• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header defines various interfaces for pass management in LLVM. There
11 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
12 /// which supports a method to 'run' it over a unit of IR can be used as
13 /// a pass. A pass manager is generally a tool to collect a sequence of passes
14 /// which run over a particular IR construct, and run each of them in sequence
15 /// over each such construct in the containing IR construct. As there is no
16 /// containing IR construct for a Module, a manager for passes over modules
17 /// forms the base case which runs its managed passes in sequence over the
18 /// single module provided.
19 ///
20 /// The core IR library provides managers for running passes over
21 /// modules and functions.
22 ///
23 /// * FunctionPassManager can run over a Module, runs each pass over
24 ///   a Function.
25 /// * ModulePassManager must be directly run, runs each pass over the Module.
26 ///
27 /// Note that the implementations of the pass managers use concept-based
28 /// polymorphism as outlined in the "Value Semantics and Concept-based
29 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
30 /// Class of Evil") by Sean Parent:
31 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
32 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
33 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_IR_PASSMANAGER_H
38 #define LLVM_IR_PASSMANAGER_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/StringRef.h"
44 #include "llvm/ADT/TinyPtrVector.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PassInstrumentation.h"
48 #include "llvm/IR/PassManagerInternal.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/TimeProfiler.h"
52 #include "llvm/Support/TypeName.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <cstring>
56 #include <iterator>
57 #include <list>
58 #include <memory>
59 #include <tuple>
60 #include <type_traits>
61 #include <utility>
62 #include <vector>
63 
64 namespace llvm {
65 
66 /// A special type used by analysis passes to provide an address that
67 /// identifies that particular analysis pass type.
68 ///
69 /// Analysis passes should have a static data member of this type and derive
70 /// from the \c AnalysisInfoMixin to get a static ID method used to identify
71 /// the analysis in the pass management infrastructure.
72 struct alignas(8) AnalysisKey {};
73 
74 /// A special type used to provide an address that identifies a set of related
75 /// analyses.  These sets are primarily used below to mark sets of analyses as
76 /// preserved.
77 ///
78 /// For example, a transformation can indicate that it preserves the CFG of a
79 /// function by preserving the appropriate AnalysisSetKey.  An analysis that
80 /// depends only on the CFG can then check if that AnalysisSetKey is preserved;
81 /// if it is, the analysis knows that it itself is preserved.
82 struct alignas(8) AnalysisSetKey {};
83 
84 /// This templated class represents "all analyses that operate over \<a
85 /// particular IR unit\>" (e.g. a Function or a Module) in instances of
86 /// PreservedAnalysis.
87 ///
88 /// This lets a transformation say e.g. "I preserved all function analyses".
89 ///
90 /// Note that you must provide an explicit instantiation declaration and
91 /// definition for this template in order to get the correct behavior on
92 /// Windows. Otherwise, the address of SetKey will not be stable.
93 template <typename IRUnitT> class AllAnalysesOn {
94 public:
ID()95   static AnalysisSetKey *ID() { return &SetKey; }
96 
97 private:
98   static AnalysisSetKey SetKey;
99 };
100 
101 template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
102 
103 extern template class AllAnalysesOn<Module>;
104 extern template class AllAnalysesOn<Function>;
105 
106 /// Represents analyses that only rely on functions' control flow.
107 ///
108 /// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
109 /// to query whether it has been preserved.
110 ///
111 /// The CFG of a function is defined as the set of basic blocks and the edges
112 /// between them. Changing the set of basic blocks in a function is enough to
113 /// mutate the CFG. Mutating the condition of a branch or argument of an
114 /// invoked function does not mutate the CFG, but changing the successor labels
115 /// of those instructions does.
116 class CFGAnalyses {
117 public:
ID()118   static AnalysisSetKey *ID() { return &SetKey; }
119 
120 private:
121   static AnalysisSetKey SetKey;
122 };
123 
124 /// A set of analyses that are preserved following a run of a transformation
125 /// pass.
126 ///
127 /// Transformation passes build and return these objects to communicate which
128 /// analyses are still valid after the transformation. For most passes this is
129 /// fairly simple: if they don't change anything all analyses are preserved,
130 /// otherwise only a short list of analyses that have been explicitly updated
131 /// are preserved.
132 ///
133 /// This class also lets transformation passes mark abstract *sets* of analyses
134 /// as preserved. A transformation that (say) does not alter the CFG can
135 /// indicate such by marking a particular AnalysisSetKey as preserved, and
136 /// then analyses can query whether that AnalysisSetKey is preserved.
137 ///
138 /// Finally, this class can represent an "abandoned" analysis, which is
139 /// not preserved even if it would be covered by some abstract set of analyses.
140 ///
141 /// Given a `PreservedAnalyses` object, an analysis will typically want to
142 /// figure out whether it is preserved. In the example below, MyAnalysisType is
143 /// preserved if it's not abandoned, and (a) it's explicitly marked as
144 /// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
145 /// AnalysisSetA and AnalysisSetB are preserved.
146 ///
147 /// ```
148 ///   auto PAC = PA.getChecker<MyAnalysisType>();
149 ///   if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
150 ///       (PAC.preservedSet<AnalysisSetA>() &&
151 ///        PAC.preservedSet<AnalysisSetB>())) {
152 ///     // The analysis has been successfully preserved ...
153 ///   }
154 /// ```
155 class PreservedAnalyses {
156 public:
157   /// Convenience factory function for the empty preserved set.
none()158   static PreservedAnalyses none() { return PreservedAnalyses(); }
159 
160   /// Construct a special preserved set that preserves all passes.
all()161   static PreservedAnalyses all() {
162     PreservedAnalyses PA;
163     PA.PreservedIDs.insert(&AllAnalysesKey);
164     return PA;
165   }
166 
167   /// Construct a preserved analyses object with a single preserved set.
168   template <typename AnalysisSetT>
allInSet()169   static PreservedAnalyses allInSet() {
170     PreservedAnalyses PA;
171     PA.preserveSet<AnalysisSetT>();
172     return PA;
173   }
174 
175   /// Mark an analysis as preserved.
preserve()176   template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
177 
178   /// Given an analysis's ID, mark the analysis as preserved, adding it
179   /// to the set.
preserve(AnalysisKey * ID)180   void preserve(AnalysisKey *ID) {
181     // Clear this ID from the explicit not-preserved set if present.
182     NotPreservedAnalysisIDs.erase(ID);
183 
184     // If we're not already preserving all analyses (other than those in
185     // NotPreservedAnalysisIDs).
186     if (!areAllPreserved())
187       PreservedIDs.insert(ID);
188   }
189 
190   /// Mark an analysis set as preserved.
preserveSet()191   template <typename AnalysisSetT> void preserveSet() {
192     preserveSet(AnalysisSetT::ID());
193   }
194 
195   /// Mark an analysis set as preserved using its ID.
preserveSet(AnalysisSetKey * ID)196   void preserveSet(AnalysisSetKey *ID) {
197     // If we're not already in the saturated 'all' state, add this set.
198     if (!areAllPreserved())
199       PreservedIDs.insert(ID);
200   }
201 
202   /// Mark an analysis as abandoned.
203   ///
204   /// An abandoned analysis is not preserved, even if it is nominally covered
205   /// by some other set or was previously explicitly marked as preserved.
206   ///
207   /// Note that you can only abandon a specific analysis, not a *set* of
208   /// analyses.
abandon()209   template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
210 
211   /// Mark an analysis as abandoned using its ID.
212   ///
213   /// An abandoned analysis is not preserved, even if it is nominally covered
214   /// by some other set or was previously explicitly marked as preserved.
215   ///
216   /// Note that you can only abandon a specific analysis, not a *set* of
217   /// analyses.
abandon(AnalysisKey * ID)218   void abandon(AnalysisKey *ID) {
219     PreservedIDs.erase(ID);
220     NotPreservedAnalysisIDs.insert(ID);
221   }
222 
223   /// Intersect this set with another in place.
224   ///
225   /// This is a mutating operation on this preserved set, removing all
226   /// preserved passes which are not also preserved in the argument.
intersect(const PreservedAnalyses & Arg)227   void intersect(const PreservedAnalyses &Arg) {
228     if (Arg.areAllPreserved())
229       return;
230     if (areAllPreserved()) {
231       *this = Arg;
232       return;
233     }
234     // The intersection requires the *union* of the explicitly not-preserved
235     // IDs and the *intersection* of the preserved IDs.
236     for (auto ID : Arg.NotPreservedAnalysisIDs) {
237       PreservedIDs.erase(ID);
238       NotPreservedAnalysisIDs.insert(ID);
239     }
240     for (auto ID : PreservedIDs)
241       if (!Arg.PreservedIDs.count(ID))
242         PreservedIDs.erase(ID);
243   }
244 
245   /// Intersect this set with a temporary other set in place.
246   ///
247   /// This is a mutating operation on this preserved set, removing all
248   /// preserved passes which are not also preserved in the argument.
intersect(PreservedAnalyses && Arg)249   void intersect(PreservedAnalyses &&Arg) {
250     if (Arg.areAllPreserved())
251       return;
252     if (areAllPreserved()) {
253       *this = std::move(Arg);
254       return;
255     }
256     // The intersection requires the *union* of the explicitly not-preserved
257     // IDs and the *intersection* of the preserved IDs.
258     for (auto ID : Arg.NotPreservedAnalysisIDs) {
259       PreservedIDs.erase(ID);
260       NotPreservedAnalysisIDs.insert(ID);
261     }
262     for (auto ID : PreservedIDs)
263       if (!Arg.PreservedIDs.count(ID))
264         PreservedIDs.erase(ID);
265   }
266 
267   /// A checker object that makes it easy to query for whether an analysis or
268   /// some set covering it is preserved.
269   class PreservedAnalysisChecker {
270     friend class PreservedAnalyses;
271 
272     const PreservedAnalyses &PA;
273     AnalysisKey *const ID;
274     const bool IsAbandoned;
275 
276     /// A PreservedAnalysisChecker is tied to a particular Analysis because
277     /// `preserved()` and `preservedSet()` both return false if the Analysis
278     /// was abandoned.
PreservedAnalysisChecker(const PreservedAnalyses & PA,AnalysisKey * ID)279     PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
280         : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
281 
282   public:
283     /// Returns true if the checker's analysis was not abandoned and either
284     ///  - the analysis is explicitly preserved or
285     ///  - all analyses are preserved.
preserved()286     bool preserved() {
287       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
288                               PA.PreservedIDs.count(ID));
289     }
290 
291     /// Return true if the checker's analysis was not abandoned, i.e. it was not
292     /// explicitly invalidated. Even if the analysis is not explicitly
293     /// preserved, if the analysis is known stateless, then it is preserved.
preservedWhenStateless()294     bool preservedWhenStateless() {
295       return !IsAbandoned;
296     }
297 
298     /// Returns true if the checker's analysis was not abandoned and either
299     ///  - \p AnalysisSetT is explicitly preserved or
300     ///  - all analyses are preserved.
preservedSet()301     template <typename AnalysisSetT> bool preservedSet() {
302       AnalysisSetKey *SetID = AnalysisSetT::ID();
303       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
304                               PA.PreservedIDs.count(SetID));
305     }
306   };
307 
308   /// Build a checker for this `PreservedAnalyses` and the specified analysis
309   /// type.
310   ///
311   /// You can use the returned object to query whether an analysis was
312   /// preserved. See the example in the comment on `PreservedAnalysis`.
getChecker()313   template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
314     return PreservedAnalysisChecker(*this, AnalysisT::ID());
315   }
316 
317   /// Build a checker for this `PreservedAnalyses` and the specified analysis
318   /// ID.
319   ///
320   /// You can use the returned object to query whether an analysis was
321   /// preserved. See the example in the comment on `PreservedAnalysis`.
getChecker(AnalysisKey * ID)322   PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
323     return PreservedAnalysisChecker(*this, ID);
324   }
325 
326   /// Test whether all analyses are preserved (and none are abandoned).
327   ///
328   /// This is used primarily to optimize for the common case of a transformation
329   /// which makes no changes to the IR.
areAllPreserved()330   bool areAllPreserved() const {
331     return NotPreservedAnalysisIDs.empty() &&
332            PreservedIDs.count(&AllAnalysesKey);
333   }
334 
335   /// Directly test whether a set of analyses is preserved.
336   ///
337   /// This is only true when no analyses have been explicitly abandoned.
allAnalysesInSetPreserved()338   template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
339     return allAnalysesInSetPreserved(AnalysisSetT::ID());
340   }
341 
342   /// Directly test whether a set of analyses is preserved.
343   ///
344   /// This is only true when no analyses have been explicitly abandoned.
allAnalysesInSetPreserved(AnalysisSetKey * SetID)345   bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
346     return NotPreservedAnalysisIDs.empty() &&
347            (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
348   }
349 
350 private:
351   /// A special key used to indicate all analyses.
352   static AnalysisSetKey AllAnalysesKey;
353 
354   /// The IDs of analyses and analysis sets that are preserved.
355   SmallPtrSet<void *, 2> PreservedIDs;
356 
357   /// The IDs of explicitly not-preserved analyses.
358   ///
359   /// If an analysis in this set is covered by a set in `PreservedIDs`, we
360   /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
361   /// "wins" over analysis sets in `PreservedIDs`.
362   ///
363   /// Also, a given ID should never occur both here and in `PreservedIDs`.
364   SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
365 };
366 
367 // Forward declare the analysis manager template.
368 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
369 
370 /// A CRTP mix-in to automatically provide informational APIs needed for
371 /// passes.
372 ///
373 /// This provides some boilerplate for types that are passes.
374 template <typename DerivedT> struct PassInfoMixin {
375   /// Gets the name of the pass we are mixed into.
namePassInfoMixin376   static StringRef name() {
377     static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
378                   "Must pass the derived type as the template argument!");
379     StringRef Name = getTypeName<DerivedT>();
380     if (Name.startswith("llvm::"))
381       Name = Name.drop_front(strlen("llvm::"));
382     return Name;
383   }
384 };
385 
386 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
387 ///
388 /// This provides some boilerplate for types that are analysis passes. It
389 /// automatically mixes in \c PassInfoMixin.
390 template <typename DerivedT>
391 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
392   /// Returns an opaque, unique ID for this analysis type.
393   ///
394   /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
395   /// suitable for use in sets, maps, and other data structures that use the low
396   /// bits of pointers.
397   ///
398   /// Note that this requires the derived type provide a static \c AnalysisKey
399   /// member called \c Key.
400   ///
401   /// FIXME: The only reason the mixin type itself can't declare the Key value
402   /// is that some compilers cannot correctly unique a templated static variable
403   /// so it has the same addresses in each instantiation. The only currently
404   /// known platform with this limitation is Windows DLL builds, specifically
405   /// building each part of LLVM as a DLL. If we ever remove that build
406   /// configuration, this mixin can provide the static key as well.
IDAnalysisInfoMixin407   static AnalysisKey *ID() {
408     static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
409                   "Must pass the derived type as the template argument!");
410     return &DerivedT::Key;
411   }
412 };
413 
414 namespace detail {
415 
416 /// Actual unpacker of extra arguments in getAnalysisResult,
417 /// passes only those tuple arguments that are mentioned in index_sequence.
418 template <typename PassT, typename IRUnitT, typename AnalysisManagerT,
419           typename... ArgTs, size_t... Ns>
420 typename PassT::Result
getAnalysisResultUnpackTuple(AnalysisManagerT & AM,IRUnitT & IR,std::tuple<ArgTs...> Args,std::index_sequence<Ns...>)421 getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR,
422                              std::tuple<ArgTs...> Args,
423                              std::index_sequence<Ns...>) {
424   (void)Args;
425   return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...);
426 }
427 
428 /// Helper for *partial* unpacking of extra arguments in getAnalysisResult.
429 ///
430 /// Arguments passed in tuple come from PassManager, so they might have extra
431 /// arguments after those AnalysisManager's ExtraArgTs ones that we need to
432 /// pass to getResult.
433 template <typename PassT, typename IRUnitT, typename... AnalysisArgTs,
434           typename... MainArgTs>
435 typename PassT::Result
getAnalysisResult(AnalysisManager<IRUnitT,AnalysisArgTs...> & AM,IRUnitT & IR,std::tuple<MainArgTs...> Args)436 getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR,
437                   std::tuple<MainArgTs...> Args) {
438   return (getAnalysisResultUnpackTuple<
439           PassT, IRUnitT>)(AM, IR, Args,
440                            std::index_sequence_for<AnalysisArgTs...>{});
441 }
442 
443 } // namespace detail
444 
445 // Forward declare the pass instrumentation analysis explicitly queried in
446 // generic PassManager code.
447 // FIXME: figure out a way to move PassInstrumentationAnalysis into its own
448 // header.
449 class PassInstrumentationAnalysis;
450 
451 /// Manages a sequence of passes over a particular unit of IR.
452 ///
453 /// A pass manager contains a sequence of passes to run over a particular unit
454 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
455 /// IR, and when run over some given IR will run each of its contained passes in
456 /// sequence. Pass managers are the primary and most basic building block of a
457 /// pass pipeline.
458 ///
459 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
460 /// argument. The pass manager will propagate that analysis manager to each
461 /// pass it runs, and will call the analysis manager's invalidation routine with
462 /// the PreservedAnalyses of each pass it runs.
463 template <typename IRUnitT,
464           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
465           typename... ExtraArgTs>
466 class PassManager : public PassInfoMixin<
467                         PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
468 public:
469   /// Construct a pass manager.
470   ///
471   /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
DebugLogging(DebugLogging)472   explicit PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
473 
474   // FIXME: These are equivalent to the default move constructor/move
475   // assignment. However, using = default triggers linker errors due to the
476   // explicit instantiations below. Find away to use the default and remove the
477   // duplicated code here.
PassManager(PassManager && Arg)478   PassManager(PassManager &&Arg)
479       : Passes(std::move(Arg.Passes)),
480         DebugLogging(std::move(Arg.DebugLogging)) {}
481 
482   PassManager &operator=(PassManager &&RHS) {
483     Passes = std::move(RHS.Passes);
484     DebugLogging = std::move(RHS.DebugLogging);
485     return *this;
486   }
487 
488   /// Run all of the passes in this manager over the given unit of IR.
489   /// ExtraArgs are passed to each pass.
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)490   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
491                         ExtraArgTs... ExtraArgs) {
492     PreservedAnalyses PA = PreservedAnalyses::all();
493 
494     // Request PassInstrumentation from analysis manager, will use it to run
495     // instrumenting callbacks for the passes later.
496     // Here we use std::tuple wrapper over getResult which helps to extract
497     // AnalysisManager's arguments out of the whole ExtraArgs set.
498     PassInstrumentation PI =
499         detail::getAnalysisResult<PassInstrumentationAnalysis>(
500             AM, IR, std::tuple<ExtraArgTs...>(ExtraArgs...));
501 
502     if (DebugLogging)
503       dbgs() << "Starting " << getTypeName<IRUnitT>() << " pass manager run.\n";
504 
505     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
506       auto *P = Passes[Idx].get();
507 
508       // Check the PassInstrumentation's BeforePass callbacks before running the
509       // pass, skip its execution completely if asked to (callback returns
510       // false).
511       if (!PI.runBeforePass<IRUnitT>(*P, IR))
512         continue;
513 
514       PreservedAnalyses PassPA;
515       {
516         TimeTraceScope TimeScope(P->name(), IR.getName());
517         PassPA = P->run(IR, AM, ExtraArgs...);
518       }
519 
520       // Call onto PassInstrumentation's AfterPass callbacks immediately after
521       // running the pass.
522       PI.runAfterPass<IRUnitT>(*P, IR, PassPA);
523 
524       // Update the analysis manager as each pass runs and potentially
525       // invalidates analyses.
526       AM.invalidate(IR, PassPA);
527 
528       // Finally, intersect the preserved analyses to compute the aggregate
529       // preserved set for this pass manager.
530       PA.intersect(std::move(PassPA));
531 
532       // FIXME: Historically, the pass managers all called the LLVM context's
533       // yield function here. We don't have a generic way to acquire the
534       // context and it isn't yet clear what the right pattern is for yielding
535       // in the new pass manager so it is currently omitted.
536       //IR.getContext().yield();
537     }
538 
539     // Invalidation was handled after each pass in the above loop for the
540     // current unit of IR. Therefore, the remaining analysis results in the
541     // AnalysisManager are preserved. We mark this with a set so that we don't
542     // need to inspect each one individually.
543     PA.preserveSet<AllAnalysesOn<IRUnitT>>();
544 
545     if (DebugLogging)
546       dbgs() << "Finished " << getTypeName<IRUnitT>() << " pass manager run.\n";
547 
548     return PA;
549   }
550 
551   template <typename PassT>
552   std::enable_if_t<!std::is_same<PassT, PassManager>::value>
addPass(PassT Pass)553   addPass(PassT Pass) {
554     using PassModelT =
555         detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT,
556                           ExtraArgTs...>;
557 
558     Passes.emplace_back(new PassModelT(std::move(Pass)));
559   }
560 
561   /// When adding a pass manager pass that has the same type as this pass
562   /// manager, simply move the passes over. This is because we don't have use
563   /// cases rely on executing nested pass managers. Doing this could reduce
564   /// implementation complexity and avoid potential invalidation issues that may
565   /// happen with nested pass managers of the same type.
566   template <typename PassT>
567   std::enable_if_t<std::is_same<PassT, PassManager>::value>
addPass(PassT && Pass)568   addPass(PassT &&Pass) {
569     for (auto &P : Pass.Passes)
570       Passes.emplace_back(std::move(P));
571   }
572 
573   /// Returns if the pass manager contains any passes.
isEmpty()574   bool isEmpty() const { return Passes.empty(); }
575 
isRequired()576   static bool isRequired() { return true; }
577 
578 protected:
579   using PassConceptT =
580       detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
581 
582   std::vector<std::unique_ptr<PassConceptT>> Passes;
583 
584   /// Flag indicating whether we should do debug logging.
585   bool DebugLogging;
586 };
587 
588 extern template class PassManager<Module>;
589 
590 /// Convenience typedef for a pass manager over modules.
591 using ModulePassManager = PassManager<Module>;
592 
593 extern template class PassManager<Function>;
594 
595 /// Convenience typedef for a pass manager over functions.
596 using FunctionPassManager = PassManager<Function>;
597 
598 /// Pseudo-analysis pass that exposes the \c PassInstrumentation to pass
599 /// managers. Goes before AnalysisManager definition to provide its
600 /// internals (e.g PassInstrumentationAnalysis::ID) for use there if needed.
601 /// FIXME: figure out a way to move PassInstrumentationAnalysis into its own
602 /// header.
603 class PassInstrumentationAnalysis
604     : public AnalysisInfoMixin<PassInstrumentationAnalysis> {
605   friend AnalysisInfoMixin<PassInstrumentationAnalysis>;
606   static AnalysisKey Key;
607 
608   PassInstrumentationCallbacks *Callbacks;
609 
610 public:
611   /// PassInstrumentationCallbacks object is shared, owned by something else,
612   /// not this analysis.
613   PassInstrumentationAnalysis(PassInstrumentationCallbacks *Callbacks = nullptr)
Callbacks(Callbacks)614       : Callbacks(Callbacks) {}
615 
616   using Result = PassInstrumentation;
617 
618   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
run(IRUnitT &,AnalysisManagerT &,ExtraArgTs &&...)619   Result run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
620     return PassInstrumentation(Callbacks);
621   }
622 };
623 
624 /// A container for analyses that lazily runs them and caches their
625 /// results.
626 ///
627 /// This class can manage analyses for any IR unit where the address of the IR
628 /// unit sufficies as its identity.
629 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
630 public:
631   class Invalidator;
632 
633 private:
634   // Now that we've defined our invalidator, we can define the concept types.
635   using ResultConceptT =
636       detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>;
637   using PassConceptT =
638       detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
639                                   ExtraArgTs...>;
640 
641   /// List of analysis pass IDs and associated concept pointers.
642   ///
643   /// Requires iterators to be valid across appending new entries and arbitrary
644   /// erases. Provides the analysis ID to enable finding iterators to a given
645   /// entry in maps below, and provides the storage for the actual result
646   /// concept.
647   using AnalysisResultListT =
648       std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
649 
650   /// Map type from IRUnitT pointer to our custom list type.
651   using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
652 
653   /// Map type from a pair of analysis ID and IRUnitT pointer to an
654   /// iterator into a particular result list (which is where the actual analysis
655   /// result is stored).
656   using AnalysisResultMapT =
657       DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
658                typename AnalysisResultListT::iterator>;
659 
660 public:
661   /// API to communicate dependencies between analyses during invalidation.
662   ///
663   /// When an analysis result embeds handles to other analysis results, it
664   /// needs to be invalidated both when its own information isn't preserved and
665   /// when any of its embedded analysis results end up invalidated. We pass an
666   /// \c Invalidator object as an argument to \c invalidate() in order to let
667   /// the analysis results themselves define the dependency graph on the fly.
668   /// This lets us avoid building an explicit representation of the
669   /// dependencies between analysis results.
670   class Invalidator {
671   public:
672     /// Trigger the invalidation of some other analysis pass if not already
673     /// handled and return whether it was in fact invalidated.
674     ///
675     /// This is expected to be called from within a given analysis result's \c
676     /// invalidate method to trigger a depth-first walk of all inter-analysis
677     /// dependencies. The same \p IR unit and \p PA passed to that result's \c
678     /// invalidate method should in turn be provided to this routine.
679     ///
680     /// The first time this is called for a given analysis pass, it will call
681     /// the corresponding result's \c invalidate method.  Subsequent calls will
682     /// use a cache of the results of that initial call.  It is an error to form
683     /// cyclic dependencies between analysis results.
684     ///
685     /// This returns true if the given analysis's result is invalid. Any
686     /// dependecies on it will become invalid as a result.
687     template <typename PassT>
invalidate(IRUnitT & IR,const PreservedAnalyses & PA)688     bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
689       using ResultModelT =
690           detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
691                                       PreservedAnalyses, Invalidator>;
692 
693       return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
694     }
695 
696     /// A type-erased variant of the above invalidate method with the same core
697     /// API other than passing an analysis ID rather than an analysis type
698     /// parameter.
699     ///
700     /// This is sadly less efficient than the above routine, which leverages
701     /// the type parameter to avoid the type erasure overhead.
invalidate(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)702     bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
703       return invalidateImpl<>(ID, IR, PA);
704     }
705 
706   private:
707     friend class AnalysisManager;
708 
709     template <typename ResultT = ResultConceptT>
invalidateImpl(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)710     bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
711                         const PreservedAnalyses &PA) {
712       // If we've already visited this pass, return true if it was invalidated
713       // and false otherwise.
714       auto IMapI = IsResultInvalidated.find(ID);
715       if (IMapI != IsResultInvalidated.end())
716         return IMapI->second;
717 
718       // Otherwise look up the result object.
719       auto RI = Results.find({ID, &IR});
720       assert(RI != Results.end() &&
721              "Trying to invalidate a dependent result that isn't in the "
722              "manager's cache is always an error, likely due to a stale result "
723              "handle!");
724 
725       auto &Result = static_cast<ResultT &>(*RI->second->second);
726 
727       // Insert into the map whether the result should be invalidated and return
728       // that. Note that we cannot reuse IMapI and must do a fresh insert here,
729       // as calling invalidate could (recursively) insert things into the map,
730       // making any iterator or reference invalid.
731       bool Inserted;
732       std::tie(IMapI, Inserted) =
733           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
734       (void)Inserted;
735       assert(Inserted && "Should not have already inserted this ID, likely "
736                          "indicates a dependency cycle!");
737       return IMapI->second;
738     }
739 
Invalidator(SmallDenseMap<AnalysisKey *,bool,8> & IsResultInvalidated,const AnalysisResultMapT & Results)740     Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
741                 const AnalysisResultMapT &Results)
742         : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
743 
744     SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
745     const AnalysisResultMapT &Results;
746   };
747 
748   /// Construct an empty analysis manager.
749   ///
750   /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
751   AnalysisManager(bool DebugLogging = false);
752   AnalysisManager(AnalysisManager &&);
753   AnalysisManager &operator=(AnalysisManager &&);
754 
755   /// Returns true if the analysis manager has an empty results cache.
empty()756   bool empty() const {
757     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
758            "The storage and index of analysis results disagree on how many "
759            "there are!");
760     return AnalysisResults.empty();
761   }
762 
763   /// Clear any cached analysis results for a single unit of IR.
764   ///
765   /// This doesn't invalidate, but instead simply deletes, the relevant results.
766   /// It is useful when the IR is being removed and we want to clear out all the
767   /// memory pinned for it.
768   void clear(IRUnitT &IR, llvm::StringRef Name);
769 
770   /// Clear all analysis results cached by this AnalysisManager.
771   ///
772   /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
773   /// deletes them.  This lets you clean up the AnalysisManager when the set of
774   /// IR units itself has potentially changed, and thus we can't even look up a
775   /// a result and invalidate/clear it directly.
clear()776   void clear() {
777     AnalysisResults.clear();
778     AnalysisResultLists.clear();
779   }
780 
781   /// Get the result of an analysis pass for a given IR unit.
782   ///
783   /// Runs the analysis if a cached result is not available.
784   template <typename PassT>
getResult(IRUnitT & IR,ExtraArgTs...ExtraArgs)785   typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
786     assert(AnalysisPasses.count(PassT::ID()) &&
787            "This analysis pass was not registered prior to being queried");
788     ResultConceptT &ResultConcept =
789         getResultImpl(PassT::ID(), IR, ExtraArgs...);
790 
791     using ResultModelT =
792         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
793                                     PreservedAnalyses, Invalidator>;
794 
795     return static_cast<ResultModelT &>(ResultConcept).Result;
796   }
797 
798   /// Get the cached result of an analysis pass for a given IR unit.
799   ///
800   /// This method never runs the analysis.
801   ///
802   /// \returns null if there is no cached result.
803   template <typename PassT>
getCachedResult(IRUnitT & IR)804   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
805     assert(AnalysisPasses.count(PassT::ID()) &&
806            "This analysis pass was not registered prior to being queried");
807 
808     ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
809     if (!ResultConcept)
810       return nullptr;
811 
812     using ResultModelT =
813         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
814                                     PreservedAnalyses, Invalidator>;
815 
816     return &static_cast<ResultModelT *>(ResultConcept)->Result;
817   }
818 
819   /// Verify that the given Result cannot be invalidated, assert otherwise.
820   template <typename PassT>
verifyNotInvalidated(IRUnitT & IR,typename PassT::Result * Result)821   void verifyNotInvalidated(IRUnitT &IR, typename PassT::Result *Result) const {
822     PreservedAnalyses PA = PreservedAnalyses::none();
823     SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
824     Invalidator Inv(IsResultInvalidated, AnalysisResults);
825     assert(!Result->invalidate(IR, PA, Inv) &&
826            "Cached result cannot be invalidated");
827   }
828 
829   /// Register an analysis pass with the manager.
830   ///
831   /// The parameter is a callable whose result is an analysis pass. This allows
832   /// passing in a lambda to construct the analysis.
833   ///
834   /// The analysis type to register is the type returned by calling the \c
835   /// PassBuilder argument. If that type has already been registered, then the
836   /// argument will not be called and this function will return false.
837   /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
838   /// and this function returns true.
839   ///
840   /// (Note: Although the return value of this function indicates whether or not
841   /// an analysis was previously registered, there intentionally isn't a way to
842   /// query this directly.  Instead, you should just register all the analyses
843   /// you might want and let this class run them lazily.  This idiom lets us
844   /// minimize the number of times we have to look up analyses in our
845   /// hashtable.)
846   template <typename PassBuilderT>
registerPass(PassBuilderT && PassBuilder)847   bool registerPass(PassBuilderT &&PassBuilder) {
848     using PassT = decltype(PassBuilder());
849     using PassModelT =
850         detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
851                                   Invalidator, ExtraArgTs...>;
852 
853     auto &PassPtr = AnalysisPasses[PassT::ID()];
854     if (PassPtr)
855       // Already registered this pass type!
856       return false;
857 
858     // Construct a new model around the instance returned by the builder.
859     PassPtr.reset(new PassModelT(PassBuilder()));
860     return true;
861   }
862 
863   /// Invalidate a specific analysis pass for an IR unit.
864   ///
865   /// Note that the analysis result can disregard invalidation, if it determines
866   /// it is in fact still valid.
invalidate(IRUnitT & IR)867   template <typename PassT> void invalidate(IRUnitT &IR) {
868     assert(AnalysisPasses.count(PassT::ID()) &&
869            "This analysis pass was not registered prior to being invalidated");
870     invalidateImpl(PassT::ID(), IR);
871   }
872 
873   /// Invalidate cached analyses for an IR unit.
874   ///
875   /// Walk through all of the analyses pertaining to this unit of IR and
876   /// invalidate them, unless they are preserved by the PreservedAnalyses set.
877   void invalidate(IRUnitT &IR, const PreservedAnalyses &PA);
878 
879 private:
880   /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)881   PassConceptT &lookUpPass(AnalysisKey *ID) {
882     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
883     assert(PI != AnalysisPasses.end() &&
884            "Analysis passes must be registered prior to being queried!");
885     return *PI->second;
886   }
887 
888   /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)889   const PassConceptT &lookUpPass(AnalysisKey *ID) const {
890     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
891     assert(PI != AnalysisPasses.end() &&
892            "Analysis passes must be registered prior to being queried!");
893     return *PI->second;
894   }
895 
896   /// Get an analysis result, running the pass if necessary.
897   ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
898                                 ExtraArgTs... ExtraArgs);
899 
900   /// Get a cached analysis result or return null.
getCachedResultImpl(AnalysisKey * ID,IRUnitT & IR)901   ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
902     typename AnalysisResultMapT::const_iterator RI =
903         AnalysisResults.find({ID, &IR});
904     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
905   }
906 
907   /// Invalidate a pass result for a IR unit.
invalidateImpl(AnalysisKey * ID,IRUnitT & IR)908   void invalidateImpl(AnalysisKey *ID, IRUnitT &IR) {
909     typename AnalysisResultMapT::iterator RI =
910         AnalysisResults.find({ID, &IR});
911     if (RI == AnalysisResults.end())
912       return;
913 
914     if (DebugLogging)
915       dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
916              << " on " << IR.getName() << "\n";
917     AnalysisResultLists[&IR].erase(RI->second);
918     AnalysisResults.erase(RI);
919   }
920 
921   /// Map type from analysis pass ID to pass concept pointer.
922   using AnalysisPassMapT =
923       DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
924 
925   /// Collection of analysis passes, indexed by ID.
926   AnalysisPassMapT AnalysisPasses;
927 
928   /// Map from IR unit to a list of analysis results.
929   ///
930   /// Provides linear time removal of all analysis results for a IR unit and
931   /// the ultimate storage for a particular cached analysis result.
932   AnalysisResultListMapT AnalysisResultLists;
933 
934   /// Map from an analysis ID and IR unit to a particular cached
935   /// analysis result.
936   AnalysisResultMapT AnalysisResults;
937 
938   /// Indicates whether we log to \c llvm::dbgs().
939   bool DebugLogging;
940 };
941 
942 extern template class AnalysisManager<Module>;
943 
944 /// Convenience typedef for the Module analysis manager.
945 using ModuleAnalysisManager = AnalysisManager<Module>;
946 
947 extern template class AnalysisManager<Function>;
948 
949 /// Convenience typedef for the Function analysis manager.
950 using FunctionAnalysisManager = AnalysisManager<Function>;
951 
952 /// An analysis over an "outer" IR unit that provides access to an
953 /// analysis manager over an "inner" IR unit.  The inner unit must be contained
954 /// in the outer unit.
955 ///
956 /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
957 /// an analysis over Modules (the "outer" unit) that provides access to a
958 /// Function analysis manager.  The FunctionAnalysisManager is the "inner"
959 /// manager being proxied, and Functions are the "inner" unit.  The inner/outer
960 /// relationship is valid because each Function is contained in one Module.
961 ///
962 /// If you're (transitively) within a pass manager for an IR unit U that
963 /// contains IR unit V, you should never use an analysis manager over V, except
964 /// via one of these proxies.
965 ///
966 /// Note that the proxy's result is a move-only RAII object.  The validity of
967 /// the analyses in the inner analysis manager is tied to its lifetime.
968 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
969 class InnerAnalysisManagerProxy
970     : public AnalysisInfoMixin<
971           InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
972 public:
973   class Result {
974   public:
Result(AnalysisManagerT & InnerAM)975     explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
976 
Result(Result && Arg)977     Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
978       // We have to null out the analysis manager in the moved-from state
979       // because we are taking ownership of the responsibilty to clear the
980       // analysis state.
981       Arg.InnerAM = nullptr;
982     }
983 
~Result()984     ~Result() {
985       // InnerAM is cleared in a moved from state where there is nothing to do.
986       if (!InnerAM)
987         return;
988 
989       // Clear out the analysis manager if we're being destroyed -- it means we
990       // didn't even see an invalidate call when we got invalidated.
991       InnerAM->clear();
992     }
993 
994     Result &operator=(Result &&RHS) {
995       InnerAM = RHS.InnerAM;
996       // We have to null out the analysis manager in the moved-from state
997       // because we are taking ownership of the responsibilty to clear the
998       // analysis state.
999       RHS.InnerAM = nullptr;
1000       return *this;
1001     }
1002 
1003     /// Accessor for the analysis manager.
getManager()1004     AnalysisManagerT &getManager() { return *InnerAM; }
1005 
1006     /// Handler for invalidation of the outer IR unit, \c IRUnitT.
1007     ///
1008     /// If the proxy analysis itself is not preserved, we assume that the set of
1009     /// inner IR objects contained in IRUnit may have changed.  In this case,
1010     /// we have to call \c clear() on the inner analysis manager, as it may now
1011     /// have stale pointers to its inner IR objects.
1012     ///
1013     /// Regardless of whether the proxy analysis is marked as preserved, all of
1014     /// the analyses in the inner analysis manager are potentially invalidated
1015     /// based on the set of preserved analyses.
1016     bool invalidate(
1017         IRUnitT &IR, const PreservedAnalyses &PA,
1018         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
1019 
1020   private:
1021     AnalysisManagerT *InnerAM;
1022   };
1023 
InnerAnalysisManagerProxy(AnalysisManagerT & InnerAM)1024   explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
1025       : InnerAM(&InnerAM) {}
1026 
1027   /// Run the analysis pass and create our proxy result object.
1028   ///
1029   /// This doesn't do any interesting work; it is primarily used to insert our
1030   /// proxy result object into the outer analysis cache so that we can proxy
1031   /// invalidation to the inner analysis manager.
run(IRUnitT & IR,AnalysisManager<IRUnitT,ExtraArgTs...> & AM,ExtraArgTs...)1032   Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
1033              ExtraArgTs...) {
1034     return Result(*InnerAM);
1035   }
1036 
1037 private:
1038   friend AnalysisInfoMixin<
1039       InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
1040 
1041   static AnalysisKey Key;
1042 
1043   AnalysisManagerT *InnerAM;
1044 };
1045 
1046 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1047 AnalysisKey
1048     InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1049 
1050 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
1051 using FunctionAnalysisManagerModuleProxy =
1052     InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
1053 
1054 /// Specialization of the invalidate method for the \c
1055 /// FunctionAnalysisManagerModuleProxy's result.
1056 template <>
1057 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
1058     Module &M, const PreservedAnalyses &PA,
1059     ModuleAnalysisManager::Invalidator &Inv);
1060 
1061 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
1062 // template.
1063 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
1064                                                 Module>;
1065 
1066 /// An analysis over an "inner" IR unit that provides access to an
1067 /// analysis manager over a "outer" IR unit.  The inner unit must be contained
1068 /// in the outer unit.
1069 ///
1070 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
1071 /// analysis over Functions (the "inner" unit) which provides access to a Module
1072 /// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
1073 /// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
1074 /// is valid because each Function is contained in one Module.
1075 ///
1076 /// This proxy only exposes the const interface of the outer analysis manager,
1077 /// to indicate that you cannot cause an outer analysis to run from within an
1078 /// inner pass.  Instead, you must rely on the \c getCachedResult API.  This is
1079 /// due to keeping potential future concurrency in mind. To give an example,
1080 /// running a module analysis before any function passes may give a different
1081 /// result than running it in a function pass. Both may be valid, but it would
1082 /// produce non-deterministic results. GlobalsAA is a good analysis example,
1083 /// because the cached information has the mod/ref info for all memory for each
1084 /// function at the time the analysis was computed. The information is still
1085 /// valid after a function transformation, but it may be *different* if
1086 /// recomputed after that transform. GlobalsAA is never invalidated.
1087 
1088 ///
1089 /// This proxy doesn't manage invalidation in any way -- that is handled by the
1090 /// recursive return path of each layer of the pass manager.  A consequence of
1091 /// this is the outer analyses may be stale.  We invalidate the outer analyses
1092 /// only when we're done running passes over the inner IR units.
1093 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1094 class OuterAnalysisManagerProxy
1095     : public AnalysisInfoMixin<
1096           OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
1097 public:
1098   /// Result proxy object for \c OuterAnalysisManagerProxy.
1099   class Result {
1100   public:
Result(const AnalysisManagerT & OuterAM)1101     explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {}
1102 
1103     /// Get a cached analysis. If the analysis can be invalidated, this will
1104     /// assert.
1105     template <typename PassT, typename IRUnitTParam>
getCachedResult(IRUnitTParam & IR)1106     typename PassT::Result *getCachedResult(IRUnitTParam &IR) const {
1107       typename PassT::Result *Res =
1108           OuterAM->template getCachedResult<PassT>(IR);
1109       if (Res)
1110         OuterAM->template verifyNotInvalidated<PassT>(IR, Res);
1111       return Res;
1112     }
1113 
1114     /// Method provided for unit testing, not intended for general use.
1115     template <typename PassT, typename IRUnitTParam>
cachedResultExists(IRUnitTParam & IR)1116     bool cachedResultExists(IRUnitTParam &IR) const {
1117       typename PassT::Result *Res =
1118           OuterAM->template getCachedResult<PassT>(IR);
1119       return Res != nullptr;
1120     }
1121 
1122     /// When invalidation occurs, remove any registered invalidation events.
invalidate(IRUnitT & IRUnit,const PreservedAnalyses & PA,typename AnalysisManager<IRUnitT,ExtraArgTs...>::Invalidator & Inv)1123     bool invalidate(
1124         IRUnitT &IRUnit, const PreservedAnalyses &PA,
1125         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
1126       // Loop over the set of registered outer invalidation mappings and if any
1127       // of them map to an analysis that is now invalid, clear it out.
1128       SmallVector<AnalysisKey *, 4> DeadKeys;
1129       for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
1130         AnalysisKey *OuterID = KeyValuePair.first;
1131         auto &InnerIDs = KeyValuePair.second;
1132         InnerIDs.erase(llvm::remove_if(InnerIDs, [&](AnalysisKey *InnerID) {
1133           return Inv.invalidate(InnerID, IRUnit, PA); }),
1134                        InnerIDs.end());
1135         if (InnerIDs.empty())
1136           DeadKeys.push_back(OuterID);
1137       }
1138 
1139       for (auto OuterID : DeadKeys)
1140         OuterAnalysisInvalidationMap.erase(OuterID);
1141 
1142       // The proxy itself remains valid regardless of anything else.
1143       return false;
1144     }
1145 
1146     /// Register a deferred invalidation event for when the outer analysis
1147     /// manager processes its invalidations.
1148     template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
registerOuterAnalysisInvalidation()1149     void registerOuterAnalysisInvalidation() {
1150       AnalysisKey *OuterID = OuterAnalysisT::ID();
1151       AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
1152 
1153       auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
1154       // Note, this is a linear scan. If we end up with large numbers of
1155       // analyses that all trigger invalidation on the same outer analysis,
1156       // this entire system should be changed to some other deterministic
1157       // data structure such as a `SetVector` of a pair of pointers.
1158       if (!llvm::is_contained(InvalidatedIDList, InvalidatedID))
1159         InvalidatedIDList.push_back(InvalidatedID);
1160     }
1161 
1162     /// Access the map from outer analyses to deferred invalidation requiring
1163     /// analyses.
1164     const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
getOuterInvalidations()1165     getOuterInvalidations() const {
1166       return OuterAnalysisInvalidationMap;
1167     }
1168 
1169   private:
1170     const AnalysisManagerT *OuterAM;
1171 
1172     /// A map from an outer analysis ID to the set of this IR-unit's analyses
1173     /// which need to be invalidated.
1174     SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
1175         OuterAnalysisInvalidationMap;
1176   };
1177 
OuterAnalysisManagerProxy(const AnalysisManagerT & OuterAM)1178   OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM)
1179       : OuterAM(&OuterAM) {}
1180 
1181   /// Run the analysis pass and create our proxy result object.
1182   /// Nothing to see here, it just forwards the \c OuterAM reference into the
1183   /// result.
run(IRUnitT &,AnalysisManager<IRUnitT,ExtraArgTs...> &,ExtraArgTs...)1184   Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
1185              ExtraArgTs...) {
1186     return Result(*OuterAM);
1187   }
1188 
1189 private:
1190   friend AnalysisInfoMixin<
1191       OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
1192 
1193   static AnalysisKey Key;
1194 
1195   const AnalysisManagerT *OuterAM;
1196 };
1197 
1198 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1199 AnalysisKey
1200     OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1201 
1202 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
1203                                                 Function>;
1204 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
1205 using ModuleAnalysisManagerFunctionProxy =
1206     OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
1207 
1208 /// Trivial adaptor that maps from a module to its functions.
1209 ///
1210 /// Designed to allow composition of a FunctionPass(Manager) and
1211 /// a ModulePassManager, by running the FunctionPass(Manager) over every
1212 /// function in the module.
1213 ///
1214 /// Function passes run within this adaptor can rely on having exclusive access
1215 /// to the function they are run over. They should not read or modify any other
1216 /// functions! Other threads or systems may be manipulating other functions in
1217 /// the module, and so their state should never be relied on.
1218 /// FIXME: Make the above true for all of LLVM's actual passes, some still
1219 /// violate this principle.
1220 ///
1221 /// Function passes can also read the module containing the function, but they
1222 /// should not modify that module outside of the use lists of various globals.
1223 /// For example, a function pass is not permitted to add functions to the
1224 /// module.
1225 /// FIXME: Make the above true for all of LLVM's actual passes, some still
1226 /// violate this principle.
1227 ///
1228 /// Note that although function passes can access module analyses, module
1229 /// analyses are not invalidated while the function passes are running, so they
1230 /// may be stale.  Function analyses will not be stale.
1231 class ModuleToFunctionPassAdaptor
1232     : public PassInfoMixin<ModuleToFunctionPassAdaptor> {
1233 public:
1234   using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
1235 
ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass)1236   explicit ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass)
1237       : Pass(std::move(Pass)) {}
1238 
1239   /// Runs the function pass across every function in the module.
1240   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1241 
isRequired()1242   static bool isRequired() { return true; }
1243 
1244 private:
1245   std::unique_ptr<PassConceptT> Pass;
1246 };
1247 
1248 /// A function to deduce a function pass type and wrap it in the
1249 /// templated adaptor.
1250 template <typename FunctionPassT>
1251 ModuleToFunctionPassAdaptor
createModuleToFunctionPassAdaptor(FunctionPassT Pass)1252 createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
1253   using PassModelT =
1254       detail::PassModel<Function, FunctionPassT, PreservedAnalyses,
1255                         FunctionAnalysisManager>;
1256 
1257   return ModuleToFunctionPassAdaptor(
1258       std::make_unique<PassModelT>(std::move(Pass)));
1259 }
1260 
1261 /// A utility pass template to force an analysis result to be available.
1262 ///
1263 /// If there are extra arguments at the pass's run level there may also be
1264 /// extra arguments to the analysis manager's \c getResult routine. We can't
1265 /// guess how to effectively map the arguments from one to the other, and so
1266 /// this specialization just ignores them.
1267 ///
1268 /// Specific patterns of run-method extra arguments and analysis manager extra
1269 /// arguments will have to be defined as appropriate specializations.
1270 template <typename AnalysisT, typename IRUnitT,
1271           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
1272           typename... ExtraArgTs>
1273 struct RequireAnalysisPass
1274     : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
1275                                         ExtraArgTs...>> {
1276   /// Run this pass over some unit of IR.
1277   ///
1278   /// This pass can be run over any unit of IR and use any analysis manager
1279   /// provided they satisfy the basic API requirements. When this pass is
1280   /// created, these methods can be instantiated to satisfy whatever the
1281   /// context requires.
runRequireAnalysisPass1282   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
1283                         ExtraArgTs &&... Args) {
1284     (void)AM.template getResult<AnalysisT>(Arg,
1285                                            std::forward<ExtraArgTs>(Args)...);
1286 
1287     return PreservedAnalyses::all();
1288   }
isRequiredRequireAnalysisPass1289   static bool isRequired() { return true; }
1290 };
1291 
1292 /// A no-op pass template which simply forces a specific analysis result
1293 /// to be invalidated.
1294 template <typename AnalysisT>
1295 struct InvalidateAnalysisPass
1296     : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
1297   /// Run this pass over some unit of IR.
1298   ///
1299   /// This pass can be run over any unit of IR and use any analysis manager,
1300   /// provided they satisfy the basic API requirements. When this pass is
1301   /// created, these methods can be instantiated to satisfy whatever the
1302   /// context requires.
1303   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAnalysisPass1304   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
1305     auto PA = PreservedAnalyses::all();
1306     PA.abandon<AnalysisT>();
1307     return PA;
1308   }
1309 };
1310 
1311 /// A utility pass that does nothing, but preserves no analyses.
1312 ///
1313 /// Because this preserves no analyses, any analysis passes queried after this
1314 /// pass runs will recompute fresh results.
1315 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
1316   /// Run this pass over some unit of IR.
1317   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAllAnalysesPass1318   PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
1319     return PreservedAnalyses::none();
1320   }
1321 };
1322 
1323 /// A utility pass template that simply runs another pass multiple times.
1324 ///
1325 /// This can be useful when debugging or testing passes. It also serves as an
1326 /// example of how to extend the pass manager in ways beyond composition.
1327 template <typename PassT>
1328 class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
1329 public:
RepeatedPass(int Count,PassT P)1330   RepeatedPass(int Count, PassT P) : Count(Count), P(std::move(P)) {}
1331 
1332   template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
run(IRUnitT & IR,AnalysisManagerT & AM,Ts &&...Args)1333   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, Ts &&... Args) {
1334 
1335     // Request PassInstrumentation from analysis manager, will use it to run
1336     // instrumenting callbacks for the passes later.
1337     // Here we use std::tuple wrapper over getResult which helps to extract
1338     // AnalysisManager's arguments out of the whole Args set.
1339     PassInstrumentation PI =
1340         detail::getAnalysisResult<PassInstrumentationAnalysis>(
1341             AM, IR, std::tuple<Ts...>(Args...));
1342 
1343     auto PA = PreservedAnalyses::all();
1344     for (int i = 0; i < Count; ++i) {
1345       // Check the PassInstrumentation's BeforePass callbacks before running the
1346       // pass, skip its execution completely if asked to (callback returns
1347       // false).
1348       if (!PI.runBeforePass<IRUnitT>(P, IR))
1349         continue;
1350       PreservedAnalyses IterPA = P.run(IR, AM, std::forward<Ts>(Args)...);
1351       PA.intersect(IterPA);
1352       PI.runAfterPass(P, IR, IterPA);
1353     }
1354     return PA;
1355   }
1356 
1357 private:
1358   int Count;
1359   PassT P;
1360 };
1361 
1362 template <typename PassT>
createRepeatedPass(int Count,PassT P)1363 RepeatedPass<PassT> createRepeatedPass(int Count, PassT P) {
1364   return RepeatedPass<PassT>(Count, std::move(P));
1365 }
1366 
1367 } // end namespace llvm
1368 
1369 #endif // LLVM_IR_PASSMANAGER_H
1370