
154   // Take the upper-half of d0, extend to u64, add it on to dst (H)
155   const __m256i d0h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 1));
156   // d0h = [e f] [g h] as u64
157   const __m256i dst1 = yy_load_256(dst + 4);
158   yy_store_256(dst + 4, _mm256_add_epi64(d0h, dst1));
159 }
160 
acc_stat_highbd_win7_one_line_avx2(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m256i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN][WIENER_WIN],int64_t M_int[WIENER_WIN][WIENER_WIN],int64_t H_int[WIENER_WIN2][WIENER_WIN * 8])161 static INLINE void acc_stat_highbd_win7_one_line_avx2(
162     const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
163     int dgd_stride, const __m256i *shuffle, int32_t *sumX,
164     int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN],
165     int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
166   int j, k, l;
167   const int wiener_win = WIENER_WIN;
168   for (j = h_start; j < h_end; j += 2) {
169     const uint16_t X1 = src[j];
170     const uint16_t X2 = src[j + 1];
171     *sumX += X1 + X2;
172     const uint16_t *dgd_ij = dgd + j;
173     for (k = 0; k < wiener_win; k++) {
174       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
175       for (l = 0; l < wiener_win; l++) {
176         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
177         const uint16_t D1 = dgd_ijk[l];
178         const uint16_t D2 = dgd_ijk[l + 1];
179         sumY[k][l] += D1 + D2;
180         M_int[k][l] += D1 * X1 + D2 * X2;
181 
182         // Load two u16 values from dgd_ijkl combined as a u32,
183         // then broadcast to 8x u32 slots of a 256
184         const __m256i dgd_ijkl =
185             _mm256_set1_epi32(*((uint32_t *)(dgd_ijk + l)));
186         // dgd_ijkl = [y x y x y x y x] [y x y x y x y x] where each is a u16
187 
188         acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
189                              &dgd_ijkl);
190         acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
191                              &dgd_ijkl);
192         acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
193                              &dgd_ijkl);
194         acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
195                              &dgd_ijkl);
196         acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
197                              &dgd_ijkl);
198         acc_stat_highbd_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
199                              &dgd_ijkl);
200         acc_stat_highbd_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
201                              &dgd_ijkl);
202       }
203     }
204   }
205 }
206 
compute_stats_highbd_win7_opt_avx2(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)207 static INLINE void compute_stats_highbd_win7_opt_avx2(
208     const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
209     int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
210     int64_t *H, aom_bit_depth_t bit_depth) {
211   int i, j, k, l, m, n;
212   const int wiener_win = WIENER_WIN;
213   const int pixel_count = (h_end - h_start) * (v_end - v_start);
214   const int wiener_win2 = wiener_win * wiener_win;
215   const int wiener_halfwin = (wiener_win >> 1);
216   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
217   const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
218   const uint16_t avg =
219       find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
220 
221   int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } };
222   DECLARE_ALIGNED(32, int64_t, H_int[WIENER_WIN2][WIENER_WIN * 8]) = { { 0 } };
223   int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
224   int32_t sumX = 0;
225   const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
226 
227   const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data);
228   for (j = v_start; j < v_end; j += 64) {
229     const int vert_end = AOMMIN(64, v_end - j) + j;
230     for (i = j; i < vert_end; i++) {
231       acc_stat_highbd_win7_one_line_avx2(
232           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
233           dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
234     }
235   }
236 
237   uint8_t bit_depth_divider = 1;
238   if (bit_depth == AOM_BITS_12)
239     bit_depth_divider = 16;
240   else if (bit_depth == AOM_BITS_10)
241     bit_depth_divider = 4;
242 
243   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
244   for (k = 0; k < wiener_win; k++) {
245     for (l = 0; l < wiener_win; l++) {
246       const int32_t idx0 = l * wiener_win + k;
247       M[idx0] = (M_int[k][l] +
248                  (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
249                 bit_depth_divider;
250       int64_t *H_ = H + idx0 * wiener_win2;
251       int64_t *H_int_ = &H_int[idx0][0];
252       for (m = 0; m < wiener_win; m++) {
253         for (n = 0; n < wiener_win; n++) {
254           H_[m * wiener_win + n] =
255               (H_int_[n * 8 + m] +
256                (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
257               bit_depth_divider;
258         }
259       }
260     }
261   }
262 }
263 
acc_stat_highbd_win5_one_line_avx2(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m256i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8])264 static INLINE void acc_stat_highbd_win5_one_line_avx2(
265     const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
266     int dgd_stride, const __m256i *shuffle, int32_t *sumX,
267     int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
268     int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
269     int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
270   int j, k, l;
271   const int wiener_win = WIENER_WIN_CHROMA;
272   for (j = h_start; j < h_end; j += 2) {
273     const uint16_t X1 = src[j];
274     const uint16_t X2 = src[j + 1];
275     *sumX += X1 + X2;
276     const uint16_t *dgd_ij = dgd + j;
277     for (k = 0; k < wiener_win; k++) {
278       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
279       for (l = 0; l < wiener_win; l++) {
280         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
281         const uint16_t D1 = dgd_ijk[l];
282         const uint16_t D2 = dgd_ijk[l + 1];
283         sumY[k][l] += D1 + D2;
284         M_int[k][l] += D1 * X1 + D2 * X2;
285 
286         // Load two u16 values from dgd_ijkl combined as a u32,
287         // then broadcast to 8x u32 slots of a 256
288         const __m256i dgd_ijkl =
289             _mm256_set1_epi32(*((uint32_t *)(dgd_ijk + l)));
290         // dgd_ijkl = [x y x y x y x y] [x y x y x y x y] where each is a u16
291 
292         acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
293                              &dgd_ijkl);
294         acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
295                              &dgd_ijkl);
296         acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
297                              &dgd_ijkl);
298         acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
299                              &dgd_ijkl);
300         acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
301                              &dgd_ijkl);
302       }
303     }
304   }
305 }
306 
compute_stats_highbd_win5_opt_avx2(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)307 static INLINE void compute_stats_highbd_win5_opt_avx2(
308     const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
309     int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
310     int64_t *H, aom_bit_depth_t bit_depth) {
311   int i, j, k, l, m, n;
312   const int wiener_win = WIENER_WIN_CHROMA;
313   const int pixel_count = (h_end - h_start) * (v_end - v_start);
314   const int wiener_win2 = wiener_win * wiener_win;
315   const int wiener_halfwin = (wiener_win >> 1);
316   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
317   const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
318   const uint16_t avg =
319       find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
320 
321   int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
322   DECLARE_ALIGNED(
323       32, int64_t,
324       H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) = { { 0 } };
325   int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
326   int32_t sumX = 0;
327   const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
328 
329   const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data);
330   for (j = v_start; j < v_end; j += 64) {
331     const int vert_end = AOMMIN(64, v_end - j) + j;
332     for (i = j; i < vert_end; i++) {
333       acc_stat_highbd_win5_one_line_avx2(
334           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
335           dgd_stride, &shuffle, &sumX, sumY, M_int64, H_int64);
336     }
337   }
338 
339   uint8_t bit_depth_divider = 1;
340   if (bit_depth == AOM_BITS_12)
341     bit_depth_divider = 16;
342   else if (bit_depth == AOM_BITS_10)
343     bit_depth_divider = 4;
344 
345   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
346   for (k = 0; k < wiener_win; k++) {
347     for (l = 0; l < wiener_win; l++) {
348       const int32_t idx0 = l * wiener_win + k;
349       M[idx0] = (M_int64[k][l] +
350                  (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
351                 bit_depth_divider;
352       int64_t *H_ = H + idx0 * wiener_win2;
353       int64_t *H_int_ = &H_int64[idx0][0];
354       for (m = 0; m < wiener_win; m++) {
355         for (n = 0; n < wiener_win; n++) {
356           H_[m * wiener_win + n] =
357               (H_int_[n * 8 + m] +
358                (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
359               bit_depth_divider;
360         }
361       }
362     }
363   }
364 }
365 
av1_compute_stats_highbd_avx2(int wiener_win,const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)366 void av1_compute_stats_highbd_avx2(int wiener_win, const uint8_t *dgd8,
367                                    const uint8_t *src8, int h_start, int h_end,
368                                    int v_start, int v_end, int dgd_stride,
369                                    int src_stride, int64_t *M, int64_t *H,
370                                    aom_bit_depth_t bit_depth) {
371   if (wiener_win == WIENER_WIN) {
372     compute_stats_highbd_win7_opt_avx2(dgd8, src8, h_start, h_end, v_start,
373                                        v_end, dgd_stride, src_stride, M, H,
374                                        bit_depth);
375   } else if (wiener_win == WIENER_WIN_CHROMA) {
376     compute_stats_highbd_win5_opt_avx2(dgd8, src8, h_start, h_end, v_start,
377                                        v_end, dgd_stride, src_stride, M, H,
378                                        bit_depth);
379   } else {
380     av1_compute_stats_highbd_c(wiener_win, dgd8, src8, h_start, h_end, v_start,
381                                v_end, dgd_stride, src_stride, M, H, bit_depth);
382   }
383 }
384 #endif  // CONFIG_AV1_HIGHBITDEPTH
385 
acc_stat_win5_one_line_avx2(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int32_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int32_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8])386 static INLINE void acc_stat_win5_one_line_avx2(
387     const uint8_t *dgd, const uint8_t *src, int h_start, int h_end,
388     int dgd_stride, const __m128i *shuffle, int32_t *sumX,
389     int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
390     int32_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
391     int32_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
392   int j, k, l;
393   const int wiener_win = WIENER_WIN_CHROMA;
394   for (j = h_start; j < h_end; j += 2) {
395     const uint8_t X1 = src[j];
396     const uint8_t X2 = src[j + 1];
397     *sumX += X1 + X2;
398     const uint8_t *dgd_ij = dgd + j;
399     for (k = 0; k < wiener_win; k++) {
400       const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
401       for (l = 0; l < wiener_win; l++) {
402         int32_t *H_ = &H_int[(l * wiener_win + k)][0];
403         const uint8_t D1 = dgd_ijk[l];
404         const uint8_t D2 = dgd_ijk[l + 1];
405         sumY[k][l] += D1 + D2;
406         M_int[k][l] += D1 * X1 + D2 * X2;
407 
408         const __m256i kl =
409             _mm256_cvtepu8_epi16(_mm_set1_epi16(*((uint16_t *)(dgd_ijk + l))));
410         acc_stat_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
411         acc_stat_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
412         acc_stat_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
413         acc_stat_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
414         acc_stat_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
415       }
416     }
417   }
418 }
419 
compute_stats_win5_opt_avx2(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H)420 static INLINE void compute_stats_win5_opt_avx2(
421     const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
422     int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H) {
423   int i, j, k, l, m, n;
424   const int wiener_win = WIENER_WIN_CHROMA;
425   const int pixel_count = (h_end - h_start) * (v_end - v_start);
426   const int wiener_win2 = wiener_win * wiener_win;
427   const int wiener_halfwin = (wiener_win >> 1);
428   uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
429 
430   int32_t M_int32[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
431   int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
432   DECLARE_ALIGNED(
433       32, int32_t,
434       H_int32[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) = { { 0 } };
435   int64_t H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
436   int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
437   int32_t sumX = 0;
438   const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
439 
440   const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data);
441   for (j = v_start; j < v_end; j += 64) {
442     const int vert_end = AOMMIN(64, v_end - j) + j;
443     for (i = j; i < vert_end; i++) {
444       acc_stat_win5_one_line_avx2(
445           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
446           dgd_stride, &shuffle, &sumX, sumY, M_int32, H_int32);
447     }
448     for (k = 0; k < wiener_win; ++k) {
449       for (l = 0; l < wiener_win; ++l) {
450         M_int64[k][l] += M_int32[k][l];
451         M_int32[k][l] = 0;
452       }
453     }
454     for (k = 0; k < WIENER_WIN2_CHROMA; ++k) {
455       for (l = 0; l < WIENER_WIN_CHROMA * 8; ++l) {
456         H_int64[k][l] += H_int32[k][l];
457         H_int32[k][l] = 0;
458       }
459     }
460   }
461 
462   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
463   for (k = 0; k < wiener_win; k++) {
464     for (l = 0; l < wiener_win; l++) {
465       const int32_t idx0 = l * wiener_win + k;
466       M[idx0] =
467           M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
468       int64_t *H_ = H + idx0 * wiener_win2;
469       int64_t *H_int_ = &H_int64[idx0][0];
470       for (m = 0; m < wiener_win; m++) {
471         for (n = 0; n < wiener_win; n++) {
472           H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
473                                    (int64_t)avg * (sumY[k][l] + sumY[n][m]);
474         }
475       }
476     }
477   }
478 }
479 
av1_compute_stats_avx2(int wiener_win,const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H)480 void av1_compute_stats_avx2(int wiener_win, const uint8_t *dgd,
481                             const uint8_t *src, int h_start, int h_end,
482                             int v_start, int v_end, int dgd_stride,
483                             int src_stride, int64_t *M, int64_t *H) {
484   if (wiener_win == WIENER_WIN) {
485     compute_stats_win7_opt_avx2(dgd, src, h_start, h_end, v_start, v_end,
486                                 dgd_stride, src_stride, M, H);
487   } else if (wiener_win == WIENER_WIN_CHROMA) {
488     compute_stats_win5_opt_avx2(dgd, src, h_start, h_end, v_start, v_end,
489                                 dgd_stride, src_stride, M, H);
490   } else {
491     av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end,
492                         dgd_stride, src_stride, M, H);
493   }
494 }
495 
pair_set_epi16(int a,int b)496 static INLINE __m256i pair_set_epi16(int a, int b) {
497   return _mm256_set1_epi32(
498       (int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16)));
499 }
500 
av1_lowbd_pixel_proj_error_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)501 int64_t av1_lowbd_pixel_proj_error_avx2(
502     const uint8_t *src8, int width, int height, int src_stride,
503     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
504     int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
505   int i, j, k;
506   const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
507   const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1));
508   __m256i sum64 = _mm256_setzero_si256();
509   const uint8_t *src = src8;
510   const uint8_t *dat = dat8;
511   int64_t err = 0;
512   if (params->r[0] > 0 && params->r[1] > 0) {
513     __m256i xq_coeff = pair_set_epi16(xq[0], xq[1]);
514     for (i = 0; i < height; ++i) {
515       __m256i sum32 = _mm256_setzero_si256();
516       for (j = 0; j <= width - 16; j += 16) {
517         const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
518         const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
519         const __m256i flt0_16b = _mm256_permute4x64_epi64(
520             _mm256_packs_epi32(yy_loadu_256(flt0 + j),
521                                yy_loadu_256(flt0 + j + 8)),
522             0xd8);
523         const __m256i flt1_16b = _mm256_permute4x64_epi64(
524             _mm256_packs_epi32(yy_loadu_256(flt1 + j),
525                                yy_loadu_256(flt1 + j + 8)),
526             0xd8);
527         const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS);
528         const __m256i flt0_0_sub_u = _mm256_sub_epi16(flt0_16b, u0);
529         const __m256i flt1_0_sub_u = _mm256_sub_epi16(flt1_16b, u0);
530         const __m256i v0 = _mm256_madd_epi16(
531             xq_coeff, _mm256_unpacklo_epi16(flt0_0_sub_u, flt1_0_sub_u));
532         const __m256i v1 = _mm256_madd_epi16(
533             xq_coeff, _mm256_unpackhi_epi16(flt0_0_sub_u, flt1_0_sub_u));
534         const __m256i vr0 =
535             _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift);
536         const __m256i vr1 =
537             _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift);
538         const __m256i e0 = _mm256_sub_epi16(
539             _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0);
540         const __m256i err0 = _mm256_madd_epi16(e0, e0);
541         sum32 = _mm256_add_epi32(sum32, err0);
542       }
543       for (k = j; k < width; ++k) {
544         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
545         int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
546         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
547         err += ((int64_t)e * e);
548       }
549       dat += dat_stride;
550       src += src_stride;
551       flt0 += flt0_stride;
552       flt1 += flt1_stride;
553       const __m256i sum64_0 =
554           _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
555       const __m256i sum64_1 =
556           _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
557       sum64 = _mm256_add_epi64(sum64, sum64_0);
558       sum64 = _mm256_add_epi64(sum64, sum64_1);
559     }
560   } else if (params->r[0] > 0 || params->r[1] > 0) {
561     const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
562     const __m256i xq_coeff =
563         pair_set_epi16(xq_active, (-xq_active * (1 << SGRPROJ_RST_BITS)));
564     const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
565     const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
566     for (i = 0; i < height; ++i) {
567       __m256i sum32 = _mm256_setzero_si256();
568       for (j = 0; j <= width - 16; j += 16) {
569         const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
570         const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
571         const __m256i flt_16b = _mm256_permute4x64_epi64(
572             _mm256_packs_epi32(yy_loadu_256(flt + j),
573                                yy_loadu_256(flt + j + 8)),
574             0xd8);
575         const __m256i v0 =
576             _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt_16b, d0));
577         const __m256i v1 =
578             _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt_16b, d0));
579         const __m256i vr0 =
580             _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift);
581         const __m256i vr1 =
582             _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift);
583         const __m256i e0 = _mm256_sub_epi16(
584             _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0);
585         const __m256i err0 = _mm256_madd_epi16(e0, e0);
586         sum32 = _mm256_add_epi32(sum32, err0);
587       }
588       for (k = j; k < width; ++k) {
589         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
590         int32_t v = xq_active * (flt[k] - u);
591         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
592         err += ((int64_t)e * e);
593       }
594       dat += dat_stride;
595       src += src_stride;
596       flt += flt_stride;
597       const __m256i sum64_0 =
598           _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
599       const __m256i sum64_1 =
600           _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
601       sum64 = _mm256_add_epi64(sum64, sum64_0);
602       sum64 = _mm256_add_epi64(sum64, sum64_1);
603     }
604   } else {
605     __m256i sum32 = _mm256_setzero_si256();
606     for (i = 0; i < height; ++i) {
607       for (j = 0; j <= width - 16; j += 16) {
608         const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
609         const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
610         const __m256i diff0 = _mm256_sub_epi16(d0, s0);
611         const __m256i err0 = _mm256_madd_epi16(diff0, diff0);
612         sum32 = _mm256_add_epi32(sum32, err0);
613       }
614       for (k = j; k < width; ++k) {
615         const int32_t e = (int32_t)(dat[k]) - src[k];
616         err += ((int64_t)e * e);
617       }
618       dat += dat_stride;
619       src += src_stride;
620     }
621     const __m256i sum64_0 =
622         _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
623     const __m256i sum64_1 =
624         _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
625     sum64 = _mm256_add_epi64(sum64_0, sum64_1);
626   }
627   int64_t sum[4];
628   yy_storeu_256(sum, sum64);
629   err += sum[0] + sum[1] + sum[2] + sum[3];
630   return err;
631 }
632 
633 // When params->r[0] > 0 and params->r[1] > 0. In this case all elements of
634 // C and H need to be computed.
calc_proj_params_r0_r1_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])635 static AOM_INLINE void calc_proj_params_r0_r1_avx2(
636     const uint8_t *src8, int width, int height, int src_stride,
637     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
638     int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
639   const int size = width * height;
640   const uint8_t *src = src8;
641   const uint8_t *dat = dat8;
642   __m256i h00, h01, h11, c0, c1;
643   const __m256i zero = _mm256_setzero_si256();
644   h01 = h11 = c0 = c1 = h00 = zero;
645 
646   for (int i = 0; i < height; ++i) {
647     for (int j = 0; j < width; j += 8) {
648       const __m256i u_load = _mm256_cvtepu8_epi32(
649           _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
650       const __m256i s_load = _mm256_cvtepu8_epi32(
651           _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
652       __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
653       __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
654       __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
655       __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
656       s = _mm256_sub_epi32(s, d);
657       f1 = _mm256_sub_epi32(f1, d);
658       f2 = _mm256_sub_epi32(f2, d);
659 
660       const __m256i h00_even = _mm256_mul_epi32(f1, f1);
661       const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
662                                                _mm256_srli_epi64(f1, 32));
663       h00 = _mm256_add_epi64(h00, h00_even);
664       h00 = _mm256_add_epi64(h00, h00_odd);
665 
666       const __m256i h01_even = _mm256_mul_epi32(f1, f2);
667       const __m256i h01_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
668                                                _mm256_srli_epi64(f2, 32));
669       h01 = _mm256_add_epi64(h01, h01_even);
670       h01 = _mm256_add_epi64(h01, h01_odd);
671 
672       const __m256i h11_even = _mm256_mul_epi32(f2, f2);
673       const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
674                                                _mm256_srli_epi64(f2, 32));
675       h11 = _mm256_add_epi64(h11, h11_even);
676       h11 = _mm256_add_epi64(h11, h11_odd);
677 
678       const __m256i c0_even = _mm256_mul_epi32(f1, s);
679       const __m256i c0_odd =
680           _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
681       c0 = _mm256_add_epi64(c0, c0_even);
682       c0 = _mm256_add_epi64(c0, c0_odd);
683 
684       const __m256i c1_even = _mm256_mul_epi32(f2, s);
685       const __m256i c1_odd =
686           _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
687       c1 = _mm256_add_epi64(c1, c1_even);
688       c1 = _mm256_add_epi64(c1, c1_odd);
689     }
690   }
691 
692   __m256i c_low = _mm256_unpacklo_epi64(c0, c1);
693   const __m256i c_high = _mm256_unpackhi_epi64(c0, c1);
694   c_low = _mm256_add_epi64(c_low, c_high);
695   const __m128i c_128bit = _mm_add_epi64(_mm256_extracti128_si256(c_low, 1),
696                                          _mm256_castsi256_si128(c_low));
697 
698   __m256i h0x_low = _mm256_unpacklo_epi64(h00, h01);
699   const __m256i h0x_high = _mm256_unpackhi_epi64(h00, h01);
700   h0x_low = _mm256_add_epi64(h0x_low, h0x_high);
701   const __m128i h0x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h0x_low, 1),
702                                            _mm256_castsi256_si128(h0x_low));
703 
704   // Using the symmetric properties of H,  calculations of H[1][0] are not
705   // needed.
706   __m256i h1x_low = _mm256_unpacklo_epi64(zero, h11);
707   const __m256i h1x_high = _mm256_unpackhi_epi64(zero, h11);
708   h1x_low = _mm256_add_epi64(h1x_low, h1x_high);
709   const __m128i h1x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h1x_low, 1),
710                                            _mm256_castsi256_si128(h1x_low));
711 
712   xx_storeu_128(C, c_128bit);
713   xx_storeu_128(H[0], h0x_128bit);
714   xx_storeu_128(H[1], h1x_128bit);
715 
716   H[0][0] /= size;
717   H[0][1] /= size;
718   H[1][1] /= size;
719 
720   // Since H is a symmetric matrix
721   H[1][0] = H[0][1];
722   C[0] /= size;
723   C[1] /= size;
724 }
725 
726 // When only params->r[0] > 0. In this case only H[0][0] and C[0] are
727 // non-zero and need to be computed.
calc_proj_params_r0_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int64_t H[2][2],int64_t C[2])728 static AOM_INLINE void calc_proj_params_r0_avx2(const uint8_t *src8, int width,
729                                                 int height, int src_stride,
730                                                 const uint8_t *dat8,
731                                                 int dat_stride, int32_t *flt0,
732                                                 int flt0_stride,
733                                                 int64_t H[2][2], int64_t C[2]) {
734   const int size = width * height;
735   const uint8_t *src = src8;
736   const uint8_t *dat = dat8;
737   __m256i h00, c0;
738   const __m256i zero = _mm256_setzero_si256();
739   c0 = h00 = zero;
740 
741   for (int i = 0; i < height; ++i) {
742     for (int j = 0; j < width; j += 8) {
743       const __m256i u_load = _mm256_cvtepu8_epi32(
744           _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
745       const __m256i s_load = _mm256_cvtepu8_epi32(
746           _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
747       __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
748       __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
749       __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
750       s = _mm256_sub_epi32(s, d);
751       f1 = _mm256_sub_epi32(f1, d);
752 
753       const __m256i h00_even = _mm256_mul_epi32(f1, f1);
754       const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
755                                                _mm256_srli_epi64(f1, 32));
756       h00 = _mm256_add_epi64(h00, h00_even);
757       h00 = _mm256_add_epi64(h00, h00_odd);
758 
759       const __m256i c0_even = _mm256_mul_epi32(f1, s);
760       const __m256i c0_odd =
761           _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
762       c0 = _mm256_add_epi64(c0, c0_even);
763       c0 = _mm256_add_epi64(c0, c0_odd);
764     }
765   }
766   const __m128i h00_128bit = _mm_add_epi64(_mm256_extracti128_si256(h00, 1),
767                                            _mm256_castsi256_si128(h00));
768   const __m128i h00_val =
769       _mm_add_epi64(h00_128bit, _mm_srli_si128(h00_128bit, 8));
770 
771   const __m128i c0_128bit = _mm_add_epi64(_mm256_extracti128_si256(c0, 1),
772                                           _mm256_castsi256_si128(c0));
773   const __m128i c0_val = _mm_add_epi64(c0_128bit, _mm_srli_si128(c0_128bit, 8));
774 
775   const __m128i c = _mm_unpacklo_epi64(c0_val, _mm256_castsi256_si128(zero));
776   const __m128i h0x = _mm_unpacklo_epi64(h00_val, _mm256_castsi256_si128(zero));
777 
778   xx_storeu_128(C, c);
779   xx_storeu_128(H[0], h0x);
780 
781   H[0][0] /= size;
782   C[0] /= size;
783 }
784 
785 // When only params->r[1] > 0. In this case only H[1][1] and C[1] are
786 // non-zero and need to be computed.
calc_proj_params_r1_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])787 static AOM_INLINE void calc_proj_params_r1_avx2(const uint8_t *src8, int width,
788                                                 int height, int src_stride,
789                                                 const uint8_t *dat8,
790                                                 int dat_stride, int32_t *flt1,
791                                                 int flt1_stride,
792                                                 int64_t H[2][2], int64_t C[2]) {
793   const int size = width * height;
794   const uint8_t *src = src8;
795   const uint8_t *dat = dat8;
796   __m256i h11, c1;
797   const __m256i zero = _mm256_setzero_si256();
798   c1 = h11 = zero;
799 
800   for (int i = 0; i < height; ++i) {
801     for (int j = 0; j < width; j += 8) {
802       const __m256i u_load = _mm256_cvtepu8_epi32(
803           _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
804       const __m256i s_load = _mm256_cvtepu8_epi32(
805           _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
806       __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
807       __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
808       __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
809       s = _mm256_sub_epi32(s, d);
810       f2 = _mm256_sub_epi32(f2, d);
811 
812       const __m256i h11_even = _mm256_mul_epi32(f2, f2);
813       const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
814                                                _mm256_srli_epi64(f2, 32));
815       h11 = _mm256_add_epi64(h11, h11_even);
816       h11 = _mm256_add_epi64(h11, h11_odd);
817 
818       const __m256i c1_even = _mm256_mul_epi32(f2, s);
819       const __m256i c1_odd =
820           _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
821       c1 = _mm256_add_epi64(c1, c1_even);
822       c1 = _mm256_add_epi64(c1, c1_odd);
823     }
824   }
825 
826   const __m128i h11_128bit = _mm_add_epi64(_mm256_extracti128_si256(h11, 1),
827                                            _mm256_castsi256_si128(h11));
828   const __m128i h11_val =
829       _mm_add_epi64(h11_128bit, _mm_srli_si128(h11_128bit, 8));
830 
831   const __m128i c1_128bit = _mm_add_epi64(_mm256_extracti128_si256(c1, 1),
832                                           _mm256_castsi256_si128(c1));
833   const __m128i c1_val = _mm_add_epi64(c1_128bit, _mm_srli_si128(c1_128bit, 8));
834 
835   const __m128i c = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), c1_val);
836   const __m128i h1x = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), h11_val);
837 
838   xx_storeu_128(C, c);
839   xx_storeu_128(H[1], h1x);
840 
841   H[1][1] /= size;
842   C[1] /= size;
843 }
844 
845 // AVX2 variant of av1_calc_proj_params_c.
av1_calc_proj_params_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2],const sgr_params_type * params)846 void av1_calc_proj_params_avx2(const uint8_t *src8, int width, int height,
847                                int src_stride, const uint8_t *dat8,
848                                int dat_stride, int32_t *flt0, int flt0_stride,
849                                int32_t *flt1, int flt1_stride, int64_t H[2][2],
850                                int64_t C[2], const sgr_params_type *params) {
851   if ((params->r[0] > 0) && (params->r[1] > 0)) {
852     calc_proj_params_r0_r1_avx2(src8, width, height, src_stride, dat8,
853                                 dat_stride, flt0, flt0_stride, flt1,
854                                 flt1_stride, H, C);
855   } else if (params->r[0] > 0) {
856     calc_proj_params_r0_avx2(src8, width, height, src_stride, dat8, dat_stride,
857                              flt0, flt0_stride, H, C);
858   } else if (params->r[1] > 0) {
859     calc_proj_params_r1_avx2(src8, width, height, src_stride, dat8, dat_stride,
860                              flt1, flt1_stride, H, C);
861   }
862 }
863 
864 #if CONFIG_AV1_HIGHBITDEPTH
av1_highbd_pixel_proj_error_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)865 int64_t av1_highbd_pixel_proj_error_avx2(
866     const uint8_t *src8, int width, int height, int src_stride,
867     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
868     int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
869   int i, j, k;
870   const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
871   const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1));
872   __m256i sum64 = _mm256_setzero_si256();
873   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
874   const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
875   int64_t err = 0;
876   if (params->r[0] > 0 && params->r[1] > 0) {  // Both filters are enabled
877     const __m256i xq0 = _mm256_set1_epi32(xq[0]);
878     const __m256i xq1 = _mm256_set1_epi32(xq[1]);
879     for (i = 0; i < height; ++i) {
880       __m256i sum32 = _mm256_setzero_si256();
881       for (j = 0; j <= width - 16; j += 16) {  // Process 16 pixels at a time
882         // Load 16 pixels each from source image and corrupted image
883         const __m256i s0 = yy_loadu_256(src + j);
884         const __m256i d0 = yy_loadu_256(dat + j);
885         // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 (indices)
886 
887         // Shift-up each pixel to match filtered image scaling
888         const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS);
889 
890         // Split u0 into two halves and pad each from u16 to i32
891         const __m256i u0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(u0));
892         const __m256i u0h =
893             _mm256_cvtepu16_epi32(_mm256_extracti128_si256(u0, 1));
894         // u0h, u0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32
895 
896         // Load 16 pixels from each filtered image
897         const __m256i flt0l = yy_loadu_256(flt0 + j);
898         const __m256i flt0h = yy_loadu_256(flt0 + j + 8);
899         const __m256i flt1l = yy_loadu_256(flt1 + j);
900         const __m256i flt1h = yy_loadu_256(flt1 + j + 8);
901         // flt?l, flt?h = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32
902 
903         // Subtract shifted corrupt image from each filtered image
904         const __m256i flt0l_subu = _mm256_sub_epi32(flt0l, u0l);
905         const __m256i flt0h_subu = _mm256_sub_epi32(flt0h, u0h);
906         const __m256i flt1l_subu = _mm256_sub_epi32(flt1l, u0l);
907         const __m256i flt1h_subu = _mm256_sub_epi32(flt1h, u0h);
908 
909         // Multiply basis vectors by appropriate coefficients
910         const __m256i v0l = _mm256_mullo_epi32(flt0l_subu, xq0);
911         const __m256i v0h = _mm256_mullo_epi32(flt0h_subu, xq0);
912         const __m256i v1l = _mm256_mullo_epi32(flt1l_subu, xq1);
913         const __m256i v1h = _mm256_mullo_epi32(flt1h_subu, xq1);
914 
915         // Add together the contributions from the two basis vectors
916         const __m256i vl = _mm256_add_epi32(v0l, v1l);
917         const __m256i vh = _mm256_add_epi32(v0h, v1h);
918 
919         // Right-shift v with appropriate rounding
920         const __m256i vrl =
921             _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift);
922         const __m256i vrh =
923             _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift);
924         // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0]
925 
926         // Saturate each i32 to an i16 then combine both halves
927         // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes
928         const __m256i vr =
929             _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8);
930         // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0]
931         // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0]
932 
933         // Add twin-subspace-sgr-filter to corrupt image then subtract source
934         const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0);
935 
936         // Calculate squared error and add adjacent values
937         const __m256i err0 = _mm256_madd_epi16(e0, e0);
938 
939         sum32 = _mm256_add_epi32(sum32, err0);
940       }
941 
942       const __m256i sum32l =
943           _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
944       sum64 = _mm256_add_epi64(sum64, sum32l);
945       const __m256i sum32h =
946           _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
947       sum64 = _mm256_add_epi64(sum64, sum32h);
948 
949       // Process remaining pixels in this row (modulo 16)
950       for (k = j; k < width; ++k) {
951         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
952         int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
953         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
954         err += ((int64_t)e * e);
955       }
956       dat += dat_stride;
957       src += src_stride;
958       flt0 += flt0_stride;
959       flt1 += flt1_stride;
960     }
961   } else if (params->r[0] > 0 || params->r[1] > 0) {  // Only one filter enabled
962     const int32_t xq_on = (params->r[0] > 0) ? xq[0] : xq[1];
963     const __m256i xq_active = _mm256_set1_epi32(xq_on);
964     const __m256i xq_inactive =
965         _mm256_set1_epi32(-xq_on * (1 << SGRPROJ_RST_BITS));
966     const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
967     const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
968     for (i = 0; i < height; ++i) {
969       __m256i sum32 = _mm256_setzero_si256();
970       for (j = 0; j <= width - 16; j += 16) {
971         // Load 16 pixels from source image
972         const __m256i s0 = yy_loadu_256(src + j);
973         // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
974 
975         // Load 16 pixels from corrupted image and pad each u16 to i32
976         const __m256i d0 = yy_loadu_256(dat + j);
977         const __m256i d0h =
978             _mm256_cvtepu16_epi32(_mm256_extracti128_si256(d0, 1));
979         const __m256i d0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(d0));
980         // d0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
981         // d0h, d0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
982 
983         // Load 16 pixels from the filtered image
984         const __m256i flth = yy_loadu_256(flt + j + 8);
985         const __m256i fltl = yy_loadu_256(flt + j);
986         // flth, fltl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
987 
988         const __m256i flth_xq = _mm256_mullo_epi32(flth, xq_active);
989         const __m256i fltl_xq = _mm256_mullo_epi32(fltl, xq_active);
990         const __m256i d0h_xq = _mm256_mullo_epi32(d0h, xq_inactive);
991         const __m256i d0l_xq = _mm256_mullo_epi32(d0l, xq_inactive);
992 
993         const __m256i vh = _mm256_add_epi32(flth_xq, d0h_xq);
994         const __m256i vl = _mm256_add_epi32(fltl_xq, d0l_xq);
995 
996         // Shift this down with appropriate rounding
997         const __m256i vrh =
998             _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift);
999         const __m256i vrl =
1000             _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift);
1001         // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
1002 
1003         // Saturate each i32 to an i16 then combine both halves
1004         // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes
1005         const __m256i vr =
1006             _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8);
1007         // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0] as u16
1008         // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
1009 
1010         // Subtract twin-subspace-sgr filtered from source image to get error
1011         const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0);
1012 
1013         // Calculate squared error and add adjacent values
1014         const __m256i err0 = _mm256_madd_epi16(e0, e0);
1015 
1016         sum32 = _mm256_add_epi32(sum32, err0);
1017       }
1018 
1019       const __m256i sum32l =
1020           _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
1021       sum64 = _mm256_add_epi64(sum64, sum32l);
1022       const __m256i sum32h =
1023           _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
1024       sum64 = _mm256_add_epi64(sum64, sum32h);
1025 
1026       // Process remaining pixels in this row (modulo 16)
1027       for (k = j; k < width; ++k) {
1028         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
1029         int32_t v = xq_on * (flt[k] - u);
1030         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
1031         err += ((int64_t)e * e);
1032       }
1033       dat += dat_stride;
1034       src += src_stride;
1035       flt += flt_stride;
1036     }
1037   } else {  // Neither filter is enabled
1038     for (i = 0; i < height; ++i) {
1039       __m256i sum32 = _mm256_setzero_si256();
1040       for (j = 0; j <= width - 32; j += 32) {
1041         // Load 2x16 u16 from source image
1042         const __m256i s0l = yy_loadu_256(src + j);
1043         const __m256i s0h = yy_loadu_256(src + j + 16);
1044 
1045         // Load 2x16 u16 from corrupted image
1046         const __m256i d0l = yy_loadu_256(dat + j);
1047         const __m256i d0h = yy_loadu_256(dat + j + 16);
1048 
1049         // Subtract corrupted image from source image
1050         const __m256i diffl = _mm256_sub_epi16(d0l, s0l);
1051         const __m256i diffh = _mm256_sub_epi16(d0h, s0h);
1052 
1053         // Square error and add adjacent values
1054         const __m256i err0l = _mm256_madd_epi16(diffl, diffl);
1055         const __m256i err0h = _mm256_madd_epi16(diffh, diffh);
1056 
1057         sum32 = _mm256_add_epi32(sum32, err0l);
1058         sum32 = _mm256_add_epi32(sum32, err0h);
1059       }
1060 
1061       const __m256i sum32l =
1062           _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
1063       sum64 = _mm256_add_epi64(sum64, sum32l);
1064       const __m256i sum32h =
1065           _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
1066       sum64 = _mm256_add_epi64(sum64, sum32h);
1067 
1068       // Process remaining pixels (modulu 16)
1069       for (k = j; k < width; ++k) {
1070         const int32_t e = (int32_t)(dat[k]) - src[k];
1071         err += ((int64_t)e * e);
1072       }
1073       dat += dat_stride;
1074       src += src_stride;
1075     }
1076   }
1077 
1078   // Sum 4 values from sum64l and sum64h into err
1079   int64_t sum[4];
1080   yy_storeu_256(sum, sum64);
1081   err += sum[0] + sum[1] + sum[2] + sum[3];
1082   return err;
1083 }
1084 #endif  // CONFIG_AV1_HIGHBITDEPTH
1085