• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <math.h>
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <string.h>
16 
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_dsp/noise_model.h"
19 #include "aom_dsp/noise_util.h"
20 #include "aom_mem/aom_mem.h"
21 #include "av1/common/common.h"
22 #include "av1/encoder/mathutils.h"
23 
24 #define kLowPolyNumParams 3
25 
26 static const int kMaxLag = 4;
27 
28 // Defines a function that can be used to obtain the mean of a block for the
29 // provided data type (uint8_t, or uint16_t)
30 #define GET_BLOCK_MEAN(INT_TYPE, suffix)                                    \
31   static double get_block_mean_##suffix(const INT_TYPE *data, int w, int h, \
32                                         int stride, int x_o, int y_o,       \
33                                         int block_size) {                   \
34     const int max_h = AOMMIN(h - y_o, block_size);                          \
35     const int max_w = AOMMIN(w - x_o, block_size);                          \
36     double block_mean = 0;                                                  \
37     for (int y = 0; y < max_h; ++y) {                                       \
38       for (int x = 0; x < max_w; ++x) {                                     \
39         block_mean += data[(y_o + y) * stride + x_o + x];                   \
40       }                                                                     \
41     }                                                                       \
42     return block_mean / (max_w * max_h);                                    \
43   }
44 
45 GET_BLOCK_MEAN(uint8_t, lowbd);
46 GET_BLOCK_MEAN(uint16_t, highbd);
47 
get_block_mean(const uint8_t * data,int w,int h,int stride,int x_o,int y_o,int block_size,int use_highbd)48 static INLINE double get_block_mean(const uint8_t *data, int w, int h,
49                                     int stride, int x_o, int y_o,
50                                     int block_size, int use_highbd) {
51   if (use_highbd)
52     return get_block_mean_highbd((const uint16_t *)data, w, h, stride, x_o, y_o,
53                                  block_size);
54   return get_block_mean_lowbd(data, w, h, stride, x_o, y_o, block_size);
55 }
56 
57 // Defines a function that can be used to obtain the variance of a block
58 // for the provided data type (uint8_t, or uint16_t)
59 #define GET_NOISE_VAR(INT_TYPE, suffix)                                  \
60   static double get_noise_var_##suffix(                                  \
61       const INT_TYPE *data, const INT_TYPE *denoised, int stride, int w, \
62       int h, int x_o, int y_o, int block_size_x, int block_size_y) {     \
63     const int max_h = AOMMIN(h - y_o, block_size_y);                     \
64     const int max_w = AOMMIN(w - x_o, block_size_x);                     \
65     double noise_var = 0;                                                \
66     double noise_mean = 0;                                               \
67     for (int y = 0; y < max_h; ++y) {                                    \
68       for (int x = 0; x < max_w; ++x) {                                  \
69         double noise = (double)data[(y_o + y) * stride + x_o + x] -      \
70                        denoised[(y_o + y) * stride + x_o + x];           \
71         noise_mean += noise;                                             \
72         noise_var += noise * noise;                                      \
73       }                                                                  \
74     }                                                                    \
75     noise_mean /= (max_w * max_h);                                       \
76     return noise_var / (max_w * max_h) - noise_mean * noise_mean;        \
77   }
78 
79 GET_NOISE_VAR(uint8_t, lowbd);
80 GET_NOISE_VAR(uint16_t, highbd);
81 
get_noise_var(const uint8_t * data,const uint8_t * denoised,int w,int h,int stride,int x_o,int y_o,int block_size_x,int block_size_y,int use_highbd)82 static INLINE double get_noise_var(const uint8_t *data, const uint8_t *denoised,
83                                    int w, int h, int stride, int x_o, int y_o,
84                                    int block_size_x, int block_size_y,
85                                    int use_highbd) {
86   if (use_highbd)
87     return get_noise_var_highbd((const uint16_t *)data,
88                                 (const uint16_t *)denoised, w, h, stride, x_o,
89                                 y_o, block_size_x, block_size_y);
90   return get_noise_var_lowbd(data, denoised, w, h, stride, x_o, y_o,
91                              block_size_x, block_size_y);
92 }
93 
equation_system_clear(aom_equation_system_t * eqns)94 static void equation_system_clear(aom_equation_system_t *eqns) {
95   const int n = eqns->n;
96   memset(eqns->A, 0, sizeof(*eqns->A) * n * n);
97   memset(eqns->x, 0, sizeof(*eqns->x) * n);
98   memset(eqns->b, 0, sizeof(*eqns->b) * n);
99 }
100 
equation_system_copy(aom_equation_system_t * dst,const aom_equation_system_t * src)101 static void equation_system_copy(aom_equation_system_t *dst,
102                                  const aom_equation_system_t *src) {
103   const int n = dst->n;
104   memcpy(dst->A, src->A, sizeof(*dst->A) * n * n);
105   memcpy(dst->x, src->x, sizeof(*dst->x) * n);
106   memcpy(dst->b, src->b, sizeof(*dst->b) * n);
107 }
108 
equation_system_init(aom_equation_system_t * eqns,int n)109 static int equation_system_init(aom_equation_system_t *eqns, int n) {
110   eqns->A = (double *)aom_malloc(sizeof(*eqns->A) * n * n);
111   eqns->b = (double *)aom_malloc(sizeof(*eqns->b) * n);
112   eqns->x = (double *)aom_malloc(sizeof(*eqns->x) * n);
113   eqns->n = n;
114   if (!eqns->A || !eqns->b || !eqns->x) {
115     fprintf(stderr, "Failed to allocate system of equations of size %d\n", n);
116     aom_free(eqns->A);
117     aom_free(eqns->b);
118     aom_free(eqns->x);
119     memset(eqns, 0, sizeof(*eqns));
120     return 0;
121   }
122   equation_system_clear(eqns);
123   return 1;
124 }
125 
equation_system_solve(aom_equation_system_t * eqns)126 static int equation_system_solve(aom_equation_system_t *eqns) {
127   const int n = eqns->n;
128   double *b = (double *)aom_malloc(sizeof(*b) * n);
129   double *A = (double *)aom_malloc(sizeof(*A) * n * n);
130   int ret = 0;
131   if (A == NULL || b == NULL) {
132     fprintf(stderr, "Unable to allocate temp values of size %dx%d\n", n, n);
133     aom_free(b);
134     aom_free(A);
135     return 0;
136   }
137   memcpy(A, eqns->A, sizeof(*eqns->A) * n * n);
138   memcpy(b, eqns->b, sizeof(*eqns->b) * n);
139   ret = linsolve(n, A, eqns->n, b, eqns->x);
140   aom_free(b);
141   aom_free(A);
142 
143   if (ret == 0) {
144     return 0;
145   }
146   return 1;
147 }
148 
equation_system_add(aom_equation_system_t * dest,aom_equation_system_t * src)149 static void equation_system_add(aom_equation_system_t *dest,
150                                 aom_equation_system_t *src) {
151   const int n = dest->n;
152   int i, j;
153   for (i = 0; i < n; ++i) {
154     for (j = 0; j < n; ++j) {
155       dest->A[i * n + j] += src->A[i * n + j];
156     }
157     dest->b[i] += src->b[i];
158   }
159 }
160 
equation_system_free(aom_equation_system_t * eqns)161 static void equation_system_free(aom_equation_system_t *eqns) {
162   if (!eqns) return;
163   aom_free(eqns->A);
164   aom_free(eqns->b);
165   aom_free(eqns->x);
166   memset(eqns, 0, sizeof(*eqns));
167 }
168 
noise_strength_solver_clear(aom_noise_strength_solver_t * solver)169 static void noise_strength_solver_clear(aom_noise_strength_solver_t *solver) {
170   equation_system_clear(&solver->eqns);
171   solver->num_equations = 0;
172   solver->total = 0;
173 }
174 
noise_strength_solver_add(aom_noise_strength_solver_t * dest,aom_noise_strength_solver_t * src)175 static void noise_strength_solver_add(aom_noise_strength_solver_t *dest,
176                                       aom_noise_strength_solver_t *src) {
177   equation_system_add(&dest->eqns, &src->eqns);
178   dest->num_equations += src->num_equations;
179   dest->total += src->total;
180 }
181 
182 // Return the number of coefficients required for the given parameters
num_coeffs(const aom_noise_model_params_t params)183 static int num_coeffs(const aom_noise_model_params_t params) {
184   const int n = 2 * params.lag + 1;
185   switch (params.shape) {
186     case AOM_NOISE_SHAPE_DIAMOND: return params.lag * (params.lag + 1);
187     case AOM_NOISE_SHAPE_SQUARE: return (n * n) / 2;
188   }
189   return 0;
190 }
191 
noise_state_init(aom_noise_state_t * state,int n,int bit_depth)192 static int noise_state_init(aom_noise_state_t *state, int n, int bit_depth) {
193   const int kNumBins = 20;
194   if (!equation_system_init(&state->eqns, n)) {
195     fprintf(stderr, "Failed initialization noise state with size %d\n", n);
196     return 0;
197   }
198   state->ar_gain = 1.0;
199   state->num_observations = 0;
200   return aom_noise_strength_solver_init(&state->strength_solver, kNumBins,
201                                         bit_depth);
202 }
203 
set_chroma_coefficient_fallback_soln(aom_equation_system_t * eqns)204 static void set_chroma_coefficient_fallback_soln(aom_equation_system_t *eqns) {
205   const double kTolerance = 1e-6;
206   const int last = eqns->n - 1;
207   // Set all of the AR coefficients to zero, but try to solve for correlation
208   // with the luma channel
209   memset(eqns->x, 0, sizeof(*eqns->x) * eqns->n);
210   if (fabs(eqns->A[last * eqns->n + last]) > kTolerance) {
211     eqns->x[last] = eqns->b[last] / eqns->A[last * eqns->n + last];
212   }
213 }
214 
aom_noise_strength_lut_init(aom_noise_strength_lut_t * lut,int num_points)215 int aom_noise_strength_lut_init(aom_noise_strength_lut_t *lut, int num_points) {
216   if (!lut) return 0;
217   lut->num_points = 0;
218   lut->points = (double(*)[2])aom_malloc(num_points * sizeof(*lut->points));
219   if (!lut->points) return 0;
220   lut->num_points = num_points;
221   memset(lut->points, 0, sizeof(*lut->points) * num_points);
222   return 1;
223 }
224 
aom_noise_strength_lut_free(aom_noise_strength_lut_t * lut)225 void aom_noise_strength_lut_free(aom_noise_strength_lut_t *lut) {
226   if (!lut) return;
227   aom_free(lut->points);
228   memset(lut, 0, sizeof(*lut));
229 }
230 
aom_noise_strength_lut_eval(const aom_noise_strength_lut_t * lut,double x)231 double aom_noise_strength_lut_eval(const aom_noise_strength_lut_t *lut,
232                                    double x) {
233   int i = 0;
234   // Constant extrapolation for x <  x_0.
235   if (x < lut->points[0][0]) return lut->points[0][1];
236   for (i = 0; i < lut->num_points - 1; ++i) {
237     if (x >= lut->points[i][0] && x <= lut->points[i + 1][0]) {
238       const double a =
239           (x - lut->points[i][0]) / (lut->points[i + 1][0] - lut->points[i][0]);
240       return lut->points[i + 1][1] * a + lut->points[i][1] * (1.0 - a);
241     }
242   }
243   // Constant extrapolation for x > x_{n-1}
244   return lut->points[lut->num_points - 1][1];
245 }
246 
noise_strength_solver_get_bin_index(const aom_noise_strength_solver_t * solver,double value)247 static double noise_strength_solver_get_bin_index(
248     const aom_noise_strength_solver_t *solver, double value) {
249   const double val =
250       fclamp(value, solver->min_intensity, solver->max_intensity);
251   const double range = solver->max_intensity - solver->min_intensity;
252   return (solver->num_bins - 1) * (val - solver->min_intensity) / range;
253 }
254 
noise_strength_solver_get_value(const aom_noise_strength_solver_t * solver,double x)255 static double noise_strength_solver_get_value(
256     const aom_noise_strength_solver_t *solver, double x) {
257   const double bin = noise_strength_solver_get_bin_index(solver, x);
258   const int bin_i0 = (int)floor(bin);
259   const int bin_i1 = AOMMIN(solver->num_bins - 1, bin_i0 + 1);
260   const double a = bin - bin_i0;
261   return (1.0 - a) * solver->eqns.x[bin_i0] + a * solver->eqns.x[bin_i1];
262 }
263 
aom_noise_strength_solver_add_measurement(aom_noise_strength_solver_t * solver,double block_mean,double noise_std)264 void aom_noise_strength_solver_add_measurement(
265     aom_noise_strength_solver_t *solver, double block_mean, double noise_std) {
266   const double bin = noise_strength_solver_get_bin_index(solver, block_mean);
267   const int bin_i0 = (int)floor(bin);
268   const int bin_i1 = AOMMIN(solver->num_bins - 1, bin_i0 + 1);
269   const double a = bin - bin_i0;
270   const int n = solver->num_bins;
271   solver->eqns.A[bin_i0 * n + bin_i0] += (1.0 - a) * (1.0 - a);
272   solver->eqns.A[bin_i1 * n + bin_i0] += a * (1.0 - a);
273   solver->eqns.A[bin_i1 * n + bin_i1] += a * a;
274   solver->eqns.A[bin_i0 * n + bin_i1] += a * (1.0 - a);
275   solver->eqns.b[bin_i0] += (1.0 - a) * noise_std;
276   solver->eqns.b[bin_i1] += a * noise_std;
277   solver->total += noise_std;
278   solver->num_equations++;
279 }
280 
aom_noise_strength_solver_solve(aom_noise_strength_solver_t * solver)281 int aom_noise_strength_solver_solve(aom_noise_strength_solver_t *solver) {
282   // Add regularization proportional to the number of constraints
283   const int n = solver->num_bins;
284   const double kAlpha = 2.0 * (double)(solver->num_equations) / n;
285   int result = 0;
286   double mean = 0;
287 
288   // Do this in a non-destructive manner so it is not confusing to the caller
289   double *old_A = solver->eqns.A;
290   double *A = (double *)aom_malloc(sizeof(*A) * n * n);
291   if (!A) {
292     fprintf(stderr, "Unable to allocate copy of A\n");
293     return 0;
294   }
295   memcpy(A, old_A, sizeof(*A) * n * n);
296 
297   for (int i = 0; i < n; ++i) {
298     const int i_lo = AOMMAX(0, i - 1);
299     const int i_hi = AOMMIN(n - 1, i + 1);
300     A[i * n + i_lo] -= kAlpha;
301     A[i * n + i] += 2 * kAlpha;
302     A[i * n + i_hi] -= kAlpha;
303   }
304 
305   // Small regularization to give average noise strength
306   mean = solver->total / solver->num_equations;
307   for (int i = 0; i < n; ++i) {
308     A[i * n + i] += 1.0 / 8192.;
309     solver->eqns.b[i] += mean / 8192.;
310   }
311   solver->eqns.A = A;
312   result = equation_system_solve(&solver->eqns);
313   solver->eqns.A = old_A;
314 
315   aom_free(A);
316   return result;
317 }
318 
aom_noise_strength_solver_init(aom_noise_strength_solver_t * solver,int num_bins,int bit_depth)319 int aom_noise_strength_solver_init(aom_noise_strength_solver_t *solver,
320                                    int num_bins, int bit_depth) {
321   if (!solver) return 0;
322   memset(solver, 0, sizeof(*solver));
323   solver->num_bins = num_bins;
324   solver->min_intensity = 0;
325   solver->max_intensity = (1 << bit_depth) - 1;
326   solver->total = 0;
327   solver->num_equations = 0;
328   return equation_system_init(&solver->eqns, num_bins);
329 }
330 
aom_noise_strength_solver_free(aom_noise_strength_solver_t * solver)331 void aom_noise_strength_solver_free(aom_noise_strength_solver_t *solver) {
332   if (!solver) return;
333   equation_system_free(&solver->eqns);
334 }
335 
aom_noise_strength_solver_get_center(const aom_noise_strength_solver_t * solver,int i)336 double aom_noise_strength_solver_get_center(
337     const aom_noise_strength_solver_t *solver, int i) {
338   const double range = solver->max_intensity - solver->min_intensity;
339   const int n = solver->num_bins;
340   return ((double)i) / (n - 1) * range + solver->min_intensity;
341 }
342 
343 // Computes the residual if a point were to be removed from the lut. This is
344 // calculated as the area between the output of the solver and the line segment
345 // that would be formed between [x_{i - 1}, x_{i + 1}).
update_piecewise_linear_residual(const aom_noise_strength_solver_t * solver,const aom_noise_strength_lut_t * lut,double * residual,int start,int end)346 static void update_piecewise_linear_residual(
347     const aom_noise_strength_solver_t *solver,
348     const aom_noise_strength_lut_t *lut, double *residual, int start, int end) {
349   const double dx = 255. / solver->num_bins;
350   for (int i = AOMMAX(start, 1); i < AOMMIN(end, lut->num_points - 1); ++i) {
351     const int lower = AOMMAX(0, (int)floor(noise_strength_solver_get_bin_index(
352                                     solver, lut->points[i - 1][0])));
353     const int upper = AOMMIN(solver->num_bins - 1,
354                              (int)ceil(noise_strength_solver_get_bin_index(
355                                  solver, lut->points[i + 1][0])));
356     double r = 0;
357     for (int j = lower; j <= upper; ++j) {
358       const double x = aom_noise_strength_solver_get_center(solver, j);
359       if (x < lut->points[i - 1][0]) continue;
360       if (x >= lut->points[i + 1][0]) continue;
361       const double y = solver->eqns.x[j];
362       const double a = (x - lut->points[i - 1][0]) /
363                        (lut->points[i + 1][0] - lut->points[i - 1][0]);
364       const double estimate_y =
365           lut->points[i - 1][1] * (1.0 - a) + lut->points[i + 1][1] * a;
366       r += fabs(y - estimate_y);
367     }
368     residual[i] = r * dx;
369   }
370 }
371 
aom_noise_strength_solver_fit_piecewise(const aom_noise_strength_solver_t * solver,int max_output_points,aom_noise_strength_lut_t * lut)372 int aom_noise_strength_solver_fit_piecewise(
373     const aom_noise_strength_solver_t *solver, int max_output_points,
374     aom_noise_strength_lut_t *lut) {
375   // The tolerance is normalized to be give consistent results between
376   // different bit-depths.
377   const double kTolerance = solver->max_intensity * 0.00625 / 255.0;
378   if (!aom_noise_strength_lut_init(lut, solver->num_bins)) {
379     fprintf(stderr, "Failed to init lut\n");
380     return 0;
381   }
382   for (int i = 0; i < solver->num_bins; ++i) {
383     lut->points[i][0] = aom_noise_strength_solver_get_center(solver, i);
384     lut->points[i][1] = solver->eqns.x[i];
385   }
386   if (max_output_points < 0) {
387     max_output_points = solver->num_bins;
388   }
389 
390   double *residual = aom_malloc(solver->num_bins * sizeof(*residual));
391   memset(residual, 0, sizeof(*residual) * solver->num_bins);
392 
393   update_piecewise_linear_residual(solver, lut, residual, 0, solver->num_bins);
394 
395   // Greedily remove points if there are too many or if it doesn't hurt local
396   // approximation (never remove the end points)
397   while (lut->num_points > 2) {
398     int min_index = 1;
399     for (int j = 1; j < lut->num_points - 1; ++j) {
400       if (residual[j] < residual[min_index]) {
401         min_index = j;
402       }
403     }
404     const double dx =
405         lut->points[min_index + 1][0] - lut->points[min_index - 1][0];
406     const double avg_residual = residual[min_index] / dx;
407     if (lut->num_points <= max_output_points && avg_residual > kTolerance) {
408       break;
409     }
410 
411     const int num_remaining = lut->num_points - min_index - 1;
412     memmove(lut->points + min_index, lut->points + min_index + 1,
413             sizeof(lut->points[0]) * num_remaining);
414     lut->num_points--;
415 
416     update_piecewise_linear_residual(solver, lut, residual, min_index - 1,
417                                      min_index + 1);
418   }
419   aom_free(residual);
420   return 1;
421 }
422 
aom_flat_block_finder_init(aom_flat_block_finder_t * block_finder,int block_size,int bit_depth,int use_highbd)423 int aom_flat_block_finder_init(aom_flat_block_finder_t *block_finder,
424                                int block_size, int bit_depth, int use_highbd) {
425   const int n = block_size * block_size;
426   aom_equation_system_t eqns;
427   double *AtA_inv = 0;
428   double *A = 0;
429   int x = 0, y = 0, i = 0, j = 0;
430   block_finder->A = NULL;
431   block_finder->AtA_inv = NULL;
432 
433   if (!equation_system_init(&eqns, kLowPolyNumParams)) {
434     fprintf(stderr, "Failed to init equation system for block_size=%d\n",
435             block_size);
436     return 0;
437   }
438 
439   AtA_inv = (double *)aom_malloc(kLowPolyNumParams * kLowPolyNumParams *
440                                  sizeof(*AtA_inv));
441   A = (double *)aom_malloc(kLowPolyNumParams * n * sizeof(*A));
442   if (AtA_inv == NULL || A == NULL) {
443     fprintf(stderr, "Failed to alloc A or AtA_inv for block_size=%d\n",
444             block_size);
445     aom_free(AtA_inv);
446     aom_free(A);
447     equation_system_free(&eqns);
448     return 0;
449   }
450 
451   block_finder->A = A;
452   block_finder->AtA_inv = AtA_inv;
453   block_finder->block_size = block_size;
454   block_finder->normalization = (1 << bit_depth) - 1;
455   block_finder->use_highbd = use_highbd;
456 
457   for (y = 0; y < block_size; ++y) {
458     const double yd = ((double)y - block_size / 2.) / (block_size / 2.);
459     for (x = 0; x < block_size; ++x) {
460       const double xd = ((double)x - block_size / 2.) / (block_size / 2.);
461       const double coords[3] = { yd, xd, 1 };
462       const int row = y * block_size + x;
463       A[kLowPolyNumParams * row + 0] = yd;
464       A[kLowPolyNumParams * row + 1] = xd;
465       A[kLowPolyNumParams * row + 2] = 1;
466 
467       for (i = 0; i < kLowPolyNumParams; ++i) {
468         for (j = 0; j < kLowPolyNumParams; ++j) {
469           eqns.A[kLowPolyNumParams * i + j] += coords[i] * coords[j];
470         }
471       }
472     }
473   }
474 
475   // Lazy inverse using existing equation solver.
476   for (i = 0; i < kLowPolyNumParams; ++i) {
477     memset(eqns.b, 0, sizeof(*eqns.b) * kLowPolyNumParams);
478     eqns.b[i] = 1;
479     equation_system_solve(&eqns);
480 
481     for (j = 0; j < kLowPolyNumParams; ++j) {
482       AtA_inv[j * kLowPolyNumParams + i] = eqns.x[j];
483     }
484   }
485   equation_system_free(&eqns);
486   return 1;
487 }
488 
aom_flat_block_finder_free(aom_flat_block_finder_t * block_finder)489 void aom_flat_block_finder_free(aom_flat_block_finder_t *block_finder) {
490   if (!block_finder) return;
491   aom_free(block_finder->A);
492   aom_free(block_finder->AtA_inv);
493   memset(block_finder, 0, sizeof(*block_finder));
494 }
495 
aom_flat_block_finder_extract_block(const aom_flat_block_finder_t * block_finder,const uint8_t * const data,int w,int h,int stride,int offsx,int offsy,double * plane,double * block)496 void aom_flat_block_finder_extract_block(
497     const aom_flat_block_finder_t *block_finder, const uint8_t *const data,
498     int w, int h, int stride, int offsx, int offsy, double *plane,
499     double *block) {
500   const int block_size = block_finder->block_size;
501   const int n = block_size * block_size;
502   const double *A = block_finder->A;
503   const double *AtA_inv = block_finder->AtA_inv;
504   double plane_coords[kLowPolyNumParams];
505   double AtA_inv_b[kLowPolyNumParams];
506   int xi, yi, i;
507 
508   if (block_finder->use_highbd) {
509     const uint16_t *const data16 = (const uint16_t *const)data;
510     for (yi = 0; yi < block_size; ++yi) {
511       const int y = clamp(offsy + yi, 0, h - 1);
512       for (xi = 0; xi < block_size; ++xi) {
513         const int x = clamp(offsx + xi, 0, w - 1);
514         block[yi * block_size + xi] =
515             ((double)data16[y * stride + x]) / block_finder->normalization;
516       }
517     }
518   } else {
519     for (yi = 0; yi < block_size; ++yi) {
520       const int y = clamp(offsy + yi, 0, h - 1);
521       for (xi = 0; xi < block_size; ++xi) {
522         const int x = clamp(offsx + xi, 0, w - 1);
523         block[yi * block_size + xi] =
524             ((double)data[y * stride + x]) / block_finder->normalization;
525       }
526     }
527   }
528   multiply_mat(block, A, AtA_inv_b, 1, n, kLowPolyNumParams);
529   multiply_mat(AtA_inv, AtA_inv_b, plane_coords, kLowPolyNumParams,
530                kLowPolyNumParams, 1);
531   multiply_mat(A, plane_coords, plane, n, kLowPolyNumParams, 1);
532 
533   for (i = 0; i < n; ++i) {
534     block[i] -= plane[i];
535   }
536 }
537 
538 typedef struct {
539   int index;
540   float score;
541 } index_and_score_t;
542 
compare_scores(const void * a,const void * b)543 static int compare_scores(const void *a, const void *b) {
544   const float diff =
545       ((index_and_score_t *)a)->score - ((index_and_score_t *)b)->score;
546   if (diff < 0)
547     return -1;
548   else if (diff > 0)
549     return 1;
550   return 0;
551 }
552 
aom_flat_block_finder_run(const aom_flat_block_finder_t * block_finder,const uint8_t * const data,int w,int h,int stride,uint8_t * flat_blocks)553 int aom_flat_block_finder_run(const aom_flat_block_finder_t *block_finder,
554                               const uint8_t *const data, int w, int h,
555                               int stride, uint8_t *flat_blocks) {
556   // The gradient-based features used in this code are based on:
557   //  A. Kokaram, D. Kelly, H. Denman and A. Crawford, "Measuring noise
558   //  correlation for improved video denoising," 2012 19th, ICIP.
559   // The thresholds are more lenient to allow for correct grain modeling
560   // if extreme cases.
561   const int block_size = block_finder->block_size;
562   const int n = block_size * block_size;
563   const double kTraceThreshold = 0.15 / (32 * 32);
564   const double kRatioThreshold = 1.25;
565   const double kNormThreshold = 0.08 / (32 * 32);
566   const double kVarThreshold = 0.005 / (double)n;
567   const int num_blocks_w = (w + block_size - 1) / block_size;
568   const int num_blocks_h = (h + block_size - 1) / block_size;
569   int num_flat = 0;
570   int bx = 0, by = 0;
571   double *plane = (double *)aom_malloc(n * sizeof(*plane));
572   double *block = (double *)aom_malloc(n * sizeof(*block));
573   index_and_score_t *scores = (index_and_score_t *)aom_malloc(
574       num_blocks_w * num_blocks_h * sizeof(*scores));
575   if (plane == NULL || block == NULL || scores == NULL) {
576     fprintf(stderr, "Failed to allocate memory for block of size %d\n", n);
577     aom_free(plane);
578     aom_free(block);
579     aom_free(scores);
580     return -1;
581   }
582 
583 #ifdef NOISE_MODEL_LOG_SCORE
584   fprintf(stderr, "score = [");
585 #endif
586   for (by = 0; by < num_blocks_h; ++by) {
587     for (bx = 0; bx < num_blocks_w; ++bx) {
588       // Compute gradient covariance matrix.
589       double Gxx = 0, Gxy = 0, Gyy = 0;
590       double var = 0;
591       double mean = 0;
592       int xi, yi;
593       aom_flat_block_finder_extract_block(block_finder, data, w, h, stride,
594                                           bx * block_size, by * block_size,
595                                           plane, block);
596 
597       for (yi = 1; yi < block_size - 1; ++yi) {
598         for (xi = 1; xi < block_size - 1; ++xi) {
599           const double gx = (block[yi * block_size + xi + 1] -
600                              block[yi * block_size + xi - 1]) /
601                             2;
602           const double gy = (block[yi * block_size + xi + block_size] -
603                              block[yi * block_size + xi - block_size]) /
604                             2;
605           Gxx += gx * gx;
606           Gxy += gx * gy;
607           Gyy += gy * gy;
608 
609           mean += block[yi * block_size + xi];
610           var += block[yi * block_size + xi] * block[yi * block_size + xi];
611         }
612       }
613       mean /= (block_size - 2) * (block_size - 2);
614 
615       // Normalize gradients by block_size.
616       Gxx /= ((block_size - 2) * (block_size - 2));
617       Gxy /= ((block_size - 2) * (block_size - 2));
618       Gyy /= ((block_size - 2) * (block_size - 2));
619       var = var / ((block_size - 2) * (block_size - 2)) - mean * mean;
620 
621       {
622         const double trace = Gxx + Gyy;
623         const double det = Gxx * Gyy - Gxy * Gxy;
624         const double e1 = (trace + sqrt(trace * trace - 4 * det)) / 2.;
625         const double e2 = (trace - sqrt(trace * trace - 4 * det)) / 2.;
626         const double norm = e1;  // Spectral norm
627         const double ratio = (e1 / AOMMAX(e2, 1e-6));
628         const int is_flat = (trace < kTraceThreshold) &&
629                             (ratio < kRatioThreshold) &&
630                             (norm < kNormThreshold) && (var > kVarThreshold);
631         // The following weights are used to combine the above features to give
632         // a sigmoid score for flatness. If the input was normalized to [0,100]
633         // the magnitude of these values would be close to 1 (e.g., weights
634         // corresponding to variance would be a factor of 10000x smaller).
635         // The weights are given in the following order:
636         //    [{var}, {ratio}, {trace}, {norm}, offset]
637         // with one of the most discriminative being simply the variance.
638         const double weights[5] = { -6682, -0.2056, 13087, -12434, 2.5694 };
639         double sum_weights = weights[0] * var + weights[1] * ratio +
640                              weights[2] * trace + weights[3] * norm +
641                              weights[4];
642         // clamp the value to [-25.0, 100.0] to prevent overflow
643         sum_weights = fclamp(sum_weights, -25.0, 100.0);
644         const float score = (float)(1.0 / (1 + exp(-sum_weights)));
645         flat_blocks[by * num_blocks_w + bx] = is_flat ? 255 : 0;
646         scores[by * num_blocks_w + bx].score = var > kVarThreshold ? score : 0;
647         scores[by * num_blocks_w + bx].index = by * num_blocks_w + bx;
648 #ifdef NOISE_MODEL_LOG_SCORE
649         fprintf(stderr, "%g %g %g %g %g %d ", score, var, ratio, trace, norm,
650                 is_flat);
651 #endif
652         num_flat += is_flat;
653       }
654     }
655 #ifdef NOISE_MODEL_LOG_SCORE
656     fprintf(stderr, "\n");
657 #endif
658   }
659 #ifdef NOISE_MODEL_LOG_SCORE
660   fprintf(stderr, "];\n");
661 #endif
662   // Find the top-scored blocks (most likely to be flat) and set the flat blocks
663   // be the union of the thresholded results and the top 10th percentile of the
664   // scored results.
665   qsort(scores, num_blocks_w * num_blocks_h, sizeof(*scores), &compare_scores);
666   const int top_nth_percentile = num_blocks_w * num_blocks_h * 90 / 100;
667   const float score_threshold = scores[top_nth_percentile].score;
668   for (int i = 0; i < num_blocks_w * num_blocks_h; ++i) {
669     if (scores[i].score >= score_threshold) {
670       num_flat += flat_blocks[scores[i].index] == 0;
671       flat_blocks[scores[i].index] |= 1;
672     }
673   }
674   aom_free(block);
675   aom_free(plane);
676   aom_free(scores);
677   return num_flat;
678 }
679 
aom_noise_model_init(aom_noise_model_t * model,const aom_noise_model_params_t params)680 int aom_noise_model_init(aom_noise_model_t *model,
681                          const aom_noise_model_params_t params) {
682   const int n = num_coeffs(params);
683   const int lag = params.lag;
684   const int bit_depth = params.bit_depth;
685   int x = 0, y = 0, i = 0, c = 0;
686 
687   memset(model, 0, sizeof(*model));
688   if (params.lag < 1) {
689     fprintf(stderr, "Invalid noise param: lag = %d must be >= 1\n", params.lag);
690     return 0;
691   }
692   if (params.lag > kMaxLag) {
693     fprintf(stderr, "Invalid noise param: lag = %d must be <= %d\n", params.lag,
694             kMaxLag);
695     return 0;
696   }
697 
698   memcpy(&model->params, &params, sizeof(params));
699   for (c = 0; c < 3; ++c) {
700     if (!noise_state_init(&model->combined_state[c], n + (c > 0), bit_depth)) {
701       fprintf(stderr, "Failed to allocate noise state for channel %d\n", c);
702       aom_noise_model_free(model);
703       return 0;
704     }
705     if (!noise_state_init(&model->latest_state[c], n + (c > 0), bit_depth)) {
706       fprintf(stderr, "Failed to allocate noise state for channel %d\n", c);
707       aom_noise_model_free(model);
708       return 0;
709     }
710   }
711   model->n = n;
712   model->coords = (int(*)[2])aom_malloc(sizeof(*model->coords) * n);
713 
714   for (y = -lag; y <= 0; ++y) {
715     const int max_x = y == 0 ? -1 : lag;
716     for (x = -lag; x <= max_x; ++x) {
717       switch (params.shape) {
718         case AOM_NOISE_SHAPE_DIAMOND:
719           if (abs(x) <= y + lag) {
720             model->coords[i][0] = x;
721             model->coords[i][1] = y;
722             ++i;
723           }
724           break;
725         case AOM_NOISE_SHAPE_SQUARE:
726           model->coords[i][0] = x;
727           model->coords[i][1] = y;
728           ++i;
729           break;
730         default:
731           fprintf(stderr, "Invalid shape\n");
732           aom_noise_model_free(model);
733           return 0;
734       }
735     }
736   }
737   assert(i == n);
738   return 1;
739 }
740 
aom_noise_model_free(aom_noise_model_t * model)741 void aom_noise_model_free(aom_noise_model_t *model) {
742   int c = 0;
743   if (!model) return;
744 
745   aom_free(model->coords);
746   for (c = 0; c < 3; ++c) {
747     equation_system_free(&model->latest_state[c].eqns);
748     equation_system_free(&model->combined_state[c].eqns);
749 
750     equation_system_free(&model->latest_state[c].strength_solver.eqns);
751     equation_system_free(&model->combined_state[c].strength_solver.eqns);
752   }
753   memset(model, 0, sizeof(*model));
754 }
755 
756 // Extracts the neighborhood defined by coords around point (x, y) from
757 // the difference between the data and denoised images. Also extracts the
758 // entry (possibly downsampled) for (x, y) in the alt_data (e.g., luma).
759 #define EXTRACT_AR_ROW(INT_TYPE, suffix)                                   \
760   static double extract_ar_row_##suffix(                                   \
761       int(*coords)[2], int num_coords, const INT_TYPE *const data,         \
762       const INT_TYPE *const denoised, int stride, int sub_log2[2],         \
763       const INT_TYPE *const alt_data, const INT_TYPE *const alt_denoised,  \
764       int alt_stride, int x, int y, double *buffer) {                      \
765     for (int i = 0; i < num_coords; ++i) {                                 \
766       const int x_i = x + coords[i][0], y_i = y + coords[i][1];            \
767       buffer[i] =                                                          \
768           (double)data[y_i * stride + x_i] - denoised[y_i * stride + x_i]; \
769     }                                                                      \
770     const double val =                                                     \
771         (double)data[y * stride + x] - denoised[y * stride + x];           \
772                                                                            \
773     if (alt_data && alt_denoised) {                                        \
774       double avg_data = 0, avg_denoised = 0;                               \
775       int num_samples = 0;                                                 \
776       for (int dy_i = 0; dy_i < (1 << sub_log2[1]); dy_i++) {              \
777         const int y_up = (y << sub_log2[1]) + dy_i;                        \
778         for (int dx_i = 0; dx_i < (1 << sub_log2[0]); dx_i++) {            \
779           const int x_up = (x << sub_log2[0]) + dx_i;                      \
780           avg_data += alt_data[y_up * alt_stride + x_up];                  \
781           avg_denoised += alt_denoised[y_up * alt_stride + x_up];          \
782           num_samples++;                                                   \
783         }                                                                  \
784       }                                                                    \
785       buffer[num_coords] = (avg_data - avg_denoised) / num_samples;        \
786     }                                                                      \
787     return val;                                                            \
788   }
789 
790 EXTRACT_AR_ROW(uint8_t, lowbd);
791 EXTRACT_AR_ROW(uint16_t, highbd);
792 
add_block_observations(aom_noise_model_t * noise_model,int c,const uint8_t * const data,const uint8_t * const denoised,int w,int h,int stride,int sub_log2[2],const uint8_t * const alt_data,const uint8_t * const alt_denoised,int alt_stride,const uint8_t * const flat_blocks,int block_size,int num_blocks_w,int num_blocks_h)793 static int add_block_observations(
794     aom_noise_model_t *noise_model, int c, const uint8_t *const data,
795     const uint8_t *const denoised, int w, int h, int stride, int sub_log2[2],
796     const uint8_t *const alt_data, const uint8_t *const alt_denoised,
797     int alt_stride, const uint8_t *const flat_blocks, int block_size,
798     int num_blocks_w, int num_blocks_h) {
799   const int lag = noise_model->params.lag;
800   const int num_coords = noise_model->n;
801   const double normalization = (1 << noise_model->params.bit_depth) - 1;
802   double *A = noise_model->latest_state[c].eqns.A;
803   double *b = noise_model->latest_state[c].eqns.b;
804   double *buffer = (double *)aom_malloc(sizeof(*buffer) * (num_coords + 1));
805   const int n = noise_model->latest_state[c].eqns.n;
806 
807   if (!buffer) {
808     fprintf(stderr, "Unable to allocate buffer of size %d\n", num_coords + 1);
809     return 0;
810   }
811   for (int by = 0; by < num_blocks_h; ++by) {
812     const int y_o = by * (block_size >> sub_log2[1]);
813     for (int bx = 0; bx < num_blocks_w; ++bx) {
814       const int x_o = bx * (block_size >> sub_log2[0]);
815       if (!flat_blocks[by * num_blocks_w + bx]) {
816         continue;
817       }
818       int y_start =
819           (by > 0 && flat_blocks[(by - 1) * num_blocks_w + bx]) ? 0 : lag;
820       int x_start =
821           (bx > 0 && flat_blocks[by * num_blocks_w + bx - 1]) ? 0 : lag;
822       int y_end = AOMMIN((h >> sub_log2[1]) - by * (block_size >> sub_log2[1]),
823                          block_size >> sub_log2[1]);
824       int x_end = AOMMIN(
825           (w >> sub_log2[0]) - bx * (block_size >> sub_log2[0]) - lag,
826           (bx + 1 < num_blocks_w && flat_blocks[by * num_blocks_w + bx + 1])
827               ? (block_size >> sub_log2[0])
828               : ((block_size >> sub_log2[0]) - lag));
829       for (int y = y_start; y < y_end; ++y) {
830         for (int x = x_start; x < x_end; ++x) {
831           const double val =
832               noise_model->params.use_highbd
833                   ? extract_ar_row_highbd(noise_model->coords, num_coords,
834                                           (const uint16_t *const)data,
835                                           (const uint16_t *const)denoised,
836                                           stride, sub_log2,
837                                           (const uint16_t *const)alt_data,
838                                           (const uint16_t *const)alt_denoised,
839                                           alt_stride, x + x_o, y + y_o, buffer)
840                   : extract_ar_row_lowbd(noise_model->coords, num_coords, data,
841                                          denoised, stride, sub_log2, alt_data,
842                                          alt_denoised, alt_stride, x + x_o,
843                                          y + y_o, buffer);
844           for (int i = 0; i < n; ++i) {
845             for (int j = 0; j < n; ++j) {
846               A[i * n + j] +=
847                   (buffer[i] * buffer[j]) / (normalization * normalization);
848             }
849             b[i] += (buffer[i] * val) / (normalization * normalization);
850           }
851           noise_model->latest_state[c].num_observations++;
852         }
853       }
854     }
855   }
856   aom_free(buffer);
857   return 1;
858 }
859 
add_noise_std_observations(aom_noise_model_t * noise_model,int c,const double * coeffs,const uint8_t * const data,const uint8_t * const denoised,int w,int h,int stride,int sub_log2[2],const uint8_t * const alt_data,int alt_stride,const uint8_t * const flat_blocks,int block_size,int num_blocks_w,int num_blocks_h)860 static void add_noise_std_observations(
861     aom_noise_model_t *noise_model, int c, const double *coeffs,
862     const uint8_t *const data, const uint8_t *const denoised, int w, int h,
863     int stride, int sub_log2[2], const uint8_t *const alt_data, int alt_stride,
864     const uint8_t *const flat_blocks, int block_size, int num_blocks_w,
865     int num_blocks_h) {
866   const int num_coords = noise_model->n;
867   aom_noise_strength_solver_t *noise_strength_solver =
868       &noise_model->latest_state[c].strength_solver;
869 
870   const aom_noise_strength_solver_t *noise_strength_luma =
871       &noise_model->latest_state[0].strength_solver;
872   const double luma_gain = noise_model->latest_state[0].ar_gain;
873   const double noise_gain = noise_model->latest_state[c].ar_gain;
874   for (int by = 0; by < num_blocks_h; ++by) {
875     const int y_o = by * (block_size >> sub_log2[1]);
876     for (int bx = 0; bx < num_blocks_w; ++bx) {
877       const int x_o = bx * (block_size >> sub_log2[0]);
878       if (!flat_blocks[by * num_blocks_w + bx]) {
879         continue;
880       }
881       const int num_samples_h =
882           AOMMIN((h >> sub_log2[1]) - by * (block_size >> sub_log2[1]),
883                  block_size >> sub_log2[1]);
884       const int num_samples_w =
885           AOMMIN((w >> sub_log2[0]) - bx * (block_size >> sub_log2[0]),
886                  (block_size >> sub_log2[0]));
887       // Make sure that we have a reasonable amount of samples to consider the
888       // block
889       if (num_samples_w * num_samples_h > block_size) {
890         const double block_mean = get_block_mean(
891             alt_data ? alt_data : data, w, h, alt_data ? alt_stride : stride,
892             x_o << sub_log2[0], y_o << sub_log2[1], block_size,
893             noise_model->params.use_highbd);
894         const double noise_var = get_noise_var(
895             data, denoised, stride, w >> sub_log2[0], h >> sub_log2[1], x_o,
896             y_o, block_size >> sub_log2[0], block_size >> sub_log2[1],
897             noise_model->params.use_highbd);
898         // We want to remove the part of the noise that came from being
899         // correlated with luma. Note that the noise solver for luma must
900         // have already been run.
901         const double luma_strength =
902             c > 0 ? luma_gain * noise_strength_solver_get_value(
903                                     noise_strength_luma, block_mean)
904                   : 0;
905         const double corr = c > 0 ? coeffs[num_coords] : 0;
906         // Chroma noise:
907         //    N(0, noise_var) = N(0, uncorr_var) + corr * N(0, luma_strength^2)
908         // The uncorrelated component:
909         //   uncorr_var = noise_var - (corr * luma_strength)^2
910         // But don't allow fully correlated noise (hence the max), since the
911         // synthesis cannot model it.
912         const double uncorr_std = sqrt(
913             AOMMAX(noise_var / 16, noise_var - pow(corr * luma_strength, 2)));
914         // After we've removed correlation with luma, undo the gain that will
915         // come from running the IIR filter.
916         const double adjusted_strength = uncorr_std / noise_gain;
917         aom_noise_strength_solver_add_measurement(
918             noise_strength_solver, block_mean, adjusted_strength);
919       }
920     }
921   }
922 }
923 
924 // Return true if the noise estimate appears to be different from the combined
925 // (multi-frame) estimate. The difference is measured by checking whether the
926 // AR coefficients have diverged (using a threshold on normalized cross
927 // correlation), or whether the noise strength has changed.
is_noise_model_different(aom_noise_model_t * const noise_model)928 static int is_noise_model_different(aom_noise_model_t *const noise_model) {
929   // These thresholds are kind of arbitrary and will likely need further tuning
930   // (or exported as parameters). The threshold on noise strength is a weighted
931   // difference between the noise strength histograms
932   const double kCoeffThreshold = 0.9;
933   const double kStrengthThreshold =
934       0.005 * (1 << (noise_model->params.bit_depth - 8));
935   for (int c = 0; c < 1; ++c) {
936     const double corr =
937         aom_normalized_cross_correlation(noise_model->latest_state[c].eqns.x,
938                                          noise_model->combined_state[c].eqns.x,
939                                          noise_model->combined_state[c].eqns.n);
940     if (corr < kCoeffThreshold) return 1;
941 
942     const double dx =
943         1.0 / noise_model->latest_state[c].strength_solver.num_bins;
944 
945     const aom_equation_system_t *latest_eqns =
946         &noise_model->latest_state[c].strength_solver.eqns;
947     const aom_equation_system_t *combined_eqns =
948         &noise_model->combined_state[c].strength_solver.eqns;
949     double diff = 0;
950     double total_weight = 0;
951     for (int j = 0; j < latest_eqns->n; ++j) {
952       double weight = 0;
953       for (int i = 0; i < latest_eqns->n; ++i) {
954         weight += latest_eqns->A[i * latest_eqns->n + j];
955       }
956       weight = sqrt(weight);
957       diff += weight * fabs(latest_eqns->x[j] - combined_eqns->x[j]);
958       total_weight += weight;
959     }
960     if (diff * dx / total_weight > kStrengthThreshold) return 1;
961   }
962   return 0;
963 }
964 
ar_equation_system_solve(aom_noise_state_t * state,int is_chroma)965 static int ar_equation_system_solve(aom_noise_state_t *state, int is_chroma) {
966   const int ret = equation_system_solve(&state->eqns);
967   state->ar_gain = 1.0;
968   if (!ret) return ret;
969 
970   // Update the AR gain from the equation system as it will be used to fit
971   // the noise strength as a function of intensity.  In the Yule-Walker
972   // equations, the diagonal should be the variance of the correlated noise.
973   // In the case of the least squares estimate, there will be some variability
974   // in the diagonal. So use the mean of the diagonal as the estimate of
975   // overall variance (this works for least squares or Yule-Walker formulation).
976   double var = 0;
977   const int n = state->eqns.n;
978   for (int i = 0; i < (state->eqns.n - is_chroma); ++i) {
979     var += state->eqns.A[i * n + i] / state->num_observations;
980   }
981   var /= (n - is_chroma);
982 
983   // Keep track of E(Y^2) = <b, x> + E(X^2)
984   // In the case that we are using chroma and have an estimate of correlation
985   // with luma we adjust that estimate slightly to remove the correlated bits by
986   // subtracting out the last column of a scaled by our correlation estimate
987   // from b. E(y^2) = <b - A(:, end)*x(end), x>
988   double sum_covar = 0;
989   for (int i = 0; i < state->eqns.n - is_chroma; ++i) {
990     double bi = state->eqns.b[i];
991     if (is_chroma) {
992       bi -= state->eqns.A[i * n + (n - 1)] * state->eqns.x[n - 1];
993     }
994     sum_covar += (bi * state->eqns.x[i]) / state->num_observations;
995   }
996   // Now, get an estimate of the variance of uncorrelated noise signal and use
997   // it to determine the gain of the AR filter.
998   const double noise_var = AOMMAX(var - sum_covar, 1e-6);
999   state->ar_gain = AOMMAX(1, sqrt(AOMMAX(var / noise_var, 1e-6)));
1000   return ret;
1001 }
1002 
aom_noise_model_update(aom_noise_model_t * const noise_model,const uint8_t * const data[3],const uint8_t * const denoised[3],int w,int h,int stride[3],int chroma_sub_log2[2],const uint8_t * const flat_blocks,int block_size)1003 aom_noise_status_t aom_noise_model_update(
1004     aom_noise_model_t *const noise_model, const uint8_t *const data[3],
1005     const uint8_t *const denoised[3], int w, int h, int stride[3],
1006     int chroma_sub_log2[2], const uint8_t *const flat_blocks, int block_size) {
1007   const int num_blocks_w = (w + block_size - 1) / block_size;
1008   const int num_blocks_h = (h + block_size - 1) / block_size;
1009   int y_model_different = 0;
1010   int num_blocks = 0;
1011   int i = 0, channel = 0;
1012 
1013   if (block_size <= 1) {
1014     fprintf(stderr, "block_size = %d must be > 1\n", block_size);
1015     return AOM_NOISE_STATUS_INVALID_ARGUMENT;
1016   }
1017 
1018   if (block_size < noise_model->params.lag * 2 + 1) {
1019     fprintf(stderr, "block_size = %d must be >= %d\n", block_size,
1020             noise_model->params.lag * 2 + 1);
1021     return AOM_NOISE_STATUS_INVALID_ARGUMENT;
1022   }
1023 
1024   // Clear the latest equation system
1025   for (i = 0; i < 3; ++i) {
1026     equation_system_clear(&noise_model->latest_state[i].eqns);
1027     noise_model->latest_state[i].num_observations = 0;
1028     noise_strength_solver_clear(&noise_model->latest_state[i].strength_solver);
1029   }
1030 
1031   // Check that we have enough flat blocks
1032   for (i = 0; i < num_blocks_h * num_blocks_w; ++i) {
1033     if (flat_blocks[i]) {
1034       num_blocks++;
1035     }
1036   }
1037 
1038   if (num_blocks <= 1) {
1039     fprintf(stderr, "Not enough flat blocks to update noise estimate\n");
1040     return AOM_NOISE_STATUS_INSUFFICIENT_FLAT_BLOCKS;
1041   }
1042 
1043   for (channel = 0; channel < 3; ++channel) {
1044     int no_subsampling[2] = { 0, 0 };
1045     const uint8_t *alt_data = channel > 0 ? data[0] : 0;
1046     const uint8_t *alt_denoised = channel > 0 ? denoised[0] : 0;
1047     int *sub = channel > 0 ? chroma_sub_log2 : no_subsampling;
1048     const int is_chroma = channel != 0;
1049     if (!data[channel] || !denoised[channel]) break;
1050     if (!add_block_observations(noise_model, channel, data[channel],
1051                                 denoised[channel], w, h, stride[channel], sub,
1052                                 alt_data, alt_denoised, stride[0], flat_blocks,
1053                                 block_size, num_blocks_w, num_blocks_h)) {
1054       fprintf(stderr, "Adding block observation failed\n");
1055       return AOM_NOISE_STATUS_INTERNAL_ERROR;
1056     }
1057 
1058     if (!ar_equation_system_solve(&noise_model->latest_state[channel],
1059                                   is_chroma)) {
1060       if (is_chroma) {
1061         set_chroma_coefficient_fallback_soln(
1062             &noise_model->latest_state[channel].eqns);
1063       } else {
1064         fprintf(stderr, "Solving latest noise equation system failed %d!\n",
1065                 channel);
1066         return AOM_NOISE_STATUS_INTERNAL_ERROR;
1067       }
1068     }
1069 
1070     add_noise_std_observations(
1071         noise_model, channel, noise_model->latest_state[channel].eqns.x,
1072         data[channel], denoised[channel], w, h, stride[channel], sub, alt_data,
1073         stride[0], flat_blocks, block_size, num_blocks_w, num_blocks_h);
1074 
1075     if (!aom_noise_strength_solver_solve(
1076             &noise_model->latest_state[channel].strength_solver)) {
1077       fprintf(stderr, "Solving latest noise strength failed!\n");
1078       return AOM_NOISE_STATUS_INTERNAL_ERROR;
1079     }
1080 
1081     // Check noise characteristics and return if error.
1082     if (channel == 0 &&
1083         noise_model->combined_state[channel].strength_solver.num_equations >
1084             0 &&
1085         is_noise_model_different(noise_model)) {
1086       y_model_different = 1;
1087     }
1088 
1089     // Don't update the combined stats if the y model is different.
1090     if (y_model_different) continue;
1091 
1092     noise_model->combined_state[channel].num_observations +=
1093         noise_model->latest_state[channel].num_observations;
1094     equation_system_add(&noise_model->combined_state[channel].eqns,
1095                         &noise_model->latest_state[channel].eqns);
1096     if (!ar_equation_system_solve(&noise_model->combined_state[channel],
1097                                   is_chroma)) {
1098       if (is_chroma) {
1099         set_chroma_coefficient_fallback_soln(
1100             &noise_model->combined_state[channel].eqns);
1101       } else {
1102         fprintf(stderr, "Solving combined noise equation system failed %d!\n",
1103                 channel);
1104         return AOM_NOISE_STATUS_INTERNAL_ERROR;
1105       }
1106     }
1107 
1108     noise_strength_solver_add(
1109         &noise_model->combined_state[channel].strength_solver,
1110         &noise_model->latest_state[channel].strength_solver);
1111 
1112     if (!aom_noise_strength_solver_solve(
1113             &noise_model->combined_state[channel].strength_solver)) {
1114       fprintf(stderr, "Solving combined noise strength failed!\n");
1115       return AOM_NOISE_STATUS_INTERNAL_ERROR;
1116     }
1117   }
1118 
1119   return y_model_different ? AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE
1120                            : AOM_NOISE_STATUS_OK;
1121 }
1122 
aom_noise_model_save_latest(aom_noise_model_t * noise_model)1123 void aom_noise_model_save_latest(aom_noise_model_t *noise_model) {
1124   for (int c = 0; c < 3; c++) {
1125     equation_system_copy(&noise_model->combined_state[c].eqns,
1126                          &noise_model->latest_state[c].eqns);
1127     equation_system_copy(&noise_model->combined_state[c].strength_solver.eqns,
1128                          &noise_model->latest_state[c].strength_solver.eqns);
1129     noise_model->combined_state[c].strength_solver.num_equations =
1130         noise_model->latest_state[c].strength_solver.num_equations;
1131     noise_model->combined_state[c].num_observations =
1132         noise_model->latest_state[c].num_observations;
1133     noise_model->combined_state[c].ar_gain =
1134         noise_model->latest_state[c].ar_gain;
1135   }
1136 }
1137 
aom_noise_model_get_grain_parameters(aom_noise_model_t * const noise_model,aom_film_grain_t * film_grain)1138 int aom_noise_model_get_grain_parameters(aom_noise_model_t *const noise_model,
1139                                          aom_film_grain_t *film_grain) {
1140   if (noise_model->params.lag > 3) {
1141     fprintf(stderr, "params.lag = %d > 3\n", noise_model->params.lag);
1142     return 0;
1143   }
1144   uint16_t random_seed = film_grain->random_seed;
1145   memset(film_grain, 0, sizeof(*film_grain));
1146   film_grain->random_seed = random_seed;
1147 
1148   film_grain->apply_grain = 1;
1149   film_grain->update_parameters = 1;
1150 
1151   film_grain->ar_coeff_lag = noise_model->params.lag;
1152 
1153   // Convert the scaling functions to 8 bit values
1154   aom_noise_strength_lut_t scaling_points[3];
1155   aom_noise_strength_solver_fit_piecewise(
1156       &noise_model->combined_state[0].strength_solver, 14, scaling_points + 0);
1157   aom_noise_strength_solver_fit_piecewise(
1158       &noise_model->combined_state[1].strength_solver, 10, scaling_points + 1);
1159   aom_noise_strength_solver_fit_piecewise(
1160       &noise_model->combined_state[2].strength_solver, 10, scaling_points + 2);
1161 
1162   // Both the domain and the range of the scaling functions in the film_grain
1163   // are normalized to 8-bit (e.g., they are implicitly scaled during grain
1164   // synthesis).
1165   const double strength_divisor = 1 << (noise_model->params.bit_depth - 8);
1166   double max_scaling_value = 1e-4;
1167   for (int c = 0; c < 3; ++c) {
1168     for (int i = 0; i < scaling_points[c].num_points; ++i) {
1169       scaling_points[c].points[i][0] =
1170           AOMMIN(255, scaling_points[c].points[i][0] / strength_divisor);
1171       scaling_points[c].points[i][1] =
1172           AOMMIN(255, scaling_points[c].points[i][1] / strength_divisor);
1173       max_scaling_value =
1174           AOMMAX(scaling_points[c].points[i][1], max_scaling_value);
1175     }
1176   }
1177 
1178   // Scaling_shift values are in the range [8,11]
1179   const int max_scaling_value_log2 =
1180       clamp((int)floor(log2(max_scaling_value) + 1), 2, 5);
1181   film_grain->scaling_shift = 5 + (8 - max_scaling_value_log2);
1182 
1183   const double scale_factor = 1 << (8 - max_scaling_value_log2);
1184   film_grain->num_y_points = scaling_points[0].num_points;
1185   film_grain->num_cb_points = scaling_points[1].num_points;
1186   film_grain->num_cr_points = scaling_points[2].num_points;
1187 
1188   int(*film_grain_scaling[3])[2] = {
1189     film_grain->scaling_points_y,
1190     film_grain->scaling_points_cb,
1191     film_grain->scaling_points_cr,
1192   };
1193   for (int c = 0; c < 3; c++) {
1194     for (int i = 0; i < scaling_points[c].num_points; ++i) {
1195       film_grain_scaling[c][i][0] = (int)(scaling_points[c].points[i][0] + 0.5);
1196       film_grain_scaling[c][i][1] = clamp(
1197           (int)(scale_factor * scaling_points[c].points[i][1] + 0.5), 0, 255);
1198     }
1199   }
1200   aom_noise_strength_lut_free(scaling_points + 0);
1201   aom_noise_strength_lut_free(scaling_points + 1);
1202   aom_noise_strength_lut_free(scaling_points + 2);
1203 
1204   // Convert the ar_coeffs into 8-bit values
1205   const int n_coeff = noise_model->combined_state[0].eqns.n;
1206   double max_coeff = 1e-4, min_coeff = -1e-4;
1207   double y_corr[2] = { 0, 0 };
1208   double avg_luma_strength = 0;
1209   for (int c = 0; c < 3; c++) {
1210     aom_equation_system_t *eqns = &noise_model->combined_state[c].eqns;
1211     for (int i = 0; i < n_coeff; ++i) {
1212       max_coeff = AOMMAX(max_coeff, eqns->x[i]);
1213       min_coeff = AOMMIN(min_coeff, eqns->x[i]);
1214     }
1215     // Since the correlation between luma/chroma was computed in an already
1216     // scaled space, we adjust it in the un-scaled space.
1217     aom_noise_strength_solver_t *solver =
1218         &noise_model->combined_state[c].strength_solver;
1219     // Compute a weighted average of the strength for the channel.
1220     double average_strength = 0, total_weight = 0;
1221     for (int i = 0; i < solver->eqns.n; ++i) {
1222       double w = 0;
1223       for (int j = 0; j < solver->eqns.n; ++j) {
1224         w += solver->eqns.A[i * solver->eqns.n + j];
1225       }
1226       w = sqrt(w);
1227       average_strength += solver->eqns.x[i] * w;
1228       total_weight += w;
1229     }
1230     if (total_weight == 0)
1231       average_strength = 1;
1232     else
1233       average_strength /= total_weight;
1234     if (c == 0) {
1235       avg_luma_strength = average_strength;
1236     } else {
1237       y_corr[c - 1] = avg_luma_strength * eqns->x[n_coeff] / average_strength;
1238       max_coeff = AOMMAX(max_coeff, y_corr[c - 1]);
1239       min_coeff = AOMMIN(min_coeff, y_corr[c - 1]);
1240     }
1241   }
1242   // Shift value: AR coeffs range (values 6-9)
1243   // 6: [-2, 2),  7: [-1, 1), 8: [-0.5, 0.5), 9: [-0.25, 0.25)
1244   film_grain->ar_coeff_shift =
1245       clamp(7 - (int)AOMMAX(1 + floor(log2(max_coeff)), ceil(log2(-min_coeff))),
1246             6, 9);
1247   double scale_ar_coeff = 1 << film_grain->ar_coeff_shift;
1248   int *ar_coeffs[3] = {
1249     film_grain->ar_coeffs_y,
1250     film_grain->ar_coeffs_cb,
1251     film_grain->ar_coeffs_cr,
1252   };
1253   for (int c = 0; c < 3; ++c) {
1254     aom_equation_system_t *eqns = &noise_model->combined_state[c].eqns;
1255     for (int i = 0; i < n_coeff; ++i) {
1256       ar_coeffs[c][i] =
1257           clamp((int)round(scale_ar_coeff * eqns->x[i]), -128, 127);
1258     }
1259     if (c > 0) {
1260       ar_coeffs[c][n_coeff] =
1261           clamp((int)round(scale_ar_coeff * y_corr[c - 1]), -128, 127);
1262     }
1263   }
1264 
1265   // At the moment, the noise modeling code assumes that the chroma scaling
1266   // functions are a function of luma.
1267   film_grain->cb_mult = 128;       // 8 bits
1268   film_grain->cb_luma_mult = 192;  // 8 bits
1269   film_grain->cb_offset = 256;     // 9 bits
1270 
1271   film_grain->cr_mult = 128;       // 8 bits
1272   film_grain->cr_luma_mult = 192;  // 8 bits
1273   film_grain->cr_offset = 256;     // 9 bits
1274 
1275   film_grain->chroma_scaling_from_luma = 0;
1276   film_grain->grain_scale_shift = 0;
1277   film_grain->overlap_flag = 1;
1278   return 1;
1279 }
1280 
pointwise_multiply(const float * a,float * b,int n)1281 static void pointwise_multiply(const float *a, float *b, int n) {
1282   for (int i = 0; i < n; ++i) {
1283     b[i] *= a[i];
1284   }
1285 }
1286 
get_half_cos_window(int block_size)1287 static float *get_half_cos_window(int block_size) {
1288   float *window_function =
1289       (float *)aom_malloc(block_size * block_size * sizeof(*window_function));
1290   for (int y = 0; y < block_size; ++y) {
1291     const double cos_yd = cos((.5 + y) * PI / block_size - PI / 2);
1292     for (int x = 0; x < block_size; ++x) {
1293       const double cos_xd = cos((.5 + x) * PI / block_size - PI / 2);
1294       window_function[y * block_size + x] = (float)(cos_yd * cos_xd);
1295     }
1296   }
1297   return window_function;
1298 }
1299 
1300 #define DITHER_AND_QUANTIZE(INT_TYPE, suffix)                               \
1301   static void dither_and_quantize_##suffix(                                 \
1302       float *result, int result_stride, INT_TYPE *denoised, int w, int h,   \
1303       int stride, int chroma_sub_w, int chroma_sub_h, int block_size,       \
1304       float block_normalization) {                                          \
1305     for (int y = 0; y < (h >> chroma_sub_h); ++y) {                         \
1306       for (int x = 0; x < (w >> chroma_sub_w); ++x) {                       \
1307         const int result_idx =                                              \
1308             (y + (block_size >> chroma_sub_h)) * result_stride + x +        \
1309             (block_size >> chroma_sub_w);                                   \
1310         INT_TYPE new_val = (INT_TYPE)AOMMIN(                                \
1311             AOMMAX(result[result_idx] * block_normalization + 0.5f, 0),     \
1312             block_normalization);                                           \
1313         const float err =                                                   \
1314             -(((float)new_val) / block_normalization - result[result_idx]); \
1315         denoised[y * stride + x] = new_val;                                 \
1316         if (x + 1 < (w >> chroma_sub_w)) {                                  \
1317           result[result_idx + 1] += err * 7.0f / 16.0f;                     \
1318         }                                                                   \
1319         if (y + 1 < (h >> chroma_sub_h)) {                                  \
1320           if (x > 0) {                                                      \
1321             result[result_idx + result_stride - 1] += err * 3.0f / 16.0f;   \
1322           }                                                                 \
1323           result[result_idx + result_stride] += err * 5.0f / 16.0f;         \
1324           if (x + 1 < (w >> chroma_sub_w)) {                                \
1325             result[result_idx + result_stride + 1] += err * 1.0f / 16.0f;   \
1326           }                                                                 \
1327         }                                                                   \
1328       }                                                                     \
1329     }                                                                       \
1330   }
1331 
1332 DITHER_AND_QUANTIZE(uint8_t, lowbd);
1333 DITHER_AND_QUANTIZE(uint16_t, highbd);
1334 
aom_wiener_denoise_2d(const uint8_t * const data[3],uint8_t * denoised[3],int w,int h,int stride[3],int chroma_sub[2],float * noise_psd[3],int block_size,int bit_depth,int use_highbd)1335 int aom_wiener_denoise_2d(const uint8_t *const data[3], uint8_t *denoised[3],
1336                           int w, int h, int stride[3], int chroma_sub[2],
1337                           float *noise_psd[3], int block_size, int bit_depth,
1338                           int use_highbd) {
1339   float *plane = NULL, *block = NULL, *window_full = NULL,
1340         *window_chroma = NULL;
1341   double *block_d = NULL, *plane_d = NULL;
1342   struct aom_noise_tx_t *tx_full = NULL;
1343   struct aom_noise_tx_t *tx_chroma = NULL;
1344   const int num_blocks_w = (w + block_size - 1) / block_size;
1345   const int num_blocks_h = (h + block_size - 1) / block_size;
1346   const int result_stride = (num_blocks_w + 2) * block_size;
1347   const int result_height = (num_blocks_h + 2) * block_size;
1348   float *result = NULL;
1349   int init_success = 1;
1350   aom_flat_block_finder_t block_finder_full;
1351   aom_flat_block_finder_t block_finder_chroma;
1352   const float kBlockNormalization = (float)((1 << bit_depth) - 1);
1353   if (chroma_sub[0] != chroma_sub[1]) {
1354     fprintf(stderr,
1355             "aom_wiener_denoise_2d doesn't handle different chroma "
1356             "subsampling");
1357     return 0;
1358   }
1359   init_success &= aom_flat_block_finder_init(&block_finder_full, block_size,
1360                                              bit_depth, use_highbd);
1361   result = (float *)aom_malloc((num_blocks_h + 2) * block_size * result_stride *
1362                                sizeof(*result));
1363   plane = (float *)aom_malloc(block_size * block_size * sizeof(*plane));
1364   block =
1365       (float *)aom_memalign(32, 2 * block_size * block_size * sizeof(*block));
1366   block_d = (double *)aom_malloc(block_size * block_size * sizeof(*block_d));
1367   plane_d = (double *)aom_malloc(block_size * block_size * sizeof(*plane_d));
1368   window_full = get_half_cos_window(block_size);
1369   tx_full = aom_noise_tx_malloc(block_size);
1370 
1371   if (chroma_sub[0] != 0) {
1372     init_success &= aom_flat_block_finder_init(&block_finder_chroma,
1373                                                block_size >> chroma_sub[0],
1374                                                bit_depth, use_highbd);
1375     window_chroma = get_half_cos_window(block_size >> chroma_sub[0]);
1376     tx_chroma = aom_noise_tx_malloc(block_size >> chroma_sub[0]);
1377   } else {
1378     window_chroma = window_full;
1379     tx_chroma = tx_full;
1380   }
1381 
1382   init_success &= (tx_full != NULL) && (tx_chroma != NULL) && (plane != NULL) &&
1383                   (plane_d != NULL) && (block != NULL) && (block_d != NULL) &&
1384                   (window_full != NULL) && (window_chroma != NULL) &&
1385                   (result != NULL);
1386   for (int c = init_success ? 0 : 3; c < 3; ++c) {
1387     float *window_function = c == 0 ? window_full : window_chroma;
1388     aom_flat_block_finder_t *block_finder = &block_finder_full;
1389     const int chroma_sub_h = c > 0 ? chroma_sub[1] : 0;
1390     const int chroma_sub_w = c > 0 ? chroma_sub[0] : 0;
1391     struct aom_noise_tx_t *tx =
1392         (c > 0 && chroma_sub[0] > 0) ? tx_chroma : tx_full;
1393     if (!data[c] || !denoised[c]) continue;
1394     if (c > 0 && chroma_sub[0] != 0) {
1395       block_finder = &block_finder_chroma;
1396     }
1397     memset(result, 0, sizeof(*result) * result_stride * result_height);
1398     // Do overlapped block processing (half overlapped). The block rows can
1399     // easily be done in parallel
1400     for (int offsy = 0; offsy < (block_size >> chroma_sub_h);
1401          offsy += (block_size >> chroma_sub_h) / 2) {
1402       for (int offsx = 0; offsx < (block_size >> chroma_sub_w);
1403            offsx += (block_size >> chroma_sub_w) / 2) {
1404         // Pad the boundary when processing each block-set.
1405         for (int by = -1; by < num_blocks_h; ++by) {
1406           for (int bx = -1; bx < num_blocks_w; ++bx) {
1407             const int pixels_per_block =
1408                 (block_size >> chroma_sub_w) * (block_size >> chroma_sub_h);
1409             aom_flat_block_finder_extract_block(
1410                 block_finder, data[c], w >> chroma_sub_w, h >> chroma_sub_h,
1411                 stride[c], bx * (block_size >> chroma_sub_w) + offsx,
1412                 by * (block_size >> chroma_sub_h) + offsy, plane_d, block_d);
1413             for (int j = 0; j < pixels_per_block; ++j) {
1414               block[j] = (float)block_d[j];
1415               plane[j] = (float)plane_d[j];
1416             }
1417             pointwise_multiply(window_function, block, pixels_per_block);
1418             aom_noise_tx_forward(tx, block);
1419             aom_noise_tx_filter(tx, noise_psd[c]);
1420             aom_noise_tx_inverse(tx, block);
1421 
1422             // Apply window function to the plane approximation (we will apply
1423             // it to the sum of plane + block when composing the results).
1424             pointwise_multiply(window_function, plane, pixels_per_block);
1425 
1426             for (int y = 0; y < (block_size >> chroma_sub_h); ++y) {
1427               const int y_result =
1428                   y + (by + 1) * (block_size >> chroma_sub_h) + offsy;
1429               for (int x = 0; x < (block_size >> chroma_sub_w); ++x) {
1430                 const int x_result =
1431                     x + (bx + 1) * (block_size >> chroma_sub_w) + offsx;
1432                 result[y_result * result_stride + x_result] +=
1433                     (block[y * (block_size >> chroma_sub_w) + x] +
1434                      plane[y * (block_size >> chroma_sub_w) + x]) *
1435                     window_function[y * (block_size >> chroma_sub_w) + x];
1436               }
1437             }
1438           }
1439         }
1440       }
1441     }
1442     if (use_highbd) {
1443       dither_and_quantize_highbd(result, result_stride, (uint16_t *)denoised[c],
1444                                  w, h, stride[c], chroma_sub_w, chroma_sub_h,
1445                                  block_size, kBlockNormalization);
1446     } else {
1447       dither_and_quantize_lowbd(result, result_stride, denoised[c], w, h,
1448                                 stride[c], chroma_sub_w, chroma_sub_h,
1449                                 block_size, kBlockNormalization);
1450     }
1451   }
1452   aom_free(result);
1453   aom_free(plane);
1454   aom_free(block);
1455   aom_free(plane_d);
1456   aom_free(block_d);
1457   aom_free(window_full);
1458 
1459   aom_noise_tx_free(tx_full);
1460 
1461   aom_flat_block_finder_free(&block_finder_full);
1462   if (chroma_sub[0] != 0) {
1463     aom_flat_block_finder_free(&block_finder_chroma);
1464     aom_free(window_chroma);
1465     aom_noise_tx_free(tx_chroma);
1466   }
1467   return init_success;
1468 }
1469 
1470 struct aom_denoise_and_model_t {
1471   int block_size;
1472   int bit_depth;
1473   float noise_level;
1474 
1475   // Size of current denoised buffer and flat_block buffer
1476   int width;
1477   int height;
1478   int y_stride;
1479   int uv_stride;
1480   int num_blocks_w;
1481   int num_blocks_h;
1482 
1483   // Buffers for image and noise_psd allocated on the fly
1484   float *noise_psd[3];
1485   uint8_t *denoised[3];
1486   uint8_t *flat_blocks;
1487 
1488   aom_flat_block_finder_t flat_block_finder;
1489   aom_noise_model_t noise_model;
1490 };
1491 
aom_denoise_and_model_alloc(int bit_depth,int block_size,float noise_level)1492 struct aom_denoise_and_model_t *aom_denoise_and_model_alloc(int bit_depth,
1493                                                             int block_size,
1494                                                             float noise_level) {
1495   struct aom_denoise_and_model_t *ctx =
1496       (struct aom_denoise_and_model_t *)aom_malloc(
1497           sizeof(struct aom_denoise_and_model_t));
1498   if (!ctx) {
1499     fprintf(stderr, "Unable to allocate denoise_and_model struct\n");
1500     return NULL;
1501   }
1502   memset(ctx, 0, sizeof(*ctx));
1503 
1504   ctx->block_size = block_size;
1505   ctx->noise_level = noise_level;
1506   ctx->bit_depth = bit_depth;
1507 
1508   ctx->noise_psd[0] =
1509       aom_malloc(sizeof(*ctx->noise_psd[0]) * block_size * block_size);
1510   ctx->noise_psd[1] =
1511       aom_malloc(sizeof(*ctx->noise_psd[1]) * block_size * block_size);
1512   ctx->noise_psd[2] =
1513       aom_malloc(sizeof(*ctx->noise_psd[2]) * block_size * block_size);
1514   if (!ctx->noise_psd[0] || !ctx->noise_psd[1] || !ctx->noise_psd[2]) {
1515     fprintf(stderr, "Unable to allocate noise PSD buffers\n");
1516     aom_denoise_and_model_free(ctx);
1517     return NULL;
1518   }
1519   return ctx;
1520 }
1521 
aom_denoise_and_model_free(struct aom_denoise_and_model_t * ctx)1522 void aom_denoise_and_model_free(struct aom_denoise_and_model_t *ctx) {
1523   aom_free(ctx->flat_blocks);
1524   for (int i = 0; i < 3; ++i) {
1525     aom_free(ctx->denoised[i]);
1526     aom_free(ctx->noise_psd[i]);
1527   }
1528   aom_noise_model_free(&ctx->noise_model);
1529   aom_flat_block_finder_free(&ctx->flat_block_finder);
1530   aom_free(ctx);
1531 }
1532 
denoise_and_model_realloc_if_necessary(struct aom_denoise_and_model_t * ctx,YV12_BUFFER_CONFIG * sd)1533 static int denoise_and_model_realloc_if_necessary(
1534     struct aom_denoise_and_model_t *ctx, YV12_BUFFER_CONFIG *sd) {
1535   if (ctx->width == sd->y_width && ctx->height == sd->y_height &&
1536       ctx->y_stride == sd->y_stride && ctx->uv_stride == sd->uv_stride)
1537     return 1;
1538   const int use_highbd = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
1539   const int block_size = ctx->block_size;
1540 
1541   ctx->width = sd->y_width;
1542   ctx->height = sd->y_height;
1543   ctx->y_stride = sd->y_stride;
1544   ctx->uv_stride = sd->uv_stride;
1545 
1546   for (int i = 0; i < 3; ++i) {
1547     aom_free(ctx->denoised[i]);
1548     ctx->denoised[i] = NULL;
1549   }
1550   aom_free(ctx->flat_blocks);
1551   ctx->flat_blocks = NULL;
1552 
1553   ctx->denoised[0] = aom_malloc((sd->y_stride * sd->y_height) << use_highbd);
1554   ctx->denoised[1] = aom_malloc((sd->uv_stride * sd->uv_height) << use_highbd);
1555   ctx->denoised[2] = aom_malloc((sd->uv_stride * sd->uv_height) << use_highbd);
1556   if (!ctx->denoised[0] || !ctx->denoised[1] || !ctx->denoised[2]) {
1557     fprintf(stderr, "Unable to allocate denoise buffers\n");
1558     return 0;
1559   }
1560   ctx->num_blocks_w = (sd->y_width + ctx->block_size - 1) / ctx->block_size;
1561   ctx->num_blocks_h = (sd->y_height + ctx->block_size - 1) / ctx->block_size;
1562   ctx->flat_blocks = aom_malloc(ctx->num_blocks_w * ctx->num_blocks_h);
1563 
1564   aom_flat_block_finder_free(&ctx->flat_block_finder);
1565   if (!aom_flat_block_finder_init(&ctx->flat_block_finder, ctx->block_size,
1566                                   ctx->bit_depth, use_highbd)) {
1567     fprintf(stderr, "Unable to init flat block finder\n");
1568     return 0;
1569   }
1570 
1571   const aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 3,
1572                                             ctx->bit_depth, use_highbd };
1573   aom_noise_model_free(&ctx->noise_model);
1574   if (!aom_noise_model_init(&ctx->noise_model, params)) {
1575     fprintf(stderr, "Unable to init noise model\n");
1576     return 0;
1577   }
1578 
1579   // Simply use a flat PSD (although we could use the flat blocks to estimate
1580   // PSD) those to estimate an actual noise PSD)
1581   const float y_noise_level =
1582       aom_noise_psd_get_default_value(ctx->block_size, ctx->noise_level);
1583   const float uv_noise_level = aom_noise_psd_get_default_value(
1584       ctx->block_size >> sd->subsampling_x, ctx->noise_level);
1585   for (int i = 0; i < block_size * block_size; ++i) {
1586     ctx->noise_psd[0][i] = y_noise_level;
1587     ctx->noise_psd[1][i] = ctx->noise_psd[2][i] = uv_noise_level;
1588   }
1589   return 1;
1590 }
1591 
aom_denoise_and_model_run(struct aom_denoise_and_model_t * ctx,YV12_BUFFER_CONFIG * sd,aom_film_grain_t * film_grain)1592 int aom_denoise_and_model_run(struct aom_denoise_and_model_t *ctx,
1593                               YV12_BUFFER_CONFIG *sd,
1594                               aom_film_grain_t *film_grain) {
1595   const int block_size = ctx->block_size;
1596   const int use_highbd = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
1597   uint8_t *raw_data[3] = {
1598     use_highbd ? (uint8_t *)CONVERT_TO_SHORTPTR(sd->y_buffer) : sd->y_buffer,
1599     use_highbd ? (uint8_t *)CONVERT_TO_SHORTPTR(sd->u_buffer) : sd->u_buffer,
1600     use_highbd ? (uint8_t *)CONVERT_TO_SHORTPTR(sd->v_buffer) : sd->v_buffer,
1601   };
1602   const uint8_t *const data[3] = { raw_data[0], raw_data[1], raw_data[2] };
1603   int strides[3] = { sd->y_stride, sd->uv_stride, sd->uv_stride };
1604   int chroma_sub_log2[2] = { sd->subsampling_x, sd->subsampling_y };
1605 
1606   if (!denoise_and_model_realloc_if_necessary(ctx, sd)) {
1607     fprintf(stderr, "Unable to realloc buffers\n");
1608     return 0;
1609   }
1610 
1611   aom_flat_block_finder_run(&ctx->flat_block_finder, data[0], sd->y_width,
1612                             sd->y_height, strides[0], ctx->flat_blocks);
1613 
1614   if (!aom_wiener_denoise_2d(data, ctx->denoised, sd->y_width, sd->y_height,
1615                              strides, chroma_sub_log2, ctx->noise_psd,
1616                              block_size, ctx->bit_depth, use_highbd)) {
1617     fprintf(stderr, "Unable to denoise image\n");
1618     return 0;
1619   }
1620 
1621   const aom_noise_status_t status = aom_noise_model_update(
1622       &ctx->noise_model, data, (const uint8_t *const *)ctx->denoised,
1623       sd->y_width, sd->y_height, strides, chroma_sub_log2, ctx->flat_blocks,
1624       block_size);
1625   int have_noise_estimate = 0;
1626   if (status == AOM_NOISE_STATUS_OK) {
1627     have_noise_estimate = 1;
1628   } else if (status == AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE) {
1629     aom_noise_model_save_latest(&ctx->noise_model);
1630     have_noise_estimate = 1;
1631   } else {
1632     // Unable to update noise model; proceed if we have a previous estimate.
1633     have_noise_estimate =
1634         (ctx->noise_model.combined_state[0].strength_solver.num_equations > 0);
1635   }
1636 
1637   film_grain->apply_grain = 0;
1638   if (have_noise_estimate) {
1639     if (!aom_noise_model_get_grain_parameters(&ctx->noise_model, film_grain)) {
1640       fprintf(stderr, "Unable to get grain parameters.\n");
1641       return 0;
1642     }
1643     if (!film_grain->random_seed) {
1644       film_grain->random_seed = 7391;
1645     }
1646     memcpy(raw_data[0], ctx->denoised[0],
1647            (strides[0] * sd->y_height) << use_highbd);
1648     memcpy(raw_data[1], ctx->denoised[1],
1649            (strides[1] * sd->uv_height) << use_highbd);
1650     memcpy(raw_data[2], ctx->denoised[2],
1651            (strides[2] * sd->uv_height) << use_highbd);
1652   }
1653   return 1;
1654 }
1655