1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombiner.h"
28
29 using namespace llvm;
30 using namespace PatternMatch;
31
32 #define DEBUG_TYPE "instcombine"
33
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36
37
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 /// type.
addWithOverflow(APInt & Result,const APInt & In1,const APInt & In2,bool IsSigned=false)40 static bool addWithOverflow(APInt &Result, const APInt &In1,
41 const APInt &In2, bool IsSigned = false) {
42 bool Overflow;
43 if (IsSigned)
44 Result = In1.sadd_ov(In2, Overflow);
45 else
46 Result = In1.uadd_ov(In2, Overflow);
47
48 return Overflow;
49 }
50
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 /// type.
subWithOverflow(APInt & Result,const APInt & In1,const APInt & In2,bool IsSigned=false)53 static bool subWithOverflow(APInt &Result, const APInt &In1,
54 const APInt &In2, bool IsSigned = false) {
55 bool Overflow;
56 if (IsSigned)
57 Result = In1.ssub_ov(In2, Overflow);
58 else
59 Result = In1.usub_ov(In2, Overflow);
60
61 return Overflow;
62 }
63
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
hasBranchUse(ICmpInst & I)66 static bool hasBranchUse(ICmpInst &I) {
67 for (auto *U : I.users())
68 if (isa<BranchInst>(U))
69 return true;
70 return false;
71 }
72
73 /// Returns true if the exploded icmp can be expressed as a signed comparison
74 /// to zero and updates the predicate accordingly.
75 /// The signedness of the comparison is preserved.
76 /// TODO: Refactor with decomposeBitTestICmp()?
isSignTest(ICmpInst::Predicate & Pred,const APInt & C)77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
78 if (!ICmpInst::isSigned(Pred))
79 return false;
80
81 if (C.isNullValue())
82 return ICmpInst::isRelational(Pred);
83
84 if (C.isOneValue()) {
85 if (Pred == ICmpInst::ICMP_SLT) {
86 Pred = ICmpInst::ICMP_SLE;
87 return true;
88 }
89 } else if (C.isAllOnesValue()) {
90 if (Pred == ICmpInst::ICMP_SGT) {
91 Pred = ICmpInst::ICMP_SGE;
92 return true;
93 }
94 }
95
96 return false;
97 }
98
99 /// Given a signed integer type and a set of known zero and one bits, compute
100 /// the maximum and minimum values that could have the specified known zero and
101 /// known one bits, returning them in Min/Max.
102 /// TODO: Move to method on KnownBits struct?
computeSignedMinMaxValuesFromKnownBits(const KnownBits & Known,APInt & Min,APInt & Max)103 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
104 APInt &Min, APInt &Max) {
105 assert(Known.getBitWidth() == Min.getBitWidth() &&
106 Known.getBitWidth() == Max.getBitWidth() &&
107 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
108 APInt UnknownBits = ~(Known.Zero|Known.One);
109
110 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
111 // bit if it is unknown.
112 Min = Known.One;
113 Max = Known.One|UnknownBits;
114
115 if (UnknownBits.isNegative()) { // Sign bit is unknown
116 Min.setSignBit();
117 Max.clearSignBit();
118 }
119 }
120
121 /// Given an unsigned integer type and a set of known zero and one bits, compute
122 /// the maximum and minimum values that could have the specified known zero and
123 /// known one bits, returning them in Min/Max.
124 /// TODO: Move to method on KnownBits struct?
computeUnsignedMinMaxValuesFromKnownBits(const KnownBits & Known,APInt & Min,APInt & Max)125 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
126 APInt &Min, APInt &Max) {
127 assert(Known.getBitWidth() == Min.getBitWidth() &&
128 Known.getBitWidth() == Max.getBitWidth() &&
129 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
130 APInt UnknownBits = ~(Known.Zero|Known.One);
131
132 // The minimum value is when the unknown bits are all zeros.
133 Min = Known.One;
134 // The maximum value is when the unknown bits are all ones.
135 Max = Known.One|UnknownBits;
136 }
137
138 /// This is called when we see this pattern:
139 /// cmp pred (load (gep GV, ...)), cmpcst
140 /// where GV is a global variable with a constant initializer. Try to simplify
141 /// this into some simple computation that does not need the load. For example
142 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
143 ///
144 /// If AndCst is non-null, then the loaded value is masked with that constant
145 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
146 Instruction *
foldCmpLoadFromIndexedGlobal(GetElementPtrInst * GEP,GlobalVariable * GV,CmpInst & ICI,ConstantInt * AndCst)147 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
148 GlobalVariable *GV, CmpInst &ICI,
149 ConstantInt *AndCst) {
150 Constant *Init = GV->getInitializer();
151 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
152 return nullptr;
153
154 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
155 // Don't blow up on huge arrays.
156 if (ArrayElementCount > MaxArraySizeForCombine)
157 return nullptr;
158
159 // There are many forms of this optimization we can handle, for now, just do
160 // the simple index into a single-dimensional array.
161 //
162 // Require: GEP GV, 0, i {{, constant indices}}
163 if (GEP->getNumOperands() < 3 ||
164 !isa<ConstantInt>(GEP->getOperand(1)) ||
165 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
166 isa<Constant>(GEP->getOperand(2)))
167 return nullptr;
168
169 // Check that indices after the variable are constants and in-range for the
170 // type they index. Collect the indices. This is typically for arrays of
171 // structs.
172 SmallVector<unsigned, 4> LaterIndices;
173
174 Type *EltTy = Init->getType()->getArrayElementType();
175 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
176 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
177 if (!Idx) return nullptr; // Variable index.
178
179 uint64_t IdxVal = Idx->getZExtValue();
180 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
181
182 if (StructType *STy = dyn_cast<StructType>(EltTy))
183 EltTy = STy->getElementType(IdxVal);
184 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
185 if (IdxVal >= ATy->getNumElements()) return nullptr;
186 EltTy = ATy->getElementType();
187 } else {
188 return nullptr; // Unknown type.
189 }
190
191 LaterIndices.push_back(IdxVal);
192 }
193
194 enum { Overdefined = -3, Undefined = -2 };
195
196 // Variables for our state machines.
197
198 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
199 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
200 // and 87 is the second (and last) index. FirstTrueElement is -2 when
201 // undefined, otherwise set to the first true element. SecondTrueElement is
202 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
203 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
204
205 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
206 // form "i != 47 & i != 87". Same state transitions as for true elements.
207 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
208
209 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
210 /// define a state machine that triggers for ranges of values that the index
211 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
212 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
213 /// index in the range (inclusive). We use -2 for undefined here because we
214 /// use relative comparisons and don't want 0-1 to match -1.
215 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
216
217 // MagicBitvector - This is a magic bitvector where we set a bit if the
218 // comparison is true for element 'i'. If there are 64 elements or less in
219 // the array, this will fully represent all the comparison results.
220 uint64_t MagicBitvector = 0;
221
222 // Scan the array and see if one of our patterns matches.
223 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
224 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
225 Constant *Elt = Init->getAggregateElement(i);
226 if (!Elt) return nullptr;
227
228 // If this is indexing an array of structures, get the structure element.
229 if (!LaterIndices.empty())
230 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
231
232 // If the element is masked, handle it.
233 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
234
235 // Find out if the comparison would be true or false for the i'th element.
236 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
237 CompareRHS, DL, &TLI);
238 // If the result is undef for this element, ignore it.
239 if (isa<UndefValue>(C)) {
240 // Extend range state machines to cover this element in case there is an
241 // undef in the middle of the range.
242 if (TrueRangeEnd == (int)i-1)
243 TrueRangeEnd = i;
244 if (FalseRangeEnd == (int)i-1)
245 FalseRangeEnd = i;
246 continue;
247 }
248
249 // If we can't compute the result for any of the elements, we have to give
250 // up evaluating the entire conditional.
251 if (!isa<ConstantInt>(C)) return nullptr;
252
253 // Otherwise, we know if the comparison is true or false for this element,
254 // update our state machines.
255 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
256
257 // State machine for single/double/range index comparison.
258 if (IsTrueForElt) {
259 // Update the TrueElement state machine.
260 if (FirstTrueElement == Undefined)
261 FirstTrueElement = TrueRangeEnd = i; // First true element.
262 else {
263 // Update double-compare state machine.
264 if (SecondTrueElement == Undefined)
265 SecondTrueElement = i;
266 else
267 SecondTrueElement = Overdefined;
268
269 // Update range state machine.
270 if (TrueRangeEnd == (int)i-1)
271 TrueRangeEnd = i;
272 else
273 TrueRangeEnd = Overdefined;
274 }
275 } else {
276 // Update the FalseElement state machine.
277 if (FirstFalseElement == Undefined)
278 FirstFalseElement = FalseRangeEnd = i; // First false element.
279 else {
280 // Update double-compare state machine.
281 if (SecondFalseElement == Undefined)
282 SecondFalseElement = i;
283 else
284 SecondFalseElement = Overdefined;
285
286 // Update range state machine.
287 if (FalseRangeEnd == (int)i-1)
288 FalseRangeEnd = i;
289 else
290 FalseRangeEnd = Overdefined;
291 }
292 }
293
294 // If this element is in range, update our magic bitvector.
295 if (i < 64 && IsTrueForElt)
296 MagicBitvector |= 1ULL << i;
297
298 // If all of our states become overdefined, bail out early. Since the
299 // predicate is expensive, only check it every 8 elements. This is only
300 // really useful for really huge arrays.
301 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
302 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
303 FalseRangeEnd == Overdefined)
304 return nullptr;
305 }
306
307 // Now that we've scanned the entire array, emit our new comparison(s). We
308 // order the state machines in complexity of the generated code.
309 Value *Idx = GEP->getOperand(2);
310
311 // If the index is larger than the pointer size of the target, truncate the
312 // index down like the GEP would do implicitly. We don't have to do this for
313 // an inbounds GEP because the index can't be out of range.
314 if (!GEP->isInBounds()) {
315 Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
316 unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
317 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
318 Idx = Builder.CreateTrunc(Idx, IntPtrTy);
319 }
320
321 // If the comparison is only true for one or two elements, emit direct
322 // comparisons.
323 if (SecondTrueElement != Overdefined) {
324 // None true -> false.
325 if (FirstTrueElement == Undefined)
326 return replaceInstUsesWith(ICI, Builder.getFalse());
327
328 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
329
330 // True for one element -> 'i == 47'.
331 if (SecondTrueElement == Undefined)
332 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
333
334 // True for two elements -> 'i == 47 | i == 72'.
335 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
336 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
337 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
338 return BinaryOperator::CreateOr(C1, C2);
339 }
340
341 // If the comparison is only false for one or two elements, emit direct
342 // comparisons.
343 if (SecondFalseElement != Overdefined) {
344 // None false -> true.
345 if (FirstFalseElement == Undefined)
346 return replaceInstUsesWith(ICI, Builder.getTrue());
347
348 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
349
350 // False for one element -> 'i != 47'.
351 if (SecondFalseElement == Undefined)
352 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
353
354 // False for two elements -> 'i != 47 & i != 72'.
355 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
356 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
357 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
358 return BinaryOperator::CreateAnd(C1, C2);
359 }
360
361 // If the comparison can be replaced with a range comparison for the elements
362 // where it is true, emit the range check.
363 if (TrueRangeEnd != Overdefined) {
364 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
365
366 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
367 if (FirstTrueElement) {
368 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
369 Idx = Builder.CreateAdd(Idx, Offs);
370 }
371
372 Value *End = ConstantInt::get(Idx->getType(),
373 TrueRangeEnd-FirstTrueElement+1);
374 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
375 }
376
377 // False range check.
378 if (FalseRangeEnd != Overdefined) {
379 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
380 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
381 if (FirstFalseElement) {
382 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
383 Idx = Builder.CreateAdd(Idx, Offs);
384 }
385
386 Value *End = ConstantInt::get(Idx->getType(),
387 FalseRangeEnd-FirstFalseElement);
388 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
389 }
390
391 // If a magic bitvector captures the entire comparison state
392 // of this load, replace it with computation that does:
393 // ((magic_cst >> i) & 1) != 0
394 {
395 Type *Ty = nullptr;
396
397 // Look for an appropriate type:
398 // - The type of Idx if the magic fits
399 // - The smallest fitting legal type
400 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
401 Ty = Idx->getType();
402 else
403 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
404
405 if (Ty) {
406 Value *V = Builder.CreateIntCast(Idx, Ty, false);
407 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
408 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
409 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
410 }
411 }
412
413 return nullptr;
414 }
415
416 /// Return a value that can be used to compare the *offset* implied by a GEP to
417 /// zero. For example, if we have &A[i], we want to return 'i' for
418 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
419 /// are involved. The above expression would also be legal to codegen as
420 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
421 /// This latter form is less amenable to optimization though, and we are allowed
422 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
423 ///
424 /// If we can't emit an optimized form for this expression, this returns null.
425 ///
evaluateGEPOffsetExpression(User * GEP,InstCombinerImpl & IC,const DataLayout & DL)426 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
427 const DataLayout &DL) {
428 gep_type_iterator GTI = gep_type_begin(GEP);
429
430 // Check to see if this gep only has a single variable index. If so, and if
431 // any constant indices are a multiple of its scale, then we can compute this
432 // in terms of the scale of the variable index. For example, if the GEP
433 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
434 // because the expression will cross zero at the same point.
435 unsigned i, e = GEP->getNumOperands();
436 int64_t Offset = 0;
437 for (i = 1; i != e; ++i, ++GTI) {
438 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
439 // Compute the aggregate offset of constant indices.
440 if (CI->isZero()) continue;
441
442 // Handle a struct index, which adds its field offset to the pointer.
443 if (StructType *STy = GTI.getStructTypeOrNull()) {
444 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
445 } else {
446 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
447 Offset += Size*CI->getSExtValue();
448 }
449 } else {
450 // Found our variable index.
451 break;
452 }
453 }
454
455 // If there are no variable indices, we must have a constant offset, just
456 // evaluate it the general way.
457 if (i == e) return nullptr;
458
459 Value *VariableIdx = GEP->getOperand(i);
460 // Determine the scale factor of the variable element. For example, this is
461 // 4 if the variable index is into an array of i32.
462 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
463
464 // Verify that there are no other variable indices. If so, emit the hard way.
465 for (++i, ++GTI; i != e; ++i, ++GTI) {
466 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
467 if (!CI) return nullptr;
468
469 // Compute the aggregate offset of constant indices.
470 if (CI->isZero()) continue;
471
472 // Handle a struct index, which adds its field offset to the pointer.
473 if (StructType *STy = GTI.getStructTypeOrNull()) {
474 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
475 } else {
476 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
477 Offset += Size*CI->getSExtValue();
478 }
479 }
480
481 // Okay, we know we have a single variable index, which must be a
482 // pointer/array/vector index. If there is no offset, life is simple, return
483 // the index.
484 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
485 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
486 if (Offset == 0) {
487 // Cast to intptrty in case a truncation occurs. If an extension is needed,
488 // we don't need to bother extending: the extension won't affect where the
489 // computation crosses zero.
490 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
491 IntPtrWidth) {
492 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
493 }
494 return VariableIdx;
495 }
496
497 // Otherwise, there is an index. The computation we will do will be modulo
498 // the pointer size.
499 Offset = SignExtend64(Offset, IntPtrWidth);
500 VariableScale = SignExtend64(VariableScale, IntPtrWidth);
501
502 // To do this transformation, any constant index must be a multiple of the
503 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
504 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
505 // multiple of the variable scale.
506 int64_t NewOffs = Offset / (int64_t)VariableScale;
507 if (Offset != NewOffs*(int64_t)VariableScale)
508 return nullptr;
509
510 // Okay, we can do this evaluation. Start by converting the index to intptr.
511 if (VariableIdx->getType() != IntPtrTy)
512 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
513 true /*Signed*/);
514 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
515 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
516 }
517
518 /// Returns true if we can rewrite Start as a GEP with pointer Base
519 /// and some integer offset. The nodes that need to be re-written
520 /// for this transformation will be added to Explored.
canRewriteGEPAsOffset(Value * Start,Value * Base,const DataLayout & DL,SetVector<Value * > & Explored)521 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
522 const DataLayout &DL,
523 SetVector<Value *> &Explored) {
524 SmallVector<Value *, 16> WorkList(1, Start);
525 Explored.insert(Base);
526
527 // The following traversal gives us an order which can be used
528 // when doing the final transformation. Since in the final
529 // transformation we create the PHI replacement instructions first,
530 // we don't have to get them in any particular order.
531 //
532 // However, for other instructions we will have to traverse the
533 // operands of an instruction first, which means that we have to
534 // do a post-order traversal.
535 while (!WorkList.empty()) {
536 SetVector<PHINode *> PHIs;
537
538 while (!WorkList.empty()) {
539 if (Explored.size() >= 100)
540 return false;
541
542 Value *V = WorkList.back();
543
544 if (Explored.count(V) != 0) {
545 WorkList.pop_back();
546 continue;
547 }
548
549 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
550 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
551 // We've found some value that we can't explore which is different from
552 // the base. Therefore we can't do this transformation.
553 return false;
554
555 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
556 auto *CI = cast<CastInst>(V);
557 if (!CI->isNoopCast(DL))
558 return false;
559
560 if (Explored.count(CI->getOperand(0)) == 0)
561 WorkList.push_back(CI->getOperand(0));
562 }
563
564 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
565 // We're limiting the GEP to having one index. This will preserve
566 // the original pointer type. We could handle more cases in the
567 // future.
568 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
569 GEP->getType() != Start->getType())
570 return false;
571
572 if (Explored.count(GEP->getOperand(0)) == 0)
573 WorkList.push_back(GEP->getOperand(0));
574 }
575
576 if (WorkList.back() == V) {
577 WorkList.pop_back();
578 // We've finished visiting this node, mark it as such.
579 Explored.insert(V);
580 }
581
582 if (auto *PN = dyn_cast<PHINode>(V)) {
583 // We cannot transform PHIs on unsplittable basic blocks.
584 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
585 return false;
586 Explored.insert(PN);
587 PHIs.insert(PN);
588 }
589 }
590
591 // Explore the PHI nodes further.
592 for (auto *PN : PHIs)
593 for (Value *Op : PN->incoming_values())
594 if (Explored.count(Op) == 0)
595 WorkList.push_back(Op);
596 }
597
598 // Make sure that we can do this. Since we can't insert GEPs in a basic
599 // block before a PHI node, we can't easily do this transformation if
600 // we have PHI node users of transformed instructions.
601 for (Value *Val : Explored) {
602 for (Value *Use : Val->uses()) {
603
604 auto *PHI = dyn_cast<PHINode>(Use);
605 auto *Inst = dyn_cast<Instruction>(Val);
606
607 if (Inst == Base || Inst == PHI || !Inst || !PHI ||
608 Explored.count(PHI) == 0)
609 continue;
610
611 if (PHI->getParent() == Inst->getParent())
612 return false;
613 }
614 }
615 return true;
616 }
617
618 // Sets the appropriate insert point on Builder where we can add
619 // a replacement Instruction for V (if that is possible).
setInsertionPoint(IRBuilder<> & Builder,Value * V,bool Before=true)620 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
621 bool Before = true) {
622 if (auto *PHI = dyn_cast<PHINode>(V)) {
623 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
624 return;
625 }
626 if (auto *I = dyn_cast<Instruction>(V)) {
627 if (!Before)
628 I = &*std::next(I->getIterator());
629 Builder.SetInsertPoint(I);
630 return;
631 }
632 if (auto *A = dyn_cast<Argument>(V)) {
633 // Set the insertion point in the entry block.
634 BasicBlock &Entry = A->getParent()->getEntryBlock();
635 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
636 return;
637 }
638 // Otherwise, this is a constant and we don't need to set a new
639 // insertion point.
640 assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
641 }
642
643 /// Returns a re-written value of Start as an indexed GEP using Base as a
644 /// pointer.
rewriteGEPAsOffset(Value * Start,Value * Base,const DataLayout & DL,SetVector<Value * > & Explored)645 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
646 const DataLayout &DL,
647 SetVector<Value *> &Explored) {
648 // Perform all the substitutions. This is a bit tricky because we can
649 // have cycles in our use-def chains.
650 // 1. Create the PHI nodes without any incoming values.
651 // 2. Create all the other values.
652 // 3. Add the edges for the PHI nodes.
653 // 4. Emit GEPs to get the original pointers.
654 // 5. Remove the original instructions.
655 Type *IndexType = IntegerType::get(
656 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
657
658 DenseMap<Value *, Value *> NewInsts;
659 NewInsts[Base] = ConstantInt::getNullValue(IndexType);
660
661 // Create the new PHI nodes, without adding any incoming values.
662 for (Value *Val : Explored) {
663 if (Val == Base)
664 continue;
665 // Create empty phi nodes. This avoids cyclic dependencies when creating
666 // the remaining instructions.
667 if (auto *PHI = dyn_cast<PHINode>(Val))
668 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
669 PHI->getName() + ".idx", PHI);
670 }
671 IRBuilder<> Builder(Base->getContext());
672
673 // Create all the other instructions.
674 for (Value *Val : Explored) {
675
676 if (NewInsts.find(Val) != NewInsts.end())
677 continue;
678
679 if (auto *CI = dyn_cast<CastInst>(Val)) {
680 // Don't get rid of the intermediate variable here; the store can grow
681 // the map which will invalidate the reference to the input value.
682 Value *V = NewInsts[CI->getOperand(0)];
683 NewInsts[CI] = V;
684 continue;
685 }
686 if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
687 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
688 : GEP->getOperand(1);
689 setInsertionPoint(Builder, GEP);
690 // Indices might need to be sign extended. GEPs will magically do
691 // this, but we need to do it ourselves here.
692 if (Index->getType()->getScalarSizeInBits() !=
693 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
694 Index = Builder.CreateSExtOrTrunc(
695 Index, NewInsts[GEP->getOperand(0)]->getType(),
696 GEP->getOperand(0)->getName() + ".sext");
697 }
698
699 auto *Op = NewInsts[GEP->getOperand(0)];
700 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
701 NewInsts[GEP] = Index;
702 else
703 NewInsts[GEP] = Builder.CreateNSWAdd(
704 Op, Index, GEP->getOperand(0)->getName() + ".add");
705 continue;
706 }
707 if (isa<PHINode>(Val))
708 continue;
709
710 llvm_unreachable("Unexpected instruction type");
711 }
712
713 // Add the incoming values to the PHI nodes.
714 for (Value *Val : Explored) {
715 if (Val == Base)
716 continue;
717 // All the instructions have been created, we can now add edges to the
718 // phi nodes.
719 if (auto *PHI = dyn_cast<PHINode>(Val)) {
720 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
721 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
722 Value *NewIncoming = PHI->getIncomingValue(I);
723
724 if (NewInsts.find(NewIncoming) != NewInsts.end())
725 NewIncoming = NewInsts[NewIncoming];
726
727 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
728 }
729 }
730 }
731
732 for (Value *Val : Explored) {
733 if (Val == Base)
734 continue;
735
736 // Depending on the type, for external users we have to emit
737 // a GEP or a GEP + ptrtoint.
738 setInsertionPoint(Builder, Val, false);
739
740 // If required, create an inttoptr instruction for Base.
741 Value *NewBase = Base;
742 if (!Base->getType()->isPointerTy())
743 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
744 Start->getName() + "to.ptr");
745
746 Value *GEP = Builder.CreateInBoundsGEP(
747 Start->getType()->getPointerElementType(), NewBase,
748 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
749
750 if (!Val->getType()->isPointerTy()) {
751 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
752 Val->getName() + ".conv");
753 GEP = Cast;
754 }
755 Val->replaceAllUsesWith(GEP);
756 }
757
758 return NewInsts[Start];
759 }
760
761 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
762 /// the input Value as a constant indexed GEP. Returns a pair containing
763 /// the GEPs Pointer and Index.
764 static std::pair<Value *, Value *>
getAsConstantIndexedAddress(Value * V,const DataLayout & DL)765 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
766 Type *IndexType = IntegerType::get(V->getContext(),
767 DL.getIndexTypeSizeInBits(V->getType()));
768
769 Constant *Index = ConstantInt::getNullValue(IndexType);
770 while (true) {
771 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
772 // We accept only inbouds GEPs here to exclude the possibility of
773 // overflow.
774 if (!GEP->isInBounds())
775 break;
776 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
777 GEP->getType() == V->getType()) {
778 V = GEP->getOperand(0);
779 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
780 Index = ConstantExpr::getAdd(
781 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
782 continue;
783 }
784 break;
785 }
786 if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
787 if (!CI->isNoopCast(DL))
788 break;
789 V = CI->getOperand(0);
790 continue;
791 }
792 if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
793 if (!CI->isNoopCast(DL))
794 break;
795 V = CI->getOperand(0);
796 continue;
797 }
798 break;
799 }
800 return {V, Index};
801 }
802
803 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
804 /// We can look through PHIs, GEPs and casts in order to determine a common base
805 /// between GEPLHS and RHS.
transformToIndexedCompare(GEPOperator * GEPLHS,Value * RHS,ICmpInst::Predicate Cond,const DataLayout & DL)806 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
807 ICmpInst::Predicate Cond,
808 const DataLayout &DL) {
809 // FIXME: Support vector of pointers.
810 if (GEPLHS->getType()->isVectorTy())
811 return nullptr;
812
813 if (!GEPLHS->hasAllConstantIndices())
814 return nullptr;
815
816 // Make sure the pointers have the same type.
817 if (GEPLHS->getType() != RHS->getType())
818 return nullptr;
819
820 Value *PtrBase, *Index;
821 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
822
823 // The set of nodes that will take part in this transformation.
824 SetVector<Value *> Nodes;
825
826 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
827 return nullptr;
828
829 // We know we can re-write this as
830 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
831 // Since we've only looked through inbouds GEPs we know that we
832 // can't have overflow on either side. We can therefore re-write
833 // this as:
834 // OFFSET1 cmp OFFSET2
835 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
836
837 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
838 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
839 // offset. Since Index is the offset of LHS to the base pointer, we will now
840 // compare the offsets instead of comparing the pointers.
841 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
842 }
843
844 /// Fold comparisons between a GEP instruction and something else. At this point
845 /// we know that the GEP is on the LHS of the comparison.
foldGEPICmp(GEPOperator * GEPLHS,Value * RHS,ICmpInst::Predicate Cond,Instruction & I)846 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
847 ICmpInst::Predicate Cond,
848 Instruction &I) {
849 // Don't transform signed compares of GEPs into index compares. Even if the
850 // GEP is inbounds, the final add of the base pointer can have signed overflow
851 // and would change the result of the icmp.
852 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
853 // the maximum signed value for the pointer type.
854 if (ICmpInst::isSigned(Cond))
855 return nullptr;
856
857 // Look through bitcasts and addrspacecasts. We do not however want to remove
858 // 0 GEPs.
859 if (!isa<GetElementPtrInst>(RHS))
860 RHS = RHS->stripPointerCasts();
861
862 Value *PtrBase = GEPLHS->getOperand(0);
863 // FIXME: Support vector pointer GEPs.
864 if (PtrBase == RHS && GEPLHS->isInBounds() &&
865 !GEPLHS->getType()->isVectorTy()) {
866 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
867 // This transformation (ignoring the base and scales) is valid because we
868 // know pointers can't overflow since the gep is inbounds. See if we can
869 // output an optimized form.
870 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
871
872 // If not, synthesize the offset the hard way.
873 if (!Offset)
874 Offset = EmitGEPOffset(GEPLHS);
875 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
876 Constant::getNullValue(Offset->getType()));
877 }
878
879 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
880 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
881 !NullPointerIsDefined(I.getFunction(),
882 RHS->getType()->getPointerAddressSpace())) {
883 // For most address spaces, an allocation can't be placed at null, but null
884 // itself is treated as a 0 size allocation in the in bounds rules. Thus,
885 // the only valid inbounds address derived from null, is null itself.
886 // Thus, we have four cases to consider:
887 // 1) Base == nullptr, Offset == 0 -> inbounds, null
888 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
889 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
890 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
891 //
892 // (Note if we're indexing a type of size 0, that simply collapses into one
893 // of the buckets above.)
894 //
895 // In general, we're allowed to make values less poison (i.e. remove
896 // sources of full UB), so in this case, we just select between the two
897 // non-poison cases (1 and 4 above).
898 //
899 // For vectors, we apply the same reasoning on a per-lane basis.
900 auto *Base = GEPLHS->getPointerOperand();
901 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
902 int NumElts = cast<FixedVectorType>(GEPLHS->getType())->getNumElements();
903 Base = Builder.CreateVectorSplat(NumElts, Base);
904 }
905 return new ICmpInst(Cond, Base,
906 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
907 cast<Constant>(RHS), Base->getType()));
908 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
909 // If the base pointers are different, but the indices are the same, just
910 // compare the base pointer.
911 if (PtrBase != GEPRHS->getOperand(0)) {
912 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
913 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
914 GEPRHS->getOperand(0)->getType();
915 if (IndicesTheSame)
916 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
917 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
918 IndicesTheSame = false;
919 break;
920 }
921
922 // If all indices are the same, just compare the base pointers.
923 Type *BaseType = GEPLHS->getOperand(0)->getType();
924 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
925 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
926
927 // If we're comparing GEPs with two base pointers that only differ in type
928 // and both GEPs have only constant indices or just one use, then fold
929 // the compare with the adjusted indices.
930 // FIXME: Support vector of pointers.
931 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
932 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
933 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
934 PtrBase->stripPointerCasts() ==
935 GEPRHS->getOperand(0)->stripPointerCasts() &&
936 !GEPLHS->getType()->isVectorTy()) {
937 Value *LOffset = EmitGEPOffset(GEPLHS);
938 Value *ROffset = EmitGEPOffset(GEPRHS);
939
940 // If we looked through an addrspacecast between different sized address
941 // spaces, the LHS and RHS pointers are different sized
942 // integers. Truncate to the smaller one.
943 Type *LHSIndexTy = LOffset->getType();
944 Type *RHSIndexTy = ROffset->getType();
945 if (LHSIndexTy != RHSIndexTy) {
946 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
947 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
948 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
949 } else
950 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
951 }
952
953 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
954 LOffset, ROffset);
955 return replaceInstUsesWith(I, Cmp);
956 }
957
958 // Otherwise, the base pointers are different and the indices are
959 // different. Try convert this to an indexed compare by looking through
960 // PHIs/casts.
961 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
962 }
963
964 // If one of the GEPs has all zero indices, recurse.
965 // FIXME: Handle vector of pointers.
966 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
967 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
968 ICmpInst::getSwappedPredicate(Cond), I);
969
970 // If the other GEP has all zero indices, recurse.
971 // FIXME: Handle vector of pointers.
972 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
973 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
974
975 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
976 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
977 // If the GEPs only differ by one index, compare it.
978 unsigned NumDifferences = 0; // Keep track of # differences.
979 unsigned DiffOperand = 0; // The operand that differs.
980 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
981 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
982 Type *LHSType = GEPLHS->getOperand(i)->getType();
983 Type *RHSType = GEPRHS->getOperand(i)->getType();
984 // FIXME: Better support for vector of pointers.
985 if (LHSType->getPrimitiveSizeInBits() !=
986 RHSType->getPrimitiveSizeInBits() ||
987 (GEPLHS->getType()->isVectorTy() &&
988 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
989 // Irreconcilable differences.
990 NumDifferences = 2;
991 break;
992 }
993
994 if (NumDifferences++) break;
995 DiffOperand = i;
996 }
997
998 if (NumDifferences == 0) // SAME GEP?
999 return replaceInstUsesWith(I, // No comparison is needed here.
1000 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
1001
1002 else if (NumDifferences == 1 && GEPsInBounds) {
1003 Value *LHSV = GEPLHS->getOperand(DiffOperand);
1004 Value *RHSV = GEPRHS->getOperand(DiffOperand);
1005 // Make sure we do a signed comparison here.
1006 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1007 }
1008 }
1009
1010 // Only lower this if the icmp is the only user of the GEP or if we expect
1011 // the result to fold to a constant!
1012 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1013 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1014 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
1015 Value *L = EmitGEPOffset(GEPLHS);
1016 Value *R = EmitGEPOffset(GEPRHS);
1017 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1018 }
1019 }
1020
1021 // Try convert this to an indexed compare by looking through PHIs/casts as a
1022 // last resort.
1023 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1024 }
1025
foldAllocaCmp(ICmpInst & ICI,const AllocaInst * Alloca,const Value * Other)1026 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1027 const AllocaInst *Alloca,
1028 const Value *Other) {
1029 assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1030
1031 // It would be tempting to fold away comparisons between allocas and any
1032 // pointer not based on that alloca (e.g. an argument). However, even
1033 // though such pointers cannot alias, they can still compare equal.
1034 //
1035 // But LLVM doesn't specify where allocas get their memory, so if the alloca
1036 // doesn't escape we can argue that it's impossible to guess its value, and we
1037 // can therefore act as if any such guesses are wrong.
1038 //
1039 // The code below checks that the alloca doesn't escape, and that it's only
1040 // used in a comparison once (the current instruction). The
1041 // single-comparison-use condition ensures that we're trivially folding all
1042 // comparisons against the alloca consistently, and avoids the risk of
1043 // erroneously folding a comparison of the pointer with itself.
1044
1045 unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1046
1047 SmallVector<const Use *, 32> Worklist;
1048 for (const Use &U : Alloca->uses()) {
1049 if (Worklist.size() >= MaxIter)
1050 return nullptr;
1051 Worklist.push_back(&U);
1052 }
1053
1054 unsigned NumCmps = 0;
1055 while (!Worklist.empty()) {
1056 assert(Worklist.size() <= MaxIter);
1057 const Use *U = Worklist.pop_back_val();
1058 const Value *V = U->getUser();
1059 --MaxIter;
1060
1061 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1062 isa<SelectInst>(V)) {
1063 // Track the uses.
1064 } else if (isa<LoadInst>(V)) {
1065 // Loading from the pointer doesn't escape it.
1066 continue;
1067 } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1068 // Storing *to* the pointer is fine, but storing the pointer escapes it.
1069 if (SI->getValueOperand() == U->get())
1070 return nullptr;
1071 continue;
1072 } else if (isa<ICmpInst>(V)) {
1073 if (NumCmps++)
1074 return nullptr; // Found more than one cmp.
1075 continue;
1076 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1077 switch (Intrin->getIntrinsicID()) {
1078 // These intrinsics don't escape or compare the pointer. Memset is safe
1079 // because we don't allow ptrtoint. Memcpy and memmove are safe because
1080 // we don't allow stores, so src cannot point to V.
1081 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1082 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1083 continue;
1084 default:
1085 return nullptr;
1086 }
1087 } else {
1088 return nullptr;
1089 }
1090 for (const Use &U : V->uses()) {
1091 if (Worklist.size() >= MaxIter)
1092 return nullptr;
1093 Worklist.push_back(&U);
1094 }
1095 }
1096
1097 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1098 return replaceInstUsesWith(
1099 ICI,
1100 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1101 }
1102
1103 /// Fold "icmp pred (X+C), X".
foldICmpAddOpConst(Value * X,const APInt & C,ICmpInst::Predicate Pred)1104 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1105 ICmpInst::Predicate Pred) {
1106 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1107 // so the values can never be equal. Similarly for all other "or equals"
1108 // operators.
1109 assert(!!C && "C should not be zero!");
1110
1111 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
1112 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
1113 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
1114 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1115 Constant *R = ConstantInt::get(X->getType(),
1116 APInt::getMaxValue(C.getBitWidth()) - C);
1117 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1118 }
1119
1120 // (X+1) >u X --> X <u (0-1) --> X != 255
1121 // (X+2) >u X --> X <u (0-2) --> X <u 254
1122 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
1123 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1124 return new ICmpInst(ICmpInst::ICMP_ULT, X,
1125 ConstantInt::get(X->getType(), -C));
1126
1127 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1128
1129 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
1130 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
1131 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
1132 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
1133 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
1134 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
1135 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1136 return new ICmpInst(ICmpInst::ICMP_SGT, X,
1137 ConstantInt::get(X->getType(), SMax - C));
1138
1139 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
1140 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
1141 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1142 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1143 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
1144 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
1145
1146 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1147 return new ICmpInst(ICmpInst::ICMP_SLT, X,
1148 ConstantInt::get(X->getType(), SMax - (C - 1)));
1149 }
1150
1151 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1152 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1153 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
foldICmpShrConstConst(ICmpInst & I,Value * A,const APInt & AP1,const APInt & AP2)1154 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1155 const APInt &AP1,
1156 const APInt &AP2) {
1157 assert(I.isEquality() && "Cannot fold icmp gt/lt");
1158
1159 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1160 if (I.getPredicate() == I.ICMP_NE)
1161 Pred = CmpInst::getInversePredicate(Pred);
1162 return new ICmpInst(Pred, LHS, RHS);
1163 };
1164
1165 // Don't bother doing any work for cases which InstSimplify handles.
1166 if (AP2.isNullValue())
1167 return nullptr;
1168
1169 bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1170 if (IsAShr) {
1171 if (AP2.isAllOnesValue())
1172 return nullptr;
1173 if (AP2.isNegative() != AP1.isNegative())
1174 return nullptr;
1175 if (AP2.sgt(AP1))
1176 return nullptr;
1177 }
1178
1179 if (!AP1)
1180 // 'A' must be large enough to shift out the highest set bit.
1181 return getICmp(I.ICMP_UGT, A,
1182 ConstantInt::get(A->getType(), AP2.logBase2()));
1183
1184 if (AP1 == AP2)
1185 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1186
1187 int Shift;
1188 if (IsAShr && AP1.isNegative())
1189 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1190 else
1191 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1192
1193 if (Shift > 0) {
1194 if (IsAShr && AP1 == AP2.ashr(Shift)) {
1195 // There are multiple solutions if we are comparing against -1 and the LHS
1196 // of the ashr is not a power of two.
1197 if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1198 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1199 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1200 } else if (AP1 == AP2.lshr(Shift)) {
1201 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1202 }
1203 }
1204
1205 // Shifting const2 will never be equal to const1.
1206 // FIXME: This should always be handled by InstSimplify?
1207 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1208 return replaceInstUsesWith(I, TorF);
1209 }
1210
1211 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1212 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
foldICmpShlConstConst(ICmpInst & I,Value * A,const APInt & AP1,const APInt & AP2)1213 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1214 const APInt &AP1,
1215 const APInt &AP2) {
1216 assert(I.isEquality() && "Cannot fold icmp gt/lt");
1217
1218 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1219 if (I.getPredicate() == I.ICMP_NE)
1220 Pred = CmpInst::getInversePredicate(Pred);
1221 return new ICmpInst(Pred, LHS, RHS);
1222 };
1223
1224 // Don't bother doing any work for cases which InstSimplify handles.
1225 if (AP2.isNullValue())
1226 return nullptr;
1227
1228 unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1229
1230 if (!AP1 && AP2TrailingZeros != 0)
1231 return getICmp(
1232 I.ICMP_UGE, A,
1233 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1234
1235 if (AP1 == AP2)
1236 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1237
1238 // Get the distance between the lowest bits that are set.
1239 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1240
1241 if (Shift > 0 && AP2.shl(Shift) == AP1)
1242 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1243
1244 // Shifting const2 will never be equal to const1.
1245 // FIXME: This should always be handled by InstSimplify?
1246 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1247 return replaceInstUsesWith(I, TorF);
1248 }
1249
1250 /// The caller has matched a pattern of the form:
1251 /// I = icmp ugt (add (add A, B), CI2), CI1
1252 /// If this is of the form:
1253 /// sum = a + b
1254 /// if (sum+128 >u 255)
1255 /// Then replace it with llvm.sadd.with.overflow.i8.
1256 ///
processUGT_ADDCST_ADD(ICmpInst & I,Value * A,Value * B,ConstantInt * CI2,ConstantInt * CI1,InstCombinerImpl & IC)1257 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1258 ConstantInt *CI2, ConstantInt *CI1,
1259 InstCombinerImpl &IC) {
1260 // The transformation we're trying to do here is to transform this into an
1261 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1262 // with a narrower add, and discard the add-with-constant that is part of the
1263 // range check (if we can't eliminate it, this isn't profitable).
1264
1265 // In order to eliminate the add-with-constant, the compare can be its only
1266 // use.
1267 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1268 if (!AddWithCst->hasOneUse())
1269 return nullptr;
1270
1271 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1272 if (!CI2->getValue().isPowerOf2())
1273 return nullptr;
1274 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1275 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1276 return nullptr;
1277
1278 // The width of the new add formed is 1 more than the bias.
1279 ++NewWidth;
1280
1281 // Check to see that CI1 is an all-ones value with NewWidth bits.
1282 if (CI1->getBitWidth() == NewWidth ||
1283 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1284 return nullptr;
1285
1286 // This is only really a signed overflow check if the inputs have been
1287 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1288 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1289 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1290 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1291 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1292 return nullptr;
1293
1294 // In order to replace the original add with a narrower
1295 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1296 // and truncates that discard the high bits of the add. Verify that this is
1297 // the case.
1298 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1299 for (User *U : OrigAdd->users()) {
1300 if (U == AddWithCst)
1301 continue;
1302
1303 // Only accept truncates for now. We would really like a nice recursive
1304 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1305 // chain to see which bits of a value are actually demanded. If the
1306 // original add had another add which was then immediately truncated, we
1307 // could still do the transformation.
1308 TruncInst *TI = dyn_cast<TruncInst>(U);
1309 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1310 return nullptr;
1311 }
1312
1313 // If the pattern matches, truncate the inputs to the narrower type and
1314 // use the sadd_with_overflow intrinsic to efficiently compute both the
1315 // result and the overflow bit.
1316 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1317 Function *F = Intrinsic::getDeclaration(
1318 I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1319
1320 InstCombiner::BuilderTy &Builder = IC.Builder;
1321
1322 // Put the new code above the original add, in case there are any uses of the
1323 // add between the add and the compare.
1324 Builder.SetInsertPoint(OrigAdd);
1325
1326 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1327 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1328 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1329 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1330 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1331
1332 // The inner add was the result of the narrow add, zero extended to the
1333 // wider type. Replace it with the result computed by the intrinsic.
1334 IC.replaceInstUsesWith(*OrigAdd, ZExt);
1335 IC.eraseInstFromFunction(*OrigAdd);
1336
1337 // The original icmp gets replaced with the overflow value.
1338 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1339 }
1340
1341 /// If we have:
1342 /// icmp eq/ne (urem/srem %x, %y), 0
1343 /// iff %y is a power-of-two, we can replace this with a bit test:
1344 /// icmp eq/ne (and %x, (add %y, -1)), 0
foldIRemByPowerOfTwoToBitTest(ICmpInst & I)1345 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1346 // This fold is only valid for equality predicates.
1347 if (!I.isEquality())
1348 return nullptr;
1349 ICmpInst::Predicate Pred;
1350 Value *X, *Y, *Zero;
1351 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1352 m_CombineAnd(m_Zero(), m_Value(Zero)))))
1353 return nullptr;
1354 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1355 return nullptr;
1356 // This may increase instruction count, we don't enforce that Y is a constant.
1357 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1358 Value *Masked = Builder.CreateAnd(X, Mask);
1359 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1360 }
1361
1362 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1363 /// by one-less-than-bitwidth into a sign test on the original value.
foldSignBitTest(ICmpInst & I)1364 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1365 Instruction *Val;
1366 ICmpInst::Predicate Pred;
1367 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1368 return nullptr;
1369
1370 Value *X;
1371 Type *XTy;
1372
1373 Constant *C;
1374 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1375 XTy = X->getType();
1376 unsigned XBitWidth = XTy->getScalarSizeInBits();
1377 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1378 APInt(XBitWidth, XBitWidth - 1))))
1379 return nullptr;
1380 } else if (isa<BinaryOperator>(Val) &&
1381 (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1382 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1383 /*AnalyzeForSignBitExtraction=*/true))) {
1384 XTy = X->getType();
1385 } else
1386 return nullptr;
1387
1388 return ICmpInst::Create(Instruction::ICmp,
1389 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1390 : ICmpInst::ICMP_SLT,
1391 X, ConstantInt::getNullValue(XTy));
1392 }
1393
1394 // Handle icmp pred X, 0
foldICmpWithZero(ICmpInst & Cmp)1395 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1396 CmpInst::Predicate Pred = Cmp.getPredicate();
1397 if (!match(Cmp.getOperand(1), m_Zero()))
1398 return nullptr;
1399
1400 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1401 if (Pred == ICmpInst::ICMP_SGT) {
1402 Value *A, *B;
1403 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1404 if (SPR.Flavor == SPF_SMIN) {
1405 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1406 return new ICmpInst(Pred, B, Cmp.getOperand(1));
1407 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1408 return new ICmpInst(Pred, A, Cmp.getOperand(1));
1409 }
1410 }
1411
1412 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1413 return New;
1414
1415 // Given:
1416 // icmp eq/ne (urem %x, %y), 0
1417 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1418 // icmp eq/ne %x, 0
1419 Value *X, *Y;
1420 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1421 ICmpInst::isEquality(Pred)) {
1422 KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1423 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1424 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1425 return new ICmpInst(Pred, X, Cmp.getOperand(1));
1426 }
1427
1428 return nullptr;
1429 }
1430
1431 /// Fold icmp Pred X, C.
1432 /// TODO: This code structure does not make sense. The saturating add fold
1433 /// should be moved to some other helper and extended as noted below (it is also
1434 /// possible that code has been made unnecessary - do we canonicalize IR to
1435 /// overflow/saturating intrinsics or not?).
foldICmpWithConstant(ICmpInst & Cmp)1436 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1437 // Match the following pattern, which is a common idiom when writing
1438 // overflow-safe integer arithmetic functions. The source performs an addition
1439 // in wider type and explicitly checks for overflow using comparisons against
1440 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1441 //
1442 // TODO: This could probably be generalized to handle other overflow-safe
1443 // operations if we worked out the formulas to compute the appropriate magic
1444 // constants.
1445 //
1446 // sum = a + b
1447 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1448 CmpInst::Predicate Pred = Cmp.getPredicate();
1449 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1450 Value *A, *B;
1451 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1452 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1453 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1454 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1455 return Res;
1456
1457 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1458 Constant *C = dyn_cast<Constant>(Op1);
1459 if (!C)
1460 return nullptr;
1461
1462 if (auto *Phi = dyn_cast<PHINode>(Op0))
1463 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1464 Type *Ty = Cmp.getType();
1465 Builder.SetInsertPoint(Phi);
1466 PHINode *NewPhi =
1467 Builder.CreatePHI(Ty, Phi->getNumOperands());
1468 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1469 auto *Input =
1470 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1471 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1472 NewPhi->addIncoming(BoolInput, Predecessor);
1473 }
1474 NewPhi->takeName(&Cmp);
1475 return replaceInstUsesWith(Cmp, NewPhi);
1476 }
1477
1478 return nullptr;
1479 }
1480
1481 /// Canonicalize icmp instructions based on dominating conditions.
foldICmpWithDominatingICmp(ICmpInst & Cmp)1482 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1483 // This is a cheap/incomplete check for dominance - just match a single
1484 // predecessor with a conditional branch.
1485 BasicBlock *CmpBB = Cmp.getParent();
1486 BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1487 if (!DomBB)
1488 return nullptr;
1489
1490 Value *DomCond;
1491 BasicBlock *TrueBB, *FalseBB;
1492 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1493 return nullptr;
1494
1495 assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1496 "Predecessor block does not point to successor?");
1497
1498 // The branch should get simplified. Don't bother simplifying this condition.
1499 if (TrueBB == FalseBB)
1500 return nullptr;
1501
1502 // Try to simplify this compare to T/F based on the dominating condition.
1503 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1504 if (Imp)
1505 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1506
1507 CmpInst::Predicate Pred = Cmp.getPredicate();
1508 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1509 ICmpInst::Predicate DomPred;
1510 const APInt *C, *DomC;
1511 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1512 match(Y, m_APInt(C))) {
1513 // We have 2 compares of a variable with constants. Calculate the constant
1514 // ranges of those compares to see if we can transform the 2nd compare:
1515 // DomBB:
1516 // DomCond = icmp DomPred X, DomC
1517 // br DomCond, CmpBB, FalseBB
1518 // CmpBB:
1519 // Cmp = icmp Pred X, C
1520 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1521 ConstantRange DominatingCR =
1522 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1523 : ConstantRange::makeExactICmpRegion(
1524 CmpInst::getInversePredicate(DomPred), *DomC);
1525 ConstantRange Intersection = DominatingCR.intersectWith(CR);
1526 ConstantRange Difference = DominatingCR.difference(CR);
1527 if (Intersection.isEmptySet())
1528 return replaceInstUsesWith(Cmp, Builder.getFalse());
1529 if (Difference.isEmptySet())
1530 return replaceInstUsesWith(Cmp, Builder.getTrue());
1531
1532 // Canonicalizing a sign bit comparison that gets used in a branch,
1533 // pessimizes codegen by generating branch on zero instruction instead
1534 // of a test and branch. So we avoid canonicalizing in such situations
1535 // because test and branch instruction has better branch displacement
1536 // than compare and branch instruction.
1537 bool UnusedBit;
1538 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1539 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1540 return nullptr;
1541
1542 if (const APInt *EqC = Intersection.getSingleElement())
1543 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1544 if (const APInt *NeC = Difference.getSingleElement())
1545 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1546 }
1547
1548 return nullptr;
1549 }
1550
1551 /// Fold icmp (trunc X, Y), C.
foldICmpTruncConstant(ICmpInst & Cmp,TruncInst * Trunc,const APInt & C)1552 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1553 TruncInst *Trunc,
1554 const APInt &C) {
1555 ICmpInst::Predicate Pred = Cmp.getPredicate();
1556 Value *X = Trunc->getOperand(0);
1557 if (C.isOneValue() && C.getBitWidth() > 1) {
1558 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1559 Value *V = nullptr;
1560 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1561 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1562 ConstantInt::get(V->getType(), 1));
1563 }
1564
1565 if (Cmp.isEquality() && Trunc->hasOneUse()) {
1566 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1567 // of the high bits truncated out of x are known.
1568 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1569 SrcBits = X->getType()->getScalarSizeInBits();
1570 KnownBits Known = computeKnownBits(X, 0, &Cmp);
1571
1572 // If all the high bits are known, we can do this xform.
1573 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1574 // Pull in the high bits from known-ones set.
1575 APInt NewRHS = C.zext(SrcBits);
1576 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1577 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1578 }
1579 }
1580
1581 return nullptr;
1582 }
1583
1584 /// Fold icmp (xor X, Y), C.
foldICmpXorConstant(ICmpInst & Cmp,BinaryOperator * Xor,const APInt & C)1585 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1586 BinaryOperator *Xor,
1587 const APInt &C) {
1588 Value *X = Xor->getOperand(0);
1589 Value *Y = Xor->getOperand(1);
1590 const APInt *XorC;
1591 if (!match(Y, m_APInt(XorC)))
1592 return nullptr;
1593
1594 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1595 // fold the xor.
1596 ICmpInst::Predicate Pred = Cmp.getPredicate();
1597 bool TrueIfSigned = false;
1598 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1599
1600 // If the sign bit of the XorCst is not set, there is no change to
1601 // the operation, just stop using the Xor.
1602 if (!XorC->isNegative())
1603 return replaceOperand(Cmp, 0, X);
1604
1605 // Emit the opposite comparison.
1606 if (TrueIfSigned)
1607 return new ICmpInst(ICmpInst::ICMP_SGT, X,
1608 ConstantInt::getAllOnesValue(X->getType()));
1609 else
1610 return new ICmpInst(ICmpInst::ICMP_SLT, X,
1611 ConstantInt::getNullValue(X->getType()));
1612 }
1613
1614 if (Xor->hasOneUse()) {
1615 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1616 if (!Cmp.isEquality() && XorC->isSignMask()) {
1617 Pred = Cmp.getFlippedSignednessPredicate();
1618 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1619 }
1620
1621 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1622 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1623 Pred = Cmp.getFlippedSignednessPredicate();
1624 Pred = Cmp.getSwappedPredicate(Pred);
1625 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1626 }
1627 }
1628
1629 // Mask constant magic can eliminate an 'xor' with unsigned compares.
1630 if (Pred == ICmpInst::ICMP_UGT) {
1631 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1632 if (*XorC == ~C && (C + 1).isPowerOf2())
1633 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1634 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1635 if (*XorC == C && (C + 1).isPowerOf2())
1636 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1637 }
1638 if (Pred == ICmpInst::ICMP_ULT) {
1639 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1640 if (*XorC == -C && C.isPowerOf2())
1641 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1642 ConstantInt::get(X->getType(), ~C));
1643 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1644 if (*XorC == C && (-C).isPowerOf2())
1645 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1646 ConstantInt::get(X->getType(), ~C));
1647 }
1648 return nullptr;
1649 }
1650
1651 /// Fold icmp (and (sh X, Y), C2), C1.
foldICmpAndShift(ICmpInst & Cmp,BinaryOperator * And,const APInt & C1,const APInt & C2)1652 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1653 BinaryOperator *And,
1654 const APInt &C1,
1655 const APInt &C2) {
1656 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1657 if (!Shift || !Shift->isShift())
1658 return nullptr;
1659
1660 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1661 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1662 // code produced by the clang front-end, for bitfield access.
1663 // This seemingly simple opportunity to fold away a shift turns out to be
1664 // rather complicated. See PR17827 for details.
1665 unsigned ShiftOpcode = Shift->getOpcode();
1666 bool IsShl = ShiftOpcode == Instruction::Shl;
1667 const APInt *C3;
1668 if (match(Shift->getOperand(1), m_APInt(C3))) {
1669 APInt NewAndCst, NewCmpCst;
1670 bool AnyCmpCstBitsShiftedOut;
1671 if (ShiftOpcode == Instruction::Shl) {
1672 // For a left shift, we can fold if the comparison is not signed. We can
1673 // also fold a signed comparison if the mask value and comparison value
1674 // are not negative. These constraints may not be obvious, but we can
1675 // prove that they are correct using an SMT solver.
1676 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1677 return nullptr;
1678
1679 NewCmpCst = C1.lshr(*C3);
1680 NewAndCst = C2.lshr(*C3);
1681 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1682 } else if (ShiftOpcode == Instruction::LShr) {
1683 // For a logical right shift, we can fold if the comparison is not signed.
1684 // We can also fold a signed comparison if the shifted mask value and the
1685 // shifted comparison value are not negative. These constraints may not be
1686 // obvious, but we can prove that they are correct using an SMT solver.
1687 NewCmpCst = C1.shl(*C3);
1688 NewAndCst = C2.shl(*C3);
1689 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1690 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1691 return nullptr;
1692 } else {
1693 // For an arithmetic shift, check that both constants don't use (in a
1694 // signed sense) the top bits being shifted out.
1695 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1696 NewCmpCst = C1.shl(*C3);
1697 NewAndCst = C2.shl(*C3);
1698 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1699 if (NewAndCst.ashr(*C3) != C2)
1700 return nullptr;
1701 }
1702
1703 if (AnyCmpCstBitsShiftedOut) {
1704 // If we shifted bits out, the fold is not going to work out. As a
1705 // special case, check to see if this means that the result is always
1706 // true or false now.
1707 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1708 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1709 if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1710 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1711 } else {
1712 Value *NewAnd = Builder.CreateAnd(
1713 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1714 return new ICmpInst(Cmp.getPredicate(),
1715 NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1716 }
1717 }
1718
1719 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1720 // preferable because it allows the C2 << Y expression to be hoisted out of a
1721 // loop if Y is invariant and X is not.
1722 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1723 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1724 // Compute C2 << Y.
1725 Value *NewShift =
1726 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1727 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1728
1729 // Compute X & (C2 << Y).
1730 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1731 return replaceOperand(Cmp, 0, NewAnd);
1732 }
1733
1734 return nullptr;
1735 }
1736
1737 /// Fold icmp (and X, C2), C1.
foldICmpAndConstConst(ICmpInst & Cmp,BinaryOperator * And,const APInt & C1)1738 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1739 BinaryOperator *And,
1740 const APInt &C1) {
1741 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1742
1743 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1744 // TODO: We canonicalize to the longer form for scalars because we have
1745 // better analysis/folds for icmp, and codegen may be better with icmp.
1746 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1747 match(And->getOperand(1), m_One()))
1748 return new TruncInst(And->getOperand(0), Cmp.getType());
1749
1750 const APInt *C2;
1751 Value *X;
1752 if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1753 return nullptr;
1754
1755 // Don't perform the following transforms if the AND has multiple uses
1756 if (!And->hasOneUse())
1757 return nullptr;
1758
1759 if (Cmp.isEquality() && C1.isNullValue()) {
1760 // Restrict this fold to single-use 'and' (PR10267).
1761 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1762 if (C2->isSignMask()) {
1763 Constant *Zero = Constant::getNullValue(X->getType());
1764 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1765 return new ICmpInst(NewPred, X, Zero);
1766 }
1767
1768 // Restrict this fold only for single-use 'and' (PR10267).
1769 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1770 if ((~(*C2) + 1).isPowerOf2()) {
1771 Constant *NegBOC =
1772 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1773 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1774 return new ICmpInst(NewPred, X, NegBOC);
1775 }
1776 }
1777
1778 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1779 // the input width without changing the value produced, eliminate the cast:
1780 //
1781 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1782 //
1783 // We can do this transformation if the constants do not have their sign bits
1784 // set or if it is an equality comparison. Extending a relational comparison
1785 // when we're checking the sign bit would not work.
1786 Value *W;
1787 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1788 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1789 // TODO: Is this a good transform for vectors? Wider types may reduce
1790 // throughput. Should this transform be limited (even for scalars) by using
1791 // shouldChangeType()?
1792 if (!Cmp.getType()->isVectorTy()) {
1793 Type *WideType = W->getType();
1794 unsigned WideScalarBits = WideType->getScalarSizeInBits();
1795 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1796 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1797 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1798 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1799 }
1800 }
1801
1802 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1803 return I;
1804
1805 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1806 // (icmp pred (and A, (or (shl 1, B), 1), 0))
1807 //
1808 // iff pred isn't signed
1809 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1810 match(And->getOperand(1), m_One())) {
1811 Constant *One = cast<Constant>(And->getOperand(1));
1812 Value *Or = And->getOperand(0);
1813 Value *A, *B, *LShr;
1814 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1815 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1816 unsigned UsesRemoved = 0;
1817 if (And->hasOneUse())
1818 ++UsesRemoved;
1819 if (Or->hasOneUse())
1820 ++UsesRemoved;
1821 if (LShr->hasOneUse())
1822 ++UsesRemoved;
1823
1824 // Compute A & ((1 << B) | 1)
1825 Value *NewOr = nullptr;
1826 if (auto *C = dyn_cast<Constant>(B)) {
1827 if (UsesRemoved >= 1)
1828 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1829 } else {
1830 if (UsesRemoved >= 3)
1831 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1832 /*HasNUW=*/true),
1833 One, Or->getName());
1834 }
1835 if (NewOr) {
1836 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1837 return replaceOperand(Cmp, 0, NewAnd);
1838 }
1839 }
1840 }
1841
1842 return nullptr;
1843 }
1844
1845 /// Fold icmp (and X, Y), C.
foldICmpAndConstant(ICmpInst & Cmp,BinaryOperator * And,const APInt & C)1846 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1847 BinaryOperator *And,
1848 const APInt &C) {
1849 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1850 return I;
1851
1852 // TODO: These all require that Y is constant too, so refactor with the above.
1853
1854 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1855 Value *X = And->getOperand(0);
1856 Value *Y = And->getOperand(1);
1857 if (auto *LI = dyn_cast<LoadInst>(X))
1858 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1859 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1860 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1861 !LI->isVolatile() && isa<ConstantInt>(Y)) {
1862 ConstantInt *C2 = cast<ConstantInt>(Y);
1863 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1864 return Res;
1865 }
1866
1867 if (!Cmp.isEquality())
1868 return nullptr;
1869
1870 // X & -C == -C -> X > u ~C
1871 // X & -C != -C -> X <= u ~C
1872 // iff C is a power of 2
1873 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1874 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1875 : CmpInst::ICMP_ULE;
1876 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1877 }
1878
1879 // (X & C2) == 0 -> (trunc X) >= 0
1880 // (X & C2) != 0 -> (trunc X) < 0
1881 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1882 const APInt *C2;
1883 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1884 int32_t ExactLogBase2 = C2->exactLogBase2();
1885 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1886 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1887 if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1888 NTy = FixedVectorType::get(
1889 NTy, cast<FixedVectorType>(AndVTy)->getNumElements());
1890 Value *Trunc = Builder.CreateTrunc(X, NTy);
1891 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1892 : CmpInst::ICMP_SLT;
1893 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1894 }
1895 }
1896
1897 return nullptr;
1898 }
1899
1900 /// Fold icmp (or X, Y), C.
foldICmpOrConstant(ICmpInst & Cmp,BinaryOperator * Or,const APInt & C)1901 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1902 BinaryOperator *Or,
1903 const APInt &C) {
1904 ICmpInst::Predicate Pred = Cmp.getPredicate();
1905 if (C.isOneValue()) {
1906 // icmp slt signum(V) 1 --> icmp slt V, 1
1907 Value *V = nullptr;
1908 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1909 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1910 ConstantInt::get(V->getType(), 1));
1911 }
1912
1913 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1914 const APInt *MaskC;
1915 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1916 if (*MaskC == C && (C + 1).isPowerOf2()) {
1917 // X | C == C --> X <=u C
1918 // X | C != C --> X >u C
1919 // iff C+1 is a power of 2 (C is a bitmask of the low bits)
1920 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1921 return new ICmpInst(Pred, OrOp0, OrOp1);
1922 }
1923
1924 // More general: canonicalize 'equality with set bits mask' to
1925 // 'equality with clear bits mask'.
1926 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1927 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1928 if (Or->hasOneUse()) {
1929 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1930 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1931 return new ICmpInst(Pred, And, NewC);
1932 }
1933 }
1934
1935 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1936 return nullptr;
1937
1938 Value *P, *Q;
1939 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1940 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1941 // -> and (icmp eq P, null), (icmp eq Q, null).
1942 Value *CmpP =
1943 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1944 Value *CmpQ =
1945 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1946 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1947 return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1948 }
1949
1950 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1951 // a shorter form that has more potential to be folded even further.
1952 Value *X1, *X2, *X3, *X4;
1953 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1954 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1955 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1956 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1957 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1958 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1959 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1960 return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1961 }
1962
1963 return nullptr;
1964 }
1965
1966 /// Fold icmp (mul X, Y), C.
foldICmpMulConstant(ICmpInst & Cmp,BinaryOperator * Mul,const APInt & C)1967 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1968 BinaryOperator *Mul,
1969 const APInt &C) {
1970 const APInt *MulC;
1971 if (!match(Mul->getOperand(1), m_APInt(MulC)))
1972 return nullptr;
1973
1974 // If this is a test of the sign bit and the multiply is sign-preserving with
1975 // a constant operand, use the multiply LHS operand instead.
1976 ICmpInst::Predicate Pred = Cmp.getPredicate();
1977 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1978 if (MulC->isNegative())
1979 Pred = ICmpInst::getSwappedPredicate(Pred);
1980 return new ICmpInst(Pred, Mul->getOperand(0),
1981 Constant::getNullValue(Mul->getType()));
1982 }
1983
1984 // If the multiply does not wrap, try to divide the compare constant by the
1985 // multiplication factor.
1986 if (Cmp.isEquality() && !MulC->isNullValue()) {
1987 // (mul nsw X, MulC) == C --> X == C /s MulC
1988 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) {
1989 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1990 return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1991 }
1992 // (mul nuw X, MulC) == C --> X == C /u MulC
1993 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) {
1994 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1995 return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1996 }
1997 }
1998
1999 return nullptr;
2000 }
2001
2002 /// Fold icmp (shl 1, Y), C.
foldICmpShlOne(ICmpInst & Cmp,Instruction * Shl,const APInt & C)2003 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2004 const APInt &C) {
2005 Value *Y;
2006 if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2007 return nullptr;
2008
2009 Type *ShiftType = Shl->getType();
2010 unsigned TypeBits = C.getBitWidth();
2011 bool CIsPowerOf2 = C.isPowerOf2();
2012 ICmpInst::Predicate Pred = Cmp.getPredicate();
2013 if (Cmp.isUnsigned()) {
2014 // (1 << Y) pred C -> Y pred Log2(C)
2015 if (!CIsPowerOf2) {
2016 // (1 << Y) < 30 -> Y <= 4
2017 // (1 << Y) <= 30 -> Y <= 4
2018 // (1 << Y) >= 30 -> Y > 4
2019 // (1 << Y) > 30 -> Y > 4
2020 if (Pred == ICmpInst::ICMP_ULT)
2021 Pred = ICmpInst::ICMP_ULE;
2022 else if (Pred == ICmpInst::ICMP_UGE)
2023 Pred = ICmpInst::ICMP_UGT;
2024 }
2025
2026 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2027 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
2028 unsigned CLog2 = C.logBase2();
2029 if (CLog2 == TypeBits - 1) {
2030 if (Pred == ICmpInst::ICMP_UGE)
2031 Pred = ICmpInst::ICMP_EQ;
2032 else if (Pred == ICmpInst::ICMP_ULT)
2033 Pred = ICmpInst::ICMP_NE;
2034 }
2035 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2036 } else if (Cmp.isSigned()) {
2037 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2038 if (C.isAllOnesValue()) {
2039 // (1 << Y) <= -1 -> Y == 31
2040 if (Pred == ICmpInst::ICMP_SLE)
2041 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2042
2043 // (1 << Y) > -1 -> Y != 31
2044 if (Pred == ICmpInst::ICMP_SGT)
2045 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2046 } else if (!C) {
2047 // (1 << Y) < 0 -> Y == 31
2048 // (1 << Y) <= 0 -> Y == 31
2049 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2050 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2051
2052 // (1 << Y) >= 0 -> Y != 31
2053 // (1 << Y) > 0 -> Y != 31
2054 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2055 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2056 }
2057 } else if (Cmp.isEquality() && CIsPowerOf2) {
2058 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2059 }
2060
2061 return nullptr;
2062 }
2063
2064 /// Fold icmp (shl X, Y), C.
foldICmpShlConstant(ICmpInst & Cmp,BinaryOperator * Shl,const APInt & C)2065 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2066 BinaryOperator *Shl,
2067 const APInt &C) {
2068 const APInt *ShiftVal;
2069 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2070 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2071
2072 const APInt *ShiftAmt;
2073 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2074 return foldICmpShlOne(Cmp, Shl, C);
2075
2076 // Check that the shift amount is in range. If not, don't perform undefined
2077 // shifts. When the shift is visited, it will be simplified.
2078 unsigned TypeBits = C.getBitWidth();
2079 if (ShiftAmt->uge(TypeBits))
2080 return nullptr;
2081
2082 ICmpInst::Predicate Pred = Cmp.getPredicate();
2083 Value *X = Shl->getOperand(0);
2084 Type *ShType = Shl->getType();
2085
2086 // NSW guarantees that we are only shifting out sign bits from the high bits,
2087 // so we can ASHR the compare constant without needing a mask and eliminate
2088 // the shift.
2089 if (Shl->hasNoSignedWrap()) {
2090 if (Pred == ICmpInst::ICMP_SGT) {
2091 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2092 APInt ShiftedC = C.ashr(*ShiftAmt);
2093 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2094 }
2095 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2096 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2097 APInt ShiftedC = C.ashr(*ShiftAmt);
2098 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2099 }
2100 if (Pred == ICmpInst::ICMP_SLT) {
2101 // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2102 // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2103 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2104 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2105 assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2106 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2107 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2108 }
2109 // If this is a signed comparison to 0 and the shift is sign preserving,
2110 // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2111 // do that if we're sure to not continue on in this function.
2112 if (isSignTest(Pred, C))
2113 return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2114 }
2115
2116 // NUW guarantees that we are only shifting out zero bits from the high bits,
2117 // so we can LSHR the compare constant without needing a mask and eliminate
2118 // the shift.
2119 if (Shl->hasNoUnsignedWrap()) {
2120 if (Pred == ICmpInst::ICMP_UGT) {
2121 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2122 APInt ShiftedC = C.lshr(*ShiftAmt);
2123 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2124 }
2125 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2126 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2127 APInt ShiftedC = C.lshr(*ShiftAmt);
2128 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2129 }
2130 if (Pred == ICmpInst::ICMP_ULT) {
2131 // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2132 // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2133 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2134 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2135 assert(C.ugt(0) && "ult 0 should have been eliminated");
2136 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2137 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2138 }
2139 }
2140
2141 if (Cmp.isEquality() && Shl->hasOneUse()) {
2142 // Strength-reduce the shift into an 'and'.
2143 Constant *Mask = ConstantInt::get(
2144 ShType,
2145 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2146 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2147 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2148 return new ICmpInst(Pred, And, LShrC);
2149 }
2150
2151 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2152 bool TrueIfSigned = false;
2153 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2154 // (X << 31) <s 0 --> (X & 1) != 0
2155 Constant *Mask = ConstantInt::get(
2156 ShType,
2157 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2158 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2159 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2160 And, Constant::getNullValue(ShType));
2161 }
2162
2163 // Simplify 'shl' inequality test into 'and' equality test.
2164 if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2165 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2166 if ((C + 1).isPowerOf2() &&
2167 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2168 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2169 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2170 : ICmpInst::ICMP_NE,
2171 And, Constant::getNullValue(ShType));
2172 }
2173 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2174 if (C.isPowerOf2() &&
2175 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2176 Value *And =
2177 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2178 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2179 : ICmpInst::ICMP_NE,
2180 And, Constant::getNullValue(ShType));
2181 }
2182 }
2183
2184 // Transform (icmp pred iM (shl iM %v, N), C)
2185 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2186 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2187 // This enables us to get rid of the shift in favor of a trunc that may be
2188 // free on the target. It has the additional benefit of comparing to a
2189 // smaller constant that may be more target-friendly.
2190 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2191 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2192 DL.isLegalInteger(TypeBits - Amt)) {
2193 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2194 if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2195 TruncTy = FixedVectorType::get(
2196 TruncTy, cast<FixedVectorType>(ShVTy)->getNumElements());
2197 Constant *NewC =
2198 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2199 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2200 }
2201
2202 return nullptr;
2203 }
2204
2205 /// Fold icmp ({al}shr X, Y), C.
foldICmpShrConstant(ICmpInst & Cmp,BinaryOperator * Shr,const APInt & C)2206 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2207 BinaryOperator *Shr,
2208 const APInt &C) {
2209 // An exact shr only shifts out zero bits, so:
2210 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2211 Value *X = Shr->getOperand(0);
2212 CmpInst::Predicate Pred = Cmp.getPredicate();
2213 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2214 C.isNullValue())
2215 return new ICmpInst(Pred, X, Cmp.getOperand(1));
2216
2217 const APInt *ShiftVal;
2218 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2219 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2220
2221 const APInt *ShiftAmt;
2222 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2223 return nullptr;
2224
2225 // Check that the shift amount is in range. If not, don't perform undefined
2226 // shifts. When the shift is visited it will be simplified.
2227 unsigned TypeBits = C.getBitWidth();
2228 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2229 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2230 return nullptr;
2231
2232 bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2233 bool IsExact = Shr->isExact();
2234 Type *ShrTy = Shr->getType();
2235 // TODO: If we could guarantee that InstSimplify would handle all of the
2236 // constant-value-based preconditions in the folds below, then we could assert
2237 // those conditions rather than checking them. This is difficult because of
2238 // undef/poison (PR34838).
2239 if (IsAShr) {
2240 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2241 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2242 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2243 APInt ShiftedC = C.shl(ShAmtVal);
2244 if (ShiftedC.ashr(ShAmtVal) == C)
2245 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2246 }
2247 if (Pred == CmpInst::ICMP_SGT) {
2248 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2249 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2250 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2251 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2252 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2253 }
2254 } else {
2255 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2256 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2257 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2258 APInt ShiftedC = C.shl(ShAmtVal);
2259 if (ShiftedC.lshr(ShAmtVal) == C)
2260 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2261 }
2262 if (Pred == CmpInst::ICMP_UGT) {
2263 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2264 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2265 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2266 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2267 }
2268 }
2269
2270 if (!Cmp.isEquality())
2271 return nullptr;
2272
2273 // Handle equality comparisons of shift-by-constant.
2274
2275 // If the comparison constant changes with the shift, the comparison cannot
2276 // succeed (bits of the comparison constant cannot match the shifted value).
2277 // This should be known by InstSimplify and already be folded to true/false.
2278 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2279 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2280 "Expected icmp+shr simplify did not occur.");
2281
2282 // If the bits shifted out are known zero, compare the unshifted value:
2283 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2284 if (Shr->isExact())
2285 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2286
2287 if (Shr->hasOneUse()) {
2288 // Canonicalize the shift into an 'and':
2289 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2290 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2291 Constant *Mask = ConstantInt::get(ShrTy, Val);
2292 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2293 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2294 }
2295
2296 return nullptr;
2297 }
2298
foldICmpSRemConstant(ICmpInst & Cmp,BinaryOperator * SRem,const APInt & C)2299 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2300 BinaryOperator *SRem,
2301 const APInt &C) {
2302 // Match an 'is positive' or 'is negative' comparison of remainder by a
2303 // constant power-of-2 value:
2304 // (X % pow2C) sgt/slt 0
2305 const ICmpInst::Predicate Pred = Cmp.getPredicate();
2306 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2307 return nullptr;
2308
2309 // TODO: The one-use check is standard because we do not typically want to
2310 // create longer instruction sequences, but this might be a special-case
2311 // because srem is not good for analysis or codegen.
2312 if (!SRem->hasOneUse())
2313 return nullptr;
2314
2315 const APInt *DivisorC;
2316 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2317 return nullptr;
2318
2319 // Mask off the sign bit and the modulo bits (low-bits).
2320 Type *Ty = SRem->getType();
2321 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2322 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2323 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2324
2325 // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2326 // bit is set. Example:
2327 // (i8 X % 32) s> 0 --> (X & 159) s> 0
2328 if (Pred == ICmpInst::ICMP_SGT)
2329 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2330
2331 // For 'is negative?' check that the sign-bit is set and at least 1 masked
2332 // bit is set. Example:
2333 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2334 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2335 }
2336
2337 /// Fold icmp (udiv X, Y), C.
foldICmpUDivConstant(ICmpInst & Cmp,BinaryOperator * UDiv,const APInt & C)2338 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2339 BinaryOperator *UDiv,
2340 const APInt &C) {
2341 const APInt *C2;
2342 if (!match(UDiv->getOperand(0), m_APInt(C2)))
2343 return nullptr;
2344
2345 assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2346
2347 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2348 Value *Y = UDiv->getOperand(1);
2349 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2350 assert(!C.isMaxValue() &&
2351 "icmp ugt X, UINT_MAX should have been simplified already.");
2352 return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2353 ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2354 }
2355
2356 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2357 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2358 assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2359 return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2360 ConstantInt::get(Y->getType(), C2->udiv(C)));
2361 }
2362
2363 return nullptr;
2364 }
2365
2366 /// Fold icmp ({su}div X, Y), C.
foldICmpDivConstant(ICmpInst & Cmp,BinaryOperator * Div,const APInt & C)2367 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2368 BinaryOperator *Div,
2369 const APInt &C) {
2370 // Fold: icmp pred ([us]div X, C2), C -> range test
2371 // Fold this div into the comparison, producing a range check.
2372 // Determine, based on the divide type, what the range is being
2373 // checked. If there is an overflow on the low or high side, remember
2374 // it, otherwise compute the range [low, hi) bounding the new value.
2375 // See: InsertRangeTest above for the kinds of replacements possible.
2376 const APInt *C2;
2377 if (!match(Div->getOperand(1), m_APInt(C2)))
2378 return nullptr;
2379
2380 // FIXME: If the operand types don't match the type of the divide
2381 // then don't attempt this transform. The code below doesn't have the
2382 // logic to deal with a signed divide and an unsigned compare (and
2383 // vice versa). This is because (x /s C2) <s C produces different
2384 // results than (x /s C2) <u C or (x /u C2) <s C or even
2385 // (x /u C2) <u C. Simply casting the operands and result won't
2386 // work. :( The if statement below tests that condition and bails
2387 // if it finds it.
2388 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2389 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2390 return nullptr;
2391
2392 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2393 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2394 // division-by-constant cases should be present, we can not assert that they
2395 // have happened before we reach this icmp instruction.
2396 if (C2->isNullValue() || C2->isOneValue() ||
2397 (DivIsSigned && C2->isAllOnesValue()))
2398 return nullptr;
2399
2400 // Compute Prod = C * C2. We are essentially solving an equation of
2401 // form X / C2 = C. We solve for X by multiplying C2 and C.
2402 // By solving for X, we can turn this into a range check instead of computing
2403 // a divide.
2404 APInt Prod = C * *C2;
2405
2406 // Determine if the product overflows by seeing if the product is not equal to
2407 // the divide. Make sure we do the same kind of divide as in the LHS
2408 // instruction that we're folding.
2409 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2410
2411 ICmpInst::Predicate Pred = Cmp.getPredicate();
2412
2413 // If the division is known to be exact, then there is no remainder from the
2414 // divide, so the covered range size is unit, otherwise it is the divisor.
2415 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2416
2417 // Figure out the interval that is being checked. For example, a comparison
2418 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2419 // Compute this interval based on the constants involved and the signedness of
2420 // the compare/divide. This computes a half-open interval, keeping track of
2421 // whether either value in the interval overflows. After analysis each
2422 // overflow variable is set to 0 if it's corresponding bound variable is valid
2423 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2424 int LoOverflow = 0, HiOverflow = 0;
2425 APInt LoBound, HiBound;
2426
2427 if (!DivIsSigned) { // udiv
2428 // e.g. X/5 op 3 --> [15, 20)
2429 LoBound = Prod;
2430 HiOverflow = LoOverflow = ProdOV;
2431 if (!HiOverflow) {
2432 // If this is not an exact divide, then many values in the range collapse
2433 // to the same result value.
2434 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2435 }
2436 } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2437 if (C.isNullValue()) { // (X / pos) op 0
2438 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2439 LoBound = -(RangeSize - 1);
2440 HiBound = RangeSize;
2441 } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2442 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
2443 HiOverflow = LoOverflow = ProdOV;
2444 if (!HiOverflow)
2445 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2446 } else { // (X / pos) op neg
2447 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2448 HiBound = Prod + 1;
2449 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2450 if (!LoOverflow) {
2451 APInt DivNeg = -RangeSize;
2452 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2453 }
2454 }
2455 } else if (C2->isNegative()) { // Divisor is < 0.
2456 if (Div->isExact())
2457 RangeSize.negate();
2458 if (C.isNullValue()) { // (X / neg) op 0
2459 // e.g. X/-5 op 0 --> [-4, 5)
2460 LoBound = RangeSize + 1;
2461 HiBound = -RangeSize;
2462 if (HiBound == *C2) { // -INTMIN = INTMIN
2463 HiOverflow = 1; // [INTMIN+1, overflow)
2464 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2465 }
2466 } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2467 // e.g. X/-5 op 3 --> [-19, -14)
2468 HiBound = Prod + 1;
2469 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2470 if (!LoOverflow)
2471 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2472 } else { // (X / neg) op neg
2473 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
2474 LoOverflow = HiOverflow = ProdOV;
2475 if (!HiOverflow)
2476 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2477 }
2478
2479 // Dividing by a negative swaps the condition. LT <-> GT
2480 Pred = ICmpInst::getSwappedPredicate(Pred);
2481 }
2482
2483 Value *X = Div->getOperand(0);
2484 switch (Pred) {
2485 default: llvm_unreachable("Unhandled icmp opcode!");
2486 case ICmpInst::ICMP_EQ:
2487 if (LoOverflow && HiOverflow)
2488 return replaceInstUsesWith(Cmp, Builder.getFalse());
2489 if (HiOverflow)
2490 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2491 ICmpInst::ICMP_UGE, X,
2492 ConstantInt::get(Div->getType(), LoBound));
2493 if (LoOverflow)
2494 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2495 ICmpInst::ICMP_ULT, X,
2496 ConstantInt::get(Div->getType(), HiBound));
2497 return replaceInstUsesWith(
2498 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2499 case ICmpInst::ICMP_NE:
2500 if (LoOverflow && HiOverflow)
2501 return replaceInstUsesWith(Cmp, Builder.getTrue());
2502 if (HiOverflow)
2503 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2504 ICmpInst::ICMP_ULT, X,
2505 ConstantInt::get(Div->getType(), LoBound));
2506 if (LoOverflow)
2507 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2508 ICmpInst::ICMP_UGE, X,
2509 ConstantInt::get(Div->getType(), HiBound));
2510 return replaceInstUsesWith(Cmp,
2511 insertRangeTest(X, LoBound, HiBound,
2512 DivIsSigned, false));
2513 case ICmpInst::ICMP_ULT:
2514 case ICmpInst::ICMP_SLT:
2515 if (LoOverflow == +1) // Low bound is greater than input range.
2516 return replaceInstUsesWith(Cmp, Builder.getTrue());
2517 if (LoOverflow == -1) // Low bound is less than input range.
2518 return replaceInstUsesWith(Cmp, Builder.getFalse());
2519 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2520 case ICmpInst::ICMP_UGT:
2521 case ICmpInst::ICMP_SGT:
2522 if (HiOverflow == +1) // High bound greater than input range.
2523 return replaceInstUsesWith(Cmp, Builder.getFalse());
2524 if (HiOverflow == -1) // High bound less than input range.
2525 return replaceInstUsesWith(Cmp, Builder.getTrue());
2526 if (Pred == ICmpInst::ICMP_UGT)
2527 return new ICmpInst(ICmpInst::ICMP_UGE, X,
2528 ConstantInt::get(Div->getType(), HiBound));
2529 return new ICmpInst(ICmpInst::ICMP_SGE, X,
2530 ConstantInt::get(Div->getType(), HiBound));
2531 }
2532
2533 return nullptr;
2534 }
2535
2536 /// Fold icmp (sub X, Y), C.
foldICmpSubConstant(ICmpInst & Cmp,BinaryOperator * Sub,const APInt & C)2537 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2538 BinaryOperator *Sub,
2539 const APInt &C) {
2540 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2541 ICmpInst::Predicate Pred = Cmp.getPredicate();
2542 const APInt *C2;
2543 APInt SubResult;
2544
2545 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2546 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2547 return new ICmpInst(Cmp.getPredicate(), Y,
2548 ConstantInt::get(Y->getType(), 0));
2549
2550 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2551 if (match(X, m_APInt(C2)) &&
2552 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2553 (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2554 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2555 return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2556 ConstantInt::get(Y->getType(), SubResult));
2557
2558 // The following transforms are only worth it if the only user of the subtract
2559 // is the icmp.
2560 if (!Sub->hasOneUse())
2561 return nullptr;
2562
2563 if (Sub->hasNoSignedWrap()) {
2564 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2565 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2566 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2567
2568 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2569 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2570 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2571
2572 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2573 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2574 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2575
2576 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2577 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2578 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2579 }
2580
2581 if (!match(X, m_APInt(C2)))
2582 return nullptr;
2583
2584 // C2 - Y <u C -> (Y | (C - 1)) == C2
2585 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2586 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2587 (*C2 & (C - 1)) == (C - 1))
2588 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2589
2590 // C2 - Y >u C -> (Y | C) != C2
2591 // iff C2 & C == C and C + 1 is a power of 2
2592 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2593 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2594
2595 return nullptr;
2596 }
2597
2598 /// Fold icmp (add X, Y), C.
foldICmpAddConstant(ICmpInst & Cmp,BinaryOperator * Add,const APInt & C)2599 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2600 BinaryOperator *Add,
2601 const APInt &C) {
2602 Value *Y = Add->getOperand(1);
2603 const APInt *C2;
2604 if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2605 return nullptr;
2606
2607 // Fold icmp pred (add X, C2), C.
2608 Value *X = Add->getOperand(0);
2609 Type *Ty = Add->getType();
2610 CmpInst::Predicate Pred = Cmp.getPredicate();
2611
2612 // If the add does not wrap, we can always adjust the compare by subtracting
2613 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2614 // are canonicalized to SGT/SLT/UGT/ULT.
2615 if ((Add->hasNoSignedWrap() &&
2616 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2617 (Add->hasNoUnsignedWrap() &&
2618 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2619 bool Overflow;
2620 APInt NewC =
2621 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2622 // If there is overflow, the result must be true or false.
2623 // TODO: Can we assert there is no overflow because InstSimplify always
2624 // handles those cases?
2625 if (!Overflow)
2626 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2627 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2628 }
2629
2630 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2631 const APInt &Upper = CR.getUpper();
2632 const APInt &Lower = CR.getLower();
2633 if (Cmp.isSigned()) {
2634 if (Lower.isSignMask())
2635 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2636 if (Upper.isSignMask())
2637 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2638 } else {
2639 if (Lower.isMinValue())
2640 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2641 if (Upper.isMinValue())
2642 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2643 }
2644
2645 if (!Add->hasOneUse())
2646 return nullptr;
2647
2648 // X+C <u C2 -> (X & -C2) == C
2649 // iff C & (C2-1) == 0
2650 // C2 is a power of 2
2651 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2652 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2653 ConstantExpr::getNeg(cast<Constant>(Y)));
2654
2655 // X+C >u C2 -> (X & ~C2) != C
2656 // iff C & C2 == 0
2657 // C2+1 is a power of 2
2658 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2659 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2660 ConstantExpr::getNeg(cast<Constant>(Y)));
2661
2662 return nullptr;
2663 }
2664
matchThreeWayIntCompare(SelectInst * SI,Value * & LHS,Value * & RHS,ConstantInt * & Less,ConstantInt * & Equal,ConstantInt * & Greater)2665 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2666 Value *&RHS, ConstantInt *&Less,
2667 ConstantInt *&Equal,
2668 ConstantInt *&Greater) {
2669 // TODO: Generalize this to work with other comparison idioms or ensure
2670 // they get canonicalized into this form.
2671
2672 // select i1 (a == b),
2673 // i32 Equal,
2674 // i32 (select i1 (a < b), i32 Less, i32 Greater)
2675 // where Equal, Less and Greater are placeholders for any three constants.
2676 ICmpInst::Predicate PredA;
2677 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2678 !ICmpInst::isEquality(PredA))
2679 return false;
2680 Value *EqualVal = SI->getTrueValue();
2681 Value *UnequalVal = SI->getFalseValue();
2682 // We still can get non-canonical predicate here, so canonicalize.
2683 if (PredA == ICmpInst::ICMP_NE)
2684 std::swap(EqualVal, UnequalVal);
2685 if (!match(EqualVal, m_ConstantInt(Equal)))
2686 return false;
2687 ICmpInst::Predicate PredB;
2688 Value *LHS2, *RHS2;
2689 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2690 m_ConstantInt(Less), m_ConstantInt(Greater))))
2691 return false;
2692 // We can get predicate mismatch here, so canonicalize if possible:
2693 // First, ensure that 'LHS' match.
2694 if (LHS2 != LHS) {
2695 // x sgt y <--> y slt x
2696 std::swap(LHS2, RHS2);
2697 PredB = ICmpInst::getSwappedPredicate(PredB);
2698 }
2699 if (LHS2 != LHS)
2700 return false;
2701 // We also need to canonicalize 'RHS'.
2702 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2703 // x sgt C-1 <--> x sge C <--> not(x slt C)
2704 auto FlippedStrictness =
2705 InstCombiner::getFlippedStrictnessPredicateAndConstant(
2706 PredB, cast<Constant>(RHS2));
2707 if (!FlippedStrictness)
2708 return false;
2709 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2710 RHS2 = FlippedStrictness->second;
2711 // And kind-of perform the result swap.
2712 std::swap(Less, Greater);
2713 PredB = ICmpInst::ICMP_SLT;
2714 }
2715 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2716 }
2717
foldICmpSelectConstant(ICmpInst & Cmp,SelectInst * Select,ConstantInt * C)2718 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2719 SelectInst *Select,
2720 ConstantInt *C) {
2721
2722 assert(C && "Cmp RHS should be a constant int!");
2723 // If we're testing a constant value against the result of a three way
2724 // comparison, the result can be expressed directly in terms of the
2725 // original values being compared. Note: We could possibly be more
2726 // aggressive here and remove the hasOneUse test. The original select is
2727 // really likely to simplify or sink when we remove a test of the result.
2728 Value *OrigLHS, *OrigRHS;
2729 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2730 if (Cmp.hasOneUse() &&
2731 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2732 C3GreaterThan)) {
2733 assert(C1LessThan && C2Equal && C3GreaterThan);
2734
2735 bool TrueWhenLessThan =
2736 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2737 ->isAllOnesValue();
2738 bool TrueWhenEqual =
2739 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2740 ->isAllOnesValue();
2741 bool TrueWhenGreaterThan =
2742 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2743 ->isAllOnesValue();
2744
2745 // This generates the new instruction that will replace the original Cmp
2746 // Instruction. Instead of enumerating the various combinations when
2747 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2748 // false, we rely on chaining of ORs and future passes of InstCombine to
2749 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2750
2751 // When none of the three constants satisfy the predicate for the RHS (C),
2752 // the entire original Cmp can be simplified to a false.
2753 Value *Cond = Builder.getFalse();
2754 if (TrueWhenLessThan)
2755 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2756 OrigLHS, OrigRHS));
2757 if (TrueWhenEqual)
2758 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2759 OrigLHS, OrigRHS));
2760 if (TrueWhenGreaterThan)
2761 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2762 OrigLHS, OrigRHS));
2763
2764 return replaceInstUsesWith(Cmp, Cond);
2765 }
2766 return nullptr;
2767 }
2768
foldICmpBitCast(ICmpInst & Cmp,InstCombiner::BuilderTy & Builder)2769 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2770 InstCombiner::BuilderTy &Builder) {
2771 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2772 if (!Bitcast)
2773 return nullptr;
2774
2775 ICmpInst::Predicate Pred = Cmp.getPredicate();
2776 Value *Op1 = Cmp.getOperand(1);
2777 Value *BCSrcOp = Bitcast->getOperand(0);
2778
2779 // Make sure the bitcast doesn't change the number of vector elements.
2780 if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2781 Bitcast->getDestTy()->getScalarSizeInBits()) {
2782 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2783 Value *X;
2784 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2785 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
2786 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
2787 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2788 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2789 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2790 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2791 match(Op1, m_Zero()))
2792 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2793
2794 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2795 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2796 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2797
2798 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2799 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2800 return new ICmpInst(Pred, X,
2801 ConstantInt::getAllOnesValue(X->getType()));
2802 }
2803
2804 // Zero-equality checks are preserved through unsigned floating-point casts:
2805 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2806 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2807 if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2808 if (Cmp.isEquality() && match(Op1, m_Zero()))
2809 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2810
2811 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2812 // the FP extend/truncate because that cast does not change the sign-bit.
2813 // This is true for all standard IEEE-754 types and the X86 80-bit type.
2814 // The sign-bit is always the most significant bit in those types.
2815 const APInt *C;
2816 bool TrueIfSigned;
2817 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2818 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2819 if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2820 match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2821 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2822 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2823 Type *XType = X->getType();
2824
2825 // We can't currently handle Power style floating point operations here.
2826 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2827
2828 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2829 if (auto *XVTy = dyn_cast<VectorType>(XType))
2830 NewType = FixedVectorType::get(
2831 NewType, cast<FixedVectorType>(XVTy)->getNumElements());
2832 Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2833 if (TrueIfSigned)
2834 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2835 ConstantInt::getNullValue(NewType));
2836 else
2837 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2838 ConstantInt::getAllOnesValue(NewType));
2839 }
2840 }
2841 }
2842 }
2843
2844 // Test to see if the operands of the icmp are casted versions of other
2845 // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2846 if (Bitcast->getType()->isPointerTy() &&
2847 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2848 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2849 // so eliminate it as well.
2850 if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2851 Op1 = BC2->getOperand(0);
2852
2853 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2854 return new ICmpInst(Pred, BCSrcOp, Op1);
2855 }
2856
2857 // Folding: icmp <pred> iN X, C
2858 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2859 // and C is a splat of a K-bit pattern
2860 // and SC is a constant vector = <C', C', C', ..., C'>
2861 // Into:
2862 // %E = extractelement <M x iK> %vec, i32 C'
2863 // icmp <pred> iK %E, trunc(C)
2864 const APInt *C;
2865 if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2866 !Bitcast->getType()->isIntegerTy() ||
2867 !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2868 return nullptr;
2869
2870 Value *Vec;
2871 ArrayRef<int> Mask;
2872 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2873 // Check whether every element of Mask is the same constant
2874 if (is_splat(Mask)) {
2875 auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2876 auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2877 if (C->isSplat(EltTy->getBitWidth())) {
2878 // Fold the icmp based on the value of C
2879 // If C is M copies of an iK sized bit pattern,
2880 // then:
2881 // => %E = extractelement <N x iK> %vec, i32 Elem
2882 // icmp <pred> iK %SplatVal, <pattern>
2883 Value *Elem = Builder.getInt32(Mask[0]);
2884 Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2885 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2886 return new ICmpInst(Pred, Extract, NewC);
2887 }
2888 }
2889 }
2890 return nullptr;
2891 }
2892
2893 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2894 /// where X is some kind of instruction.
foldICmpInstWithConstant(ICmpInst & Cmp)2895 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
2896 const APInt *C;
2897 if (!match(Cmp.getOperand(1), m_APInt(C)))
2898 return nullptr;
2899
2900 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2901 switch (BO->getOpcode()) {
2902 case Instruction::Xor:
2903 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2904 return I;
2905 break;
2906 case Instruction::And:
2907 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2908 return I;
2909 break;
2910 case Instruction::Or:
2911 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2912 return I;
2913 break;
2914 case Instruction::Mul:
2915 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2916 return I;
2917 break;
2918 case Instruction::Shl:
2919 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2920 return I;
2921 break;
2922 case Instruction::LShr:
2923 case Instruction::AShr:
2924 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2925 return I;
2926 break;
2927 case Instruction::SRem:
2928 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2929 return I;
2930 break;
2931 case Instruction::UDiv:
2932 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2933 return I;
2934 LLVM_FALLTHROUGH;
2935 case Instruction::SDiv:
2936 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2937 return I;
2938 break;
2939 case Instruction::Sub:
2940 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2941 return I;
2942 break;
2943 case Instruction::Add:
2944 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2945 return I;
2946 break;
2947 default:
2948 break;
2949 }
2950 // TODO: These folds could be refactored to be part of the above calls.
2951 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2952 return I;
2953 }
2954
2955 // Match against CmpInst LHS being instructions other than binary operators.
2956
2957 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2958 // For now, we only support constant integers while folding the
2959 // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2960 // similar to the cases handled by binary ops above.
2961 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2962 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2963 return I;
2964 }
2965
2966 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2967 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2968 return I;
2969 }
2970
2971 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2972 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2973 return I;
2974
2975 return nullptr;
2976 }
2977
2978 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2979 /// icmp eq/ne BO, C.
foldICmpBinOpEqualityWithConstant(ICmpInst & Cmp,BinaryOperator * BO,const APInt & C)2980 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
2981 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
2982 // TODO: Some of these folds could work with arbitrary constants, but this
2983 // function is limited to scalar and vector splat constants.
2984 if (!Cmp.isEquality())
2985 return nullptr;
2986
2987 ICmpInst::Predicate Pred = Cmp.getPredicate();
2988 bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2989 Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2990 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2991
2992 switch (BO->getOpcode()) {
2993 case Instruction::SRem:
2994 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2995 if (C.isNullValue() && BO->hasOneUse()) {
2996 const APInt *BOC;
2997 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2998 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2999 return new ICmpInst(Pred, NewRem,
3000 Constant::getNullValue(BO->getType()));
3001 }
3002 }
3003 break;
3004 case Instruction::Add: {
3005 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3006 if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3007 if (BO->hasOneUse())
3008 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3009 } else if (C.isNullValue()) {
3010 // Replace ((add A, B) != 0) with (A != -B) if A or B is
3011 // efficiently invertible, or if the add has just this one use.
3012 if (Value *NegVal = dyn_castNegVal(BOp1))
3013 return new ICmpInst(Pred, BOp0, NegVal);
3014 if (Value *NegVal = dyn_castNegVal(BOp0))
3015 return new ICmpInst(Pred, NegVal, BOp1);
3016 if (BO->hasOneUse()) {
3017 Value *Neg = Builder.CreateNeg(BOp1);
3018 Neg->takeName(BO);
3019 return new ICmpInst(Pred, BOp0, Neg);
3020 }
3021 }
3022 break;
3023 }
3024 case Instruction::Xor:
3025 if (BO->hasOneUse()) {
3026 if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3027 // For the xor case, we can xor two constants together, eliminating
3028 // the explicit xor.
3029 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3030 } else if (C.isNullValue()) {
3031 // Replace ((xor A, B) != 0) with (A != B)
3032 return new ICmpInst(Pred, BOp0, BOp1);
3033 }
3034 }
3035 break;
3036 case Instruction::Sub:
3037 if (BO->hasOneUse()) {
3038 // Only check for constant LHS here, as constant RHS will be canonicalized
3039 // to add and use the fold above.
3040 if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
3041 // Replace ((sub BOC, B) != C) with (B != BOC-C).
3042 return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3043 } else if (C.isNullValue()) {
3044 // Replace ((sub A, B) != 0) with (A != B).
3045 return new ICmpInst(Pred, BOp0, BOp1);
3046 }
3047 }
3048 break;
3049 case Instruction::Or: {
3050 const APInt *BOC;
3051 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3052 // Comparing if all bits outside of a constant mask are set?
3053 // Replace (X | C) == -1 with (X & ~C) == ~C.
3054 // This removes the -1 constant.
3055 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3056 Value *And = Builder.CreateAnd(BOp0, NotBOC);
3057 return new ICmpInst(Pred, And, NotBOC);
3058 }
3059 break;
3060 }
3061 case Instruction::And: {
3062 const APInt *BOC;
3063 if (match(BOp1, m_APInt(BOC))) {
3064 // If we have ((X & C) == C), turn it into ((X & C) != 0).
3065 if (C == *BOC && C.isPowerOf2())
3066 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3067 BO, Constant::getNullValue(RHS->getType()));
3068 }
3069 break;
3070 }
3071 case Instruction::UDiv:
3072 if (C.isNullValue()) {
3073 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3074 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3075 return new ICmpInst(NewPred, BOp1, BOp0);
3076 }
3077 break;
3078 default:
3079 break;
3080 }
3081 return nullptr;
3082 }
3083
3084 /// Fold an equality icmp with LLVM intrinsic and constant operand.
foldICmpEqIntrinsicWithConstant(ICmpInst & Cmp,IntrinsicInst * II,const APInt & C)3085 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3086 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3087 Type *Ty = II->getType();
3088 unsigned BitWidth = C.getBitWidth();
3089 switch (II->getIntrinsicID()) {
3090 case Intrinsic::abs:
3091 // abs(A) == 0 -> A == 0
3092 // abs(A) == INT_MIN -> A == INT_MIN
3093 if (C.isNullValue() || C.isMinSignedValue())
3094 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3095 ConstantInt::get(Ty, C));
3096 break;
3097
3098 case Intrinsic::bswap:
3099 // bswap(A) == C -> A == bswap(C)
3100 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3101 ConstantInt::get(Ty, C.byteSwap()));
3102
3103 case Intrinsic::ctlz:
3104 case Intrinsic::cttz: {
3105 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
3106 if (C == BitWidth)
3107 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3108 ConstantInt::getNullValue(Ty));
3109
3110 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3111 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3112 // Limit to one use to ensure we don't increase instruction count.
3113 unsigned Num = C.getLimitedValue(BitWidth);
3114 if (Num != BitWidth && II->hasOneUse()) {
3115 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3116 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3117 : APInt::getHighBitsSet(BitWidth, Num + 1);
3118 APInt Mask2 = IsTrailing
3119 ? APInt::getOneBitSet(BitWidth, Num)
3120 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3121 return new ICmpInst(Cmp.getPredicate(),
3122 Builder.CreateAnd(II->getArgOperand(0), Mask1),
3123 ConstantInt::get(Ty, Mask2));
3124 }
3125 break;
3126 }
3127
3128 case Intrinsic::ctpop: {
3129 // popcount(A) == 0 -> A == 0 and likewise for !=
3130 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3131 bool IsZero = C.isNullValue();
3132 if (IsZero || C == BitWidth)
3133 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3134 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3135
3136 break;
3137 }
3138
3139 case Intrinsic::uadd_sat: {
3140 // uadd.sat(a, b) == 0 -> (a | b) == 0
3141 if (C.isNullValue()) {
3142 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3143 return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3144 }
3145 break;
3146 }
3147
3148 case Intrinsic::usub_sat: {
3149 // usub.sat(a, b) == 0 -> a <= b
3150 if (C.isNullValue()) {
3151 ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3152 ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3153 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3154 }
3155 break;
3156 }
3157 default:
3158 break;
3159 }
3160
3161 return nullptr;
3162 }
3163
3164 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
foldICmpIntrinsicWithConstant(ICmpInst & Cmp,IntrinsicInst * II,const APInt & C)3165 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3166 IntrinsicInst *II,
3167 const APInt &C) {
3168 if (Cmp.isEquality())
3169 return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3170
3171 Type *Ty = II->getType();
3172 unsigned BitWidth = C.getBitWidth();
3173 ICmpInst::Predicate Pred = Cmp.getPredicate();
3174 switch (II->getIntrinsicID()) {
3175 case Intrinsic::ctpop: {
3176 // (ctpop X > BitWidth - 1) --> X == -1
3177 Value *X = II->getArgOperand(0);
3178 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3179 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3180 ConstantInt::getAllOnesValue(Ty));
3181 // (ctpop X < BitWidth) --> X != -1
3182 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3183 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3184 ConstantInt::getAllOnesValue(Ty));
3185 break;
3186 }
3187 case Intrinsic::ctlz: {
3188 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3189 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3190 unsigned Num = C.getLimitedValue();
3191 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3192 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3193 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3194 }
3195
3196 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3197 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3198 unsigned Num = C.getLimitedValue();
3199 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3200 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3201 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3202 }
3203 break;
3204 }
3205 case Intrinsic::cttz: {
3206 // Limit to one use to ensure we don't increase instruction count.
3207 if (!II->hasOneUse())
3208 return nullptr;
3209
3210 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3211 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3212 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3213 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3214 Builder.CreateAnd(II->getArgOperand(0), Mask),
3215 ConstantInt::getNullValue(Ty));
3216 }
3217
3218 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3219 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3220 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3221 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3222 Builder.CreateAnd(II->getArgOperand(0), Mask),
3223 ConstantInt::getNullValue(Ty));
3224 }
3225 break;
3226 }
3227 default:
3228 break;
3229 }
3230
3231 return nullptr;
3232 }
3233
3234 /// Handle icmp with constant (but not simple integer constant) RHS.
foldICmpInstWithConstantNotInt(ICmpInst & I)3235 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3236 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3237 Constant *RHSC = dyn_cast<Constant>(Op1);
3238 Instruction *LHSI = dyn_cast<Instruction>(Op0);
3239 if (!RHSC || !LHSI)
3240 return nullptr;
3241
3242 switch (LHSI->getOpcode()) {
3243 case Instruction::GetElementPtr:
3244 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3245 if (RHSC->isNullValue() &&
3246 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3247 return new ICmpInst(
3248 I.getPredicate(), LHSI->getOperand(0),
3249 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3250 break;
3251 case Instruction::PHI:
3252 // Only fold icmp into the PHI if the phi and icmp are in the same
3253 // block. If in the same block, we're encouraging jump threading. If
3254 // not, we are just pessimizing the code by making an i1 phi.
3255 if (LHSI->getParent() == I.getParent())
3256 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3257 return NV;
3258 break;
3259 case Instruction::Select: {
3260 // If either operand of the select is a constant, we can fold the
3261 // comparison into the select arms, which will cause one to be
3262 // constant folded and the select turned into a bitwise or.
3263 Value *Op1 = nullptr, *Op2 = nullptr;
3264 ConstantInt *CI = nullptr;
3265 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3266 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3267 CI = dyn_cast<ConstantInt>(Op1);
3268 }
3269 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3270 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3271 CI = dyn_cast<ConstantInt>(Op2);
3272 }
3273
3274 // We only want to perform this transformation if it will not lead to
3275 // additional code. This is true if either both sides of the select
3276 // fold to a constant (in which case the icmp is replaced with a select
3277 // which will usually simplify) or this is the only user of the
3278 // select (in which case we are trading a select+icmp for a simpler
3279 // select+icmp) or all uses of the select can be replaced based on
3280 // dominance information ("Global cases").
3281 bool Transform = false;
3282 if (Op1 && Op2)
3283 Transform = true;
3284 else if (Op1 || Op2) {
3285 // Local case
3286 if (LHSI->hasOneUse())
3287 Transform = true;
3288 // Global cases
3289 else if (CI && !CI->isZero())
3290 // When Op1 is constant try replacing select with second operand.
3291 // Otherwise Op2 is constant and try replacing select with first
3292 // operand.
3293 Transform =
3294 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3295 }
3296 if (Transform) {
3297 if (!Op1)
3298 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3299 I.getName());
3300 if (!Op2)
3301 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3302 I.getName());
3303 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3304 }
3305 break;
3306 }
3307 case Instruction::IntToPtr:
3308 // icmp pred inttoptr(X), null -> icmp pred X, 0
3309 if (RHSC->isNullValue() &&
3310 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3311 return new ICmpInst(
3312 I.getPredicate(), LHSI->getOperand(0),
3313 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3314 break;
3315
3316 case Instruction::Load:
3317 // Try to optimize things like "A[i] > 4" to index computations.
3318 if (GetElementPtrInst *GEP =
3319 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3320 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3321 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3322 !cast<LoadInst>(LHSI)->isVolatile())
3323 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3324 return Res;
3325 }
3326 break;
3327 }
3328
3329 return nullptr;
3330 }
3331
3332 /// Some comparisons can be simplified.
3333 /// In this case, we are looking for comparisons that look like
3334 /// a check for a lossy truncation.
3335 /// Folds:
3336 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
3337 /// Where Mask is some pattern that produces all-ones in low bits:
3338 /// (-1 >> y)
3339 /// ((-1 << y) >> y) <- non-canonical, has extra uses
3340 /// ~(-1 << y)
3341 /// ((1 << y) + (-1)) <- non-canonical, has extra uses
3342 /// The Mask can be a constant, too.
3343 /// For some predicates, the operands are commutative.
3344 /// For others, x can only be on a specific side.
foldICmpWithLowBitMaskedVal(ICmpInst & I,InstCombiner::BuilderTy & Builder)3345 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3346 InstCombiner::BuilderTy &Builder) {
3347 ICmpInst::Predicate SrcPred;
3348 Value *X, *M, *Y;
3349 auto m_VariableMask = m_CombineOr(
3350 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3351 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3352 m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3353 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3354 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3355 if (!match(&I, m_c_ICmp(SrcPred,
3356 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3357 m_Deferred(X))))
3358 return nullptr;
3359
3360 ICmpInst::Predicate DstPred;
3361 switch (SrcPred) {
3362 case ICmpInst::Predicate::ICMP_EQ:
3363 // x & (-1 >> y) == x -> x u<= (-1 >> y)
3364 DstPred = ICmpInst::Predicate::ICMP_ULE;
3365 break;
3366 case ICmpInst::Predicate::ICMP_NE:
3367 // x & (-1 >> y) != x -> x u> (-1 >> y)
3368 DstPred = ICmpInst::Predicate::ICMP_UGT;
3369 break;
3370 case ICmpInst::Predicate::ICMP_ULT:
3371 // x & (-1 >> y) u< x -> x u> (-1 >> y)
3372 // x u> x & (-1 >> y) -> x u> (-1 >> y)
3373 DstPred = ICmpInst::Predicate::ICMP_UGT;
3374 break;
3375 case ICmpInst::Predicate::ICMP_UGE:
3376 // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
3377 // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
3378 DstPred = ICmpInst::Predicate::ICMP_ULE;
3379 break;
3380 case ICmpInst::Predicate::ICMP_SLT:
3381 // x & (-1 >> y) s< x -> x s> (-1 >> y)
3382 // x s> x & (-1 >> y) -> x s> (-1 >> y)
3383 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3384 return nullptr;
3385 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3386 return nullptr;
3387 DstPred = ICmpInst::Predicate::ICMP_SGT;
3388 break;
3389 case ICmpInst::Predicate::ICMP_SGE:
3390 // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
3391 // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
3392 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3393 return nullptr;
3394 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3395 return nullptr;
3396 DstPred = ICmpInst::Predicate::ICMP_SLE;
3397 break;
3398 case ICmpInst::Predicate::ICMP_SGT:
3399 case ICmpInst::Predicate::ICMP_SLE:
3400 return nullptr;
3401 case ICmpInst::Predicate::ICMP_UGT:
3402 case ICmpInst::Predicate::ICMP_ULE:
3403 llvm_unreachable("Instsimplify took care of commut. variant");
3404 break;
3405 default:
3406 llvm_unreachable("All possible folds are handled.");
3407 }
3408
3409 // The mask value may be a vector constant that has undefined elements. But it
3410 // may not be safe to propagate those undefs into the new compare, so replace
3411 // those elements by copying an existing, defined, and safe scalar constant.
3412 Type *OpTy = M->getType();
3413 auto *VecC = dyn_cast<Constant>(M);
3414 if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) {
3415 auto *OpVTy = cast<FixedVectorType>(OpTy);
3416 Constant *SafeReplacementConstant = nullptr;
3417 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3418 if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3419 SafeReplacementConstant = VecC->getAggregateElement(i);
3420 break;
3421 }
3422 }
3423 assert(SafeReplacementConstant && "Failed to find undef replacement");
3424 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3425 }
3426
3427 return Builder.CreateICmp(DstPred, X, M);
3428 }
3429
3430 /// Some comparisons can be simplified.
3431 /// In this case, we are looking for comparisons that look like
3432 /// a check for a lossy signed truncation.
3433 /// Folds: (MaskedBits is a constant.)
3434 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3435 /// Into:
3436 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3437 /// Where KeptBits = bitwidth(%x) - MaskedBits
3438 static Value *
foldICmpWithTruncSignExtendedVal(ICmpInst & I,InstCombiner::BuilderTy & Builder)3439 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3440 InstCombiner::BuilderTy &Builder) {
3441 ICmpInst::Predicate SrcPred;
3442 Value *X;
3443 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3444 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3445 if (!match(&I, m_c_ICmp(SrcPred,
3446 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3447 m_APInt(C1))),
3448 m_Deferred(X))))
3449 return nullptr;
3450
3451 // Potential handling of non-splats: for each element:
3452 // * if both are undef, replace with constant 0.
3453 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3454 // * if both are not undef, and are different, bailout.
3455 // * else, only one is undef, then pick the non-undef one.
3456
3457 // The shift amount must be equal.
3458 if (*C0 != *C1)
3459 return nullptr;
3460 const APInt &MaskedBits = *C0;
3461 assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3462
3463 ICmpInst::Predicate DstPred;
3464 switch (SrcPred) {
3465 case ICmpInst::Predicate::ICMP_EQ:
3466 // ((%x << MaskedBits) a>> MaskedBits) == %x
3467 // =>
3468 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3469 DstPred = ICmpInst::Predicate::ICMP_ULT;
3470 break;
3471 case ICmpInst::Predicate::ICMP_NE:
3472 // ((%x << MaskedBits) a>> MaskedBits) != %x
3473 // =>
3474 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3475 DstPred = ICmpInst::Predicate::ICMP_UGE;
3476 break;
3477 // FIXME: are more folds possible?
3478 default:
3479 return nullptr;
3480 }
3481
3482 auto *XType = X->getType();
3483 const unsigned XBitWidth = XType->getScalarSizeInBits();
3484 const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3485 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3486
3487 // KeptBits = bitwidth(%x) - MaskedBits
3488 const APInt KeptBits = BitWidth - MaskedBits;
3489 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3490 // ICmpCst = (1 << KeptBits)
3491 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3492 assert(ICmpCst.isPowerOf2());
3493 // AddCst = (1 << (KeptBits-1))
3494 const APInt AddCst = ICmpCst.lshr(1);
3495 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3496
3497 // T0 = add %x, AddCst
3498 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3499 // T1 = T0 DstPred ICmpCst
3500 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3501
3502 return T1;
3503 }
3504
3505 // Given pattern:
3506 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3507 // we should move shifts to the same hand of 'and', i.e. rewrite as
3508 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
3509 // We are only interested in opposite logical shifts here.
3510 // One of the shifts can be truncated.
3511 // If we can, we want to end up creating 'lshr' shift.
3512 static Value *
foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst & I,const SimplifyQuery SQ,InstCombiner::BuilderTy & Builder)3513 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3514 InstCombiner::BuilderTy &Builder) {
3515 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3516 !I.getOperand(0)->hasOneUse())
3517 return nullptr;
3518
3519 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3520
3521 // Look for an 'and' of two logical shifts, one of which may be truncated.
3522 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3523 Instruction *XShift, *MaybeTruncation, *YShift;
3524 if (!match(
3525 I.getOperand(0),
3526 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3527 m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3528 m_AnyLogicalShift, m_Instruction(YShift))),
3529 m_Instruction(MaybeTruncation)))))
3530 return nullptr;
3531
3532 // We potentially looked past 'trunc', but only when matching YShift,
3533 // therefore YShift must have the widest type.
3534 Instruction *WidestShift = YShift;
3535 // Therefore XShift must have the shallowest type.
3536 // Or they both have identical types if there was no truncation.
3537 Instruction *NarrowestShift = XShift;
3538
3539 Type *WidestTy = WidestShift->getType();
3540 Type *NarrowestTy = NarrowestShift->getType();
3541 assert(NarrowestTy == I.getOperand(0)->getType() &&
3542 "We did not look past any shifts while matching XShift though.");
3543 bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3544
3545 // If YShift is a 'lshr', swap the shifts around.
3546 if (match(YShift, m_LShr(m_Value(), m_Value())))
3547 std::swap(XShift, YShift);
3548
3549 // The shifts must be in opposite directions.
3550 auto XShiftOpcode = XShift->getOpcode();
3551 if (XShiftOpcode == YShift->getOpcode())
3552 return nullptr; // Do not care about same-direction shifts here.
3553
3554 Value *X, *XShAmt, *Y, *YShAmt;
3555 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3556 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3557
3558 // If one of the values being shifted is a constant, then we will end with
3559 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3560 // however, we will need to ensure that we won't increase instruction count.
3561 if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3562 // At least one of the hands of the 'and' should be one-use shift.
3563 if (!match(I.getOperand(0),
3564 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3565 return nullptr;
3566 if (HadTrunc) {
3567 // Due to the 'trunc', we will need to widen X. For that either the old
3568 // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3569 if (!MaybeTruncation->hasOneUse() &&
3570 !NarrowestShift->getOperand(1)->hasOneUse())
3571 return nullptr;
3572 }
3573 }
3574
3575 // We have two shift amounts from two different shifts. The types of those
3576 // shift amounts may not match. If that's the case let's bailout now.
3577 if (XShAmt->getType() != YShAmt->getType())
3578 return nullptr;
3579
3580 // As input, we have the following pattern:
3581 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3582 // We want to rewrite that as:
3583 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
3584 // While we know that originally (Q+K) would not overflow
3585 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
3586 // shift amounts. so it may now overflow in smaller bitwidth.
3587 // To ensure that does not happen, we need to ensure that the total maximal
3588 // shift amount is still representable in that smaller bit width.
3589 unsigned MaximalPossibleTotalShiftAmount =
3590 (WidestTy->getScalarSizeInBits() - 1) +
3591 (NarrowestTy->getScalarSizeInBits() - 1);
3592 APInt MaximalRepresentableShiftAmount =
3593 APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3594 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3595 return nullptr;
3596
3597 // Can we fold (XShAmt+YShAmt) ?
3598 auto *NewShAmt = dyn_cast_or_null<Constant>(
3599 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3600 /*isNUW=*/false, SQ.getWithInstruction(&I)));
3601 if (!NewShAmt)
3602 return nullptr;
3603 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3604 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3605
3606 // Is the new shift amount smaller than the bit width?
3607 // FIXME: could also rely on ConstantRange.
3608 if (!match(NewShAmt,
3609 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3610 APInt(WidestBitWidth, WidestBitWidth))))
3611 return nullptr;
3612
3613 // An extra legality check is needed if we had trunc-of-lshr.
3614 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3615 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3616 WidestShift]() {
3617 // It isn't obvious whether it's worth it to analyze non-constants here.
3618 // Also, let's basically give up on non-splat cases, pessimizing vectors.
3619 // If *any* of these preconditions matches we can perform the fold.
3620 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3621 ? NewShAmt->getSplatValue()
3622 : NewShAmt;
3623 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3624 if (NewShAmtSplat &&
3625 (NewShAmtSplat->isNullValue() ||
3626 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3627 return true;
3628 // We consider *min* leading zeros so a single outlier
3629 // blocks the transform as opposed to allowing it.
3630 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3631 KnownBits Known = computeKnownBits(C, SQ.DL);
3632 unsigned MinLeadZero = Known.countMinLeadingZeros();
3633 // If the value being shifted has at most lowest bit set we can fold.
3634 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3635 if (MaxActiveBits <= 1)
3636 return true;
3637 // Precondition: NewShAmt u<= countLeadingZeros(C)
3638 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3639 return true;
3640 }
3641 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3642 KnownBits Known = computeKnownBits(C, SQ.DL);
3643 unsigned MinLeadZero = Known.countMinLeadingZeros();
3644 // If the value being shifted has at most lowest bit set we can fold.
3645 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3646 if (MaxActiveBits <= 1)
3647 return true;
3648 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3649 if (NewShAmtSplat) {
3650 APInt AdjNewShAmt =
3651 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3652 if (AdjNewShAmt.ule(MinLeadZero))
3653 return true;
3654 }
3655 }
3656 return false; // Can't tell if it's ok.
3657 };
3658 if (!CanFold())
3659 return nullptr;
3660 }
3661
3662 // All good, we can do this fold.
3663 X = Builder.CreateZExt(X, WidestTy);
3664 Y = Builder.CreateZExt(Y, WidestTy);
3665 // The shift is the same that was for X.
3666 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3667 ? Builder.CreateLShr(X, NewShAmt)
3668 : Builder.CreateShl(X, NewShAmt);
3669 Value *T1 = Builder.CreateAnd(T0, Y);
3670 return Builder.CreateICmp(I.getPredicate(), T1,
3671 Constant::getNullValue(WidestTy));
3672 }
3673
3674 /// Fold
3675 /// (-1 u/ x) u< y
3676 /// ((x * y) u/ x) != y
3677 /// to
3678 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3679 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3680 /// will mean that we are looking for the opposite answer.
foldUnsignedMultiplicationOverflowCheck(ICmpInst & I)3681 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3682 ICmpInst::Predicate Pred;
3683 Value *X, *Y;
3684 Instruction *Mul;
3685 bool NeedNegation;
3686 // Look for: (-1 u/ x) u</u>= y
3687 if (!I.isEquality() &&
3688 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3689 m_Value(Y)))) {
3690 Mul = nullptr;
3691
3692 // Are we checking that overflow does not happen, or does happen?
3693 switch (Pred) {
3694 case ICmpInst::Predicate::ICMP_ULT:
3695 NeedNegation = false;
3696 break; // OK
3697 case ICmpInst::Predicate::ICMP_UGE:
3698 NeedNegation = true;
3699 break; // OK
3700 default:
3701 return nullptr; // Wrong predicate.
3702 }
3703 } else // Look for: ((x * y) u/ x) !=/== y
3704 if (I.isEquality() &&
3705 match(&I, m_c_ICmp(Pred, m_Value(Y),
3706 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3707 m_Value(X)),
3708 m_Instruction(Mul)),
3709 m_Deferred(X)))))) {
3710 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3711 } else
3712 return nullptr;
3713
3714 BuilderTy::InsertPointGuard Guard(Builder);
3715 // If the pattern included (x * y), we'll want to insert new instructions
3716 // right before that original multiplication so that we can replace it.
3717 bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3718 if (MulHadOtherUses)
3719 Builder.SetInsertPoint(Mul);
3720
3721 Function *F = Intrinsic::getDeclaration(
3722 I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3723 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3724
3725 // If the multiplication was used elsewhere, to ensure that we don't leave
3726 // "duplicate" instructions, replace uses of that original multiplication
3727 // with the multiplication result from the with.overflow intrinsic.
3728 if (MulHadOtherUses)
3729 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3730
3731 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3732 if (NeedNegation) // This technically increases instruction count.
3733 Res = Builder.CreateNot(Res, "umul.not.ov");
3734
3735 // If we replaced the mul, erase it. Do this after all uses of Builder,
3736 // as the mul is used as insertion point.
3737 if (MulHadOtherUses)
3738 eraseInstFromFunction(*Mul);
3739
3740 return Res;
3741 }
3742
foldICmpXNegX(ICmpInst & I)3743 static Instruction *foldICmpXNegX(ICmpInst &I) {
3744 CmpInst::Predicate Pred;
3745 Value *X;
3746 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3747 return nullptr;
3748
3749 if (ICmpInst::isSigned(Pred))
3750 Pred = ICmpInst::getSwappedPredicate(Pred);
3751 else if (ICmpInst::isUnsigned(Pred))
3752 Pred = ICmpInst::getSignedPredicate(Pred);
3753 // else for equality-comparisons just keep the predicate.
3754
3755 return ICmpInst::Create(Instruction::ICmp, Pred, X,
3756 Constant::getNullValue(X->getType()), I.getName());
3757 }
3758
3759 /// Try to fold icmp (binop), X or icmp X, (binop).
3760 /// TODO: A large part of this logic is duplicated in InstSimplify's
3761 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3762 /// duplication.
foldICmpBinOp(ICmpInst & I,const SimplifyQuery & SQ)3763 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3764 const SimplifyQuery &SQ) {
3765 const SimplifyQuery Q = SQ.getWithInstruction(&I);
3766 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3767
3768 // Special logic for binary operators.
3769 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3770 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3771 if (!BO0 && !BO1)
3772 return nullptr;
3773
3774 if (Instruction *NewICmp = foldICmpXNegX(I))
3775 return NewICmp;
3776
3777 const CmpInst::Predicate Pred = I.getPredicate();
3778 Value *X;
3779
3780 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3781 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3782 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3783 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3784 return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3785 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3786 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3787 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3788 return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3789
3790 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3791 if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3792 NoOp0WrapProblem =
3793 ICmpInst::isEquality(Pred) ||
3794 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3795 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3796 if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3797 NoOp1WrapProblem =
3798 ICmpInst::isEquality(Pred) ||
3799 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3800 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3801
3802 // Analyze the case when either Op0 or Op1 is an add instruction.
3803 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3804 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3805 if (BO0 && BO0->getOpcode() == Instruction::Add) {
3806 A = BO0->getOperand(0);
3807 B = BO0->getOperand(1);
3808 }
3809 if (BO1 && BO1->getOpcode() == Instruction::Add) {
3810 C = BO1->getOperand(0);
3811 D = BO1->getOperand(1);
3812 }
3813
3814 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3815 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3816 if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3817 return new ICmpInst(Pred, A == Op1 ? B : A,
3818 Constant::getNullValue(Op1->getType()));
3819
3820 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3821 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3822 if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3823 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3824 C == Op0 ? D : C);
3825
3826 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3827 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3828 NoOp1WrapProblem) {
3829 // Determine Y and Z in the form icmp (X+Y), (X+Z).
3830 Value *Y, *Z;
3831 if (A == C) {
3832 // C + B == C + D -> B == D
3833 Y = B;
3834 Z = D;
3835 } else if (A == D) {
3836 // D + B == C + D -> B == C
3837 Y = B;
3838 Z = C;
3839 } else if (B == C) {
3840 // A + C == C + D -> A == D
3841 Y = A;
3842 Z = D;
3843 } else {
3844 assert(B == D);
3845 // A + D == C + D -> A == C
3846 Y = A;
3847 Z = C;
3848 }
3849 return new ICmpInst(Pred, Y, Z);
3850 }
3851
3852 // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3853 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3854 match(B, m_AllOnes()))
3855 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3856
3857 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3858 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3859 match(B, m_AllOnes()))
3860 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3861
3862 // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3863 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3864 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3865
3866 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3867 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3868 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3869
3870 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3871 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3872 match(D, m_AllOnes()))
3873 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3874
3875 // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3876 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3877 match(D, m_AllOnes()))
3878 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3879
3880 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3881 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3882 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3883
3884 // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3885 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3886 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3887
3888 // TODO: The subtraction-related identities shown below also hold, but
3889 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3890 // wouldn't happen even if they were implemented.
3891 //
3892 // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3893 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3894 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3895 // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3896
3897 // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3898 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3899 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3900
3901 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3902 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3903 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3904
3905 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3906 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3907 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3908
3909 // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3910 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3911 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3912
3913 // if C1 has greater magnitude than C2:
3914 // icmp (A + C1), (C + C2) -> icmp (A + C3), C
3915 // s.t. C3 = C1 - C2
3916 //
3917 // if C2 has greater magnitude than C1:
3918 // icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3919 // s.t. C3 = C2 - C1
3920 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3921 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3922 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3923 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3924 const APInt &AP1 = C1->getValue();
3925 const APInt &AP2 = C2->getValue();
3926 if (AP1.isNegative() == AP2.isNegative()) {
3927 APInt AP1Abs = C1->getValue().abs();
3928 APInt AP2Abs = C2->getValue().abs();
3929 if (AP1Abs.uge(AP2Abs)) {
3930 ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3931 Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3932 return new ICmpInst(Pred, NewAdd, C);
3933 } else {
3934 ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3935 Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3936 return new ICmpInst(Pred, A, NewAdd);
3937 }
3938 }
3939 }
3940
3941 // Analyze the case when either Op0 or Op1 is a sub instruction.
3942 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3943 A = nullptr;
3944 B = nullptr;
3945 C = nullptr;
3946 D = nullptr;
3947 if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3948 A = BO0->getOperand(0);
3949 B = BO0->getOperand(1);
3950 }
3951 if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3952 C = BO1->getOperand(0);
3953 D = BO1->getOperand(1);
3954 }
3955
3956 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3957 if (A == Op1 && NoOp0WrapProblem)
3958 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3959 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3960 if (C == Op0 && NoOp1WrapProblem)
3961 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3962
3963 // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3964 // (A - B) u>/u<= A --> B u>/u<= A
3965 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3966 return new ICmpInst(Pred, B, A);
3967 // C u</u>= (C - D) --> C u</u>= D
3968 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3969 return new ICmpInst(Pred, C, D);
3970 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0
3971 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3972 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3973 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3974 // C u<=/u> (C - D) --> C u</u>= D iff B != 0
3975 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3976 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3977 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3978
3979 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3980 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3981 return new ICmpInst(Pred, A, C);
3982
3983 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3984 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3985 return new ICmpInst(Pred, D, B);
3986
3987 // icmp (0-X) < cst --> x > -cst
3988 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3989 Value *X;
3990 if (match(BO0, m_Neg(m_Value(X))))
3991 if (Constant *RHSC = dyn_cast<Constant>(Op1))
3992 if (RHSC->isNotMinSignedValue())
3993 return new ICmpInst(I.getSwappedPredicate(), X,
3994 ConstantExpr::getNeg(RHSC));
3995 }
3996
3997 {
3998 // Try to remove shared constant multiplier from equality comparison:
3999 // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4000 Value *X, *Y;
4001 const APInt *C;
4002 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4003 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4004 if (!C->countTrailingZeros() ||
4005 (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4006 (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4007 return new ICmpInst(Pred, X, Y);
4008 }
4009
4010 BinaryOperator *SRem = nullptr;
4011 // icmp (srem X, Y), Y
4012 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4013 SRem = BO0;
4014 // icmp Y, (srem X, Y)
4015 else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4016 Op0 == BO1->getOperand(1))
4017 SRem = BO1;
4018 if (SRem) {
4019 // We don't check hasOneUse to avoid increasing register pressure because
4020 // the value we use is the same value this instruction was already using.
4021 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4022 default:
4023 break;
4024 case ICmpInst::ICMP_EQ:
4025 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4026 case ICmpInst::ICMP_NE:
4027 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4028 case ICmpInst::ICMP_SGT:
4029 case ICmpInst::ICMP_SGE:
4030 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4031 Constant::getAllOnesValue(SRem->getType()));
4032 case ICmpInst::ICMP_SLT:
4033 case ICmpInst::ICMP_SLE:
4034 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4035 Constant::getNullValue(SRem->getType()));
4036 }
4037 }
4038
4039 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4040 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4041 switch (BO0->getOpcode()) {
4042 default:
4043 break;
4044 case Instruction::Add:
4045 case Instruction::Sub:
4046 case Instruction::Xor: {
4047 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4048 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4049
4050 const APInt *C;
4051 if (match(BO0->getOperand(1), m_APInt(C))) {
4052 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4053 if (C->isSignMask()) {
4054 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4055 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4056 }
4057
4058 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4059 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4060 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4061 NewPred = I.getSwappedPredicate(NewPred);
4062 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4063 }
4064 }
4065 break;
4066 }
4067 case Instruction::Mul: {
4068 if (!I.isEquality())
4069 break;
4070
4071 const APInt *C;
4072 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
4073 !C->isOneValue()) {
4074 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4075 // Mask = -1 >> count-trailing-zeros(C).
4076 if (unsigned TZs = C->countTrailingZeros()) {
4077 Constant *Mask = ConstantInt::get(
4078 BO0->getType(),
4079 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4080 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4081 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4082 return new ICmpInst(Pred, And1, And2);
4083 }
4084 }
4085 break;
4086 }
4087 case Instruction::UDiv:
4088 case Instruction::LShr:
4089 if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4090 break;
4091 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4092
4093 case Instruction::SDiv:
4094 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4095 break;
4096 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4097
4098 case Instruction::AShr:
4099 if (!BO0->isExact() || !BO1->isExact())
4100 break;
4101 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4102
4103 case Instruction::Shl: {
4104 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4105 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4106 if (!NUW && !NSW)
4107 break;
4108 if (!NSW && I.isSigned())
4109 break;
4110 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4111 }
4112 }
4113 }
4114
4115 if (BO0) {
4116 // Transform A & (L - 1) `ult` L --> L != 0
4117 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4118 auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4119
4120 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4121 auto *Zero = Constant::getNullValue(BO0->getType());
4122 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4123 }
4124 }
4125
4126 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4127 return replaceInstUsesWith(I, V);
4128
4129 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4130 return replaceInstUsesWith(I, V);
4131
4132 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4133 return replaceInstUsesWith(I, V);
4134
4135 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4136 return replaceInstUsesWith(I, V);
4137
4138 return nullptr;
4139 }
4140
4141 /// Fold icmp Pred min|max(X, Y), X.
foldICmpWithMinMax(ICmpInst & Cmp)4142 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4143 ICmpInst::Predicate Pred = Cmp.getPredicate();
4144 Value *Op0 = Cmp.getOperand(0);
4145 Value *X = Cmp.getOperand(1);
4146
4147 // Canonicalize minimum or maximum operand to LHS of the icmp.
4148 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4149 match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4150 match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4151 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4152 std::swap(Op0, X);
4153 Pred = Cmp.getSwappedPredicate();
4154 }
4155
4156 Value *Y;
4157 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4158 // smin(X, Y) == X --> X s<= Y
4159 // smin(X, Y) s>= X --> X s<= Y
4160 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4161 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4162
4163 // smin(X, Y) != X --> X s> Y
4164 // smin(X, Y) s< X --> X s> Y
4165 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4166 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4167
4168 // These cases should be handled in InstSimplify:
4169 // smin(X, Y) s<= X --> true
4170 // smin(X, Y) s> X --> false
4171 return nullptr;
4172 }
4173
4174 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4175 // smax(X, Y) == X --> X s>= Y
4176 // smax(X, Y) s<= X --> X s>= Y
4177 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4178 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4179
4180 // smax(X, Y) != X --> X s< Y
4181 // smax(X, Y) s> X --> X s< Y
4182 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4183 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4184
4185 // These cases should be handled in InstSimplify:
4186 // smax(X, Y) s>= X --> true
4187 // smax(X, Y) s< X --> false
4188 return nullptr;
4189 }
4190
4191 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4192 // umin(X, Y) == X --> X u<= Y
4193 // umin(X, Y) u>= X --> X u<= Y
4194 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4195 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4196
4197 // umin(X, Y) != X --> X u> Y
4198 // umin(X, Y) u< X --> X u> Y
4199 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4200 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4201
4202 // These cases should be handled in InstSimplify:
4203 // umin(X, Y) u<= X --> true
4204 // umin(X, Y) u> X --> false
4205 return nullptr;
4206 }
4207
4208 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4209 // umax(X, Y) == X --> X u>= Y
4210 // umax(X, Y) u<= X --> X u>= Y
4211 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4212 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4213
4214 // umax(X, Y) != X --> X u< Y
4215 // umax(X, Y) u> X --> X u< Y
4216 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4217 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4218
4219 // These cases should be handled in InstSimplify:
4220 // umax(X, Y) u>= X --> true
4221 // umax(X, Y) u< X --> false
4222 return nullptr;
4223 }
4224
4225 return nullptr;
4226 }
4227
foldICmpEquality(ICmpInst & I)4228 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4229 if (!I.isEquality())
4230 return nullptr;
4231
4232 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4233 const CmpInst::Predicate Pred = I.getPredicate();
4234 Value *A, *B, *C, *D;
4235 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4236 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
4237 Value *OtherVal = A == Op1 ? B : A;
4238 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4239 }
4240
4241 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4242 // A^c1 == C^c2 --> A == C^(c1^c2)
4243 ConstantInt *C1, *C2;
4244 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4245 Op1->hasOneUse()) {
4246 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4247 Value *Xor = Builder.CreateXor(C, NC);
4248 return new ICmpInst(Pred, A, Xor);
4249 }
4250
4251 // A^B == A^D -> B == D
4252 if (A == C)
4253 return new ICmpInst(Pred, B, D);
4254 if (A == D)
4255 return new ICmpInst(Pred, B, C);
4256 if (B == C)
4257 return new ICmpInst(Pred, A, D);
4258 if (B == D)
4259 return new ICmpInst(Pred, A, C);
4260 }
4261 }
4262
4263 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4264 // A == (A^B) -> B == 0
4265 Value *OtherVal = A == Op0 ? B : A;
4266 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4267 }
4268
4269 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4270 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4271 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4272 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4273
4274 if (A == C) {
4275 X = B;
4276 Y = D;
4277 Z = A;
4278 } else if (A == D) {
4279 X = B;
4280 Y = C;
4281 Z = A;
4282 } else if (B == C) {
4283 X = A;
4284 Y = D;
4285 Z = B;
4286 } else if (B == D) {
4287 X = A;
4288 Y = C;
4289 Z = B;
4290 }
4291
4292 if (X) { // Build (X^Y) & Z
4293 Op1 = Builder.CreateXor(X, Y);
4294 Op1 = Builder.CreateAnd(Op1, Z);
4295 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4296 }
4297 }
4298
4299 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4300 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4301 ConstantInt *Cst1;
4302 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4303 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4304 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4305 match(Op1, m_ZExt(m_Value(A))))) {
4306 APInt Pow2 = Cst1->getValue() + 1;
4307 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4308 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4309 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4310 }
4311
4312 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4313 // For lshr and ashr pairs.
4314 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4315 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4316 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4317 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4318 unsigned TypeBits = Cst1->getBitWidth();
4319 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4320 if (ShAmt < TypeBits && ShAmt != 0) {
4321 ICmpInst::Predicate NewPred =
4322 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4323 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4324 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4325 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4326 }
4327 }
4328
4329 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4330 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4331 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4332 unsigned TypeBits = Cst1->getBitWidth();
4333 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4334 if (ShAmt < TypeBits && ShAmt != 0) {
4335 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4336 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4337 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4338 I.getName() + ".mask");
4339 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4340 }
4341 }
4342
4343 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4344 // "icmp (and X, mask), cst"
4345 uint64_t ShAmt = 0;
4346 if (Op0->hasOneUse() &&
4347 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4348 match(Op1, m_ConstantInt(Cst1)) &&
4349 // Only do this when A has multiple uses. This is most important to do
4350 // when it exposes other optimizations.
4351 !A->hasOneUse()) {
4352 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4353
4354 if (ShAmt < ASize) {
4355 APInt MaskV =
4356 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4357 MaskV <<= ShAmt;
4358
4359 APInt CmpV = Cst1->getValue().zext(ASize);
4360 CmpV <<= ShAmt;
4361
4362 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4363 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4364 }
4365 }
4366
4367 // If both operands are byte-swapped or bit-reversed, just compare the
4368 // original values.
4369 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4370 // and handle more intrinsics.
4371 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4372 (match(Op0, m_BitReverse(m_Value(A))) &&
4373 match(Op1, m_BitReverse(m_Value(B)))))
4374 return new ICmpInst(Pred, A, B);
4375
4376 // Canonicalize checking for a power-of-2-or-zero value:
4377 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4378 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4379 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4380 m_Deferred(A)))) ||
4381 !match(Op1, m_ZeroInt()))
4382 A = nullptr;
4383
4384 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4385 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4386 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4387 A = Op1;
4388 else if (match(Op1,
4389 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4390 A = Op0;
4391
4392 if (A) {
4393 Type *Ty = A->getType();
4394 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4395 return Pred == ICmpInst::ICMP_EQ
4396 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4397 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4398 }
4399
4400 return nullptr;
4401 }
4402
foldICmpWithZextOrSext(ICmpInst & ICmp,InstCombiner::BuilderTy & Builder)4403 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4404 InstCombiner::BuilderTy &Builder) {
4405 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4406 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4407 Value *X;
4408 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4409 return nullptr;
4410
4411 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4412 bool IsSignedCmp = ICmp.isSigned();
4413 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4414 // If the signedness of the two casts doesn't agree (i.e. one is a sext
4415 // and the other is a zext), then we can't handle this.
4416 // TODO: This is too strict. We can handle some predicates (equality?).
4417 if (CastOp0->getOpcode() != CastOp1->getOpcode())
4418 return nullptr;
4419
4420 // Not an extension from the same type?
4421 Value *Y = CastOp1->getOperand(0);
4422 Type *XTy = X->getType(), *YTy = Y->getType();
4423 if (XTy != YTy) {
4424 // One of the casts must have one use because we are creating a new cast.
4425 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4426 return nullptr;
4427 // Extend the narrower operand to the type of the wider operand.
4428 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4429 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4430 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4431 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4432 else
4433 return nullptr;
4434 }
4435
4436 // (zext X) == (zext Y) --> X == Y
4437 // (sext X) == (sext Y) --> X == Y
4438 if (ICmp.isEquality())
4439 return new ICmpInst(ICmp.getPredicate(), X, Y);
4440
4441 // A signed comparison of sign extended values simplifies into a
4442 // signed comparison.
4443 if (IsSignedCmp && IsSignedExt)
4444 return new ICmpInst(ICmp.getPredicate(), X, Y);
4445
4446 // The other three cases all fold into an unsigned comparison.
4447 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4448 }
4449
4450 // Below here, we are only folding a compare with constant.
4451 auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4452 if (!C)
4453 return nullptr;
4454
4455 // Compute the constant that would happen if we truncated to SrcTy then
4456 // re-extended to DestTy.
4457 Type *SrcTy = CastOp0->getSrcTy();
4458 Type *DestTy = CastOp0->getDestTy();
4459 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4460 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4461
4462 // If the re-extended constant didn't change...
4463 if (Res2 == C) {
4464 if (ICmp.isEquality())
4465 return new ICmpInst(ICmp.getPredicate(), X, Res1);
4466
4467 // A signed comparison of sign extended values simplifies into a
4468 // signed comparison.
4469 if (IsSignedExt && IsSignedCmp)
4470 return new ICmpInst(ICmp.getPredicate(), X, Res1);
4471
4472 // The other three cases all fold into an unsigned comparison.
4473 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4474 }
4475
4476 // The re-extended constant changed, partly changed (in the case of a vector),
4477 // or could not be determined to be equal (in the case of a constant
4478 // expression), so the constant cannot be represented in the shorter type.
4479 // All the cases that fold to true or false will have already been handled
4480 // by SimplifyICmpInst, so only deal with the tricky case.
4481 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4482 return nullptr;
4483
4484 // Is source op positive?
4485 // icmp ult (sext X), C --> icmp sgt X, -1
4486 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4487 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4488
4489 // Is source op negative?
4490 // icmp ugt (sext X), C --> icmp slt X, 0
4491 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4492 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4493 }
4494
4495 /// Handle icmp (cast x), (cast or constant).
foldICmpWithCastOp(ICmpInst & ICmp)4496 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4497 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4498 if (!CastOp0)
4499 return nullptr;
4500 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4501 return nullptr;
4502
4503 Value *Op0Src = CastOp0->getOperand(0);
4504 Type *SrcTy = CastOp0->getSrcTy();
4505 Type *DestTy = CastOp0->getDestTy();
4506
4507 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4508 // integer type is the same size as the pointer type.
4509 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4510 if (isa<VectorType>(SrcTy)) {
4511 SrcTy = cast<VectorType>(SrcTy)->getElementType();
4512 DestTy = cast<VectorType>(DestTy)->getElementType();
4513 }
4514 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4515 };
4516 if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4517 CompatibleSizes(SrcTy, DestTy)) {
4518 Value *NewOp1 = nullptr;
4519 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4520 Value *PtrSrc = PtrToIntOp1->getOperand(0);
4521 if (PtrSrc->getType()->getPointerAddressSpace() ==
4522 Op0Src->getType()->getPointerAddressSpace()) {
4523 NewOp1 = PtrToIntOp1->getOperand(0);
4524 // If the pointer types don't match, insert a bitcast.
4525 if (Op0Src->getType() != NewOp1->getType())
4526 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4527 }
4528 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4529 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4530 }
4531
4532 if (NewOp1)
4533 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4534 }
4535
4536 return foldICmpWithZextOrSext(ICmp, Builder);
4537 }
4538
isNeutralValue(Instruction::BinaryOps BinaryOp,Value * RHS)4539 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4540 switch (BinaryOp) {
4541 default:
4542 llvm_unreachable("Unsupported binary op");
4543 case Instruction::Add:
4544 case Instruction::Sub:
4545 return match(RHS, m_Zero());
4546 case Instruction::Mul:
4547 return match(RHS, m_One());
4548 }
4549 }
4550
4551 OverflowResult
computeOverflow(Instruction::BinaryOps BinaryOp,bool IsSigned,Value * LHS,Value * RHS,Instruction * CxtI) const4552 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4553 bool IsSigned, Value *LHS, Value *RHS,
4554 Instruction *CxtI) const {
4555 switch (BinaryOp) {
4556 default:
4557 llvm_unreachable("Unsupported binary op");
4558 case Instruction::Add:
4559 if (IsSigned)
4560 return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4561 else
4562 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4563 case Instruction::Sub:
4564 if (IsSigned)
4565 return computeOverflowForSignedSub(LHS, RHS, CxtI);
4566 else
4567 return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4568 case Instruction::Mul:
4569 if (IsSigned)
4570 return computeOverflowForSignedMul(LHS, RHS, CxtI);
4571 else
4572 return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4573 }
4574 }
4575
OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,bool IsSigned,Value * LHS,Value * RHS,Instruction & OrigI,Value * & Result,Constant * & Overflow)4576 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4577 bool IsSigned, Value *LHS,
4578 Value *RHS, Instruction &OrigI,
4579 Value *&Result,
4580 Constant *&Overflow) {
4581 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4582 std::swap(LHS, RHS);
4583
4584 // If the overflow check was an add followed by a compare, the insertion point
4585 // may be pointing to the compare. We want to insert the new instructions
4586 // before the add in case there are uses of the add between the add and the
4587 // compare.
4588 Builder.SetInsertPoint(&OrigI);
4589
4590 Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4591 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4592 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4593
4594 if (isNeutralValue(BinaryOp, RHS)) {
4595 Result = LHS;
4596 Overflow = ConstantInt::getFalse(OverflowTy);
4597 return true;
4598 }
4599
4600 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4601 case OverflowResult::MayOverflow:
4602 return false;
4603 case OverflowResult::AlwaysOverflowsLow:
4604 case OverflowResult::AlwaysOverflowsHigh:
4605 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4606 Result->takeName(&OrigI);
4607 Overflow = ConstantInt::getTrue(OverflowTy);
4608 return true;
4609 case OverflowResult::NeverOverflows:
4610 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4611 Result->takeName(&OrigI);
4612 Overflow = ConstantInt::getFalse(OverflowTy);
4613 if (auto *Inst = dyn_cast<Instruction>(Result)) {
4614 if (IsSigned)
4615 Inst->setHasNoSignedWrap();
4616 else
4617 Inst->setHasNoUnsignedWrap();
4618 }
4619 return true;
4620 }
4621
4622 llvm_unreachable("Unexpected overflow result");
4623 }
4624
4625 /// Recognize and process idiom involving test for multiplication
4626 /// overflow.
4627 ///
4628 /// The caller has matched a pattern of the form:
4629 /// I = cmp u (mul(zext A, zext B), V
4630 /// The function checks if this is a test for overflow and if so replaces
4631 /// multiplication with call to 'mul.with.overflow' intrinsic.
4632 ///
4633 /// \param I Compare instruction.
4634 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
4635 /// the compare instruction. Must be of integer type.
4636 /// \param OtherVal The other argument of compare instruction.
4637 /// \returns Instruction which must replace the compare instruction, NULL if no
4638 /// replacement required.
processUMulZExtIdiom(ICmpInst & I,Value * MulVal,Value * OtherVal,InstCombinerImpl & IC)4639 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4640 Value *OtherVal,
4641 InstCombinerImpl &IC) {
4642 // Don't bother doing this transformation for pointers, don't do it for
4643 // vectors.
4644 if (!isa<IntegerType>(MulVal->getType()))
4645 return nullptr;
4646
4647 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4648 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4649 auto *MulInstr = dyn_cast<Instruction>(MulVal);
4650 if (!MulInstr)
4651 return nullptr;
4652 assert(MulInstr->getOpcode() == Instruction::Mul);
4653
4654 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4655 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4656 assert(LHS->getOpcode() == Instruction::ZExt);
4657 assert(RHS->getOpcode() == Instruction::ZExt);
4658 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4659
4660 // Calculate type and width of the result produced by mul.with.overflow.
4661 Type *TyA = A->getType(), *TyB = B->getType();
4662 unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4663 WidthB = TyB->getPrimitiveSizeInBits();
4664 unsigned MulWidth;
4665 Type *MulType;
4666 if (WidthB > WidthA) {
4667 MulWidth = WidthB;
4668 MulType = TyB;
4669 } else {
4670 MulWidth = WidthA;
4671 MulType = TyA;
4672 }
4673
4674 // In order to replace the original mul with a narrower mul.with.overflow,
4675 // all uses must ignore upper bits of the product. The number of used low
4676 // bits must be not greater than the width of mul.with.overflow.
4677 if (MulVal->hasNUsesOrMore(2))
4678 for (User *U : MulVal->users()) {
4679 if (U == &I)
4680 continue;
4681 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4682 // Check if truncation ignores bits above MulWidth.
4683 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4684 if (TruncWidth > MulWidth)
4685 return nullptr;
4686 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4687 // Check if AND ignores bits above MulWidth.
4688 if (BO->getOpcode() != Instruction::And)
4689 return nullptr;
4690 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4691 const APInt &CVal = CI->getValue();
4692 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4693 return nullptr;
4694 } else {
4695 // In this case we could have the operand of the binary operation
4696 // being defined in another block, and performing the replacement
4697 // could break the dominance relation.
4698 return nullptr;
4699 }
4700 } else {
4701 // Other uses prohibit this transformation.
4702 return nullptr;
4703 }
4704 }
4705
4706 // Recognize patterns
4707 switch (I.getPredicate()) {
4708 case ICmpInst::ICMP_EQ:
4709 case ICmpInst::ICMP_NE:
4710 // Recognize pattern:
4711 // mulval = mul(zext A, zext B)
4712 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4713 ConstantInt *CI;
4714 Value *ValToMask;
4715 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4716 if (ValToMask != MulVal)
4717 return nullptr;
4718 const APInt &CVal = CI->getValue() + 1;
4719 if (CVal.isPowerOf2()) {
4720 unsigned MaskWidth = CVal.logBase2();
4721 if (MaskWidth == MulWidth)
4722 break; // Recognized
4723 }
4724 }
4725 return nullptr;
4726
4727 case ICmpInst::ICMP_UGT:
4728 // Recognize pattern:
4729 // mulval = mul(zext A, zext B)
4730 // cmp ugt mulval, max
4731 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4732 APInt MaxVal = APInt::getMaxValue(MulWidth);
4733 MaxVal = MaxVal.zext(CI->getBitWidth());
4734 if (MaxVal.eq(CI->getValue()))
4735 break; // Recognized
4736 }
4737 return nullptr;
4738
4739 case ICmpInst::ICMP_UGE:
4740 // Recognize pattern:
4741 // mulval = mul(zext A, zext B)
4742 // cmp uge mulval, max+1
4743 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4744 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4745 if (MaxVal.eq(CI->getValue()))
4746 break; // Recognized
4747 }
4748 return nullptr;
4749
4750 case ICmpInst::ICMP_ULE:
4751 // Recognize pattern:
4752 // mulval = mul(zext A, zext B)
4753 // cmp ule mulval, max
4754 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4755 APInt MaxVal = APInt::getMaxValue(MulWidth);
4756 MaxVal = MaxVal.zext(CI->getBitWidth());
4757 if (MaxVal.eq(CI->getValue()))
4758 break; // Recognized
4759 }
4760 return nullptr;
4761
4762 case ICmpInst::ICMP_ULT:
4763 // Recognize pattern:
4764 // mulval = mul(zext A, zext B)
4765 // cmp ule mulval, max + 1
4766 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4767 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4768 if (MaxVal.eq(CI->getValue()))
4769 break; // Recognized
4770 }
4771 return nullptr;
4772
4773 default:
4774 return nullptr;
4775 }
4776
4777 InstCombiner::BuilderTy &Builder = IC.Builder;
4778 Builder.SetInsertPoint(MulInstr);
4779
4780 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4781 Value *MulA = A, *MulB = B;
4782 if (WidthA < MulWidth)
4783 MulA = Builder.CreateZExt(A, MulType);
4784 if (WidthB < MulWidth)
4785 MulB = Builder.CreateZExt(B, MulType);
4786 Function *F = Intrinsic::getDeclaration(
4787 I.getModule(), Intrinsic::umul_with_overflow, MulType);
4788 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4789 IC.addToWorklist(MulInstr);
4790
4791 // If there are uses of mul result other than the comparison, we know that
4792 // they are truncation or binary AND. Change them to use result of
4793 // mul.with.overflow and adjust properly mask/size.
4794 if (MulVal->hasNUsesOrMore(2)) {
4795 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4796 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4797 User *U = *UI++;
4798 if (U == &I || U == OtherVal)
4799 continue;
4800 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4801 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4802 IC.replaceInstUsesWith(*TI, Mul);
4803 else
4804 TI->setOperand(0, Mul);
4805 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4806 assert(BO->getOpcode() == Instruction::And);
4807 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4808 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4809 APInt ShortMask = CI->getValue().trunc(MulWidth);
4810 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4811 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4812 IC.replaceInstUsesWith(*BO, Zext);
4813 } else {
4814 llvm_unreachable("Unexpected Binary operation");
4815 }
4816 IC.addToWorklist(cast<Instruction>(U));
4817 }
4818 }
4819 if (isa<Instruction>(OtherVal))
4820 IC.addToWorklist(cast<Instruction>(OtherVal));
4821
4822 // The original icmp gets replaced with the overflow value, maybe inverted
4823 // depending on predicate.
4824 bool Inverse = false;
4825 switch (I.getPredicate()) {
4826 case ICmpInst::ICMP_NE:
4827 break;
4828 case ICmpInst::ICMP_EQ:
4829 Inverse = true;
4830 break;
4831 case ICmpInst::ICMP_UGT:
4832 case ICmpInst::ICMP_UGE:
4833 if (I.getOperand(0) == MulVal)
4834 break;
4835 Inverse = true;
4836 break;
4837 case ICmpInst::ICMP_ULT:
4838 case ICmpInst::ICMP_ULE:
4839 if (I.getOperand(1) == MulVal)
4840 break;
4841 Inverse = true;
4842 break;
4843 default:
4844 llvm_unreachable("Unexpected predicate");
4845 }
4846 if (Inverse) {
4847 Value *Res = Builder.CreateExtractValue(Call, 1);
4848 return BinaryOperator::CreateNot(Res);
4849 }
4850
4851 return ExtractValueInst::Create(Call, 1);
4852 }
4853
4854 /// When performing a comparison against a constant, it is possible that not all
4855 /// the bits in the LHS are demanded. This helper method computes the mask that
4856 /// IS demanded.
getDemandedBitsLHSMask(ICmpInst & I,unsigned BitWidth)4857 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4858 const APInt *RHS;
4859 if (!match(I.getOperand(1), m_APInt(RHS)))
4860 return APInt::getAllOnesValue(BitWidth);
4861
4862 // If this is a normal comparison, it demands all bits. If it is a sign bit
4863 // comparison, it only demands the sign bit.
4864 bool UnusedBit;
4865 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4866 return APInt::getSignMask(BitWidth);
4867
4868 switch (I.getPredicate()) {
4869 // For a UGT comparison, we don't care about any bits that
4870 // correspond to the trailing ones of the comparand. The value of these
4871 // bits doesn't impact the outcome of the comparison, because any value
4872 // greater than the RHS must differ in a bit higher than these due to carry.
4873 case ICmpInst::ICMP_UGT:
4874 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4875
4876 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4877 // Any value less than the RHS must differ in a higher bit because of carries.
4878 case ICmpInst::ICMP_ULT:
4879 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4880
4881 default:
4882 return APInt::getAllOnesValue(BitWidth);
4883 }
4884 }
4885
4886 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4887 /// should be swapped.
4888 /// The decision is based on how many times these two operands are reused
4889 /// as subtract operands and their positions in those instructions.
4890 /// The rationale is that several architectures use the same instruction for
4891 /// both subtract and cmp. Thus, it is better if the order of those operands
4892 /// match.
4893 /// \return true if Op0 and Op1 should be swapped.
swapMayExposeCSEOpportunities(const Value * Op0,const Value * Op1)4894 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4895 // Filter out pointer values as those cannot appear directly in subtract.
4896 // FIXME: we may want to go through inttoptrs or bitcasts.
4897 if (Op0->getType()->isPointerTy())
4898 return false;
4899 // If a subtract already has the same operands as a compare, swapping would be
4900 // bad. If a subtract has the same operands as a compare but in reverse order,
4901 // then swapping is good.
4902 int GoodToSwap = 0;
4903 for (const User *U : Op0->users()) {
4904 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4905 GoodToSwap++;
4906 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4907 GoodToSwap--;
4908 }
4909 return GoodToSwap > 0;
4910 }
4911
4912 /// Check that one use is in the same block as the definition and all
4913 /// other uses are in blocks dominated by a given block.
4914 ///
4915 /// \param DI Definition
4916 /// \param UI Use
4917 /// \param DB Block that must dominate all uses of \p DI outside
4918 /// the parent block
4919 /// \return true when \p UI is the only use of \p DI in the parent block
4920 /// and all other uses of \p DI are in blocks dominated by \p DB.
4921 ///
dominatesAllUses(const Instruction * DI,const Instruction * UI,const BasicBlock * DB) const4922 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
4923 const Instruction *UI,
4924 const BasicBlock *DB) const {
4925 assert(DI && UI && "Instruction not defined\n");
4926 // Ignore incomplete definitions.
4927 if (!DI->getParent())
4928 return false;
4929 // DI and UI must be in the same block.
4930 if (DI->getParent() != UI->getParent())
4931 return false;
4932 // Protect from self-referencing blocks.
4933 if (DI->getParent() == DB)
4934 return false;
4935 for (const User *U : DI->users()) {
4936 auto *Usr = cast<Instruction>(U);
4937 if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4938 return false;
4939 }
4940 return true;
4941 }
4942
4943 /// Return true when the instruction sequence within a block is select-cmp-br.
isChainSelectCmpBranch(const SelectInst * SI)4944 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4945 const BasicBlock *BB = SI->getParent();
4946 if (!BB)
4947 return false;
4948 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4949 if (!BI || BI->getNumSuccessors() != 2)
4950 return false;
4951 auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4952 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4953 return false;
4954 return true;
4955 }
4956
4957 /// True when a select result is replaced by one of its operands
4958 /// in select-icmp sequence. This will eventually result in the elimination
4959 /// of the select.
4960 ///
4961 /// \param SI Select instruction
4962 /// \param Icmp Compare instruction
4963 /// \param SIOpd Operand that replaces the select
4964 ///
4965 /// Notes:
4966 /// - The replacement is global and requires dominator information
4967 /// - The caller is responsible for the actual replacement
4968 ///
4969 /// Example:
4970 ///
4971 /// entry:
4972 /// %4 = select i1 %3, %C* %0, %C* null
4973 /// %5 = icmp eq %C* %4, null
4974 /// br i1 %5, label %9, label %7
4975 /// ...
4976 /// ; <label>:7 ; preds = %entry
4977 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4978 /// ...
4979 ///
4980 /// can be transformed to
4981 ///
4982 /// %5 = icmp eq %C* %0, null
4983 /// %6 = select i1 %3, i1 %5, i1 true
4984 /// br i1 %6, label %9, label %7
4985 /// ...
4986 /// ; <label>:7 ; preds = %entry
4987 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
4988 ///
4989 /// Similar when the first operand of the select is a constant or/and
4990 /// the compare is for not equal rather than equal.
4991 ///
4992 /// NOTE: The function is only called when the select and compare constants
4993 /// are equal, the optimization can work only for EQ predicates. This is not a
4994 /// major restriction since a NE compare should be 'normalized' to an equal
4995 /// compare, which usually happens in the combiner and test case
4996 /// select-cmp-br.ll checks for it.
replacedSelectWithOperand(SelectInst * SI,const ICmpInst * Icmp,const unsigned SIOpd)4997 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
4998 const ICmpInst *Icmp,
4999 const unsigned SIOpd) {
5000 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5001 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5002 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5003 // The check for the single predecessor is not the best that can be
5004 // done. But it protects efficiently against cases like when SI's
5005 // home block has two successors, Succ and Succ1, and Succ1 predecessor
5006 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5007 // replaced can be reached on either path. So the uniqueness check
5008 // guarantees that the path all uses of SI (outside SI's parent) are on
5009 // is disjoint from all other paths out of SI. But that information
5010 // is more expensive to compute, and the trade-off here is in favor
5011 // of compile-time. It should also be noticed that we check for a single
5012 // predecessor and not only uniqueness. This to handle the situation when
5013 // Succ and Succ1 points to the same basic block.
5014 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5015 NumSel++;
5016 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5017 return true;
5018 }
5019 }
5020 return false;
5021 }
5022
5023 /// Try to fold the comparison based on range information we can get by checking
5024 /// whether bits are known to be zero or one in the inputs.
foldICmpUsingKnownBits(ICmpInst & I)5025 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5026 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5027 Type *Ty = Op0->getType();
5028 ICmpInst::Predicate Pred = I.getPredicate();
5029
5030 // Get scalar or pointer size.
5031 unsigned BitWidth = Ty->isIntOrIntVectorTy()
5032 ? Ty->getScalarSizeInBits()
5033 : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5034
5035 if (!BitWidth)
5036 return nullptr;
5037
5038 KnownBits Op0Known(BitWidth);
5039 KnownBits Op1Known(BitWidth);
5040
5041 if (SimplifyDemandedBits(&I, 0,
5042 getDemandedBitsLHSMask(I, BitWidth),
5043 Op0Known, 0))
5044 return &I;
5045
5046 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
5047 Op1Known, 0))
5048 return &I;
5049
5050 // Given the known and unknown bits, compute a range that the LHS could be
5051 // in. Compute the Min, Max and RHS values based on the known bits. For the
5052 // EQ and NE we use unsigned values.
5053 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5054 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5055 if (I.isSigned()) {
5056 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
5057 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
5058 } else {
5059 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
5060 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
5061 }
5062
5063 // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5064 // out that the LHS or RHS is a constant. Constant fold this now, so that
5065 // code below can assume that Min != Max.
5066 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5067 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5068 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5069 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5070
5071 // Based on the range information we know about the LHS, see if we can
5072 // simplify this comparison. For example, (x&4) < 8 is always true.
5073 switch (Pred) {
5074 default:
5075 llvm_unreachable("Unknown icmp opcode!");
5076 case ICmpInst::ICMP_EQ:
5077 case ICmpInst::ICMP_NE: {
5078 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
5079 return Pred == CmpInst::ICMP_EQ
5080 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
5081 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5082 }
5083
5084 // If all bits are known zero except for one, then we know at most one bit
5085 // is set. If the comparison is against zero, then this is a check to see if
5086 // *that* bit is set.
5087 APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5088 if (Op1Known.isZero()) {
5089 // If the LHS is an AND with the same constant, look through it.
5090 Value *LHS = nullptr;
5091 const APInt *LHSC;
5092 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5093 *LHSC != Op0KnownZeroInverted)
5094 LHS = Op0;
5095
5096 Value *X;
5097 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5098 APInt ValToCheck = Op0KnownZeroInverted;
5099 Type *XTy = X->getType();
5100 if (ValToCheck.isPowerOf2()) {
5101 // ((1 << X) & 8) == 0 -> X != 3
5102 // ((1 << X) & 8) != 0 -> X == 3
5103 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5104 auto NewPred = ICmpInst::getInversePredicate(Pred);
5105 return new ICmpInst(NewPred, X, CmpC);
5106 } else if ((++ValToCheck).isPowerOf2()) {
5107 // ((1 << X) & 7) == 0 -> X >= 3
5108 // ((1 << X) & 7) != 0 -> X < 3
5109 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5110 auto NewPred =
5111 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5112 return new ICmpInst(NewPred, X, CmpC);
5113 }
5114 }
5115
5116 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5117 const APInt *CI;
5118 if (Op0KnownZeroInverted.isOneValue() &&
5119 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5120 // ((8 >>u X) & 1) == 0 -> X != 3
5121 // ((8 >>u X) & 1) != 0 -> X == 3
5122 unsigned CmpVal = CI->countTrailingZeros();
5123 auto NewPred = ICmpInst::getInversePredicate(Pred);
5124 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5125 }
5126 }
5127 break;
5128 }
5129 case ICmpInst::ICMP_ULT: {
5130 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5131 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5132 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5133 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5134 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5135 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5136
5137 const APInt *CmpC;
5138 if (match(Op1, m_APInt(CmpC))) {
5139 // A <u C -> A == C-1 if min(A)+1 == C
5140 if (*CmpC == Op0Min + 1)
5141 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5142 ConstantInt::get(Op1->getType(), *CmpC - 1));
5143 // X <u C --> X == 0, if the number of zero bits in the bottom of X
5144 // exceeds the log2 of C.
5145 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5146 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5147 Constant::getNullValue(Op1->getType()));
5148 }
5149 break;
5150 }
5151 case ICmpInst::ICMP_UGT: {
5152 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5153 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5154 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5155 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5156 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5157 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5158
5159 const APInt *CmpC;
5160 if (match(Op1, m_APInt(CmpC))) {
5161 // A >u C -> A == C+1 if max(a)-1 == C
5162 if (*CmpC == Op0Max - 1)
5163 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5164 ConstantInt::get(Op1->getType(), *CmpC + 1));
5165 // X >u C --> X != 0, if the number of zero bits in the bottom of X
5166 // exceeds the log2 of C.
5167 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5168 return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5169 Constant::getNullValue(Op1->getType()));
5170 }
5171 break;
5172 }
5173 case ICmpInst::ICMP_SLT: {
5174 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5175 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5176 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5177 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5178 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5179 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5180 const APInt *CmpC;
5181 if (match(Op1, m_APInt(CmpC))) {
5182 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5183 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5184 ConstantInt::get(Op1->getType(), *CmpC - 1));
5185 }
5186 break;
5187 }
5188 case ICmpInst::ICMP_SGT: {
5189 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5190 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5191 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5192 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5193 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5194 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5195 const APInt *CmpC;
5196 if (match(Op1, m_APInt(CmpC))) {
5197 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5198 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5199 ConstantInt::get(Op1->getType(), *CmpC + 1));
5200 }
5201 break;
5202 }
5203 case ICmpInst::ICMP_SGE:
5204 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5205 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5206 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5207 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5208 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5209 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5210 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5211 break;
5212 case ICmpInst::ICMP_SLE:
5213 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5214 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5215 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5216 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5217 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5218 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5219 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5220 break;
5221 case ICmpInst::ICMP_UGE:
5222 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5223 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5224 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5225 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5226 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5227 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5228 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5229 break;
5230 case ICmpInst::ICMP_ULE:
5231 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5232 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5233 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5234 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5235 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5236 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5237 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5238 break;
5239 }
5240
5241 // Turn a signed comparison into an unsigned one if both operands are known to
5242 // have the same sign.
5243 if (I.isSigned() &&
5244 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5245 (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5246 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5247
5248 return nullptr;
5249 }
5250
5251 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,Constant * C)5252 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5253 Constant *C) {
5254 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5255 "Only for relational integer predicates.");
5256
5257 Type *Type = C->getType();
5258 bool IsSigned = ICmpInst::isSigned(Pred);
5259
5260 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5261 bool WillIncrement =
5262 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5263
5264 // Check if the constant operand can be safely incremented/decremented
5265 // without overflowing/underflowing.
5266 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5267 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5268 };
5269
5270 Constant *SafeReplacementConstant = nullptr;
5271 if (auto *CI = dyn_cast<ConstantInt>(C)) {
5272 // Bail out if the constant can't be safely incremented/decremented.
5273 if (!ConstantIsOk(CI))
5274 return llvm::None;
5275 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5276 unsigned NumElts = FVTy->getNumElements();
5277 for (unsigned i = 0; i != NumElts; ++i) {
5278 Constant *Elt = C->getAggregateElement(i);
5279 if (!Elt)
5280 return llvm::None;
5281
5282 if (isa<UndefValue>(Elt))
5283 continue;
5284
5285 // Bail out if we can't determine if this constant is min/max or if we
5286 // know that this constant is min/max.
5287 auto *CI = dyn_cast<ConstantInt>(Elt);
5288 if (!CI || !ConstantIsOk(CI))
5289 return llvm::None;
5290
5291 if (!SafeReplacementConstant)
5292 SafeReplacementConstant = CI;
5293 }
5294 } else {
5295 // ConstantExpr?
5296 return llvm::None;
5297 }
5298
5299 // It may not be safe to change a compare predicate in the presence of
5300 // undefined elements, so replace those elements with the first safe constant
5301 // that we found.
5302 if (C->containsUndefElement()) {
5303 assert(SafeReplacementConstant && "Replacement constant not set");
5304 C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5305 }
5306
5307 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5308
5309 // Increment or decrement the constant.
5310 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5311 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5312
5313 return std::make_pair(NewPred, NewC);
5314 }
5315
5316 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5317 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5318 /// allows them to be folded in visitICmpInst.
canonicalizeCmpWithConstant(ICmpInst & I)5319 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5320 ICmpInst::Predicate Pred = I.getPredicate();
5321 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5322 InstCombiner::isCanonicalPredicate(Pred))
5323 return nullptr;
5324
5325 Value *Op0 = I.getOperand(0);
5326 Value *Op1 = I.getOperand(1);
5327 auto *Op1C = dyn_cast<Constant>(Op1);
5328 if (!Op1C)
5329 return nullptr;
5330
5331 auto FlippedStrictness =
5332 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5333 if (!FlippedStrictness)
5334 return nullptr;
5335
5336 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5337 }
5338
5339 /// If we have a comparison with a non-canonical predicate, if we can update
5340 /// all the users, invert the predicate and adjust all the users.
canonicalizeICmpPredicate(CmpInst & I)5341 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5342 // Is the predicate already canonical?
5343 CmpInst::Predicate Pred = I.getPredicate();
5344 if (InstCombiner::isCanonicalPredicate(Pred))
5345 return nullptr;
5346
5347 // Can all users be adjusted to predicate inversion?
5348 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5349 return nullptr;
5350
5351 // Ok, we can canonicalize comparison!
5352 // Let's first invert the comparison's predicate.
5353 I.setPredicate(CmpInst::getInversePredicate(Pred));
5354 I.setName(I.getName() + ".not");
5355
5356 // And now let's adjust every user.
5357 for (User *U : I.users()) {
5358 switch (cast<Instruction>(U)->getOpcode()) {
5359 case Instruction::Select: {
5360 auto *SI = cast<SelectInst>(U);
5361 SI->swapValues();
5362 SI->swapProfMetadata();
5363 break;
5364 }
5365 case Instruction::Br:
5366 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
5367 break;
5368 case Instruction::Xor:
5369 replaceInstUsesWith(cast<Instruction>(*U), &I);
5370 break;
5371 default:
5372 llvm_unreachable("Got unexpected user - out of sync with "
5373 "canFreelyInvertAllUsersOf() ?");
5374 }
5375 }
5376
5377 return &I;
5378 }
5379
5380 /// Integer compare with boolean values can always be turned into bitwise ops.
canonicalizeICmpBool(ICmpInst & I,InstCombiner::BuilderTy & Builder)5381 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5382 InstCombiner::BuilderTy &Builder) {
5383 Value *A = I.getOperand(0), *B = I.getOperand(1);
5384 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5385
5386 // A boolean compared to true/false can be simplified to Op0/true/false in
5387 // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5388 // Cases not handled by InstSimplify are always 'not' of Op0.
5389 if (match(B, m_Zero())) {
5390 switch (I.getPredicate()) {
5391 case CmpInst::ICMP_EQ: // A == 0 -> !A
5392 case CmpInst::ICMP_ULE: // A <=u 0 -> !A
5393 case CmpInst::ICMP_SGE: // A >=s 0 -> !A
5394 return BinaryOperator::CreateNot(A);
5395 default:
5396 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5397 }
5398 } else if (match(B, m_One())) {
5399 switch (I.getPredicate()) {
5400 case CmpInst::ICMP_NE: // A != 1 -> !A
5401 case CmpInst::ICMP_ULT: // A <u 1 -> !A
5402 case CmpInst::ICMP_SGT: // A >s -1 -> !A
5403 return BinaryOperator::CreateNot(A);
5404 default:
5405 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5406 }
5407 }
5408
5409 switch (I.getPredicate()) {
5410 default:
5411 llvm_unreachable("Invalid icmp instruction!");
5412 case ICmpInst::ICMP_EQ:
5413 // icmp eq i1 A, B -> ~(A ^ B)
5414 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5415
5416 case ICmpInst::ICMP_NE:
5417 // icmp ne i1 A, B -> A ^ B
5418 return BinaryOperator::CreateXor(A, B);
5419
5420 case ICmpInst::ICMP_UGT:
5421 // icmp ugt -> icmp ult
5422 std::swap(A, B);
5423 LLVM_FALLTHROUGH;
5424 case ICmpInst::ICMP_ULT:
5425 // icmp ult i1 A, B -> ~A & B
5426 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5427
5428 case ICmpInst::ICMP_SGT:
5429 // icmp sgt -> icmp slt
5430 std::swap(A, B);
5431 LLVM_FALLTHROUGH;
5432 case ICmpInst::ICMP_SLT:
5433 // icmp slt i1 A, B -> A & ~B
5434 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5435
5436 case ICmpInst::ICMP_UGE:
5437 // icmp uge -> icmp ule
5438 std::swap(A, B);
5439 LLVM_FALLTHROUGH;
5440 case ICmpInst::ICMP_ULE:
5441 // icmp ule i1 A, B -> ~A | B
5442 return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5443
5444 case ICmpInst::ICMP_SGE:
5445 // icmp sge -> icmp sle
5446 std::swap(A, B);
5447 LLVM_FALLTHROUGH;
5448 case ICmpInst::ICMP_SLE:
5449 // icmp sle i1 A, B -> A | ~B
5450 return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5451 }
5452 }
5453
5454 // Transform pattern like:
5455 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
5456 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
5457 // Into:
5458 // (X l>> Y) != 0
5459 // (X l>> Y) == 0
foldICmpWithHighBitMask(ICmpInst & Cmp,InstCombiner::BuilderTy & Builder)5460 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5461 InstCombiner::BuilderTy &Builder) {
5462 ICmpInst::Predicate Pred, NewPred;
5463 Value *X, *Y;
5464 if (match(&Cmp,
5465 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5466 switch (Pred) {
5467 case ICmpInst::ICMP_ULE:
5468 NewPred = ICmpInst::ICMP_NE;
5469 break;
5470 case ICmpInst::ICMP_UGT:
5471 NewPred = ICmpInst::ICMP_EQ;
5472 break;
5473 default:
5474 return nullptr;
5475 }
5476 } else if (match(&Cmp, m_c_ICmp(Pred,
5477 m_OneUse(m_CombineOr(
5478 m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5479 m_Add(m_Shl(m_One(), m_Value(Y)),
5480 m_AllOnes()))),
5481 m_Value(X)))) {
5482 // The variant with 'add' is not canonical, (the variant with 'not' is)
5483 // we only get it because it has extra uses, and can't be canonicalized,
5484
5485 switch (Pred) {
5486 case ICmpInst::ICMP_ULT:
5487 NewPred = ICmpInst::ICMP_NE;
5488 break;
5489 case ICmpInst::ICMP_UGE:
5490 NewPred = ICmpInst::ICMP_EQ;
5491 break;
5492 default:
5493 return nullptr;
5494 }
5495 } else
5496 return nullptr;
5497
5498 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5499 Constant *Zero = Constant::getNullValue(NewX->getType());
5500 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5501 }
5502
foldVectorCmp(CmpInst & Cmp,InstCombiner::BuilderTy & Builder)5503 static Instruction *foldVectorCmp(CmpInst &Cmp,
5504 InstCombiner::BuilderTy &Builder) {
5505 const CmpInst::Predicate Pred = Cmp.getPredicate();
5506 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5507 Value *V1, *V2;
5508 ArrayRef<int> M;
5509 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5510 return nullptr;
5511
5512 // If both arguments of the cmp are shuffles that use the same mask and
5513 // shuffle within a single vector, move the shuffle after the cmp:
5514 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5515 Type *V1Ty = V1->getType();
5516 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5517 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5518 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5519 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5520 }
5521
5522 // Try to canonicalize compare with splatted operand and splat constant.
5523 // TODO: We could generalize this for more than splats. See/use the code in
5524 // InstCombiner::foldVectorBinop().
5525 Constant *C;
5526 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5527 return nullptr;
5528
5529 // Length-changing splats are ok, so adjust the constants as needed:
5530 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5531 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5532 int MaskSplatIndex;
5533 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5534 // We allow undefs in matching, but this transform removes those for safety.
5535 // Demanded elements analysis should be able to recover some/all of that.
5536 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5537 ScalarC);
5538 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5539 Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5540 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5541 NewM);
5542 }
5543
5544 return nullptr;
5545 }
5546
5547 // extract(uadd.with.overflow(A, B), 0) ult A
5548 // -> extract(uadd.with.overflow(A, B), 1)
foldICmpOfUAddOv(ICmpInst & I)5549 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5550 CmpInst::Predicate Pred = I.getPredicate();
5551 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5552
5553 Value *UAddOv;
5554 Value *A, *B;
5555 auto UAddOvResultPat = m_ExtractValue<0>(
5556 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5557 if (match(Op0, UAddOvResultPat) &&
5558 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5559 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5560 (match(A, m_One()) || match(B, m_One()))) ||
5561 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5562 (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5563 // extract(uadd.with.overflow(A, B), 0) < A
5564 // extract(uadd.with.overflow(A, 1), 0) == 0
5565 // extract(uadd.with.overflow(A, -1), 0) != -1
5566 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5567 else if (match(Op1, UAddOvResultPat) &&
5568 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5569 // A > extract(uadd.with.overflow(A, B), 0)
5570 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5571 else
5572 return nullptr;
5573
5574 return ExtractValueInst::Create(UAddOv, 1);
5575 }
5576
visitICmpInst(ICmpInst & I)5577 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5578 bool Changed = false;
5579 const SimplifyQuery Q = SQ.getWithInstruction(&I);
5580 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5581 unsigned Op0Cplxity = getComplexity(Op0);
5582 unsigned Op1Cplxity = getComplexity(Op1);
5583
5584 /// Orders the operands of the compare so that they are listed from most
5585 /// complex to least complex. This puts constants before unary operators,
5586 /// before binary operators.
5587 if (Op0Cplxity < Op1Cplxity ||
5588 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5589 I.swapOperands();
5590 std::swap(Op0, Op1);
5591 Changed = true;
5592 }
5593
5594 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5595 return replaceInstUsesWith(I, V);
5596
5597 // Comparing -val or val with non-zero is the same as just comparing val
5598 // ie, abs(val) != 0 -> val != 0
5599 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5600 Value *Cond, *SelectTrue, *SelectFalse;
5601 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5602 m_Value(SelectFalse)))) {
5603 if (Value *V = dyn_castNegVal(SelectTrue)) {
5604 if (V == SelectFalse)
5605 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5606 }
5607 else if (Value *V = dyn_castNegVal(SelectFalse)) {
5608 if (V == SelectTrue)
5609 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5610 }
5611 }
5612 }
5613
5614 if (Op0->getType()->isIntOrIntVectorTy(1))
5615 if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5616 return Res;
5617
5618 if (Instruction *Res = canonicalizeCmpWithConstant(I))
5619 return Res;
5620
5621 if (Instruction *Res = canonicalizeICmpPredicate(I))
5622 return Res;
5623
5624 if (Instruction *Res = foldICmpWithConstant(I))
5625 return Res;
5626
5627 if (Instruction *Res = foldICmpWithDominatingICmp(I))
5628 return Res;
5629
5630 if (Instruction *Res = foldICmpBinOp(I, Q))
5631 return Res;
5632
5633 if (Instruction *Res = foldICmpUsingKnownBits(I))
5634 return Res;
5635
5636 // Test if the ICmpInst instruction is used exclusively by a select as
5637 // part of a minimum or maximum operation. If so, refrain from doing
5638 // any other folding. This helps out other analyses which understand
5639 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5640 // and CodeGen. And in this case, at least one of the comparison
5641 // operands has at least one user besides the compare (the select),
5642 // which would often largely negate the benefit of folding anyway.
5643 //
5644 // Do the same for the other patterns recognized by matchSelectPattern.
5645 if (I.hasOneUse())
5646 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5647 Value *A, *B;
5648 SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5649 if (SPR.Flavor != SPF_UNKNOWN)
5650 return nullptr;
5651 }
5652
5653 // Do this after checking for min/max to prevent infinite looping.
5654 if (Instruction *Res = foldICmpWithZero(I))
5655 return Res;
5656
5657 // FIXME: We only do this after checking for min/max to prevent infinite
5658 // looping caused by a reverse canonicalization of these patterns for min/max.
5659 // FIXME: The organization of folds is a mess. These would naturally go into
5660 // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5661 // down here after the min/max restriction.
5662 ICmpInst::Predicate Pred = I.getPredicate();
5663 const APInt *C;
5664 if (match(Op1, m_APInt(C))) {
5665 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
5666 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5667 Constant *Zero = Constant::getNullValue(Op0->getType());
5668 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5669 }
5670
5671 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
5672 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5673 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5674 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5675 }
5676 }
5677
5678 if (Instruction *Res = foldICmpInstWithConstant(I))
5679 return Res;
5680
5681 // Try to match comparison as a sign bit test. Intentionally do this after
5682 // foldICmpInstWithConstant() to potentially let other folds to happen first.
5683 if (Instruction *New = foldSignBitTest(I))
5684 return New;
5685
5686 if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5687 return Res;
5688
5689 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5690 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5691 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5692 return NI;
5693 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5694 if (Instruction *NI = foldGEPICmp(GEP, Op0,
5695 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5696 return NI;
5697
5698 // Try to optimize equality comparisons against alloca-based pointers.
5699 if (Op0->getType()->isPointerTy() && I.isEquality()) {
5700 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5701 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
5702 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5703 return New;
5704 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
5705 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5706 return New;
5707 }
5708
5709 if (Instruction *Res = foldICmpBitCast(I, Builder))
5710 return Res;
5711
5712 // TODO: Hoist this above the min/max bailout.
5713 if (Instruction *R = foldICmpWithCastOp(I))
5714 return R;
5715
5716 if (Instruction *Res = foldICmpWithMinMax(I))
5717 return Res;
5718
5719 {
5720 Value *A, *B;
5721 // Transform (A & ~B) == 0 --> (A & B) != 0
5722 // and (A & ~B) != 0 --> (A & B) == 0
5723 // if A is a power of 2.
5724 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5725 match(Op1, m_Zero()) &&
5726 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5727 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5728 Op1);
5729
5730 // ~X < ~Y --> Y < X
5731 // ~X < C --> X > ~C
5732 if (match(Op0, m_Not(m_Value(A)))) {
5733 if (match(Op1, m_Not(m_Value(B))))
5734 return new ICmpInst(I.getPredicate(), B, A);
5735
5736 const APInt *C;
5737 if (match(Op1, m_APInt(C)))
5738 return new ICmpInst(I.getSwappedPredicate(), A,
5739 ConstantInt::get(Op1->getType(), ~(*C)));
5740 }
5741
5742 Instruction *AddI = nullptr;
5743 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5744 m_Instruction(AddI))) &&
5745 isa<IntegerType>(A->getType())) {
5746 Value *Result;
5747 Constant *Overflow;
5748 // m_UAddWithOverflow can match patterns that do not include an explicit
5749 // "add" instruction, so check the opcode of the matched op.
5750 if (AddI->getOpcode() == Instruction::Add &&
5751 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5752 Result, Overflow)) {
5753 replaceInstUsesWith(*AddI, Result);
5754 eraseInstFromFunction(*AddI);
5755 return replaceInstUsesWith(I, Overflow);
5756 }
5757 }
5758
5759 // (zext a) * (zext b) --> llvm.umul.with.overflow.
5760 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5761 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5762 return R;
5763 }
5764 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5765 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5766 return R;
5767 }
5768 }
5769
5770 if (Instruction *Res = foldICmpEquality(I))
5771 return Res;
5772
5773 if (Instruction *Res = foldICmpOfUAddOv(I))
5774 return Res;
5775
5776 // The 'cmpxchg' instruction returns an aggregate containing the old value and
5777 // an i1 which indicates whether or not we successfully did the swap.
5778 //
5779 // Replace comparisons between the old value and the expected value with the
5780 // indicator that 'cmpxchg' returns.
5781 //
5782 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
5783 // spuriously fail. In those cases, the old value may equal the expected
5784 // value but it is possible for the swap to not occur.
5785 if (I.getPredicate() == ICmpInst::ICMP_EQ)
5786 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5787 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5788 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5789 !ACXI->isWeak())
5790 return ExtractValueInst::Create(ACXI, 1);
5791
5792 {
5793 Value *X;
5794 const APInt *C;
5795 // icmp X+Cst, X
5796 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5797 return foldICmpAddOpConst(X, *C, I.getPredicate());
5798
5799 // icmp X, X+Cst
5800 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5801 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5802 }
5803
5804 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5805 return Res;
5806
5807 if (I.getType()->isVectorTy())
5808 if (Instruction *Res = foldVectorCmp(I, Builder))
5809 return Res;
5810
5811 return Changed ? &I : nullptr;
5812 }
5813
5814 /// Fold fcmp ([us]itofp x, cst) if possible.
foldFCmpIntToFPConst(FCmpInst & I,Instruction * LHSI,Constant * RHSC)5815 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
5816 Instruction *LHSI,
5817 Constant *RHSC) {
5818 if (!isa<ConstantFP>(RHSC)) return nullptr;
5819 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5820
5821 // Get the width of the mantissa. We don't want to hack on conversions that
5822 // might lose information from the integer, e.g. "i64 -> float"
5823 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5824 if (MantissaWidth == -1) return nullptr; // Unknown.
5825
5826 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5827
5828 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5829
5830 if (I.isEquality()) {
5831 FCmpInst::Predicate P = I.getPredicate();
5832 bool IsExact = false;
5833 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5834 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5835
5836 // If the floating point constant isn't an integer value, we know if we will
5837 // ever compare equal / not equal to it.
5838 if (!IsExact) {
5839 // TODO: Can never be -0.0 and other non-representable values
5840 APFloat RHSRoundInt(RHS);
5841 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5842 if (RHS != RHSRoundInt) {
5843 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5844 return replaceInstUsesWith(I, Builder.getFalse());
5845
5846 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5847 return replaceInstUsesWith(I, Builder.getTrue());
5848 }
5849 }
5850
5851 // TODO: If the constant is exactly representable, is it always OK to do
5852 // equality compares as integer?
5853 }
5854
5855 // Check to see that the input is converted from an integer type that is small
5856 // enough that preserves all bits. TODO: check here for "known" sign bits.
5857 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5858 unsigned InputSize = IntTy->getScalarSizeInBits();
5859
5860 // Following test does NOT adjust InputSize downwards for signed inputs,
5861 // because the most negative value still requires all the mantissa bits
5862 // to distinguish it from one less than that value.
5863 if ((int)InputSize > MantissaWidth) {
5864 // Conversion would lose accuracy. Check if loss can impact comparison.
5865 int Exp = ilogb(RHS);
5866 if (Exp == APFloat::IEK_Inf) {
5867 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5868 if (MaxExponent < (int)InputSize - !LHSUnsigned)
5869 // Conversion could create infinity.
5870 return nullptr;
5871 } else {
5872 // Note that if RHS is zero or NaN, then Exp is negative
5873 // and first condition is trivially false.
5874 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5875 // Conversion could affect comparison.
5876 return nullptr;
5877 }
5878 }
5879
5880 // Otherwise, we can potentially simplify the comparison. We know that it
5881 // will always come through as an integer value and we know the constant is
5882 // not a NAN (it would have been previously simplified).
5883 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5884
5885 ICmpInst::Predicate Pred;
5886 switch (I.getPredicate()) {
5887 default: llvm_unreachable("Unexpected predicate!");
5888 case FCmpInst::FCMP_UEQ:
5889 case FCmpInst::FCMP_OEQ:
5890 Pred = ICmpInst::ICMP_EQ;
5891 break;
5892 case FCmpInst::FCMP_UGT:
5893 case FCmpInst::FCMP_OGT:
5894 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5895 break;
5896 case FCmpInst::FCMP_UGE:
5897 case FCmpInst::FCMP_OGE:
5898 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5899 break;
5900 case FCmpInst::FCMP_ULT:
5901 case FCmpInst::FCMP_OLT:
5902 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5903 break;
5904 case FCmpInst::FCMP_ULE:
5905 case FCmpInst::FCMP_OLE:
5906 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5907 break;
5908 case FCmpInst::FCMP_UNE:
5909 case FCmpInst::FCMP_ONE:
5910 Pred = ICmpInst::ICMP_NE;
5911 break;
5912 case FCmpInst::FCMP_ORD:
5913 return replaceInstUsesWith(I, Builder.getTrue());
5914 case FCmpInst::FCMP_UNO:
5915 return replaceInstUsesWith(I, Builder.getFalse());
5916 }
5917
5918 // Now we know that the APFloat is a normal number, zero or inf.
5919
5920 // See if the FP constant is too large for the integer. For example,
5921 // comparing an i8 to 300.0.
5922 unsigned IntWidth = IntTy->getScalarSizeInBits();
5923
5924 if (!LHSUnsigned) {
5925 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5926 // and large values.
5927 APFloat SMax(RHS.getSemantics());
5928 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5929 APFloat::rmNearestTiesToEven);
5930 if (SMax < RHS) { // smax < 13123.0
5931 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5932 Pred == ICmpInst::ICMP_SLE)
5933 return replaceInstUsesWith(I, Builder.getTrue());
5934 return replaceInstUsesWith(I, Builder.getFalse());
5935 }
5936 } else {
5937 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5938 // +INF and large values.
5939 APFloat UMax(RHS.getSemantics());
5940 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5941 APFloat::rmNearestTiesToEven);
5942 if (UMax < RHS) { // umax < 13123.0
5943 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5944 Pred == ICmpInst::ICMP_ULE)
5945 return replaceInstUsesWith(I, Builder.getTrue());
5946 return replaceInstUsesWith(I, Builder.getFalse());
5947 }
5948 }
5949
5950 if (!LHSUnsigned) {
5951 // See if the RHS value is < SignedMin.
5952 APFloat SMin(RHS.getSemantics());
5953 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5954 APFloat::rmNearestTiesToEven);
5955 if (SMin > RHS) { // smin > 12312.0
5956 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5957 Pred == ICmpInst::ICMP_SGE)
5958 return replaceInstUsesWith(I, Builder.getTrue());
5959 return replaceInstUsesWith(I, Builder.getFalse());
5960 }
5961 } else {
5962 // See if the RHS value is < UnsignedMin.
5963 APFloat UMin(RHS.getSemantics());
5964 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
5965 APFloat::rmNearestTiesToEven);
5966 if (UMin > RHS) { // umin > 12312.0
5967 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5968 Pred == ICmpInst::ICMP_UGE)
5969 return replaceInstUsesWith(I, Builder.getTrue());
5970 return replaceInstUsesWith(I, Builder.getFalse());
5971 }
5972 }
5973
5974 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5975 // [0, UMAX], but it may still be fractional. See if it is fractional by
5976 // casting the FP value to the integer value and back, checking for equality.
5977 // Don't do this for zero, because -0.0 is not fractional.
5978 Constant *RHSInt = LHSUnsigned
5979 ? ConstantExpr::getFPToUI(RHSC, IntTy)
5980 : ConstantExpr::getFPToSI(RHSC, IntTy);
5981 if (!RHS.isZero()) {
5982 bool Equal = LHSUnsigned
5983 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5984 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5985 if (!Equal) {
5986 // If we had a comparison against a fractional value, we have to adjust
5987 // the compare predicate and sometimes the value. RHSC is rounded towards
5988 // zero at this point.
5989 switch (Pred) {
5990 default: llvm_unreachable("Unexpected integer comparison!");
5991 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5992 return replaceInstUsesWith(I, Builder.getTrue());
5993 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5994 return replaceInstUsesWith(I, Builder.getFalse());
5995 case ICmpInst::ICMP_ULE:
5996 // (float)int <= 4.4 --> int <= 4
5997 // (float)int <= -4.4 --> false
5998 if (RHS.isNegative())
5999 return replaceInstUsesWith(I, Builder.getFalse());
6000 break;
6001 case ICmpInst::ICMP_SLE:
6002 // (float)int <= 4.4 --> int <= 4
6003 // (float)int <= -4.4 --> int < -4
6004 if (RHS.isNegative())
6005 Pred = ICmpInst::ICMP_SLT;
6006 break;
6007 case ICmpInst::ICMP_ULT:
6008 // (float)int < -4.4 --> false
6009 // (float)int < 4.4 --> int <= 4
6010 if (RHS.isNegative())
6011 return replaceInstUsesWith(I, Builder.getFalse());
6012 Pred = ICmpInst::ICMP_ULE;
6013 break;
6014 case ICmpInst::ICMP_SLT:
6015 // (float)int < -4.4 --> int < -4
6016 // (float)int < 4.4 --> int <= 4
6017 if (!RHS.isNegative())
6018 Pred = ICmpInst::ICMP_SLE;
6019 break;
6020 case ICmpInst::ICMP_UGT:
6021 // (float)int > 4.4 --> int > 4
6022 // (float)int > -4.4 --> true
6023 if (RHS.isNegative())
6024 return replaceInstUsesWith(I, Builder.getTrue());
6025 break;
6026 case ICmpInst::ICMP_SGT:
6027 // (float)int > 4.4 --> int > 4
6028 // (float)int > -4.4 --> int >= -4
6029 if (RHS.isNegative())
6030 Pred = ICmpInst::ICMP_SGE;
6031 break;
6032 case ICmpInst::ICMP_UGE:
6033 // (float)int >= -4.4 --> true
6034 // (float)int >= 4.4 --> int > 4
6035 if (RHS.isNegative())
6036 return replaceInstUsesWith(I, Builder.getTrue());
6037 Pred = ICmpInst::ICMP_UGT;
6038 break;
6039 case ICmpInst::ICMP_SGE:
6040 // (float)int >= -4.4 --> int >= -4
6041 // (float)int >= 4.4 --> int > 4
6042 if (!RHS.isNegative())
6043 Pred = ICmpInst::ICMP_SGT;
6044 break;
6045 }
6046 }
6047 }
6048
6049 // Lower this FP comparison into an appropriate integer version of the
6050 // comparison.
6051 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6052 }
6053
6054 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
foldFCmpReciprocalAndZero(FCmpInst & I,Instruction * LHSI,Constant * RHSC)6055 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6056 Constant *RHSC) {
6057 // When C is not 0.0 and infinities are not allowed:
6058 // (C / X) < 0.0 is a sign-bit test of X
6059 // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6060 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6061 //
6062 // Proof:
6063 // Multiply (C / X) < 0.0 by X * X / C.
6064 // - X is non zero, if it is the flag 'ninf' is violated.
6065 // - C defines the sign of X * X * C. Thus it also defines whether to swap
6066 // the predicate. C is also non zero by definition.
6067 //
6068 // Thus X * X / C is non zero and the transformation is valid. [qed]
6069
6070 FCmpInst::Predicate Pred = I.getPredicate();
6071
6072 // Check that predicates are valid.
6073 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6074 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6075 return nullptr;
6076
6077 // Check that RHS operand is zero.
6078 if (!match(RHSC, m_AnyZeroFP()))
6079 return nullptr;
6080
6081 // Check fastmath flags ('ninf').
6082 if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6083 return nullptr;
6084
6085 // Check the properties of the dividend. It must not be zero to avoid a
6086 // division by zero (see Proof).
6087 const APFloat *C;
6088 if (!match(LHSI->getOperand(0), m_APFloat(C)))
6089 return nullptr;
6090
6091 if (C->isZero())
6092 return nullptr;
6093
6094 // Get swapped predicate if necessary.
6095 if (C->isNegative())
6096 Pred = I.getSwappedPredicate();
6097
6098 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6099 }
6100
6101 /// Optimize fabs(X) compared with zero.
foldFabsWithFcmpZero(FCmpInst & I,InstCombinerImpl & IC)6102 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6103 Value *X;
6104 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6105 !match(I.getOperand(1), m_PosZeroFP()))
6106 return nullptr;
6107
6108 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6109 I->setPredicate(P);
6110 return IC.replaceOperand(*I, 0, X);
6111 };
6112
6113 switch (I.getPredicate()) {
6114 case FCmpInst::FCMP_UGE:
6115 case FCmpInst::FCMP_OLT:
6116 // fabs(X) >= 0.0 --> true
6117 // fabs(X) < 0.0 --> false
6118 llvm_unreachable("fcmp should have simplified");
6119
6120 case FCmpInst::FCMP_OGT:
6121 // fabs(X) > 0.0 --> X != 0.0
6122 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6123
6124 case FCmpInst::FCMP_UGT:
6125 // fabs(X) u> 0.0 --> X u!= 0.0
6126 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6127
6128 case FCmpInst::FCMP_OLE:
6129 // fabs(X) <= 0.0 --> X == 0.0
6130 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6131
6132 case FCmpInst::FCMP_ULE:
6133 // fabs(X) u<= 0.0 --> X u== 0.0
6134 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6135
6136 case FCmpInst::FCMP_OGE:
6137 // fabs(X) >= 0.0 --> !isnan(X)
6138 assert(!I.hasNoNaNs() && "fcmp should have simplified");
6139 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6140
6141 case FCmpInst::FCMP_ULT:
6142 // fabs(X) u< 0.0 --> isnan(X)
6143 assert(!I.hasNoNaNs() && "fcmp should have simplified");
6144 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6145
6146 case FCmpInst::FCMP_OEQ:
6147 case FCmpInst::FCMP_UEQ:
6148 case FCmpInst::FCMP_ONE:
6149 case FCmpInst::FCMP_UNE:
6150 case FCmpInst::FCMP_ORD:
6151 case FCmpInst::FCMP_UNO:
6152 // Look through the fabs() because it doesn't change anything but the sign.
6153 // fabs(X) == 0.0 --> X == 0.0,
6154 // fabs(X) != 0.0 --> X != 0.0
6155 // isnan(fabs(X)) --> isnan(X)
6156 // !isnan(fabs(X) --> !isnan(X)
6157 return replacePredAndOp0(&I, I.getPredicate(), X);
6158
6159 default:
6160 return nullptr;
6161 }
6162 }
6163
visitFCmpInst(FCmpInst & I)6164 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6165 bool Changed = false;
6166
6167 /// Orders the operands of the compare so that they are listed from most
6168 /// complex to least complex. This puts constants before unary operators,
6169 /// before binary operators.
6170 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6171 I.swapOperands();
6172 Changed = true;
6173 }
6174
6175 const CmpInst::Predicate Pred = I.getPredicate();
6176 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6177 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6178 SQ.getWithInstruction(&I)))
6179 return replaceInstUsesWith(I, V);
6180
6181 // Simplify 'fcmp pred X, X'
6182 Type *OpType = Op0->getType();
6183 assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6184 if (Op0 == Op1) {
6185 switch (Pred) {
6186 default: break;
6187 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
6188 case FCmpInst::FCMP_ULT: // True if unordered or less than
6189 case FCmpInst::FCMP_UGT: // True if unordered or greater than
6190 case FCmpInst::FCMP_UNE: // True if unordered or not equal
6191 // Canonicalize these to be 'fcmp uno %X, 0.0'.
6192 I.setPredicate(FCmpInst::FCMP_UNO);
6193 I.setOperand(1, Constant::getNullValue(OpType));
6194 return &I;
6195
6196 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
6197 case FCmpInst::FCMP_OEQ: // True if ordered and equal
6198 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
6199 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
6200 // Canonicalize these to be 'fcmp ord %X, 0.0'.
6201 I.setPredicate(FCmpInst::FCMP_ORD);
6202 I.setOperand(1, Constant::getNullValue(OpType));
6203 return &I;
6204 }
6205 }
6206
6207 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6208 // then canonicalize the operand to 0.0.
6209 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6210 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6211 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6212
6213 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6214 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6215 }
6216
6217 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6218 Value *X, *Y;
6219 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6220 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6221
6222 // Test if the FCmpInst instruction is used exclusively by a select as
6223 // part of a minimum or maximum operation. If so, refrain from doing
6224 // any other folding. This helps out other analyses which understand
6225 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6226 // and CodeGen. And in this case, at least one of the comparison
6227 // operands has at least one user besides the compare (the select),
6228 // which would often largely negate the benefit of folding anyway.
6229 if (I.hasOneUse())
6230 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6231 Value *A, *B;
6232 SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6233 if (SPR.Flavor != SPF_UNKNOWN)
6234 return nullptr;
6235 }
6236
6237 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6238 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6239 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6240 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6241
6242 // Handle fcmp with instruction LHS and constant RHS.
6243 Instruction *LHSI;
6244 Constant *RHSC;
6245 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6246 switch (LHSI->getOpcode()) {
6247 case Instruction::PHI:
6248 // Only fold fcmp into the PHI if the phi and fcmp are in the same
6249 // block. If in the same block, we're encouraging jump threading. If
6250 // not, we are just pessimizing the code by making an i1 phi.
6251 if (LHSI->getParent() == I.getParent())
6252 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6253 return NV;
6254 break;
6255 case Instruction::SIToFP:
6256 case Instruction::UIToFP:
6257 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6258 return NV;
6259 break;
6260 case Instruction::FDiv:
6261 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6262 return NV;
6263 break;
6264 case Instruction::Load:
6265 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6266 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6267 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6268 !cast<LoadInst>(LHSI)->isVolatile())
6269 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6270 return Res;
6271 break;
6272 }
6273 }
6274
6275 if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6276 return R;
6277
6278 if (match(Op0, m_FNeg(m_Value(X)))) {
6279 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6280 Constant *C;
6281 if (match(Op1, m_Constant(C))) {
6282 Constant *NegC = ConstantExpr::getFNeg(C);
6283 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6284 }
6285 }
6286
6287 if (match(Op0, m_FPExt(m_Value(X)))) {
6288 // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6289 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6290 return new FCmpInst(Pred, X, Y, "", &I);
6291
6292 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6293 const APFloat *C;
6294 if (match(Op1, m_APFloat(C))) {
6295 const fltSemantics &FPSem =
6296 X->getType()->getScalarType()->getFltSemantics();
6297 bool Lossy;
6298 APFloat TruncC = *C;
6299 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6300
6301 // Avoid lossy conversions and denormals.
6302 // Zero is a special case that's OK to convert.
6303 APFloat Fabs = TruncC;
6304 Fabs.clearSign();
6305 if (!Lossy &&
6306 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6307 Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6308 return new FCmpInst(Pred, X, NewC, "", &I);
6309 }
6310 }
6311 }
6312
6313 if (I.getType()->isVectorTy())
6314 if (Instruction *Res = foldVectorCmp(I, Builder))
6315 return Res;
6316
6317 return Changed ? &I : nullptr;
6318 }
6319