1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "av1/common/av1_common_int.h"
13 #include "av1/common/cfl.h"
14 #include "av1/common/common_data.h"
15
16 #include "config/av1_rtcd.h"
17
cfl_init(CFL_CTX * cfl,const SequenceHeader * seq_params)18 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params) {
19 assert(block_size_wide[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE);
20 assert(block_size_high[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE);
21
22 memset(&cfl->recon_buf_q3, 0, sizeof(cfl->recon_buf_q3));
23 memset(&cfl->ac_buf_q3, 0, sizeof(cfl->ac_buf_q3));
24 cfl->subsampling_x = seq_params->subsampling_x;
25 cfl->subsampling_y = seq_params->subsampling_y;
26 cfl->are_parameters_computed = 0;
27 cfl->store_y = 0;
28 // The DC_PRED cache is disabled by default and is only enabled in
29 // cfl_rd_pick_alpha
30 cfl->use_dc_pred_cache = 0;
31 cfl->dc_pred_is_cached[CFL_PRED_U] = 0;
32 cfl->dc_pred_is_cached[CFL_PRED_V] = 0;
33 }
34
cfl_store_dc_pred(MACROBLOCKD * const xd,const uint8_t * input,CFL_PRED_TYPE pred_plane,int width)35 void cfl_store_dc_pred(MACROBLOCKD *const xd, const uint8_t *input,
36 CFL_PRED_TYPE pred_plane, int width) {
37 assert(pred_plane < CFL_PRED_PLANES);
38 assert(width <= CFL_BUF_LINE);
39
40 if (is_cur_buf_hbd(xd)) {
41 uint16_t *const input_16 = CONVERT_TO_SHORTPTR(input);
42 memcpy(xd->cfl.dc_pred_cache[pred_plane], input_16, width << 1);
43 return;
44 }
45
46 memcpy(xd->cfl.dc_pred_cache[pred_plane], input, width);
47 }
48
cfl_load_dc_pred_lbd(const int16_t * dc_pred_cache,uint8_t * dst,int dst_stride,int width,int height)49 static void cfl_load_dc_pred_lbd(const int16_t *dc_pred_cache, uint8_t *dst,
50 int dst_stride, int width, int height) {
51 for (int j = 0; j < height; j++) {
52 memcpy(dst, dc_pred_cache, width);
53 dst += dst_stride;
54 }
55 }
56
cfl_load_dc_pred_hbd(const int16_t * dc_pred_cache,uint16_t * dst,int dst_stride,int width,int height)57 static void cfl_load_dc_pred_hbd(const int16_t *dc_pred_cache, uint16_t *dst,
58 int dst_stride, int width, int height) {
59 const size_t num_bytes = width << 1;
60 for (int j = 0; j < height; j++) {
61 memcpy(dst, dc_pred_cache, num_bytes);
62 dst += dst_stride;
63 }
64 }
cfl_load_dc_pred(MACROBLOCKD * const xd,uint8_t * dst,int dst_stride,TX_SIZE tx_size,CFL_PRED_TYPE pred_plane)65 void cfl_load_dc_pred(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride,
66 TX_SIZE tx_size, CFL_PRED_TYPE pred_plane) {
67 const int width = tx_size_wide[tx_size];
68 const int height = tx_size_high[tx_size];
69 assert(pred_plane < CFL_PRED_PLANES);
70 assert(width <= CFL_BUF_LINE);
71 assert(height <= CFL_BUF_LINE);
72 if (is_cur_buf_hbd(xd)) {
73 uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst);
74 cfl_load_dc_pred_hbd(xd->cfl.dc_pred_cache[pred_plane], dst_16, dst_stride,
75 width, height);
76 return;
77 }
78 cfl_load_dc_pred_lbd(xd->cfl.dc_pred_cache[pred_plane], dst, dst_stride,
79 width, height);
80 }
81
82 // Due to frame boundary issues, it is possible that the total area covered by
83 // chroma exceeds that of luma. When this happens, we fill the missing pixels by
84 // repeating the last columns and/or rows.
cfl_pad(CFL_CTX * cfl,int width,int height)85 static INLINE void cfl_pad(CFL_CTX *cfl, int width, int height) {
86 const int diff_width = width - cfl->buf_width;
87 const int diff_height = height - cfl->buf_height;
88
89 if (diff_width > 0) {
90 const int min_height = height - diff_height;
91 uint16_t *recon_buf_q3 = cfl->recon_buf_q3 + (width - diff_width);
92 for (int j = 0; j < min_height; j++) {
93 const uint16_t last_pixel = recon_buf_q3[-1];
94 assert(recon_buf_q3 + diff_width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE);
95 for (int i = 0; i < diff_width; i++) {
96 recon_buf_q3[i] = last_pixel;
97 }
98 recon_buf_q3 += CFL_BUF_LINE;
99 }
100 cfl->buf_width = width;
101 }
102 if (diff_height > 0) {
103 uint16_t *recon_buf_q3 =
104 cfl->recon_buf_q3 + ((height - diff_height) * CFL_BUF_LINE);
105 for (int j = 0; j < diff_height; j++) {
106 const uint16_t *last_row_q3 = recon_buf_q3 - CFL_BUF_LINE;
107 assert(recon_buf_q3 + width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE);
108 for (int i = 0; i < width; i++) {
109 recon_buf_q3[i] = last_row_q3[i];
110 }
111 recon_buf_q3 += CFL_BUF_LINE;
112 }
113 cfl->buf_height = height;
114 }
115 }
116
subtract_average_c(const uint16_t * src,int16_t * dst,int width,int height,int round_offset,int num_pel_log2)117 static void subtract_average_c(const uint16_t *src, int16_t *dst, int width,
118 int height, int round_offset, int num_pel_log2) {
119 int sum = round_offset;
120 const uint16_t *recon = src;
121 for (int j = 0; j < height; j++) {
122 for (int i = 0; i < width; i++) {
123 sum += recon[i];
124 }
125 recon += CFL_BUF_LINE;
126 }
127 const int avg = sum >> num_pel_log2;
128 for (int j = 0; j < height; j++) {
129 for (int i = 0; i < width; i++) {
130 dst[i] = src[i] - avg;
131 }
132 src += CFL_BUF_LINE;
133 dst += CFL_BUF_LINE;
134 }
135 }
136
CFL_SUB_AVG_FN(c)137 CFL_SUB_AVG_FN(c)
138
139 static INLINE int cfl_idx_to_alpha(uint8_t alpha_idx, int8_t joint_sign,
140 CFL_PRED_TYPE pred_type) {
141 const int alpha_sign = (pred_type == CFL_PRED_U) ? CFL_SIGN_U(joint_sign)
142 : CFL_SIGN_V(joint_sign);
143 if (alpha_sign == CFL_SIGN_ZERO) return 0;
144 const int abs_alpha_q3 =
145 (pred_type == CFL_PRED_U) ? CFL_IDX_U(alpha_idx) : CFL_IDX_V(alpha_idx);
146 return (alpha_sign == CFL_SIGN_POS) ? abs_alpha_q3 + 1 : -abs_alpha_q3 - 1;
147 }
148
cfl_predict_lbd_c(const int16_t * ac_buf_q3,uint8_t * dst,int dst_stride,int alpha_q3,int width,int height)149 static INLINE void cfl_predict_lbd_c(const int16_t *ac_buf_q3, uint8_t *dst,
150 int dst_stride, int alpha_q3, int width,
151 int height) {
152 for (int j = 0; j < height; j++) {
153 for (int i = 0; i < width; i++) {
154 dst[i] = clip_pixel(get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i]);
155 }
156 dst += dst_stride;
157 ac_buf_q3 += CFL_BUF_LINE;
158 }
159 }
160
CFL_PREDICT_FN(c,lbd)161 CFL_PREDICT_FN(c, lbd)
162
163 #if CONFIG_AV1_HIGHBITDEPTH
164 void cfl_predict_hbd_c(const int16_t *ac_buf_q3, uint16_t *dst, int dst_stride,
165 int alpha_q3, int bit_depth, int width, int height) {
166 for (int j = 0; j < height; j++) {
167 for (int i = 0; i < width; i++) {
168 dst[i] = clip_pixel_highbd(
169 get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i], bit_depth);
170 }
171 dst += dst_stride;
172 ac_buf_q3 += CFL_BUF_LINE;
173 }
174 }
175
CFL_PREDICT_FN(c,hbd)176 CFL_PREDICT_FN(c, hbd)
177 #endif
178
179 static void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) {
180 CFL_CTX *const cfl = &xd->cfl;
181 // Do not call cfl_compute_parameters multiple time on the same values.
182 assert(cfl->are_parameters_computed == 0);
183
184 cfl_pad(cfl, tx_size_wide[tx_size], tx_size_high[tx_size]);
185 cfl_get_subtract_average_fn(tx_size)(cfl->recon_buf_q3, cfl->ac_buf_q3);
186 cfl->are_parameters_computed = 1;
187 }
188
cfl_predict_block(MACROBLOCKD * const xd,uint8_t * dst,int dst_stride,TX_SIZE tx_size,int plane)189 void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride,
190 TX_SIZE tx_size, int plane) {
191 CFL_CTX *const cfl = &xd->cfl;
192 MB_MODE_INFO *mbmi = xd->mi[0];
193 assert(is_cfl_allowed(xd));
194
195 if (!cfl->are_parameters_computed) cfl_compute_parameters(xd, tx_size);
196
197 const int alpha_q3 =
198 cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1);
199 assert((tx_size_high[tx_size] - 1) * CFL_BUF_LINE + tx_size_wide[tx_size] <=
200 CFL_BUF_SQUARE);
201 #if CONFIG_AV1_HIGHBITDEPTH
202 if (is_cur_buf_hbd(xd)) {
203 uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst);
204 cfl_get_predict_hbd_fn(tx_size)(cfl->ac_buf_q3, dst_16, dst_stride,
205 alpha_q3, xd->bd);
206 return;
207 }
208 #endif
209 cfl_get_predict_lbd_fn(tx_size)(cfl->ac_buf_q3, dst, dst_stride, alpha_q3);
210 }
211
cfl_luma_subsampling_420_lbd_c(const uint8_t * input,int input_stride,uint16_t * output_q3,int width,int height)212 static void cfl_luma_subsampling_420_lbd_c(const uint8_t *input,
213 int input_stride,
214 uint16_t *output_q3, int width,
215 int height) {
216 for (int j = 0; j < height; j += 2) {
217 for (int i = 0; i < width; i += 2) {
218 const int bot = i + input_stride;
219 output_q3[i >> 1] =
220 (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1;
221 }
222 input += input_stride << 1;
223 output_q3 += CFL_BUF_LINE;
224 }
225 }
226
cfl_luma_subsampling_422_lbd_c(const uint8_t * input,int input_stride,uint16_t * output_q3,int width,int height)227 static void cfl_luma_subsampling_422_lbd_c(const uint8_t *input,
228 int input_stride,
229 uint16_t *output_q3, int width,
230 int height) {
231 assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
232 for (int j = 0; j < height; j++) {
233 for (int i = 0; i < width; i += 2) {
234 output_q3[i >> 1] = (input[i] + input[i + 1]) << 2;
235 }
236 input += input_stride;
237 output_q3 += CFL_BUF_LINE;
238 }
239 }
240
cfl_luma_subsampling_444_lbd_c(const uint8_t * input,int input_stride,uint16_t * output_q3,int width,int height)241 static void cfl_luma_subsampling_444_lbd_c(const uint8_t *input,
242 int input_stride,
243 uint16_t *output_q3, int width,
244 int height) {
245 assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
246 for (int j = 0; j < height; j++) {
247 for (int i = 0; i < width; i++) {
248 output_q3[i] = input[i] << 3;
249 }
250 input += input_stride;
251 output_q3 += CFL_BUF_LINE;
252 }
253 }
254
255 #if CONFIG_AV1_HIGHBITDEPTH
cfl_luma_subsampling_420_hbd_c(const uint16_t * input,int input_stride,uint16_t * output_q3,int width,int height)256 static void cfl_luma_subsampling_420_hbd_c(const uint16_t *input,
257 int input_stride,
258 uint16_t *output_q3, int width,
259 int height) {
260 for (int j = 0; j < height; j += 2) {
261 for (int i = 0; i < width; i += 2) {
262 const int bot = i + input_stride;
263 output_q3[i >> 1] =
264 (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1;
265 }
266 input += input_stride << 1;
267 output_q3 += CFL_BUF_LINE;
268 }
269 }
270
cfl_luma_subsampling_422_hbd_c(const uint16_t * input,int input_stride,uint16_t * output_q3,int width,int height)271 static void cfl_luma_subsampling_422_hbd_c(const uint16_t *input,
272 int input_stride,
273 uint16_t *output_q3, int width,
274 int height) {
275 assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
276 for (int j = 0; j < height; j++) {
277 for (int i = 0; i < width; i += 2) {
278 output_q3[i >> 1] = (input[i] + input[i + 1]) << 2;
279 }
280 input += input_stride;
281 output_q3 += CFL_BUF_LINE;
282 }
283 }
284
cfl_luma_subsampling_444_hbd_c(const uint16_t * input,int input_stride,uint16_t * output_q3,int width,int height)285 static void cfl_luma_subsampling_444_hbd_c(const uint16_t *input,
286 int input_stride,
287 uint16_t *output_q3, int width,
288 int height) {
289 assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
290 for (int j = 0; j < height; j++) {
291 for (int i = 0; i < width; i++) {
292 output_q3[i] = input[i] << 3;
293 }
294 input += input_stride;
295 output_q3 += CFL_BUF_LINE;
296 }
297 }
298 #endif
299
CFL_GET_SUBSAMPLE_FUNCTION(c)300 CFL_GET_SUBSAMPLE_FUNCTION(c)
301
302 #if CONFIG_AV1_HIGHBITDEPTH
303 static INLINE cfl_subsample_hbd_fn cfl_subsampling_hbd(TX_SIZE tx_size,
304 int sub_x, int sub_y) {
305 if (sub_x == 1) {
306 if (sub_y == 1) {
307 return cfl_get_luma_subsampling_420_hbd(tx_size);
308 }
309 return cfl_get_luma_subsampling_422_hbd(tx_size);
310 }
311 return cfl_get_luma_subsampling_444_hbd(tx_size);
312 }
313 #endif
314
cfl_subsampling_lbd(TX_SIZE tx_size,int sub_x,int sub_y)315 static INLINE cfl_subsample_lbd_fn cfl_subsampling_lbd(TX_SIZE tx_size,
316 int sub_x, int sub_y) {
317 if (sub_x == 1) {
318 if (sub_y == 1) {
319 return cfl_get_luma_subsampling_420_lbd(tx_size);
320 }
321 return cfl_get_luma_subsampling_422_lbd(tx_size);
322 }
323 return cfl_get_luma_subsampling_444_lbd(tx_size);
324 }
325
cfl_store(CFL_CTX * cfl,const uint8_t * input,int input_stride,int row,int col,TX_SIZE tx_size,int use_hbd)326 static void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride,
327 int row, int col, TX_SIZE tx_size, int use_hbd) {
328 const int width = tx_size_wide[tx_size];
329 const int height = tx_size_high[tx_size];
330 const int tx_off_log2 = MI_SIZE_LOG2;
331 const int sub_x = cfl->subsampling_x;
332 const int sub_y = cfl->subsampling_y;
333 const int store_row = row << (tx_off_log2 - sub_y);
334 const int store_col = col << (tx_off_log2 - sub_x);
335 const int store_height = height >> sub_y;
336 const int store_width = width >> sub_x;
337
338 // Invalidate current parameters
339 cfl->are_parameters_computed = 0;
340
341 // Store the surface of the pixel buffer that was written to, this way we
342 // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the
343 // frame boundary)
344 if (col == 0 && row == 0) {
345 cfl->buf_width = store_width;
346 cfl->buf_height = store_height;
347 } else {
348 cfl->buf_width = OD_MAXI(store_col + store_width, cfl->buf_width);
349 cfl->buf_height = OD_MAXI(store_row + store_height, cfl->buf_height);
350 }
351
352 // Check that we will remain inside the pixel buffer.
353 assert(store_row + store_height <= CFL_BUF_LINE);
354 assert(store_col + store_width <= CFL_BUF_LINE);
355
356 // Store the input into the CfL pixel buffer
357 uint16_t *recon_buf_q3 =
358 cfl->recon_buf_q3 + (store_row * CFL_BUF_LINE + store_col);
359 #if CONFIG_AV1_HIGHBITDEPTH
360 if (use_hbd) {
361 cfl_subsampling_hbd(tx_size, sub_x, sub_y)(CONVERT_TO_SHORTPTR(input),
362 input_stride, recon_buf_q3);
363 } else {
364 cfl_subsampling_lbd(tx_size, sub_x, sub_y)(input, input_stride,
365 recon_buf_q3);
366 }
367 #else
368 (void)use_hbd;
369 cfl_subsampling_lbd(tx_size, sub_x, sub_y)(input, input_stride, recon_buf_q3);
370 #endif
371 }
372
373 // Adjust the row and column of blocks smaller than 8X8, as chroma-referenced
374 // and non-chroma-referenced blocks are stored together in the CfL buffer.
sub8x8_adjust_offset(const CFL_CTX * cfl,int mi_row,int mi_col,int * row_out,int * col_out)375 static INLINE void sub8x8_adjust_offset(const CFL_CTX *cfl, int mi_row,
376 int mi_col, int *row_out,
377 int *col_out) {
378 // Increment row index for bottom: 8x4, 16x4 or both bottom 4x4s.
379 if ((mi_row & 0x01) && cfl->subsampling_y) {
380 assert(*row_out == 0);
381 (*row_out)++;
382 }
383
384 // Increment col index for right: 4x8, 4x16 or both right 4x4s.
385 if ((mi_col & 0x01) && cfl->subsampling_x) {
386 assert(*col_out == 0);
387 (*col_out)++;
388 }
389 }
390
cfl_store_tx(MACROBLOCKD * const xd,int row,int col,TX_SIZE tx_size,BLOCK_SIZE bsize)391 void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size,
392 BLOCK_SIZE bsize) {
393 CFL_CTX *const cfl = &xd->cfl;
394 struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
395 uint8_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2];
396
397 if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) {
398 // Only dimensions of size 4 can have an odd offset.
399 assert(!((col & 1) && tx_size_wide[tx_size] != 4));
400 assert(!((row & 1) && tx_size_high[tx_size] != 4));
401 sub8x8_adjust_offset(cfl, xd->mi_row, xd->mi_col, &row, &col);
402 }
403 cfl_store(cfl, dst, pd->dst.stride, row, col, tx_size, is_cur_buf_hbd(xd));
404 }
405
max_intra_block_width(const MACROBLOCKD * xd,BLOCK_SIZE plane_bsize,int plane,TX_SIZE tx_size)406 static INLINE int max_intra_block_width(const MACROBLOCKD *xd,
407 BLOCK_SIZE plane_bsize, int plane,
408 TX_SIZE tx_size) {
409 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane)
410 << MI_SIZE_LOG2;
411 return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]);
412 }
413
max_intra_block_height(const MACROBLOCKD * xd,BLOCK_SIZE plane_bsize,int plane,TX_SIZE tx_size)414 static INLINE int max_intra_block_height(const MACROBLOCKD *xd,
415 BLOCK_SIZE plane_bsize, int plane,
416 TX_SIZE tx_size) {
417 const int max_blocks_high = max_block_high(xd, plane_bsize, plane)
418 << MI_SIZE_LOG2;
419 return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]);
420 }
421
cfl_store_block(MACROBLOCKD * const xd,BLOCK_SIZE bsize,TX_SIZE tx_size)422 void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size) {
423 CFL_CTX *const cfl = &xd->cfl;
424 struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
425 int row = 0;
426 int col = 0;
427
428 if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) {
429 sub8x8_adjust_offset(cfl, xd->mi_row, xd->mi_col, &row, &col);
430 }
431 const int width = max_intra_block_width(xd, bsize, AOM_PLANE_Y, tx_size);
432 const int height = max_intra_block_height(xd, bsize, AOM_PLANE_Y, tx_size);
433 tx_size = get_tx_size(width, height);
434 cfl_store(cfl, pd->dst.buf, pd->dst.stride, row, col, tx_size,
435 is_cur_buf_hbd(xd));
436 }
437