1 //---------------------------------------------------------------------------------
2 //
3 // Little Color Management System
4 // Copyright (c) 1998-2013 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
12 //
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
15 //
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 //
24 //---------------------------------------------------------------------------------
25 //
26 #include "lcms2_internal.h"
27
28 // Tone curves are powerful constructs that can contain curves specified in diverse ways.
29 // The curve is stored in segments, where each segment can be sampled or specified by parameters.
30 // a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation,
31 // each segment is evaluated separately. Plug-ins may be used to define new parametric schemes,
32 // each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function,
33 // the plug-in should provide the type id, how many parameters each type has, and a pointer to
34 // a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will
35 // be called with the type id as a negative value, and a sampled version of the reversed curve
36 // will be built.
37
38 // ----------------------------------------------------------------- Implementation
39 // Maxim number of nodes
40 #define MAX_NODES_IN_CURVE 4097
41 #define MINUS_INF (-1E22F)
42 #define PLUS_INF (+1E22F)
43
44 // The list of supported parametric curves
45 typedef struct _cmsParametricCurvesCollection_st {
46
47 cmsUInt32Number nFunctions; // Number of supported functions in this chunk
48 cmsInt32Number FunctionTypes[MAX_TYPES_IN_LCMS_PLUGIN]; // The identification types
49 cmsUInt32Number ParameterCount[MAX_TYPES_IN_LCMS_PLUGIN]; // Number of parameters for each function
50
51 cmsParametricCurveEvaluator Evaluator; // The evaluator
52
53 struct _cmsParametricCurvesCollection_st* Next; // Next in list
54
55 } _cmsParametricCurvesCollection;
56
57 // This is the default (built-in) evaluator
58 static cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R);
59
60 // The built-in list
61 static const _cmsParametricCurvesCollection DefaultCurves = {
62 9, // # of curve types
63 { 1, 2, 3, 4, 5, 6, 7, 8, 108 }, // Parametric curve ID
64 { 1, 3, 4, 5, 7, 4, 5, 5, 1 }, // Parameters by type
65 DefaultEvalParametricFn, // Evaluator
66 NULL // Next in chain
67 };
68
69 // Duplicates the zone of memory used by the plug-in in the new context
70 static
DupPluginCurvesList(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)71 void DupPluginCurvesList(struct _cmsContext_struct* ctx,
72 const struct _cmsContext_struct* src)
73 {
74 _cmsCurvesPluginChunkType newHead = { NULL };
75 _cmsParametricCurvesCollection* entry;
76 _cmsParametricCurvesCollection* Anterior = NULL;
77 _cmsCurvesPluginChunkType* head = (_cmsCurvesPluginChunkType*) src->chunks[CurvesPlugin];
78
79 _cmsAssert(head != NULL);
80
81 // Walk the list copying all nodes
82 for (entry = head->ParametricCurves;
83 entry != NULL;
84 entry = entry ->Next) {
85
86 _cmsParametricCurvesCollection *newEntry = ( _cmsParametricCurvesCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsParametricCurvesCollection));
87
88 if (newEntry == NULL)
89 return;
90
91 // We want to keep the linked list order, so this is a little bit tricky
92 newEntry -> Next = NULL;
93 if (Anterior)
94 Anterior -> Next = newEntry;
95
96 Anterior = newEntry;
97
98 if (newHead.ParametricCurves == NULL)
99 newHead.ParametricCurves = newEntry;
100 }
101
102 ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsCurvesPluginChunkType));
103 }
104
105 // The allocator have to follow the chain
_cmsAllocCurvesPluginChunk(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)106 void _cmsAllocCurvesPluginChunk(struct _cmsContext_struct* ctx,
107 const struct _cmsContext_struct* src)
108 {
109 _cmsAssert(ctx != NULL);
110
111 if (src != NULL) {
112
113 // Copy all linked list
114 DupPluginCurvesList(ctx, src);
115 }
116 else {
117 static _cmsCurvesPluginChunkType CurvesPluginChunk = { NULL };
118 ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx ->MemPool, &CurvesPluginChunk, sizeof(_cmsCurvesPluginChunkType));
119 }
120 }
121
122
123 // The linked list head
124 _cmsCurvesPluginChunkType _cmsCurvesPluginChunk = { NULL };
125
126 // As a way to install new parametric curves
_cmsRegisterParametricCurvesPlugin(cmsContext ContextID,cmsPluginBase * Data)127 cmsBool _cmsRegisterParametricCurvesPlugin(cmsContext ContextID, cmsPluginBase* Data)
128 {
129 _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);
130 cmsPluginParametricCurves* Plugin = (cmsPluginParametricCurves*) Data;
131 _cmsParametricCurvesCollection* fl;
132
133 if (Data == NULL) {
134
135 ctx -> ParametricCurves = NULL;
136 return TRUE;
137 }
138
139 fl = (_cmsParametricCurvesCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsParametricCurvesCollection));
140 if (fl == NULL) return FALSE;
141
142 // Copy the parameters
143 fl ->Evaluator = Plugin ->Evaluator;
144 fl ->nFunctions = Plugin ->nFunctions;
145
146 // Make sure no mem overwrites
147 if (fl ->nFunctions > MAX_TYPES_IN_LCMS_PLUGIN)
148 fl ->nFunctions = MAX_TYPES_IN_LCMS_PLUGIN;
149
150 // Copy the data
151 memmove(fl->FunctionTypes, Plugin ->FunctionTypes, fl->nFunctions * sizeof(cmsUInt32Number));
152 memmove(fl->ParameterCount, Plugin ->ParameterCount, fl->nFunctions * sizeof(cmsUInt32Number));
153
154 // Keep linked list
155 fl ->Next = ctx->ParametricCurves;
156 ctx->ParametricCurves = fl;
157
158 // All is ok
159 return TRUE;
160 }
161
162
163 // Search in type list, return position or -1 if not found
164 static
IsInSet(int Type,const _cmsParametricCurvesCollection * c)165 int IsInSet(int Type, const _cmsParametricCurvesCollection* c)
166 {
167 int i;
168
169 for (i=0; i < (int) c ->nFunctions; i++)
170 if (abs(Type) == c ->FunctionTypes[i]) return i;
171
172 return -1;
173 }
174
175
176 // Search for the collection which contains a specific type
177 static
GetParametricCurveByType(cmsContext ContextID,int Type,int * index)178 const _cmsParametricCurvesCollection *GetParametricCurveByType(cmsContext ContextID, int Type, int* index)
179 {
180 const _cmsParametricCurvesCollection* c;
181 int Position;
182 _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);
183
184 for (c = ctx->ParametricCurves; c != NULL; c = c ->Next) {
185
186 Position = IsInSet(Type, c);
187
188 if (Position != -1) {
189 if (index != NULL)
190 *index = Position;
191 return c;
192 }
193 }
194 // If none found, revert for defaults
195 for (c = &DefaultCurves; c != NULL; c = c ->Next) {
196
197 Position = IsInSet(Type, c);
198
199 if (Position != -1) {
200 if (index != NULL)
201 *index = Position;
202 return c;
203 }
204 }
205
206 return NULL;
207 }
208
209 // Low level allocate, which takes care of memory details. nEntries may be zero, and in this case
210 // no optimation curve is computed. nSegments may also be zero in the inverse case, where only the
211 // optimization curve is given. Both features simultaneously is an error
212 static
AllocateToneCurveStruct(cmsContext ContextID,cmsUInt32Number nEntries,cmsUInt32Number nSegments,const cmsCurveSegment * Segments,const cmsUInt16Number * Values)213 cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsUInt32Number nEntries,
214 cmsUInt32Number nSegments, const cmsCurveSegment* Segments,
215 const cmsUInt16Number* Values)
216 {
217 cmsToneCurve* p;
218 cmsUInt32Number i;
219
220 // We allow huge tables, which are then restricted for smoothing operations
221 if (nEntries > 65530) {
222 cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve of more than 65530 entries");
223 return NULL;
224 }
225
226 if (nEntries == 0 && nSegments == 0) {
227 cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve with zero segments and no table");
228 return NULL;
229 }
230
231 // Allocate all required pointers, etc.
232 p = (cmsToneCurve*) _cmsMallocZero(ContextID, sizeof(cmsToneCurve));
233 if (!p) return NULL;
234
235 // In this case, there are no segments
236 if (nSegments == 0) {
237 p ->Segments = NULL;
238 p ->Evals = NULL;
239 }
240 else {
241 p ->Segments = (cmsCurveSegment*) _cmsCalloc(ContextID, nSegments, sizeof(cmsCurveSegment));
242 if (p ->Segments == NULL) goto Error;
243
244 p ->Evals = (cmsParametricCurveEvaluator*) _cmsCalloc(ContextID, nSegments, sizeof(cmsParametricCurveEvaluator));
245 if (p ->Evals == NULL) goto Error;
246 }
247
248 p -> nSegments = nSegments;
249
250 // This 16-bit table contains a limited precision representation of the whole curve and is kept for
251 // increasing xput on certain operations.
252 if (nEntries == 0) {
253 p ->Table16 = NULL;
254 }
255 else {
256 p ->Table16 = (cmsUInt16Number*) _cmsCalloc(ContextID, nEntries, sizeof(cmsUInt16Number));
257 if (p ->Table16 == NULL) goto Error;
258 }
259
260 p -> nEntries = nEntries;
261
262 // Initialize members if requested
263 if (Values != NULL && (nEntries > 0)) {
264
265 for (i=0; i < nEntries; i++)
266 p ->Table16[i] = Values[i];
267 }
268
269 // Initialize the segments stuff. The evaluator for each segment is located and a pointer to it
270 // is placed in advance to maximize performance.
271 if (Segments != NULL && (nSegments > 0)) {
272
273 const _cmsParametricCurvesCollection *c;
274
275 p ->SegInterp = (cmsInterpParams**) _cmsCalloc(ContextID, nSegments, sizeof(cmsInterpParams*));
276 if (p ->SegInterp == NULL) goto Error;
277
278 for (i=0; i < nSegments; i++) {
279
280 // Type 0 is a special marker for table-based curves
281 if (Segments[i].Type == 0)
282 p ->SegInterp[i] = _cmsComputeInterpParams(ContextID, Segments[i].nGridPoints, 1, 1, NULL, CMS_LERP_FLAGS_FLOAT);
283
284 memmove(&p ->Segments[i], &Segments[i], sizeof(cmsCurveSegment));
285
286 if (Segments[i].Type == 0 && Segments[i].SampledPoints != NULL)
287 p ->Segments[i].SampledPoints = (cmsFloat32Number*) _cmsDupMem(ContextID, Segments[i].SampledPoints, sizeof(cmsFloat32Number) * Segments[i].nGridPoints);
288 else
289 p ->Segments[i].SampledPoints = NULL;
290
291
292 c = GetParametricCurveByType(ContextID, Segments[i].Type, NULL);
293 if (c != NULL)
294 p ->Evals[i] = c ->Evaluator;
295 }
296 }
297
298 p ->InterpParams = _cmsComputeInterpParams(ContextID, p ->nEntries, 1, 1, p->Table16, CMS_LERP_FLAGS_16BITS);
299 if (p->InterpParams != NULL)
300 return p;
301
302 Error:
303 if (p -> Segments) _cmsFree(ContextID, p ->Segments);
304 if (p -> Evals) _cmsFree(ContextID, p -> Evals);
305 if (p ->Table16) _cmsFree(ContextID, p ->Table16);
306 _cmsFree(ContextID, p);
307 return NULL;
308 }
309
310
311 // Parametric Fn using floating point
312 static
DefaultEvalParametricFn(cmsInt32Number Type,const cmsFloat64Number Params[],cmsFloat64Number R)313 cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R)
314 {
315 cmsFloat64Number e, Val, disc;
316
317 switch (Type) {
318
319 // X = Y ^ Gamma
320 case 1:
321 if (R < 0) {
322
323 if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
324 Val = R;
325 else
326 Val = 0;
327 }
328 else
329 Val = pow(R, Params[0]);
330 break;
331
332 // Type 1 Reversed: X = Y ^1/gamma
333 case -1:
334 if (R < 0) {
335
336 if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
337 Val = R;
338 else
339 Val = 0;
340 }
341 else
342 {
343 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE)
344 Val = PLUS_INF;
345 else
346 Val = pow(R, 1 / Params[0]);
347 }
348 break;
349
350 // CIE 122-1966
351 // Y = (aX + b)^Gamma | X >= -b/a
352 // Y = 0 | else
353 case 2:
354 {
355
356 if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
357 {
358 Val = 0;
359 }
360 else
361 {
362 disc = -Params[2] / Params[1];
363
364 if (R >= disc) {
365
366 e = Params[1] * R + Params[2];
367
368 if (e > 0)
369 Val = pow(e, Params[0]);
370 else
371 Val = 0;
372 }
373 else
374 Val = 0;
375 }
376 }
377 break;
378
379 // Type 2 Reversed
380 // X = (Y ^1/g - b) / a
381 case -2:
382 {
383 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
384 fabs(Params[1]) < MATRIX_DET_TOLERANCE)
385 {
386 Val = 0;
387 }
388 else
389 {
390 if (R < 0)
391 Val = 0;
392 else
393 Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1];
394
395 if (Val < 0)
396 Val = 0;
397 }
398 }
399 break;
400
401
402 // IEC 61966-3
403 // Y = (aX + b)^Gamma | X <= -b/a
404 // Y = c | else
405 case 3:
406 {
407 if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
408 {
409 Val = 0;
410 }
411 else
412 {
413 disc = -Params[2] / Params[1];
414 if (disc < 0)
415 disc = 0;
416
417 if (R >= disc) {
418
419 e = Params[1] * R + Params[2];
420
421 if (e > 0)
422 Val = pow(e, Params[0]) + Params[3];
423 else
424 Val = 0;
425 }
426 else
427 Val = Params[3];
428 }
429 }
430 break;
431
432
433 // Type 3 reversed
434 // X=((Y-c)^1/g - b)/a | (Y>=c)
435 // X=-b/a | (Y<c)
436 case -3:
437 {
438 if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
439 {
440 Val = 0;
441 }
442 else
443 {
444 if (R >= Params[3]) {
445
446 e = R - Params[3];
447
448 if (e > 0)
449 Val = (pow(e, 1 / Params[0]) - Params[2]) / Params[1];
450 else
451 Val = 0;
452 }
453 else {
454 Val = -Params[2] / Params[1];
455 }
456 }
457 }
458 break;
459
460
461 // IEC 61966-2.1 (sRGB)
462 // Y = (aX + b)^Gamma | X >= d
463 // Y = cX | X < d
464 case 4:
465 if (R >= Params[4]) {
466
467 e = Params[1]*R + Params[2];
468
469 if (e > 0)
470 Val = pow(e, Params[0]);
471 else
472 Val = 0;
473 }
474 else
475 Val = R * Params[3];
476 break;
477
478 // Type 4 reversed
479 // X=((Y^1/g-b)/a) | Y >= (ad+b)^g
480 // X=Y/c | Y< (ad+b)^g
481 case -4:
482 {
483 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
484 fabs(Params[1]) < MATRIX_DET_TOLERANCE ||
485 fabs(Params[3]) < MATRIX_DET_TOLERANCE)
486 {
487 Val = 0;
488 }
489 else
490 {
491 e = Params[1] * Params[4] + Params[2];
492 if (e < 0)
493 disc = 0;
494 else
495 disc = pow(e, Params[0]);
496
497 if (R >= disc) {
498
499 Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1];
500 }
501 else {
502 Val = R / Params[3];
503 }
504 }
505 }
506 break;
507
508
509 // Y = (aX + b)^Gamma + e | X >= d
510 // Y = cX + f | X < d
511 case 5:
512 if (R >= Params[4]) {
513
514 e = Params[1]*R + Params[2];
515
516 if (e > 0)
517 Val = pow(e, Params[0]) + Params[5];
518 else
519 Val = Params[5];
520 }
521 else
522 Val = R*Params[3] + Params[6];
523 break;
524
525
526 // Reversed type 5
527 // X=((Y-e)1/g-b)/a | Y >=(ad+b)^g+e), cd+f
528 // X=(Y-f)/c | else
529 case -5:
530 {
531 if (fabs(Params[1]) < MATRIX_DET_TOLERANCE ||
532 fabs(Params[3]) < MATRIX_DET_TOLERANCE)
533 {
534 Val = 0;
535 }
536 else
537 {
538 disc = Params[3] * Params[4] + Params[6];
539 if (R >= disc) {
540
541 e = R - Params[5];
542 if (e < 0)
543 Val = 0;
544 else
545 Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1];
546 }
547 else {
548 Val = (R - Params[6]) / Params[3];
549 }
550 }
551 }
552 break;
553
554
555 // Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf
556 // Type 6 is basically identical to type 5 without d
557
558 // Y = (a * X + b) ^ Gamma + c
559 case 6:
560 e = Params[1]*R + Params[2];
561
562 if (e < 0)
563 Val = Params[3];
564 else
565 Val = pow(e, Params[0]) + Params[3];
566 break;
567
568 // ((Y - c) ^1/Gamma - b) / a
569 case -6:
570 {
571 if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
572 {
573 Val = 0;
574 }
575 else
576 {
577 e = R - Params[3];
578 if (e < 0)
579 Val = 0;
580 else
581 Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1];
582 }
583 }
584 break;
585
586
587 // Y = a * log (b * X^Gamma + c) + d
588 case 7:
589
590 e = Params[2] * pow(R, Params[0]) + Params[3];
591 if (e <= 0)
592 Val = Params[4];
593 else
594 Val = Params[1]*log10(e) + Params[4];
595 break;
596
597 // (Y - d) / a = log(b * X ^Gamma + c)
598 // pow(10, (Y-d) / a) = b * X ^Gamma + c
599 // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X
600 case -7:
601 {
602 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
603 fabs(Params[1]) < MATRIX_DET_TOLERANCE ||
604 fabs(Params[2]) < MATRIX_DET_TOLERANCE)
605 {
606 Val = 0;
607 }
608 else
609 {
610 Val = pow((pow(10.0, (R - Params[4]) / Params[1]) - Params[3]) / Params[2], 1.0 / Params[0]);
611 }
612 }
613 break;
614
615
616 //Y = a * b^(c*X+d) + e
617 case 8:
618 Val = (Params[0] * pow(Params[1], Params[2] * R + Params[3]) + Params[4]);
619 break;
620
621
622 // Y = (log((y-e) / a) / log(b) - d ) / c
623 // a=0, b=1, c=2, d=3, e=4,
624 case -8:
625
626 disc = R - Params[4];
627 if (disc < 0) Val = 0;
628 else
629 {
630 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
631 fabs(Params[2]) < MATRIX_DET_TOLERANCE)
632 {
633 Val = 0;
634 }
635 else
636 {
637 Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2];
638 }
639 }
640 break;
641
642 // S-Shaped: (1 - (1-x)^1/g)^1/g
643 case 108:
644 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE)
645 Val = 0;
646 else
647 Val = pow(1.0 - pow(1 - R, 1/Params[0]), 1/Params[0]);
648 break;
649
650 // y = (1 - (1-x)^1/g)^1/g
651 // y^g = (1 - (1-x)^1/g)
652 // 1 - y^g = (1-x)^1/g
653 // (1 - y^g)^g = 1 - x
654 // 1 - (1 - y^g)^g
655 case -108:
656 Val = 1 - pow(1 - pow(R, Params[0]), Params[0]);
657 break;
658
659 default:
660 // Unsupported parametric curve. Should never reach here
661 return 0;
662 }
663
664 return Val;
665 }
666
667 // Evaluate a segmented function for a single value. Return -Inf if no valid segment found .
668 // If fn type is 0, perform an interpolation on the table
669 static
EvalSegmentedFn(const cmsToneCurve * g,cmsFloat64Number R)670 cmsFloat64Number EvalSegmentedFn(const cmsToneCurve *g, cmsFloat64Number R)
671 {
672 int i;
673 cmsFloat32Number Out32;
674 cmsFloat64Number Out;
675
676 for (i = (int) g->nSegments - 1; i >= 0; --i) {
677
678 // Check for domain
679 if ((R > g->Segments[i].x0) && (R <= g->Segments[i].x1)) {
680
681 // Type == 0 means segment is sampled
682 if (g->Segments[i].Type == 0) {
683
684 cmsFloat32Number R1 = (cmsFloat32Number)(R - g->Segments[i].x0) / (g->Segments[i].x1 - g->Segments[i].x0);
685
686 // Setup the table (TODO: clean that)
687 g->SegInterp[i]->Table = g->Segments[i].SampledPoints;
688
689 g->SegInterp[i]->Interpolation.LerpFloat(&R1, &Out32, g->SegInterp[i]);
690 Out = (cmsFloat64Number) Out32;
691
692 }
693 else {
694 Out = g->Evals[i](g->Segments[i].Type, g->Segments[i].Params, R);
695 }
696
697 if (isinf(Out))
698 return PLUS_INF;
699 else
700 {
701 if (isinf(-Out))
702 return MINUS_INF;
703 }
704
705 return Out;
706 }
707 }
708
709 return MINUS_INF;
710 }
711
712 // Access to estimated low-res table
cmsGetToneCurveEstimatedTableEntries(const cmsToneCurve * t)713 cmsUInt32Number CMSEXPORT cmsGetToneCurveEstimatedTableEntries(const cmsToneCurve* t)
714 {
715 _cmsAssert(t != NULL);
716 return t ->nEntries;
717 }
718
cmsGetToneCurveEstimatedTable(const cmsToneCurve * t)719 const cmsUInt16Number* CMSEXPORT cmsGetToneCurveEstimatedTable(const cmsToneCurve* t)
720 {
721 _cmsAssert(t != NULL);
722 return t ->Table16;
723 }
724
725
726 // Create an empty gamma curve, by using tables. This specifies only the limited-precision part, and leaves the
727 // floating point description empty.
cmsBuildTabulatedToneCurve16(cmsContext ContextID,cmsUInt32Number nEntries,const cmsUInt16Number Values[])728 cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurve16(cmsContext ContextID, cmsUInt32Number nEntries, const cmsUInt16Number Values[])
729 {
730 return AllocateToneCurveStruct(ContextID, nEntries, 0, NULL, Values);
731 }
732
733 static
EntriesByGamma(cmsFloat64Number Gamma)734 cmsUInt32Number EntriesByGamma(cmsFloat64Number Gamma)
735 {
736 if (fabs(Gamma - 1.0) < 0.001) return 2;
737 return 4096;
738 }
739
740
741 // Create a segmented gamma, fill the table
cmsBuildSegmentedToneCurve(cmsContext ContextID,cmsUInt32Number nSegments,const cmsCurveSegment Segments[])742 cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID,
743 cmsUInt32Number nSegments, const cmsCurveSegment Segments[])
744 {
745 cmsUInt32Number i;
746 cmsFloat64Number R, Val;
747 cmsToneCurve* g;
748 cmsUInt32Number nGridPoints = 4096;
749
750 _cmsAssert(Segments != NULL);
751
752 // Optimizatin for identity curves.
753 if (nSegments == 1 && Segments[0].Type == 1) {
754
755 nGridPoints = EntriesByGamma(Segments[0].Params[0]);
756 }
757
758 g = AllocateToneCurveStruct(ContextID, nGridPoints, nSegments, Segments, NULL);
759 if (g == NULL) return NULL;
760
761 // Once we have the floating point version, we can approximate a 16 bit table of 4096 entries
762 // for performance reasons. This table would normally not be used except on 8/16 bits transforms.
763 for (i = 0; i < nGridPoints; i++) {
764
765 R = (cmsFloat64Number) i / (nGridPoints-1);
766
767 Val = EvalSegmentedFn(g, R);
768
769 // Round and saturate
770 g ->Table16[i] = _cmsQuickSaturateWord(Val * 65535.0);
771 }
772
773 return g;
774 }
775
776 // Use a segmented curve to store the floating point table
cmsBuildTabulatedToneCurveFloat(cmsContext ContextID,cmsUInt32Number nEntries,const cmsFloat32Number values[])777 cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurveFloat(cmsContext ContextID, cmsUInt32Number nEntries, const cmsFloat32Number values[])
778 {
779 cmsCurveSegment Seg[3];
780
781 // A segmented tone curve should have function segments in the first and last positions
782 // Initialize segmented curve part up to 0 to constant value = samples[0]
783 Seg[0].x0 = MINUS_INF;
784 Seg[0].x1 = 0;
785 Seg[0].Type = 6;
786
787 Seg[0].Params[0] = 1;
788 Seg[0].Params[1] = 0;
789 Seg[0].Params[2] = 0;
790 Seg[0].Params[3] = values[0];
791 Seg[0].Params[4] = 0;
792
793 // From zero to 1
794 Seg[1].x0 = 0;
795 Seg[1].x1 = 1.0;
796 Seg[1].Type = 0;
797
798 Seg[1].nGridPoints = nEntries;
799 Seg[1].SampledPoints = (cmsFloat32Number*) values;
800
801 // Final segment is constant = lastsample
802 Seg[2].x0 = 1.0;
803 Seg[2].x1 = PLUS_INF;
804 Seg[2].Type = 6;
805
806 Seg[2].Params[0] = 1;
807 Seg[2].Params[1] = 0;
808 Seg[2].Params[2] = 0;
809 Seg[2].Params[3] = values[nEntries-1];
810 Seg[2].Params[4] = 0;
811
812
813 return cmsBuildSegmentedToneCurve(ContextID, 3, Seg);
814 }
815
816 // Parametric curves
817 //
818 // Parameters goes as: Curve, a, b, c, d, e, f
819 // Type is the ICC type +1
820 // if type is negative, then the curve is analyticaly inverted
cmsBuildParametricToneCurve(cmsContext ContextID,cmsInt32Number Type,const cmsFloat64Number Params[])821 cmsToneCurve* CMSEXPORT cmsBuildParametricToneCurve(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[])
822 {
823 cmsCurveSegment Seg0;
824 int Pos = 0;
825 cmsUInt32Number size;
826 const _cmsParametricCurvesCollection* c = GetParametricCurveByType(ContextID, Type, &Pos);
827
828 _cmsAssert(Params != NULL);
829
830 if (c == NULL) {
831 cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d", Type);
832 return NULL;
833 }
834
835 memset(&Seg0, 0, sizeof(Seg0));
836
837 Seg0.x0 = MINUS_INF;
838 Seg0.x1 = PLUS_INF;
839 Seg0.Type = Type;
840
841 size = c->ParameterCount[Pos] * sizeof(cmsFloat64Number);
842 memmove(Seg0.Params, Params, size);
843
844 return cmsBuildSegmentedToneCurve(ContextID, 1, &Seg0);
845 }
846
847
848
849 // Build a gamma table based on gamma constant
cmsBuildGamma(cmsContext ContextID,cmsFloat64Number Gamma)850 cmsToneCurve* CMSEXPORT cmsBuildGamma(cmsContext ContextID, cmsFloat64Number Gamma)
851 {
852 return cmsBuildParametricToneCurve(ContextID, 1, &Gamma);
853 }
854
855
856 // Free all memory taken by the gamma curve
cmsFreeToneCurve(cmsToneCurve * Curve)857 void CMSEXPORT cmsFreeToneCurve(cmsToneCurve* Curve)
858 {
859 cmsContext ContextID;
860
861 // added by Xiaochuan Liu
862 // Curve->InterpParams may be null
863 if (Curve == NULL || Curve->InterpParams == NULL) return;
864
865 ContextID = Curve ->InterpParams->ContextID;
866
867 _cmsFreeInterpParams(Curve ->InterpParams);
868 Curve ->InterpParams = NULL;
869
870 if (Curve -> Table16) {
871 _cmsFree(ContextID, Curve ->Table16);
872 Curve ->Table16 = NULL;
873 }
874
875 if (Curve ->Segments) {
876
877 cmsUInt32Number i;
878
879 for (i=0; i < Curve ->nSegments; i++) {
880
881 if (Curve ->Segments[i].SampledPoints) {
882 _cmsFree(ContextID, Curve ->Segments[i].SampledPoints);
883 Curve ->Segments[i].SampledPoints = NULL;
884 }
885
886 if (Curve ->SegInterp[i] != 0) {
887 _cmsFreeInterpParams(Curve->SegInterp[i]);
888 Curve->SegInterp[i] = NULL;
889 }
890 }
891
892 _cmsFree(ContextID, Curve ->Segments);
893 Curve ->Segments = NULL;
894 _cmsFree(ContextID, Curve ->SegInterp);
895 Curve ->SegInterp = NULL;
896 }
897
898 if (Curve -> Evals) {
899 _cmsFree(ContextID, Curve -> Evals);
900 Curve -> Evals = NULL;
901 }
902
903 if (Curve) {
904 _cmsFree(ContextID, Curve);
905 Curve = NULL;
906 }
907 }
908
909 // Utility function, free 3 gamma tables
cmsFreeToneCurveTriple(cmsToneCurve * Curve[3])910 void CMSEXPORT cmsFreeToneCurveTriple(cmsToneCurve* Curve[3])
911 {
912
913 _cmsAssert(Curve != NULL);
914
915 if (Curve[0] != NULL) cmsFreeToneCurve(Curve[0]);
916 if (Curve[1] != NULL) cmsFreeToneCurve(Curve[1]);
917 if (Curve[2] != NULL) cmsFreeToneCurve(Curve[2]);
918
919 Curve[0] = Curve[1] = Curve[2] = NULL;
920 }
921
922
923 // Duplicate a gamma table
cmsDupToneCurve(const cmsToneCurve * In)924 cmsToneCurve* CMSEXPORT cmsDupToneCurve(const cmsToneCurve* In)
925 {
926 // Xiaochuan Liu
927 // fix openpdf bug(mantis id:0055683, google id:360198)
928 // the function CurveSetElemTypeFree in cmslut.c also needs to check pointer
929 if (In == NULL || In ->InterpParams == NULL || In ->Segments == NULL || In ->Table16 == NULL) return NULL;
930
931 return AllocateToneCurveStruct(In ->InterpParams ->ContextID, In ->nEntries, In ->nSegments, In ->Segments, In ->Table16);
932 }
933
934 // Joins two curves for X and Y. Curves should be monotonic.
935 // We want to get
936 //
937 // y = Y^-1(X(t))
938 //
cmsJoinToneCurve(cmsContext ContextID,const cmsToneCurve * X,const cmsToneCurve * Y,cmsUInt32Number nResultingPoints)939 cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID,
940 const cmsToneCurve* X,
941 const cmsToneCurve* Y, cmsUInt32Number nResultingPoints)
942 {
943 cmsToneCurve* out = NULL;
944 cmsToneCurve* Yreversed = NULL;
945 cmsFloat32Number t, x;
946 cmsFloat32Number* Res = NULL;
947 cmsUInt32Number i;
948
949
950 _cmsAssert(X != NULL);
951 _cmsAssert(Y != NULL);
952
953 Yreversed = cmsReverseToneCurveEx(nResultingPoints, Y);
954 if (Yreversed == NULL) goto Error;
955
956 Res = (cmsFloat32Number*) _cmsCalloc(ContextID, nResultingPoints, sizeof(cmsFloat32Number));
957 if (Res == NULL) goto Error;
958
959 //Iterate
960 for (i=0; i < nResultingPoints; i++) {
961
962 t = (cmsFloat32Number) i / (nResultingPoints-1);
963 x = cmsEvalToneCurveFloat(X, t);
964 Res[i] = cmsEvalToneCurveFloat(Yreversed, x);
965 }
966
967 // Allocate space for output
968 out = cmsBuildTabulatedToneCurveFloat(ContextID, nResultingPoints, Res);
969
970 Error:
971
972 if (Res != NULL) _cmsFree(ContextID, Res);
973 if (Yreversed != NULL) cmsFreeToneCurve(Yreversed);
974
975 return out;
976 }
977
978
979
980 // Get the surrounding nodes. This is tricky on non-monotonic tables
981 static
GetInterval(cmsFloat64Number In,const cmsUInt16Number LutTable[],const struct _cms_interp_struc * p)982 int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const struct _cms_interp_struc* p)
983 {
984 int i;
985 int y0, y1;
986
987 // A 1 point table is not allowed
988 if (p -> Domain[0] < 1) return -1;
989
990 // Let's see if ascending or descending.
991 if (LutTable[0] < LutTable[p ->Domain[0]]) {
992
993 // Table is overall ascending
994 for (i = (int) p->Domain[0] - 1; i >= 0; --i) {
995
996 y0 = LutTable[i];
997 y1 = LutTable[i+1];
998
999 if (y0 <= y1) { // Increasing
1000 if (In >= y0 && In <= y1) return i;
1001 }
1002 else
1003 if (y1 < y0) { // Decreasing
1004 if (In >= y1 && In <= y0) return i;
1005 }
1006 }
1007 }
1008 else {
1009 // Table is overall descending
1010 for (i=0; i < (int) p -> Domain[0]; i++) {
1011
1012 y0 = LutTable[i];
1013 y1 = LutTable[i+1];
1014
1015 if (y0 <= y1) { // Increasing
1016 if (In >= y0 && In <= y1) return i;
1017 }
1018 else
1019 if (y1 < y0) { // Decreasing
1020 if (In >= y1 && In <= y0) return i;
1021 }
1022 }
1023 }
1024
1025 return -1;
1026 }
1027
1028 // Reverse a gamma table
cmsReverseToneCurveEx(cmsUInt32Number nResultSamples,const cmsToneCurve * InCurve)1029 cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsUInt32Number nResultSamples, const cmsToneCurve* InCurve)
1030 {
1031 cmsToneCurve *out;
1032 cmsFloat64Number a = 0, b = 0, y, x1, y1, x2, y2;
1033 int i, j;
1034 int Ascending;
1035
1036 _cmsAssert(InCurve != NULL);
1037
1038 // Try to reverse it analytically whatever possible
1039
1040 if (InCurve ->nSegments == 1 && InCurve ->Segments[0].Type > 0 &&
1041 /* InCurve -> Segments[0].Type <= 5 */
1042 GetParametricCurveByType(InCurve ->InterpParams->ContextID, InCurve ->Segments[0].Type, NULL) != NULL) {
1043
1044 return cmsBuildParametricToneCurve(InCurve ->InterpParams->ContextID,
1045 -(InCurve -> Segments[0].Type),
1046 InCurve -> Segments[0].Params);
1047 }
1048
1049 // Nope, reverse the table.
1050 out = cmsBuildTabulatedToneCurve16(InCurve ->InterpParams->ContextID, nResultSamples, NULL);
1051 if (out == NULL)
1052 return NULL;
1053
1054 // We want to know if this is an ascending or descending table
1055 Ascending = !cmsIsToneCurveDescending(InCurve);
1056
1057 // Iterate across Y axis
1058 for (i=0; i < (int) nResultSamples; i++) {
1059
1060 y = (cmsFloat64Number) i * 65535.0 / (nResultSamples - 1);
1061
1062 // Find interval in which y is within.
1063 j = GetInterval(y, InCurve->Table16, InCurve->InterpParams);
1064 if (j >= 0) {
1065
1066
1067 // Get limits of interval
1068 x1 = InCurve ->Table16[j];
1069 x2 = InCurve ->Table16[j+1];
1070
1071 y1 = (cmsFloat64Number) (j * 65535.0) / (InCurve ->nEntries - 1);
1072 y2 = (cmsFloat64Number) ((j+1) * 65535.0 ) / (InCurve ->nEntries - 1);
1073
1074 // If collapsed, then use any
1075 if (x1 == x2) {
1076
1077 out ->Table16[i] = _cmsQuickSaturateWord(Ascending ? y2 : y1);
1078 continue;
1079
1080 } else {
1081
1082 // Interpolate
1083 a = (y2 - y1) / (x2 - x1);
1084 b = y2 - a * x2;
1085 }
1086 }
1087
1088 out ->Table16[i] = _cmsQuickSaturateWord(a* y + b);
1089 }
1090
1091
1092 return out;
1093 }
1094
1095 // Reverse a gamma table
cmsReverseToneCurve(const cmsToneCurve * InGamma)1096 cmsToneCurve* CMSEXPORT cmsReverseToneCurve(const cmsToneCurve* InGamma)
1097 {
1098 _cmsAssert(InGamma != NULL);
1099
1100 return cmsReverseToneCurveEx(4096, InGamma);
1101 }
1102
1103 // From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite
1104 // differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press.
1105 //
1106 // Smoothing and interpolation with second differences.
1107 //
1108 // Input: weights (w), data (y): vector from 1 to m.
1109 // Input: smoothing parameter (lambda), length (m).
1110 // Output: smoothed vector (z): vector from 1 to m.
1111
1112 static
smooth2(cmsContext ContextID,cmsFloat32Number w[],cmsFloat32Number y[],cmsFloat32Number z[],cmsFloat32Number lambda,int m)1113 cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[],
1114 cmsFloat32Number z[], cmsFloat32Number lambda, int m)
1115 {
1116 int i, i1, i2;
1117 cmsFloat32Number *c, *d, *e;
1118 cmsBool st;
1119
1120
1121 c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1122 d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1123 e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1124
1125 if (c != NULL && d != NULL && e != NULL) {
1126
1127
1128 d[1] = w[1] + lambda;
1129 c[1] = -2 * lambda / d[1];
1130 e[1] = lambda /d[1];
1131 z[1] = w[1] * y[1];
1132 d[2] = w[2] + 5 * lambda - d[1] * c[1] * c[1];
1133 c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2];
1134 e[2] = lambda / d[2];
1135 z[2] = w[2] * y[2] - c[1] * z[1];
1136
1137 for (i = 3; i < m - 1; i++) {
1138 i1 = i - 1; i2 = i - 2;
1139 d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
1140 c[i] = (-4 * lambda -d[i1] * c[i1] * e[i1])/ d[i];
1141 e[i] = lambda / d[i];
1142 z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2];
1143 }
1144
1145 i1 = m - 2; i2 = m - 3;
1146
1147 d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
1148 c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1];
1149 z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2];
1150 i1 = m - 1; i2 = m - 2;
1151
1152 d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
1153 z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m];
1154 z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m];
1155
1156 for (i = m - 2; 1<= i; i--)
1157 z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2];
1158
1159 st = TRUE;
1160 }
1161 else st = FALSE;
1162
1163 if (c != NULL) _cmsFree(ContextID, c);
1164 if (d != NULL) _cmsFree(ContextID, d);
1165 if (e != NULL) _cmsFree(ContextID, e);
1166
1167 return st;
1168 }
1169
1170 // Smooths a curve sampled at regular intervals.
cmsSmoothToneCurve(cmsToneCurve * Tab,cmsFloat64Number lambda)1171 cmsBool CMSEXPORT cmsSmoothToneCurve(cmsToneCurve* Tab, cmsFloat64Number lambda)
1172 {
1173 cmsBool SuccessStatus = TRUE;
1174 cmsFloat32Number *w, *y, *z;
1175 cmsUInt32Number i, nItems, Zeros, Poles;
1176
1177 if (Tab != NULL && Tab->InterpParams != NULL)
1178 {
1179 cmsContext ContextID = Tab->InterpParams->ContextID;
1180
1181 if (!cmsIsToneCurveLinear(Tab)) // Only non-linear curves need smoothing
1182 {
1183 nItems = Tab->nEntries;
1184 if (nItems < MAX_NODES_IN_CURVE)
1185 {
1186 // Allocate one more item than needed
1187 w = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
1188 y = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
1189 z = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
1190
1191 if (w != NULL && y != NULL && z != NULL) // Ensure no memory allocation failure
1192 {
1193 memset(w, 0, (nItems + 1) * sizeof(cmsFloat32Number));
1194 memset(y, 0, (nItems + 1) * sizeof(cmsFloat32Number));
1195 memset(z, 0, (nItems + 1) * sizeof(cmsFloat32Number));
1196
1197 for (i = 0; i < nItems; i++)
1198 {
1199 y[i + 1] = (cmsFloat32Number)Tab->Table16[i];
1200 w[i + 1] = 1.0;
1201 }
1202
1203 if (smooth2(ContextID, w, y, z, (cmsFloat32Number)lambda, (int)nItems))
1204 {
1205 // Do some reality - checking...
1206
1207 Zeros = Poles = 0;
1208 for (i = nItems; i > 1; --i)
1209 {
1210 if (z[i] == 0.) Zeros++;
1211 if (z[i] >= 65535.) Poles++;
1212 if (z[i] < z[i - 1])
1213 {
1214 cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Non-Monotonic.");
1215 SuccessStatus = FALSE;
1216 break;
1217 }
1218 }
1219
1220 if (SuccessStatus && Zeros > (nItems / 3))
1221 {
1222 cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly zeros.");
1223 SuccessStatus = FALSE;
1224 }
1225
1226 if (SuccessStatus && Poles > (nItems / 3))
1227 {
1228 cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly poles.");
1229 SuccessStatus = FALSE;
1230 }
1231
1232 if (SuccessStatus) // Seems ok
1233 {
1234 for (i = 0; i < nItems; i++)
1235 {
1236 // Clamp to cmsUInt16Number
1237 Tab->Table16[i] = _cmsQuickSaturateWord(z[i + 1]);
1238 }
1239 }
1240 }
1241 else // Could not smooth
1242 {
1243 cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Function smooth2 failed.");
1244 SuccessStatus = FALSE;
1245 }
1246 }
1247 else // One or more buffers could not be allocated
1248 {
1249 cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Could not allocate memory.");
1250 SuccessStatus = FALSE;
1251 }
1252
1253 if (z != NULL)
1254 _cmsFree(ContextID, z);
1255
1256 if (y != NULL)
1257 _cmsFree(ContextID, y);
1258
1259 if (w != NULL)
1260 _cmsFree(ContextID, w);
1261 }
1262 else // too many items in the table
1263 {
1264 cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Too many points.");
1265 SuccessStatus = FALSE;
1266 }
1267 }
1268 }
1269 else // Tab parameter or Tab->InterpParams is NULL
1270 {
1271 // Can't signal an error here since the ContextID is not known at this point
1272 SuccessStatus = FALSE;
1273 }
1274
1275 return SuccessStatus;
1276 }
1277
1278 // Is a table linear? Do not use parametric since we cannot guarantee some weird parameters resulting
1279 // in a linear table. This way assures it is linear in 12 bits, which should be enought in most cases.
cmsIsToneCurveLinear(const cmsToneCurve * Curve)1280 cmsBool CMSEXPORT cmsIsToneCurveLinear(const cmsToneCurve* Curve)
1281 {
1282 int i;
1283 int diff;
1284
1285 _cmsAssert(Curve != NULL);
1286
1287 for (i=0; i < (int) Curve ->nEntries; i++) {
1288
1289 diff = abs((int) Curve->Table16[i] - (int) _cmsQuantizeVal(i, Curve ->nEntries));
1290 if (diff > 0x0f)
1291 return FALSE;
1292 }
1293
1294 return TRUE;
1295 }
1296
1297 // Same, but for monotonicity
cmsIsToneCurveMonotonic(const cmsToneCurve * t)1298 cmsBool CMSEXPORT cmsIsToneCurveMonotonic(const cmsToneCurve* t)
1299 {
1300 cmsUInt32Number n;
1301 int i, last;
1302 cmsBool lDescending;
1303
1304 _cmsAssert(t != NULL);
1305
1306 // Degenerated curves are monotonic? Ok, let's pass them
1307 n = t ->nEntries;
1308 if (n < 2) return TRUE;
1309
1310 // Curve direction
1311 lDescending = cmsIsToneCurveDescending(t);
1312
1313 if (lDescending) {
1314
1315 last = t ->Table16[0];
1316
1317 for (i = 1; i < (int) n; i++) {
1318
1319 if (t ->Table16[i] - last > 2) // We allow some ripple
1320 return FALSE;
1321 else
1322 last = t ->Table16[i];
1323
1324 }
1325 }
1326 else {
1327
1328 last = t ->Table16[n-1];
1329
1330 for (i = (int) n - 2; i >= 0; --i) {
1331
1332 if (t ->Table16[i] - last > 2)
1333 return FALSE;
1334 else
1335 last = t ->Table16[i];
1336
1337 }
1338 }
1339
1340 return TRUE;
1341 }
1342
1343 // Same, but for descending tables
cmsIsToneCurveDescending(const cmsToneCurve * t)1344 cmsBool CMSEXPORT cmsIsToneCurveDescending(const cmsToneCurve* t)
1345 {
1346 _cmsAssert(t != NULL);
1347
1348 return t ->Table16[0] > t ->Table16[t ->nEntries-1];
1349 }
1350
1351
1352 // Another info fn: is out gamma table multisegment?
cmsIsToneCurveMultisegment(const cmsToneCurve * t)1353 cmsBool CMSEXPORT cmsIsToneCurveMultisegment(const cmsToneCurve* t)
1354 {
1355 _cmsAssert(t != NULL);
1356
1357 return t -> nSegments > 1;
1358 }
1359
cmsGetToneCurveParametricType(const cmsToneCurve * t)1360 cmsInt32Number CMSEXPORT cmsGetToneCurveParametricType(const cmsToneCurve* t)
1361 {
1362 _cmsAssert(t != NULL);
1363
1364 if (t -> nSegments != 1) return 0;
1365 return t ->Segments[0].Type;
1366 }
1367
1368 // We need accuracy this time
cmsEvalToneCurveFloat(const cmsToneCurve * Curve,cmsFloat32Number v)1369 cmsFloat32Number CMSEXPORT cmsEvalToneCurveFloat(const cmsToneCurve* Curve, cmsFloat32Number v)
1370 {
1371 _cmsAssert(Curve != NULL);
1372
1373 // Check for 16 bits table. If so, this is a limited-precision tone curve
1374 if (Curve ->nSegments == 0) {
1375
1376 cmsUInt16Number In, Out;
1377
1378 In = (cmsUInt16Number) _cmsQuickSaturateWord(v * 65535.0);
1379 Out = cmsEvalToneCurve16(Curve, In);
1380
1381 return (cmsFloat32Number) (Out / 65535.0);
1382 }
1383
1384 return (cmsFloat32Number) EvalSegmentedFn(Curve, v);
1385 }
1386
1387 // We need xput over here
cmsEvalToneCurve16(const cmsToneCurve * Curve,cmsUInt16Number v)1388 cmsUInt16Number CMSEXPORT cmsEvalToneCurve16(const cmsToneCurve* Curve, cmsUInt16Number v)
1389 {
1390 cmsUInt16Number out;
1391
1392 _cmsAssert(Curve != NULL);
1393
1394 Curve ->InterpParams ->Interpolation.Lerp16(&v, &out, Curve ->InterpParams);
1395 return out;
1396 }
1397
1398
1399 // Least squares fitting.
1400 // A mathematical procedure for finding the best-fitting curve to a given set of points by
1401 // minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve.
1402 // The sum of the squares of the offsets is used instead of the offset absolute values because
1403 // this allows the residuals to be treated as a continuous differentiable quantity.
1404 //
1405 // y = f(x) = x ^ g
1406 //
1407 // R = (yi - (xi^g))
1408 // R2 = (yi - (xi^g))2
1409 // SUM R2 = SUM (yi - (xi^g))2
1410 //
1411 // dR2/dg = -2 SUM x^g log(x)(y - x^g)
1412 // solving for dR2/dg = 0
1413 //
1414 // g = 1/n * SUM(log(y) / log(x))
1415
cmsEstimateGamma(const cmsToneCurve * t,cmsFloat64Number Precision)1416 cmsFloat64Number CMSEXPORT cmsEstimateGamma(const cmsToneCurve* t, cmsFloat64Number Precision)
1417 {
1418 cmsFloat64Number gamma, sum, sum2;
1419 cmsFloat64Number n, x, y, Std;
1420 cmsUInt32Number i;
1421
1422 _cmsAssert(t != NULL);
1423
1424 sum = sum2 = n = 0;
1425
1426 // Excluding endpoints
1427 for (i=1; i < (MAX_NODES_IN_CURVE-1); i++) {
1428
1429 x = (cmsFloat64Number) i / (MAX_NODES_IN_CURVE-1);
1430 y = (cmsFloat64Number) cmsEvalToneCurveFloat(t, (cmsFloat32Number) x);
1431
1432 // Avoid 7% on lower part to prevent
1433 // artifacts due to linear ramps
1434
1435 if (y > 0. && y < 1. && x > 0.07) {
1436
1437 gamma = log(y) / log(x);
1438 sum += gamma;
1439 sum2 += gamma * gamma;
1440 n++;
1441 }
1442 }
1443
1444 // Take a look on SD to see if gamma isn't exponential at all
1445 Std = sqrt((n * sum2 - sum * sum) / (n*(n-1)));
1446
1447 if (Std > Precision)
1448 return -1.0;
1449
1450 return (sum / n); // The mean
1451 }
1452