1 /* 2 * Copyright 2015 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef GrTextBlob_DEFINED 9 #define GrTextBlob_DEFINED 10 11 #include "GrColor.h" 12 #include "GrDrawOpAtlas.h" 13 #include "GrStrikeCache.h" 14 #include "GrTextTarget.h" 15 #include "text/GrTextContext.h" 16 #include "SkDescriptor.h" 17 #include "SkMaskFilterBase.h" 18 #include "SkOpts.h" 19 #include "SkPathEffect.h" 20 #include "SkPoint3.h" 21 #include "SkRectPriv.h" 22 #include "SkStrikeCache.h" 23 #include "SkSurfaceProps.h" 24 #include "SkTInternalLList.h" 25 26 class GrAtlasManager; 27 struct GrDistanceFieldAdjustTable; 28 struct GrGlyph; 29 30 class SkTextBlob; 31 class SkTextBlobRunIterator; 32 33 // With this flag enabled, the GrTextContext will, as a sanity check, regenerate every blob 34 // that comes in to verify the integrity of its cache 35 #define CACHE_SANITY_CHECK 0 36 37 /* 38 * A GrTextBlob contains a fully processed SkTextBlob, suitable for nearly immediate drawing 39 * on the GPU. These are initially created with valid positions and colors, but invalid 40 * texture coordinates. The GrTextBlob itself has a few Blob-wide properties, and also 41 * consists of a number of runs. Runs inside a blob are flushed individually so they can be 42 * reordered. 43 * 44 * The only thing(aside from a memcopy) required to flush a GrTextBlob is to ensure that 45 * the GrAtlas will not evict anything the Blob needs. 46 * 47 * Note: This struct should really be named GrCachedAtasTextBlob, but that is too verbose. 48 * 49 * *WARNING* If you add new fields to this struct, then you may need to to update AssertEqual 50 */ 51 class GrTextBlob : public SkNVRefCnt<GrTextBlob> { 52 struct Run; 53 public: 54 SK_DECLARE_INTERNAL_LLIST_INTERFACE(GrTextBlob); 55 56 class VertexRegenerator; 57 58 void generateFromGlyphRunList(GrStrikeCache* glyphCache, 59 const GrShaderCaps& shaderCaps, 60 const GrTextContext::Options& options, 61 const SkPaint& paint, 62 SkScalerContextFlags scalerContextFlags, 63 const SkMatrix& viewMatrix, 64 const SkSurfaceProps& props, 65 const SkGlyphRunList& glyphRunList, 66 SkGlyphRunListPainter* glyphPainter); 67 68 static sk_sp<GrTextBlob> Make(int glyphCount, int runCount, GrColor color); 69 70 /** 71 * We currently force regeneration of a blob if old or new matrix differ in having perspective. 72 * If we ever change that then the key must contain the perspectiveness when there are distance 73 * fields as perspective distance field use 3 component vertex positions and non-perspective 74 * uses 2. 75 */ 76 struct Key { KeyKey77 Key() { 78 sk_bzero(this, sizeof(Key)); 79 } 80 uint32_t fUniqueID; 81 // Color may affect the gamma of the mask we generate, but in a fairly limited way. 82 // Each color is assigned to on of a fixed number of buckets based on its 83 // luminance. For each luminance bucket there is a "canonical color" that 84 // represents the bucket. This functionality is currently only supported for A8 85 SkColor fCanonicalColor; 86 SkPaint::Style fStyle; 87 SkPixelGeometry fPixelGeometry; 88 bool fHasBlur; 89 uint32_t fScalerContextFlags; 90 91 bool operator==(const Key& other) const { 92 return 0 == memcmp(this, &other, sizeof(Key)); 93 } 94 }; 95 setupKey(const GrTextBlob::Key & key,const SkMaskFilterBase::BlurRec & blurRec,const SkPaint & paint)96 void setupKey(const GrTextBlob::Key& key, 97 const SkMaskFilterBase::BlurRec& blurRec, 98 const SkPaint& paint) { 99 fKey = key; 100 if (key.fHasBlur) { 101 fBlurRec = blurRec; 102 } 103 if (key.fStyle != SkPaint::kFill_Style) { 104 fStrokeInfo.fFrameWidth = paint.getStrokeWidth(); 105 fStrokeInfo.fMiterLimit = paint.getStrokeMiter(); 106 fStrokeInfo.fJoin = paint.getStrokeJoin(); 107 } 108 } 109 GetKey(const GrTextBlob & blob)110 static const Key& GetKey(const GrTextBlob& blob) { 111 return blob.fKey; 112 } 113 Hash(const Key & key)114 static uint32_t Hash(const Key& key) { 115 return SkOpts::hash(&key, sizeof(Key)); 116 } 117 delete(void * p)118 void operator delete(void* p) { 119 ::operator delete(p); 120 } 121 new(size_t)122 void* operator new(size_t) { 123 SK_ABORT("All blobs are created by placement new."); 124 return sk_malloc_throw(0); 125 } 126 new(size_t,void * p)127 void* operator new(size_t, void* p) { return p; } 128 hasDistanceField()129 bool hasDistanceField() const { return SkToBool(fTextType & kHasDistanceField_TextType); } hasBitmap()130 bool hasBitmap() const { return SkToBool(fTextType & kHasBitmap_TextType); } setHasDistanceField()131 void setHasDistanceField() { fTextType |= kHasDistanceField_TextType; } setHasBitmap()132 void setHasBitmap() { fTextType |= kHasBitmap_TextType; } 133 runCountLimit()134 int runCountLimit() const { return fRunCountLimit; } 135 pushBackRun()136 Run* pushBackRun() { 137 SkASSERT(fRunCount < fRunCountLimit); 138 139 // If there is more run, then connect up the subruns. 140 if (fRunCount > 0) { 141 SubRun& newRun = fRuns[fRunCount].fSubRunInfo.back(); 142 SubRun& lastRun = fRuns[fRunCount - 1].fSubRunInfo.back(); 143 newRun.setAsSuccessor(lastRun); 144 } 145 146 fRunCount++; 147 return &fRuns[fRunCount - 1]; 148 } 149 setMinAndMaxScale(SkScalar scaledMax,SkScalar scaledMin)150 void setMinAndMaxScale(SkScalar scaledMax, SkScalar scaledMin) { 151 // we init fMaxMinScale and fMinMaxScale in the constructor 152 fMaxMinScale = SkMaxScalar(scaledMax, fMaxMinScale); 153 fMinMaxScale = SkMinScalar(scaledMin, fMinMaxScale); 154 } 155 GetVertexStride(GrMaskFormat maskFormat,bool hasWCoord)156 static size_t GetVertexStride(GrMaskFormat maskFormat, bool hasWCoord) { 157 switch (maskFormat) { 158 case kA8_GrMaskFormat: 159 return hasWCoord ? kGrayTextDFPerspectiveVASize : kGrayTextVASize; 160 case kARGB_GrMaskFormat: 161 return hasWCoord ? kColorTextPerspectiveVASize : kColorTextVASize; 162 default: 163 SkASSERT(!hasWCoord); 164 return kLCDTextVASize; 165 } 166 } 167 168 bool mustRegenerate(const SkPaint&, bool, const SkMaskFilterBase::BlurRec& blurRec, 169 const SkMatrix& viewMatrix, SkScalar x, SkScalar y); 170 171 void flush(GrTextTarget*, const SkSurfaceProps& props, 172 const GrDistanceFieldAdjustTable* distanceAdjustTable, 173 const SkPaint& paint, const SkPMColor4f& filteredColor, const GrClip& clip, 174 const SkMatrix& viewMatrix, SkScalar x, SkScalar y); 175 computeSubRunBounds(SkRect * outBounds,int runIndex,int subRunIndex,const SkMatrix & viewMatrix,SkScalar x,SkScalar y,bool needsGlyphTransform)176 void computeSubRunBounds(SkRect* outBounds, int runIndex, int subRunIndex, 177 const SkMatrix& viewMatrix, SkScalar x, SkScalar y, 178 bool needsGlyphTransform) { 179 // We don't yet position distance field text on the cpu, so we have to map the vertex bounds 180 // into device space. 181 // We handle vertex bounds differently for distance field text and bitmap text because 182 // the vertex bounds of bitmap text are in device space. If we are flushing multiple runs 183 // from one blob then we are going to pay the price here of mapping the rect for each run. 184 const Run& run = fRuns[runIndex]; 185 const SubRun& subRun = run.fSubRunInfo[subRunIndex]; 186 *outBounds = subRun.vertexBounds(); 187 if (needsGlyphTransform) { 188 // Distance field text is positioned with the (X,Y) as part of the glyph position, 189 // and currently the view matrix is applied on the GPU 190 outBounds->offset(x - fInitialX, y - fInitialY); 191 viewMatrix.mapRect(outBounds); 192 } else { 193 // Bitmap text is fully positioned on the CPU, and offset by an (X,Y) translate in 194 // device space. 195 SkMatrix boundsMatrix = fInitialViewMatrixInverse; 196 197 boundsMatrix.postTranslate(-fInitialX, -fInitialY); 198 199 boundsMatrix.postTranslate(x, y); 200 201 boundsMatrix.postConcat(viewMatrix); 202 boundsMatrix.mapRect(outBounds); 203 204 // Due to floating point numerical inaccuracies, we have to round out here 205 outBounds->roundOut(outBounds); 206 } 207 } 208 209 // position + local coord 210 static const size_t kColorTextVASize = sizeof(SkPoint) + sizeof(SkIPoint16); 211 static const size_t kColorTextPerspectiveVASize = sizeof(SkPoint3) + sizeof(SkIPoint16); 212 static const size_t kGrayTextVASize = sizeof(SkPoint) + sizeof(GrColor) + sizeof(SkIPoint16); 213 static const size_t kGrayTextDFPerspectiveVASize = 214 sizeof(SkPoint3) + sizeof(GrColor) + sizeof(SkIPoint16); 215 static const size_t kLCDTextVASize = kGrayTextVASize; 216 static const size_t kMaxVASize = kGrayTextDFPerspectiveVASize; 217 static const int kVerticesPerGlyph = 4; 218 219 static void AssertEqual(const GrTextBlob&, const GrTextBlob&); 220 221 // The color here is the GrPaint color, and it is used to determine whether we 222 // have to regenerate LCD text blobs. 223 // We use this color vs the SkPaint color because it has the colorfilter applied. initReusableBlob(SkColor luminanceColor,const SkMatrix & viewMatrix,SkScalar x,SkScalar y)224 void initReusableBlob(SkColor luminanceColor, const SkMatrix& viewMatrix, 225 SkScalar x, SkScalar y) { 226 fLuminanceColor = luminanceColor; 227 this->setupViewMatrix(viewMatrix, x, y); 228 } 229 initThrowawayBlob(const SkMatrix & viewMatrix,SkScalar x,SkScalar y)230 void initThrowawayBlob(const SkMatrix& viewMatrix, SkScalar x, SkScalar y) { 231 this->setupViewMatrix(viewMatrix, x, y); 232 } 233 key()234 const Key& key() const { return fKey; } 235 size()236 size_t size() const { return fSize; } 237 ~GrTextBlob()238 ~GrTextBlob() { 239 for (int i = 0; i < fRunCountLimit; i++) { 240 fRuns[i].~Run(); 241 } 242 } 243 244 //////////////////////////////////////////////////////////////////////////////////////////////// 245 // Internal test methods 246 std::unique_ptr<GrDrawOp> test_makeOp(int glyphCount, uint16_t run, uint16_t subRun, 247 const SkMatrix& viewMatrix, SkScalar x, SkScalar y, 248 const SkPaint& paint, const SkPMColor4f& filteredColor, 249 const SkSurfaceProps&, const GrDistanceFieldAdjustTable*, 250 GrTextTarget*); 251 252 private: GrTextBlob()253 GrTextBlob() 254 : fMaxMinScale(-SK_ScalarMax) 255 , fMinMaxScale(SK_ScalarMax) 256 , fTextType(0) {} 257 258 // This function will only be called when we are generating a blob from scratch. We record the 259 // initial view matrix and initial offsets(x,y), because we record vertex bounds relative to 260 // these numbers. When blobs are reused with new matrices, we need to return to model space so 261 // we can update the vertex bounds appropriately. setupViewMatrix(const SkMatrix & viewMatrix,SkScalar x,SkScalar y)262 void setupViewMatrix(const SkMatrix& viewMatrix, SkScalar x, SkScalar y) { 263 fInitialViewMatrix = viewMatrix; 264 if (!viewMatrix.invert(&fInitialViewMatrixInverse)) { 265 fInitialViewMatrixInverse = SkMatrix::I(); 266 } 267 fInitialX = x; 268 fInitialY = y; 269 270 // make sure all initial subruns have the correct VM and X/Y applied 271 for (int i = 0; i < fRunCountLimit; i++) { 272 fRuns[i].fSubRunInfo[0].init(fInitialViewMatrix, x, y); 273 } 274 } 275 276 class SubRun { 277 public: SubRun(Run * run,const SkAutoDescriptor & desc,GrColor color)278 SubRun(Run* run, const SkAutoDescriptor& desc, GrColor color) 279 : fColor{color} 280 , fRun{run} 281 , fDesc{desc} {} 282 283 // When used with emplace_back, this constructs a SubRun from the last SubRun in an array. 284 //SubRun(SkSTArray<1, SubRun>* subRunList) 285 // : fColor{subRunList->fromBack(1).fColor} { } 286 287 void appendGlyph(GrGlyph* glyph, SkRect dstRect); 288 289 // TODO when this object is more internal, drop the privacy resetBulkUseToken()290 void resetBulkUseToken() { fBulkUseToken.reset(); } bulkUseToken()291 GrDrawOpAtlas::BulkUseTokenUpdater* bulkUseToken() { return &fBulkUseToken; } setStrike(sk_sp<GrTextStrike> strike)292 void setStrike(sk_sp<GrTextStrike> strike) { fStrike = std::move(strike); } strike()293 GrTextStrike* strike() const { return fStrike.get(); } refStrike()294 sk_sp<GrTextStrike> refStrike() const { return fStrike; } 295 setAtlasGeneration(uint64_t atlasGeneration)296 void setAtlasGeneration(uint64_t atlasGeneration) { fAtlasGeneration = atlasGeneration;} atlasGeneration()297 uint64_t atlasGeneration() const { return fAtlasGeneration; } 298 byteCount()299 size_t byteCount() const { return fVertexEndIndex - fVertexStartIndex; } vertexStartIndex()300 size_t vertexStartIndex() const { return fVertexStartIndex; } vertexEndIndex()301 size_t vertexEndIndex() const { return fVertexEndIndex; } 302 glyphCount()303 uint32_t glyphCount() const { return fGlyphEndIndex - fGlyphStartIndex; } glyphStartIndex()304 uint32_t glyphStartIndex() const { return fGlyphStartIndex; } glyphEndIndex()305 uint32_t glyphEndIndex() const { return fGlyphEndIndex; } setColor(GrColor color)306 void setColor(GrColor color) { fColor = color; } color()307 GrColor color() const { return fColor; } setMaskFormat(GrMaskFormat format)308 void setMaskFormat(GrMaskFormat format) { fMaskFormat = format; } maskFormat()309 GrMaskFormat maskFormat() const { return fMaskFormat; } 310 setAsSuccessor(const SubRun & prev)311 void setAsSuccessor(const SubRun& prev) { 312 fGlyphStartIndex = prev.glyphEndIndex(); 313 fGlyphEndIndex = fGlyphStartIndex; 314 315 fVertexStartIndex = prev.vertexEndIndex(); 316 fVertexEndIndex = fVertexStartIndex; 317 318 // copy over viewmatrix settings 319 this->init(prev.fCurrentViewMatrix, prev.fX, prev.fY); 320 } 321 vertexBounds()322 const SkRect& vertexBounds() const { return fVertexBounds; } joinGlyphBounds(const SkRect & glyphBounds)323 void joinGlyphBounds(const SkRect& glyphBounds) { 324 fVertexBounds.joinNonEmptyArg(glyphBounds); 325 } 326 init(const SkMatrix & viewMatrix,SkScalar x,SkScalar y)327 void init(const SkMatrix& viewMatrix, SkScalar x, SkScalar y) { 328 fCurrentViewMatrix = viewMatrix; 329 fX = x; 330 fY = y; 331 } 332 333 // This function assumes the translation will be applied before it is called again 334 void computeTranslation(const SkMatrix& viewMatrix, SkScalar x, SkScalar y, 335 SkScalar* transX, SkScalar* transY); 336 337 // df properties setDrawAsDistanceFields()338 void setDrawAsDistanceFields() { fFlags.drawAsSdf = true; } drawAsDistanceFields()339 bool drawAsDistanceFields() const { return fFlags.drawAsSdf; } setUseLCDText(bool useLCDText)340 void setUseLCDText(bool useLCDText) { fFlags.useLCDText = useLCDText; } hasUseLCDText()341 bool hasUseLCDText() const { return fFlags.useLCDText; } setAntiAliased(bool antiAliased)342 void setAntiAliased(bool antiAliased) { fFlags.antiAliased = antiAliased; } isAntiAliased()343 bool isAntiAliased() const { return fFlags.antiAliased; } setHasWCoord(bool hasW)344 void setHasWCoord(bool hasW) { fFlags.hasWCoord = hasW; } hasWCoord()345 bool hasWCoord() const { return fFlags.hasWCoord; } setNeedsTransform(bool needsTransform)346 void setNeedsTransform(bool needsTransform) { fFlags.needsTransform = needsTransform; } needsTransform()347 bool needsTransform() const { return fFlags.needsTransform; } setFallback()348 void setFallback() { fFlags.argbFallback = true; } isFallback()349 bool isFallback() { return fFlags.argbFallback; } 350 desc()351 const SkDescriptor* desc() const { return fDesc.getDesc(); } 352 353 private: 354 GrDrawOpAtlas::BulkUseTokenUpdater fBulkUseToken; 355 sk_sp<GrTextStrike> fStrike; 356 SkMatrix fCurrentViewMatrix; 357 SkRect fVertexBounds = SkRectPriv::MakeLargestInverted(); 358 uint64_t fAtlasGeneration{GrDrawOpAtlas::kInvalidAtlasGeneration}; 359 size_t fVertexStartIndex{0}; 360 size_t fVertexEndIndex{0}; 361 uint32_t fGlyphStartIndex{0}; 362 uint32_t fGlyphEndIndex{0}; 363 SkScalar fX; 364 SkScalar fY; 365 GrColor fColor{GrColor_ILLEGAL}; 366 GrMaskFormat fMaskFormat{kA8_GrMaskFormat}; 367 struct { 368 bool drawAsSdf:1; 369 bool useLCDText:1; 370 bool antiAliased:1; 371 bool hasWCoord:1; 372 bool needsTransform:1; 373 bool argbFallback:1; 374 } fFlags{false, false, false, false, false, false}; 375 Run* const fRun; 376 const SkAutoDescriptor& fDesc; 377 }; // SubRunInfo 378 379 /* 380 * Each Run inside of the blob can have its texture coordinates regenerated if required. 381 * To determine if regeneration is necessary, fAtlasGeneration is used. If there have been 382 * any evictions inside of the atlas, then we will simply regenerate Runs. We could track 383 * this at a more fine grained level, but its not clear if this is worth it, as evictions 384 * should be fairly rare. 385 * 386 * One additional point, each run can contain glyphs with any of the three mask formats. 387 * We call these SubRuns. Because a subrun must be a contiguous range, we have to create 388 * a new subrun each time the mask format changes in a run. In theory, a run can have as 389 * many SubRuns as it has glyphs, ie if a run alternates between color emoji and A8. In 390 * practice, the vast majority of runs have only a single subrun. 391 * 392 * Finally, for runs where the entire thing is too large for the GrTextContext to 393 * handle, we have a bit to mark the run as flushable via rendering as paths or as scaled 394 * glyphs. It would be a bit expensive to figure out ahead of time whether or not a run 395 * can flush in this manner, so we always allocate vertices for the run, regardless of 396 * whether or not it is too large. The benefit of this strategy is that we can always reuse 397 * a blob allocation regardless of viewmatrix changes. We could store positions for these 398 * glyphs, however, it's not clear if this is a win because we'd still have to either go to the 399 * glyph cache to get the path at flush time, or hold onto the path in the cache, which 400 * would greatly increase the memory of these cached items. 401 */ 402 struct Run { RunRun403 explicit Run(GrTextBlob* blob, GrColor color) 404 : fBlob{blob}, fColor{color} { 405 // To ensure we always have one subrun, we push back a fresh run here 406 fSubRunInfo.emplace_back(this, fDescriptor, color); 407 } 408 409 // sets the last subrun of runIndex to use w values setSubRunHasWRun410 void setSubRunHasW(bool hasWCoord) { 411 SubRun& subRun = this->fSubRunInfo.back(); 412 subRun.setHasWCoord(hasWCoord); 413 } 414 415 // inits the override descriptor on the current run. All following subruns must use this 416 // descriptor initARGBFallbackRun417 SubRun* initARGBFallback() { 418 fARGBFallbackDescriptor.reset(new SkAutoDescriptor{}); 419 // Push back a new subrun to fill and set the override descriptor 420 SubRun* subRun = this->pushBackSubRun(*fARGBFallbackDescriptor, fColor); 421 subRun->setMaskFormat(kARGB_GrMaskFormat); 422 subRun->setFallback(); 423 return subRun; 424 } 425 426 // Appends a glyph to the blob as a path only. 427 void appendPathGlyph( 428 const SkPath& path, SkPoint position, SkScalar scale, bool preTransformed); 429 430 // Append a glyph to the sub run taking care to switch the glyph if needed. 431 void switchSubRunIfNeededAndAppendGlyph(GrGlyph* glyph, 432 const sk_sp<GrTextStrike>& strike, 433 const SkRect& destRect, 434 bool needsTransform); 435 436 // Used when the glyph in the cache has the CTM already applied, therefore no transform 437 // is needed during rendering. 438 void appendDeviceSpaceGlyph(const sk_sp<GrTextStrike>& strike, 439 const SkGlyph& skGlyph, 440 SkPoint origin); 441 442 // The glyph is oriented upright in the cache and needs to be transformed onto the screen. 443 void appendSourceSpaceGlyph(const sk_sp<GrTextStrike>& strike, 444 const SkGlyph& skGlyph, 445 SkPoint origin, 446 SkScalar textScale); 447 448 void setupFont(const SkPaint& skPaint, 449 const SkFont& skFont, 450 const SkDescriptor& skCache); 451 setRunFontAntiAliasRun452 void setRunFontAntiAlias(bool aa) { 453 fAntiAlias = aa; 454 } 455 456 // sets the last subrun of runIndex to use distance field text setSubRunHasDistanceFieldsRun457 void setSubRunHasDistanceFields(bool hasLCD, bool isAntiAlias, bool hasWCoord) { 458 SubRun& subRun = fSubRunInfo.back(); 459 subRun.setUseLCDText(hasLCD); 460 subRun.setAntiAliased(isAntiAlias); 461 subRun.setDrawAsDistanceFields(); 462 subRun.setHasWCoord(hasWCoord); 463 } 464 pushBackSubRunRun465 SubRun* pushBackSubRun(const SkAutoDescriptor& desc, GrColor color) { 466 // Forward glyph / vertex information to seed the new sub run 467 SubRun& newSubRun = fSubRunInfo.emplace_back(this, desc, color); 468 469 const SubRun& prevSubRun = fSubRunInfo.fromBack(1); 470 471 // Forward glyph / vertex information to seed the new sub run 472 newSubRun.setAsSuccessor(prevSubRun); 473 return &newSubRun; 474 } 475 476 // Any glyphs that can't be rendered with the base or override descriptor 477 // are rendered as paths 478 struct PathGlyph { PathGlyphRun::PathGlyph479 PathGlyph(const SkPath& path, SkScalar x, SkScalar y, SkScalar scale, bool preXformed) 480 : fPath(path) 481 , fX(x) 482 , fY(y) 483 , fScale(scale) 484 , fPreTransformed(preXformed) {} 485 SkPath fPath; 486 SkScalar fX; 487 SkScalar fY; 488 SkScalar fScale; 489 bool fPreTransformed; 490 }; 491 492 493 sk_sp<SkTypeface> fTypeface; 494 SkSTArray<1, SubRun> fSubRunInfo; 495 SkAutoDescriptor fDescriptor; 496 497 // Effects from the paint that are used to build a SkScalerContext. 498 sk_sp<SkPathEffect> fPathEffect; 499 sk_sp<SkMaskFilter> fMaskFilter; 500 501 // Distance field text cannot draw coloremoji, and so has to fall back. However, 502 // though the distance field text and the coloremoji may share the same run, they 503 // will have different descriptors. If fARGBFallbackDescriptor is non-nullptr, then it 504 // will be used in place of the run's descriptor to regen texture coords 505 std::unique_ptr<SkAutoDescriptor> fARGBFallbackDescriptor; 506 507 SkTArray<PathGlyph> fPathGlyphs; 508 509 bool fAntiAlias{false}; // needed mainly for rendering paths 510 bool fInitialized{false}; 511 512 GrTextBlob* const fBlob; 513 GrColor fColor; 514 }; // Run 515 516 inline std::unique_ptr<GrAtlasTextOp> makeOp( 517 const SubRun& info, int glyphCount, uint16_t run, uint16_t subRun, 518 const SkMatrix& viewMatrix, SkScalar x, SkScalar y, const SkIRect& clipRect, 519 const SkPaint& paint, const SkPMColor4f& filteredColor, const SkSurfaceProps&, 520 const GrDistanceFieldAdjustTable*, GrTextTarget*); 521 522 struct StrokeInfo { 523 SkScalar fFrameWidth; 524 SkScalar fMiterLimit; 525 SkPaint::Join fJoin; 526 }; 527 528 enum TextType { 529 kHasDistanceField_TextType = 0x1, 530 kHasBitmap_TextType = 0x2, 531 }; 532 533 // all glyph / vertex offsets are into these pools. 534 char* fVertices; 535 GrGlyph** fGlyphs; 536 Run* fRuns; 537 SkMaskFilterBase::BlurRec fBlurRec; 538 StrokeInfo fStrokeInfo; 539 Key fKey; 540 SkMatrix fInitialViewMatrix; 541 SkMatrix fInitialViewMatrixInverse; 542 size_t fSize; 543 SkColor fLuminanceColor; 544 SkScalar fInitialX; 545 SkScalar fInitialY; 546 547 // We can reuse distance field text, but only if the new viewmatrix would not result in 548 // a mip change. Because there can be multiple runs in a blob, we track the overall 549 // maximum minimum scale, and minimum maximum scale, we can support before we need to regen 550 SkScalar fMaxMinScale; 551 SkScalar fMinMaxScale; 552 int fRunCount{0}; 553 int fRunCountLimit; 554 uint8_t fTextType; 555 }; 556 557 /** 558 * Used to produce vertices for a subrun of a blob. The vertices are cached in the blob itself. 559 * This is invoked each time a sub run is drawn. It regenerates the vertex data as required either 560 * because of changes to the atlas or because of different draw parameters (e.g. color change). In 561 * rare cases the draw may have to interrupted and flushed in the middle of the sub run in order to 562 * free up atlas space. Thus, this generator is stateful and should be invoked in a loop until the 563 * entire sub run has been completed. 564 */ 565 class GrTextBlob::VertexRegenerator { 566 public: 567 /** 568 * Consecutive VertexRegenerators often use the same SkGlyphCache. If the same instance of 569 * SkAutoGlyphCache is reused then it can save the cost of multiple detach/attach operations of 570 * SkGlyphCache. 571 */ 572 VertexRegenerator(GrResourceProvider*, GrTextBlob*, int runIdx, int subRunIdx, 573 const SkMatrix& viewMatrix, SkScalar x, SkScalar y, GrColor color, 574 GrDeferredUploadTarget*, GrStrikeCache*, GrAtlasManager*, 575 SkExclusiveStrikePtr*); 576 577 struct Result { 578 /** 579 * Was regenerate() able to draw all the glyphs from the sub run? If not flush all glyph 580 * draws and call regenerate() again. 581 */ 582 bool fFinished = true; 583 584 /** 585 * How many glyphs were regenerated. Will be equal to the sub run's glyph count if 586 * fType is kFinished. 587 */ 588 int fGlyphsRegenerated = 0; 589 590 /** 591 * Pointer where the caller finds the first regenerated vertex. 592 */ 593 const char* fFirstVertex; 594 }; 595 596 bool regenerate(Result*); 597 598 private: 599 bool doRegen(Result*, bool regenPos, bool regenCol, bool regenTexCoords, bool regenGlyphs); 600 601 GrResourceProvider* fResourceProvider; 602 const SkMatrix& fViewMatrix; 603 GrTextBlob* fBlob; 604 GrDeferredUploadTarget* fUploadTarget; 605 GrStrikeCache* fGlyphCache; 606 GrAtlasManager* fFullAtlasManager; 607 SkExclusiveStrikePtr* fLazyCache; 608 Run* fRun; 609 SubRun* fSubRun; 610 GrColor fColor; 611 SkScalar fTransX; 612 SkScalar fTransY; 613 614 uint32_t fRegenFlags = 0; 615 int fCurrGlyph = 0; 616 bool fBrokenRun = false; 617 }; 618 619 #endif // GrTextBlob_DEFINED 620