1 //===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Derive information about array elements between statements ("Zones").
10 //
11 // The algorithms here work on the scatter space - the image space of the
12 // schedule returned by Scop::getSchedule(). We call an element in that space a
13 // "timepoint". Timepoints are lexicographically ordered such that we can
14 // defined ranges in the scatter space. We use two flavors of such ranges:
15 // Timepoint sets and zones. A timepoint set is simply a subset of the scatter
16 // space and is directly stored as isl_set.
17 //
18 // Zones are used to describe the space between timepoints as open sets, i.e.
19 // they do not contain the extrema. Using isl rational sets to express these
20 // would be overkill. We also cannot store them as the integer timepoints they
21 // contain; the (nonempty) zone between 1 and 2 would be empty and
22 // indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
23 // the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
24 // coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
25 // Instead, we store the "half-open" integer extrema, including the lower bound,
26 // but excluding the upper bound. Examples:
27 //
28 // * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
29 // integer points 1 and 2, but not 0 or 3)
30 //
31 // * { [1] } represents the zone ]0,1[
32 //
33 // * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
34 //
35 // Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
36 // speaking the integer points never belong to the zone. However, depending an
37 // the interpretation, one might want to include them. Part of the
38 // interpretation may not be known when the zone is constructed.
39 //
40 // Reads are assumed to always take place before writes, hence we can think of
41 // reads taking place at the beginning of a timepoint and writes at the end.
42 //
43 // Let's assume that the zone represents the lifetime of a variable. That is,
44 // the zone begins with a write that defines the value during its lifetime and
45 // ends with the last read of that value. In the following we consider whether a
46 // read/write at the beginning/ending of the lifetime zone should be within the
47 // zone or outside of it.
48 //
49 // * A read at the timepoint that starts the live-range loads the previous
50 // value. Hence, exclude the timepoint starting the zone.
51 //
52 // * A write at the timepoint that starts the live-range is not defined whether
53 // it occurs before or after the write that starts the lifetime. We do not
54 // allow this situation to occur. Hence, we include the timepoint starting the
55 // zone to determine whether they are conflicting.
56 //
57 // * A read at the timepoint that ends the live-range reads the same variable.
58 // We include the timepoint at the end of the zone to include that read into
59 // the live-range. Doing otherwise would mean that the two reads access
60 // different values, which would mean that the value they read are both alive
61 // at the same time but occupy the same variable.
62 //
63 // * A write at the timepoint that ends the live-range starts a new live-range.
64 // It must not be included in the live-range of the previous definition.
65 //
66 // All combinations of reads and writes at the endpoints are possible, but most
67 // of the time only the write->read (for instance, a live-range from definition
68 // to last use) and read->write (for instance, an unused range from last use to
69 // overwrite) and combinations are interesting (half-open ranges). write->write
70 // zones might be useful as well in some context to represent
71 // output-dependencies.
72 //
73 // @see convertZoneToTimepoints
74 //
75 //
76 // The code makes use of maps and sets in many different spaces. To not loose
77 // track in which space a set or map is expected to be in, variables holding an
78 // isl reference are usually annotated in the comments. They roughly follow isl
79 // syntax for spaces, but only the tuples, not the dimensions. The tuples have a
80 // meaning as follows:
81 //
82 // * Space[] - An unspecified tuple. Used for function parameters such that the
83 // function caller can use it for anything they like.
84 //
85 // * Domain[] - A statement instance as returned by ScopStmt::getDomain()
86 // isl_id_get_name: Stmt_<NameOfBasicBlock>
87 // isl_id_get_user: Pointer to ScopStmt
88 //
89 // * Element[] - An array element as in the range part of
90 // MemoryAccess::getAccessRelation()
91 // isl_id_get_name: MemRef_<NameOfArrayVariable>
92 // isl_id_get_user: Pointer to ScopArrayInfo
93 //
94 // * Scatter[] - Scatter space or space of timepoints
95 // Has no tuple id
96 //
97 // * Zone[] - Range between timepoints as described above
98 // Has no tuple id
99 //
100 // * ValInst[] - An llvm::Value as defined at a specific timepoint.
101 //
102 // A ValInst[] itself can be structured as one of:
103 //
104 // * [] - An unknown value.
105 // Always zero dimensions
106 // Has no tuple id
107 //
108 // * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
109 // runtime content does not depend on the timepoint.
110 // Always zero dimensions
111 // isl_id_get_name: Val_<NameOfValue>
112 // isl_id_get_user: A pointer to an llvm::Value
113 //
114 // * SCEV[...] - A synthesizable llvm::SCEV Expression.
115 // In contrast to a Value[] is has at least one dimension per
116 // SCEVAddRecExpr in the SCEV.
117 //
118 // * [Domain[] -> Value[]] - An llvm::Value that may change during the
119 // Scop's execution.
120 // The tuple itself has no id, but it wraps a map space holding a
121 // statement instance which defines the llvm::Value as the map's domain
122 // and llvm::Value itself as range.
123 //
124 // @see makeValInst()
125 //
126 // An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
127 // statement instance to a timepoint, aka a schedule. There is only one scatter
128 // space, but most of the time multiple statements are processed in one set.
129 // This is why most of the time isl_union_map has to be used.
130 //
131 // The basic algorithm works as follows:
132 // At first we verify that the SCoP is compatible with this technique. For
133 // instance, two writes cannot write to the same location at the same statement
134 // instance because we cannot determine within the polyhedral model which one
135 // comes first. Once this was verified, we compute zones at which an array
136 // element is unused. This computation can fail if it takes too long. Then the
137 // main algorithm is executed. Because every store potentially trails an unused
138 // zone, we start at stores. We search for a scalar (MemoryKind::Value or
139 // MemoryKind::PHI) that we can map to the array element overwritten by the
140 // store, preferably one that is used by the store or at least the ScopStmt.
141 // When it does not conflict with the lifetime of the values in the array
142 // element, the map is applied and the unused zone updated as it is now used. We
143 // continue to try to map scalars to the array element until there are no more
144 // candidates to map. The algorithm is greedy in the sense that the first scalar
145 // not conflicting will be mapped. Other scalars processed later that could have
146 // fit the same unused zone will be rejected. As such the result depends on the
147 // processing order.
148 //
149 //===----------------------------------------------------------------------===//
150
151 #include "polly/ZoneAlgo.h"
152 #include "polly/ScopInfo.h"
153 #include "polly/Support/GICHelper.h"
154 #include "polly/Support/ISLTools.h"
155 #include "polly/Support/VirtualInstruction.h"
156 #include "llvm/ADT/Statistic.h"
157 #include "llvm/Support/raw_ostream.h"
158
159 #define DEBUG_TYPE "polly-zone"
160
161 STATISTIC(NumIncompatibleArrays, "Number of not zone-analyzable arrays");
162 STATISTIC(NumCompatibleArrays, "Number of zone-analyzable arrays");
163 STATISTIC(NumRecursivePHIs, "Number of recursive PHIs");
164 STATISTIC(NumNormalizablePHIs, "Number of normalizable PHIs");
165 STATISTIC(NumPHINormialization, "Number of PHI executed normalizations");
166
167 using namespace polly;
168 using namespace llvm;
169
computeReachingDefinition(isl::union_map Schedule,isl::union_map Writes,bool InclDef,bool InclRedef)170 static isl::union_map computeReachingDefinition(isl::union_map Schedule,
171 isl::union_map Writes,
172 bool InclDef, bool InclRedef) {
173 return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
174 }
175
176 /// Compute the reaching definition of a scalar.
177 ///
178 /// Compared to computeReachingDefinition, there is just one element which is
179 /// accessed and therefore only a set if instances that accesses that element is
180 /// required.
181 ///
182 /// @param Schedule { DomainWrite[] -> Scatter[] }
183 /// @param Writes { DomainWrite[] }
184 /// @param InclDef Include the timepoint of the definition to the result.
185 /// @param InclRedef Include the timepoint of the overwrite into the result.
186 ///
187 /// @return { Scatter[] -> DomainWrite[] }
computeScalarReachingDefinition(isl::union_map Schedule,isl::union_set Writes,bool InclDef,bool InclRedef)188 static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
189 isl::union_set Writes,
190 bool InclDef,
191 bool InclRedef) {
192 // { DomainWrite[] -> Element[] }
193 isl::union_map Defs = isl::union_map::from_domain(Writes);
194
195 // { [Element[] -> Scatter[]] -> DomainWrite[] }
196 auto ReachDefs =
197 computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
198
199 // { Scatter[] -> DomainWrite[] }
200 return ReachDefs.curry().range().unwrap();
201 }
202
203 /// Compute the reaching definition of a scalar.
204 ///
205 /// This overload accepts only a single writing statement as an isl_map,
206 /// consequently the result also is only a single isl_map.
207 ///
208 /// @param Schedule { DomainWrite[] -> Scatter[] }
209 /// @param Writes { DomainWrite[] }
210 /// @param InclDef Include the timepoint of the definition to the result.
211 /// @param InclRedef Include the timepoint of the overwrite into the result.
212 ///
213 /// @return { Scatter[] -> DomainWrite[] }
computeScalarReachingDefinition(isl::union_map Schedule,isl::set Writes,bool InclDef,bool InclRedef)214 static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
215 isl::set Writes, bool InclDef,
216 bool InclRedef) {
217 isl::space DomainSpace = Writes.get_space();
218 isl::space ScatterSpace = getScatterSpace(Schedule);
219
220 // { Scatter[] -> DomainWrite[] }
221 isl::union_map UMap = computeScalarReachingDefinition(
222 Schedule, isl::union_set(Writes), InclDef, InclRedef);
223
224 isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomainSpace);
225 return singleton(UMap, ResultSpace);
226 }
227
makeUnknownForDomain(isl::union_set Domain)228 isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
229 return isl::union_map::from_domain(Domain);
230 }
231
232 /// Create a domain-to-unknown value mapping.
233 ///
234 /// @see makeUnknownForDomain(isl::union_set)
235 ///
236 /// @param Domain { Domain[] }
237 ///
238 /// @return { Domain[] -> ValInst[] }
makeUnknownForDomain(isl::set Domain)239 static isl::map makeUnknownForDomain(isl::set Domain) {
240 return isl::map::from_domain(Domain);
241 }
242
243 /// Return whether @p Map maps to an unknown value.
244 ///
245 /// @param { [] -> ValInst[] }
isMapToUnknown(const isl::map & Map)246 static bool isMapToUnknown(const isl::map &Map) {
247 isl::space Space = Map.get_space().range();
248 return Space.has_tuple_id(isl::dim::set).is_false() &&
249 Space.is_wrapping().is_false() && Space.dim(isl::dim::set) == 0;
250 }
251
filterKnownValInst(const isl::union_map & UMap)252 isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) {
253 isl::union_map Result = isl::union_map::empty(UMap.get_space());
254 for (isl::map Map : UMap.get_map_list()) {
255 if (!isMapToUnknown(Map))
256 Result = Result.add_map(Map);
257 }
258 return Result;
259 }
260
ZoneAlgorithm(const char * PassName,Scop * S,LoopInfo * LI)261 ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
262 : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
263 Schedule(S->getSchedule()) {
264 auto Domains = S->getDomains();
265
266 Schedule = Schedule.intersect_domain(Domains);
267 ParamSpace = Schedule.get_space();
268 ScatterSpace = getScatterSpace(Schedule);
269 }
270
271 /// Check if all stores in @p Stmt store the very same value.
272 ///
273 /// This covers a special situation occurring in Polybench's
274 /// covariance/correlation (which is typical for algorithms that cover symmetric
275 /// matrices):
276 ///
277 /// for (int i = 0; i < n; i += 1)
278 /// for (int j = 0; j <= i; j += 1) {
279 /// double x = ...;
280 /// C[i][j] = x;
281 /// C[j][i] = x;
282 /// }
283 ///
284 /// For i == j, the same value is written twice to the same element.Double
285 /// writes to the same element are not allowed in DeLICM because its algorithm
286 /// does not see which of the writes is effective.But if its the same value
287 /// anyway, it doesn't matter.
288 ///
289 /// LLVM passes, however, cannot simplify this because the write is necessary
290 /// for i != j (unless it would add a condition for one of the writes to occur
291 /// only if i != j).
292 ///
293 /// TODO: In the future we may want to extent this to make the checks
294 /// specific to different memory locations.
onlySameValueWrites(ScopStmt * Stmt)295 static bool onlySameValueWrites(ScopStmt *Stmt) {
296 Value *V = nullptr;
297
298 for (auto *MA : *Stmt) {
299 if (!MA->isLatestArrayKind() || !MA->isMustWrite() ||
300 !MA->isOriginalArrayKind())
301 continue;
302
303 if (!V) {
304 V = MA->getAccessValue();
305 continue;
306 }
307
308 if (V != MA->getAccessValue())
309 return false;
310 }
311 return true;
312 }
313
314 /// Is @p InnerLoop nested inside @p OuterLoop?
isInsideLoop(Loop * OuterLoop,Loop * InnerLoop)315 static bool isInsideLoop(Loop *OuterLoop, Loop *InnerLoop) {
316 // If OuterLoop is nullptr, we cannot call its contains() method. In this case
317 // OuterLoop represents the 'top level' and therefore contains all loop.
318 return !OuterLoop || OuterLoop->contains(InnerLoop);
319 }
320
collectIncompatibleElts(ScopStmt * Stmt,isl::union_set & IncompatibleElts,isl::union_set & AllElts)321 void ZoneAlgorithm::collectIncompatibleElts(ScopStmt *Stmt,
322 isl::union_set &IncompatibleElts,
323 isl::union_set &AllElts) {
324 auto Stores = makeEmptyUnionMap();
325 auto Loads = makeEmptyUnionMap();
326
327 // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
328 // order.
329 for (auto *MA : *Stmt) {
330 if (!MA->isOriginalArrayKind())
331 continue;
332
333 isl::map AccRelMap = getAccessRelationFor(MA);
334 isl::union_map AccRel = AccRelMap;
335
336 // To avoid solving any ILP problems, always add entire arrays instead of
337 // just the elements that are accessed.
338 auto ArrayElts = isl::set::universe(AccRelMap.get_space().range());
339 AllElts = AllElts.add_set(ArrayElts);
340
341 if (MA->isRead()) {
342 // Reject load after store to same location.
343 if (!Stores.is_disjoint(AccRel)) {
344 LLVM_DEBUG(
345 dbgs() << "Load after store of same element in same statement\n");
346 OptimizationRemarkMissed R(PassName, "LoadAfterStore",
347 MA->getAccessInstruction());
348 R << "load after store of same element in same statement";
349 R << " (previous stores: " << Stores;
350 R << ", loading: " << AccRel << ")";
351 S->getFunction().getContext().diagnose(R);
352
353 IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
354 }
355
356 Loads = Loads.unite(AccRel);
357
358 continue;
359 }
360
361 // In region statements the order is less clear, eg. the load and store
362 // might be in a boxed loop.
363 if (Stmt->isRegionStmt() && !Loads.is_disjoint(AccRel)) {
364 LLVM_DEBUG(dbgs() << "WRITE in non-affine subregion not supported\n");
365 OptimizationRemarkMissed R(PassName, "StoreInSubregion",
366 MA->getAccessInstruction());
367 R << "store is in a non-affine subregion";
368 S->getFunction().getContext().diagnose(R);
369
370 IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
371 }
372
373 // Do not allow more than one store to the same location.
374 if (!Stores.is_disjoint(AccRel) && !onlySameValueWrites(Stmt)) {
375 LLVM_DEBUG(dbgs() << "WRITE after WRITE to same element\n");
376 OptimizationRemarkMissed R(PassName, "StoreAfterStore",
377 MA->getAccessInstruction());
378 R << "store after store of same element in same statement";
379 R << " (previous stores: " << Stores;
380 R << ", storing: " << AccRel << ")";
381 S->getFunction().getContext().diagnose(R);
382
383 IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
384 }
385
386 Stores = Stores.unite(AccRel);
387 }
388 }
389
addArrayReadAccess(MemoryAccess * MA)390 void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
391 assert(MA->isLatestArrayKind());
392 assert(MA->isRead());
393 ScopStmt *Stmt = MA->getStatement();
394
395 // { DomainRead[] -> Element[] }
396 auto AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
397 AllReads = AllReads.add_map(AccRel);
398
399 if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
400 // { DomainRead[] -> ValInst[] }
401 isl::map LoadValInst = makeValInst(
402 Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());
403
404 // { DomainRead[] -> [Element[] -> DomainRead[]] }
405 isl::map IncludeElement = AccRel.domain_map().curry();
406
407 // { [Element[] -> DomainRead[]] -> ValInst[] }
408 isl::map EltLoadValInst = LoadValInst.apply_domain(IncludeElement);
409
410 AllReadValInst = AllReadValInst.add_map(EltLoadValInst);
411 }
412 }
413
getWrittenValue(MemoryAccess * MA,isl::map AccRel)414 isl::union_map ZoneAlgorithm::getWrittenValue(MemoryAccess *MA,
415 isl::map AccRel) {
416 if (!MA->isMustWrite())
417 return {};
418
419 Value *AccVal = MA->getAccessValue();
420 ScopStmt *Stmt = MA->getStatement();
421 Instruction *AccInst = MA->getAccessInstruction();
422
423 // Write a value to a single element.
424 auto L = MA->isOriginalArrayKind() ? LI->getLoopFor(AccInst->getParent())
425 : Stmt->getSurroundingLoop();
426 if (AccVal &&
427 AccVal->getType() == MA->getLatestScopArrayInfo()->getElementType() &&
428 AccRel.is_single_valued().is_true())
429 return makeNormalizedValInst(AccVal, Stmt, L);
430
431 // memset(_, '0', ) is equivalent to writing the null value to all touched
432 // elements. isMustWrite() ensures that all of an element's bytes are
433 // overwritten.
434 if (auto *Memset = dyn_cast<MemSetInst>(AccInst)) {
435 auto *WrittenConstant = dyn_cast<Constant>(Memset->getValue());
436 Type *Ty = MA->getLatestScopArrayInfo()->getElementType();
437 if (WrittenConstant && WrittenConstant->isZeroValue()) {
438 Constant *Zero = Constant::getNullValue(Ty);
439 return makeNormalizedValInst(Zero, Stmt, L);
440 }
441 }
442
443 return {};
444 }
445
addArrayWriteAccess(MemoryAccess * MA)446 void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
447 assert(MA->isLatestArrayKind());
448 assert(MA->isWrite());
449 auto *Stmt = MA->getStatement();
450
451 // { Domain[] -> Element[] }
452 isl::map AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
453
454 if (MA->isMustWrite())
455 AllMustWrites = AllMustWrites.add_map(AccRel);
456
457 if (MA->isMayWrite())
458 AllMayWrites = AllMayWrites.add_map(AccRel);
459
460 // { Domain[] -> ValInst[] }
461 isl::union_map WriteValInstance = getWrittenValue(MA, AccRel);
462 if (!WriteValInstance)
463 WriteValInstance = makeUnknownForDomain(Stmt);
464
465 // { Domain[] -> [Element[] -> Domain[]] }
466 isl::map IncludeElement = AccRel.domain_map().curry();
467
468 // { [Element[] -> DomainWrite[]] -> ValInst[] }
469 isl::union_map EltWriteValInst =
470 WriteValInstance.apply_domain(IncludeElement);
471
472 AllWriteValInst = AllWriteValInst.unite(EltWriteValInst);
473 }
474
475 /// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a
476 /// use in every instance of @p UseStmt.
477 ///
478 /// @param UseStmt Statement a scalar is used in.
479 /// @param DefStmt Statement a scalar is defined in.
480 ///
481 /// @return { DomainUse[] -> DomainDef[] }
computeUseToDefFlowDependency(ScopStmt * UseStmt,ScopStmt * DefStmt)482 isl::map ZoneAlgorithm::computeUseToDefFlowDependency(ScopStmt *UseStmt,
483 ScopStmt *DefStmt) {
484 // { DomainUse[] -> Scatter[] }
485 isl::map UseScatter = getScatterFor(UseStmt);
486
487 // { Zone[] -> DomainDef[] }
488 isl::map ReachDefZone = getScalarReachingDefinition(DefStmt);
489
490 // { Scatter[] -> DomainDef[] }
491 isl::map ReachDefTimepoints =
492 convertZoneToTimepoints(ReachDefZone, isl::dim::in, false, true);
493
494 // { DomainUse[] -> DomainDef[] }
495 return UseScatter.apply_range(ReachDefTimepoints);
496 }
497
498 /// Return whether @p PHI refers (also transitively through other PHIs) to
499 /// itself.
500 ///
501 /// loop:
502 /// %phi1 = phi [0, %preheader], [%phi1, %loop]
503 /// br i1 %c, label %loop, label %exit
504 ///
505 /// exit:
506 /// %phi2 = phi [%phi1, %bb]
507 ///
508 /// In this example, %phi1 is recursive, but %phi2 is not.
isRecursivePHI(const PHINode * PHI)509 static bool isRecursivePHI(const PHINode *PHI) {
510 SmallVector<const PHINode *, 8> Worklist;
511 SmallPtrSet<const PHINode *, 8> Visited;
512 Worklist.push_back(PHI);
513
514 while (!Worklist.empty()) {
515 const PHINode *Cur = Worklist.pop_back_val();
516
517 if (Visited.count(Cur))
518 continue;
519 Visited.insert(Cur);
520
521 for (const Use &Incoming : Cur->incoming_values()) {
522 Value *IncomingVal = Incoming.get();
523 auto *IncomingPHI = dyn_cast<PHINode>(IncomingVal);
524 if (!IncomingPHI)
525 continue;
526
527 if (IncomingPHI == PHI)
528 return true;
529 Worklist.push_back(IncomingPHI);
530 }
531 }
532 return false;
533 }
534
computePerPHI(const ScopArrayInfo * SAI)535 isl::union_map ZoneAlgorithm::computePerPHI(const ScopArrayInfo *SAI) {
536 // TODO: If the PHI has an incoming block from before the SCoP, it is not
537 // represented in any ScopStmt.
538
539 auto *PHI = cast<PHINode>(SAI->getBasePtr());
540 auto It = PerPHIMaps.find(PHI);
541 if (It != PerPHIMaps.end())
542 return It->second;
543
544 assert(SAI->isPHIKind());
545
546 // { DomainPHIWrite[] -> Scatter[] }
547 isl::union_map PHIWriteScatter = makeEmptyUnionMap();
548
549 // Collect all incoming block timepoints.
550 for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
551 isl::map Scatter = getScatterFor(MA);
552 PHIWriteScatter = PHIWriteScatter.add_map(Scatter);
553 }
554
555 // { DomainPHIRead[] -> Scatter[] }
556 isl::map PHIReadScatter = getScatterFor(S->getPHIRead(SAI));
557
558 // { DomainPHIRead[] -> Scatter[] }
559 isl::map BeforeRead = beforeScatter(PHIReadScatter, true);
560
561 // { Scatter[] }
562 isl::set WriteTimes = singleton(PHIWriteScatter.range(), ScatterSpace);
563
564 // { DomainPHIRead[] -> Scatter[] }
565 isl::map PHIWriteTimes = BeforeRead.intersect_range(WriteTimes);
566
567 // Remove instances outside the context.
568 PHIWriteTimes = PHIWriteTimes.intersect_params(S->getAssumedContext());
569 PHIWriteTimes = subtractParams(PHIWriteTimes, S->getInvalidContext());
570
571 isl::map LastPerPHIWrites = PHIWriteTimes.lexmax();
572
573 // { DomainPHIRead[] -> DomainPHIWrite[] }
574 isl::union_map Result =
575 isl::union_map(LastPerPHIWrites).apply_range(PHIWriteScatter.reverse());
576 assert(!Result.is_single_valued().is_false());
577 assert(!Result.is_injective().is_false());
578
579 PerPHIMaps.insert({PHI, Result});
580 return Result;
581 }
582
makeEmptyUnionSet() const583 isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
584 return isl::union_set::empty(ParamSpace);
585 }
586
makeEmptyUnionMap() const587 isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
588 return isl::union_map::empty(ParamSpace);
589 }
590
collectCompatibleElts()591 void ZoneAlgorithm::collectCompatibleElts() {
592 // First find all the incompatible elements, then take the complement.
593 // We compile the list of compatible (rather than incompatible) elements so
594 // users can intersect with the list, not requiring a subtract operation. It
595 // also allows us to define a 'universe' of all elements and makes it more
596 // explicit in which array elements can be used.
597 isl::union_set AllElts = makeEmptyUnionSet();
598 isl::union_set IncompatibleElts = makeEmptyUnionSet();
599
600 for (auto &Stmt : *S)
601 collectIncompatibleElts(&Stmt, IncompatibleElts, AllElts);
602
603 NumIncompatibleArrays += isl_union_set_n_set(IncompatibleElts.get());
604 CompatibleElts = AllElts.subtract(IncompatibleElts);
605 NumCompatibleArrays += isl_union_set_n_set(CompatibleElts.get());
606 }
607
getScatterFor(ScopStmt * Stmt) const608 isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
609 isl::space ResultSpace =
610 Stmt->getDomainSpace().map_from_domain_and_range(ScatterSpace);
611 return Schedule.extract_map(ResultSpace);
612 }
613
getScatterFor(MemoryAccess * MA) const614 isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
615 return getScatterFor(MA->getStatement());
616 }
617
getScatterFor(isl::union_set Domain) const618 isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
619 return Schedule.intersect_domain(Domain);
620 }
621
getScatterFor(isl::set Domain) const622 isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
623 auto ResultSpace = Domain.get_space().map_from_domain_and_range(ScatterSpace);
624 auto UDomain = isl::union_set(Domain);
625 auto UResult = getScatterFor(std::move(UDomain));
626 auto Result = singleton(std::move(UResult), std::move(ResultSpace));
627 assert(!Result || Result.domain().is_equal(Domain) == isl_bool_true);
628 return Result;
629 }
630
getDomainFor(ScopStmt * Stmt) const631 isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
632 return Stmt->getDomain().remove_redundancies();
633 }
634
getDomainFor(MemoryAccess * MA) const635 isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
636 return getDomainFor(MA->getStatement());
637 }
638
getAccessRelationFor(MemoryAccess * MA) const639 isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
640 auto Domain = getDomainFor(MA);
641 auto AccRel = MA->getLatestAccessRelation();
642 return AccRel.intersect_domain(Domain);
643 }
644
getDefToTarget(ScopStmt * DefStmt,ScopStmt * TargetStmt)645 isl::map ZoneAlgorithm::getDefToTarget(ScopStmt *DefStmt,
646 ScopStmt *TargetStmt) {
647 // No translation required if the definition is already at the target.
648 if (TargetStmt == DefStmt)
649 return isl::map::identity(
650 getDomainFor(TargetStmt).get_space().map_from_set());
651
652 isl::map &Result = DefToTargetCache[std::make_pair(TargetStmt, DefStmt)];
653
654 // This is a shortcut in case the schedule is still the original and
655 // TargetStmt is in the same or nested inside DefStmt's loop. With the
656 // additional assumption that operand trees do not cross DefStmt's loop
657 // header, then TargetStmt's instance shared coordinates are the same as
658 // DefStmt's coordinates. All TargetStmt instances with this prefix share
659 // the same DefStmt instance.
660 // Model:
661 //
662 // for (int i < 0; i < N; i+=1) {
663 // DefStmt:
664 // D = ...;
665 // for (int j < 0; j < N; j+=1) {
666 // TargetStmt:
667 // use(D);
668 // }
669 // }
670 //
671 // Here, the value used in TargetStmt is defined in the corresponding
672 // DefStmt, i.e.
673 //
674 // { DefStmt[i] -> TargetStmt[i,j] }
675 //
676 // In practice, this should cover the majority of cases.
677 if (!Result && S->isOriginalSchedule() &&
678 isInsideLoop(DefStmt->getSurroundingLoop(),
679 TargetStmt->getSurroundingLoop())) {
680 isl::set DefDomain = getDomainFor(DefStmt);
681 isl::set TargetDomain = getDomainFor(TargetStmt);
682 assert(DefDomain.dim(isl::dim::set) <= TargetDomain.dim(isl::dim::set));
683
684 Result = isl::map::from_domain_and_range(DefDomain, TargetDomain);
685 for (unsigned i = 0, DefDims = DefDomain.dim(isl::dim::set); i < DefDims;
686 i += 1)
687 Result = Result.equate(isl::dim::in, i, isl::dim::out, i);
688 }
689
690 if (!Result) {
691 // { DomainDef[] -> DomainTarget[] }
692 Result = computeUseToDefFlowDependency(TargetStmt, DefStmt).reverse();
693 simplify(Result);
694 }
695
696 return Result;
697 }
698
getScalarReachingDefinition(ScopStmt * Stmt)699 isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
700 auto &Result = ScalarReachDefZone[Stmt];
701 if (Result)
702 return Result;
703
704 auto Domain = getDomainFor(Stmt);
705 Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
706 simplify(Result);
707
708 return Result;
709 }
710
getScalarReachingDefinition(isl::set DomainDef)711 isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
712 auto DomId = DomainDef.get_tuple_id();
713 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.get()));
714
715 auto StmtResult = getScalarReachingDefinition(Stmt);
716
717 return StmtResult.intersect_range(DomainDef);
718 }
719
makeUnknownForDomain(ScopStmt * Stmt) const720 isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
721 return ::makeUnknownForDomain(getDomainFor(Stmt));
722 }
723
makeValueId(Value * V)724 isl::id ZoneAlgorithm::makeValueId(Value *V) {
725 if (!V)
726 return nullptr;
727
728 auto &Id = ValueIds[V];
729 if (Id.is_null()) {
730 auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
731 std::string(), UseInstructionNames);
732 Id = isl::id::alloc(IslCtx.get(), Name.c_str(), V);
733 }
734 return Id;
735 }
736
makeValueSpace(Value * V)737 isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
738 auto Result = ParamSpace.set_from_params();
739 return Result.set_tuple_id(isl::dim::set, makeValueId(V));
740 }
741
makeValueSet(Value * V)742 isl::set ZoneAlgorithm::makeValueSet(Value *V) {
743 auto Space = makeValueSpace(V);
744 return isl::set::universe(Space);
745 }
746
makeValInst(Value * Val,ScopStmt * UserStmt,Loop * Scope,bool IsCertain)747 isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
748 bool IsCertain) {
749 // If the definition/write is conditional, the value at the location could
750 // be either the written value or the old value. Since we cannot know which
751 // one, consider the value to be unknown.
752 if (!IsCertain)
753 return makeUnknownForDomain(UserStmt);
754
755 auto DomainUse = getDomainFor(UserStmt);
756 auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
757 switch (VUse.getKind()) {
758 case VirtualUse::Constant:
759 case VirtualUse::Block:
760 case VirtualUse::Hoisted:
761 case VirtualUse::ReadOnly: {
762 // The definition does not depend on the statement which uses it.
763 auto ValSet = makeValueSet(Val);
764 return isl::map::from_domain_and_range(DomainUse, ValSet);
765 }
766
767 case VirtualUse::Synthesizable: {
768 auto *ScevExpr = VUse.getScevExpr();
769 auto UseDomainSpace = DomainUse.get_space();
770
771 // Construct the SCEV space.
772 // TODO: Add only the induction variables referenced in SCEVAddRecExpr
773 // expressions, not just all of them.
774 auto ScevId = isl::manage(isl_id_alloc(
775 UseDomainSpace.get_ctx().get(), nullptr, const_cast<SCEV *>(ScevExpr)));
776
777 auto ScevSpace = UseDomainSpace.drop_dims(isl::dim::set, 0, 0);
778 ScevSpace = ScevSpace.set_tuple_id(isl::dim::set, ScevId);
779
780 // { DomainUse[] -> ScevExpr[] }
781 auto ValInst =
782 isl::map::identity(UseDomainSpace.map_from_domain_and_range(ScevSpace));
783 return ValInst;
784 }
785
786 case VirtualUse::Intra: {
787 // Definition and use is in the same statement. We do not need to compute
788 // a reaching definition.
789
790 // { llvm::Value }
791 auto ValSet = makeValueSet(Val);
792
793 // { UserDomain[] -> llvm::Value }
794 auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);
795
796 // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
797 auto Result = ValInstSet.domain_map().reverse();
798 simplify(Result);
799 return Result;
800 }
801
802 case VirtualUse::Inter: {
803 // The value is defined in a different statement.
804
805 auto *Inst = cast<Instruction>(Val);
806 auto *ValStmt = S->getStmtFor(Inst);
807
808 // If the llvm::Value is defined in a removed Stmt, we cannot derive its
809 // domain. We could use an arbitrary statement, but this could result in
810 // different ValInst[] for the same llvm::Value.
811 if (!ValStmt)
812 return ::makeUnknownForDomain(DomainUse);
813
814 // { DomainUse[] -> DomainDef[] }
815 auto UsedInstance = getDefToTarget(ValStmt, UserStmt).reverse();
816
817 // { llvm::Value }
818 auto ValSet = makeValueSet(Val);
819
820 // { DomainUse[] -> llvm::Value[] }
821 auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);
822
823 // { DomainUse[] -> [DomainDef[] -> llvm::Value] }
824 auto Result = UsedInstance.range_product(ValInstSet);
825
826 simplify(Result);
827 return Result;
828 }
829 }
830 llvm_unreachable("Unhandled use type");
831 }
832
833 /// Remove all computed PHIs out of @p Input and replace by their incoming
834 /// value.
835 ///
836 /// @param Input { [] -> ValInst[] }
837 /// @param ComputedPHIs Set of PHIs that are replaced. Its ValInst must appear
838 /// on the LHS of @p NormalizeMap.
839 /// @param NormalizeMap { ValInst[] -> ValInst[] }
normalizeValInst(isl::union_map Input,const DenseSet<PHINode * > & ComputedPHIs,isl::union_map NormalizeMap)840 static isl::union_map normalizeValInst(isl::union_map Input,
841 const DenseSet<PHINode *> &ComputedPHIs,
842 isl::union_map NormalizeMap) {
843 isl::union_map Result = isl::union_map::empty(Input.get_space());
844 for (isl::map Map : Input.get_map_list()) {
845 isl::space Space = Map.get_space();
846 isl::space RangeSpace = Space.range();
847
848 // Instructions within the SCoP are always wrapped. Non-wrapped tuples
849 // are therefore invariant in the SCoP and don't need normalization.
850 if (!RangeSpace.is_wrapping()) {
851 Result = Result.add_map(Map);
852 continue;
853 }
854
855 auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(
856 RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user()));
857
858 // If no normalization is necessary, then the ValInst stands for itself.
859 if (!ComputedPHIs.count(PHI)) {
860 Result = Result.add_map(Map);
861 continue;
862 }
863
864 // Otherwise, apply the normalization.
865 isl::union_map Mapped = isl::union_map(Map).apply_range(NormalizeMap);
866 Result = Result.unite(Mapped);
867 NumPHINormialization++;
868 }
869 return Result;
870 }
871
makeNormalizedValInst(llvm::Value * Val,ScopStmt * UserStmt,llvm::Loop * Scope,bool IsCertain)872 isl::union_map ZoneAlgorithm::makeNormalizedValInst(llvm::Value *Val,
873 ScopStmt *UserStmt,
874 llvm::Loop *Scope,
875 bool IsCertain) {
876 isl::map ValInst = makeValInst(Val, UserStmt, Scope, IsCertain);
877 isl::union_map Normalized =
878 normalizeValInst(ValInst, ComputedPHIs, NormalizeMap);
879 return Normalized;
880 }
881
isCompatibleAccess(MemoryAccess * MA)882 bool ZoneAlgorithm::isCompatibleAccess(MemoryAccess *MA) {
883 if (!MA)
884 return false;
885 if (!MA->isLatestArrayKind())
886 return false;
887 Instruction *AccInst = MA->getAccessInstruction();
888 return isa<StoreInst>(AccInst) || isa<LoadInst>(AccInst);
889 }
890
isNormalizable(MemoryAccess * MA)891 bool ZoneAlgorithm::isNormalizable(MemoryAccess *MA) {
892 assert(MA->isRead());
893
894 // Exclude ExitPHIs, we are assuming that a normalizable PHI has a READ
895 // MemoryAccess.
896 if (!MA->isOriginalPHIKind())
897 return false;
898
899 // Exclude recursive PHIs, normalizing them would require a transitive
900 // closure.
901 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
902 if (RecursivePHIs.count(PHI))
903 return false;
904
905 // Ensure that each incoming value can be represented by a ValInst[].
906 // We do represent values from statements associated to multiple incoming
907 // value by the PHI itself, but we do not handle this case yet (especially
908 // isNormalized()) when normalizing.
909 const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
910 auto Incomings = S->getPHIIncomings(SAI);
911 for (MemoryAccess *Incoming : Incomings) {
912 if (Incoming->getIncoming().size() != 1)
913 return false;
914 }
915
916 return true;
917 }
918
isNormalized(isl::map Map)919 isl::boolean ZoneAlgorithm::isNormalized(isl::map Map) {
920 isl::space Space = Map.get_space();
921 isl::space RangeSpace = Space.range();
922
923 isl::boolean IsWrapping = RangeSpace.is_wrapping();
924 if (!IsWrapping.is_true())
925 return !IsWrapping;
926 isl::space Unwrapped = RangeSpace.unwrap();
927
928 isl::id OutTupleId = Unwrapped.get_tuple_id(isl::dim::out);
929 if (OutTupleId.is_null())
930 return isl::boolean();
931 auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(OutTupleId.get_user()));
932 if (!PHI)
933 return true;
934
935 isl::id InTupleId = Unwrapped.get_tuple_id(isl::dim::in);
936 if (OutTupleId.is_null())
937 return isl::boolean();
938 auto *IncomingStmt = static_cast<ScopStmt *>(InTupleId.get_user());
939 MemoryAccess *PHIRead = IncomingStmt->lookupPHIReadOf(PHI);
940 if (!isNormalizable(PHIRead))
941 return true;
942
943 return false;
944 }
945
isNormalized(isl::union_map UMap)946 isl::boolean ZoneAlgorithm::isNormalized(isl::union_map UMap) {
947 isl::boolean Result = true;
948 for (isl::map Map : UMap.get_map_list()) {
949 Result = isNormalized(Map);
950 if (Result.is_true())
951 continue;
952 break;
953 }
954 return Result;
955 }
956
computeCommon()957 void ZoneAlgorithm::computeCommon() {
958 AllReads = makeEmptyUnionMap();
959 AllMayWrites = makeEmptyUnionMap();
960 AllMustWrites = makeEmptyUnionMap();
961 AllWriteValInst = makeEmptyUnionMap();
962 AllReadValInst = makeEmptyUnionMap();
963
964 // Default to empty, i.e. no normalization/replacement is taking place. Call
965 // computeNormalizedPHIs() to initialize.
966 NormalizeMap = makeEmptyUnionMap();
967 ComputedPHIs.clear();
968
969 for (auto &Stmt : *S) {
970 for (auto *MA : Stmt) {
971 if (!MA->isLatestArrayKind())
972 continue;
973
974 if (MA->isRead())
975 addArrayReadAccess(MA);
976
977 if (MA->isWrite())
978 addArrayWriteAccess(MA);
979 }
980 }
981
982 // { DomainWrite[] -> Element[] }
983 AllWrites = AllMustWrites.unite(AllMayWrites);
984
985 // { [Element[] -> Zone[]] -> DomainWrite[] }
986 WriteReachDefZone =
987 computeReachingDefinition(Schedule, AllWrites, false, true);
988 simplify(WriteReachDefZone);
989 }
990
computeNormalizedPHIs()991 void ZoneAlgorithm::computeNormalizedPHIs() {
992 // Determine which PHIs can reference themselves. They are excluded from
993 // normalization to avoid problems with transitive closures.
994 for (ScopStmt &Stmt : *S) {
995 for (MemoryAccess *MA : Stmt) {
996 if (!MA->isPHIKind())
997 continue;
998 if (!MA->isRead())
999 continue;
1000
1001 // TODO: Can be more efficient since isRecursivePHI can theoretically
1002 // determine recursiveness for multiple values and/or cache results.
1003 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
1004 if (isRecursivePHI(PHI)) {
1005 NumRecursivePHIs++;
1006 RecursivePHIs.insert(PHI);
1007 }
1008 }
1009 }
1010
1011 // { PHIValInst[] -> IncomingValInst[] }
1012 isl::union_map AllPHIMaps = makeEmptyUnionMap();
1013
1014 // Discover new PHIs and try to normalize them.
1015 DenseSet<PHINode *> AllPHIs;
1016 for (ScopStmt &Stmt : *S) {
1017 for (MemoryAccess *MA : Stmt) {
1018 if (!MA->isOriginalPHIKind())
1019 continue;
1020 if (!MA->isRead())
1021 continue;
1022 if (!isNormalizable(MA))
1023 continue;
1024
1025 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
1026 const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
1027
1028 // { PHIDomain[] -> PHIValInst[] }
1029 isl::map PHIValInst = makeValInst(PHI, &Stmt, Stmt.getSurroundingLoop());
1030
1031 // { IncomingDomain[] -> IncomingValInst[] }
1032 isl::union_map IncomingValInsts = makeEmptyUnionMap();
1033
1034 // Get all incoming values.
1035 for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
1036 ScopStmt *IncomingStmt = MA->getStatement();
1037
1038 auto Incoming = MA->getIncoming();
1039 assert(Incoming.size() == 1 && "The incoming value must be "
1040 "representable by something else than "
1041 "the PHI itself");
1042 Value *IncomingVal = Incoming[0].second;
1043
1044 // { IncomingDomain[] -> IncomingValInst[] }
1045 isl::map IncomingValInst = makeValInst(
1046 IncomingVal, IncomingStmt, IncomingStmt->getSurroundingLoop());
1047
1048 IncomingValInsts = IncomingValInsts.add_map(IncomingValInst);
1049 }
1050
1051 // Determine which instance of the PHI statement corresponds to which
1052 // incoming value.
1053 // { PHIDomain[] -> IncomingDomain[] }
1054 isl::union_map PerPHI = computePerPHI(SAI);
1055
1056 // { PHIValInst[] -> IncomingValInst[] }
1057 isl::union_map PHIMap =
1058 PerPHI.apply_domain(PHIValInst).apply_range(IncomingValInsts);
1059 assert(!PHIMap.is_single_valued().is_false());
1060
1061 // Resolve transitiveness: The incoming value of the newly discovered PHI
1062 // may reference a previously normalized PHI. At the same time, already
1063 // normalized PHIs might be normalized to the new PHI. At the end, none of
1064 // the PHIs may appear on the right-hand-side of the normalization map.
1065 PHIMap = normalizeValInst(PHIMap, AllPHIs, AllPHIMaps);
1066 AllPHIs.insert(PHI);
1067 AllPHIMaps = normalizeValInst(AllPHIMaps, AllPHIs, PHIMap);
1068
1069 AllPHIMaps = AllPHIMaps.unite(PHIMap);
1070 NumNormalizablePHIs++;
1071 }
1072 }
1073 simplify(AllPHIMaps);
1074
1075 // Apply the normalization.
1076 ComputedPHIs = AllPHIs;
1077 NormalizeMap = AllPHIMaps;
1078
1079 assert(!NormalizeMap || isNormalized(NormalizeMap));
1080 }
1081
printAccesses(llvm::raw_ostream & OS,int Indent) const1082 void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
1083 OS.indent(Indent) << "After accesses {\n";
1084 for (auto &Stmt : *S) {
1085 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
1086 for (auto *MA : Stmt)
1087 MA->print(OS);
1088 }
1089 OS.indent(Indent) << "}\n";
1090 }
1091
computeKnownFromMustWrites() const1092 isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
1093 // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
1094 isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());
1095
1096 // { [Element[] -> DomainWrite[]] -> ValInst[] }
1097 isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);
1098
1099 // { [Element[] -> Zone[]] -> ValInst[] }
1100 return EltReachdDef.apply_range(AllKnownWriteValInst);
1101 }
1102
computeKnownFromLoad() const1103 isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
1104 // { Element[] }
1105 isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());
1106
1107 // { Element[] -> Scatter[] }
1108 isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
1109 AllAccessedElts, isl::set::universe(ScatterSpace));
1110
1111 // This assumes there are no "holes" in
1112 // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
1113 // before the first write or that are not written at all.
1114 // { Element[] -> Scatter[] }
1115 isl::union_set NonReachDef =
1116 EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());
1117
1118 // { [Element[] -> Zone[]] -> ReachDefId[] }
1119 isl::union_map DefZone =
1120 WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));
1121
1122 // { [Element[] -> Scatter[]] -> Element[] }
1123 isl::union_map EltZoneElt = EltZoneUniverse.domain_map();
1124
1125 // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
1126 isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);
1127
1128 // { Element[] -> [Zone[] -> ReachDefId[]] }
1129 isl::union_map EltDefZone = DefZone.curry();
1130
1131 // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
1132 isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);
1133
1134 // { [Element[] -> Scatter[]] -> DomainRead[] }
1135 isl::union_map Reads = AllReads.range_product(Schedule).reverse();
1136
1137 // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
1138 isl::union_map ReadsElt = EltZoneElt.range_product(Reads);
1139
1140 // { [Element[] -> Scatter[]] -> ValInst[] }
1141 isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);
1142
1143 // { [Element[] -> ReachDefId[]] -> ValInst[] }
1144 isl::union_map DefidKnown =
1145 DefZoneEltDefId.apply_domain(ScatterKnown).reverse();
1146
1147 // { [Element[] -> Zone[]] -> ValInst[] }
1148 return DefZoneEltDefId.apply_range(DefidKnown);
1149 }
1150
computeKnown(bool FromWrite,bool FromRead) const1151 isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
1152 bool FromRead) const {
1153 isl::union_map Result = makeEmptyUnionMap();
1154
1155 if (FromWrite)
1156 Result = Result.unite(computeKnownFromMustWrites());
1157
1158 if (FromRead)
1159 Result = Result.unite(computeKnownFromLoad());
1160
1161 simplify(Result);
1162 return Result;
1163 }
1164