1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <assert.h>
18 #include <dirent.h>
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <inttypes.h>
22 #include <memory.h>
23 #include <stdint.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/capability.h>
28 #include <sys/epoll.h>
29 #include <sys/inotify.h>
30 #include <sys/ioctl.h>
31 #include <sys/limits.h>
32 #include <sys/stat.h>
33 #include <sys/sysmacros.h>
34 #include <unistd.h>
35
36 #define LOG_TAG "EventHub"
37
38 // #define LOG_NDEBUG 0
39 #include <android-base/file.h>
40 #include <android-base/stringprintf.h>
41 #include <android-base/strings.h>
42 #include <cutils/properties.h>
43 #include <input/KeyCharacterMap.h>
44 #include <input/KeyLayoutMap.h>
45 #include <input/VirtualKeyMap.h>
46 #include <openssl/sha.h>
47 #include <statslog.h>
48 #include <utils/Errors.h>
49 #include <utils/Log.h>
50 #include <utils/Timers.h>
51
52 #include <filesystem>
53 #include <regex>
54
55 #include "EventHub.h"
56
57 #define INDENT " "
58 #define INDENT2 " "
59 #define INDENT3 " "
60
61 using android::base::StringPrintf;
62 using namespace android::flag_operators;
63
64 namespace android {
65
66 static const char* DEVICE_PATH = "/dev/input";
67 // v4l2 devices go directly into /dev
68 static const char* VIDEO_DEVICE_PATH = "/dev";
69
70 static constexpr size_t OBFUSCATED_LENGTH = 8;
71
72 static constexpr int32_t FF_STRONG_MAGNITUDE_CHANNEL_IDX = 0;
73 static constexpr int32_t FF_WEAK_MAGNITUDE_CHANNEL_IDX = 1;
74
75 // Mapping for input battery class node IDs lookup.
76 // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
77 static const std::unordered_map<std::string, InputBatteryClass> BATTERY_CLASSES =
78 {{"capacity", InputBatteryClass::CAPACITY},
79 {"capacity_level", InputBatteryClass::CAPACITY_LEVEL},
80 {"status", InputBatteryClass::STATUS}};
81
82 // Mapping for input battery class node names lookup.
83 // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
84 static const std::unordered_map<InputBatteryClass, std::string> BATTERY_NODES =
85 {{InputBatteryClass::CAPACITY, "capacity"},
86 {InputBatteryClass::CAPACITY_LEVEL, "capacity_level"},
87 {InputBatteryClass::STATUS, "status"}};
88
89 // must be kept in sync with definitions in kernel /drivers/power/supply/power_supply_sysfs.c
90 static const std::unordered_map<std::string, int32_t> BATTERY_STATUS =
91 {{"Unknown", BATTERY_STATUS_UNKNOWN},
92 {"Charging", BATTERY_STATUS_CHARGING},
93 {"Discharging", BATTERY_STATUS_DISCHARGING},
94 {"Not charging", BATTERY_STATUS_NOT_CHARGING},
95 {"Full", BATTERY_STATUS_FULL}};
96
97 // Mapping taken from
98 // https://gitlab.freedesktop.org/upower/upower/-/blob/master/src/linux/up-device-supply.c#L484
99 static const std::unordered_map<std::string, int32_t> BATTERY_LEVEL = {{"Critical", 5},
100 {"Low", 10},
101 {"Normal", 55},
102 {"High", 70},
103 {"Full", 100},
104 {"Unknown", 50}};
105
106 // Mapping for input led class node names lookup.
107 // https://www.kernel.org/doc/html/latest/leds/leds-class.html
108 static const std::unordered_map<std::string, InputLightClass> LIGHT_CLASSES =
109 {{"red", InputLightClass::RED},
110 {"green", InputLightClass::GREEN},
111 {"blue", InputLightClass::BLUE},
112 {"global", InputLightClass::GLOBAL},
113 {"brightness", InputLightClass::BRIGHTNESS},
114 {"multi_index", InputLightClass::MULTI_INDEX},
115 {"multi_intensity", InputLightClass::MULTI_INTENSITY},
116 {"max_brightness", InputLightClass::MAX_BRIGHTNESS}};
117
118 // Mapping for input multicolor led class node names.
119 // https://www.kernel.org/doc/html/latest/leds/leds-class-multicolor.html
120 static const std::unordered_map<InputLightClass, std::string> LIGHT_NODES =
121 {{InputLightClass::BRIGHTNESS, "brightness"},
122 {InputLightClass::MULTI_INDEX, "multi_index"},
123 {InputLightClass::MULTI_INTENSITY, "multi_intensity"}};
124
125 // Mapping for light color name and the light color
126 const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED},
127 {"green", LightColor::GREEN},
128 {"blue", LightColor::BLUE}};
129
toString(bool value)130 static inline const char* toString(bool value) {
131 return value ? "true" : "false";
132 }
133
sha1(const std::string & in)134 static std::string sha1(const std::string& in) {
135 SHA_CTX ctx;
136 SHA1_Init(&ctx);
137 SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.c_str()), in.size());
138 u_char digest[SHA_DIGEST_LENGTH];
139 SHA1_Final(digest, &ctx);
140
141 std::string out;
142 for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
143 out += StringPrintf("%02x", digest[i]);
144 }
145 return out;
146 }
147
148 /**
149 * Return true if name matches "v4l-touch*"
150 */
isV4lTouchNode(std::string name)151 static bool isV4lTouchNode(std::string name) {
152 return name.find("v4l-touch") != std::string::npos;
153 }
154
155 /**
156 * Returns true if V4L devices should be scanned.
157 *
158 * The system property ro.input.video_enabled can be used to control whether
159 * EventHub scans and opens V4L devices. As V4L does not support multiple
160 * clients, EventHub effectively blocks access to these devices when it opens
161 * them.
162 *
163 * Setting this to "false" would prevent any video devices from being discovered and
164 * associated with input devices.
165 *
166 * This property can be used as follows:
167 * 1. To turn off features that are dependent on video device presence.
168 * 2. During testing and development, to allow other clients to read video devices
169 * directly from /dev.
170 */
isV4lScanningEnabled()171 static bool isV4lScanningEnabled() {
172 return property_get_bool("ro.input.video_enabled", true /* default_value */);
173 }
174
processEventTimestamp(const struct input_event & event)175 static nsecs_t processEventTimestamp(const struct input_event& event) {
176 // Use the time specified in the event instead of the current time
177 // so that downstream code can get more accurate estimates of
178 // event dispatch latency from the time the event is enqueued onto
179 // the evdev client buffer.
180 //
181 // The event's timestamp fortuitously uses the same monotonic clock
182 // time base as the rest of Android. The kernel event device driver
183 // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
184 // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
185 // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
186 // system call that also queries ktime_get_ts().
187
188 const nsecs_t inputEventTime = seconds_to_nanoseconds(event.time.tv_sec) +
189 microseconds_to_nanoseconds(event.time.tv_usec);
190 return inputEventTime;
191 }
192
193 /**
194 * Returns the sysfs root path of the input device
195 *
196 */
getSysfsRootPath(const char * devicePath)197 static std::optional<std::filesystem::path> getSysfsRootPath(const char* devicePath) {
198 std::error_code errorCode;
199
200 // Stat the device path to get the major and minor number of the character file
201 struct stat statbuf;
202 if (stat(devicePath, &statbuf) == -1) {
203 ALOGE("Could not stat device %s due to error: %s.", devicePath, std::strerror(errno));
204 return std::nullopt;
205 }
206
207 unsigned int major_num = major(statbuf.st_rdev);
208 unsigned int minor_num = minor(statbuf.st_rdev);
209
210 // Realpath "/sys/dev/char/{major}:{minor}" to get the sysfs path to the input event
211 auto sysfsPath = std::filesystem::path("/sys/dev/char/");
212 sysfsPath /= std::to_string(major_num) + ":" + std::to_string(minor_num);
213 sysfsPath = std::filesystem::canonical(sysfsPath, errorCode);
214
215 // Make sure nothing went wrong in call to canonical()
216 if (errorCode) {
217 ALOGW("Could not run filesystem::canonical() due to error %d : %s.", errorCode.value(),
218 errorCode.message().c_str());
219 return std::nullopt;
220 }
221
222 // Continue to go up a directory until we reach a directory named "input"
223 while (sysfsPath != "/" && sysfsPath.filename() != "input") {
224 sysfsPath = sysfsPath.parent_path();
225 }
226
227 // Then go up one more and you will be at the sysfs root of the device
228 sysfsPath = sysfsPath.parent_path();
229
230 // Make sure we didn't reach root path and that directory actually exists
231 if (sysfsPath == "/" || !std::filesystem::exists(sysfsPath, errorCode)) {
232 if (errorCode) {
233 ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
234 errorCode.message().c_str());
235 }
236
237 // Not found
238 return std::nullopt;
239 }
240
241 return sysfsPath;
242 }
243
244 /**
245 * Returns the list of files under a specified path.
246 */
allFilesInPath(const std::filesystem::path & path)247 static std::vector<std::filesystem::path> allFilesInPath(const std::filesystem::path& path) {
248 std::vector<std::filesystem::path> nodes;
249 std::error_code errorCode;
250 auto iter = std::filesystem::directory_iterator(path, errorCode);
251 while (!errorCode && iter != std::filesystem::directory_iterator()) {
252 nodes.push_back(iter->path());
253 iter++;
254 }
255 return nodes;
256 }
257
258 /**
259 * Returns the list of files under a specified directory in a sysfs path.
260 * Example:
261 * findSysfsNodes(sysfsRootPath, SysfsClass::LEDS) will return all led nodes under "leds" directory
262 * in the sysfs path.
263 */
findSysfsNodes(const std::filesystem::path & sysfsRoot,SysfsClass clazz)264 static std::vector<std::filesystem::path> findSysfsNodes(const std::filesystem::path& sysfsRoot,
265 SysfsClass clazz) {
266 std::string nodeStr = NamedEnum::string(clazz);
267 std::for_each(nodeStr.begin(), nodeStr.end(),
268 [](char& c) { c = std::tolower(static_cast<unsigned char>(c)); });
269 std::vector<std::filesystem::path> nodes;
270 for (auto path = sysfsRoot; path != "/" && nodes.empty(); path = path.parent_path()) {
271 nodes = allFilesInPath(path / nodeStr);
272 }
273 return nodes;
274 }
275
getColorIndexArray(std::filesystem::path path)276 static std::optional<std::array<LightColor, COLOR_NUM>> getColorIndexArray(
277 std::filesystem::path path) {
278 std::string indexStr;
279 if (!base::ReadFileToString(path, &indexStr)) {
280 return std::nullopt;
281 }
282
283 // Parse the multi color LED index file, refer to kernel docs
284 // leds/leds-class-multicolor.html
285 std::regex indexPattern("(red|green|blue)\\s(red|green|blue)\\s(red|green|blue)[\\n]");
286 std::smatch results;
287 std::array<LightColor, COLOR_NUM> colors;
288 if (!std::regex_match(indexStr, results, indexPattern)) {
289 return std::nullopt;
290 }
291
292 for (size_t i = 1; i < results.size(); i++) {
293 const auto it = LIGHT_COLORS.find(results[i].str());
294 if (it != LIGHT_COLORS.end()) {
295 // intensities.emplace(it->second, 0);
296 colors[i - 1] = it->second;
297 }
298 }
299 return colors;
300 }
301
302 // --- Global Functions ---
303
getAbsAxisUsage(int32_t axis,Flags<InputDeviceClass> deviceClasses)304 Flags<InputDeviceClass> getAbsAxisUsage(int32_t axis, Flags<InputDeviceClass> deviceClasses) {
305 // Touch devices get dibs on touch-related axes.
306 if (deviceClasses.test(InputDeviceClass::TOUCH)) {
307 switch (axis) {
308 case ABS_X:
309 case ABS_Y:
310 case ABS_PRESSURE:
311 case ABS_TOOL_WIDTH:
312 case ABS_DISTANCE:
313 case ABS_TILT_X:
314 case ABS_TILT_Y:
315 case ABS_MT_SLOT:
316 case ABS_MT_TOUCH_MAJOR:
317 case ABS_MT_TOUCH_MINOR:
318 case ABS_MT_WIDTH_MAJOR:
319 case ABS_MT_WIDTH_MINOR:
320 case ABS_MT_ORIENTATION:
321 case ABS_MT_POSITION_X:
322 case ABS_MT_POSITION_Y:
323 case ABS_MT_TOOL_TYPE:
324 case ABS_MT_BLOB_ID:
325 case ABS_MT_TRACKING_ID:
326 case ABS_MT_PRESSURE:
327 case ABS_MT_DISTANCE:
328 return InputDeviceClass::TOUCH;
329 }
330 }
331
332 if (deviceClasses.test(InputDeviceClass::SENSOR)) {
333 switch (axis) {
334 case ABS_X:
335 case ABS_Y:
336 case ABS_Z:
337 case ABS_RX:
338 case ABS_RY:
339 case ABS_RZ:
340 return InputDeviceClass::SENSOR;
341 }
342 }
343
344 // External stylus gets the pressure axis
345 if (deviceClasses.test(InputDeviceClass::EXTERNAL_STYLUS)) {
346 if (axis == ABS_PRESSURE) {
347 return InputDeviceClass::EXTERNAL_STYLUS;
348 }
349 }
350
351 // Joystick devices get the rest.
352 return deviceClasses & InputDeviceClass::JOYSTICK;
353 }
354
355 // --- EventHub::Device ---
356
Device(int fd,int32_t id,const std::string & path,const InputDeviceIdentifier & identifier)357 EventHub::Device::Device(int fd, int32_t id, const std::string& path,
358 const InputDeviceIdentifier& identifier)
359 : fd(fd),
360 id(id),
361 path(path),
362 identifier(identifier),
363 classes(0),
364 configuration(nullptr),
365 virtualKeyMap(nullptr),
366 ffEffectPlaying(false),
367 ffEffectId(-1),
368 associatedDevice(nullptr),
369 controllerNumber(0),
370 enabled(true),
371 isVirtual(fd < 0) {}
372
~Device()373 EventHub::Device::~Device() {
374 close();
375 }
376
close()377 void EventHub::Device::close() {
378 if (fd >= 0) {
379 ::close(fd);
380 fd = -1;
381 }
382 }
383
enable()384 status_t EventHub::Device::enable() {
385 fd = open(path.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
386 if (fd < 0) {
387 ALOGE("could not open %s, %s\n", path.c_str(), strerror(errno));
388 return -errno;
389 }
390 enabled = true;
391 return OK;
392 }
393
disable()394 status_t EventHub::Device::disable() {
395 close();
396 enabled = false;
397 return OK;
398 }
399
hasValidFd() const400 bool EventHub::Device::hasValidFd() const {
401 return !isVirtual && enabled;
402 }
403
getKeyCharacterMap() const404 const std::shared_ptr<KeyCharacterMap> EventHub::Device::getKeyCharacterMap() const {
405 return keyMap.keyCharacterMap;
406 }
407
408 template <std::size_t N>
readDeviceBitMask(unsigned long ioctlCode,BitArray<N> & bitArray)409 status_t EventHub::Device::readDeviceBitMask(unsigned long ioctlCode, BitArray<N>& bitArray) {
410 if (!hasValidFd()) {
411 return BAD_VALUE;
412 }
413 if ((_IOC_SIZE(ioctlCode) == 0)) {
414 ioctlCode |= _IOC(0, 0, 0, bitArray.bytes());
415 }
416
417 typename BitArray<N>::Buffer buffer;
418 status_t ret = ioctl(fd, ioctlCode, buffer.data());
419 bitArray.loadFromBuffer(buffer);
420 return ret;
421 }
422
configureFd()423 void EventHub::Device::configureFd() {
424 // Set fd parameters with ioctl, such as key repeat, suspend block, and clock type
425 if (classes.test(InputDeviceClass::KEYBOARD)) {
426 // Disable kernel key repeat since we handle it ourselves
427 unsigned int repeatRate[] = {0, 0};
428 if (ioctl(fd, EVIOCSREP, repeatRate)) {
429 ALOGW("Unable to disable kernel key repeat for %s: %s", path.c_str(), strerror(errno));
430 }
431 }
432
433 // Tell the kernel that we want to use the monotonic clock for reporting timestamps
434 // associated with input events. This is important because the input system
435 // uses the timestamps extensively and assumes they were recorded using the monotonic
436 // clock.
437 int clockId = CLOCK_MONOTONIC;
438 if (classes.test(InputDeviceClass::SENSOR)) {
439 // Each new sensor event should use the same time base as
440 // SystemClock.elapsedRealtimeNanos().
441 clockId = CLOCK_BOOTTIME;
442 }
443 bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
444 ALOGI("usingClockIoctl=%s", toString(usingClockIoctl));
445 }
446
hasKeycodeLocked(int keycode) const447 bool EventHub::Device::hasKeycodeLocked(int keycode) const {
448 if (!keyMap.haveKeyLayout()) {
449 return false;
450 }
451
452 std::vector<int32_t> scanCodes;
453 keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
454 const size_t N = scanCodes.size();
455 for (size_t i = 0; i < N && i <= KEY_MAX; i++) {
456 int32_t sc = scanCodes[i];
457 if (sc >= 0 && sc <= KEY_MAX && keyBitmask.test(sc)) {
458 return true;
459 }
460 }
461
462 return false;
463 }
464
loadConfigurationLocked()465 void EventHub::Device::loadConfigurationLocked() {
466 configurationFile =
467 getInputDeviceConfigurationFilePathByDeviceIdentifier(identifier,
468 InputDeviceConfigurationFileType::
469 CONFIGURATION);
470 if (configurationFile.empty()) {
471 ALOGD("No input device configuration file found for device '%s'.", identifier.name.c_str());
472 } else {
473 android::base::Result<std::unique_ptr<PropertyMap>> propertyMap =
474 PropertyMap::load(configurationFile.c_str());
475 if (!propertyMap.ok()) {
476 ALOGE("Error loading input device configuration file for device '%s'. "
477 "Using default configuration.",
478 identifier.name.c_str());
479 } else {
480 configuration = std::move(*propertyMap);
481 }
482 }
483 }
484
loadVirtualKeyMapLocked()485 bool EventHub::Device::loadVirtualKeyMapLocked() {
486 // The virtual key map is supplied by the kernel as a system board property file.
487 std::string propPath = "/sys/board_properties/virtualkeys.";
488 propPath += identifier.getCanonicalName();
489 if (access(propPath.c_str(), R_OK)) {
490 return false;
491 }
492 virtualKeyMap = VirtualKeyMap::load(propPath);
493 return virtualKeyMap != nullptr;
494 }
495
loadKeyMapLocked()496 status_t EventHub::Device::loadKeyMapLocked() {
497 return keyMap.load(identifier, configuration.get());
498 }
499
isExternalDeviceLocked()500 bool EventHub::Device::isExternalDeviceLocked() {
501 if (configuration) {
502 bool value;
503 if (configuration->tryGetProperty(String8("device.internal"), value)) {
504 return !value;
505 }
506 }
507 return identifier.bus == BUS_USB || identifier.bus == BUS_BLUETOOTH;
508 }
509
deviceHasMicLocked()510 bool EventHub::Device::deviceHasMicLocked() {
511 if (configuration) {
512 bool value;
513 if (configuration->tryGetProperty(String8("audio.mic"), value)) {
514 return value;
515 }
516 }
517 return false;
518 }
519
setLedStateLocked(int32_t led,bool on)520 void EventHub::Device::setLedStateLocked(int32_t led, bool on) {
521 int32_t sc;
522 if (hasValidFd() && mapLed(led, &sc) != NAME_NOT_FOUND) {
523 struct input_event ev;
524 ev.time.tv_sec = 0;
525 ev.time.tv_usec = 0;
526 ev.type = EV_LED;
527 ev.code = sc;
528 ev.value = on ? 1 : 0;
529
530 ssize_t nWrite;
531 do {
532 nWrite = write(fd, &ev, sizeof(struct input_event));
533 } while (nWrite == -1 && errno == EINTR);
534 }
535 }
536
setLedForControllerLocked()537 void EventHub::Device::setLedForControllerLocked() {
538 for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
539 setLedStateLocked(ALED_CONTROLLER_1 + i, controllerNumber == i + 1);
540 }
541 }
542
mapLed(int32_t led,int32_t * outScanCode) const543 status_t EventHub::Device::mapLed(int32_t led, int32_t* outScanCode) const {
544 if (!keyMap.haveKeyLayout()) {
545 return NAME_NOT_FOUND;
546 }
547
548 int32_t scanCode;
549 if (keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) {
550 if (scanCode >= 0 && scanCode <= LED_MAX && ledBitmask.test(scanCode)) {
551 *outScanCode = scanCode;
552 return NO_ERROR;
553 }
554 }
555 return NAME_NOT_FOUND;
556 }
557
558 // Check the sysfs path for any input device batteries, returns true if battery found.
configureBatteryLocked()559 bool EventHub::AssociatedDevice::configureBatteryLocked() {
560 nextBatteryId = 0;
561 // Check if device has any battery.
562 const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::POWER_SUPPLY);
563 for (const auto& nodePath : paths) {
564 RawBatteryInfo info;
565 info.id = ++nextBatteryId;
566 info.path = nodePath;
567 info.name = nodePath.filename();
568
569 // Scan the path for all the files
570 // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
571 const auto& files = allFilesInPath(nodePath);
572 for (const auto& file : files) {
573 const auto it = BATTERY_CLASSES.find(file.filename().string());
574 if (it != BATTERY_CLASSES.end()) {
575 info.flags |= it->second;
576 }
577 }
578 batteryInfos.insert_or_assign(info.id, info);
579 ALOGD("configureBatteryLocked rawBatteryId %d name %s", info.id, info.name.c_str());
580 }
581 return !batteryInfos.empty();
582 }
583
584 // Check the sysfs path for any input device lights, returns true if lights found.
configureLightsLocked()585 bool EventHub::AssociatedDevice::configureLightsLocked() {
586 nextLightId = 0;
587 // Check if device has any lights.
588 const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::LEDS);
589 for (const auto& nodePath : paths) {
590 RawLightInfo info;
591 info.id = ++nextLightId;
592 info.path = nodePath;
593 info.name = nodePath.filename();
594 info.maxBrightness = std::nullopt;
595 size_t nameStart = info.name.rfind(":");
596 if (nameStart != std::string::npos) {
597 // Trim the name to color name
598 info.name = info.name.substr(nameStart + 1);
599 // Set InputLightClass flag for colors
600 const auto it = LIGHT_CLASSES.find(info.name);
601 if (it != LIGHT_CLASSES.end()) {
602 info.flags |= it->second;
603 }
604 }
605 // Scan the path for all the files
606 // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
607 const auto& files = allFilesInPath(nodePath);
608 for (const auto& file : files) {
609 const auto it = LIGHT_CLASSES.find(file.filename().string());
610 if (it != LIGHT_CLASSES.end()) {
611 info.flags |= it->second;
612 // If the node has maximum brightness, read it
613 if (it->second == InputLightClass::MAX_BRIGHTNESS) {
614 std::string str;
615 if (base::ReadFileToString(file, &str)) {
616 info.maxBrightness = std::stoi(str);
617 }
618 }
619 }
620 }
621 lightInfos.insert_or_assign(info.id, info);
622 ALOGD("configureLightsLocked rawLightId %d name %s", info.id, info.name.c_str());
623 }
624 return !lightInfos.empty();
625 }
626
627 /**
628 * Get the capabilities for the current process.
629 * Crashes the system if unable to create / check / destroy the capabilities object.
630 */
631 class Capabilities final {
632 public:
Capabilities()633 explicit Capabilities() {
634 mCaps = cap_get_proc();
635 LOG_ALWAYS_FATAL_IF(mCaps == nullptr, "Could not get capabilities of the current process");
636 }
637
638 /**
639 * Check whether the current process has a specific capability
640 * in the set of effective capabilities.
641 * Return CAP_SET if the process has the requested capability
642 * Return CAP_CLEAR otherwise.
643 */
checkEffectiveCapability(cap_value_t capability)644 cap_flag_value_t checkEffectiveCapability(cap_value_t capability) {
645 cap_flag_value_t value;
646 const int result = cap_get_flag(mCaps, capability, CAP_EFFECTIVE, &value);
647 LOG_ALWAYS_FATAL_IF(result == -1, "Could not obtain the requested capability");
648 return value;
649 }
650
~Capabilities()651 ~Capabilities() {
652 const int result = cap_free(mCaps);
653 LOG_ALWAYS_FATAL_IF(result == -1, "Could not release the capabilities structure");
654 }
655
656 private:
657 cap_t mCaps;
658 };
659
ensureProcessCanBlockSuspend()660 static void ensureProcessCanBlockSuspend() {
661 Capabilities capabilities;
662 const bool canBlockSuspend =
663 capabilities.checkEffectiveCapability(CAP_BLOCK_SUSPEND) == CAP_SET;
664 LOG_ALWAYS_FATAL_IF(!canBlockSuspend,
665 "Input must be able to block suspend to properly process events");
666 }
667
668 // --- EventHub ---
669
670 const int EventHub::EPOLL_MAX_EVENTS;
671
EventHub(void)672 EventHub::EventHub(void)
673 : mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD),
674 mNextDeviceId(1),
675 mControllerNumbers(),
676 mNeedToSendFinishedDeviceScan(false),
677 mNeedToReopenDevices(false),
678 mNeedToScanDevices(true),
679 mPendingEventCount(0),
680 mPendingEventIndex(0),
681 mPendingINotify(false) {
682 ensureProcessCanBlockSuspend();
683
684 mEpollFd = epoll_create1(EPOLL_CLOEXEC);
685 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
686
687 mINotifyFd = inotify_init();
688 mInputWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
689 LOG_ALWAYS_FATAL_IF(mInputWd < 0, "Could not register INotify for %s: %s", DEVICE_PATH,
690 strerror(errno));
691 if (isV4lScanningEnabled()) {
692 mVideoWd = inotify_add_watch(mINotifyFd, VIDEO_DEVICE_PATH, IN_DELETE | IN_CREATE);
693 LOG_ALWAYS_FATAL_IF(mVideoWd < 0, "Could not register INotify for %s: %s",
694 VIDEO_DEVICE_PATH, strerror(errno));
695 } else {
696 mVideoWd = -1;
697 ALOGI("Video device scanning disabled");
698 }
699
700 struct epoll_event eventItem = {};
701 eventItem.events = EPOLLIN | EPOLLWAKEUP;
702 eventItem.data.fd = mINotifyFd;
703 int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
704 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno);
705
706 int wakeFds[2];
707 result = pipe(wakeFds);
708 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
709
710 mWakeReadPipeFd = wakeFds[0];
711 mWakeWritePipeFd = wakeFds[1];
712
713 result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
714 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
715 errno);
716
717 result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
718 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
719 errno);
720
721 eventItem.data.fd = mWakeReadPipeFd;
722 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
723 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
724 errno);
725 }
726
~EventHub(void)727 EventHub::~EventHub(void) {
728 closeAllDevicesLocked();
729
730 ::close(mEpollFd);
731 ::close(mINotifyFd);
732 ::close(mWakeReadPipeFd);
733 ::close(mWakeWritePipeFd);
734 }
735
getDeviceIdentifier(int32_t deviceId) const736 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
737 std::scoped_lock _l(mLock);
738 Device* device = getDeviceLocked(deviceId);
739 return device != nullptr ? device->identifier : InputDeviceIdentifier();
740 }
741
getDeviceClasses(int32_t deviceId) const742 Flags<InputDeviceClass> EventHub::getDeviceClasses(int32_t deviceId) const {
743 std::scoped_lock _l(mLock);
744 Device* device = getDeviceLocked(deviceId);
745 return device != nullptr ? device->classes : Flags<InputDeviceClass>(0);
746 }
747
getDeviceControllerNumber(int32_t deviceId) const748 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
749 std::scoped_lock _l(mLock);
750 Device* device = getDeviceLocked(deviceId);
751 return device != nullptr ? device->controllerNumber : 0;
752 }
753
getConfiguration(int32_t deviceId,PropertyMap * outConfiguration) const754 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
755 std::scoped_lock _l(mLock);
756 Device* device = getDeviceLocked(deviceId);
757 if (device != nullptr && device->configuration) {
758 *outConfiguration = *device->configuration;
759 } else {
760 outConfiguration->clear();
761 }
762 }
763
getAbsoluteAxisInfo(int32_t deviceId,int axis,RawAbsoluteAxisInfo * outAxisInfo) const764 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
765 RawAbsoluteAxisInfo* outAxisInfo) const {
766 outAxisInfo->clear();
767
768 if (axis >= 0 && axis <= ABS_MAX) {
769 std::scoped_lock _l(mLock);
770
771 Device* device = getDeviceLocked(deviceId);
772 if (device != nullptr && device->hasValidFd() && device->absBitmask.test(axis)) {
773 struct input_absinfo info;
774 if (ioctl(device->fd, EVIOCGABS(axis), &info)) {
775 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis,
776 device->identifier.name.c_str(), device->fd, errno);
777 return -errno;
778 }
779
780 if (info.minimum != info.maximum) {
781 outAxisInfo->valid = true;
782 outAxisInfo->minValue = info.minimum;
783 outAxisInfo->maxValue = info.maximum;
784 outAxisInfo->flat = info.flat;
785 outAxisInfo->fuzz = info.fuzz;
786 outAxisInfo->resolution = info.resolution;
787 }
788 return OK;
789 }
790 }
791 return -1;
792 }
793
hasRelativeAxis(int32_t deviceId,int axis) const794 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
795 if (axis >= 0 && axis <= REL_MAX) {
796 std::scoped_lock _l(mLock);
797 Device* device = getDeviceLocked(deviceId);
798 return device != nullptr ? device->relBitmask.test(axis) : false;
799 }
800 return false;
801 }
802
hasInputProperty(int32_t deviceId,int property) const803 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
804 std::scoped_lock _l(mLock);
805
806 Device* device = getDeviceLocked(deviceId);
807 return property >= 0 && property <= INPUT_PROP_MAX && device != nullptr
808 ? device->propBitmask.test(property)
809 : false;
810 }
811
hasMscEvent(int32_t deviceId,int mscEvent) const812 bool EventHub::hasMscEvent(int32_t deviceId, int mscEvent) const {
813 std::scoped_lock _l(mLock);
814
815 Device* device = getDeviceLocked(deviceId);
816 return mscEvent >= 0 && mscEvent <= MSC_MAX && device != nullptr
817 ? device->mscBitmask.test(mscEvent)
818 : false;
819 }
820
getScanCodeState(int32_t deviceId,int32_t scanCode) const821 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
822 if (scanCode >= 0 && scanCode <= KEY_MAX) {
823 std::scoped_lock _l(mLock);
824
825 Device* device = getDeviceLocked(deviceId);
826 if (device != nullptr && device->hasValidFd() && device->keyBitmask.test(scanCode)) {
827 if (device->readDeviceBitMask(EVIOCGKEY(0), device->keyState) >= 0) {
828 return device->keyState.test(scanCode) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
829 }
830 }
831 }
832 return AKEY_STATE_UNKNOWN;
833 }
834
getKeyCodeState(int32_t deviceId,int32_t keyCode) const835 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
836 std::scoped_lock _l(mLock);
837
838 Device* device = getDeviceLocked(deviceId);
839 if (device != nullptr && device->hasValidFd() && device->keyMap.haveKeyLayout()) {
840 std::vector<int32_t> scanCodes;
841 device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
842 if (scanCodes.size() != 0) {
843 if (device->readDeviceBitMask(EVIOCGKEY(0), device->keyState) >= 0) {
844 for (size_t i = 0; i < scanCodes.size(); i++) {
845 int32_t sc = scanCodes[i];
846 if (sc >= 0 && sc <= KEY_MAX && device->keyState.test(sc)) {
847 return AKEY_STATE_DOWN;
848 }
849 }
850 return AKEY_STATE_UP;
851 }
852 }
853 }
854 return AKEY_STATE_UNKNOWN;
855 }
856
getSwitchState(int32_t deviceId,int32_t sw) const857 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
858 if (sw >= 0 && sw <= SW_MAX) {
859 std::scoped_lock _l(mLock);
860
861 Device* device = getDeviceLocked(deviceId);
862 if (device != nullptr && device->hasValidFd() && device->swBitmask.test(sw)) {
863 if (device->readDeviceBitMask(EVIOCGSW(0), device->swState) >= 0) {
864 return device->swState.test(sw) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
865 }
866 }
867 }
868 return AKEY_STATE_UNKNOWN;
869 }
870
getAbsoluteAxisValue(int32_t deviceId,int32_t axis,int32_t * outValue) const871 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
872 *outValue = 0;
873
874 if (axis >= 0 && axis <= ABS_MAX) {
875 std::scoped_lock _l(mLock);
876
877 Device* device = getDeviceLocked(deviceId);
878 if (device != nullptr && device->hasValidFd() && device->absBitmask.test(axis)) {
879 struct input_absinfo info;
880 if (ioctl(device->fd, EVIOCGABS(axis), &info)) {
881 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis,
882 device->identifier.name.c_str(), device->fd, errno);
883 return -errno;
884 }
885
886 *outValue = info.value;
887 return OK;
888 }
889 }
890 return -1;
891 }
892
markSupportedKeyCodes(int32_t deviceId,size_t numCodes,const int32_t * keyCodes,uint8_t * outFlags) const893 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes, const int32_t* keyCodes,
894 uint8_t* outFlags) const {
895 std::scoped_lock _l(mLock);
896
897 Device* device = getDeviceLocked(deviceId);
898 if (device != nullptr && device->keyMap.haveKeyLayout()) {
899 std::vector<int32_t> scanCodes;
900 for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
901 scanCodes.clear();
902
903 status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(keyCodes[codeIndex],
904 &scanCodes);
905 if (!err) {
906 // check the possible scan codes identified by the layout map against the
907 // map of codes actually emitted by the driver
908 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
909 if (device->keyBitmask.test(scanCodes[sc])) {
910 outFlags[codeIndex] = 1;
911 break;
912 }
913 }
914 }
915 }
916 return true;
917 }
918 return false;
919 }
920
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t metaState,int32_t * outKeycode,int32_t * outMetaState,uint32_t * outFlags) const921 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState,
922 int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
923 std::scoped_lock _l(mLock);
924 Device* device = getDeviceLocked(deviceId);
925 status_t status = NAME_NOT_FOUND;
926
927 if (device != nullptr) {
928 // Check the key character map first.
929 const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
930 if (kcm) {
931 if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
932 *outFlags = 0;
933 status = NO_ERROR;
934 }
935 }
936
937 // Check the key layout next.
938 if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
939 if (!device->keyMap.keyLayoutMap->mapKey(scanCode, usageCode, outKeycode, outFlags)) {
940 status = NO_ERROR;
941 }
942 }
943
944 if (status == NO_ERROR) {
945 if (kcm) {
946 kcm->tryRemapKey(*outKeycode, metaState, outKeycode, outMetaState);
947 } else {
948 *outMetaState = metaState;
949 }
950 }
951 }
952
953 if (status != NO_ERROR) {
954 *outKeycode = 0;
955 *outFlags = 0;
956 *outMetaState = metaState;
957 }
958
959 return status;
960 }
961
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const962 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
963 std::scoped_lock _l(mLock);
964 Device* device = getDeviceLocked(deviceId);
965
966 if (device != nullptr && device->keyMap.haveKeyLayout()) {
967 status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
968 if (err == NO_ERROR) {
969 return NO_ERROR;
970 }
971 }
972
973 return NAME_NOT_FOUND;
974 }
975
mapSensor(int32_t deviceId,int32_t absCode)976 base::Result<std::pair<InputDeviceSensorType, int32_t>> EventHub::mapSensor(int32_t deviceId,
977 int32_t absCode) {
978 std::scoped_lock _l(mLock);
979 Device* device = getDeviceLocked(deviceId);
980
981 if (device != nullptr && device->keyMap.haveKeyLayout()) {
982 return device->keyMap.keyLayoutMap->mapSensor(absCode);
983 }
984 return Errorf("Device not found or device has no key layout.");
985 }
986
987 // Gets the battery info map from battery ID to RawBatteryInfo of the miscellaneous device
988 // associated with the device ID. Returns an empty map if no miscellaneous device found.
getBatteryInfoLocked(int32_t deviceId) const989 const std::unordered_map<int32_t, RawBatteryInfo>& EventHub::getBatteryInfoLocked(
990 int32_t deviceId) const {
991 static const std::unordered_map<int32_t, RawBatteryInfo> EMPTY_BATTERY_INFO = {};
992 Device* device = getDeviceLocked(deviceId);
993 if (device == nullptr || !device->associatedDevice) {
994 return EMPTY_BATTERY_INFO;
995 }
996 return device->associatedDevice->batteryInfos;
997 }
998
getRawBatteryIds(int32_t deviceId)999 const std::vector<int32_t> EventHub::getRawBatteryIds(int32_t deviceId) {
1000 std::scoped_lock _l(mLock);
1001 std::vector<int32_t> batteryIds;
1002
1003 for (const auto [id, info] : getBatteryInfoLocked(deviceId)) {
1004 batteryIds.push_back(id);
1005 }
1006
1007 return batteryIds;
1008 }
1009
getRawBatteryInfo(int32_t deviceId,int32_t batteryId)1010 std::optional<RawBatteryInfo> EventHub::getRawBatteryInfo(int32_t deviceId, int32_t batteryId) {
1011 std::scoped_lock _l(mLock);
1012
1013 const auto infos = getBatteryInfoLocked(deviceId);
1014
1015 auto it = infos.find(batteryId);
1016 if (it != infos.end()) {
1017 return it->second;
1018 }
1019
1020 return std::nullopt;
1021 }
1022
1023 // Gets the light info map from light ID to RawLightInfo of the miscellaneous device associated
1024 // with the deivice ID. Returns an empty map if no miscellaneous device found.
getLightInfoLocked(int32_t deviceId) const1025 const std::unordered_map<int32_t, RawLightInfo>& EventHub::getLightInfoLocked(
1026 int32_t deviceId) const {
1027 static const std::unordered_map<int32_t, RawLightInfo> EMPTY_LIGHT_INFO = {};
1028 Device* device = getDeviceLocked(deviceId);
1029 if (device == nullptr || !device->associatedDevice) {
1030 return EMPTY_LIGHT_INFO;
1031 }
1032 return device->associatedDevice->lightInfos;
1033 }
1034
getRawLightIds(int32_t deviceId)1035 const std::vector<int32_t> EventHub::getRawLightIds(int32_t deviceId) {
1036 std::scoped_lock _l(mLock);
1037 std::vector<int32_t> lightIds;
1038
1039 for (const auto [id, info] : getLightInfoLocked(deviceId)) {
1040 lightIds.push_back(id);
1041 }
1042
1043 return lightIds;
1044 }
1045
getRawLightInfo(int32_t deviceId,int32_t lightId)1046 std::optional<RawLightInfo> EventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) {
1047 std::scoped_lock _l(mLock);
1048
1049 const auto infos = getLightInfoLocked(deviceId);
1050
1051 auto it = infos.find(lightId);
1052 if (it != infos.end()) {
1053 return it->second;
1054 }
1055
1056 return std::nullopt;
1057 }
1058
getLightBrightness(int32_t deviceId,int32_t lightId)1059 std::optional<int32_t> EventHub::getLightBrightness(int32_t deviceId, int32_t lightId) {
1060 std::scoped_lock _l(mLock);
1061
1062 const auto infos = getLightInfoLocked(deviceId);
1063 auto it = infos.find(lightId);
1064 if (it == infos.end()) {
1065 return std::nullopt;
1066 }
1067 std::string buffer;
1068 if (!base::ReadFileToString(it->second.path / LIGHT_NODES.at(InputLightClass::BRIGHTNESS),
1069 &buffer)) {
1070 return std::nullopt;
1071 }
1072 return std::stoi(buffer);
1073 }
1074
getLightIntensities(int32_t deviceId,int32_t lightId)1075 std::optional<std::unordered_map<LightColor, int32_t>> EventHub::getLightIntensities(
1076 int32_t deviceId, int32_t lightId) {
1077 std::scoped_lock _l(mLock);
1078
1079 const auto infos = getLightInfoLocked(deviceId);
1080 auto lightIt = infos.find(lightId);
1081 if (lightIt == infos.end()) {
1082 return std::nullopt;
1083 }
1084
1085 auto ret =
1086 getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
1087
1088 if (!ret.has_value()) {
1089 return std::nullopt;
1090 }
1091 std::array<LightColor, COLOR_NUM> colors = ret.value();
1092
1093 std::string intensityStr;
1094 if (!base::ReadFileToString(lightIt->second.path /
1095 LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY),
1096 &intensityStr)) {
1097 return std::nullopt;
1098 }
1099
1100 // Intensity node outputs 3 color values
1101 std::regex intensityPattern("([0-9]+)\\s([0-9]+)\\s([0-9]+)[\\n]");
1102 std::smatch results;
1103
1104 if (!std::regex_match(intensityStr, results, intensityPattern)) {
1105 return std::nullopt;
1106 }
1107 std::unordered_map<LightColor, int32_t> intensities;
1108 for (size_t i = 1; i < results.size(); i++) {
1109 int value = std::stoi(results[i].str());
1110 intensities.emplace(colors[i - 1], value);
1111 }
1112 return intensities;
1113 }
1114
setLightBrightness(int32_t deviceId,int32_t lightId,int32_t brightness)1115 void EventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) {
1116 std::scoped_lock _l(mLock);
1117
1118 const auto infos = getLightInfoLocked(deviceId);
1119 auto lightIt = infos.find(lightId);
1120 if (lightIt == infos.end()) {
1121 ALOGE("%s lightId %d not found ", __func__, lightId);
1122 return;
1123 }
1124
1125 if (!base::WriteStringToFile(std::to_string(brightness),
1126 lightIt->second.path /
1127 LIGHT_NODES.at(InputLightClass::BRIGHTNESS))) {
1128 ALOGE("Can not write to file, error: %s", strerror(errno));
1129 }
1130 }
1131
setLightIntensities(int32_t deviceId,int32_t lightId,std::unordered_map<LightColor,int32_t> intensities)1132 void EventHub::setLightIntensities(int32_t deviceId, int32_t lightId,
1133 std::unordered_map<LightColor, int32_t> intensities) {
1134 std::scoped_lock _l(mLock);
1135
1136 const auto infos = getLightInfoLocked(deviceId);
1137 auto lightIt = infos.find(lightId);
1138 if (lightIt == infos.end()) {
1139 ALOGE("Light Id %d does not exist.", lightId);
1140 return;
1141 }
1142
1143 auto ret =
1144 getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
1145
1146 if (!ret.has_value()) {
1147 return;
1148 }
1149 std::array<LightColor, COLOR_NUM> colors = ret.value();
1150
1151 std::string rgbStr;
1152 for (size_t i = 0; i < COLOR_NUM; i++) {
1153 auto it = intensities.find(colors[i]);
1154 if (it != intensities.end()) {
1155 rgbStr += std::to_string(it->second);
1156 // Insert space between colors
1157 if (i < COLOR_NUM - 1) {
1158 rgbStr += " ";
1159 }
1160 }
1161 }
1162 // Append new line
1163 rgbStr += "\n";
1164
1165 if (!base::WriteStringToFile(rgbStr,
1166 lightIt->second.path /
1167 LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY))) {
1168 ALOGE("Can not write to file, error: %s", strerror(errno));
1169 }
1170 }
1171
setExcludedDevices(const std::vector<std::string> & devices)1172 void EventHub::setExcludedDevices(const std::vector<std::string>& devices) {
1173 std::scoped_lock _l(mLock);
1174
1175 mExcludedDevices = devices;
1176 }
1177
hasScanCode(int32_t deviceId,int32_t scanCode) const1178 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
1179 std::scoped_lock _l(mLock);
1180 Device* device = getDeviceLocked(deviceId);
1181 if (device != nullptr && scanCode >= 0 && scanCode <= KEY_MAX) {
1182 return device->keyBitmask.test(scanCode);
1183 }
1184 return false;
1185 }
1186
hasLed(int32_t deviceId,int32_t led) const1187 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
1188 std::scoped_lock _l(mLock);
1189 Device* device = getDeviceLocked(deviceId);
1190 int32_t sc;
1191 if (device != nullptr && device->mapLed(led, &sc) == NO_ERROR) {
1192 return device->ledBitmask.test(sc);
1193 }
1194 return false;
1195 }
1196
setLedState(int32_t deviceId,int32_t led,bool on)1197 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
1198 std::scoped_lock _l(mLock);
1199 Device* device = getDeviceLocked(deviceId);
1200 if (device != nullptr && device->hasValidFd()) {
1201 device->setLedStateLocked(led, on);
1202 }
1203 }
1204
getVirtualKeyDefinitions(int32_t deviceId,std::vector<VirtualKeyDefinition> & outVirtualKeys) const1205 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
1206 std::vector<VirtualKeyDefinition>& outVirtualKeys) const {
1207 outVirtualKeys.clear();
1208
1209 std::scoped_lock _l(mLock);
1210 Device* device = getDeviceLocked(deviceId);
1211 if (device != nullptr && device->virtualKeyMap) {
1212 const std::vector<VirtualKeyDefinition> virtualKeys =
1213 device->virtualKeyMap->getVirtualKeys();
1214 outVirtualKeys.insert(outVirtualKeys.end(), virtualKeys.begin(), virtualKeys.end());
1215 }
1216 }
1217
getKeyCharacterMap(int32_t deviceId) const1218 const std::shared_ptr<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
1219 std::scoped_lock _l(mLock);
1220 Device* device = getDeviceLocked(deviceId);
1221 if (device != nullptr) {
1222 return device->getKeyCharacterMap();
1223 }
1224 return nullptr;
1225 }
1226
setKeyboardLayoutOverlay(int32_t deviceId,std::shared_ptr<KeyCharacterMap> map)1227 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, std::shared_ptr<KeyCharacterMap> map) {
1228 std::scoped_lock _l(mLock);
1229 Device* device = getDeviceLocked(deviceId);
1230 if (device != nullptr && map != nullptr && device->keyMap.keyCharacterMap != nullptr) {
1231 device->keyMap.keyCharacterMap->combine(*map);
1232 device->keyMap.keyCharacterMapFile = device->keyMap.keyCharacterMap->getLoadFileName();
1233 return true;
1234 }
1235 return false;
1236 }
1237
generateDescriptor(InputDeviceIdentifier & identifier)1238 static std::string generateDescriptor(InputDeviceIdentifier& identifier) {
1239 std::string rawDescriptor;
1240 rawDescriptor += StringPrintf(":%04x:%04x:", identifier.vendor, identifier.product);
1241 // TODO add handling for USB devices to not uniqueify kbs that show up twice
1242 if (!identifier.uniqueId.empty()) {
1243 rawDescriptor += "uniqueId:";
1244 rawDescriptor += identifier.uniqueId;
1245 } else if (identifier.nonce != 0) {
1246 rawDescriptor += StringPrintf("nonce:%04x", identifier.nonce);
1247 }
1248
1249 if (identifier.vendor == 0 && identifier.product == 0) {
1250 // If we don't know the vendor and product id, then the device is probably
1251 // built-in so we need to rely on other information to uniquely identify
1252 // the input device. Usually we try to avoid relying on the device name or
1253 // location but for built-in input device, they are unlikely to ever change.
1254 if (!identifier.name.empty()) {
1255 rawDescriptor += "name:";
1256 rawDescriptor += identifier.name;
1257 } else if (!identifier.location.empty()) {
1258 rawDescriptor += "location:";
1259 rawDescriptor += identifier.location;
1260 }
1261 }
1262 identifier.descriptor = sha1(rawDescriptor);
1263 return rawDescriptor;
1264 }
1265
assignDescriptorLocked(InputDeviceIdentifier & identifier)1266 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
1267 // Compute a device descriptor that uniquely identifies the device.
1268 // The descriptor is assumed to be a stable identifier. Its value should not
1269 // change between reboots, reconnections, firmware updates or new releases
1270 // of Android. In practice we sometimes get devices that cannot be uniquely
1271 // identified. In this case we enforce uniqueness between connected devices.
1272 // Ideally, we also want the descriptor to be short and relatively opaque.
1273
1274 identifier.nonce = 0;
1275 std::string rawDescriptor = generateDescriptor(identifier);
1276 if (identifier.uniqueId.empty()) {
1277 // If it didn't have a unique id check for conflicts and enforce
1278 // uniqueness if necessary.
1279 while (getDeviceByDescriptorLocked(identifier.descriptor) != nullptr) {
1280 identifier.nonce++;
1281 rawDescriptor = generateDescriptor(identifier);
1282 }
1283 }
1284 ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.c_str(),
1285 identifier.descriptor.c_str());
1286 }
1287
vibrate(int32_t deviceId,const VibrationElement & element)1288 void EventHub::vibrate(int32_t deviceId, const VibrationElement& element) {
1289 std::scoped_lock _l(mLock);
1290 Device* device = getDeviceLocked(deviceId);
1291 if (device != nullptr && device->hasValidFd()) {
1292 ff_effect effect;
1293 memset(&effect, 0, sizeof(effect));
1294 effect.type = FF_RUMBLE;
1295 effect.id = device->ffEffectId;
1296 // evdev FF_RUMBLE effect only supports two channels of vibration.
1297 effect.u.rumble.strong_magnitude = element.getMagnitude(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
1298 effect.u.rumble.weak_magnitude = element.getMagnitude(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
1299 effect.replay.length = element.duration.count();
1300 effect.replay.delay = 0;
1301 if (ioctl(device->fd, EVIOCSFF, &effect)) {
1302 ALOGW("Could not upload force feedback effect to device %s due to error %d.",
1303 device->identifier.name.c_str(), errno);
1304 return;
1305 }
1306 device->ffEffectId = effect.id;
1307
1308 struct input_event ev;
1309 ev.time.tv_sec = 0;
1310 ev.time.tv_usec = 0;
1311 ev.type = EV_FF;
1312 ev.code = device->ffEffectId;
1313 ev.value = 1;
1314 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
1315 ALOGW("Could not start force feedback effect on device %s due to error %d.",
1316 device->identifier.name.c_str(), errno);
1317 return;
1318 }
1319 device->ffEffectPlaying = true;
1320 }
1321 }
1322
cancelVibrate(int32_t deviceId)1323 void EventHub::cancelVibrate(int32_t deviceId) {
1324 std::scoped_lock _l(mLock);
1325 Device* device = getDeviceLocked(deviceId);
1326 if (device != nullptr && device->hasValidFd()) {
1327 if (device->ffEffectPlaying) {
1328 device->ffEffectPlaying = false;
1329
1330 struct input_event ev;
1331 ev.time.tv_sec = 0;
1332 ev.time.tv_usec = 0;
1333 ev.type = EV_FF;
1334 ev.code = device->ffEffectId;
1335 ev.value = 0;
1336 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
1337 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
1338 device->identifier.name.c_str(), errno);
1339 return;
1340 }
1341 }
1342 }
1343 }
1344
getVibratorIds(int32_t deviceId)1345 std::vector<int32_t> EventHub::getVibratorIds(int32_t deviceId) {
1346 std::scoped_lock _l(mLock);
1347 std::vector<int32_t> vibrators;
1348 Device* device = getDeviceLocked(deviceId);
1349 if (device != nullptr && device->hasValidFd() &&
1350 device->classes.test(InputDeviceClass::VIBRATOR)) {
1351 vibrators.push_back(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
1352 vibrators.push_back(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
1353 }
1354 return vibrators;
1355 }
1356
getDeviceByDescriptorLocked(const std::string & descriptor) const1357 EventHub::Device* EventHub::getDeviceByDescriptorLocked(const std::string& descriptor) const {
1358 for (const auto& [id, device] : mDevices) {
1359 if (descriptor == device->identifier.descriptor) {
1360 return device.get();
1361 }
1362 }
1363 return nullptr;
1364 }
1365
getDeviceLocked(int32_t deviceId) const1366 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
1367 if (deviceId == ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID) {
1368 deviceId = mBuiltInKeyboardId;
1369 }
1370 const auto& it = mDevices.find(deviceId);
1371 return it != mDevices.end() ? it->second.get() : nullptr;
1372 }
1373
getDeviceByPathLocked(const std::string & devicePath) const1374 EventHub::Device* EventHub::getDeviceByPathLocked(const std::string& devicePath) const {
1375 for (const auto& [id, device] : mDevices) {
1376 if (device->path == devicePath) {
1377 return device.get();
1378 }
1379 }
1380 return nullptr;
1381 }
1382
1383 /**
1384 * The file descriptor could be either input device, or a video device (associated with a
1385 * specific input device). Check both cases here, and return the device that this event
1386 * belongs to. Caller can compare the fd's once more to determine event type.
1387 * Looks through all input devices, and only attached video devices. Unattached video
1388 * devices are ignored.
1389 */
getDeviceByFdLocked(int fd) const1390 EventHub::Device* EventHub::getDeviceByFdLocked(int fd) const {
1391 for (const auto& [id, device] : mDevices) {
1392 if (device->fd == fd) {
1393 // This is an input device event
1394 return device.get();
1395 }
1396 if (device->videoDevice && device->videoDevice->getFd() == fd) {
1397 // This is a video device event
1398 return device.get();
1399 }
1400 }
1401 // We do not check mUnattachedVideoDevices here because they should not participate in epoll,
1402 // and therefore should never be looked up by fd.
1403 return nullptr;
1404 }
1405
getBatteryCapacity(int32_t deviceId,int32_t batteryId) const1406 std::optional<int32_t> EventHub::getBatteryCapacity(int32_t deviceId, int32_t batteryId) const {
1407 std::scoped_lock _l(mLock);
1408
1409 const auto infos = getBatteryInfoLocked(deviceId);
1410 auto it = infos.find(batteryId);
1411 if (it == infos.end()) {
1412 return std::nullopt;
1413 }
1414 std::string buffer;
1415
1416 // Some devices report battery capacity as an integer through the "capacity" file
1417 if (base::ReadFileToString(it->second.path / BATTERY_NODES.at(InputBatteryClass::CAPACITY),
1418 &buffer)) {
1419 return std::stoi(base::Trim(buffer));
1420 }
1421
1422 // Other devices report capacity as an enum value POWER_SUPPLY_CAPACITY_LEVEL_XXX
1423 // These values are taken from kernel source code include/linux/power_supply.h
1424 if (base::ReadFileToString(it->second.path /
1425 BATTERY_NODES.at(InputBatteryClass::CAPACITY_LEVEL),
1426 &buffer)) {
1427 // Remove any white space such as trailing new line
1428 const auto levelIt = BATTERY_LEVEL.find(base::Trim(buffer));
1429 if (levelIt != BATTERY_LEVEL.end()) {
1430 return levelIt->second;
1431 }
1432 }
1433
1434 return std::nullopt;
1435 }
1436
getBatteryStatus(int32_t deviceId,int32_t batteryId) const1437 std::optional<int32_t> EventHub::getBatteryStatus(int32_t deviceId, int32_t batteryId) const {
1438 std::scoped_lock _l(mLock);
1439 const auto infos = getBatteryInfoLocked(deviceId);
1440 auto it = infos.find(batteryId);
1441 if (it == infos.end()) {
1442 return std::nullopt;
1443 }
1444 std::string buffer;
1445
1446 if (!base::ReadFileToString(it->second.path / BATTERY_NODES.at(InputBatteryClass::STATUS),
1447 &buffer)) {
1448 ALOGE("Failed to read sysfs battery info: %s", strerror(errno));
1449 return std::nullopt;
1450 }
1451
1452 // Remove white space like trailing new line
1453 const auto statusIt = BATTERY_STATUS.find(base::Trim(buffer));
1454 if (statusIt != BATTERY_STATUS.end()) {
1455 return statusIt->second;
1456 }
1457
1458 return std::nullopt;
1459 }
1460
getEvents(int timeoutMillis,RawEvent * buffer,size_t bufferSize)1461 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
1462 ALOG_ASSERT(bufferSize >= 1);
1463
1464 std::scoped_lock _l(mLock);
1465
1466 struct input_event readBuffer[bufferSize];
1467
1468 RawEvent* event = buffer;
1469 size_t capacity = bufferSize;
1470 bool awoken = false;
1471 for (;;) {
1472 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
1473
1474 // Reopen input devices if needed.
1475 if (mNeedToReopenDevices) {
1476 mNeedToReopenDevices = false;
1477
1478 ALOGI("Reopening all input devices due to a configuration change.");
1479
1480 closeAllDevicesLocked();
1481 mNeedToScanDevices = true;
1482 break; // return to the caller before we actually rescan
1483 }
1484
1485 // Report any devices that had last been added/removed.
1486 for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) {
1487 std::unique_ptr<Device> device = std::move(*it);
1488 ALOGV("Reporting device closed: id=%d, name=%s\n", device->id, device->path.c_str());
1489 event->when = now;
1490 event->deviceId = (device->id == mBuiltInKeyboardId)
1491 ? ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID
1492 : device->id;
1493 event->type = DEVICE_REMOVED;
1494 event += 1;
1495 it = mClosingDevices.erase(it);
1496 mNeedToSendFinishedDeviceScan = true;
1497 if (--capacity == 0) {
1498 break;
1499 }
1500 }
1501
1502 if (mNeedToScanDevices) {
1503 mNeedToScanDevices = false;
1504 scanDevicesLocked();
1505 mNeedToSendFinishedDeviceScan = true;
1506 }
1507
1508 while (!mOpeningDevices.empty()) {
1509 std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin());
1510 mOpeningDevices.pop_back();
1511 ALOGV("Reporting device opened: id=%d, name=%s\n", device->id, device->path.c_str());
1512 event->when = now;
1513 event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
1514 event->type = DEVICE_ADDED;
1515 event += 1;
1516
1517 // Try to find a matching video device by comparing device names
1518 for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end();
1519 it++) {
1520 std::unique_ptr<TouchVideoDevice>& videoDevice = *it;
1521 if (tryAddVideoDeviceLocked(*device, videoDevice)) {
1522 // videoDevice was transferred to 'device'
1523 it = mUnattachedVideoDevices.erase(it);
1524 break;
1525 }
1526 }
1527
1528 auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device));
1529 if (!inserted) {
1530 ALOGW("Device id %d exists, replaced.", device->id);
1531 }
1532 mNeedToSendFinishedDeviceScan = true;
1533 if (--capacity == 0) {
1534 break;
1535 }
1536 }
1537
1538 if (mNeedToSendFinishedDeviceScan) {
1539 mNeedToSendFinishedDeviceScan = false;
1540 event->when = now;
1541 event->type = FINISHED_DEVICE_SCAN;
1542 event += 1;
1543 if (--capacity == 0) {
1544 break;
1545 }
1546 }
1547
1548 // Grab the next input event.
1549 bool deviceChanged = false;
1550 while (mPendingEventIndex < mPendingEventCount) {
1551 const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
1552 if (eventItem.data.fd == mINotifyFd) {
1553 if (eventItem.events & EPOLLIN) {
1554 mPendingINotify = true;
1555 } else {
1556 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
1557 }
1558 continue;
1559 }
1560
1561 if (eventItem.data.fd == mWakeReadPipeFd) {
1562 if (eventItem.events & EPOLLIN) {
1563 ALOGV("awoken after wake()");
1564 awoken = true;
1565 char wakeReadBuffer[16];
1566 ssize_t nRead;
1567 do {
1568 nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer));
1569 } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer));
1570 } else {
1571 ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
1572 eventItem.events);
1573 }
1574 continue;
1575 }
1576
1577 Device* device = getDeviceByFdLocked(eventItem.data.fd);
1578 if (device == nullptr) {
1579 ALOGE("Received unexpected epoll event 0x%08x for unknown fd %d.", eventItem.events,
1580 eventItem.data.fd);
1581 ALOG_ASSERT(!DEBUG);
1582 continue;
1583 }
1584 if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) {
1585 if (eventItem.events & EPOLLIN) {
1586 size_t numFrames = device->videoDevice->readAndQueueFrames();
1587 if (numFrames == 0) {
1588 ALOGE("Received epoll event for video device %s, but could not read frame",
1589 device->videoDevice->getName().c_str());
1590 }
1591 } else if (eventItem.events & EPOLLHUP) {
1592 // TODO(b/121395353) - consider adding EPOLLRDHUP
1593 ALOGI("Removing video device %s due to epoll hang-up event.",
1594 device->videoDevice->getName().c_str());
1595 unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
1596 device->videoDevice = nullptr;
1597 } else {
1598 ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
1599 device->videoDevice->getName().c_str());
1600 ALOG_ASSERT(!DEBUG);
1601 }
1602 continue;
1603 }
1604 // This must be an input event
1605 if (eventItem.events & EPOLLIN) {
1606 int32_t readSize =
1607 read(device->fd, readBuffer, sizeof(struct input_event) * capacity);
1608 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
1609 // Device was removed before INotify noticed.
1610 ALOGW("could not get event, removed? (fd: %d size: %" PRId32
1611 " bufferSize: %zu capacity: %zu errno: %d)\n",
1612 device->fd, readSize, bufferSize, capacity, errno);
1613 deviceChanged = true;
1614 closeDeviceLocked(*device);
1615 } else if (readSize < 0) {
1616 if (errno != EAGAIN && errno != EINTR) {
1617 ALOGW("could not get event (errno=%d)", errno);
1618 }
1619 } else if ((readSize % sizeof(struct input_event)) != 0) {
1620 ALOGE("could not get event (wrong size: %d)", readSize);
1621 } else {
1622 int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
1623
1624 size_t count = size_t(readSize) / sizeof(struct input_event);
1625 for (size_t i = 0; i < count; i++) {
1626 struct input_event& iev = readBuffer[i];
1627 event->when = processEventTimestamp(iev);
1628 event->readTime = systemTime(SYSTEM_TIME_MONOTONIC);
1629 event->deviceId = deviceId;
1630 event->type = iev.type;
1631 event->code = iev.code;
1632 event->value = iev.value;
1633 event += 1;
1634 capacity -= 1;
1635 }
1636 if (capacity == 0) {
1637 // The result buffer is full. Reset the pending event index
1638 // so we will try to read the device again on the next iteration.
1639 mPendingEventIndex -= 1;
1640 break;
1641 }
1642 }
1643 } else if (eventItem.events & EPOLLHUP) {
1644 ALOGI("Removing device %s due to epoll hang-up event.",
1645 device->identifier.name.c_str());
1646 deviceChanged = true;
1647 closeDeviceLocked(*device);
1648 } else {
1649 ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
1650 device->identifier.name.c_str());
1651 }
1652 }
1653
1654 // readNotify() will modify the list of devices so this must be done after
1655 // processing all other events to ensure that we read all remaining events
1656 // before closing the devices.
1657 if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
1658 mPendingINotify = false;
1659 readNotifyLocked();
1660 deviceChanged = true;
1661 }
1662
1663 // Report added or removed devices immediately.
1664 if (deviceChanged) {
1665 continue;
1666 }
1667
1668 // Return now if we have collected any events or if we were explicitly awoken.
1669 if (event != buffer || awoken) {
1670 break;
1671 }
1672
1673 // Poll for events.
1674 // When a device driver has pending (unread) events, it acquires
1675 // a kernel wake lock. Once the last pending event has been read, the device
1676 // driver will release the kernel wake lock, but the epoll will hold the wakelock,
1677 // since we are using EPOLLWAKEUP. The wakelock is released by the epoll when epoll_wait
1678 // is called again for the same fd that produced the event.
1679 // Thus the system can only sleep if there are no events pending or
1680 // currently being processed.
1681 //
1682 // The timeout is advisory only. If the device is asleep, it will not wake just to
1683 // service the timeout.
1684 mPendingEventIndex = 0;
1685
1686 mLock.unlock(); // release lock before poll
1687
1688 int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
1689
1690 mLock.lock(); // reacquire lock after poll
1691
1692 if (pollResult == 0) {
1693 // Timed out.
1694 mPendingEventCount = 0;
1695 break;
1696 }
1697
1698 if (pollResult < 0) {
1699 // An error occurred.
1700 mPendingEventCount = 0;
1701
1702 // Sleep after errors to avoid locking up the system.
1703 // Hopefully the error is transient.
1704 if (errno != EINTR) {
1705 ALOGW("poll failed (errno=%d)\n", errno);
1706 usleep(100000);
1707 }
1708 } else {
1709 // Some events occurred.
1710 mPendingEventCount = size_t(pollResult);
1711 }
1712 }
1713
1714 // All done, return the number of events we read.
1715 return event - buffer;
1716 }
1717
getVideoFrames(int32_t deviceId)1718 std::vector<TouchVideoFrame> EventHub::getVideoFrames(int32_t deviceId) {
1719 std::scoped_lock _l(mLock);
1720
1721 Device* device = getDeviceLocked(deviceId);
1722 if (device == nullptr || !device->videoDevice) {
1723 return {};
1724 }
1725 return device->videoDevice->consumeFrames();
1726 }
1727
wake()1728 void EventHub::wake() {
1729 ALOGV("wake() called");
1730
1731 ssize_t nWrite;
1732 do {
1733 nWrite = write(mWakeWritePipeFd, "W", 1);
1734 } while (nWrite == -1 && errno == EINTR);
1735
1736 if (nWrite != 1 && errno != EAGAIN) {
1737 ALOGW("Could not write wake signal: %s", strerror(errno));
1738 }
1739 }
1740
scanDevicesLocked()1741 void EventHub::scanDevicesLocked() {
1742 status_t result = scanDirLocked(DEVICE_PATH);
1743 if (result < 0) {
1744 ALOGE("scan dir failed for %s", DEVICE_PATH);
1745 }
1746 if (isV4lScanningEnabled()) {
1747 result = scanVideoDirLocked(VIDEO_DEVICE_PATH);
1748 if (result != OK) {
1749 ALOGE("scan video dir failed for %s", VIDEO_DEVICE_PATH);
1750 }
1751 }
1752 if (mDevices.find(ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID) == mDevices.end()) {
1753 createVirtualKeyboardLocked();
1754 }
1755 }
1756
1757 // ----------------------------------------------------------------------------
1758
1759 static const int32_t GAMEPAD_KEYCODES[] = {
1760 AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C, //
1761 AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z, //
1762 AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1, //
1763 AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2, //
1764 AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR, //
1765 AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE, //
1766 };
1767
registerFdForEpoll(int fd)1768 status_t EventHub::registerFdForEpoll(int fd) {
1769 // TODO(b/121395353) - consider adding EPOLLRDHUP
1770 struct epoll_event eventItem = {};
1771 eventItem.events = EPOLLIN | EPOLLWAKEUP;
1772 eventItem.data.fd = fd;
1773 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
1774 ALOGE("Could not add fd to epoll instance: %s", strerror(errno));
1775 return -errno;
1776 }
1777 return OK;
1778 }
1779
unregisterFdFromEpoll(int fd)1780 status_t EventHub::unregisterFdFromEpoll(int fd) {
1781 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, nullptr)) {
1782 ALOGW("Could not remove fd from epoll instance: %s", strerror(errno));
1783 return -errno;
1784 }
1785 return OK;
1786 }
1787
registerDeviceForEpollLocked(Device & device)1788 status_t EventHub::registerDeviceForEpollLocked(Device& device) {
1789 status_t result = registerFdForEpoll(device.fd);
1790 if (result != OK) {
1791 ALOGE("Could not add input device fd to epoll for device %" PRId32, device.id);
1792 return result;
1793 }
1794 if (device.videoDevice) {
1795 registerVideoDeviceForEpollLocked(*device.videoDevice);
1796 }
1797 return result;
1798 }
1799
registerVideoDeviceForEpollLocked(const TouchVideoDevice & videoDevice)1800 void EventHub::registerVideoDeviceForEpollLocked(const TouchVideoDevice& videoDevice) {
1801 status_t result = registerFdForEpoll(videoDevice.getFd());
1802 if (result != OK) {
1803 ALOGE("Could not add video device %s to epoll", videoDevice.getName().c_str());
1804 }
1805 }
1806
unregisterDeviceFromEpollLocked(Device & device)1807 status_t EventHub::unregisterDeviceFromEpollLocked(Device& device) {
1808 if (device.hasValidFd()) {
1809 status_t result = unregisterFdFromEpoll(device.fd);
1810 if (result != OK) {
1811 ALOGW("Could not remove input device fd from epoll for device %" PRId32, device.id);
1812 return result;
1813 }
1814 }
1815 if (device.videoDevice) {
1816 unregisterVideoDeviceFromEpollLocked(*device.videoDevice);
1817 }
1818 return OK;
1819 }
1820
unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice & videoDevice)1821 void EventHub::unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice& videoDevice) {
1822 if (videoDevice.hasValidFd()) {
1823 status_t result = unregisterFdFromEpoll(videoDevice.getFd());
1824 if (result != OK) {
1825 ALOGW("Could not remove video device fd from epoll for device: %s",
1826 videoDevice.getName().c_str());
1827 }
1828 }
1829 }
1830
reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier & identifier,Flags<InputDeviceClass> classes)1831 void EventHub::reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier& identifier,
1832 Flags<InputDeviceClass> classes) {
1833 SHA256_CTX ctx;
1834 SHA256_Init(&ctx);
1835 SHA256_Update(&ctx, reinterpret_cast<const uint8_t*>(identifier.uniqueId.c_str()),
1836 identifier.uniqueId.size());
1837 std::array<uint8_t, SHA256_DIGEST_LENGTH> digest;
1838 SHA256_Final(digest.data(), &ctx);
1839
1840 std::string obfuscatedId;
1841 for (size_t i = 0; i < OBFUSCATED_LENGTH; i++) {
1842 obfuscatedId += StringPrintf("%02x", digest[i]);
1843 }
1844
1845 android::util::stats_write(android::util::INPUTDEVICE_REGISTERED, identifier.name.c_str(),
1846 identifier.vendor, identifier.product, identifier.version,
1847 identifier.bus, obfuscatedId.c_str(), classes.get());
1848 }
1849
openDeviceLocked(const std::string & devicePath)1850 void EventHub::openDeviceLocked(const std::string& devicePath) {
1851 // If an input device happens to register around the time when EventHub's constructor runs, it
1852 // is possible that the same input event node (for example, /dev/input/event3) will be noticed
1853 // in both 'inotify' callback and also in the 'scanDirLocked' pass. To prevent duplicate devices
1854 // from getting registered, ensure that this path is not already covered by an existing device.
1855 for (const auto& [deviceId, device] : mDevices) {
1856 if (device->path == devicePath) {
1857 return; // device was already registered
1858 }
1859 }
1860
1861 char buffer[80];
1862
1863 ALOGV("Opening device: %s", devicePath.c_str());
1864
1865 int fd = open(devicePath.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
1866 if (fd < 0) {
1867 ALOGE("could not open %s, %s\n", devicePath.c_str(), strerror(errno));
1868 return;
1869 }
1870
1871 InputDeviceIdentifier identifier;
1872
1873 // Get device name.
1874 if (ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
1875 ALOGE("Could not get device name for %s: %s", devicePath.c_str(), strerror(errno));
1876 } else {
1877 buffer[sizeof(buffer) - 1] = '\0';
1878 identifier.name = buffer;
1879 }
1880
1881 // Check to see if the device is on our excluded list
1882 for (size_t i = 0; i < mExcludedDevices.size(); i++) {
1883 const std::string& item = mExcludedDevices[i];
1884 if (identifier.name == item) {
1885 ALOGI("ignoring event id %s driver %s\n", devicePath.c_str(), item.c_str());
1886 close(fd);
1887 return;
1888 }
1889 }
1890
1891 // Get device driver version.
1892 int driverVersion;
1893 if (ioctl(fd, EVIOCGVERSION, &driverVersion)) {
1894 ALOGE("could not get driver version for %s, %s\n", devicePath.c_str(), strerror(errno));
1895 close(fd);
1896 return;
1897 }
1898
1899 // Get device identifier.
1900 struct input_id inputId;
1901 if (ioctl(fd, EVIOCGID, &inputId)) {
1902 ALOGE("could not get device input id for %s, %s\n", devicePath.c_str(), strerror(errno));
1903 close(fd);
1904 return;
1905 }
1906 identifier.bus = inputId.bustype;
1907 identifier.product = inputId.product;
1908 identifier.vendor = inputId.vendor;
1909 identifier.version = inputId.version;
1910
1911 // Get device physical location.
1912 if (ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
1913 // fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
1914 } else {
1915 buffer[sizeof(buffer) - 1] = '\0';
1916 identifier.location = buffer;
1917 }
1918
1919 // Get device unique id.
1920 if (ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
1921 // fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
1922 } else {
1923 buffer[sizeof(buffer) - 1] = '\0';
1924 identifier.uniqueId = buffer;
1925 }
1926
1927 // Fill in the descriptor.
1928 assignDescriptorLocked(identifier);
1929
1930 // Allocate device. (The device object takes ownership of the fd at this point.)
1931 int32_t deviceId = mNextDeviceId++;
1932 std::unique_ptr<Device> device = std::make_unique<Device>(fd, deviceId, devicePath, identifier);
1933
1934 ALOGV("add device %d: %s\n", deviceId, devicePath.c_str());
1935 ALOGV(" bus: %04x\n"
1936 " vendor %04x\n"
1937 " product %04x\n"
1938 " version %04x\n",
1939 identifier.bus, identifier.vendor, identifier.product, identifier.version);
1940 ALOGV(" name: \"%s\"\n", identifier.name.c_str());
1941 ALOGV(" location: \"%s\"\n", identifier.location.c_str());
1942 ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.c_str());
1943 ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.c_str());
1944 ALOGV(" driver: v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff,
1945 driverVersion & 0xff);
1946
1947 // Load the configuration file for the device.
1948 device->loadConfigurationLocked();
1949
1950 bool hasBattery = false;
1951 bool hasLights = false;
1952 // Check the sysfs root path
1953 std::optional<std::filesystem::path> sysfsRootPath = getSysfsRootPath(devicePath.c_str());
1954 if (sysfsRootPath.has_value()) {
1955 std::shared_ptr<AssociatedDevice> associatedDevice;
1956 for (const auto& [id, dev] : mDevices) {
1957 if (device->identifier.descriptor == dev->identifier.descriptor &&
1958 !dev->associatedDevice) {
1959 associatedDevice = dev->associatedDevice;
1960 }
1961 }
1962 if (!associatedDevice) {
1963 associatedDevice = std::make_shared<AssociatedDevice>(sysfsRootPath.value());
1964 }
1965 hasBattery = associatedDevice->configureBatteryLocked();
1966 hasLights = associatedDevice->configureLightsLocked();
1967
1968 device->associatedDevice = associatedDevice;
1969 }
1970
1971 // Figure out the kinds of events the device reports.
1972 device->readDeviceBitMask(EVIOCGBIT(EV_KEY, 0), device->keyBitmask);
1973 device->readDeviceBitMask(EVIOCGBIT(EV_ABS, 0), device->absBitmask);
1974 device->readDeviceBitMask(EVIOCGBIT(EV_REL, 0), device->relBitmask);
1975 device->readDeviceBitMask(EVIOCGBIT(EV_SW, 0), device->swBitmask);
1976 device->readDeviceBitMask(EVIOCGBIT(EV_LED, 0), device->ledBitmask);
1977 device->readDeviceBitMask(EVIOCGBIT(EV_FF, 0), device->ffBitmask);
1978 device->readDeviceBitMask(EVIOCGBIT(EV_MSC, 0), device->mscBitmask);
1979 device->readDeviceBitMask(EVIOCGPROP(0), device->propBitmask);
1980
1981 // See if this is a keyboard. Ignore everything in the button range except for
1982 // joystick and gamepad buttons which are handled like keyboards for the most part.
1983 bool haveKeyboardKeys =
1984 device->keyBitmask.any(0, BTN_MISC) || device->keyBitmask.any(BTN_WHEEL, KEY_MAX + 1);
1985 bool haveGamepadButtons = device->keyBitmask.any(BTN_MISC, BTN_MOUSE) ||
1986 device->keyBitmask.any(BTN_JOYSTICK, BTN_DIGI);
1987 if (haveKeyboardKeys || haveGamepadButtons) {
1988 device->classes |= InputDeviceClass::KEYBOARD;
1989 }
1990
1991 // See if this is a cursor device such as a trackball or mouse.
1992 if (device->keyBitmask.test(BTN_MOUSE) && device->relBitmask.test(REL_X) &&
1993 device->relBitmask.test(REL_Y)) {
1994 device->classes |= InputDeviceClass::CURSOR;
1995 }
1996
1997 // See if this is a rotary encoder type device.
1998 String8 deviceType = String8();
1999 if (device->configuration &&
2000 device->configuration->tryGetProperty(String8("device.type"), deviceType)) {
2001 if (!deviceType.compare(String8("rotaryEncoder"))) {
2002 device->classes |= InputDeviceClass::ROTARY_ENCODER;
2003 }
2004 }
2005
2006 // See if this is a touch pad.
2007 // Is this a new modern multi-touch driver?
2008 if (device->absBitmask.test(ABS_MT_POSITION_X) && device->absBitmask.test(ABS_MT_POSITION_Y)) {
2009 // Some joysticks such as the PS3 controller report axes that conflict
2010 // with the ABS_MT range. Try to confirm that the device really is
2011 // a touch screen.
2012 if (device->keyBitmask.test(BTN_TOUCH) || !haveGamepadButtons) {
2013 device->classes |= (InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT);
2014 }
2015 // Is this an old style single-touch driver?
2016 } else if (device->keyBitmask.test(BTN_TOUCH) && device->absBitmask.test(ABS_X) &&
2017 device->absBitmask.test(ABS_Y)) {
2018 device->classes |= InputDeviceClass::TOUCH;
2019 // Is this a BT stylus?
2020 } else if ((device->absBitmask.test(ABS_PRESSURE) || device->keyBitmask.test(BTN_TOUCH)) &&
2021 !device->absBitmask.test(ABS_X) && !device->absBitmask.test(ABS_Y)) {
2022 device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
2023 // Keyboard will try to claim some of the buttons but we really want to reserve those so we
2024 // can fuse it with the touch screen data, so just take them back. Note this means an
2025 // external stylus cannot also be a keyboard device.
2026 device->classes &= ~InputDeviceClass::KEYBOARD;
2027 }
2028
2029 // See if this device is a joystick.
2030 // Assumes that joysticks always have gamepad buttons in order to distinguish them
2031 // from other devices such as accelerometers that also have absolute axes.
2032 if (haveGamepadButtons) {
2033 auto assumedClasses = device->classes | InputDeviceClass::JOYSTICK;
2034 for (int i = 0; i <= ABS_MAX; i++) {
2035 if (device->absBitmask.test(i) &&
2036 (getAbsAxisUsage(i, assumedClasses).test(InputDeviceClass::JOYSTICK))) {
2037 device->classes = assumedClasses;
2038 break;
2039 }
2040 }
2041 }
2042
2043 // Check whether this device is an accelerometer.
2044 if (device->propBitmask.test(INPUT_PROP_ACCELEROMETER)) {
2045 device->classes |= InputDeviceClass::SENSOR;
2046 }
2047
2048 // Check whether this device has switches.
2049 for (int i = 0; i <= SW_MAX; i++) {
2050 if (device->swBitmask.test(i)) {
2051 device->classes |= InputDeviceClass::SWITCH;
2052 break;
2053 }
2054 }
2055
2056 // Check whether this device supports the vibrator.
2057 if (device->ffBitmask.test(FF_RUMBLE)) {
2058 device->classes |= InputDeviceClass::VIBRATOR;
2059 }
2060
2061 // Configure virtual keys.
2062 if ((device->classes.test(InputDeviceClass::TOUCH))) {
2063 // Load the virtual keys for the touch screen, if any.
2064 // We do this now so that we can make sure to load the keymap if necessary.
2065 bool success = device->loadVirtualKeyMapLocked();
2066 if (success) {
2067 device->classes |= InputDeviceClass::KEYBOARD;
2068 }
2069 }
2070
2071 // Load the key map.
2072 // We need to do this for joysticks too because the key layout may specify axes, and for
2073 // sensor as well because the key layout may specify the axes to sensor data mapping.
2074 status_t keyMapStatus = NAME_NOT_FOUND;
2075 if (device->classes.any(InputDeviceClass::KEYBOARD | InputDeviceClass::JOYSTICK |
2076 InputDeviceClass::SENSOR)) {
2077 // Load the keymap for the device.
2078 keyMapStatus = device->loadKeyMapLocked();
2079 }
2080
2081 // Configure the keyboard, gamepad or virtual keyboard.
2082 if (device->classes.test(InputDeviceClass::KEYBOARD)) {
2083 // Register the keyboard as a built-in keyboard if it is eligible.
2084 if (!keyMapStatus && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD &&
2085 isEligibleBuiltInKeyboard(device->identifier, device->configuration.get(),
2086 &device->keyMap)) {
2087 mBuiltInKeyboardId = device->id;
2088 }
2089
2090 // 'Q' key support = cheap test of whether this is an alpha-capable kbd
2091 if (device->hasKeycodeLocked(AKEYCODE_Q)) {
2092 device->classes |= InputDeviceClass::ALPHAKEY;
2093 }
2094
2095 // See if this device has a DPAD.
2096 if (device->hasKeycodeLocked(AKEYCODE_DPAD_UP) &&
2097 device->hasKeycodeLocked(AKEYCODE_DPAD_DOWN) &&
2098 device->hasKeycodeLocked(AKEYCODE_DPAD_LEFT) &&
2099 device->hasKeycodeLocked(AKEYCODE_DPAD_RIGHT) &&
2100 device->hasKeycodeLocked(AKEYCODE_DPAD_CENTER)) {
2101 device->classes |= InputDeviceClass::DPAD;
2102 }
2103
2104 // See if this device has a gamepad.
2105 for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES) / sizeof(GAMEPAD_KEYCODES[0]); i++) {
2106 if (device->hasKeycodeLocked(GAMEPAD_KEYCODES[i])) {
2107 device->classes |= InputDeviceClass::GAMEPAD;
2108 break;
2109 }
2110 }
2111 }
2112
2113 // If the device isn't recognized as something we handle, don't monitor it.
2114 if (device->classes == Flags<InputDeviceClass>(0)) {
2115 ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath.c_str(),
2116 device->identifier.name.c_str());
2117 return;
2118 }
2119
2120 // Classify InputDeviceClass::BATTERY.
2121 if (hasBattery) {
2122 device->classes |= InputDeviceClass::BATTERY;
2123 }
2124
2125 // Classify InputDeviceClass::LIGHT.
2126 if (hasLights) {
2127 device->classes |= InputDeviceClass::LIGHT;
2128 }
2129
2130 // Determine whether the device has a mic.
2131 if (device->deviceHasMicLocked()) {
2132 device->classes |= InputDeviceClass::MIC;
2133 }
2134
2135 // Determine whether the device is external or internal.
2136 if (device->isExternalDeviceLocked()) {
2137 device->classes |= InputDeviceClass::EXTERNAL;
2138 }
2139
2140 if (device->classes.any(InputDeviceClass::JOYSTICK | InputDeviceClass::DPAD) &&
2141 device->classes.test(InputDeviceClass::GAMEPAD)) {
2142 device->controllerNumber = getNextControllerNumberLocked(device->identifier.name);
2143 device->setLedForControllerLocked();
2144 }
2145
2146 if (registerDeviceForEpollLocked(*device) != OK) {
2147 return;
2148 }
2149
2150 device->configureFd();
2151
2152 ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=%s, "
2153 "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ",
2154 deviceId, fd, devicePath.c_str(), device->identifier.name.c_str(),
2155 device->classes.string().c_str(), device->configurationFile.c_str(),
2156 device->keyMap.keyLayoutFile.c_str(), device->keyMap.keyCharacterMapFile.c_str(),
2157 toString(mBuiltInKeyboardId == deviceId));
2158
2159 addDeviceLocked(std::move(device));
2160 }
2161
openVideoDeviceLocked(const std::string & devicePath)2162 void EventHub::openVideoDeviceLocked(const std::string& devicePath) {
2163 std::unique_ptr<TouchVideoDevice> videoDevice = TouchVideoDevice::create(devicePath);
2164 if (!videoDevice) {
2165 ALOGE("Could not create touch video device for %s. Ignoring", devicePath.c_str());
2166 return;
2167 }
2168 // Transfer ownership of this video device to a matching input device
2169 for (const auto& [id, device] : mDevices) {
2170 if (tryAddVideoDeviceLocked(*device, videoDevice)) {
2171 return; // 'device' now owns 'videoDevice'
2172 }
2173 }
2174
2175 // Couldn't find a matching input device, so just add it to a temporary holding queue.
2176 // A matching input device may appear later.
2177 ALOGI("Adding video device %s to list of unattached video devices",
2178 videoDevice->getName().c_str());
2179 mUnattachedVideoDevices.push_back(std::move(videoDevice));
2180 }
2181
tryAddVideoDeviceLocked(EventHub::Device & device,std::unique_ptr<TouchVideoDevice> & videoDevice)2182 bool EventHub::tryAddVideoDeviceLocked(EventHub::Device& device,
2183 std::unique_ptr<TouchVideoDevice>& videoDevice) {
2184 if (videoDevice->getName() != device.identifier.name) {
2185 return false;
2186 }
2187 device.videoDevice = std::move(videoDevice);
2188 if (device.enabled) {
2189 registerVideoDeviceForEpollLocked(*device.videoDevice);
2190 }
2191 return true;
2192 }
2193
isDeviceEnabled(int32_t deviceId)2194 bool EventHub::isDeviceEnabled(int32_t deviceId) {
2195 std::scoped_lock _l(mLock);
2196 Device* device = getDeviceLocked(deviceId);
2197 if (device == nullptr) {
2198 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2199 return false;
2200 }
2201 return device->enabled;
2202 }
2203
enableDevice(int32_t deviceId)2204 status_t EventHub::enableDevice(int32_t deviceId) {
2205 std::scoped_lock _l(mLock);
2206 Device* device = getDeviceLocked(deviceId);
2207 if (device == nullptr) {
2208 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2209 return BAD_VALUE;
2210 }
2211 if (device->enabled) {
2212 ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId);
2213 return OK;
2214 }
2215 status_t result = device->enable();
2216 if (result != OK) {
2217 ALOGE("Failed to enable device %" PRId32, deviceId);
2218 return result;
2219 }
2220
2221 device->configureFd();
2222
2223 return registerDeviceForEpollLocked(*device);
2224 }
2225
disableDevice(int32_t deviceId)2226 status_t EventHub::disableDevice(int32_t deviceId) {
2227 std::scoped_lock _l(mLock);
2228 Device* device = getDeviceLocked(deviceId);
2229 if (device == nullptr) {
2230 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
2231 return BAD_VALUE;
2232 }
2233 if (!device->enabled) {
2234 ALOGW("Duplicate call to %s, input device already disabled", __func__);
2235 return OK;
2236 }
2237 unregisterDeviceFromEpollLocked(*device);
2238 return device->disable();
2239 }
2240
createVirtualKeyboardLocked()2241 void EventHub::createVirtualKeyboardLocked() {
2242 InputDeviceIdentifier identifier;
2243 identifier.name = "Virtual";
2244 identifier.uniqueId = "<virtual>";
2245 assignDescriptorLocked(identifier);
2246
2247 std::unique_ptr<Device> device =
2248 std::make_unique<Device>(-1, ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID, "<virtual>",
2249 identifier);
2250 device->classes = InputDeviceClass::KEYBOARD | InputDeviceClass::ALPHAKEY |
2251 InputDeviceClass::DPAD | InputDeviceClass::VIRTUAL;
2252 device->loadKeyMapLocked();
2253 addDeviceLocked(std::move(device));
2254 }
2255
addDeviceLocked(std::unique_ptr<Device> device)2256 void EventHub::addDeviceLocked(std::unique_ptr<Device> device) {
2257 reportDeviceAddedForStatisticsLocked(device->identifier, device->classes);
2258 mOpeningDevices.push_back(std::move(device));
2259 }
2260
getNextControllerNumberLocked(const std::string & name)2261 int32_t EventHub::getNextControllerNumberLocked(const std::string& name) {
2262 if (mControllerNumbers.isFull()) {
2263 ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
2264 name.c_str());
2265 return 0;
2266 }
2267 // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
2268 // one
2269 return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
2270 }
2271
releaseControllerNumberLocked(int32_t num)2272 void EventHub::releaseControllerNumberLocked(int32_t num) {
2273 if (num > 0) {
2274 mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
2275 }
2276 }
2277
closeDeviceByPathLocked(const std::string & devicePath)2278 void EventHub::closeDeviceByPathLocked(const std::string& devicePath) {
2279 Device* device = getDeviceByPathLocked(devicePath);
2280 if (device != nullptr) {
2281 closeDeviceLocked(*device);
2282 return;
2283 }
2284 ALOGV("Remove device: %s not found, device may already have been removed.", devicePath.c_str());
2285 }
2286
2287 /**
2288 * Find the video device by filename, and close it.
2289 * The video device is closed by path during an inotify event, where we don't have the
2290 * additional context about the video device fd, or the associated input device.
2291 */
closeVideoDeviceByPathLocked(const std::string & devicePath)2292 void EventHub::closeVideoDeviceByPathLocked(const std::string& devicePath) {
2293 // A video device may be owned by an existing input device, or it may be stored in
2294 // the mUnattachedVideoDevices queue. Check both locations.
2295 for (const auto& [id, device] : mDevices) {
2296 if (device->videoDevice && device->videoDevice->getPath() == devicePath) {
2297 unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
2298 device->videoDevice = nullptr;
2299 return;
2300 }
2301 }
2302 mUnattachedVideoDevices
2303 .erase(std::remove_if(mUnattachedVideoDevices.begin(), mUnattachedVideoDevices.end(),
2304 [&devicePath](
2305 const std::unique_ptr<TouchVideoDevice>& videoDevice) {
2306 return videoDevice->getPath() == devicePath;
2307 }),
2308 mUnattachedVideoDevices.end());
2309 }
2310
closeAllDevicesLocked()2311 void EventHub::closeAllDevicesLocked() {
2312 mUnattachedVideoDevices.clear();
2313 while (!mDevices.empty()) {
2314 closeDeviceLocked(*(mDevices.begin()->second));
2315 }
2316 }
2317
closeDeviceLocked(Device & device)2318 void EventHub::closeDeviceLocked(Device& device) {
2319 ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=%s", device.path.c_str(),
2320 device.identifier.name.c_str(), device.id, device.fd, device.classes.string().c_str());
2321
2322 if (device.id == mBuiltInKeyboardId) {
2323 ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
2324 device.path.c_str(), mBuiltInKeyboardId);
2325 mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
2326 }
2327
2328 unregisterDeviceFromEpollLocked(device);
2329 if (device.videoDevice) {
2330 // This must be done after the video device is removed from epoll
2331 mUnattachedVideoDevices.push_back(std::move(device.videoDevice));
2332 }
2333
2334 releaseControllerNumberLocked(device.controllerNumber);
2335 device.controllerNumber = 0;
2336 device.close();
2337 mClosingDevices.push_back(std::move(mDevices[device.id]));
2338
2339 mDevices.erase(device.id);
2340 }
2341
readNotifyLocked()2342 status_t EventHub::readNotifyLocked() {
2343 int res;
2344 char event_buf[512];
2345 int event_size;
2346 int event_pos = 0;
2347 struct inotify_event* event;
2348
2349 ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
2350 res = read(mINotifyFd, event_buf, sizeof(event_buf));
2351 if (res < (int)sizeof(*event)) {
2352 if (errno == EINTR) return 0;
2353 ALOGW("could not get event, %s\n", strerror(errno));
2354 return -1;
2355 }
2356
2357 while (res >= (int)sizeof(*event)) {
2358 event = (struct inotify_event*)(event_buf + event_pos);
2359 if (event->len) {
2360 if (event->wd == mInputWd) {
2361 std::string filename = std::string(DEVICE_PATH) + "/" + event->name;
2362 if (event->mask & IN_CREATE) {
2363 openDeviceLocked(filename);
2364 } else {
2365 ALOGI("Removing device '%s' due to inotify event\n", filename.c_str());
2366 closeDeviceByPathLocked(filename);
2367 }
2368 } else if (event->wd == mVideoWd) {
2369 if (isV4lTouchNode(event->name)) {
2370 std::string filename = std::string(VIDEO_DEVICE_PATH) + "/" + event->name;
2371 if (event->mask & IN_CREATE) {
2372 openVideoDeviceLocked(filename);
2373 } else {
2374 ALOGI("Removing video device '%s' due to inotify event", filename.c_str());
2375 closeVideoDeviceByPathLocked(filename);
2376 }
2377 }
2378 } else {
2379 LOG_ALWAYS_FATAL("Unexpected inotify event, wd = %i", event->wd);
2380 }
2381 }
2382 event_size = sizeof(*event) + event->len;
2383 res -= event_size;
2384 event_pos += event_size;
2385 }
2386 return 0;
2387 }
2388
scanDirLocked(const std::string & dirname)2389 status_t EventHub::scanDirLocked(const std::string& dirname) {
2390 for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
2391 openDeviceLocked(entry.path());
2392 }
2393 return 0;
2394 }
2395
2396 /**
2397 * Look for all dirname/v4l-touch* devices, and open them.
2398 */
scanVideoDirLocked(const std::string & dirname)2399 status_t EventHub::scanVideoDirLocked(const std::string& dirname) {
2400 for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
2401 if (isV4lTouchNode(entry.path())) {
2402 ALOGI("Found touch video device %s", entry.path().c_str());
2403 openVideoDeviceLocked(entry.path());
2404 }
2405 }
2406 return OK;
2407 }
2408
requestReopenDevices()2409 void EventHub::requestReopenDevices() {
2410 ALOGV("requestReopenDevices() called");
2411
2412 std::scoped_lock _l(mLock);
2413 mNeedToReopenDevices = true;
2414 }
2415
dump(std::string & dump)2416 void EventHub::dump(std::string& dump) {
2417 dump += "Event Hub State:\n";
2418
2419 { // acquire lock
2420 std::scoped_lock _l(mLock);
2421
2422 dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
2423
2424 dump += INDENT "Devices:\n";
2425
2426 for (const auto& [id, device] : mDevices) {
2427 if (mBuiltInKeyboardId == device->id) {
2428 dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
2429 device->id, device->identifier.name.c_str());
2430 } else {
2431 dump += StringPrintf(INDENT2 "%d: %s\n", device->id,
2432 device->identifier.name.c_str());
2433 }
2434 dump += StringPrintf(INDENT3 "Classes: %s\n", device->classes.string().c_str());
2435 dump += StringPrintf(INDENT3 "Path: %s\n", device->path.c_str());
2436 dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled));
2437 dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.c_str());
2438 dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.c_str());
2439 dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
2440 dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.c_str());
2441 dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
2442 "product=0x%04x, version=0x%04x\n",
2443 device->identifier.bus, device->identifier.vendor,
2444 device->identifier.product, device->identifier.version);
2445 dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n",
2446 device->keyMap.keyLayoutFile.c_str());
2447 dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n",
2448 device->keyMap.keyCharacterMapFile.c_str());
2449 dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n",
2450 device->configurationFile.c_str());
2451 dump += INDENT3 "VideoDevice: ";
2452 if (device->videoDevice) {
2453 dump += device->videoDevice->dump() + "\n";
2454 } else {
2455 dump += "<none>\n";
2456 }
2457 }
2458
2459 dump += INDENT "Unattached video devices:\n";
2460 for (const std::unique_ptr<TouchVideoDevice>& videoDevice : mUnattachedVideoDevices) {
2461 dump += INDENT2 + videoDevice->dump() + "\n";
2462 }
2463 if (mUnattachedVideoDevices.empty()) {
2464 dump += INDENT2 "<none>\n";
2465 }
2466 } // release lock
2467 }
2468
monitor()2469 void EventHub::monitor() {
2470 // Acquire and release the lock to ensure that the event hub has not deadlocked.
2471 std::unique_lock<std::mutex> lock(mLock);
2472 }
2473
2474 }; // namespace android
2475